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Abstract

A variational level set method is developed for the supervised classification problem. Nonlinear
classifier decision boundaries are obtained by minimizing an energy functional that is composed of
an empirical risk term with a margin-based loss and a geometric regularization term new to machine
learning: the surface area of the decision boundary. This geometric level set classifier is analyzed
in terms of consistency and complexity through the calculation of its ε-entropy. For multicategory
classification, an efficient scheme is developed using a logarithmic number of decision functions
in the number of classes rather than the typical linear number of decision functions. Geometric
level set classification yields performance results on benchmark data sets that are competitive with
well-established methods.

Keywords: level set methods, nonlinear classification, geometric regularization, consistency, com-
plexity

1. Introduction

Variational level set methods, pioneered by Osher and Sethian (1988),have found application in
fluid mechanics, computational geometry, image processing and computer vision, computer graph-
ics, materials science, and numerous other fields, but have heretofore found little application in
machine learning. The goal of this paper is to introduce a level set approach to the archetypal ma-
chine learning problem of supervised classification. We propose an implicitlevel set representation
for classifier decision boundaries, a margin-based objective regularized by a surface area penalty,
and an Euler-Lagrange descent optimization algorithm for training.

Several well-developed techniques for supervised discriminative learning exist in the literature,
including the perceptron algorithm (Rosenblatt, 1958), logistic regression(Efron, 1975), and sup-
port vector machines (SVMs) (Vapnik, 1995). All of these approaches, in their basic form, produce
linear decision boundaries. Nonlinear boundaries in the input space canbe obtained by mapping the
input space to a feature space of higher (possibly infinite) dimension by taking nonlinear functions
of the input variables. Learning algorithms are then applied to the new higher-dimensional feature
space by treating each dimension linearly. They retain the efficiency of the input lower-dimensional
space for particular sets of nonlinear functions that admit the kernel trick(Scḧolkopf and Smola,
2002).

As an alternative to kernel methods for generalizing linear methods, we propose finding non-
linear decision boundaries directly in the input space. We propose an energy functional for clas-
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sification that is composed of an empirical risk term that uses a margin-basedloss function and a
complexity term that is the length of the decision boundary for a two-dimensional input space and
the surface area of the decision boundary more generally. The empiricalrisk term is standard in
many classification methods. What is new in this work is the measurement of decision boundary
complexity by surface area, an inherently geometric quantity, and the idea ofusing variational level
set methods for optimization in discriminative learning.

We use the termcontourto refer to a one-dimensional curve in a two-dimensional space, a two-
dimensional surface in a three-dimensional space, and generally aD−1 dimensional hypersurface
in a D-dimensional space. Classifier decision boundaries partition the input space into regions cor-
responding to the different class labels. If the region corresponding toone class label is composed
of several unconnected pieces, then the corresponding decision boundary is composed of several un-
connected pieces; we refer to this entire collection of decision boundariesas the contour. The level
set representation is a flexible, implicit representation for contours that does not require knowing
the number of disjoint pieces in advance. The contour is represented by asmooth, Lipschitz contin-
uous, scalar-valued function, known as thelevel set function, whose domain is the input space. The
contour is implicitly specified as the zero level set of the level set function.

Level set methods entail not only the representation, but also the minimization of an energy
functional whose argument is the contour.1 For example, in foreground-background image seg-
mentation, a popular energy functional is mean squared error of image intensity with two different
‘true’ image intensities inside the contour and outside the contour. Minimizing this energy produces
a good segmentation when the two regions differ in image intensity. In order to perform the min-
imization, a gradient descent approach is used. The first variation of thefunctional is found using
the calculus of variations; starting from an initial contour, a gradient flow isfollowed iteratively to
converge to a minimum. This procedure is known ascurve evolutionor contour evolution.

The connection between level set methods (particularly for image segmentation) and classifica-
tion has been noticed before, but to the best of our knowledge, there has been little prior work in this
area. Boczko et al. (2006) only hint at the idea of using level set methods for classification. Tom-
czyk and Szczepaniak (2005) do not consider fully general input spaces. Specifically, examples in
the training and test sets must be pixels in an image with the data vector containing the spatial index
of the pixel along with other variables. Cai and Sowmya (2007) do consider general feature spaces,
but have a very different energy functional than our margin-based loss functional. Theirs is based
on counts of training examples in grid cells and is similar to the mean squared error functional for
image segmentation described earlier. Their learning is also based on one-class classification rather
than standard discriminative classification, which is the framework we follow.Yip et al. (2006) use
variational level set methods for density-based clustering in general feature spaces, rather than for
learning classifiers.

Cremers et al. (2007) dichotomize image segmentation approaches into those that use spatially
continuous representations and those that use spatially discrete representations, with level set meth-
ods being the main spatially continuous approaches. There have been methods using discrete rep-
resentations that bear some ties to our methods. An example of a spatially discrete approach uses
normalized graph cuts (Shi and Malik, 2000), a technique that has been used extensively in unsu-
pervised learning for general features unrelated to images as well. Normalized decision boundary
surface area is implicitly penalized in this discrete setting. Geometric notions of complexity in su-

1. In the image segmentation literature, variational energy minimization approaches often go by the nameactive con-
tours, whether implemented using level set methods or not.

492



CLASSIFICATION USING GEOMETRIC LEVEL SETS

pervised classification tied to decision boundary surface area have been suggested by Ho and Basu
(2002), but also defined in a discrete way related to graph cuts. In contrast, the continuous formula-
tion we employ using level sets involves very different mathematical foundations, including explicit
minimization of a criterion involving surface area. Moreover, the continuous framework—and in
particular the natural way in which level set functions enter into the criterion—lead to new gradient
descent algorithms to determine optimal decision boundaries. By embedding our criterion in a con-
tinuous setting, the surface area complexity term is defined intrinsically ratherthan being defined in
terms of the graph of available training examples.

There are some other methods in the literature for finding nonlinear decision boundaries directly
in the input space related to image segmentation, but these methods use neither contour evolution
for optimization, nor the surface area of the decision boundary as a complexity term, as in the
level set classification method proposed in this paper. A connection is drawn between classification
and level set image segmentation in Scott and Nowak (2006) and Willett and Nowak (2007), but
the formulation is through decision trees, not contour evolution. Tomczyk (2005), Tomczyk and
Szczepaniak (2006), and Tomczyk et al. (2007) present a simulated annealing formulation given
the name adaptive potential active hypercontours for finding nonlinear decision boundaries in both
the classification and clustering problems; their work considers the use of radial basis functions in
representing the decision boundary. Pölzlbauer et al. (2008) construct nonlinear decision boundaries
in the input space from connected linear segments. In some ways, their approach is similar to active
contours methods in image segmentation such as snakes that do not use the level set representation:
changes in topology of the decision boundary in the optimization are difficult tohandle. (The
implicit level set representation takes care of topology changes naturally.)

The theory of classification with Lipschitz functions was discussed by von Luxburg and Bous-
quet (2004). As mentioned previously, level set functions are Lipschitzfunctions and the spe-
cific level set function that we use, thesigned distance function, has a unit Lipschitz constant.
Von Luxburg and Bousquet minimize the Lipschitz constant, whereas in our formulation, the Lip-
schitz constant is fixed. The von Luxburg and Bousquet formulation requires the specification of
a subspace of Lipschitz functions over which to optimize in order to preventoverfitting, but does
not resolve the question of how to select this subspace. The surface area penalty that we propose
provides a natural specification for subspaces of signed distance functions.

The maximum allowable surface area parameterizes nested subspaces. Wecalculate theε-
entropy (Kolmogorov and Tihomirov, 1961) of these signed distance function subspaces and use
the result to characterize geometric level set classification theoretically. Inparticular, we look at the
consistency and convergence of level set classifiers as the size of thetraining set grows. We also
look at the Rademacher complexity (Koltchinskii, 2001; Bartlett and Mendelson, 2002) of level set
classifiers.

For the multicategory classification problem withM > 2 classes, typically binary classification
methods are extended using theone-against-allconstruction (Hsu and Lin, 2002). The one-against-
all scheme represents the classifier withM decision functions. We propose a more parsimonious
representation of the multicategory level set classifier that uses log2M decision functions.2 A col-
lection of log2M level set functions can implicitly specifyM regions using a binary encoding like
a Venn diagram (Vese and Chan, 2002). This proposed logarithmic multicategory classification is

2. It is certainly possible to use one-against-all with the proposed level set classification methodology. In fact, there are
M-category level set methods that useM level set functions (Samson et al., 2000; Paragios and Deriche, 2002), but
they are less parsimonious than the approach we follow.
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new, as there is no logarithmic formulation forM-category classification in the machine learning lit-
erature. The energy functional that is minimized has a multicategory empirical risk term and surface
area penalties on log2M contours.

The level set representation of classifier decision boundaries, the surface area regularization
term, the logarithmic multicategory classification scheme, and other contributions of this paper are
not only interesting academically, but also practically. We compare the classification performance
of geometric level set classification on several binary and multicategory data sets from the UCI
Repository and find the results to be competitive with many classifiers used in practice.

Level set methods are usually implemented on a discretized grid, that is the values of the level
set function are maintained and updated on a grid. In physics and image processing applications,
it nearly always suffices to work in two- or three-dimensional spaces. In classification problems,
however, the input data space can be high-dimensional. Implementation of level set methods for
large input space dimension becomes cumbersome due to the need to store andupdate a grid of that
large dimension. One way to address this practical limitation is to represent the level set function
by a superposition of radial basis functions (RBFs) instead of on a grid (Cecil et al., 2004; Slabaugh
et al., 2007; Gelas et al., 2007). We follow this implementation strategy in obtainingclassification
results.

In Section 2, we detail geometric level set classification in the binary case, giving the objective
to be minimized and the contour evolution to perform the minimization. In Section 3, wepro-
vide theoretical analysis of the binary level set classifier given in Section2. The main result is
the calculation of theε-entropy of the space of level set classifiers as a function of the maximum
allowable decision boundary surface area; this result is then applied to characterize consistency and
complexity. Section 4 goes over multicategory level set classification. In Section 5, we describe the
RBF level set implementation and use that implementation to compare the classificationtest perfor-
mance of geometric level set classification to the performance of several other classifiers. Section 6
concludes and provides a summary of the work.

2. Binary Geometric Level Set Classification

In the standard binary classification problem, we are given training data{(x1,y1), . . . ,(xn,yn)}
with data vectorsxi ∈ Ω ⊂ R

D and class labelsyi ∈ {+1,−1} drawn according to some unknown
probability density functionpX,Y(x,y) and we would like to learn a classifier ˆy : Ω → {+1,−1}
that classifies previously unseen data vectors well. A popular approachspecifies the classifier as
ŷ(x) = sign(ϕ(x)), whereϕ is a scalar-valued function. This function is obtained by minimizing the
empirical risk over a model classF :

min
ϕ∈F

n

∑
i=1

L(yiϕ(xi)). (1)

A wide variety of margin-based loss functions L are employed in different classification methods,
including the logistic loss in logistic regression, the hinge loss in the SVM, and theexponential loss
in boosting: Llogistic(z) = log(1+e−z), Lhinge(z) = max{0,1−z}, and Lexponential(z) = e−z (Bartlett
et al., 2006; Lin, 2004). The loss function on which classifiers are typically evaluated is the mis-
classification zero-one loss: Lzero-one(z) = step(−z), where step is the Heaviside unit step function.

Limiting the model class is a way to control the complexity of the learned classifier inorder
to increase its generalization ability. This is the central idea of the structural risk minimization
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principle (Vapnik, 1995). A model subclass can be specified directly through a constraint in the
optimization by takingF to be the subclass in (1). Alternatively, it may be specified through a
regularization term J with weightλ:

min
ϕ∈F

n

∑
i=1

L(yiϕ(xi))+λJ(ϕ), (2)

whereF indicates a broader class within which the subclass is delineated by J(ϕ).
We propose a geometric regularization term novel to machine learning, the surface area of the

decision boundary:

J(ϕ) =
I

ϕ=0

ds, (3)

whereds is an infinitesimal surface area element on the decision boundary. Decision boundaries
that shatter more points are more tortuous than decision boundaries that shatter fewer points. The
regularization functional (3) promotes smooth, less tortuous decision boundaries. It is experimen-
tally shown in Varshney and Willsky (2008) that with this regularization term, there is an inverse
relationship between the regularization parameterλ and the Vapnik-Chervonenkis (VC) dimension
of the classifier. An analytical discussion of complexity is provided in Section3.3. The empiri-
cal risk term and regularization term must be properly balanced as the regularization term by itself
drives the decision boundary to be a set of infinitesimal hyperspheres.

We now describe how to find a classifier that minimizes (2) with the new regularization term
(3) using the level set methodology. As mentioned in Section 1, the level set approach implicitly
represents a(D−1)-dimensional contourC in a D-dimensional spaceΩ by a scalar-valued, Lips-
chitz continuous functionϕ known as the level set function (Osher and Fedkiw, 2003). The contour
is the zero level set ofϕ. ContourC partitionsΩ into the regionsR andR c, which can be simply
connected, multiply connected, or composed of several components. Thelevel set functionϕ(x)
satisfies the properties:ϕ(x) < 0 for x ∈ R , ϕ(x) > 0 for x ∈ R c, andϕ(x) = 0 for x on the contour
C.

The level set function is often specialized to be the signed distance function, including in our
work. The magnitude of the signed distance function at a point equals its distance toC, and its sign
indicates whether it is inR or R c. The signed distance function satisfies the additional constraint
that‖∇ϕ(x)‖ = 1 and has Lipschitz constant equal to one. Illustrating the representation,a contour
in aD = 2-dimensional space and its corresponding signed distance function areshown in Figure 1.
For classification, we takeF to be the set of all signed distance functions on the domainΩ in (2).

The general form of objective functionals in variational level set methodsis

E(C) =
Z

R
gr(x)dx+

I

C
gb(C(s))ds, (4)

wheregr is a region-based function andgb is a boundary-based function. Note that the integral in the
region-based functional is overR , which is determined byC. Region-based functionals may also
be integrals overR c, in place of or in addition to integrals overR . In contour evolution, starting
from some initial contour, the minimum of (4) is approached iteratively via a flowin the negative
gradient direction. If we parameterize the iterations of the flow with a time parameter t, then it may
be shown using the calculus of variations that the flow ofC that implements the gradient descent is

∂C
∂t

= −grn− (gbκ−〈∇gb,n〉)n, (5)
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Figure 1: An illustration of the signed distance function representation of a contour withD = 2.
The contour is shown in (a), its signed distance function is shown by shading in (b), and
as a surface plot marked with the zero level set in (c).

Figure 2: Iterations of an illustrative curve evolution proceeding from left to right. The top row
shows the curve and the bottom row shows the corresponding signed distance function.

wheren is the outward unit normal toC, andκ is its mean curvature (Caselles et al., 1997; Osher
and Fedkiw, 2003). The mean curvature of a surface is an extrinsic measure of curvature from
differential geometry that is the average of the principal curvatures. Ifthe region-based function is
integrated overR c, then the sign of the first term in (5) is reversed.

The flow of the contour corresponds to a flow of the signed distance function. The unit normal
to the contour is∇ϕ in terms of the signed distance function and the mean curvature is∇2ϕ. The
level set flow corresponding to (5) is

∂ϕ(x)

∂t
= −gr(x)∇ϕ(x)−

(

gb(x)∇2ϕ(x)−〈∇gb(x),∇ϕ(x)〉
)

∇ϕ(x). (6)

Figure 2 illustrates iterations of contour evolution.
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For the classification problem, we have the following energy functional to beminimized:

E(ϕ) =
n

∑
i=1

L(yiϕ(xi))+λ
I

C
ds. (7)

The surface area regularization is a boundary-based functional withgb = 1 and the margin-based
loss can be expressed as a region-based functional withgr incorporating L(yiϕ(xi)). Applying (4)–
(6) to this energy functional yields the gradient descent flow

∂ϕ(x)

∂t

∣

∣

∣

∣

x=xi

=

{

L(yiϕ(xi))∇ϕ(xi)−λ∇2ϕ(xi)∇ϕ(xi), ϕ(xi) < 0

−L(yiϕ(xi))∇ϕ(xi)−λ∇2ϕ(xi)∇ϕ(xi), ϕ(xi) > 0
. (8)

In doing the contour evolution, note that we never compute the surface area of the decision boundary,
which is oftentimes intractable, but just its gradient descent flow.

The derivative (8) does not take the constraint‖∇ϕ‖ = 1 into account: the result of updating a
signed distance function using (8) is not a signed distance function. Frequent reinitialization of the
level set function as a signed distance function is important because (7) depends on the magnitude
of ϕ, not just its sign. This reinitialization is done iteratively using (Sussman et al., 1994):

∂ϕ(x)

∂t
= sign(ϕ(x))(1−‖∇ϕ(x)‖).

With linear margin-based classifiers, including the original primal formulation of the SVM,
the concept of margin is equivalent to Euclidean distance from the decisionboundary in the input
space. With kernel methods, however, this equivalence is lost; the quantityreferred to as the margin,
yϕ(x), is not the same as distance fromx to the decision boundary in the input space. As discussed
by Akaho (2004), oftentimes it is of interest to maximize the minimum distance to the decision
boundary in the input space among all of the training examples. With the signeddistance function
representation, the marginyϕ(x) is equivalent to Euclidean distance from the decision boundary and
hence is a satisfying nonlinear generalization to linear margin-based methods.

We now present two synthetic examples to illustrate this approach and its behavior. In both
examples, there aren= 1000 points in the training set withD = 2. The first example has 502 points
with label yi = −1 and 498 points with labelyi = +1 and is separable by an elliptical decision
boundary. The second example has 400 points with labelyi =−1 and 600 points with labelyi = +1
and is not separable by a simple shape, but has the−1 labeled points in a strip.

In these two examples, in the other examples in the rest of the paper, and in theperformance
results of Section 5.2, we use the logistic loss function for L in the objective (7). In these two
examples, the surface area penalty has weightλ = 0.5; the valueλ = 0.5 is a default parameter value
that gives good performance with a variety of data sets regardless of their dimensionalityD and can
be used if one does not wish to optimizeλ using cross-validation. Contour evolution minimization
requires an initial decision boundary. In the portion ofΩ where there are no training examples,
we set the initial decision boundary to be a uniform grid of small components;this small seed
initialization is common in level set methods. In the part ofΩ where there are training examples, we
use the locations and labels of the training examples to set the initial decision boundary. We assign
a positive value to the initial signed distance function in locations of positively labeled examples
and a negative value in locations of negatively labeled examples. The initial decision boundaries for
the two examples are shown in the top left panels of Figure 3 and Figure 4.
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Figure 3: Curve evolution iterations withλ = 0.5 for an example training set proceeding in raster
scan order starting from the top left. The magenta× markers indicate class label−1 and
the black+ markers indicate class label+1. The blue line is the decision boundary.

Two intermediate iterations and the final decision boundary are also shown inFigure 3 and Fig-
ure 4. Solutions are as expected: an elliptical decision boundary and a strip-like decision boundary
have been recovered. In the final decision boundaries of both examples, there is a small curved piece
of the decision boundary in the top right corner ofΩ where there are no training examples. This
piece is an artifact of the initialization and the regularization term, and does notaffect classifier
performance. (The corner piece of the decision boundary is a minimal surface, a surface of zero
mean curvature, which is a critical point of the surface area regularization functional (3), but not the
global minimum. It is not important, assuming we have a representative training set.)

For a visual comparison of the effect of the surface area penalty weight, we show the solution
decision boundaries of the geometric level set classifier for two other values ofλ, 0.005 and 0.05,
with the data set used in the example of Figure 4. As can be seen in comparing this figure with the
bottom right panel of Figure 4, the smaller the value ofλ, the longer and more tortuous the decision
boundary. Small values ofλ lead to overfitting.
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Figure 4: Curve evolution iterations withλ = 0.5 for an example training set proceeding in raster
scan order starting from the top left. The magenta× markers indicate class label−1 and
the black+ markers indicate class label+1. The blue line is the decision boundary.

In this section, we have described the basic method for nonlinear margin-based binary classi-
fication based on level set methods and illustrated its operation on two syntheticdata sets. The
next two sections build upon this core binary level set classification in two directions: theoretical
analysis, and multicategory classification.

3. Consistency and Complexity Analysis

In this section, we provide analytical characterizations of the consistencyand complexity of the level
set classifier with surface area regularization described in Section 2. The main tool used in these
characterizations isε-entropy. Once we have an expression for theε-entropy of the set of geometric
level set classifiers, we can then apply consistency and complexity resultsfrom learning theory that
are based on it. The beginning of this section is devoted to finding theε-entropy of the space of
signed distance functions with a surface area constraint with respect to the uniform orL∞ metric on

499



VARSHNEY AND WILLSKY

(a) (b)

Figure 5: Solution decision boundaries with (a)λ = 0.005 and (b)λ = 0.05 for an example training
set. The magenta× markers indicate class label−1 and the black+ markers indicate
class label+1. The blue line is the decision boundary.

functions. The end of the section gives results on classifier consistencyand complexity. The main
findings are that level set classifiers are consistent, and that complexity ismonotonically related to
the surface area constraint, and thus the regularization term can be usedto prevent underfitting and
overfitting.

3.1 ε-Entropy

Theε-covering number of a metric space is the minimal number of sets with radius not exceeding
ε required to cover that space. Theε-entropy is the base-two logarithm of theε-covering number.
These quantities are useful values in characterizing learning (Kulkarni,1989; Williamson et al.,
2001; Lin, 2004; von Luxburg and Bousquet, 2004; Steinwart, 2005;Bartlett et al., 2006). Kol-
mogorov and Tihomirov (1961), Dudley (1974, 1979), and others provide ε-entropy calculations
for various classes of functions and various classes of sets, but the particular class we are consid-
ering, signed distance functions with a constraint on the surface area ofthe zero level set, does
not appear in the literature. The second and third examples in Section 2 of Kolmogorov and Ti-
homirov (1961) are related, and the general approach we take for obtaining theε-entropy of level
set classifiers is similar to those two examples.

In classification, it is always possible to scale and shift the data and this is often done in practice.
Without losing much generality and dispensing with some bothersome bookkeeping, we consider
signed distance functions defined on the unit hypercube, that isΩ = [0,1]D, and we employ the
uniform orL∞ metric,ρ∞(ϕ1,ϕ2) = supx∈Ω |ϕ1(x)−ϕ2(x)|. We denote the set of all signed distance
functions whose zero level set has surface area less thansbyFs, its ε-covering number with respect
to the uniform metric asNρ∞,ε(Fs), and itsε-entropy asHρ∞,ε(Fs). We begin with theD = 1 case
and then come to generalD.

Figure 6a shows a signed distance function over the unit interval. Due to the‖∇ϕ‖ = 1 con-
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Figure 6: AD = 1-dimensional signed distance function inΩ = [0,1] is shown in (a), marked with
its zero level set. Theε-corridor with ε = 1

12 that contains the signed distance function
is shown in (b), shaded in gray. Theε-corridor of (b), whose center line has three zero
crossings is shown in (c), again shaded in gray, along with anε-corridor whose center
line has two zero crossings, shaded in green with stripes, and anε-corridor whose center
line has one zero crossing, shaded in red with dots.

straint, its slope is either+1 or−1 almost everywhere. The slope changes sign exactly once between
two consecutive points in the zero level set. The signed distance function takes values in the range
between positive and negative one.3 In theD = 1 context, by surface area we mean the number of
points in the zero level set, for example three in Figure 6a.

In findingHρ∞,ε(Fs), we will use sets known asε-corridors, which are particular balls of radius
ε measured usingρ∞ in the space of signed distance functions. We use the terminology of Kol-
mogorov and Tihomirov (or translator Hewitt), but our definition is slightly different than theirs. An
ε-corridor is a strip of height 2ε for all x. Let us defineν = ⌈ε−1⌉. At x = 0, the bottom and top of
a corridor are at 2jε and 2( j +1)ε respectively for some integerj, where−ν ≤ 2 j < ν. The slope
of the corridor is either+1 or −1 for all x and the slope can only change at values ofx that are
multiples ofε. Additionally, the center line of theε-corridor is a signed distance function, changing
slope halfway between consecutive points in its zero level set and only there. Theε-corridor in
which the signed distance function of Figure 6a falls is indicated in Figure 6b.Otherε-corridors are
shown in Figure 6c.

By construction, each signed distance function is a member of exactly oneε-corridor. This is
because since atx = 0 the bottom and top ofε-corridors are at consecutive integer multiples of 2ε
and since the center line of the corridor is a signed distance function, eachsigned distance function
starts in oneε-corridor atx = 0 and does not escape from it in the interval(0,1]. Also, anε-corridor
whose center line hass points in its zero level set contains only signed distance functions with at
leastspoints in their zero level sets.

3. There are several ways to define the signed distance function in the degenerate cases (R = Ω, R c = /0) and (R = /0,
R c = Ω), including the assignments−∞ and+∞, or −1 and+1 (Delfour and Zoĺesio, 2001). For our purposes, it
suffices to say that we have chosen a unique function for theR = Ω case and a unique function for theR c = Ω case.
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Theorem 1 Theε-entropy of the set of signed distance functions defined overΩ = [0,1] with zero
level set having less than s points is:

Hρ∞,ε(Fs) = log2

(

s

∑
k=1

(
⌈

ε−1
⌉

−1
k−1

)

)

+1.

Proof Sinceε-corridors only change slope at multiples ofε, we can divide the abscissa intoν pieces.
(Each piece has widthε except the last one ifε−1 is not an integer.) In each of theν subintervals, the
center line of a corridor is either wholly positive or wholly negative. Enumerating the full set ofε-
corridors is equivalent to enumerating binary strings of lengthν. Thus, without a constraints, there
are 2ν ε-corridors. Since, by construction,ε-corridors tile the space of signed distance functions,
Nρ∞,ε(F ) = 2ν.

With thes constraint onε-corridors, the enumeration is equivalent to twice the number of com-
positions of the positive integerν by a sum ofs or less positive integers. Twice because for every
composition, there is one version in which the first subinterval of the corridor center is positive and
one version in which it is negative. As an example, the red corridor in Figure 6c can be composed
with two positive integers (5+7), the green corridor by three (7+4+1), and the gray corridor by
four (1+ 4+ 4+ 3). The number of compositions ofν by k positive integers is

(ν−1
k−1

)

. Note that
the zero-crossings are unordered for this enumeration and that the setFs includes all of the signed
distance functions with surface area smaller thansas well. Therefore:

Nρ∞,ε(Fs) = 2
s

∑
k=1

(

ν−1
k−1

)

.

The result then follows becauseHρ∞,ε(Fs) = log2Nρ∞,ε(Fs).

The combinatorial formula in Theorem 1 is difficult to work with, so we give a highly accurate
approximation.

Theorem 2 Theε-entropy of the set of signed distance functions defined overΩ = [0,1] with zero
level set having less than s points is:

Hρ∞,ε(Fs) ≈
⌈

ε−1⌉+ log2 Φ

(

2s−
⌈

ε−1
⌉

√

⌈ε−1⌉−1

)

,

whereΦ is the standard Gaussian cumulative distribution function (cdf).

Proof Note that for a binomial random variableZ with (ν− 1) Bernoulli trials having success
probability 1

2:

Pr[Z < z] = 2−ν ·2
z

∑
k=1

(

ν−1
k−1

)

,

and thatNρ∞,ε(Fs) = 2ν Pr[Z < s]. The result follows from the de Moivre-Laplace theorem and
continuity correction, which are used to approximate the binomial distribution withthe Gaussian
distribution.
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The central limit theorem tells us that the approximation works well when the Bernoulli suc-
cess probability is one half, which it is in our case, and when the number of trials is large, which
corresponds to smallε. The continuous approximation is better in the middle of the domain, when
s≈ ν/2, than in the tails. However, in the tails, the calculation of the exact expression in Theorem 1
is tractable. SinceΦ is a cdf taking values in the range zero to one, log2 Φ is nonpositive. The
surface area constraint only serves to reduce theε-entropy.

Theε-entropy calculation in Theorem 1 and Theorem 2 is for theD = 1 case. We now discuss
the case with generalD. Recall thatΩ = [0,1]D. Once again, we constructε-corridors that tile the
space of signed distance functions. In the one-dimensional case, the ultimate object of interest for
enumeration is a string of lengthν with binary labels. In the two-dimensional case, the correspond-
ing object is aν-by-ν grid of ε-by-ε squares with binary labels, and in general aD-dimensional
Cartesian grid of hypercubes of volumeεD, ν on each side. The surface area of the zero level set
is the number of interior faces in the Cartesian grid whose adjoiningεD hypercubes have different
binary labels.

Theorem 3 Theε-entropy of the set of signed distance functions defined overΩ = [0,1]D with zero
level set having surface area less than s is:

Hρ∞,ε(Fs) ≈
⌈

ε−1⌉D
+ log2 Φ





2s−D
(⌈

ε−1
⌉

−1
)⌈

ε−1
⌉D−1−1

√

D(⌈ε−1⌉−1)⌈ε−1⌉D−1



 ,

whereΦ is the standard Gaussian cdf.

Proof In the one-dimensional case, it is easy to see that the number of segments isν and the number
of interior faces isν−1. For a generalD-dimensional Cartesian grid withν hypercubes on each
side, the number of hypercubes isνD and the number of interior faces isD(ν−1)νD−1. The result
follows by substitutingνD for ν andD(ν−1)νD−1 for ν−1 in Theorem 2.

Theorem 2 is a special case of Theorem 3 withD = 1. It is common to find the dimension of
the spaceD in the exponent ofε−1 in ε-entropy calculations as we do here.

Theε-entropy calculation for level set classifiers given here enables us to analytically character-
ize their consistency properties as the size of the training set goes to infinity inSection 3.2 through
ε-entropy-based classifier consistency results. The calculation also enables us to characterize the
Rademacher complexity of level set classifiers in Section 3.3 throughε-entropy-based complexity
results.

3.2 Consistency

In the binary classification problem, with training set of sizen drawn frompX,Y(x,y), a consistent
classifier is one whose probability of error converges in the limit asn goes to infinity to the probabil-
ity of error of the Bayes optimal decision rule. The optimal decision rule to minimizethe probability
of error isŷ∗(x) = sign(pY|X(Y = 1|X = x)− 1

2). Introducing notation, let the probability of error
achieved by this decision rule beR∗. Also denote the probability of error of a level set classifier
sign(ϕ(n)) learned from a training set of sizen asR(sign(ϕ(n))). For consistency, it is required that
R(sign(ϕ(n)))−R∗ converge in probability to zero.
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The learned classifier sign(ϕ(n)) minimizes the energy functional (7), and consequently the prop-
erties ofR(sign(ϕ(n))) are affected by both the margin-based loss function L and by the regulariza-
tion term. Lin (2004), Steinwart (2005), and Bartlett et al. (2006) have given conditions on the
loss function necessary for a margin-based classifier to be consistent. Common margin-based loss
functions including the logistic loss and exponential loss meet the conditions. Lin calls a loss func-
tion that meets the necessary conditionsFisher-consistent. Fisher consistency of the loss function
is not enough, however, to imply consistency of the classifier overall. Theregularization term must
also be analyzed; since the regularization term based on surface area we introduce is new, so is the
following analysis.

Concentrating on the surface area regularization, we adapt Theorem 4.1 of Lin, which is based
on ε-entropy. The analysis is based on the method of sieves, where sievesFn are an increasing
sequence of subspaces of a function spaceF . In our case,F is the set of signed distance functions
on Ω and the sieves,Fs(n), are subsets of signed distance functions whose zero level sets have
surface area less thans(n), that is

H

ϕ=0ds< s(n). Such a constraint is related to the regularization
expression E(ϕ) given in (7) through the method of Lagrange multipliers, withλ inversely related
to s(n). In the following, the functions(n) is increasing inn and thus the conclusions of the theorem
provide asymptotic results on consistency as the strength of the regularization term decreases as
more training samples are made available. The sieve estimate is:

ϕ(n) = arg min
ϕ∈Fs(n)

n

∑
i=1

L(yiϕ(xi)). (9)

Having foundHρ∞,ε(Fs) in Section 3.1, we can apply Theorem 4.1 of Lin (2004), yielding the
following theorem.

Theorem 4 Let L be a Fisher-consistent loss function in (9); letϕ̃ = argminϕ∈F E[L(Yϕ(X))],
whereF is the space of signed distance functions on[0,1]D; and letFs(n) be a sequence of sieves.
Then for sieve estimateϕ(n), we have4

R(sign(ϕ(n)))−R∗ = OP

(

max

{

n−τ, inf
ϕ∈Fs(n)

Z

(ϕ(x)− ϕ̃(x))2pX(x)dx
})

,

where

τ =











1
3, D = 1
1
4 −

log logn
2logn , D = 2

1
2D , D ≥ 3

.

Proof The result is a direct application of Theorem 4.1 of Lin (2004), which is in turn an appli-
cation of Theorem 1 of Shen and Wong (1994). In order to apply this theorem, we need to note
two things. First, that signed distance functions on[0,1]D are bounded (by a value of 1) in theL∞
norm. Second, that there exists anA such thatHρ∞,ε(Fs) ≤ Aε−D. Based on Theorem 3, we see
thatHρ∞,ε(Fs) ≤ νD because the logarithm of the cdf is nonpositive. Sinceν = ⌈ε−1⌉, if ε−1 is an
integer, thenHρ∞,ε(Fs) ≤ ε−D and otherwise there exists anA such thatHρ∞,ε(Fs) ≤ Aε−D.

4. The notationZn = OP(ζn) means that the random variableZn is bounded in probability at the rateζn (van der Vaart,
1998).
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Clearlyn−τ goes to zero asn goes to infinity. Also, infϕ∈Fs(n)

R

(ϕ(x)− ϕ̃(x))2pX(x)dx goes to

zero whens(n) is large enough so that the surface area constraint is no longer applicable.5 Thus,
level set classifiers are consistent.

3.3 Rademacher Complexity

The principal idea of the structural risk minimization principle is that the generalization error is
the sum of an empirical risk term and a capacity term (Vapnik, 1995). The two terms should be
sensibly balanced in order to achieve low generalization error. Here, weuse theε-entropy of signed
distance functions constrained in decision boundary surface area to characterize the capacity term.
In particular, we look at the Rademacher complexity ofFs as a function ofs (Koltchinskii, 2001;
Bartlett and Mendelson, 2002).

The Rademacher average of a classF , denotedR̂n(F ), satisfies (von Luxburg and Bousquet,
2004):

R̂n(F ) ≤ 2ε+
4
√

2√
n

Z ∞

ε
4

√

Hρ2,n,ε′(F )dε′,

whereρ2,n(ϕ1,ϕ2) =
√

1
n ∑n

i=1(ϕ1(xi)−ϕ2(xi))2 is the empiricalℓ2 metric. We foundHρ∞,ε(Fs) for

signed distance functions with surface area less thans in Section 3.1, andHρ2,n,ε(F ) ≤ Hρ∞,ε(F ).
Thus, we can characterize the complexity of level set classifiers via the Rademacher capacity term
(von Luxburg and Bousquet, 2004):

CRad(Fs,n) = 2ε+
4
√

2√
n

Z ∞

ε
4

√

Hρ∞,ε′(F )dε′. (10)

With Ω = [0,1]D, the upper limit of the integral in (10) is one rather than infinity becauseε cannot
be greater than one.

In Figure 7, we plotCRad as a function ofs for three values ofD, and fixedε andn. Having a
fixedε models the discretized grid implementation of level set methods. As the value ofs increases,
decision boundaries with more area are available. Decision boundaries withlarge surface area are
more complex than smoother decision boundaries with small surface area. Hence the complexity
term increases as a function ofs. We have also empirically found the same relationship between
the VC dimension and the surface area penalty (Varshney and Willsky, 2008). Consequently, the
surface area penalty can be used to control the complexity of the classifier, and prevent underfitting
and overfitting. The Rademacher capacity term may be used in setting the regularization parameter
λ.

4. Multicategory Geometric Level Set Classification

Thus far, we have considered binary classification. In this section, we extend level set classification
to the multicategory case withM > 2 classes labeledy ∈ {1, . . . ,M}. We represent the decision
boundaries usingm = ⌈log2M⌉ signed distance functions{ϕ1(x), . . . ,ϕm(x)}. Using such a set
of level set functions we can represent 2m regions{R1,R2, . . . ,R2m} through a binary encoding

5. For a givenε, there is a maximum possible surface area; the constraint is no longer applicable when the constraint is
larger than this maximum possible surface area. Also note thatsandλ are inversely related.
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Figure 7: The Rademacher capacity term (10) as a function ofs for signed distance functions on
Ω = [0,1]D with surface area less thans with (a) D = 2, (b) D = 3, and (c)D = 4. The
values ofε andn are fixed at 0.01 and 1000 respectively.

(Vese and Chan, 2002). Thus, forx ∈ R1, (ϕ1(x) < 0)∧ ·· · ∧ (ϕm(x) < 0); for x ∈ R2, (ϕ1(x) <
0)∧·· ·∧ (ϕm−1(x) < 0)∧ (ϕm > 0); and forx ∈ R2m, (ϕ1(x) > 0)∧·· ·∧ (ϕm(x) > 0).

This binary encoding specifies the regions, but in order to apply margin-based loss functions,
we also need a value for margin. In binary classification, the special encoding y ∈ {−1,+1} al-
lows yϕ(x) to be the argument to the loss function. For multicategory classification, the argu-
ment to the loss function is through functionsψy(x), which are also specified through a binary en-
coding: ψ1(x) = max{+ϕ1(x), . . . ,+ϕm(x)}, ψ2(x) = max{+ϕ1(x), . . . ,+ϕm−1(x),−ϕm(x)}, and
ψ2m(x) = max{−ϕ1(x), . . . ,−ϕm(x)}. Then, theM-ary level set classification energy functional we
propose is

E(ϕ1, . . . ,ϕm) =
n

∑
i=1

L(ψyi (xi))+
λ
m

m

∑
j=1

I

ϕ j=0

ds. (11)

The same margin-based loss functions used in the binary case, such as thehinge and logistic loss
functions, may be used in the multicategory case (Zou et al., 2006, 2008). The regularization term
included in (11) is the sum of the surface areas of the zero level sets of the m signed distance
functions.

The gradient descent flows for themsigned distance functions are

∂ϕ1(x)

∂t

∣

∣

∣

∣

x=xi

=

{

L(ψyi (xi))∇ϕ1(xi)− λ
m∇2ϕ1(xi)∇ϕ1(xi), ϕ1(xi) < 0

−L(ψyi (xi))∇ϕ1(xi)− λ
m∇2ϕ1(xi)∇ϕ1(xi), ϕ1(xi) > 0

...

∂ϕm(x)

∂t

∣

∣

∣

∣

x=xi

=

{

L(ψyi (xi))∇ϕm(xi)− λ
m∇2ϕm(xi)∇ϕm(xi), ϕm(xi) < 0

−L(ψyi (xi))∇ϕm(xi)− λ
m∇2ϕm(xi)∇ϕm(xi), ϕm(xi) > 0

.

In the caseM = 2 andm= 1, the energy functional and gradient flow revert back to binary levelset
classification described in Section 2.

The proposed multicategory classifier is different from the commonly used technique known as
one-against-all (Hsu and Lin, 2002), which constructs anM-ary classifier fromM binary classifiers,
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both because it treats allM classes simultaneously in the objective and because the decision regions
are represented by a logarithmic rather than linear number of decision functions. Zou et al. (2006)
also treat allM classes simultaneously in the objective, but their multicategory kernel machines use
M decision functions. In fact, to the best of our knowledge, there is noM-ary classifier represen-
tation in the literature using as few as⌈log2M⌉ decision functions. Methods that combine binary
classifier outputs using error-correcting codes make use of a logarithmic number of binary classi-
fiers with a larger multiplicative constant, such as⌈10logM⌉ or ⌈15logM⌉ (Rifkin and Klautau,
2004; Allwein et al., 2000).

We give an example showing multicategory level set classification withM = 4 andD = 2. The
data set has 250 points for each of the four class labelsyi = 1, yi = 2, yi = 3, andyi = 4. The
classes are not perfectly separable by simple boundaries. With four classes, we usem= 2 signed
distance functions. Figure 8 shows the evolution of the two contours, the magenta and cyan curves.
The final decision region for classy = 1 is the portion inside both the magenta and cyan curves,
and coincides with the training examples with class label 1. The final decision region for class 2 is
the region inside the magenta curve but outside the cyan curve, the final decision region for class
3 is the region inside the cyan curve, but outside the magenta curve, and thefinal decision region
for class 4 is outside both curves. The final decision boundaries are fairly smooth and partition the
space with small training error.

5. Implementation and Classification Results

In this section, we describe how to implement geometric level set classification practically using
RBFs and give classification performance results when applied to several real binary and multicat-
egory data sets.

5.1 Radial Basis Function Level Set Method

There have been many developments in level set methods since the original work of Osher and
Sethian (1988). One development in particular is to represent the level set function by a superposi-
tion of RBFs instead of on a grid (Cecil et al., 2004; Slabaugh et al., 2007;Gelas et al., 2007). Grid-
based representation of the level set function is not amenable to classification in high-dimensional
input spaces because the memory and computational requirements are exponential in the dimension
of the input space. A nonparametric RBF representation, however, is tractable for classification.
The RBF level set method we use to minimize the energy functionals (7) and (11) for binary and
multicategory margin-based classification is most similar to that described by Gelas et al. (2007) for
image processing.

The starting point of the RBF level set approach is describing the level set functionϕ(x) via a
strictly positive definite6 RBF K(·) as follows:

ϕ(x) =
n

∑
i=1

αi K (‖x−xi‖) . (12)

The zero level set ofϕ defined in this way is the contourC. For the classification problem, we take
the centersxi to be the data vectors of the training set. Then, constructing ann×n matrix H with

6. A more complete discussion including conditionally positive definite RBFs would add a polynomial term to (12), to
span the null space of the RBF (Wendland, 2005).
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Figure 8: Curve evolution iterations withλ = 0.5 for multicategory classification proceeding in
raster scan order. The red× markers indicate class label 1, the black+ markers indicate
class label 2, the blue△ markers indicate class label 3, and the yellow▽ markers indicate
class label 4. The magenta and cyan lines are the zero level sets of them = 2 signed
distance functions and together make up the decision boundary.
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elements{H}i j = K (‖xi −x j‖), and lettingααα be the vector of coefficients in (12), we have:







ϕ(x1)
...

ϕ(xn)






= Hααα.

To minimize an energy functional ofC, the level set optimization is over the coefficientsααα with
H fixed. In order to perform contour evolution with the RBF representation,a time parametert is
introduced like in Section 2, giving:

H
dααα
dt

=











∂ϕ(x)
∂t

∣

∣

∣

x=x1
...

∂ϕ(x)
∂t

∣

∣

∣

x=xn











. (13)

For the binary margin-based classification problem with surface area regularization that we are inter-
ested in solving, we substitute the gradient flow (8) into the right side of (13). For the multicategory
classification problem, we havem level set functions as discussed in Section 4 and each one has a
gradient flow to be substituted into an expression like (13).

The iteration for the contour evolution is then:

ααα(k+1) = ααα(k)− τH−1











∂ϕ(k)(x)
∂t

∣

∣

∣

x=x1
...

∂ϕ(k)(x)
∂t

∣

∣

∣

x=xn











, (14)

whereτ is a small step size andϕ(k) comes fromααα(k). We normalizeααα according to theℓ1-norm
after every iteration.

The RBF-represented level set function is not a signed distance function. However, as discussed
by Gelas et al. (2007), normalizing the coefficient vectorααα with respect to theℓ1-norm after every it-
eration of (14) has a similar effect as reinitializing the level set function as asigned distance function.
The Lipschitz constant of the level set function is constrained by this normalization. The analysis
of Section 3 applies with minor modification for level set functions with a given Lipschitz constant
and surface area constraint. The RBF level set approach is similar to kernel machines with the RBF
kernel in the sense that the decision function is represented by a linear combination of RBFs. How-
ever, kernel methods in the literature minimize a reproducing kernel Hilbert space squared norm
for regularization, whereas the geometric level set classifier minimizes decision boundary surface
area for regularization. The regularization term and consequently inductive bias of the geometric
level set classifier is new and different compared to existing kernel methods. The solution decision
boundary is the zero level set of a function of the form given in (12). Of course this representation
does not capture all possible functions, but, given that we use a numberof RBFs equal to the num-
ber of training examples, the granularity of this representation is well-matchedto the data. This is
similar to the situation found in other contexts such as kernel machines using RBFs.

We initialize the decision boundary withααα = n(H−1y)/‖H−1y‖1, wherey is a vector of then
class labels in the training set. Figure 9 shows this initialization and following RBF-implemented
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Figure 9: Curve evolution iterations with RBF implementation andλ = 0.5 for example training set
proceeding in raster scan order. The magenta× markers indicate class label−1 and the
black+ markers indicate class label+1. The blue line is the decision boundary.

contour evolution on the elliptically-separable data set presented in Section 2. The initial decision
boundary is tortuous. It is smoothed out by the surface area penalty during the course of the contour
evolution, thereby improving the generalization of the learned classifier as desired. To initialize the
m vectorsααα in M category classification, we usem lengthn vectors of positive and negative ones
constructed from the binary encoding instead ofy.

5.2 Classification Results

We give classifier performance results on benchmark data sets from the UCI Machine Learning
Repository (Asuncion and Newman, 2007) for geometric level set classification and compare them
to the performance of several other classifiers, concluding that level set classification is a compet-
itive technique. We present the tenfold cross-validation classification error performance with RBF
level set implementation on four binary data sets: Pima Indians Diabetes (n = 768,D = 8), Wis-
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Figure 10: Tenfold cross-validation training error (blue line with triangle markers) and test error
(red line with circle markers) for the (a) Pima, and (b) WDBC data sets as a function of
the regularization parameterλ on a logarithmic scale.

consin Diagnostic Breast Cancer (n = 569,D = 30), BUPA Liver Disorders (n = 345,D = 6) and
Johns Hopkins University Ionosphere (n = 351,D = 34), and four multicategory data sets: Wine
Recognition (n= 178,M = 3, D = 13), Iris (n= 150,M = 3, D = 4), Glass Identification (n= 214,
M = 6, D = 9), and Image Segmentation (n = 2310,M = 7, D = 19). For the binary data sets, there
is m= 1 level set function, for the wine and iris data setsm= 2 level set functions, and for the glass
and segmentation data setsm= 3 level set functions.

We shift and scale the data so that each of the input dimensions has zero mean and unit variance,
use the RBF K(‖x− xi‖) = e−‖x−xi‖2

, the logistic loss function,τ = 1/m, and the initialization
ααα = n(H−1y)/‖H−1y‖1. First, we look at classification error as a function ofλ. Figure 10 shows
the tenfold cross-validation training and test errors for the Pima and WDBC data sets; other data
sets yield similar plots. The plots show evidence of the structural risk minimization principle and
complexity analysis given in Section 3.3. For smallλ (corresponding to large surface area constraint
s), the model class is too complex and we see that although the training error is zero, the test error
is not minimal due to overfitting. For largeλ, the model class is not complex enough; the training
error is large and the test error is not minimal due to underfitting. There is anintermediate value of
λ that achieves the minimal test error. However, we notice that the test erroris fairly insensitive to
the value ofλ. The test error does not change much over the plotted range.

In Table 1, we report the tenfold cross-validation test error (as a percentage) on the eight data
sets and compare the performance to nine other classifiers.7 On each of the ten folds, we setλ using
cross-validation. Specifically, we perform fivefold cross-validation onthe nine tenths of the full data
set that is the training data for that fold. We select theλ from the set of values{0.2,0.4,0.8,1.6,3.2}
that minimizes the fivefold cross-validation test error. The performance results of the nine other

7. For lower-dimensional data sets (up to aboutD = 12), it is possible to use optimal dyadic decision trees (Scott and
Nowak, 2006; Blanchard et al., 2007). We found that the results usingsuch trees are not significantly better than
those obtained using the C4.4 and C4.5 decision trees (which could be applied to all of the data sets without concern
for dimensionality).
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Data Set(M,D) NB BN kNN C4.4 C4.5 NBT SVM RBN LLS GLS

Pima(2,8) 23.69 25.64 27.86 27.33 26.17 25.64 22.66 24.60 29.94 25.94
WDBC (2,30) 7.02 4.92 3.68 7.20 6.85 7.21 2.28 5.79 6.50 4.04
Liver (2,6) 44.61 43.75 41.75 31.01 31.29 33.87 41.72 35.65 37.39 37.61
Ionos.(2,34) 17.38 10.54 17.38 8.54 8.54 10.27 11.40 7.38 13.11 13.67

Wine (3,13) 3.37 1.11 5.00 6.14 6.14 3.37 1.67 1.70 5.03 3.92
Iris (3,4) 4.00 7.33 4.67 4.00 4.00 6.00 4.00 4.67 3.33 6.00
Glass(6,9) 50.52 25.24 29.89 33.68 34.13 24.78 42.49 34.50 38.77 36.95
Segm.(7,19) 18.93 9.60 5.20 4.27 4.27 5.67 8.07 13.07 14.40 4.03

Table 1: Tenfold cross-validation error percentage of geometric level set classifier (GLS) with RBF
level set implementation on several data sets compared to error percentagesof various
other classifiers reported in Cai and Sowmya (2007). The other classifiers are: näıve Bayes
classifier (NB), Bayes net classifier (BN),k-nearest neighbor with inverse distance weight-
ing (kNN), C4.4 decision tree (C4.4), C4.5 decision tree (C4.5), naı̈ve Bayes tree classifier
(NBT), SVM with polynomial kernel (SVM), radial basis function network(RBN), and
learning level set classifier (LLS) of Cai and Sowmya (2007).

classifiers are as given by Cai and Sowmya (2007), who report the same tenfold cross-validation
test error that we do for the geometric level set classifier. Details about parameter settings for the
other nine classifiers may be found in Cai and Sowmya (2007).

The geometric level set classifier outperforms each of the other classifiers at least once among
the four binary data sets, and is generally competitive overall. Level set classification is also com-
petitive on the multicategory data sets. In fact, it gives the smallest error among all of the classifiers
on the segmentation data set. The proposed classifier is competitive for data sets of both small and
large dimensionalityD; there is no apparent relationship betweenD and the performance of the
geometric level set classifier in comparison to other methods.

6. Conclusion

Level set methods are powerful computational techniques that have notyet been widely adopted
in machine learning. Our main goal with this contribution is to open a conduit between the appli-
cation area of learning and the computational technique of level set methods. Towards that end,
we have developed a nonlinear, nonparametric classifier based on levelset methods that minimizes
margin-based empirical risk in both the binary and multicategory cases, and isregularized by a geo-
metric complexity penalty novel to classification. This approach is an alternative to kernel machines
for learning nonlinear decision boundaries in the input space and is in someways a more natural
generalization of linear methods.

The variational level set formulation is flexible in allowing the inclusion of various geometric
priors defined in the input space. The surface area regularization termis one such example, but oth-
ers may also be included. Another example is an energy functional that measures feature relevance
using the partial derivative of the signed distance function (Domeniconi et al., 2005), and can be
used forℓ1-regularized feature subset selection as discussed in Varshney and Willsky (2008).
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We have provided an analysis of the classifier by characterizing itsε-entropy. This characteri-
zation leads to results on consistency and complexity. We have described a multicategory level set
classification procedure with a logarithmic number of decision functions, rather than the linear num-
ber that is typical in classification and decision making, through a binary encoding made possible
by the level set representation.

It is a known fact that with finite training data, no one classification method is best for all data
sets. Performance of classifiers may vary quite a bit depending on the datacharacteristics because
of differing inductive biases. The classifier presented in this paper provides a new option when
choosing a classifier. The results on standard data sets indicate that the level set classifier is com-
petitive with other state-of-the-art classifiers. It would be interesting to systematically find domains
in the space of data set characteristics for which the geometric level set classifier outperforms other
classifiers (Ho and Basu, 2002).
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