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Abstract

Nonlinear dimensionality reduction methods are often usadsualize high-dimensional data, al-
though the existing methods have been designed for ottaedetasks such as manifold learning.
It has been difficult to assess the quality of visualizatisinse the task has not been well-defined.
We give a rigorous definition for a specific visualizationktaesulting in quantifiable goodness
measures and new visualization methods. The tasfasmation retrievalgiven the visualization:
to find similar data based on the similarities shown on thpldis The fundamental tradeoff be-
tween precision and recall of information retrieval camthe quantified in visualizations as well.
The user needs to give the relative cost of missing similamtpws. retrieving dissimilar points,
after which the total cost can be measured. We then introducew method NeRVngighbor
retrieval visualizeJ which produces an optimal visualization by minimizing ttwst. We further
derive a variant for supervised visualization; class infation is taken rigorously into account
when computing the similarity relationships. We show eigplly that the unsupervised version
outperforms existing unsupervised dimensionality reidaatnethods in the visualization task, and
the supervised version outperforms existing supervisatioads.

Keywords: information retrieval, manifold learning, multidimens& scaling, nonlinear dimen-
sionality reduction, visualization

1. Introduction

Visualization of high-dimensional data sets is one of the traditional applicatibnsnlinear di-
mensionality reduction methods. In high-dimensional data, such as exp&lrdata where each
dimension corresponds to a different measured variable, depensibrtieeen different dimensions
often restrict the data points to a manifold whose dimensionality is much lower thaliniension-
ality of the data space. Many methods are designethforifold learningthat is, to find and unfold
the lower-dimensional manifold. There has been a research boom in itddadmning since 2000,
and there now exist many methods that are known to unfold at least ceiridgdé manifolds suc-
cessfully. Some of the successful methods include isomap (Tenenbalm2800), locally linear
embedding (LLE; Roweis and Saul, 2000), Laplacian eigenmap (LE; BalihNiyogi, 2002a),
and maximum variance unfolding (MVU; Weinberger and Saul, 2006).
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It has turned out that the manifold learning methods are not necessanitlyfgpinformation
visualization. Several methods had severe difficulties when the output sionatity was fixed
to two for visualization purposes (Venna and Kaski, 2007a). This is alagimce they have been
designed to find a manifold, not to compress it into a lower dimensionality.

In this paper we discuss the specific visualization task of projecting the datais on a two-
dimensional display. Note that this task is different from manifold learningase the inherent
dimensionality of the manifold is higher than two and the manifold cannot besepied perfectly
in two dimensions. As the representation is necessarily imperfect, definingsimgl ameasure
of goodnes®f the representation is crucial. However, in spite of the large amountsefireh
into methods for extracting manifolds, there has been very little discussiorhahavgood two-
dimensional representation should be like and how the goodness shouldasered. In a recent
survey of 69 papers on dimensionality reduction from years 2000—@@&0tha, 2007) it was found
that 28 & 40%) of the papers only presented visualizations of toy or real data setpaof of
quality. Most of the more quantitative approaches were based on one stimiegies. The first is
to measure preservation of all pairwise distances or the order of allipaidistances. Examples of
this approach include the multidimensional scaling (MDS)-type cost funclikem&ammon’s cost
and Stress, methods that relate the distances in the input space to the catputspl various cor-
relation measures that assess the preservation of all pairwise distiheesther common quality
assurance strategy is to classify the data in the low-dimensional spacepamtithe classification
performance.

The problem with using the above approaches to measure visualizationpanice is that their
connection to visualization is unclear and indirect at best. Unless the gmrigddhe visualization
is to help with a classification task, it is not obvious what the classificatiorracgof a projection
reveals about its goodness as a visualization. Preservation of painstiaeads, the other widely
adopted principle, is a well-defined goal; it is a reasonable goal if the stnalghes to use the
visualization to assess distances between selected pairs of data poimis,dngue that this is not
the typical way how an analyst would use a visualization, at least in thestaggs of analysis when
no hypothesis about the data has yet been formed. Most approachetirig ours are based on
pairwise distances at heart, but we take into account the context opaaulise distance, yielding
a more natural way of evaluating visualization performance; the resultingoohétis a natural and
rigorous interpretation which we discuss below and in the following sections.

In this paper we make rigorous the specific information visualization taskopégiing a high-
dimensional data set onto a two-dimensional plane for visualizing similarity retdtips. This task
has a very natural mapping into an information retrieval task as will be disdus Section 2. The
conceptualization as information retrieval explicitly reveals the necessaigdff between preci-
sion and recall, of making true similarities visible and avoiding false similarities.trHoeoff can
be quantified exactly once costs have been assigned to each of thedwtyeess, and once the total
cost has been defined, it can be optimized as will be discussed in SectiéntBen show that the
resulting method, called NeRV fareighbor retrieval visualizercan be further extended to super-
vised visualization, and that both the unsupervised and supervised raetmpdrically outperform
their alternatives. NeRV includes the previous method called stochastidooeigimbedding (SNE;
Hinton and Roweis, 2002) as a special case where the tradeoff istbat soly recall is maximized;
thus we give a new information retrieval interpretation to SNE.

452
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This paper extends our earlier conference paper (Venna and K&gkib) which introduced
the ideas in a preliminary form with preliminary experiments. The currentrpgipes the full
justification and comprehensive experiments, and also introduces thwisegesersion of NeRV.

2. Visualization as Information Retrieval

In this section we define formally the specific visualization task; this is a naveidlization of
visualization as ainformation retrieval task We first give the definition for a simplified setup in
Section 2.1, and then generalize it in Section 2.2.

2.1 Similarity Visualization with Binary Neighborhood Relationships

In the following we first define the specific visualization task and a codttiom for it; we then
show that the cost function is related to the traditional information retrievasunegprecisionand
recall.

2.1.1 TASK DEFINITION: SIMILARITY VISUALIZATION

Let {x;}]; be a set of input data samples, and let each saimmee aninput neighborhood P
consisting of samples that are close.tdypically, B might consist of all input samples (other than
i itself) that fall within some radius df or alternatively® might consist of a fixed nhumber of input
samples most similar tio In either case, lat; be the size of the s&.

The goal of similarity visualizatioris to produce low-dimensional output coordinafgs} ;
for the input data, usable in visual information retrieval. Given any samgdea query, in visual
information retrieval samples are retrieved based on the visualization; ttievee result is a set
Qi of samples that are close ¥pin the visualization; we cal; the output neighborhoodThe Q
typically consists of all input samplgs(other than itself) whose visualization coordinatgs are
within some radius of; in the visualization, or alternativel@; might consist of a fixed number
of input samples whose output coordinates are nearagt tm either case, lek; be the number
of points in the seQ;. The number of points iQ; may be different from the number of points in
R; for example, if many points have been placed closg ia the visualization, then retrieving all
points within a certain radius of might yield too many retrieved points, compared to how many
are neighbors in the input space. Figure 1 illustrates the setup.

The remaining question is what is a good visualization, that is, what is théurmsion. Denote
the number of samples that are in b@handP, by Ntp; (true positives), samples that are@nbut
not in P, by Nrp; (false positives), and samples that ar@ibut notQ; by Nviss; (misses). Assume
the user has assigned a cGgp for each false positive antyss for each miss. The total co&
for queryi, summed over all data points, then is

Ei = NrpiCrp+ NwissiCmiss - (1)

2.1.2 RELATIONSHIP TOPRECISION AND RECALL

The cost function of similarity visualization (1) bears a close relationship ttrvaélkd@ional measures
of information retrieval, precision and recall. If we all@yss to be a function of the total number
of relevant points, more specificallfCwiss(ri) = Cyss/fi, and take the cost per retrieved point by
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Figure 1: Diagram of the types of errors in visualization.

dividing byk;, the total cost becomes

E(k,ri) = IiE(ri) = I::i(NFP,iCFP‘F Nmiss,Cmiss(ri))
B Nepi  CuissNwissi
= % T
= Crp(1— precisiori)) + C'\l"(:ss(l— recalli)) .

The traditional definition of precision for a single query is

precisiori) = NLP’i =1- lep’i )

and recall is
Nrpj 1_ Nwmiss,i

i i
Hence, fixing the cost€gp andCy;ss and minimizing (1) corresponds to maximizing a specific
weighted combination of precision and recall.
Finally, to assess performance of the full visualization the cost needs dwdvaged over all
samples (queries) which yields mean precision and recall of the visualization

recalli) =

2.1.3 DSCUSSION

Given a high-dimensional data set, it is generally not possible to show adiirthikarity relation-
ships within the data on a low-dimensional display; therefore, all linear mimear dimensionality
reduction methods need to make a tradeoff about which kinds of similarity resaijos they aim
to show on the display. Equation (1) fixes the tradeoff given the costsedinh kinds of errors.
Figure 2 illustrates this tradeoff (computed with methods introduced in Sectiwiti3)a toy ex-
ample where a three-dimensional sphere surface is visualized in two dimen#five take some
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guery point in the visualization and retrieve a set of points close-by in thhZstion, in display

A such retrieval yields few false positives but many misses, whereas iaylBghe retrieval yields

few misses but many false positives. The tradeoff can also be seen iméfam) precision-recall
curves for the two visualizations, where the number of retrieved pointsiesdve yield the curve.
VisualizationA reaches higher values of precision, but the precision drops mucheld&éh recall

is reached. VisualizatioB has lower precision at the left end of the curve, but precision does not
drop as much even when high recall is reached.

Note that in order to quantify the tradeoff, both precision and recall nedgk used. This
requires a rich enough retrieval model, in the sense that the number ief/eetpoints can be
different from the number of relevant points, so that precision anallrget different values. It is
well-known in information retrieval that if the numbers of relevant and retiddétems (here points)
are equal, precision and recall become equal. The recent “local ciyitiotiterion (Equation
9 in Chen and Buja, 2009) is simply precision/recall under this constrainthu give a novel
information retrieval interpretation of it as a side result. Such a criterioneguliut it gives
only a limited view of the quality of visualizations, because it corresponds to a liméeeval
model and cannot fully quantify the precision-recall tradeoff. In thizgpave will use fixed-radius
neighborhoods (defined more precisely in Section 2.2) in the visualizatidnsh naturally yields
differing numbers of retrieved and relevant points.

The simple visualization setup presented in this section is a novel formulatiaeuzfiization
and useful as a clearly defined starting point. However, for practemitthas a shortcoming: the
overly simple binary fixed-size neighborhoods do not take into acognantes of relevanceThe
cost function does not penalize violating the original similarity ordering adhf®or samples; and
the cost function penalizes all neighborhood violations with the same cost.whewill introduce
a more practical visualization setup.

2.2 Similarity Visualization with Continuous Neighborhood Relationships

We generalize the simple binary neighborhood case by defining probabiksgicborhoods both in
the (i) input and (ii) output spaces, and (iii) replacing the binary preciaimhrecall measures with
probabilistic ones. It will finally be shown that for binary neighborhqadterpreted as a constant
high probability of being a neighbor within the neighborhood set and ataohkbw probability
elsewhere, the measures reduce to the standard precision and recall.

2.2.1 PROBABILISTIC MODEL OF RETRIEVAL

We start by defining the neighborhood in the output space, and do thdgfiming a probability
distribution over the neighbor points. Such a distribution is interpretable aslaelrmbout how the
user does the retrieval given the visualization display.

Given the location of the query point on the displgy,suppose that the user selects one point
at a time for inspection. Denote loy;; the probability that the user choosgs If we can define
such probabilities, they will define@obabilistic model of retrievaior the neighbors of;.

The form ofq;; can be defined by a few axiomatic choices and a few arbitrary ones. thiace
gj;; are a probability distribution ovey for eachi, they must be nonnegative and sum to one over
j; therefore we can represent themags = exp(—fi j)/ 3+ exp(—fik) wherefij € R. The fi
should be an increasing function of distance (dissimilarity) betweamdy;; we further assume
that f; ; depends only og; andy; and not on the other pointg. It remains to choose the form of
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Figure 2: Demonstration of the tradeoff between false positives and migsgsleft: A three-
dimensional data set sampled from the surface of a sphere; only thehiorisphere
is shown for clarity. The glyph shapes (size, elongation, and angley te three-
dimensional coordinates of each point; the colors in the online version gi@same
information. Bottom: Two embeddings of the data set. In the embeddinthe sphere
has been cut open and folded out. This embedding elimifakes positivesbut there
are somemissesdecause points on different sides of the tear end up far away from eac
other. In contrast, the embeddiBgninimizes the number of misses by simply squashing
the sphere flat; this results in a large number of false positives becainte @oopposite
sides of the sphere are mapped close to each dtbpright: mean precision-mean recall
curves with input neighborhood size- 75, as a function of the output neighborhood size
k, for the two projections. The embeddiAghas better precision (yielding higher values
at the left end of the curve) whereas the embeddritas better recall (yielding higher
values at the right end of the curve).
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fi j. In general there should not be any reason to favor any particulginme point, and hence the
form should not depend op It could depend om, however; we assume it has a simple quadratic
form fi j = |lyi —y;||?>/02 where||y; —y||| is the Euclidean distance and the positive multipliésa
allows the function to grow at an individual rate for eacihis yields the definition

v l2
exp(_HY| O%/JH )

= . 2
Sk exp(— HYi;ngz) (2)

2.2.2 PROBABILISTIC MODEL OF RELEVANCE

We extend the simple binary neighborhoods of input data samples to proti@iniégyhborhoods
as follows. Suppose that if the user was choosing the neighbors ofry i@t i in the original
data space, she would choose pgimtith probability p;;;. The p;; define aprobabilistic model of
relevancdor the original data, and are equivalent to a neighborhood arbuhd higher the chance
of choosing this neighbor, the larger its relevance to

We define the probability;; analogously taj;;, as

d i Xi 2
(— 2Ry

- 3)
5 ks €xp(— 2255

exp

Pji =

whered(-,-) is a suitable difference measure in the original data,améfers to the point in the
original data that is represented fpyin the visualization. Some data sets may provide the values of
d(-,-) directly; otherwise the analyst can choose a difference measure siddatie data feature
vectors. Later in this paper we will use both the simple Euclidean distancermndeecomplicated
distance measure that incorporates additional information about the data.

Given known values ad(-, -), the above definition of the neighborhopg can be motivated by
the same arguments gg;. That is, the given form op;; is a good choice if no other information
about the original neighborhoods is available. Other choices are s in particular, if the
data directly includes neighbor probabilities, they can simply be used g theikewise, if more
accurate models of user behavior are available, they can be plugged¢éngdtg ;. The forms of
pj;i andg;; need not be the same.

For each point, the scaling parameter; controls how quickly the probabilitiep;; fall off
with distance. These parameters could be fixed by prior knowledge,ithduw such knowledge it
is reasonable to set th@ by specifying how much flexibility there should be about the choice of
neighbors. That is, we set to a value that makes the entropy of g distribution equal to loé,
wherek is a rough upper limit for the number of relevant neighbors, set by the ¥ge use the
same relative scalg; both in the input and output spaces (Equations 2 and 3).

2.2.3 GOSTFUNCTIONS

The remaining task is to measure how well the retrieval done in the outpud,ggigen the visual-
ization, matches the true relevances defined in the input space. Bothiveeeedefined in terms of
distributions, and a natural candidate for the measure iKuliback-Leibler divergencedefined as

p..
D(pi,q) = ;pnilog{_'
1A Qjji
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wherep; andg; are the neighbor distributions for a particular pdinin the input space and in the
visualization respectively. For the particular probability distributions ddfm@ove the Kullback-
Leibler divergence turns out to be intimately related to precision and regadicifgally, for any
queryi, the Kullback-Leibler divergenc®(pi,qi) is a generalization of recall, and(q;, pi) is

a generalization of precision; for simple “binary” neighborhood defingtjahe Kullback-Leibler
divergences and the precision-recall measures become equivdierjprdof is in Appendix A.

We call D(q;, pi) smoothed precisioand D(p;,q;) smoothed recall To evaluate a complete
visualization rather than a single query, we define aggregate measurestarnhard fashion: mean
smoothed precision is defined B§D(q;, pi)] and mean smoothed recall B§D(p;i, qi)], whereE
denotes expectation and the means are taken over queries (data)points

Mean smoothed precision and recall are analogous to mean precisiorecaildim that we
cannot in general reach the optimum of both simultaneously. We return toeFRiguhich illustrates
the tradeoff for nonlinear projections of a three-dimensional sphefacgu The subfigur& was
created by maximizing mean smoothed precision; the sphere has been owrmpélded out,
which minimizes the number of false positives but also incurs some missesskesame points
located on opposite edges of the point cloud were originally close to eaehaitihe sphere. The
subfigureB was created by maximizing mean smoothed recall; the sphere is squashedittat, w
minimizes the number of misses, as all the points that were close to each otheoiigthal data
are close to each other in the visualization. However, there are then alargeer of false positives
because opposite sides of the sphere have been mapped on top ofreackamthat many points
that appear close to each other in the visualization are actually originallywégr fom each other.

2.2.4 BEASIER-TO-INTERPRETALTERNATIVE GOODNESSMEASURES

Mean smoothed precision and recall are rigorous and well-motivated nesasfvisualization per-
formance, but they have one practical shortcoming for human analyst®ritbrs have no upper
bound, and the scale will tend to depend on the data set. The measuresyanseful for compar-
ing several visualizations of the same data, and will turn out to be usehptarization criteria,
but we would additionally like to have measures where the plain numbers silg iaterpretable.
We address this by introducimgean rank-based smoothed precision and recithply replace the
distances in the definitions @f; andg;;; with ranks, so that the probability for the nearest neighbor
uses a distance of 1, the probability for the second nearest neighistaacs of 2, and so on. This
imposes an upper bound on the error because the worst case séettaidhe ranks in the data set
are reversed in the visualization. Dividing the errors by their upperd®gives us measures that lie
in the intervall0, 1] regardless of the data and are thus much easier to interpret. The dowribate
substituting ranks for distances makes the measures disregard mucheitjtieanthood structure in
the data, so we suggest using mean rank-based smoothed precisiecahds easier-to-interpret,
but less discriminating complements to, rather than replacements of, mean stho@tision and
recall.

3. Neighborhood Retrieval Visualizer (NeRV)

In Section 2 we defined similarity visualization as an information retrieval tasie quality of
a visualization can be measured by the two loss functions, mean smoothéioprend recall.
These measures generalize the straightforward precision and recalimreg#o non-binary neigh-
borhoods. They have the further advantage of being continuousitgedtiable functions of the
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output visualization coordinates. It is then easy to use the measuogdirszation criteriafor a
visualization method. We now introduce a visualization algorithm that optimizeahigormation
retrieval performance. We call the algorithm teighborhood retrieval visualizNeRV).

As demonstrated in Figure 2, precision and recall cannot in general bmizea simultane-
ously, and the user has to choose which loss function (average smpod¢ioésion or recall) is more
important, by assigning a cost for misses and a cost for false positivie® tBese costs have been
assigned, the visualization task is simply to minimize the total cost. In practice thiggalast of
false positives to misses is given as a parametdihe NeRV cost function then becomes

Enerv = AEi[D(pi,qi)] + (1—A)Ei[D(q;, pi)]
og Pili _ g Jil
DAIZJ;p,|.Iogq”i+(l A)Z;q”.logp (4)

jli

where, for example, setting to 0.1 indicates that the user considers an error in precision
(1-0.1)/0.1 = 9 times as expensive as a similar error in recall.

To optimize the cost function (4) with respect to the output coordingte$ each data point,
we use a standard conjugate gradient algorithm. The computational complegifich iteration
is O(dr?), wheren is the number of data points amtthe dimension of the projection. (In our
earlier conference paper a coarse approximate algorithm was redoiiregdeed; this turned out
to be unnecessary, and ttgdr?) complexity does not require any approximation.) Note that if
a pairwise distance matrix in the input space is not directly provided as dafan ias usual be
computed from input features; this is a one-time computation done at thefdtaetaigorithm and
takesO(Dn?) time, whereD is the input dimensionality.

In general, NeRV optimizes a user-defined cost which forms a tradetfden mean smoothed
precision and mean smoothed recall. If weXet 1 in Equation (4), we obtain the cost function of
stochastic neighbor embedding (SNE; see Hinton and Roweis, 2002)eldenget as a side result
a new interpretation of SNE as a method that maximizes mean smoothed recall.

3.0.5 RRACTICAL ADVICE ON OPTIMIZATION

After computing the distance matrix from the input data, we scale the input déstago that the
average distance is equal to 1. We use a random projection onto the wanie sxs a starting point
for the algorithm. Even this simple choice has turned out to give better resaftsatternatives; a
more intelligent initialization, such as projecting the data using principal conmp@malysis, can
of course also be used.

To speed up convergence and avoid local minima, we apply a further initiafizgtep: we run
ten rounds of conjugate gradient (two conjugate gradient steps ped);oand after each round
decrease the neighborhood scaling parameteused in Equations (2) and (3). Initially, we set the
o; to half the diameter of the input data. We decrease them linearly so that thedina makes
the entropy of thep;;; distribution equal to an effective number of neighblyravhich is the choice
recommended in Section 2.2. This initialization step has the same compi¥xity) per iteration
as the rest of the algorithm. After this initialization phase we perform twentydatdnconjugate
gradient steps.
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4. Using NeRV for Unsupervised Visualization

It is easy to apply NeRV for unsupervised dimensionality reduction. Asyruasupervised anal-
ysis, the analyst first chooses a suitable unsupervised similarity or distagasure for the input
data; for vector-valued input data this can be the standard Euclideanadisiahich we will use
here), or it can be some other measure suggested by domain knowleugeth® analyst has spec-
ified the relative importance of precision and recall by choosing a valug, fthe NeRV algorithm
computes the embedding based on the distances it is given.

In this section we will make extensive experiments comparing the perfornuideRV with
other dimensionality reduction methods on unsupervised visualization obsdata sets, including
both benchmark data sets and real-life bioinformatics data sets. In the faleulrsections, we
describe the comparison methods and data sets, briefly discuss the exparmethodology, and
present the results.

4.1 Comparison Methods for Unsupervised Visualization

For the task of unsupervised visualization we compare the performardeR) with the follow-
ing unsupervised nonlinear dimensionality reduction methods: principal@oemp analysis (PCA;
Hotelling, 1933), metric multidimensional scaling (MDS; see Borg and Grgelr88v), locally lin-
ear embedding (LLE; Roweis and Saul, 2000), Laplacian eigenmap @lEirBand Niyogi, 2002a),
Hessian-based locally linear embedding (HLLE; Donoho and Grimes,)2&@8nap (Tenenbaum
et al., 2000), curvilinear component analysis (CCA; Demartines d@rdudt, 1997), curvilinear dis-
tance analysis (CDA,; Lee et al., 2004), maximum variance unfolding (MWeinberger and Saul,
2006), landmark maximum variance unfolding (LMVU; Weinberger et al050and our previous
method local MDS (LMDS; Venna and Kaski, 2006).

Principal component analysi®PCA; Hotelling, 1933) finds linear projections that maximally
preserve the variance in the data. More technically, the projection dirsat#ombe found by solving
for the eigenvalues and eigenvectors of the covariance mayiaf the input data points. The
eigenvectors corresponding to the two or three largest eigenvaluesliaeted into a matrid, and
the data pointg; can then be visualized by projecting them wyth= Ax;, wherey; is the obtained
low-dimensional representationxyf PCA is very closely related to linear multidimensional scaling
(linear MDS, also called classical scaling; Torgerson, 1952; Gov@&6)] which tries to find low-
dimensional coordinates preserving squared distances. It can wa $Bower, 1966) that when
the dimensionality of the sought solutions is the same and the distance measuctidedn, the
projection of the original data to the PCA subspace equals the configurtipoints found by
linear MDS. This implies that PCA tries to preserve the squared distancesdretata points, and
that linear MDS finds a solution that is a linear projection of the original data.

Traditionalmultidimensional scalingMDS; see Borg and Groenen, 1997) exists in several dif-
ferent variants, but they all have a common goal: to find a configurationtput coordinates that
preserves the pairwise distance matrix of the input data. For the compaxigeriments we chose
metric MDSwhich is the simplest nonlinear MDS method,; its cost function (Kruskal, 1%&dled
the raw stress, is

E = 3 (d0x.x) ~d(y.y;)’ Q

1]
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whered(x;,X;) is the distance of pointg andx; in the input space andl(y;,y;) is the distance of
their corresponding representations (locationsindy; in the output space. This cost function is
minimized with respect to the representatigns

Isomap(Tenenbaum et al., 2000) is an interesting variant of MDS, which agais éirconfig-
uration of output coordinates matching a given distance matrix. The differis that Isomap does
not compute pairwise input-space distances as simple Euclidean distahasgdndesic distances
along the manifold of the data (technically, along a graph formed by congeaitik-nearest neigh-
bors). Given these geodesic distances the output coordinates acklgistandard linear MDS.
When output coordinates are found for such input distances, the rhsifacture in the original
data becomes unfolded; it has been shown (Bernstein et al., 2000)ithalgibrithm is asymptot-
ically able to recover certain types of manifolds. We used the isomap implemerastidable at
http://isomap.stanford.edu in the experiments.

Curvilinear component analys{€CA; Demartines and étault, 1997) is a variant of MDS that
tries to preserve only distances between points that are near each dtiewvisualization. This is
achieved by weighting each term in the MDS cost function (5) by a coeffithett depends on the
corresponding pairwise distance in the visualization. In the implementationey¢hescoefficient
is simply a step function that equals 1 if the distance is below a predeterminstditend O if it
is larger.

Curvilinear distance analysi€DA; Lee et al., 2000, 2004) is an extension of CCA. The idea is
to replace the Euclidean distances in the original space with geodesic disiarthe same manner
as in the isomap algorithm. Otherwise the algorithm stays the same.

Local MDS(LMDS; Venna and Kaski, 2006) is our earlier method, an extension & @@t
focuses on local proximities with a tunable cost function tradeoff. It @agden as a first step in the
development of the ideas of NeRV.

Thelocally linear embeddingLLE; Roweis and Saul, 2000) algorithm is based on the assump-
tion that the data manifold is smooth enough and is sampled densely enoughhaueach data
point lies close to a locally linear subspace on the manifold. LLE makes a locadigrlepprox-
imation of the whole data manifold: LLE first estimates a local coordinate systemaich data
point, by calculating linear coefficients that reconstruct the data poinedswpossible from itk
nearest neighbors. To unfold the manifold, LLE finds low-dimensionaldioates that preserve the
previously estimated local coordinate systems as well as possible. Tdbhhick first minimizes
the reconstruction errdf(W) = 5, [|x; — 3 ;W jX;[|* with respect to the coefficient ;, under the
constraints thaii ; = 0 if i and j are not neighbors, angl; W j = 1. Given the weights, the low-
dimensional configuration of points is next found by minimizB@r) = ¥;(lyi — 3 ;W ;y; 1% with
respect to the low-dimensional representatipaf each data point.

TheLaplacian eigenmafl_E; see Belkin and Niyogi, 2002a) uses a graph embedding approach.
An undirectedk-nearest-neighbor graph is formed, where each data point is a vBdtsi and
are connected by an edge with weiifit; = 1 if j is among th& nearest neighbors of otherwise
the edge weight is set to zero; this simple weighting method has been founddavelbin practice
(Belkin and Niyogi, 2002b). To find a low-dimensional embedding of thelgréhe algorithm tries
to put points that are connected in the graph as close to each other idrepasd does not care what
happens to the other points. Technically, it minimi%@’j lyi — Vi HZ\MJ =yTLy with respect to
the low-dimensional point locatiorys, whereL = D — W is the graph Laplacian aridlis a diagonal
matrix with elements =3 ;W j. However, this cost function has an undesirable trivial solution:
putting all points in the same position would minimize the cost. This can be avoideattingssuit-
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able constraints. In practice the low-dimensional configuration is foursblwng the generalized
eigenvalue problerhy = ADy (Belkin and Niyogi, 2002a). The smallest eigenvalue corresponds
to the trivial solution, but the eigenvectors corresponding to the next sheltpgenvalues give the
Laplacian eigenmap solution.

The Laplacian eigenmap algorithm reduces to solving a generalized eigepvablem because
the cost function that is minimized is a quadratic form involving the Laplacian mhtrixThe
Hessian-based locally linear embeddiftdLLE; Donoho and Grimes, 2003) algorithm is similar,
but the Laplaciar. is replaced by the Hessidih

The maximum variance unfoldinglgorithm (MVU; Weinberger and Saul, 2006) expresses di-
mensionality reduction as a semidefinite programming problem. One way of intfaldolded flag
is to pull its four corners apart, but not so hard as to tear the flag. M\filiesgthis idea to projecting
a manifold: the projection maximizes variance (pulling apart) while presenistigrites between
neighbors (no tears). The constraint of local distance preservatiobe expressed in terms of the
Gram matrixK of the mapping. Maximizing the variance of the mapping is equivalent to maxi-
mizing the trace oK under a set of constraints, which, it turns out, can be done using semitiglefi
programming.

A notable disadvantage of MVU is the time required to solve a semidefinite pnofgran x n
matrices when the number of data points large. Landmark MVU(LMVU; Weinberger et al.,
2005) addresses this issue by significantly reducing the size of the ser@pfogramming prob-
lem. Like LLE, LMVU assumes that the data manifold is sufficiently smooth andelgrsampled
that it is locally approximately linear. Instead of embedding all the data poirgstljiras MVU
does, LMVU randomly chooses <« n inputs as so-called landmarks. Because of the local linear-
ity assumption, the other data points can be approximately reconstructethiedandmarks using
a linear transformation. It follows that the Gram matkixcan be approximated using thex m
submatrix of inner products between landmarks. Hence we only need to aptimgem x m matri-
ces, a much smaller semidefinite program. Other recent approachegédlirgp up MVU include
matrix factorization based on a graph Laplacian (Weinberger et al., 2007)

In addition to the above comparison methods, other recent work on dimafisioaduction in-
cludesminimum volume embeddifyIVE; Shaw and Jebara, 2007), which is similar to MVU, but
where MVU maximizes the whole trace of the Gram matrix (the sum of all eigeesplMVE max-
imizes the sum of the first few eigenvalues and minimizes the sum of the restlentorpreserve
the largest amount of eigenspectrum energy in the few dimensions thahraftes dimensionality
reduction. In practice, a variational upper bound of the resulting crmitesioptimized.

Very recently, a number of unsupervised methods have been compavad der Maaten et al.
(2009) in terms of classification accuracy and our old criteria trustwortkigentinuity.

4.2 Data Sets for Unsupervised Visualization

We used two synthetic benchmark data sets and four real-life data sets fxpgeriments.

Theplain s-curvedata set is an artificial set sampled from an S-shaped two-dimensiofeadesur
embedded in three-dimensional space. An almost perfect two-dimensipnasentation should be
possible for a non-linear dimensionality reduction method, so this data skt s sanity check.

The noisy s-curvedata set is otherwise identical to the plain s-curve data set, but significant
spherical normally distributed noise has been added to each data pointedsiheis a cloud of
points where the original S-shape is difficult to discern by visual inspection
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Thefacesdata set consists of ten different face images of 40 different peaypla,tbtal of 400
images. For a given subject, the images vary in terms of lighting and facisssipns. The size of
each image is 64 64 pixels, with 256 grey levels per pixel. The data set is available for dasnlo
at http://www.cs.toronto.edu/ ~ roweis/data.html

The mouse gene expressidata set is a collection of gene expression profiles from different
mouse tissues (Su et al., 2002). Expression of over 13,000 mouse lygghéeen measured in
45 tissues. We used an extremely simple filtering method, similar to that originaliyhys&u
et al. (2002), to select the genes for visualization. Of the mouse geraely d&pressed (average
difference in Affymetrix chips, AD> 200) in at least one of the 45 tissues (dimensions), a random
sample of 1600 genes (points) was selected. After this the variance inigsod was normalized
to unity.

Thegene expression compendidiata set is a large collection of human gene expression arrays
(http://dags.stanford.edu/cancer ; Segal et al., 2004). Since the current implementations of
all methods do not tolerate missing data we removed samples with missing valueshato§irst
we removed genes that were missing from more than 300 arrays. Theamawed the arrays
for which values were still missing. This resulted in a data set containing fi@iffss and 1339
dimensions.

Thesea-water temperature time seriésta set (Liitainen and Lendasse, 2007) is a time series
of weekly temperature measurements of sea water over several yemnis.d&ta point is a time
window of 52 weeks, which is shifted one week forward for the next gatat. Altogether there
are 823 data points and 52 dimensions.

4.3 Methodology for the Unsupervised Experiments

The performance of NeRV was compared with 11 unsupervised dimetisiceduction methods
described in Section 4.1, namely principal component analysis (PCA), nmetiliiddimensional
scaling (here simply denoted MDS), locally linear embedding (LLE), Laphaeigenmap (LE),
Hessian-based locally linear embedding (HLLE), isomap, curvilinear casrgaanalysis (CCA),
curvilinear distance analysis (CDA), maximum variance unfolding (MVUndtaark maximum
variance unfolding (LMVU), and local MDS (LMDS). LLE, LE, HLLE, MU, LMVU and isomap
were computed with code from their developers; MDS, CCA and CDA usedarle.

4.3.1 GOODNESSMEASURES

We used four pairs of performance measures to compare the methodsfirsthmir is mean
smoothed precision-mean smoothed redakht is, our new measures of visualization quality. The
scale of input neighborhoods was fixed to 20 relevant neighborsS@et@n 2.2).

Although we feel, as explained in Section 2, that smoothed precision andfssdo®call are
more sophisticated measures of visualization performance than precisioecall, we have also
plotted standaranean precision-mean recatlurves. The curves were plotted by fixing the 20
nearest neighbors of a point in the original data as the set of relevard,isnd then varying the
number of neighbors retrieved from the visualization between 1 and 1@fing mean precision
and recall for each number.

Our third pair of measures are the rank-based variants of our new resasean rank-based
smoothed precision-mean rank-based smoothed re&alall that we introduced the rank-based
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variants as easier-to-interpret, but less discriminating, alternatives tosnezothed precision and
mean smoothed recall. The scale of input neighborhoods was again fi8detevant neighbors.

Our fourth pair of measures tsustworthiness-continuityKaski et al., 2003). The intuitive
motivation behind these measures was the same trade-off between pracidioecall as in this
paper, but the measures were defined in a more ad hoc way. At the time wetdihve the
clear connection to information retrieval which makes NeRV particularly aiegcand we did
not optimize the measures. Trustworthiness and continuity can, howewerha& used as partly
independent measures of visualization quality. To compute the trustwolhanescontinuity, we
used neighborhoods of each point containing the 20 nearest nesghbor

As a fifth measure, when data classes are available, weassification errorgiven the display,
with a standardk-nearest neighbor classifier where welset 5.

4.3.2 (HOICE OFPARAMETERS

Whenever we needed to choose a parameter for any method, we usaththergerion, namely the
F-measure computed from the new rank-based measures. That ispgeetbk parameter yielding
the largest value of @ - R)/(P+ R) whereP andR are the mean rank-based smoothed precision
and recall.

Many of the methods have a parametedenoting the number of nearest neighbors for con-
structing a neighborhood graph; for each method and each data seste Yalues ok ranging
from 4 to 20, and chose the value that produced the best F-measoiré\®) and LMVU we used
a smaller parameter range to save computational time. For M¥anged from 4 to 6; for LMVU
k ranged from 3 t0 9.) The exceptions are local MDS (LMDS), one of aur earlier methods, and
NeRYV, for which we simply sét to 20 without optimizing it.

Methods that may have local optima were run five times with different randdralimations
and the best run (again, in terms of the F-measure) was selected.

4.4 Results of Unsupervised Visualization

We will next show visualizations for a few sets, and measure quantitativelyesults of several.
We begin by showing an example of a NeRV visualization for the plain S-aataeset in Figure 3.
Later in this section we will show a NeRV visualization of a synthetic face da{&ggire 8), and in
Section 4.6 of théacesdata set of real face images (Figure 11). The quantitative results radsp
across four figures (Figures 4-7), each of which contains results@opair of measures and all six
data sets.

We first show the curves ahean smoothed precision-mean smoothed retiadlt is, the loss
functions associated with our formalization of visualization as information valrieThe results
are shown in Figure 4. NeRV and local MDS (LMDS) form curves patanmed byA, which
ranges from 0 to D for NeRV and from 0 to ® for LMDS. NeRV was clearly the best-performing
method on all six data sets, which is of course to be expected since NeRWydmgtimizes a linear
combination of these measures. LMDS has a relatively good mean smootwsiqr, but does
not perform as well in terms of mean smoothed recall. Simple metric MDS alsosstands a
consistently reasonably good method.

Because we formulated visualization as an information retrieval task, it isahdtualso try
existing measures of information retrieval performance, that is, meaisipre@nd mean recall,
even though they do not take into account grades of relevance asshskin Section 2.1. Standard
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Original data NeRV visualization

Figure 3: Left: Plain S-curve data set. The glyph shapes (size, elongatia angle) show the
three-dimensional coordinates of each point; the colors in the online neshimn the
same information. Right: NeRV visualization (hére- 0.8).

mean precision-mean recalurves are shown in Figure 5; for NeRV and LMDS, we show the curve
for a singleA value picked by the F-measure as described in Section 4.3. Even with these ¢
measures, NeRV shows excellent performance: NeRV is best on dtausdts in terms of the area
under the curve, CDA and CCA are each best on one data set.

Next, we plot our easier-to-interpret but less discriminating alternativesunea of visualization
performance. The curves ofean rank-based smoothed precision-mean rank-based smoettadid r
are shown in Figure 6. These measures lie between 0 and 1, and maybeesasier to compare
between data sets. With these measures, NeRV again performs best ataalets; LMDS also
performs well, especially on the seawater temperature data.

Finally, we plot the curves dfrustworthiness-continuityshown in Figure 7. The results are
fairly similar to the new rank-based measures: once again NeRV perfasieb all data sets and
LMDS also performs well, especially on the seawater temperature data.

4.4.1 EXPERIMENT WITH A KNOWN UNDERLYING MANIFOLD

To further test how well the methods are able to recover the neighbodingzlure inherent in the
data we studied a synthetic face data set where a known underlying maatefiries the relevant
items (neighbors) of each point. The SculptFaces data contains 698tiymttages of a face (sized
64 x 64 pixels each). The pose and direction of lighting have been changes/steamatic way to
create a manifold in the image spab#p;//web.mit.edu/cocoscifisomap/datasets.html ;
Tenenbaum et al., 2000). We used the raw pixel data as input features.

The pose and lighting parameters used to generate the images are avaifese.p@rameters
define the manifold of the faces embedded in the very high-dimensional irpage.g-or any face
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Mean smoothed precision (vertical axes) — Mean smoothed recall (horizontal axes)
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Figure 4: Mean smoothed precision-mean smoothed reaalited for all six data sets. For clarity,
only a few of the best-performing methods are shown for each data sdéta¥eactually
plotted—1-(mean smoothed precision) and-(mean smoothed recall) to maintain visual
consistency with the plots for other measures: in each plot, the bestmarépmethods
appear in the top right corner.

image, the relevant other faces are the ones that are neighbors wigktresphe pose and lighting
parameters; we defined the ground truth neighborhoods using Euctitsitances in the pose and
lighting space, and we fixed the scale of the ground truth neighborhod rielevant neighbors
(see Section 2.2).
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Mean precision (vertical axes) — Mean recall (horizontal axes)
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Figure 5: Mean precision-mean recaturves plotted for all six data sets. For clarity, only the best
methods (with largest area under curve) are shown for each data setH plot, the best
performance is in the top right corner. For NeRV and LMDS, a sihkglalue picked with
the F-measure is shown.

We ran all methods for this data as in all experiments in this section, and thetatettfour
performance curvesr{iean smoothed precision-mean smoothed recadlan precision-mean re-
call, mean rank-based smoothed precision-mean rank-based smoettallandtrustworthiness-
continuity) using the neighborhoods in pose and lighting space as the ground thehe3ults are
shown in Figure 8. In spite of the very high dimensionality of the input spaddfs reduction of
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Mean rank-based smoothed precision (vertical axes) —
Mean rank-based smoothed recall (horizontal axes)
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Figure 6: Mean rank-based smoothed precision-mean rank-based smoettadtpiotted for all six
data sets. For clarity, only a few of the best performing methods are stoowach data
set. We have actually plotted-Imean rank-based smoothed precision) argnean
rank-based smoothed recall) to maintain visual consistency with the plotthfer mea-
sures: in each plot, the best performance is in the top right corner.

the manifold dimension from three to two, NeRV was able to recover the steuatelf. NeRV is
the best according to both of our proposed measures of visualizatitmmmpance, mean smoothed
precision and recall; MDS and local MDS also perform well. In terms of ilm@le mean precision
and mean recall NeRV is the second best with CDA being slightly better. In wfrthe rank-based
measures, NeRV is the best in terms of precision; LE and MDS attain the bast naugk-based
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Trustworthiness (vertical axes) — Continuity (horizontal axes)
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Figure 7: Trustworthiness-continuitglotted for all six data sets. For clarity, only a few of the best
performing methods are shown for each data set. In each plot, the bieshpce is in
the top right corner.

smoothed recall; and local MDS and CDA also perform well. When perfoceavas measured
with trustworthiness and continuity, NeRV was the best in terms of trustwosthiwhile MVU and
Isomap attained the highest continuity.

Overall, NeRV was the best in these unsupervised visualization tasksygtitfitowas not the
best in all, and in some tasks it had tough competition.
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Figure 8: Top: Sample projections of the SculptFaces data set (NeRV vs. the best alieynati
Bottom: How well were the ground truth neighbors in pose-lighting space retrieoed
the image data, evaluated by four pairs of measures. The measuresowgreted the
same way as before, as described in Section 4.3, but here taking the kuse and

lighting information as the input data. Only the best performing methods arvenstoo
clarity.

4.5 Comparison by Unsupervised Classification

For the data sets where a classification of samples is available, we additiatialy & traditional
way to evaluate visualizations: we measure how well samples can be clabagied on the visual-

ization.
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Dataset Dimensions Classes

Letter 16 26
Phoneme 20 13
Landsat 36 6
TIMIT 12 41

Table 1: The data sets used in the unsupervised classification experiments.

Here all methods are unsupervised, that is, class labels of sampleg asedan computing the
visualization. The parameters of methods are again chosen as descr@eation 4.3.2. Methods
are evaluated bi¢-nearest neighbor classification accuracy (With 5), that is, each sample in the
visualization is classified by majority vote of iksnearest neighbors in the visualization, and the
classification is compared to the ground truth label.

We use four benchmark data sets, all of which include class labels, to cethpgerformances
of the methods. The data sets are summarized in Table 1. For all data setedva t@domly
chosen subset of 1500 samples in the experiments, to save computation time.

Theletter recognitiondata set (denoted Letter) is from the UCI Machine Learning Repository
(Blake and Merz, 1998); it is a 16-dimensional data set with 26 classeshwre 4x 4 images of
the 26 capital letters of the alphabet. These letters are based on 20ndifteres which have been
distorted to produce the final images.

The phonemalata set (denoted Phoneme) is taken from LVQ-PAK (Kohonen et alg) k9l
consists of phoneme samples represented by a 20-dimensional veaatwes plus a class label
indicating which phoneme is actually represented. There are a total ofdsesla

The landsat satellitedata set (denoted Landsat) is from UCI Machine Learning Repository
(Blake and Merz, 1998). Each data point is a 36-dimensional vectoresmonding to a & 3
satellite image measured in four spectral bands; the class label of the mhaaites the terrain type
in the image (6 possibilitities, for example red soil).

The TIMIT data set is taken from the DARPA TIMIT speech database (TIMIT). #iriilar
to the phoneme data from LVQ-PAK but the feature vectors are 12-dineaisamd there are 41
classes in total.

The resulting classification error rates are shown in Table 2. NeRV isobesto out of four
data sets and second best on a third set (there our old method LocalMB&)is ®DA is best on
one.

4.6 NeRV, Joint Probabilities, andt-Distributions

Very recently, based on stochastic neighbor embedding (SNE), vavaken and Hinton (2008)
have proposed a modified method called t-SNE, which has performed welsuparvised exper-
iments. The t-SNE makes two changes compared to SNE; in this section wibddkerchanges
and show that the same changes can be made to NeRYV, yielding a variametball t-NeRV. We
then provide a new information retrieval interpretation for t-NeRV and t-SNE

We start by analyzing the differences between t-SNE and the origindlagtic neighbor em-
bedding. The original SNE minimizes the sum of Kullback-Leibler divergenc
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Letter Phoneme Landsat TIMIT
Eigenmap 0.914 0.121 0.168 0.674

LLE n/a 0.118 0.212 0.722
Isomap 0.847 0.134 0.156 0.721
MVU 0.763 0.155 0.153  0.699
LMVU 0.819 0.208 0.151  0.787
MDS 0.823 0.189 0.151  0.705
CDA 0.336 0.118 0.141  0.643
CCA 0.422 0.098 0.143  0.633
NeRV 0.532 0.079 0.139 0.626

LocalMDS 0.499 0.118 0128 0.637

Table 2: Error rates dé-nearest neighbor classification based on the visualization, for unésege
visualization methods. The best results for each data set are in bold;nusedé¢hat LLE
did not yield a result for the Letter data. NeRV attains the lowest error oatevb data
sets and second lowest error rate for one data set.

wherep;; andq;; are defined by Equations (3) and (2). We showed in Section 2.2 that #tis co
function has an information retrieval interpretation: it corresponds to raeenothed recall of re-
trieving neighbors of query points. The t-SNE method makes two changek wh discuss below.

4.6.1 QSTFUNCTION BASED ONJOINT PROBABILITIES
The first change in t-SNE is to the cost function: t-SNE minimizes a “symmetrgior€rof the
cost function, defined as o
pijlog =
NFAl Gi.j
where thep; j andg; ; are now joint probabilities over bottandj, so thaty; ; pi,; = 1 and similarly
for gij. The term “symmetric” comes from the fact that the joint probabilities are eiéfin a

specific way for whichp; ; = p;j andg; j = q; ;; note that this need not be the case for all definitions
of the joint probabilities.

4.6.2 DEFINITIONS OF THEJOINT PROBABILITIES

The second change in t-SNE is that the joint probabilities are defined in aematich does not

yield quite the same conditional probabilities as in Equations (3) and (2). Tritgjobabilities are
defined as

1
Pi.j = 5 (Pij + Pjji) (6)

wherep; ; andp;; are computed by Equation (3) ands the total number of data points in the data
set, and

Oyl

T S+ lyk—wil]d) 1
The former equation is intended to ensure that, in the input space, even paittis will have some
other points as neighbors. The latter equation means that, in the visualizatigointhprobability

(7)
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falls off according to a (normalized) t-distribution with one degree of foeedwhich is intended

to help with acrowding problembecause the volume of a small-dimensional neighborhood grows
slower than the volume of a high-dimensional one, the neighborhood eratsatiched in the visu-
alization so that moderately distant point pairs are placed too far apartiehliis to cause clumping

of the data in the center of the visualization. Since the t-distribution has heaigethan a Gaus-
sian, using such a distribution for tlg; makes the visualization less affected by the placement of
the moderately distant point pairs, and hence better able to focus on edteres of the data.

4.6.3 New METHOD: T-NERV

We can easily apply the above-described changes to the cost functi@iRi Me call the resulting
variant t-NeRV. We define the cost function as
Foners =M 5 P og ™l 4 (1-2) Y 5 log ) =AD(p.q) +(1-N)D(a.p)  (8)
T A Gi.; [EA] Pi,j
wherep andg are the joint distributions ovéandj defined by the; j and the; j, and the individual
joint probabilities are given by Equations (6) and (7).

It can be shown that this changed cost function again has a natunahation retrieval interpre-
tation: it corresponds to the tradeoff betwessmoothed precisioandsmoothed recalbf atwo-step
information retrieval taskwhere an analyst looks at a visualization and (step 1) picks a query poin
and then (step 2) picks a neighbor for the query point. The probabilitycifrg a query point
depends on how many other points are close to it (that is, it depengisepp), and the probability
of picking a neighbor depends as usual on the relative closenestiss méighbors to the query.
Both choices are done based on the visualization, and the choices araredrbg smoothed pre-
cision and smoothed recall to the relevant pairs of queries and neigtladire defined based on
the input space. The paramedeagain controls the tradeoff between precision and recall.

The connection between tiX p,q) and the recall of the two-step retrieval task can be shown
by a similar proof as in Appendix A, the main difference being that conditidrsatibutionsp;);
andgq;; are replaced by joint distributiors ; andg; j, and the sums then go over batand j. The
connection betweeBD(q, p) and precision can be shown analogously.

As a special case, settiflg= 1 in the above cost function, that is, optimizing only smoothed
recall of the two-step retrieval task, yields the cost function of t-SNEthWgeefore provide a novel
information retrieval interpretation of t-SNE as a method that maximizes recallexy points and
their neighbors.

The main conceptual difference between NeRV and t-NeRV is that in t-N&BR\probability
of picking a query point in the visualization and in the input space depemdiseodensities in the
visualization and input space respectively; in NeRV all potential quemytpare treated equally.
Which treatment of query points should be used depends on the task ofalysta Additionally,
NeRV and t-NeRV have differences in the technical forms of the probabilitleat is, whether
t-distributions or Gaussians are used etc.

The t-NeRV method can be optimized with respect to visualization coordigatégpoints, by
conjugate gradient optimization as in NeRV, the computational complexity is alsathe.

4.6.4 GOMPARISON

We briefly compare t-NeRV and NeRV on the Faces data set. The setupéstbes in the previous
comparison experiments (Figures 4—7). For t-NeRV we use the effextimber of neighborks= 40
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to compute the joint probabilitieg, j; this corresponds to the perplexity value used by the authors
of t-SNE (van der Maaten and Hinton, 2008).

Figure 9 shows the results for the four unsupervised evaluation crifee@rding to the mean
smoothed precision and mean smoothed recall measures, t-NeRV doesinvtesms of recall.
The rank-based measures indicate a similar result; however, there t-t\airly well in terms
of mean rank-based smoothed precision. The trustworthiness-continoungyscare similar to the
rank-based measures. The curves of mean precision versus malrsheg that t-NeRV does
achieve better precision for small values of recall (i.e., for small retries@ghborhoods), while
NeRV does slightly better for larger retrieved neighborhoods. Thessurescorrespond to the
information retrieval interpretation of NeRV which is slightly different fromatlof t-NeRV, as
discussed above. FigureBshows mean smoothed precision/recall in the t-NeRV sense, where
t-NeRV naturally performs relatively better.

Lastly, we computed-nearest neighbor classification error rate (uding 5) with respect to
the identity of the persons in the images. NeRV (witk: 0.3) attained an error rate of 0.394 and
t-NeRV (with A = 0.8) an error rate of 0.226. Here t-NeRV is better; this may be becauseidsavo
the problem of crowding samples near the center of the visualization.

Figures 10-12 show example visualizations of the faces data set. Firsbweaswvell-performing
comparison method (CDA; Figure 10); it has arranged the faces wellnrstef keeping images of
the same person in a single area; however, the areas of each persibffuese and close to other
persons, hence there is no strong separation between persons @pthg dNeRV, here optimized
to maximize precision, makes clearly tighter clusters of each person (Figjunetiich yields better
retrieval of neighbor face images. However, NeRV has here placedaigersons close to each
other in the center of the visualization. The t-NeRV visualization, again optinzedaximize
precision (Figure 12) has lessened this behavior, placing the clustirsesfmore evenly.

Overall, t-NeRV is a useful alternative formulation of NeRV, and may bduliger data sets
especially where crowding near the center of the visualization is an issue.

5. Using NeRYV for Supervised Visualization

In this section we show how to use NeRV for supervised visualization. &pélea is simple: NeRV
can be computed based on any input-space distashogs<j), not only the standard Euclidean
distances. All that is required for supervised visualization is to compute ple-g8pace distances in
a supervised manner. The distances are then plugged into the NeRV alganiththe visualization
proceeds as usual. Note that doing the visualization modularly in two stepadyvantage, since it
will be later possible to easily change the algorithm used in either step if desired

Conveniently, rigorous methods exist for learning a supervised metrt fabeled data sam-
ples. Learning of supervised metrics has recently been extensivelgdtiod classification pur-
poses and for some semi-supervised tasks, with both simple linear apgscatth complicated
nonlinear ones; see, for instance, works by Xing et al. (2003), ¢had Yeung (2004), Globerson
and Roweis (2006) and Weinberger et al. (2006). Any such metric gamraiple be used to com-
pute distances for NeRV. Here we use an early one, which is flexible amtde directly plugged
in the NeRV, namely théearning metric(Kaski et al., 2001; Kaski and Sinkkonen, 2004; Peltonen
et al., 2004) which was originally proposed for data exploration tasks.

We will call NeRV computed with the supervised distances “supervised NE¢RVeRV). The
information retrieval interpretation of NeRV carries over to SNeRV. Urmgtain parameter set-
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Figure 9: Comparison of NeRV and t-NeRV on the Faces data set accaodihg four goodness
measures described in Section 4A3), and for mean smoothed precision/recall corre-
sponding to the information retrieval interpretation of t-NeR/ first and second terms
of Eqn. 8).

tings SNeRV can be seen as a new, supervised version of stochaskibereggnbedding, but more
generally it manages a flexible tradeoff between precision and reca# affidbrmation retrieval just
like the unsupervised NeRV does.

SNeRV has the useful property that it can directly compute embeddingsffabealed training
points as well as labeled ones. By contrast, some supervised nonlinearsamadity reduction
methods (Geng et al., 2005; Liu et al., 2005; Song et al., 2008) only giNeeédings for labeled
points; for unlabeled points, the mapping is approximated for instance bpatadion or by training
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Figure 10: Example visualization of the Faces data set with CDA.

a neural network. Such approximation is not needed for SNeRV. (Cotliee hand, a trained neural
network can embed not only unlabeled training points, but also previouskemnnew points; if
such generalization is desired, the same kinds of approximate mappings lesmried for SNeRV.)
In the next subsections we present the details of the distance computatiotiheandescribe
experimental comparisons showing that SNeRV outperforms severtihgxésipervised methods.

5.1 Supervised Distancesfor NeRV

The input-space distances for SNeRV are computed usiaging metrics(Kaski et al., 2001;

Kaski and Sinkkonen, 2004; Peltonen et al., 2004). It is a formalisricpkarly suited for so-

called “supervised unsupervised learning” where the final goal is stithd&e discoveries as in
unsupervised learning, but the metric helps to focus the analysis by eizipbasseful features
and, moreover, does that locally, differently for different samplegariieg metrics have previously
been applied to clustering and visualization.

In brief, the learning metric is a Riemannian topology-preserving metric thasumes dis-
tances in terms of changes in the class distribution. The class distribution is testitheough
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Figure 11: Example visualization of the Faces data set with NeRV, here maxjnpzéacision
(tradeoff parametex = 0).

conditional density estimation from labeled samples. Topology preservatips im generalizing
to new points, since class information cannot override the input spaclegypdn this metric, we
can compute input-space distances between any two data points, andiseatze the points with
NeRV, whether they have known labels or not.

5.1.1 DEFINITION

The learning metric is a so-called Riemannian metric. Such a metric is defined ialaraoner;
between two (infinitesimally) close-by points it has a simple form, and this simpieikextended
through path integrals to global distances.

In the learning metric, the squared distance between two close-by peiatglx, is given by
the quadratic form

di (X1, %2)2 = (X1 —%2) TI(X1) (X1 — X2). (9)
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[

Figure 12: Example visualization of the Faces data set with t-NeRV, here mangnprecision
(tradeoff parametex = 0).

HereJ(x) is the Fisher information matrix which describes the local dependency obtiditional
class distribution on the input features, that is,

300 =3 pieh ( 2 1ogpien)) (S 1ogpicn))

Here thec are the classes and théc|x) are the conditional class probabilities at paint The
idea is that the local distances grow the most along directions where thitieoaldclass distribu-
tion p(c|x) changes the most. It can be shown that the quadratic form (9) is, fa-blppoints,
equivalent to the Kullback-Leibler divergenbBé p(c|x1), p(c|x2)).

The general distana (x1,x2) between two far-away poinig andx; is defined in the standard
fashion of Riemannian metrics: the distance isrttieimal path integrabver local distances, where
the minimum is taken over all possible paths connectingndx,. Notice that in a Riemannian
metric, the straight path may not yield the minimum distance.
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Learning metrics defined in the above manner satisfy the three criteriaedmqfiany metric:
the distanced, are nonnegative, symmetric, and satisfy the triangle inequality. Becausathing
metric distances are defined as minimal path integrals they preserve the jopfibg input space;
roughly speaking, if the distance between two points is small, then there maspdl between
them where distances are small along the entire path.

5.1.2 RRAcTICAL COMPUTATION

In order to compute local distances using the Fisher information matlegswe need an esti-
mate for the conditional probability distributioqgc|x). We learn the distributions by optimizing
a discriminative mixture of labeled Gaussian densities for the data (Peltoran 2004). The

conditional density estimate is of the form

S Baexp—lIx—my7/20?)
PER) = 5K expl—x —mel12/207) a0

where the number of Gaussials the centroidsmy, the class probabilitieBe and the Gaussian
width o (standard deviation) are parameters of the estimate; we require ttk e nonnegative
and thaty B = 1 for all k. Themy andBc are optimized by a conjugate gradient algorithm to
maximize the conditional class likelihood, akdando are chosen by internal cross-validation (see
Section 5.3).

Given the Fisher matrices, we next need to compute the global distancesbetivpoint pairs.
In most cases the minimal path integrals in the global distance definition cammoniputed ana-
Iytically, and we use a graph-based approximation. We first form a fuliyneoted graph between
all known data points, where the path between each pair of points is apatexi by a straight
line. For these straight paths, the path integral can be computed by pieagpisoximation (see
Peltonen et al., 2004, for details; we use- 10 pieces in all experiments). We could then use graph
search (Floyd’s algorithm) to find the shortest paths in the graph and eisbdintest path distances
as the learning metric distances. This graph approximation wouldQ&k® time wheren is the
number of data points; note that this would not be excessive since a sinafan gomputation is
needed in methods like isomap. However, in our experiments the straight time ypalded about
equally good results, so we simply use them, which takes Oahy}) time. Therefore SNeRV as a
whole took onlyO(n?) time just like NeRV.

5.2 Comparison Methodsfor Supervised Visualization

For each data set to be visualized, the choice of supervised vs. uviseplevisualization is up to
the analyst; in general, supervised embedding will preserve diffesdratereen classes better but at
the expense of within-class details. In the experiments of this section weroaie on comparing
performances of supervised methods; we will compare SNeRV to threetreapervised nonlinear
embedding methods.

Multiple relational embeddingMRE; Memisevic and Hinton, 2005) was proposed as an ex-
tension of stochastic neighbor embedding (Hinton and Roweis, 2002). iMiRinizes a sum of
mismatches, measured by Kullback-Leibler divergence, between nelgiduns in the embedding
and several different input neighborhoods: typically one of the inpighborhoods is derived from
the input-space coordinates and the others are derived from auxilfanmiation such as labels.
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MRE is able to use unlabeled data; for unlabeled points, divergencembate neighborhoods
based on labels are simply left out of the cost function.

Colored maximum variance unfoldif@ong et al., 2008) is an extension of the unsupervised
maximum variance unfolding. It maximizes the dependency between the empeddrdinates
and the labels according to the Hilbert-Schmidt independence criterionhvghiiased on a cross-
covariance operator. This leads to constrained optimization of the outmelk&ecause of these
details the method is also called maximum unfolding via Hilbert-Schmidt indepeedsiterion
(MUHSIC); we use this abbreviation.

Supervised isomafS-Isomap; Geng et al., 2005) is an extension of the unsupervised isomap
The only difference to unsupervised isomap is a new definition of the ingadesdistances: roughly
speaking, distances between points in different classes will grow fastardistances between
same-class points. The actual embedding is done in the same way as inrvisggpsomap (de-
scribed in Section 4.1). Other supervised extensions of isomap havéntreeiuced by Li and Guo
(2006) and Gu and Xu (2007).

Parametric embeddin{PE; lwata et al., 2007) represents the embedded data with a Gaussian
mixture model with all Gaussians having the same covariances in the embeplaosg and attempts
to preserve the topology of the original data by minimizing a sum of Kullbackieedivergences.

Neighbourhood component analy$SCA; Goldberger et al., 2005; see also Kaski and Pel-
tonen, 2003, Peltonen and Kaski, 2005) is a linear and non-parametriasionality reduction
method which learns a Mahalanobis distance measure such that, in thertreetsgpaces-nearest
neighbor classification achieves the maximum accuracy.

5.3 Methodology for the Supervised Experiments

We used the four benchmark data sets having class information (Lettereko Landsat, and
TIMIT described in Section 4.5) to compare supervised NeRV and theupergised visualization
methods described in Section 5.2, namely multiple relational embedding (MR&)gdonaximum
variance unfolding (MUHSIC), supervised isomap (S-Isomap), pararembedding (PE), and
neighbourhood component analysis (NCA). We used a standardd @+fiss-validation setup: in
each fold we reserve one of the subsets for testing and use the restdaftéhfor training. For each
data set, we use SNeRV and the comparison methods to find 2-dimensioadizaitons.

In principle we could evaluate the results as in Section 4.3 for the unsupemigperiments,
that is, by mean smoothed precision and recall; the only difference woutd e the supervised
learning metric for the evaluation. However, unlike SNeRV, the other methads not been for-
mulated using the same supervised metrics. To make an unbiased compatisemefthods, we
resort to a simple indirect evaluation: we evaluate the performance ofuhenfethods by class pre-
diction accuracy of the resulting visualizations. Although it is an indirect nmeashe accuracy is a
reasonable choice for unbiased comparison and has been usedral sepervised dimensionality
reduction papers. In more detail, we provide test point locations durimgrtgebut not their labels;
after the methods have computed their visualization results, we classify thpoietst by running
a k-nearest neighbor classifidt £ 5) on the embedded data, and evaluate the classification error
rates of the methods.

We use a standard internal 10-fold validation strategy to choose all pnanvehich are not
optimized by their respective algorithms: each training set is subdividednfildds where 9/10 of
data is used for learning and 1/10 for validation; we learn visualizations vettlifferent parameter
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values; the values that yielded the best classification accuracy for thedeledb validation points
are then chosen and used to compute the final visualization for the wholedrdata.

We ran two versions of SNeRV usiig= 0.1 and\ = 0.3. The scaling parametets were set
by fixing the entropy of the input neighborhoods as described in SecttorH2re we specified the
rough upper limit for the number of relevant neighbors & 0/K wheren is the number of data
points andK is the number of mixture components used to estimate the metric; this choice roughly
means that for well-separated mixture components, each data point willeoagavconsider half
of the data points from the same mixture component as relevant neighbseisipified validation
sufficed for the numbek and widtho of Gaussians: we did not need to run the embedding step but
picked the values that gave best conditional class likelihood for validatiomigin the input space.
For S-Isomap we chose its parametemd its number of nearest neighbors using the validation sets,
and trained a generalized radial basis function network to project nitspas suggested by Geng
et al. (2005). For MUHSIC, the parameters are the regularization péeamerumber of nearest
neighbors, and number of eigenvectors in the graph Laplacian, andeudelinear interpolation to
project new points as suggested by the MUHSIC authors. For MRE thefreglyparameter is its
neighborhood smoothness parametgre. For the PE one needs to provide a conditional density
estimate: we used the same one that SNeRV uses (see Equation 10) to olimpaaison as
unbiased as possible. Neighbourhood component analysis is a reongisc method, therefore
we did not need to choose any parameters for it.

5.4 Resultsof Supervised Visualization

Figure 13 shows the average error rate over the 10 folds as well astitasd deviation. The best
two methods are SNeRV and PE, which give good results in all data sets. dOof thve data sets
(Letter and TIMIT) SNeRYV is clearly the best; on the other two data setsn@he and Landsat)
SNeRYV is about as good as the best of the remaining methods (S-Isomparantetric embedding,
respectively). MRE is clearly worse than the other methods, whereas3iCldnd NCA results
depend on the data set: on Letter they are the second and third worst mattesdVIRE, while in
the other data sets they are not far from the best methods.

The value of the tradeoff parametkrdid not affect the performance of SNeRV much; both
A = 0.1 andA = 0.3 produced good projections.

To evaluate whether the best method on each data set is statistically signifisttgtythan the
next best one, we performed a paitei@st of the performances across the 10 cross-validation folds
(Table 3). The two best methods compared are always SNeRV and pacaemebedding, except
for the Phoneme data set for which the two best methods are SNeRV aoth&gd. For the Letter
and the TIMIT data sets SNeRV is significantly better than the next best metihdd for the other
two data sets the difference is not significant. In summary, all the signifiiéetences are in favor
of SNeRV.

Figure 14 presents sample visualizations of the letter recognition data gettymo results are
shown for one of the 10 cross-validation folds, including both trainingtastpoints. Although
there is some overlap, in general SNeRV shows distinct clusters of stagdseexample, the letter
“M” is a well separated cluster in the top of the figure.

Parametric embedding also manages to separate some letters, such as “K&; batthere
is a severe overlap of classes in the center of the figure. In S-Isomapevihat there are a few
very well separated clusters of classes, like the letters “W” and “N”tlerte is a large area with
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Figure 13: Performance of the supervised nonlinear embedding methedstirbenchmark data
set. The results are average classification error rates over 10vaia$ation folds
(smaller is better), and the standard deviations are shown with error bars.

Data set Best method Second best p-value
Letter SNeRV (A =0.1) PE 18-10°°

Phoneme S-Isomap SNeR¥ £ 0.3) 0.54
Landsat SNeRVX=0.3) PE 028
TIMIT  SNeRV (A =0.1) PE 34.10°3

Table 3: Statistical significance of the difference between the two best dethbep-values are
from a paired-test of the 10-fold cross-validation results; statistically significant wisner
have been boldfaced.

overlapping classes near the center of the right edge of the figure.oVdikp is worse than in
SNeRYV but still roughly comparable; by contrast, MUHSIC, MRE and N@&qrmed poorly on
this data set, leaving most classes severely overlapped.

6. Conclusions and Discussion

By formulating the task of nonlinear projection for information visualizationraghformation re-
trieval task, we have derived a rigorously motivated pair of measuressigalization performance,
mean smoothed precisiamdmean smoothed recalVe showed that these new measures are exten-
sions of two traditional information retrieval measures: mean smoothediprecen be interpreted

as a more sophisticated extension of mean precision, the proportion opfaiiwzes in the neigh-
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Figure 14: Visualizations of the letter recognition data set by all supermstidods.

borhood retrieved from the visualization. Analogously, mean smoothedl is@an extension of
mean recall, the proportion of misses incurred by the retrieved neightidrho

We introduced an algorithm callegtighbor retrieval visualizeNeRV) that optimizes the total
cost, interpretable as a tradeoff between mean smoothed precision angmmaathed recall. The
tradeoff is governed by a paramedeset by the user according to the desired cost of a miss relative
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to the desired cost of a false positive. The earlier method stochastic neghbedding is obtained
as a special case whan= 1, optimizing mean smoothed recall.

We showed that NeRV can be used for both unsupervised and swggemisialization. For
unsupervised visualization, we simply use fixed input distances; fom@gpd visualization we
learn a supervised distance metric for the input space and plug the resuoftiiglistances to the
NeRV algorithm. In the latter case the key idea is to use supervision (labdigdinla way that
does not override the input feature space; we use a topology-piregetass-discriminative metric
called thelearning metricfor the input space.

In unsupervised visualization, NeRV outperformed alternatives for ofdbe six data sets we
tried, for four different pairs of measures, and was overall the tnesthod. NeRV also performed
well in a comparison by unsupervised classification. Many of the best aldmktraction meth-
ods perform surprisingly poorly, most likely because they have nat besigned to reduce the
dimensionality below the intrinsic dimensionality of the data manifold. In visualizationgever,
we generally have no choice but to reduce the dimensionality of the data tortthicee, even if
its intrinsic dimensionality is higher. NeRV is designed to find a mapping that is, ielladefined
sense, optimal for a certain type of visualization regardless of the intrinsicndior&lity of the
data.

In supervised visualization, the supervised version of NeRV perfoaneatkll as or better than
the best alternative method Parametric embedding; this shows that the plugindeaetrics work
well in incorporating supervision.

6.1 Discussion

NeRV models relevance using probability distributions, which makes sense btal “amount”
of relevance for any query is normalized to a fixed sum. Such normalizatidesisable for any
relevance measure, because for any query (point of interest) tvameteof a retrieved neighbor
point should depend on its proximity relative to the proximities of other pointserahan on its
absolute distance from the query point. (Our previous method, local M&§be thought of as an
attempt to approximate NeRV without the normalization.)

The Kullback-Leibler divergences in NeRV are natural choices forsmeag the difference
between two probability distributions, but in principle other divergence areascould be used as
well. The notions of neighbor retrieval and a probabilistic relevance madeha crucial parts of
NeRYV, not the specific divergence measure.

Our notion of plug-in supervised metrics could in principle be used with othénads too;
other unsupervised embedding algorithms that work based on a distanoecaatalso be turned
into supervised versions, by plugging in learning metric distances into thenckstaatrix. We
performed an initial experiment with Sammon’s mapping (Peltonen et al., 2@0dijnilar idea
for isomap appeared later (Weng et al., 2005). However, we believdNgRY is an especially
attractive choice for the embedding step since it has the information retmgggbretation and it
performed well empirically.

An implementation of the NeRV and local MDS algorithms as well asntgan smoothed
precision-mean smoothed recatleasures is available &itp://www.cis.hut.fi/projects/
mi/software/dredviz
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Appendix A. Proof of the Connection between the Probabilist Cost Functions and
Precision and Recall

In Section 2.2 we introduced Kullback-Leibler divergences as codgdtifums for visual neighbor
retrieval, based on probability distributiogsand p; which generalize the relevance model implicit
in precision and recall. We will next show that in the simple case of “binarght®rhoods” the
cost functions reduce to precision and recall. By “binary neighbaitbee mean that, in both the
input space and the visualization, (i) the point of interest has some nurhbelewant neighbors
and all the other points are completely irrelevant, and (ii) the points that lerare are all equally
relevant.

In the probabilistic model the binary neighborhoods can be interpretesllas$. Leti be the
point of interest, and le® be the set of relevant neighbors for poirih the input spaceP, can
be the set of all points (other thaitself) falling inside some fixed radius from poinin the input
space, or it can be the set containing some fixed number of points nedresthe input space. In
either case, lat; be the size oP.

We define that the relevant neighbors of the point of intéreate an equal non-zero probability
of being chosen, and all the other points have a near-zero probabiliigiof chosen. In other
words, we define

. _Ja=Xe,  ifpointjisink
Pji = b= N*?ifl , otherwise.

HereN is the total number of data points, ane&® < 0.5 gives the irrelevant points a very small
probability.

Similarly, letQ; be the set of neighbors for poinin the visualization. AgainQ); can be the set
of all points (other thamitself) falling inside some fixed radius from poinin the visualization, or
it can be the set containing some fixed number of points neare tihe visualization. In either
case, lek; be the size of);. Note that the sizes dp; and PR, can be different, that ik can be
different fromr;.

We define the probability of choosing a neighbor from the visualization as

. | a=t2, if point j is in Q;
G g = N1, Otherwise.

Consider the Kullback-Leibler divergen€¥p;,q;) for any fixedi. We now show that mini-
mizing this divergence is equivalent to maximizing recall where pgasithe query. The divergence
Py
i’

iS a sum over elemenpq“ log =+, thus the sum can be divided into four parts depending on which
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value p’j“i takes (two possibilities) and which valqﬁi takes (two possibilities). We get

g
D(pi. o) = (a Iog_> + (a log— )
j#iapTi—Zai7QTi—Ci CI ]#LpT,—Zath,—dl dl
+ (b- log b‘) + (b log 2 )
i - i
J'?éi»P}‘i—%iﬂTi—Ci CI J#'PT,—ZWQT,—du dl
. b
= (ai |092> Nrpi + <34 log — g ) Nmiss,i + (bi |09C_|> Nepj + (bu log— > NN

i i i

where on the last line the terms inside parentheses are simply constantieoesfi HereNrp; is
the number of true positives for this query, that is, points for which théagiibity is high in both
the data and the visualization. The number of misses, that is, the number t {hainhave a low
probability in the visualization although the probability in the data is highl\igsi. The number
of false positives (high probability in the visualization, low in the datdyds;. Finally the number
of true negatives (low probability in both the visualization and the datisj\s.
It is straightforward to check that&is very small, then the coefficients for the misses and false
positives dominate the divergence. This yields

b.
D(p;,q) ~ Nwissi <a| log— 1 > + Nepj (bi log ')
|

1-9o (N—k — 1
I (IOg o) )
o) o)
+N|:P,iN ri—1<|09N—'— )

1-9o N —
—vauss|r ('9( k| +|09 5 >

= Nwiss;

) - 1-9
+NFP’iN—ri—1<IOgN—l:i—1_|09( 5 )>. (11)

Because the terms I§d — ) /0] dominate the other logarithmic terms, (11) further simplifies to

- 1-9 o) 1-95
D(pi,Qi)%<NM|ss,iri—NFP,iN_ri_l)Iog( 5 )

1-95 1-9 N '
r~ NMISS,i . |Og ( 5 ) Mrl.ssal
|

whereC is a constant that only depends®and not ori. Hence if we minimized this cost function,
we would be maximizing the recall of the query, which is defined as
Nrp, _ Nwissi

=1
I I

C

recallf) =

We can analogously show that for any fixedninimizing D(¢f", pi') is equivalent to maximizing
precision of the corresponding query.

BecauseD(q}, pf) andD(p;,q’) are equivalent to precision and recall, apdand g; can be
seen as more sophisticated generalizatiorg @indcf’, we interpreD(q;, pi) andD(p;, q;) as more
sophisticated generalizations of precision and recall.
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