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Abstract

A variational level set method is developed for the supexviglassification problem. Nonlinear
classifier decision boundaries are obtained by minimizmgraergy functional that is composed of
an empirical risk term with a margin-based loss and a gedoretyularization term new to machine
learning: the surface area of the decision boundary. Thosngéric level set classifier is analyzed
in terms of consistency and complexity through the calooadf its e-entropy. For multicategory
classification, an efficient scheme is developed using aithgaic number of decision functions
in the number of classes rather than the typical linear nurabéecision functions. Geometric
level set classification yields performance results on berack data sets that are competitive with
well-established methods.

Keywords: level set methods, nonlinear classification, geometrialegzation, consistency, com-
plexity

1. Introduction

Variational level set methods, pioneered by Osher and Sethian (1€88),found application in
fluid mechanics, computational geometry, image processing and computer, eisioputer graph-
ics, materials science, and numerous other fields, but have heretotore little application in
machine learning. The goal of this paper is to introduce a level set agptoahe archetypal ma-
chine learning problem of supervised classification. We propose an implieitset representation
for classifier decision boundaries, a margin-based objective regedaly a surface area penalty,
and an Euler-Lagrange descent optimization algorithm for training.

Several well-developed techniques for supervised discriminativeitgperist in the literature,
including the perceptron algorithm (Rosenblatt, 1958), logistic regreEifmon, 1975), and sup-
port vector machines (SVMs) (Vapnik, 1995). All of these approagimetheir basic form, produce
linear decision boundaries. Nonlinear boundaries in the input spadeeaatained by mapping the
input space to a feature space of higher (possibly infinite) dimension mgtaknlinear functions
of the input variables. Learning algorithms are then applied to the new hdtjimensional feature
space by treating each dimension linearly. They retain the efficiency ofphelmwer-dimensional
space for particular sets of nonlinear functions that admit the kernel(@icklkopf and Smola,
2002).

As an alternative to kernel methods for generalizing linear methods, vwegedinding non-
linear decision boundaries directly in the input space. We propose agyefuactional for clas-
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sification that is composed of an empirical risk term that uses a margin-bessetlinction and a
complexity term that is the length of the decision boundary for a two-dimensigmat space and
the surface area of the decision boundary more generally. The empisicaérm is standard in
many classification methods. What is new in this work is the measurement oiotieloundary
complexity by surface area, an inherently geometric quantity, and the idesingf variational level
set methods for optimization in discriminative learning.

We use the termsontourto refer to a one-dimensional curve in a two-dimensional space, a two-
dimensional surface in a three-dimensional space, and geneially adimensional hypersurface
in aD-dimensional space. Classifier decision boundaries partition the inpee §pta regions cor-
responding to the different class labels. If the region correspondingdcalass label is composed
of several unconnected pieces, then the corresponding decisinddogus composed of several un-
connected pieces; we refer to this entire collection of decision bounderig®e contour. The level
set representation is a flexible, implicit representation for contours thest ot require knowing
the number of disjoint pieces in advance. The contour is representesihbgah, Lipschitz contin-
uous, scalar-valued function, known as bixeel set functionwhose domain is the input space. The
contour is implicitly specified as the zero level set of the level set function.

Level set methods entail not only the representation, but also the minimizdtemm energy
functional whose argument is the contduFor example, in foreground-background image seg-
mentation, a popular energy functional is mean squared error of imagsitgtesith two different
‘true’ image intensities inside the contour and outside the contour. Minimizingrkigg produces
a good segmentation when the two regions differ in image intensity. In ordertorm the min-
imization, a gradient descent approach is used. The first variation @ditledonal is found using
the calculus of variations; starting from an initial contour, a gradient floieliswed iteratively to
converge to a minimum. This procedure is knowrtas/e evolutioror contour evolution

The connection between level set methods (particularly for image segmaitatit classifica-
tion has been noticed before, but to the best of our knowledge, thekeeka little prior work in this
area. Boczko et al. (2006) only hint at the idea of using level set metfwsctlassification. Tom-
czyk and Szczepaniak (2005) do not consider fully general inpagesp Specifically, examples in
the training and test sets must be pixels in an image with the data vector contamspatial index
of the pixel along with other variables. Cai and Sowmya (2007) do congé&teeral feature spaces,
but have a very different energy functional than our margin-basssiflonctional. Theirs is based
on counts of training examples in grid cells and is similar to the mean squarediwerctional for
image segmentation described earlier. Their learning is also based otasaelassification rather
than standard discriminative classification, which is the framework we foNdpvet al. (2006) use
variational level set methods for density-based clustering in genextairéespaces, rather than for
learning classifiers.

Cremers et al. (2007) dichotomize image segmentation approaches into thosseispatially
continuous representations and those that use spatially discrete négtiess, with level set meth-
ods being the main spatially continuous approaches. There have beerdsesitg discrete rep-
resentations that bear some ties to our methods. An example of a spatiallyedempeoach uses
normalized graph cuts (Shi and Malik, 2000), a technique that has ls®ehextensively in unsu-
pervised learning for general features unrelated to images as well. Neoethdecision boundary
surface area is implicitly penalized in this discrete setting. Geometric notionsrydlerity in su-

1. In the image segmentation literature, variational energy minimizatioroappes often go by the naraetive con-
tours, whether implemented using level set methods or not.
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pervised classification tied to decision boundary surface area hanesbggested by Ho and Basu
(2002), but also defined in a discrete way related to graph cuts. Inaspiine continuous formula-
tion we employ using level sets involves very different mathematical foundatincluding explicit
minimization of a criterion involving surface area. Moreover, the continucasdéwork—and in
particular the natural way in which level set functions enter into the criteriead to new gradient
descent algorithms to determine optimal decision boundaries. By embeddiogtetion in a con-
tinuous setting, the surface area complexity term is defined intrinsically rdebeing defined in
terms of the graph of available training examples.

There are some other methods in the literature for finding nonlinear decwimuaries directly
in the input space related to image segmentation, but these methods use rmgitbar evolution
for optimization, nor the surface area of the decision boundary as a cdtypierm, as in the
level set classification method proposed in this paper. A connection isidretween classification
and level set image segmentation in Scott and Nowak (2006) and Willett awmdkN@007), but
the formulation is through decision trees, not contour evolution. Tomcz9@5Y Tomczyk and
Szczepaniak (2006), and Tomczyk et al. (2007) present a simulatesdling formulation given
the name adaptive potential active hypercontours for finding nonlirexasidn boundaries in both
the classification and clustering problems; their work considers the useliaf basis functions in
representing the decision boundar@lZbauer et al. (2008) construct nonlinear decision boundaries
in the input space from connected linear segments. In some ways, theaapps similar to active
contours methods in image segmentation such as snakes that do not useltbet lpresentation:
changes in topology of the decision boundary in the optimization are difficutatalle. (The
implicit level set representation takes care of topology changes naturally.)

The theory of classification with Lipschitz functions was discussed by votbiirg and Bous-
guet (2004). As mentioned previously, level set functions are Lipséhitztions and the spe-
cific level set function that we use, tlegned distance functigrhas a unit Lipschitz constant.
Von Luxburg and Bousquet minimize the Lipschitz constant, whereas inooonuiation, the Lip-
schitz constant is fixed. The von Luxburg and Bousquet formulationireg)the specification of
a subspace of Lipschitz functions over which to optimize in order to premesfitting, but does
not resolve the question of how to select this subspace. The surizz@analty that we propose
provides a natural specification for subspaces of signed distancicius

The maximum allowable surface area parameterizes nested subspacesalcWate thee-
entropy (Kolmogorov and Tihomirov, 1961) of these signed distancetihmsubspaces and use
the result to characterize geometric level set classification theoreticapipriicular, we look at the
consistency and convergence of level set classifiers as the size toditiiag set grows. We also
look at the Rademacher complexity (Koltchinskii, 2001; Bartlett and Mende®a02) of level set
classifiers.

For the multicategory classification problem wih> 2 classes, typically binary classification
methods are extended using tiree-against-alconstruction (Hsu and Lin, 2002). The one-against-
all scheme represents the classifier withdecision functions. We propose a more parsimonious
representation of the multicategory level set classifier that useatgcision functiong. A col-
lection of log, M level set functions can implicitly specifyl regions using a binary encoding like
a Venn diagram (Vese and Chan, 2002). This proposed logarithmic multicgtelassification is

2. ltis certainly possible to use one-against-all with the proposed levelassification methodology. In fact, there are
M-category level set methods that uddevel set functions (Samson et al., 2000; Paragios and Derichg),20@
they are less parsimonious than the approach we follow.

493



VARSHNEY AND WILLSKY

new, as there is no logarithmic formulation fdrcategory classification in the machine learning lit-
erature. The energy functional that is minimized has a multicategory empiskarm and surface
area penalties on lgd/l contours.

The level set representation of classifier decision boundaries, tfecswarea regularization
term, the logarithmic multicategory classification scheme, and other contribufitims paper are
not only interesting academically, but also practically. We compare the otasmifi performance
of geometric level set classification on several binary and multicategday s#ds from the UCI
Repository and find the results to be competitive with many classifiers useddticer.

Level set methods are usually implemented on a discretized grid, that is ttes wdlthe level
set function are maintained and updated on a grid. In physics and imaggsphog applications,
it nearly always suffices to work in two- or three-dimensional spaceslassification problems,
however, the input data space can be high-dimensional. Implementatiorebs&vmethods for
large input space dimension becomes cumbersome due to the need to stgpdateda grid of that
large dimension. One way to address this practical limitation is to represenvéiesés function
by a superposition of radial basis functions (RBFs) instead of on a@e&di(et al., 2004; Slabaugh
et al., 2007; Gelas et al., 2007). We follow this implementation strategy in obtasfasgification
results.

In Section 2, we detail geometric level set classification in the binary cadeg ghe objective
to be minimized and the contour evolution to perform the minimization. In Section Jjrore
vide theoretical analysis of the binary level set classifier given in Se@iohe main result is
the calculation of the-entropy of the space of level set classifiers as a function of the maximum
allowable decision boundary surface area; this result is then applie@taathrize consistency and
complexity. Section 4 goes over multicategory level set classification. o8 we describe the
RBF level set implementation and use that implementation to compare the classifiestiparfor-
mance of geometric level set classification to the performance of sevkealaassifiers. Section 6
concludes and provides a summary of the work.

2. Binary Geometric Level Set Classification

In the standard binary classification problem, we are given training fatayi),. .., (Xn,Yn)}
with data vectors; € Q C RP and class labelg € {+1,—1} drawn according to some unknown
probability density functiorpx v(x,y) and we would like to learn a classifigr. Q — {+1,—1}
that classifies previously unseen data vectors well. A popular appsepeetdifies the classifier as
Y(x) = sign(¢(x)), where¢ is a scalar-valued function. This function is obtained by minimizing the
empirical risk over a model clags:

@giL(y@(xi». o

A wide variety of margin-based loss functions L are employed in differkagsdication methods,

including the logistic loss in logistic regression, the hinge loss in the SVM, anekihenential loss

in boosting: Lggistic(z) = 109(1+€7?), Lhinge(z) = max{0,1—z}, and Lexponentia{Z) = €% (Bartlett

et al., 2006; Lin, 2004). The loss function on which classifiers are tilpiesaluated is the mis-

classification zero-one 10SSzdw-ond 2) = Stef{—z), where step is the Heaviside unit step function.
Limiting the model class is a way to control the complexity of the learned classifierdier

to increase its generalization ability. This is the central idea of the strucigkahtinimization
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principle (Vapnik, 1995). A model subclass can be specified directlyugir@ constraint in the
optimization by takingZ to be the subclass in (1). Alternatively, it may be specified through a
regularization term J with weight

minS L8 (x) A 36). @

where# indicates a broader class within which the subclass is delineate@by J
We propose a geometric regularization term novel to machine learning, tlaeesarea of the
decision boundary:

A9)= § s ©
$=0

whereds is an infinitesimal surface area element on the decision boundary. Decmimldries
that shatter more points are more tortuous than decision boundaries ttiat haer points. The
regularization functional (3) promotes smooth, less tortuous decisiordades. It is experimen-
tally shown in Varshney and Willsky (2008) that with this regularization ternyetliee an inverse
relationship between the regularization paramgtand the Vapnik-Chervonenkis (VC) dimension
of the classifier. An analytical discussion of complexity is provided in Se®i8n The empiri-
cal risk term and regularization term must be properly balanced as thkaregtion term by itself
drives the decision boundary to be a set of infinitesimal hyperspheres.

We now describe how to find a classifier that minimizes (2) with the new regatemizterm
(3) using the level set methodology. As mentioned in Section 1, the leveppsbach implicitly
represents @D — 1)-dimensional contou€ in a D-dimensional spac@ by a scalar-valued, Lips-
chitz continuous functiop known as the level set function (Osher and Fedkiw, 2003). The contou
is the zero level set af. ContourC partitionsQ into the region®®_and R ¢, which can be simply
connected, multiply connected, or composed of several componentsevidieset functionp(x)
satisfies the propertiegi(x) < 0 forx € R, ¢(x) > 0 forx € R, and¢(x) = 0 for x on the contour
C.

The level set function is often specialized to be the signed distance funictadnding in our
work. The magnitude of the signed distance function at a point equals itackstaC, and its sign
indicates whether it is irR_ or R°. The signed distance function satisfies the additional constraint
that||0¢(x)|| = 1 and has Lipschitz constant equal to one. lllustrating the representationfour
in aD = 2-dimensional space and its corresponding signed distance functishava in Figure 1.
For classification, we takg to be the set of all signed distance functions on the doifaim(2).

The general form of objective functionals in variational level set metigds

E(C) = /K 0:(x)dx+  ab(C(8))ds (@)

whereg; is a region-based function agdis a boundary-based function. Note that the integral in the
region-based functional is ov&®, which is determined bg. Region-based functionals may also
be integrals oveR ¢, in place of or in addition to integrals ov&. In contour evolution, starting
from some initial contour, the minimum of (4) is approached iteratively via a flothe negative
gradient direction. If we parameterize the iterations of the flow with a time paeaméhen it may

be shown using the calculus of variations that the floW€ ¢tiat implements the gradient descent is

oC

o —0grn — (goK — (Dgp, N)) N, ()

495



VARSHNEY AND WILLSKY

Y

Figure 1: An illustration of the signed distance function representation ohtoar withD = 2.
The contour is shown in (a), its signed distance function is shown by ghadiv), and
as a surface plot marked with the zero level set in (C).

J, 9, W, Wy,

v

Figure 2: lterations of an illustrative curve evolution proceeding fromttefight. The top row
shows the curve and the bottom row shows the corresponding signeaceistenction.

@)

(©)

wheren is the outward unit normal t€, andk is its mean curvature (Caselles et al., 1997; Osher
and Fedkiw, 2003). The mean curvature of a surface is an extrinsicuneeak curvature from
differential geometry that is the average of the principal curvaturabelfegion-based function is
integrated oveR ©, then the sign of the first term in (5) is reversed.

The flow of the contour corresponds to a flow of the signed distanceiéumcr he unit normal
to the contour i€ in terms of the signed distance function and the mean curvatiiédis The
level set flow corresponding to (5) is

a¢a(tX) = —gr(X) 00 (X) — (Go(X)T%d(X) — (Ogb(x), Od(x))) T (x). (6)

Figure 2 illustrates iterations of contour evolution.

496



CLASSIFICATION USING GEOMETRICLEVEL SETS

For the classification problem, we have the following energy functional taibamized:
n
(@)= 5 Libx)) +A f ds ™
i= C
The surface area regularization is a boundary-based functionabwithl and the margin-based

loss can be expressed as a region-based functionabwitticorporating Lyid(X;)). Applying (4)—
(6) to this energy functional yields the gradient descent flow

00| _ {L(yi¢(xi))D¢(Xi) —ADPO(xi) 09 (xi),  (xi) <0

(8)

ot - L(yicl)(xi))D(I)(xi) —7\|:|2¢(Xi)|:|¢(xi), (I)(Xi) > 0

In doing the contour evolution, note that we never compute the surfagefitee decision boundary,
which is oftentimes intractable, but just its gradient descent flow.

The derivative (8) does not take the constrdiat || = 1 into account: the result of updating a
signed distance function using (8) is not a signed distance functionu@&mécginitialization of the
level set function as a signed distance function is important becauseg@hds on the magnitude
of ¢, not just its sign. This reinitialization is done iteratively using (Sussman etaf4)1

54:_;:) = sign(6(x)) (1~ [ I$(x))).

With linear margin-based classifiers, including the original primal formulatibthe SVM,
the concept of margin is equivalent to Euclidean distance from the dedisiomdary in the input
space. With kernel methods, however, this equivalence is lost; the quafdtyed to as the margin,
yd(x), is not the same as distance frorto the decision boundary in the input space. As discussed
by Akaho (2004), oftentimes it is of interest to maximize the minimum distance to ttisiae
boundary in the input space among all of the training examples. With the sitistatice function
representation, the margi (x) is equivalent to Euclidean distance from the decision boundary and
hence is a satisfying nonlinear generalization to linear margin-based methods.

We now present two synthetic examples to illustrate this approach and itsidrehbwboth
examples, there are= 1000 points in the training set with = 2. The first example has 502 points
with labely; = —1 and 498 points with labgl = +1 and is separable by an elliptical decision
boundary. The second example has 400 points with label-1 and 600 points with labg] = +1
and is not separable by a simple shape, but has-fhimbeled points in a strip.

In these two examples, in the other examples in the rest of the paper, andpertbemance
results of Section 5.2, we use the logistic loss function for L in the objectiye If¥ these two
examples, the surface area penalty has weighD.5; the value\ = 0.5 is a default parameter value
that gives good performance with a variety of data sets regardlessrditihensionalityD and can
be used if one does not wish to optimikeising cross-validation. Contour evolution minimization
requires an initial decision boundary. In the portiontdfwhere there are no training examples,
we set the initial decision boundary to be a uniform grid of small componéiits;small seed
initialization is common in level set methods. In the par@oivhere there are training examples, we
use the locations and labels of the training examples to set the initial decisioddrgu\We assign
a positive value to the initial signed distance function in locations of positivélgléal examples
and a negative value in locations of negatively labeled examples. The igitisidn boundaries for
the two examples are shown in the top left panels of Figure 3 and Figure 4.
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Figure 3: Curve evolution iterations with= 0.5 for an example training set proceeding in raster
scan order starting from the top left. The magextmarkers indicate class labell and
the black+ markers indicate class labell. The blue line is the decision boundary.

Two intermediate iterations and the final decision boundary are also shdviguire 3 and Fig-
ure 4. Solutions are as expected: an elliptical decision boundary arig-ik&rdecision boundary
have been recovered. In the final decision boundaries of both exatipbee is a small curved piece
of the decision boundary in the top right corner®fwhere there are no training examples. This
piece is an artifact of the initialization and the regularization term, and doeafigeat classifier
performance. (The corner piece of the decision boundary is a minimalcsyra surface of zero
mean curvature, which is a critical point of the surface area regulanizatietional (3), but not the
global minimum. It is not important, assuming we have a representative traigiing s

For a visual comparison of the effect of the surface area penalty tysighshow the solution
decision boundaries of the geometric level set classifier for two otheevalih, 0.005 and (05,
with the data set used in the example of Figure 4. As can be seen in compasifigule with the
bottom right panel of Figure 4, the smaller the valué ofhe longer and more tortuous the decision
boundary. Small values @flead to overfitting.
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Figure 4: Curve evolution iterations with= 0.5 for an example training set proceeding in raster
scan order starting from the top left. The magextmarkers indicate class labell and
the black+ markers indicate class labell. The blue line is the decision boundary.

In this section, we have described the basic method for nonlinear marggaHténary classi-
fication based on level set methods and illustrated its operation on two synih&icets. The
next two sections build upon this core binary level set classification in tvextitins: theoretical
analysis, and multicategory classification.

3. Consistency and Complexity Analysis

In this section, we provide analytical characterizations of the consistamtgomplexity of the level

set classifier with surface area regularization described in Section@main tool used in these
characterizations is-entropy. Once we have an expression forgtentropy of the set of geometric
level set classifiers, we can then apply consistency and complexity resuattéearning theory that

are based on it. The beginning of this section is devoted to finding-greropy of the space of
signed distance functions with a surface area constraint with respeet tmiflorm orL., metric on
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(a) (b)

Figure 5: Solution decision boundaries with }a3 0.005 and (b)\ = 0.05 for an example training
set. The magenta markers indicate class labell and the black- markers indicate
class labek-1. The blue line is the decision boundary.

functions. The end of the section gives results on classifier consiségcgomplexity. The main
findings are that level set classifiers are consistent, and that compleritynistonically related to
the surface area constraint, and thus the regularization term can b®ysegent underfitting and
overfitting.

3.1 e-Entropy

Thee-covering number of a metric space is the minimal number of sets with radiusceaing
€ required to cover that space. Thentropy is the base-two logarithm of thecovering number.
These quantities are useful values in characterizing learning (KulkE®89; Williamson et al.,
2001; Lin, 2004; von Luxburg and Bousquet, 2004; Steinwart, 2@atlett et al., 2006). Kol-
mogorov and Tihomirov (1961), Dudley (1974, 1979), and othersigems+entropy calculations
for various classes of functions and various classes of sets, buattieutar class we are consid-
ering, signed distance functions with a constraint on the surface anbe akro level set, does
not appear in the literature. The second and third examples in Section 2Arabgorov and Ti-
homirov (1961) are related, and the general approach we take foniolgtaéhe e-entropy of level
set classifiers is similar to those two examples.

In classification, it is always possible to scale and shift the data and thigisddne in practice.
Without losing much generality and dispensing with some bothersome bookgeepe consider
signed distance functions defined on the unit hypercube, that=s[0,1]°, and we employ the
uniform orLe metric,pe(¢1,$2) = SURq |P1(X) —d2(X)|. We denote the set of all signed distance
functions whose zero level set has surface area lesstnarfs, its e-covering number with respect
to the uniform metric ad\,_ ¢(Fs), and itse-entropy asH,_ (Fs). We begin with theD = 1 case
and then come to general

Figure 6a shows a signed distance function over the unit interval. Due g ihg= 1 con-
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X X X
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Figure 6: AD = 1-dimensional signed distance functiorCin= [0, 1] is shown in (a), marked with
its zero level set. The-corridor withe = %2 that contains the signed distance function
is shown in (b), shaded in gray. Tlecorridor of (b), whose center line has three zero
crossings is shown in (c), again shaded in gray, along witb-eorridor whose center
line has two zero crossings, shaded in green with stripes, aadamidor whose center
line has one zero crossing, shaded in red with dots.

straint, its slope is either1 or —1 almost everywhere. The slope changes sign exactly once between
two consecutive points in the zero level set. The signed distance fundties values in the range
between positive and negative ohén theD = 1 context, by surface area we mean the number of
points in the zero level set, for example three in Figure 6a.

In finding Hp,, £ (Fs), we will use sets known ascorridors, which are particular balls of radius
€ measured using. in the space of signed distance functions. We use the terminology of Kol-
mogorov and Tihomirov (or translator Hewitt), but our definition is slightly d#fe than theirs. An
g-corridor is a strip of height&for all x. Let us defines = [e~1]. At x = 0, the bottom and top of
a corridor are at  and 2 j + 1) respectively for some integér where—v < 2j < v. The slope
of the corridor is either+1 or —1 for all x and the slope can only change at valuex diiat are
multiples ofe. Additionally, the center line of the-corridor is a signed distance function, changing
slope halfway between consecutive points in its zero level set and ondy. tidee-corridor in
which the signed distance function of Figure 6a falls is indicated in Figur®gtere-corridors are
shown in Figure 6c¢.

By construction, each signed distance function is a member of exactlg-coeidor. This is
because since at= 0 the bottom and top af-corridors are at consecutive integer multiples of 2
and since the center line of the corridor is a signed distance functionseawd distance function
starts in one-corridor atx = 0 and does not escape from it in the inter{@ll]. Also, ane-corridor
whose center line haspoints in its zero level set contains only signed distance functions with at
leasts points in their zero level sets.

3. There are several ways to define the signed distance function ingeaatate caseR(= Q, R¢ = 0) and R = 0,
RC = Q), including the assignmentseo and+o, or —1 and+1 (Delfour and Zaésio, 2001). For our purposes, it
suffices to say that we have chosen a unique function foRtkeQ case and a unique function for tlRf = Q case.
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Theorem 1 Thee-entropy of the set of signed distance functions defined Qver|0, 1] with zero
level set having less than s points is:

How e() = log, ( s (s 1)) i

k=1

Proof Sinceg-corridors only change slope at multiplesspfve can divide the abscissa intpieces.
(Each piece has widthexcept the last one & 1 is not an integer.) In each of tivesubintervals, the
center line of a corridor is either wholly positive or wholly negative. Eniatieg the full set ok-
corridors is equivalent to enumerating binary strings of lengthhus, without a constrairg there
are 2 e-corridors. Since, by constructioescorridors tile the space of signed distance functions,
No...e(F) =2".

With the s constraint ore-corridors, the enumeration is equivalent to twice the number of com-
positions of the positive integerby a sum ofs or less positive integers. Twice because for every
composition, there is one version in which the first subinterval of the aordenter is positive and
one version in which it is negative. As an example, the red corridor in Ei§arcan be composed
with two positive integers (5 7), the green corridor by three {74+ 1), and the gray corridor by
four (1+4+ 4+ 3). The number of compositions ofby k positive integers i} _1). Note that
the zero-crossings are unordered for this enumeration and that thgisetudes all of the signed
distance functions with surface area smaller thas well. Therefore:

win-a(Y)

The result then follows becaus®,, ¢(Fs) = 109, N, ¢(Fs)- [ ]

The combinatorial formula in Theorem 1 is difficult to work with, so we giveghly accurate
approximation.

Theorem 2 Thee-entropy of the set of signed distance functions defined Qver|0, 1] with zero
level set having less than s points is:

et -1

where® is the standard Gaussian cumulative distribution function (cdf).

HQ»@(TS) ~ |'871'| +|092(p (W> ,

Proof Note that for a binomial random variabE with (v — 1) Bernoulli trials having success
probability 3

Z (v-1
— oV,
Piz<z=2 2k; <k—1>’

and thatN,_ ¢(%s) = 2'Pf{Z < 5. The result follows from the de Moivre-Laplace theorem and
continuity correction, which are used to approximate the binomial distribution thvtfGaussian
distribution. |
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The central limit theorem tells us that the approximation works well when thedBéi suc-
cess probability is one half, which it is in our case, and when the numbeials is large, which
corresponds to smadl The continuous approximation is better in the middle of the domain, when
s~ Vv/2, than in the tails. However, in the tails, the calculation of the exact expressitheorem 1
is tractable. Since&p is a cdf taking values in the range zero to one,@gs nonpositive. The
surface area constraint only serves to reduce-tbetropy.

Thee-entropy calculation in Theorem 1 and Theorem 2 is forhe 1 case. We now discuss
the case with generd. Recall thatQ = [0,1]°. Once again, we construgtcorridors that tile the
space of signed distance functions. In the one-dimensional case, thetelltibjact of interest for
enumeration is a string of lengthwith binary labels. In the two-dimensional case, the correspond-
ing object is av-by-v grid of e-by-€ squares with binary labels, and in generdD-alimensional
Cartesian grid of hypercubes of volure®, v on each side. The surface area of the zero level set
is the number of interior faces in the Cartesian grid whose adjoiglinigypercubes have different
binary labels.

Theorem 3 Thee-entropy of the set of signed distance functions defined@ver0, 1)° with zero
level set having surface area less than s is:

25D (e Y] f1> (s-ﬂ%l

\/D g1 1)[g 1101 ’

Hoo £ (75) ~ [e1]° +log, ®

whered is the standard Gaussian cdf.

Proof In the one-dimensional case, itis easy to see that the number of segmeaitslithe number
of interior faces isv — 1. For a generaD-dimensional Cartesian grid with hypercubes on each
side, the number of hypercubesvi$ and the number of interior facesi¥v — 1)vP~1. The result
follows by substituting/® for v andD(v — 1)vP~1 for v — 1 in Theorem 2. [ |

Theorem 2 is a special case of Theorem 3 Miiite- 1. It is common to find the dimension of
the spac® in the exponent of 1 in e-entropy calculations as we do here.

Theg-entropy calculation for level set classifiers given here enables usatgtecally character-
ize their consistency properties as the size of the training set goes to infildgction 3.2 through
e-entropy-based classifier consistency results. The calculation albtesnss to characterize the
Rademacher complexity of level set classifiers in Section 3.3 threxggtiropy-based complexity
results.

3.2 Consistency

In the binary classification problem, with training set of sizérawn frompx v(X,y), a consistent
classifier is one whose probability of error converges in the limit@ses to infinity to the probabil-
ity of error of the Bayes optimal decision rule. The optimal decision rule to minithz@robability

of error isy*(x) = sign(pyx (Y = 1[X =x) — —) Introducing notation, let the probability of error
achieved by this decision rule B&. Also denote the probability of error of a level set classifier
sign(¢(™) learned from a training set of sizeasR(sign(¢(")). For consistency, it is required that
R(sign(¢()) — R* converge in probability to zero.
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The learned classifier sigh(" ) minimizes the energy functional (7), and consequently the prop-
erties ofR(sign(¢(")) are affected by both the margin-based loss function L and by the regulariz
tion term. Lin (2004), Steinwart (2005), and Bartlett et al. (2006) havergconditions on the
loss function necessary for a margin-based classifier to be consistamin@n margin-based loss
functions including the logistic loss and exponential loss meet the conditiamsalls a loss func-
tion that meets the necessary conditiginsher-consistentFisher consistency of the loss function
is not enough, however, to imply consistency of the classifier overallrddndarization term must
also be analyzed; since the regularization term based on surfaceaistaduce is new, so is the
following analysis.

Concentrating on the surface area regularization, we adapt Theotewh ldin, which is based
on g-entropy. The analysis is based on the method of sieves, where gig\ag an increasing
sequence of subspaces of a function spacén our casef is the set of signed distance functions
on Q and the sievesfyy,), are subsets of signed distance functions whose zero level sets have
surface area less than), that is¢,_ods < s(n). Such a constraint is related to the regularization
expression Ep) given in (7) through the method of Lagrange multipliers, witmversely related
tos(n). In the following, the functiors(n) is increasing im and thus the conclusions of the theorem
provide asymptotic results on consistency as the strength of the regularizatio decreases as
more training samples are made available. The sieve estimate is:

o™ —arg mln ZLL Vid (X)) 9)

Having foundH,, ¢(%s) in Section 3.1, we can apply Theorem 4.1 of Lin (2004), yielding the
following theorem.

Theorem 4 Let L be a Fisher-consistent loss function in (9); fet= argminye» E[L(Y$(X))],

where ¥ is the space of signed distance functiong@r]P; and let¥5n) be a sequence of sieves.
Then for sieve estimaip™, we havé

Rision(®") - R = On (max{n ™, inf (800~ )7pc(x1dx} ).

¢E.r}:s(n)
where
1
é’ D — 1
__ ) 1 loglogn
= 4 2logn > D=2
1
=, D>3

Proof The result is a direct application of Theorem 4.1 of Lin (2004), which is in an appli-
cation of Theorem 1 of Shen and Wong (1994). In order to apply this¢heowe need to note
two things. First, that signed distance functions[@ri]P are bounded (by a value of 1) in the
norm. Second, that there exists Arsuch thatH,, ¢(%s) < Ae P. Based on Theorem 3, we see
thatH,, ¢(s) < vP because the logarithm of the cdf is nonpositive. Simee [e1], if €71 is an
integer, therH,_ ¢(Fs) < ¢~ D and otherwise there exists Arsuch thatH,, ¢(Fs) < As D, [ |

4. The notatiorZ, = Op({n) means that the random varialdigis bounded in probability at the rafg (van der Vaart,
1998).
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Clearlyn™ goes to zero as goes to infinity. Also, infe,, [($(X)— $(x))?px (x)dx goes to
zero whens(n) is large enough so that the surface area constraint is no longer ajgficabus,
level set classifiers are consistent.

3.3 Rademacher Complexity

The principal idea of the structural risk minimization principle is that the géizaten error is
the sum of an empirical risk term and a capacity term (Vapnik, 1995). Theadwns should be
sensibly balanced in order to achieve low generalization error. Heresavthee-entropy of signed
distance functions constrained in decision boundary surface arearnactérize the capacity term.
In particular, we look at the Rademacher complexityfgfas a function of (Koltchinskii, 2001;
Bartlett and Mendelson, 2002).

The Rademacher average of a clﬁsdenotedin(f), satisfies (von Luxburg and Bousquet,

2004):
Rn(jf <2£+—/ ,/Hp2n£,

wherepzn(d1,¢2) = \/% SiL1(d1(xi) — d2(xi))? is the empirical, metric. We foundHp,, ¢(¥s) for
signed distance functions with surface area less #harSection 3.1, antHp, , «(F) < Hp,e(F).
Thus, we can characterize the complexity of level set classifiers via tthenRecher capacity term
(von Luxburg and Bousquet, 2004):

Crad(Fs,n) = 2¢ + —= / A/ Hp..e'( (10)

With Q = [0,1]P, the upper limit of the integral in (10) is one rather than infinity becausannot
be greater than one.

In Figure 7, we plotCrag as a function of for three values oD, and fixede andn. Having a
fixed € models the discretized grid implementation of level set methods. As the vahieaéases,
decision boundaries with more area are available. Decision boundariekxgighsurface area are
more complex than smoother decision boundaries with small surface areae He complexity
term increases as a function ®f We have also empirically found the same relationship between
the VC dimension and the surface area penalty (Varshney and Willsk@) 2@dnsequently, the
surface area penalty can be used to control the complexity of the clasailigprevent underfitting
and overfitting. The Rademacher capacity term may be used in setting tharizagion parameter
A.

4. Multicategory Geometric Level Set Classification

Thus far, we have considered binary classification. In this sectionxtee level set classification
to the multicategory case withl > 2 classes labelede {1,...,M}. We represent the decision
boundaries usingn = [log, M| signed distance function§bi(x),...,dm(x)}. Using such a set
of level set functions we can represerit &gions{ Ry, Rz,...,Rom} through a binary encoding

5. For a givere, there is a maximum possible surface area; the constraint is no longeradgbe when the constraint is
larger than this maximum possible surface area. Also notestiwadA are inversely related.
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Figure 7: The Rademacher capacity term (10) as a functiafaf signed distance functions on
Q = [0,1]P with surface area less thawith (a) D = 2, (b)D = 3, and (c)D = 4. The
values ofe andn are fixed at M1 and 1000 respectively.

(Vese and Chan, 2002). Thus, forE R, (¢1(X) <O)A--- A (dm(X) < 0); for x € Ry, (d1(X) <
O)A-A(dm-1(X) <0)A(dm > 0); and forx € Rom, (§1(X) > 0) A--- A (Pm(X) > 0).

This binary encoding specifies the regions, but in order to apply maageebloss functions,
we also need a value for margin. In binary classification, the speciabemgyp € {—1,+1} al-
lows y¢(x) to be the argument to the loss function. For multicategory classification, tie arg
ment to the loss function is through functiofig(x), which are also specified through a binary en-
coding: W1(X) = max{+d1(X),...,+dm(X)}, Y2(X) = max{+d1(X),...,+Pm-1(x), —Pm(X)}, and
Wom(X) = max{—¢1(x),...,—dm(X)}. Then, theM-ary level set classification energy functional we

propose is

Ebs ) = 3 LU0+ 5 d a
= =%=0

The same margin-based loss functions used in the binary case, suchhasgth@nd logistic loss
functions, may be used in the multicategory case (Zou et al., 2006, 2008).egularization term
included in (11) is the sum of the surface areas of the zero level set® of #igned distance

functions.
The gradient descent flows for thesigned distance functions are

0¢1(x) _ LWy (%)) Oda(xi) — A2, (x)Od1(xi),  d1(xi) <O
ot [k | —L(Wy(x)001(x) — 20%1(xi)01(xi), ¢1(x) >0

Omx)|  _ {L(Luyi (%)) D0m(X) — AD%0m(x)D0m(x)),  dm(xi) <O
ot |x—x —L(Wy (X)) Odm(Xi) — %qu)m(xi)['q)m(xi)a Om(Xi) >0’

In the caseM = 2 andm = 1, the energy functional and gradient flow revert back to binary el

classification described in Section 2.
The proposed multicategory classifier is different from the commonly usbdigue known as
one-against-all (Hsu and Lin, 2002), which constructdaary classifier froniM binary classifiers,
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both because it treats &l classes simultaneously in the objective and because the decision regions
are represented by a logarithmic rather than linear number of decisioticiusicZou et al. (2006)

also treat alM classes simultaneously in the objective, but their multicategory kernel maaldee

M decision functions. In fact, to the best of our knowledge, there israry classifier represen-
tation in the literature using as few @®g, M| decision functions. Methods that combine binary
classifier outputs using error-correcting codes make use of a logarithmrber of binary classi-

fiers with a larger multiplicative constant, such [d®logM| or [15logM| (Rifkin and Klautau,

2004; Allwein et al., 2000).

We give an example showing multicategory level set classificationMith 4 andD = 2. The
data set has 250 points for each of the four class lapelsl, yi = 2,y; = 3, andy; = 4. The
classes are not perfectly separable by simple boundaries. With foses|ase usen = 2 signed
distance functions. Figure 8 shows the evolution of the two contours, thenteagnd cyan curves.
The final decision region for clags= 1 is the portion inside both the magenta and cyan curves,
and coincides with the training examples with class label 1. The final decisiporrfor class 2 is
the region inside the magenta curve but outside the cyan curve, the foisioderegion for class
3 is the region inside the cyan curve, but outside the magenta curve, afidaihgecision region
for class 4 is outside both curves. The final decision boundariesidsesiamooth and partition the
space with small training error.

5. Implementation and Classification Results

In this section, we describe how to implement geometric level set classificatiatiqally using
RBFs and give classification performance results when applied to sexardinary and multicat-
egory data sets.

5.1 Radial Basis Function Level Set Method

There have been many developments in level set methods since the origikabfnOsher and
Sethian (1988). One development in particular is to represent the lé\fahstion by a superposi-
tion of RBFs instead of on a grid (Cecil et al., 2004; Slabaugh et al., ZB8I&s et al., 2007). Grid-
based representation of the level set function is not amenable to clagsificehigh-dimensional
input spaces because the memory and computational requirements arergigdan the dimension
of the input space. A nonparametric RBF representation, howevercialtta for classification.
The RBF level set method we use to minimize the energy functionals (7) ahdofldinary and
multicategory margin-based classification is most similar to that described by &elh (2007) for
image processing.

The starting point of the RBF level set approach is describing the let/@isetion ¢ (x) via a
strictly positive definité RBF K(-) as follows:

n

¢ (x) = .Zai K ([ =xill)- (12)

The zero level set ap defined in this way is the conto@:. For the classification problem, we take
the centers; to be the data vectors of the training set. Then, constructing>an matrix H with

6. A more complete discussion including conditionally positive definite RB&igdvadd a polynomial term to (12), to
span the null space of the RBF (Wendland, 2005).
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00000 000

Curve evolution iterations with = 0.5 for multicategory classification proceeding in
raster scan order. The redmarkers indicate class label 1, the blagknarkers indicate
class label 2, the blu& markers indicate class label 3, and the yellpvmarkers indicate
class label 4. The magenta and cyan lines are the zero level sets mf=th2 signed
distance functions and together make up the decision boundary.

508



CLASSIFICATION USING GEOMETRICLEVEL SETS

elements{H }i; = K (||xi —X;||), and lettinga be the vector of coefficients in (12), we have:

b (x1)
: | =Ha.
b (xn)

To minimize an energy functional @, the level set optimization is over the coefficieatsvith

H fixed. In order to perform contour evolution with the RBF representatidime parametetris
introduced like in Section 2, giving:

0o a(tX)
da =
Ho = : .
= . (13)
3d(x)
ot X=Xn

For the binary margin-based classification problem with surface arakaregtion that we are inter-
ested in solving, we substitute the gradient flow (8) into the right side of @E@)the multicategory
classification problem, we hawve level set functions as discussed in Section 4 and each one has a
gradient flow to be substituted into an expression like (13).

The iteration for the contour evolution is then:

2™ (x)

ot X=X1
alt = gq® -1 : (14)
2™ (x)

ot

X=Xn

wheret is a small step size anpf¥’ comes froma¥), We normalizea according to the;-norm
after every iteration.

The RBF-represented level set function is not a signed distance fanktawever, as discussed
by Gelas et al. (2007), normalizing the coefficient veatavith respect to thé;-norm after every it-
eration of (14) has a similar effect as reinitializing the level set functiorsggeed distance function.
The Lipschitz constant of the level set function is constrained by this dizatian. The analysis
of Section 3 applies with minor modification for level set functions with a givgasthitz constant
and surface area constraint. The RBF level set approach is similamtel keachines with the RBF
kernel in the sense that the decision function is represented by a limaairation of RBFs. How-
ever, kernel methods in the literature minimize a reproducing kernel Hilpadessquared norm
for regularization, whereas the geometric level set classifier minimizesaetisundary surface
area for regularization. The regularization term and consequentlytirdusias of the geometric
level set classifier is new and different compared to existing kernel metfide: solution decision
boundary is the zero level set of a function of the form given in (12)cdbrse this representation
does not capture all possible functions, but, given that we use a nwhB&*Fs equal to the num-
ber of training examples, the granularity of this representation is well-matohibeé data. This is
similar to the situation found in other contexts such as kernel machines usirg. RB

We initialize the decision boundary withh = n(H=1y) /||H1y||1, wherey is a vector of then
class labels in the training set. Figure 9 shows this initialization and following Rigfemented
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Figure 9: Curve evolution iterations with RBF implementation Ard0.5 for example training set
proceeding in raster scan order. The magentaarkers indicate class labell and the
black+ markers indicate class lab¢ll. The blue line is the decision boundary.

contour evolution on the elliptically-separable data set presented in SectidmeZnitial decision
boundary is tortuous. It is smoothed out by the surface area penaitgdhe course of the contour
evolution, thereby improving the generalization of the learned classifiezsieed. To initialize the
m vectorsa in M category classification, we uselengthn vectors of positive and negative ones
constructed from the binary encoding instead .of

5.2 Classification Results

We give classifier performance results on benchmark data sets fromGhélkchine Learning
Repository (Asuncion and Newman, 2007) for geometric level set cleasifn and compare them
to the performance of several other classifiers, concluding that levelassification is a compet-
itive technique. We present the tenfold cross-validation classification performance with RBF
level set implementation on four binary data sets: Pima Indians Diabetes68,D = 8), Wis-
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Figure 10: Tenfold cross-validation training error (blue line with trianglek®is) and test error
(red line with circle markers) for the (a) Pima, and (b) WDBC data sets asciidn of
the regularization parametgron a logarithmic scale.

consin Diagnostic Breast Cancer=€ 569,D = 30), BUPA Liver Disordersr{= 345,D = 6) and
Johns Hopkins University lonospheme-£ 351, D = 34), and four multicategory data sets: Wine
Recognition (= 178,M = 3,D = 13), Iris (h= 150,M = 3, D = 4), Glass Identificationn= 214,

M = 6,D =9), and Image Segmentatiom-£ 2310,M = 7, D = 19). For the binary data sets, there
ism= 1 level set function, for the wine and iris data sets- 2 level set functions, and for the glass
and segmentation data sets= 3 level set functions.

We shift and scale the data so that each of the input dimensions has zeramaaanit variance,
use the RBF K||x — xi||) = e I*~%I?  the logistic loss functiont = 1/m, and the initialization
a =n(Hy)/||H y||;. First, we look at classification error as a functiomofFigure 10 shows
the tenfold cross-validation training and test errors for the Pima and WDB& skts; other data
sets yield similar plots. The plots show evidence of the structural risk minimizatinaiple and
complexity analysis given in Section 3.3. For smaltorresponding to large surface area constraint
s), the model class is too complex and we see that although the training eresojdlze test error
is not minimal due to overfitting. For large the model class is not complex enough; the training
error is large and the test error is not minimal due to underfitting. Thereirg@mediate value of
A that achieves the minimal test error. However, we notice that the testiefedrly insensitive to
the value ofA. The test error does not change much over the plotted range.

In Table 1, we report the tenfold cross-validation test error (as aptage) on the eight data
sets and compare the performance to nine other classifierseach of the ten folds, we setising
cross-validation. Specifically, we perform fivefold cross-validatioth@mnine tenths of the full data
set that is the training data for that fold. We selectitieom the set of value$§0.2,0.4,0.8,1.6, 3.2}
that minimizes the fivefold cross-validation test error. The performarsdtseof the nine other

7. For lower-dimensional data sets (up to abBut 12), it is possible to use optimal dyadic decision trees (Scott and
Nowak, 2006; Blanchard et al., 2007). We found that the results w®inh trees are not significantly better than
those obtained using the C4.4 and C4.5 decision trees (which could ledapyall of the data sets without concern
for dimensionality).
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DataSe{M,D) | NB | BN | kNN | C4.4 | C45 NBT | SVM | RBN | LLS | GLS |

Pima(2,8) 23.60| 25.64| 27.86| 27.33| 26.17]| 25.64| 22.66| 24.60]| 29.94 | 25.94
WDBC (2,30) | 7.02| 4.92| 3.68| 7.20| 6.85| 7.21| 2.28| 579| 6.50| 4.04
Liver (2,6) 44.61| 43.75| 41.75| 31.01 | 31.29| 33.87| 41.72| 35.65| 37.39 | 37.61
lonos.(2,34) | 17.38| 10.54| 17.38| 8.54| 854 10.27| 11.40| 7.38| 13.11| 13.67
Wine (3,13) 337| 1.11| 500]| 6.14| 6.14| 3.37| 1.67| 1.70| 503| 3.92
Iris (3,4) 400| 7.33| 4.67| 400| 4.00| 6.00| 4.00| 4.67| 3.33| 6.00
Glass(6,9) 50.52 | 25.24| 29.89 | 33.68 | 34.13 | 24.78| 42.49| 3450 38.77| 36.95
Segm.(7,19) | 18.93| 9.60| 5.20| 4.27| 4.27| 567| 8.07]| 13.07| 14.40| 4.03

Table 1: Tenfold cross-validation error percentage of geometric levelassifier (GLS) with RBF
level set implementation on several data sets compared to error perceotagemus
other classifiers reported in Cai and Sowmya (2007). The other classifez néve Bayes
classifier (NB), Bayes net classifier (BM}nearest neighbor with inverse distance weight-
ing (KNN), C4.4 decision tree (C4.4), C4.5 decision tree (C4.5¥enBayes tree classifier
(NBT), SVM with polynomial kernel (SVM), radial basis function netwqRBN), and
learning level set classifier (LLS) of Cai and Sowmya (2007).

classifiers are as given by Cai and Sowmya (2007), who report the gnfold cross-validation
test error that we do for the geometric level set classifier. Details alzwabhyeter settings for the
other nine classifiers may be found in Cai and Sowmya (2007).

The geometric level set classifier outperforms each of the other classifilrast once among
the four binary data sets, and is generally competitive overall. Levelasgification is also com-
petitive on the multicategory data sets. In fact, it gives the smallest errorcaaticof the classifiers
on the segmentation data set. The proposed classifier is competitive foetiatd koth small and
large dimensionalityD; there is no apparent relationship betwd2mand the performance of the
geometric level set classifier in comparison to other methods.

6. Conclusion

Level set methods are powerful computational techniques that hawehbeen widely adopted
in machine learning. Our main goal with this contribution is to open a conduit leettvee appli-
cation area of learning and the computational technique of level set methiodards that end,
we have developed a nonlinear, nonparametric classifier based osééwveéthods that minimizes
margin-based empirical risk in both the binary and multicategory cases, esgliarized by a geo-
metric complexity penalty novel to classification. This approach is an alteertatkernel machines
for learning nonlinear decision boundaries in the input space and is in s@ay®a more natural
generalization of linear methods.

The variational level set formulation is flexible in allowing the inclusion of vasigeometric
priors defined in the input space. The surface area regularizationdeme such example, but oth-
ers may also be included. Another example is an energy functional thatiresdsature relevance
using the partial derivative of the signed distance function (Domenidoali,e2005), and can be
used for/1-regularized feature subset selection as discussed in Varshneyibsid/\(2008).
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We have provided an analysis of the classifier by characterizirggdtgropy. This characteri-
zation leads to results on consistency and complexity. We have describdticatagory level set
classification procedure with a logarithmic number of decision functionsr#tan the linear num-
ber that is typical in classification and decision making, through a binarydemg made possible
by the level set representation.

It is a known fact that with finite training data, no one classification methodssfbeall data
sets. Performance of classifiers may vary quite a bit depending on thehdatecteristics because
of differing inductive biases. The classifier presented in this papefiges a new option when
choosing a classifier. The results on standard data sets indicate thatehseleslassifier is com-
petitive with other state-of-the-art classifiers. It would be interestingstesyatically find domains
in the space of data set characteristics for which the geometric level seifielaoutperforms other
classifiers (Ho and Basu, 2002).
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