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Abstract

With the goal to generate more scalable algorithms with dviglfficiency and fewer open parame-
ters, reinforcement learning (RL) has recently moved td@@ombining classical techniques from
optimal control and dynamic programming with modern leagriechniques from statistical esti-
mation theory. In this vein, this paper suggests to use tradwork of stochastic optimal control
with path integrals to derive a novel approach to RL with paeterized policies. While solidly
grounded in value function estimation and optimal contesdd on the stochastic Hamilton-Jacobi-
Bellman (HJB) equations, policy improvements can be tiemnséd into an approximation problem
of a path integral which has no open algorithmic parametérsrdhan the exploration noise. The
resulting algorithm can be conceived of as model-basedi-s®del-based, or even model free,
depending on how the learning problem is structured. Theigpdquations have no danger of
numerical instabilities as neither matrix inversions noadient learning rates are required. Our
new algorithm demonstrates interesting similarities vgtbvious RL research in the framework
of probability matching and provides intuition why the $lity heuristically motivated probability
matching approach can actually perform well. Empiricalleaions demonstrate significant per-
formance improvements over gradient-based policy legraimd scalability to high-dimensional
control problems. Finally, a learning experiment on a sated 12 degree-of-freedom robot dog
illustrates the functionality of our algorithm in a complebot learning scenario. We believe that
Policy | mprovement withPath I ntegrals P12) offers currently one of the most efficient, numeri-
cally robust, and easy to implement algorithms for RL basettajectory roll-outs.

Keywords: stochastic optimal control, reinforcement learning, peaterized policies

1. Introduction

While reinforcement learning (RL) is among the most general framewdtkgaming control to cre-
ate truly autonomous learning systems, its scalability to high-dimensional consirstate-action
systems, for example, humanoid robots, remains problematic. Classicafuatit®n based meth-
ods with function approximation offer one possible approach, but fumegiproximation under the
non-stationary iterative learning process of the value-function reméficuti when one exceeds
about 5-10 dimensions. Alternatively, direct policy learning from trajgctoll-outs has recently
made significant progress (Peters, 2007), but can still become nutiyebidtle and full of open
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tuning parameters in complex learning problems. In new developments, 8drceers have started
to combine the well-developed methods from statistical learning and empirieativde with clas-
sical RL approaches in order to minimize tuning parameters and numeritépra such that ulti-
mately more efficient algorithms can be developed that scale to significantlycoimmgex learning
system (Dayan and Hinton, 1997; Koeber and Peters, 2008; Pet&iScaiaal, 2008c; Toussaint
and Storkey, 2006; Ghavamzadeh and Yaakov, 2007; Deisenrokh 20@9; Vlassis et al., 2009;
Jetchev and Toussaint, 2009).

In the spirit of these latter ideas, this paper addresses a hew methoabijliiic reinforce-
ment learning derived from the framework of stochastic optimal contmpaith integrals, based on
the original work of Kappen (2007) and Broek et al. (2008). As wilkdegailed in the sections be-
low, this approach makes an appealing theoretical connection betweerfuadtion approximation
using the stochastic HIB equations and direct policy learning by approxgrapath integral, that
is, by solving a statistical inference problem from sample roll-outs. Thdtieg algorithm, called
Policy Improvement withPath I ntegrals PI?), takes on a surprisingly simple form, has no open
algorithmic tuning parameters besides the exploration noise, and it has nallgenbust perfor-
mance in high dimensional learning problems. It also makes an interestingatmmto previous
work on RL based on probability matching (Dayan and Hinton, 1997; PatetsSchaal, 2008c;
Koeber and Peters, 2008) and motivates why probability matching algoritamisecsuccessful.

This paper is structured into several major sections:

e Section 2 addresses the theoretical development of stochastic optimall auititrpath in-
tegrals. This is a fairly theoretical section. For a quick reading, we waddmmend Sec-
tion 2.1 for our basic notation, and Table 1 for the final results. Exposiagdahder to a
sketch of the details of the derivations opens the possibility to derive patrahteptimal
control solutions for other dynamical systems than the one we addresstiorS2.1.

The main steps of the theoretical development include:
— Problem formulation of stochastic optimal control with the stochastic Hamiltoobdac
Bellman (HJB) equation
— The transformation of the HJIB into a linear PDE

— The generalized path integral formulation for control systems with contralhedun-
controlled differential equations

— General derivation of optimal controls for the path integral formalism
— Path integral optimal control applied to special cases of control systems
e Section 3 relates path integral optimal control to reinforcement learningr&emain issues
are addressed:
— Reinforcement learning with parameterized policies

— Dynamic Movement Primitives (DMP) as a special case of parameterizedgsolic
which matches the problem formulation of path integral optimal control.

— Derivation ofPolicy | mprovement wittPath I ntegrals P12), which is an application of
path integral optimal control to DMPs.

e Section 4 discusses related work.
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e Section 5 illustrates several applicationdf to control problems in robotics.

e Section 6 addresses several important issues and characteristicsvithA!2.

2. Stochastic Optimal Control with Path Integrals

The goal in stochastic optimal control framework is to control a stochastiardical system while
minimizing a performance criterion. Therefore, stochastic optimal controbeaghought as a con-
strained optimization problem in which the constrains corresponds to stmotiasamical systems.
The analysis and derivations of stochastic optimal control and path ifgégthe next sections rely
on the Bellman Principle of optimality (Bellman and Kalaba, 1964) and the HIBiequa

2.1 Stochastic Optimal Control Definition and Notation

For our technical developments, we will use largely a control theoretidiontrom trajectory-
based optimal control, however, with an attempt to have as much overlapsablpowith the
standard RL notation (Sutton and Barto, 1998). Let us define a finitedmodast function for a
trajectoryt; (which can also be a piece of a trajectory) starting at tinve statex; and ending at
time! ty

N
R(Ti) =@y +[ ry dt, (1)

with @, = ¢@(%, ) denoting a terminal reward at tintg andr; denoting the immediate cost at time
t. In stochastic optimal control (Stengel, 1994), the goal is to find the dsniythat minimize the
value function:

V(%) =W, = minEg, [R(Ti)] ) 2)

Uti:ty

where the expectatiokr,|.] is taken over all trajectories starting xaf. We consider the rather
general class of control systems:

Xt = f(Xe,t) + G(Xt) (U + &) = f + Gt (Ug + &), 3)

with x; € 0"! denoting the state of the syste@, = G(x;) € 0"™P the control matrixf, = f(x;) €
0" the passive dynamics; € [P*! the control vector and, € OP*! Gaussian noise with vari-
anceXg. As immediate cost we consider

1
rt:r(xbutat):qt"'éu;rRut» (4)

whereq: = q(xt,t) is an arbitrary state-dependent cost function, Brid the positive semi-definite
weight matrix of the quadratic control cost. The stochastic HIB equationd&ite1994; Fleming
and Soner, 2006) associated with this stochastic optimal control probleprisssed as follows:

. 1
—0M, = min <rt + (O TR+ 2trace((DXXVt)GtZthT)> , (5)

1. If we need to emphasize a particular time, we denote it bwhich also simplifies a transition to discrete time
notation later. We usewithout subscript when no emphasis is needed when this “time slice” a¢gdor the start
of a trajectory, and for the end of a trajectory.
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whereF; is defined ad; = f(x,t) + G(x;)u;. To find the minimum, the cost function (4) is
inserted into (5) and the gradient of the expression inside the parenithéslien with respect to
controlsu and set to zero. The corresponding optimal control is given by thetiequa

ux) = U = —R 1G] (O ).

Substitution of the optimal control above, into the stochastic HIB (5), resutkeifollowing
nonlinear and second order Partial Differential Equation (PDE):

1 1
—&w:q+ﬂ&%fﬁ—ijfGR4GHQWHGwmq¢MWBJdﬂ)

The Oy andOyx symbols refer to the Jacobian and Hessian, respectively, of the valatdiu
with respect to the state, while 0; is the partial derivative with respect to time. For notational
compactness, we will mostly use subscripted symbols to denote time and statelelepes, as
introduced in the equations above.

2.2 Transformation of HIB into a Linear PDE

In order to find a solution to the PDE above, we use a exponential tramsfion of the value
function:

V; = —AlogW:.

Given this logarithmic transformation, the partial derivatives of the valaetfan with respect to
time and state are expressed as follows:

1
Vi = —A-—3 W
at 1 Lpta'[ ty

1
OV = —A— D W
XVt LPtXtv

1 T 1
Dxx\/t :A@Dth DXth —}\atljqu}t.
Inserting the logarithmic transformation and the derivatives of the valugibmwe obtain:

A A T A2 T p-1~T 1
qatwt:qt_q(mxwt) ft—zTJtz(DxLPt) GiR G, (wat)+§trace(r), (6)

where the ternfi is expressed as:
1 o1 T
The trace of is therefore:

1 1
trace(l) = )\@trace(DxtlJtT GiZeGi OxWy) — )\atrace(DXXLPthZthT) . (7)
t
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Comparing the underlined terms in (6) and (7), one can recognize thattdress will cancel
under the assumption aR~1 = ¢, which implies the simplification:

AGRIG] = GZeG! = 3(x) = 3. (8)

The intuition behind this assumption (cf. also Kappen, 2007; Broek et &18)28 that, since the
weight control matrixR is inverse proportional to the variance of the noise, a high varianceotontr
input implies cheap control cost, while small variance control inputs havedagtrol cost. From
a control theoretic stand point such a relationship makes sense due tatieafaunder a large
disturbance (= high variance) significant control authority is requirdatitay the system back to a
desirable state. This control authority can be achieved with corresgpluircontrol cost irR.

With this simplification, (6) reduces to the following form

1 1
—0W, = —thwt + 1 (OxWy) + étrace((Dxx‘Pt)GtZthT) , (9)

with boundary condition¥;, = exp(—%qu). The partial differential equation (PDE) in (9) corre-
sponds to the so called Chapman Kolmogorov PDE, which is of secondarddinear. Analytical
solutions of (9) cannot be found in general for general nonlinestesys and cost functions. How-
ever, there is a connection between solutions of PDEs and their refaésems stochastic differ-
ential equation (SDEs), that is mathematically expressed by the Feynmam#iadd (Jksendal,
2003; Yong, 1997). The Feynman-Kac formula (see appendix B) earséd to find distributions
of random processes which solve certain SDEs as well as to proposinal methods for solving
certain PDEs. Applying the Feynman-Kac theorem, the solution of (9) is:

{
W, = Ey, (W K119) =gy [exp<—i<nN - % /t “a dt)} : (10)

Thus, we have transformed our stochastic optimal control problem int@greximation prob-
lem of a path integral. With a view towards a discrete time approximation, which evildeded for
numerical implementations, the solution (10) can be formulated as:

] 1 N-—-1
W, = J{To/ p(Ti|X;) exp [—)\ ((QN + JZI qtjdt>] dti, (12)

wheret; = (Xy,.....,Xy) IS @ sample path (or trajectory piece) starting at skgt@nd the term
p(Ti|xi) is the probability of sample path conditioned on the start statg. Since Equation (11)
provides the exponential cost to §¢, in statex;, the integration above is taken with respect to
sample paths; = (Xy,X¢.,,.....,Xt ). The differential terndt; is defined agity = (dxy, ....., dXy, ).
Evaluation of the stochastic integral in (11) requires the specificatigr{fx;), which is the topic

of our analysis in the next section.

2.3 Generalized Path Integral Formulation

To develop our algorithms, we will need to consider a more general develujof the path integral
approach to stochastic optimal control than presented in Kappen (200 Braek et al. (2008). In
particular, we have to address that in many stochastic dynamical systentgntinel transition
matrix G; is state dependent and its structure depends on the partition of the statectly dinel
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non-directly actuated parts. Since only some of the states are directly ltmhttbe state vector
is partitioned intox = [xM" x©T]T with x™ ¢ Ok<! the non-directly actuated part antf ¢
O0'*1the directly actuated part. Subsequently, the passive dynamics term acmhthal transition

T T T
matrix can be partitioned ds= [f{™ £ |T with f, € 0L, fo € 0! andG; = [Oksp Gl T
with Gt(c) e 0P, The discretized state space representation of such systems is given as:

Xt = Xy + ftidt—l- Gti (Utidt + \@tﬁti) ,

or, in partitioned vector form:

(m) (m (m)
Xi Xi fi 0 xp
( Xt<c+>1 > = ( Xt<c> >+ ( ft<c> )d” ( G© ) (“fidt“/at&i)‘ (12)
tit1 ti G b

Essentially the stochastic dynamics are partitioned into controlled equationsdh thik state
xt(.c) is directly actuated and the uncontrolled equations in which the s&%}tés not directly actu-

i+1

ated. Since stochasticity is only added in the directly actuated tgzsf (12), we can develop
p(Ti|xi) as follows.
P(tix) = P(TitalXy)
= IO(th ----- X1 %)

= =i p(XtJ+l|Xt]) )

where we exploited the fact that the start sbq,te)f a trajectory is given and does not contribute
to its probability. For systems where the control has lower dimensionality thastates (12), the
transition probabilitiep (x,,, |x;, ) are factorized as follows:

p (th+1‘xtj) = P (Xt(jT)l‘Xt‘) P (Xt(i(:gl‘xtj)
= p( J+1|th ’Xt(l)> p( Hl‘xt' ’Xt('))

p (X, (13)

O

where we have used the fact tfm(xt(mxt(lm) xt(lc)) is the Dirac delta function, since", can be

computed deterministically frorx\(m) Xy, © For all practical purposesthe transition probability of
the stochastic dynamics is reduced to the transition probability of the directlgtadtpart of the
state:

p(Ti|Xti) = n’j'\l:_ilp(xtj+1|xtj) =i p <th+1|xtj) (14)

Since we assume that the nosé zero mean Gaussian distributed with varialige where
Ye € 0", the transition probability of the directly actuated part of the state is defingd as

© _ 1 R NCENCEFCINE
p<xtj+1|xtj) - ((ZT[)I ] ]th|)l/2 eXp( 2 thj+1 th ftj dtHZjl>> (15)

2. The delta functions will all integrate to 1 in the path integral.
3. For notational simplicity, we write weighted square norms (or Mahaliarditances) as' Mv = HvHﬁ,,.
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-
where the covariancg; € 0! is expressed aky = Gt(jc)Zth(jc) dt. Combining (15) and (14)
results in the probability of a path expressed as:

1 N1 © ©  +© 2
p(T-|Xti) 0 exp| —= x( s —ft, atll” ).
| M=t (2|12, ]) Y2 2 ,Zl [ =7 = Hz[f

Finally, we incorporate the assumption (8) about the relation between th®lcoost and the vari-
T
ance of the noise, which needs to be adjusted to the controlled Sp«’i@]ei:lﬁt(jc)Zth(f) dt =

T T
AijC)R*1G§f) dt = AHy,dt with Hy, = Gt(jC)Rfth(jc) . Thus, we obtain:
2
dt].
qu

With this formulation of the probability of a trajectory, we can rewrite the the padgmal (11)

dt b

1 N-—-1

1 exp| — = z
M- ((2m! 2y, )) 2 25

p(Ti‘Xti) O

as:
1 N-1 LN X o ’
eXp Y (QN+Zj:i qtjdt+§Zj:I dt _ftj H,ldt
0
Y. = lim ! d'[.(c)
f dt—0 n’j\l:_il ((2m)'/2| 5, |1/2) i
_ i 1 Lo ) ar®
= gm, [ gy @e( s o (o)
where, we defined
2
N-1 AN=1]| %9 —x{©
S =@+ Y gt Y [T
=i 1= Ht}l
and
D(u) = M5t (22|54, +2)
Note that the integration is ovelr® = (dxt(ic), ..... ,dxﬁ,?), as the non-directly actuated states

can be integrated out due to the fact that the state transition of the notlydaetuated states is
deterministic, and just added Dirac delta functions in the integral (cf. Equéit®)). Equation (16)
is written in a more compact form as:

o [ N\ 4@
W, = lim exp<—)\S(T|) |09D(T|)>dTi

_ 1\ ge©
_O“TO exp< AZ(T,))dTi , a7

whereZ(ti) = S(ti) + AlogD(T;). It can be shown that this term is factorized in path dependent
and path independent terms of the form:
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Z(t)) = 1) + )\(Niz_l)l log(2rdt),

where§(1)) = S(1j) + %z'j\';illogmtj |. This formula is a required step for the derivation of
optimal controls in the next section. The constant téﬁh@‘%)'log(ZT[dt)\) can be the source of
numerical instabilities especially in cases where fine discretizatioof stochastic dynamics is
required. However, in the next section, and in a great detail in Appexdemma 1, we show how
this term drops out of the equations.

2.4 Optimal Controls

For every moment of time, the optimal controls are givenugs- —R*thT(Dxtini). Due to the
exponential transformation of the value function, the equation of the optiom&lals can be written
as

DXI, l'lJt

W,
After substituting¥, with (17) and canceling the state independent terms of the cost we have:

U = AR~ lG

Further analysis of the equation above leads to a simplified version for timabpontrols as

u, = [P(u)uL () dt | (18)

with the probabilityP (1;) and local controlsi, (T;) defined as

e 13T

AT

(19)

o) = REGT gm (0,050 )

The path cos§(T;) is a generalized version of the path cost in Kappen (2005a) and K#ppen),
which only considered systems with state independent control trarfsiBipn To find the local
controlsuy (Tj) we have to calculate the lyn,o O o ,§(1;). Appendix A and more precisely lemma

2 shows in detail the derivation of the final result

; &) — _H-1(c@e _
g, (D80 = -4 (6% ),

where the new terrby, is expressed as, = AH, @, and®,, € 0'*! is a vector with thg'" element

defined as: 1
(@) = Ztrace(Hnl (%sfm'*ti)) -

4. More precisely iG(® = G(©) then the termd N5 tlog|Hy | disappears since it is state independent and it appears in
both nominator and denominator in (19). In this case, the path cost iseedoS(t;) = S(1;).
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The local control can now be expressed as:
uL(Tj) = R‘th(iC)THti‘1 (Gt(ic)sti — bﬁ) ,

By substitutingH;, = Gt(iC)R‘th(ic)T in the equation above, we get our main result for the local
controls of the sampled path for the generalized path integral formulation:

1
u () =RGET (GIFRIGT) (68 ~by ) | (20)

The equations in boxes (18), (19) and (20) form the solution for thergdined path integral
stochastic optimal control problem. Given that this result is of generakvahd constitutes the
foundation to derive our reinforcement learning algorithm in the next@gdut also since many
other special cases can be derived from it, we summarized all releyaati@ns in Table 1.

The Given components of Table 1 include a model of the system dynamics, the cosibfunc
knowledge of the system’s noise process, and a mechanism to gengeatetiest;. It is important
to realize that this is enodel-base@dpproach, as the computations of the optimal controls requires
knowledge of;. € can be obtained in two ways. First, the trajectoriesan be generated purely
in simulation, where the noise is generated from a random number gené&atand, trajectories
could be generated by a real system, and the repis®uld be computed from the difference be-
tween the actual and the predicted system behavior, that(ﬁ)s;i = Xy — Xy = X — (fy; + Gy Uy).
Computing the predictio»’iti also requires a model of the system dynamics.

Previous results in Kappen (2005a), Kappen (2007), Kappen Q0% Broek et al. (2008)
are special cases of our generalized formulation. In the next sectichove how our generalized
formulation is specialized to different classes of stochastic dynamicalnsysted we provide the
corresponding formula of local controls for each class.

2.5 Special Cases

The purpose of this section is twofold. First, it demonstrates how to apphathergegral approach
to specialized forms of dynamical systems, and how the local controls ins{@p)ify for these

cases. Second, this section prepares the special case which we wilfanemur reinforcement
learning algorithm in Section 3.

2.5.1 SYSTEMSWITH ONE DIMENSIONAL DIRECTLY ACTUATED STATE

The generalized formulation of stochastic optimal control with path integralsaiteTl can be
applied to a variety of stochastic dynamical systems with different typesfatdransition matri-
ces. One case of particular interest is where the dimensionality of the disettisted part of the
state is 1D, while the dimensionality of the control vector is 1D or higher dimeakids will be
seen below, this situation arises when the controls are generated by & lperameterized func-
tion approximator. The control transition matrix thus becomes a row v@ff&r: gt(ic)T € Oxp,
According to (20), the local controls for such systems are expressiedi@aws:
—14(©)

(1) = g2 (o -y ).

g Rg
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e Given:

— The system dynamiocg = f; + Gt (u; + &) (cf. 3)

— The immediate cost = ¢ + 3u Ru; (cf. 4)

— Aterminal cost terng,, (cf. 1)

— The varianceg of the mean-zero noisg

— Trajectory starting at and ending atiy: Ti = (X¢;, ..., Xty )

— A partitioning of the system dynamics infa) controlled and'm) uncontrolled equa-
tions, wheren = c+ mis the dimensionality of the staig (cf. Section 2.3)

e Optimal Controls:
— Optimal controls at every time stép u;, = fP(ri)u(ri)dri(C)

14T,
— Probability of a trajectoryP (Tj) = %S(T)
fe*XS( I)dTi

— Generalized trajectory cosi(Ti) = S(1j) + 5 3\ log|Hy;| where

2
X‘<JC)+ 1 Xt(jC)

dt

—f7 dt

* S(U) =@y + 315 aydt+ 3 355! .
j

.
+ H, =G{"R1G("

-1
— Local Controls:u, (1)) = R-1G{9T (Gt(ic)R‘th(ic)T> (Gt(ic)sti - bti) where
k bti :)\Hticbti

* [Py]; = %trace(Htil <a[xt(i0)]j Hn))

Table 1: Summary of optimal control derived from the path integral formalizm.

Since the directly actuated part of the state is 1D, the ve(éfblcollapses into the scalaﬁc)
which appears in the partial differentiation above. In the casegﬁﬁaﬂoes not depend orﬁc), the
differentiation with respect t&(ic) results to zero and the the local controls simplify to:
R-1g©@gOT
() = “gr g
o Rg
2.5.2 SYSTEMS WITH PARTIALLY ACTUATED STATE

The generalized formula of the local controls (20) was derived fordise @here the control transi-

tion matrix is state dependent and its dimensionali@t@ e 0P with | < nandp the dimension-
ality of the control. There are many special cases of stochastic dynaystairss in optimal control
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and robotic applications that belong into this general class. More preciselgystems having a

state dependent control transition matrix that is squ@ré&> € 0! with | = p) the local controls
based on (20) are reformulated as:

-1
u (ti) =& —Gi” by (21)

Interestingly, a rather general class of mechanical systems such abaijdand multi-body
dynamics falls into this category. When these mechanical systems are sgiBasstate space
formulation, the control transition matrix is equal to rigid body inertia maﬁs*ff() =M (8;) (Sci-
avicco and Siciliano, 2000). Future work will address this special toppati integral control for
multi-body dynamics.

Another special case of systems with partially actuated state is when thel tr@amtsition matrix
is state independent and has dimensioneﬁiﬁ) = G(© e 0P, The local controls, according to
(20), become:

-1
u (1) =R 1GO" (G@R*lG(C)T) GOg,. (22)
If G{° is square and state independdd = G(© € 0!, we will have:
uL(Ti) = &;. (23)

This special case was explored in Kappen (2005a), Kappen (208@pen (2005b) and Broek
et al. (2008). Our generalized formulation allows a broader applicatiqmatf integral control
in areas like robotics and other control systems, where the control tramgitidrix is typically
partitioned into directly and non-directly actuated states, and typically alsodspéndent.

2.5.3 SYSTEMS WITH FULLY ACTUATED STATE SPACE

In this class of stochastic systems, the control transition matrix is not partiterekdherefore, the
controlu directly affects all the states. The local controls for such systems ava&lptbby simply

substitutinth(ic) € O0™Pin (20) with G, € O"™". SinceG;, is a square matrix we obtain:
uL(Tj) = & — Gy, by,
with by, = AH @y, and
(@), = %‘nace(Hti‘1 (a(xti)thi)) ,

where the differentiation is not taken with respec(be)) j but with respect to the full statex, );.
For this fully actuated state space, there are subclasses of dynamieshsysith square and/or
state independent control transition matrix. The local controls for thesescare found by just

substitutingG{® with Gy, in (21), (22) and (23).

3. Reinforcement Learning with Parameterized Policies

Equipped with the theoretical framework of stochastic optimal control with jpé¢igrals, we can
now turn to its application to reinforcement learning with parameterized poliGésxce the be-
ginning of actor-critic algorithms (Barto et al., 1983), one goal of rerdanent learning has been
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to learn compact policy representations, for example, with neural netvesrkn the early days of
machine learning (Miller et al., 1990), or with general parameterizatiorter&007; Deisenroth
et al., 2009). Parameterized policies have much fewer parameters thdadsieal time-indexed
approach of optimal control, where every time step has it own set of ptgesnthat is, the optimal
controls at this time step. Usually, function approximation techniques aretasedresent the op-
timal controls and the open parameters of the function approximator becomelityeparameters.
Function approximators use a state representation as input and notligit 8rpe dependent rep-
resentation. This representation allows generalization across statesoamdgs to achieve better
generalization of the control policy to a larger state space, such that gdiie@mme re-usable and
do not have to be recomputed in every new situation.

The path integral approach from the previous sections also follows tkeichh time-based
optimal control strategy, as can be seen from the time dependent solutioptimal controls in
(33). However, a minor re-interpretation of the approach and some sméématical adjustments
allow us to carry it over to parameterized policies and reinforcement lggrihich results in a
new algorithm calledPolicy | mprovement wittPath I ntegrals P12).

3.1 Parameterized Policies

We are focusing on direct policy learning, where the parameters of they @oe adjusted by a
learning rule directly, and not indirectly as in value function approacheksesical reinforcement
learning (Sutton and Barto, 1998)—see Peters (2007) for a discuskjmos and cons of direct
vs. indirect policy learning. Direct policy learning usually assumes argénest function (Sutton
et al., 2000; Peters, 2007) in the form of

I(xo) = / b(To)R(To)dTo, (24)

which is optimized over states-action trajectotigs= (Xty, g, -, Xty )- Under the first order Markov
property, the probability of a trajectory is

p(Ti) = p<Xti )n,j\l;ilp(xtﬁllxtj ) ) p(atJ ‘th )

Both the state transition and the policy are assumed to be stochastic. Thelpaftomulation
of the stochastic policy is a design parameter, motivated by the application d@naiwntical con-
venience, and the need to inject exploration during learning. For continstate action domains,
Gaussian distributions are most commonly chosen (Gullapalli, 1990; Williamg; P@®ers, 2007).
An interesting generalized stochastic policy was suggested in Rueckstas@€08) and applied
in Koeber and Peters (2008), where the stochastic ppliay|x;, ) is linearly parameterized as:

& = gtT (e+8ti)7 (25)

with g, denoting a vector of basis functions aédhe parameter vector. This policy has state de-
pendent noise, which can contribute to faster learning as the signalse#atio becomes adaptive
since it is a function ofy,. It should be noted that a standard additive-noise policy can be egores
in this formulation, too, by choosing one basis functigp); = 0. For Gaussian noisethe proba-
bility of an action isp(a |x;) = N (8" gy, Z; ) with & = g Zeg;,. Comparing the policy formulation

5. We usex; to denote actions here in order to avoid using the syratiola conflicting way in the equations below, and
to emphasize that an action does not necessarily coincide with the cammoland to a physical system.
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in (25) with the control term in (3), one recognizes that the control poticyntilation (25) should
fit into the framework of path integral optimal control.

3.2 Generalized Parameterized Policies

Before going into more detail of our proposed reinforcement learningrigéthgn, it is worthwhile
contemplating what the actio® actually represents. In many applications of stochastic optimal
control there are three main problems to be considered: i) trajectory ptgnnifeedforward con-
trol, and iii) feedback control. The results of optimization could thus be an opkimamatic
trajectory, the corresponding feedforward commands to track the ddsijectory accurately in
face of the system’s nonlinearities, and/or time varying linear feedback ¢gadin scheduling) for
a negative feedback controller that compensates for perturbationsfrourate trajectory tracking.

There are very few optimal control algorithms which compute all three issinadtaneously,
such as Differential Dynamic Programming(DDP) (Jacobson and Ma@v), or its simpler ver-
sion the lterative Linear Quadratic Regulator(iLQR) (Todorov, 200%)wever, these are model
based methods which require rather accurate knowledge of the dynamicsake restrictive as-
sumptions concerning differentiability of the system dynamics and the costidn.

Path integral optimal control allows more flexibility than these related methodscdicept of
an “action” can be viewed in a broader sense. Essentially, we consigéimgput” to the control
system as an action, not unlike the inputs to a transfer function in classiear laontrol theory.
The input can be a motor command, but it can also be anything else, fordastadesired state,
that is subsequently converted to a motor command by some tracking contsoecontrol gain
(Buchli et al., 2010) . As an example, consider a robotic system with rigily bgnamics (RBD)
equations (Sciavicco and Siciliano, 2000) using a parameterized policy:

q = M(q) *(—C(q.a)—v(a)) +M(a) 'y, (26)
u = G(q)(0+g), (27)

whereM is the RBD inertia matrixC are Coriolis and centripetal forces, andlenotes gravity
forces. The state of the robot is described by the joint anglasd joint velocities). The policy
(27) is linearly parameterized ; with basis function matrixc—one would assume that the di-
mensionality off is significantly larger than that af to assure sufficient expressive power of this
parameterized policy. Inserting (27) into (26) results in a differentiab@go that is compatible
with the system equations (3) for path integral optimal control:

§ = f(0,q+G6(a)(0+e) (28)
where
f@.a) = M@ (-C(a.a)-va),
G = M(a)'G(a).

This example is a typical example where the policy directly represents motor caaman
Alternatively, we could create another form of control structure foRB® system:

4 = M(a)(-C(q,a)—v(a)) +M(a)*u,
u = Kp(qa—0)+Kp(qa—9),
Ga = G(0d,9qd)(0+5). (29)
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Here, a Proportional-Derivative (PD) controller with positive definittngaatricesKp andKp
converts a desired trajectogy, gq into a motor command. In contrast to the previous example,
the parameterized policy generates the desired trajectory in (29), andférerdial equation for
the desired trajectory is compatible with the path integral formalism.

What we would like to emphasize is that the control system’s structure is lefetoréativity
of its designer, and that path integral optimal control can be applied aougdevels. Importantly,
as developed in Section 2.3, only tbentrolleddifferential equations of the entire control system
contribute to the path integral formalism, that is, (28) in the first example, Yri(Rthe second
example. Andonly these controlled differential equationged to be known for applying path
integral optimal control—none of the variables of the uncontrolled equaitoager used.

At this point, we make a very important transition from model-based to modelidarning.
In the example of (28), the dynamics model of the control system needs kadwen to apply
path integral optimal control, as this iscantrolleddifferential equation. In contrast, in (29), the
system dynamics are in amcontrolleddifferential equation, and are thus irrelevant for applying
path integral optimal control. In this case, only knowledge of the desirgectoay dynamics is
needed, which is usually created by the system designer. Thus, we olgamedel-free learning
system.

3.3 Dynamic Movement Primitives as Generalized Policies

As we are interested in model-free learning, we follow the control structitiee 24 example of
the previous section, that is, we optimize control policies which repressirted trajectories. We
use Dynamic Movement Primitives (DMPs) (ljspeert et al., 2003) as aadpase of parameterized
policies, which are expressed by the differential equations:

1.

“& = fitg (B+a), (30)
Lo =

_[yt = 4,

}' = —q

= Xt

ft = az(BAg—w)—2z).

Essentially, these policies code a learnable point attractor for a movenoemtyfy to the goal
g, where® determines the shape of the attractgy,y; denote the position and velocity of the
trajectory, whilez,x are internal stateso,, 3, T are time constants. The basis functiapss
OP*1are defined by a piecewise linear function approximator with Gaussian tivgjgternels, as
suggested in Schaal and Atkeson (1998):
Wi %
&) = ZE:1Wk<g_y°)’
wj = exp(—0.5h;(x — ¢j)?), (31)

with bandwithh; and centec; of the Gaussian kernels—for more details see ljspeert et al. (2003).
The DMP representation is advantageous as it guarantees attractentigomwards the goal while
remaining linear in the parameteé@of the function approximator. By varying the parameighe
shape of the trajectory changes while the goal sgagend initial statey;, remain fixed. These
properties facilitate learning (Peters and Schaal, 2008a).
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3.4 Policy Improvements with Path Integrals: The (PP) Algorithm

As can be easily recognized, the DMP equations are of the form of otnotsystem (3), with only

one controlled equation and a one dimensional actuated state. This cémehdseated in Section
2.5.1. The motor commands are replaced with the param@tetie issue of time dependent vs.
constant parameters will be addressed below. More precisely, the QiRiens can be written as:

).(t — 0%t 01><p
(Zt)( Wt >+(01xp)(et+€t).
Yt az(B(g—w) — %) gt(c)T

The state of the DMP is partitioned into the controlled péﬁ =y and uncontrolled part

xt(m) = (% zt)T. The control transition matrix depends on the state, however, it depahdsroone
of the state variables of the uncontrolled part of the state, that i¥he path cost for the stochastic
dynamics of the DMPs is given by:

c c
Xt(j+)1 - Xt(j ) . f(c)
dt t

’ 2

N-1 lN 11 T ©
= @t Y Gty Y 50 e o H e (6 )
J=I J=I

N-1 N-1

ot > o dt+ 3 >
= J=

Sti)

dt+ Z log|Hy, |

Htj

N—-1
O cptN+thJ ZzHgt (8 +&)

N—1 1N-11 gt(?)gt(?)T
- (ﬂN + z q'[j + é z é(etj +€tj)T (C)TJ _]1 (C) (etl +Etj)
= = g R0
N-1 lN 11
= Ot z qIJ > z > 6t1+£t) M RMt](et +8t]) (32)
. oy of 14© .
with My, = m H¢ becomes a scalar given bl = gt TR- g . Interestingly, the term

J ]
%z’j\‘:‘illog|Htj] for the case of DMPs depends only gn which is a deterministic variable and
therefore can be ignored since it is the same for all sampled paths. Webslsded, without
loss of generality, the time stagi in cost terms. Consequently, the fundamental result of the path
integral stochastic optimal problem for the case of DMPs is expressed as:

U, = [P(Ti)uL (Ti)dTi(C) , (33)

where the probability (t;) and local controlsi (1;) are defined as

_lg('[.) R-1 (c) (T

A . ¥

P(Ti)Zi UL(Ti)Zigt' %
(c) R*lgt(.c)

&
[e STy g7 !
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and the path cost given as

. N-1 1N
S(Tl):(ﬂN+ zqtj+é zstJMtJRMtjstj
=l =l

Note thatd = 0 in these equations, that is, the parameters are initialized to zero. Thed®agu
correspond to the case where the stochastic optimal control problem éxiseith one evaluation
of the optimal controls (33) using dense sampling of the whole state spaee thed'passive dy-
namics” (i.e.,0 = 0), which requires a significant amount of exploration noise. Such proaph
was pursued in the original work by Kappen (2007) and Broek et GD&P, where a potentially
large number of sample trajectories was needed to achieve good resuksadigy this sampling
approach to high dimensional spaces, however, is daunting, as withighrprobability, we would
sample primarily rather useless trajectories. Thus, biasing sampling towardsnitial conditions
seems to be mandatory for high dimensional applications.

Thus, we consider only local sampling and an iterative update proce@iven a current guess
of 0, we generate sample roll-outs using stochastic paramgtees at every time step. To see how
the generalized path integral formulation is modified for the case of itergtidating, we start with
the equations of the update of the parameter veg;tarhich can be written as:

gnew /P(T,)ngtigﬂ(eﬁn) q

T TR
RilgtigtiTEti Rilg'ligtiTe
N /Pm TR 1g 1T g TR g,
R_lgligtiT
Pt frace(R 19,0,
= 6eti—‘thi9. (34)

R 19,9 "€,
% 'R oy
note thatet(i”e"‘b is now time dependent, that is, for every time step different optimal parameter

vector is computed. In order to return to one single time independent pararaeter8"®", the
vectors8"*" need to be averaged over time

We start with a first tentative suggestion of averaging over time, and thaaiexvhy it is
inappropriate, and what the correct way of time averaging has to lookTike tentative and most
intuitive time average is:

The correction parameter vectd®; is defined a6, = [P (Ti) dt;. Itis important to

1 N-1 1 N-1 1 N-1
pnew — = § "W = = § 59 + = § M6
N i;) t N i;) N i;

Thus, we would updaté based on two terms. The first term is the averagddgf which is reason-
able as it reflects the knowledge we gained from the exploration noiseewowhere would be a
second update term due to the average over projected mean paradrfedensevery time step—it
should be noted that, is a projection matrix onto the range spacggtinder the metri® 2, such

that a multiplication withMy, can only shrink the norm d. From the viewpoint of having optimal
parameters foevery time steghis update component is reasonable as it trivially eliminates the part
of the parameter vector that lies in the null spacg;odnd which contributes to the command cost
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of a trajectory in a useless way. From the view point of a parameter veetiisttonstant and time
independenand that is updatettieratively, this second update is undesirable, as the multiplication
of the parameter vect@with My, in (34) and the averaging operation over the time horizon reduces
the L, norm of the parameters at every iteration, potentially in an uncontrollec® waghat we
rather want is to achieve convergence when the averade,diecomes zero, and we do not want
to continue updating due to the second term.

The problem is avoided by eliminating the projection matrix in the second termepdgwg,

such that it become:
1 N—-1 1 N—-1 1 N—-1

pnew — N i; 8 + i; 0= i; 36, + 6.

The meaning of this reduced update is simply that we keep a compongthat is irrelevant and
contributes to our trajectory cost in a useless way. However, this irrdlegmponent will not
prevent us from reaching the optimal effective solution, that is, the saltitiat lies in the range
space ofy,. Given this modified update, it is, however, also necessary to derivenpatible cost
function. As mentioned before, in the unmodified scenario, the last terB2dig;

N-1

(6+¢)"M{RMy; (6 +&)

NI =

To avoid a projection 08, we modify this cost term to be:

N

|
SN

(6+Mye) "R(O+Myy,).

NI =
T

With this modified cost term, the path integral formalism results in the de@ff@?f without the
My, projection off.

The main equations of the iterative version of the generalized path integralifation, called
Policy | mprovement wittPath| ntegrals P12), can be summarized as:

e*%S(Ti)

P(t) = mv (35)
N-1 N-—-1

ST) = @+ thjdt+é z(e+Mtjetj)TR(eJthjetj)dt, (36)
IEll J=l

50, — /P(ri)Mtistidri, 37)
S Zi’\:()l(N_i)WMi [6eti]j

o = Site wig(N—=i) 9

gnew  — glold) 4 5,

Essentially, (35) computes a discrete probability at tipgd each trajectory roll-out with the help
of the cost (36). For every time step of the trajectory, a parameter updaimsuted in (37) based

6. To be precise would be projected and continue shrinking until it lies in the intersection ofidllispaces of they,
basis function—this null space can easily be of measure zero.
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on a probability weighted average over trajectories. The parameter spatadgery time step are
finally averaged in (38). Note that we chose a weighted average bygaviery parameter update a
weight’ according to the time steps left in the trajectory and the activation of the Kar¢8d). This
average can be interpreted as using a function approximator with onlystacifoffset) parameter
vector to approximate the time dependent parameters. Giving early pointstiajgetory a higher
weight is useful since their parameters affect a large time horizon andhitdpusr trajectory costs.
Other function approximation (or averaging) schemes could be usede atra final parameter
update—we preferred this simple approach as it gave very good leaesinls. The final parameter
update i9"eW — glld) | 59,

The parameteh regulates the sensitivity of the exponentiated cost and can automatically be
optimized for every time stepto maximally discriminate between the experienced trajectories.
More precisely, a constant term can be subtracted from (36) as l@ligSés ) remain positive—this
constant terfhcancels in (35). Thus, for a given number of roll-outs, we compute theresatial

termin (35) as |
eXIO<)1\S(Ti)> = exp(h St) —minS(t) ) ’

maxS(1;) — minS(T;)

with h set to a constant, which we chose totbe- 10 in all our evaluations. The max and min
operators are over all sample roll-outs. This procedure eliminatexl leaves the variance of the
exploration noise as the only open algorithmic parameter f°. It should be noted that the
equations foPI? have no numerical pitfalls: no matrix inversions and no learning fatesdering
PI2 to be very easy to use in practice.

The pseudocode for the finBlI? algorithm for a one dimensional control system with function
approximation is given in Table 2. A tutorial Matlab example of applyR®ig can be found at
http://www-clmc.usc.edu/software .

4. Related Work

In the next sections we discuss related work in the areas of stochastic loptinteol and rein-
forcement learning and analyze the connections and differences witRlthalgorithm and the
generalized path integral control formulation.

4.1 Stochastic Optimal Control and Path Integrals

The path integral formalism for optimal control was introduced in Kapp&0%a,b). In this work,
the role of noise in symmetry breaking phenomena was investigated in the tcohsrchastic
optimal control. In Kappen et al. (2007), Wiegerinck et al. (2006), Brakk et al. (2008), the path
integral formalism is extended for the stochastic optimal control of multi-agyestems.

Recent work on stochastic optimal control by Todorov (2008), Tod¢2007) and Todorov
(2009b) shows that for a class of discrete stochastic optimal contrblgms, the Bellman equa-

7. The use of the kernel weights in the basis functions (31) for the parpbtime averaging has shown better perfor-
mance with respect to other weighting approaches, across all of pariments. Therefore this is the weighting that
we suggest. Users may develop other weighting schemes as more suitéigiz needs.

8. In fact, the term inside the exponent results by addiggsry—minsTy &r{:i)”fsr(nriﬁsai), which cancels in (35), to the term
h Ti . .
,W which is equal to- £ S(tj).

9. R is a user design parameter and usually chosen to be diagonal and isvertib
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e Given:

— An immediate cost function = q; + 6] R8; (cf. 1)

— Aterminal cost terng,, (cf. 1)

— A stochastic parameterized poliay= g (8 + &) (cf. 25)

— The basis functiomy, from the system dynamics (cf. 3 and Section 2.5.1)
— The varianceg of the mean-zero noisg

— The initial parameter vectd¥

e Repeatuntil convergence of the trajectory cdst

— CreateK roll-outs of the system from the same start stqt@sing stochstic parameters
0+ & at every time step
— Fork=1...K, compute:
e*%s(—[i,k)
Zﬁzl[ei%sm'k)]
 S(Tik) = Quk+ 315 O+ 3 30511 (0+ My ke 1) TR(B+ My, ke, k)
ik Ok Zyﬁ G k zzrﬂ+1 tj.ketj k tj, ket k
Rilgtj.k gtT K
— ’ N
* My k= gtTjAkalg[j‘k

* P(Ti7k) =

Fori=1...(N—1), compute:

* OBy = ZEzl [P (Ti,k) My k sthk]

N-1 i : :
Compute[d6]; = Zi:oz g;xj:vé& j?)eti]l

Updated < 0+ 06

— Create one noiseless roll-out to check the trajectory Bost@,, + zi’\‘:‘ol r,. In case
the noise cannot be turned off, that is, a stochastic system, multiple roll-eatsbe
averaged.

Table 2: Pseudocode of ti&? algorithm for a 1D Parameterized Policy (Note that the discrete
time stepdt was absorbed as a constant multiplier in the cost terms).

tion can be written as the KL divergence between the probability distributitimeofontrolled and
uncontrolled dynamics. Furthermore it is shown that the class of discretéiu€rgence control
problem is equivalent to the continuous stochastic optimal control formaligmguadratic cost
control function and under the presence of Gaussian noise. In Kagipd. (2009), the KL diver-
gence control formalism is considered and it is transformed to a probabifigtience problem.
In all this aforementioned work, both in the path integral formalism as well & idivergence

control, the class of stochastic dynamical systems under consideratiohds mestrictive since the
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control transition matrix is state independent. Moreover, the connectionect giolicy learning in
RL and model-free learning was not made in any of the previous projects.
Our P12 algorithm differs with respect to the aforementioned work in the following {soin

In Todorov (2009b) the stochastic optimal control problem is investigatedicrete action
- state spaces and therefore it is treated as Markov Decision ProcB$y (Wb apply ouP|?
algorithm, we do not discretize the state space and we do not treat therpraslan MDP.
Instead we work in continuous state - action spaces which are suitablerforming RL in
high dimensional robotic systems. To the best of our knowledge, oultsgsesent RL in
one of the most high dimensional continuous state action spaces.

In our derivations, the probabilistic interpretation of control comes diréaify the Feynman-
Kac Lemma. Thus we do not have to impose any artificial “pseudo-probdéhikgtment of
the cost as in Todorov (2009b). In addition, for the continuous statéorespaces we do not
have to learn the value function as it is suggested in Todorov (2009b}Marding. Instead
we directly find the controls based on our generalization of optimal controls.

In the previous work, the problem of how to sample trajectories is not asdde Sampling
is performed at once with the hope to cover the all state space. We follothex different
approach that allows to attack robotic learning problems of the complexityiarehdionality
of the little dog robot.

The work in Todorov (2009a) considers stochastic dynamics with statendept control
matrix. However, the way of how the stochastic optimal control problem isedois by
imposing strong assumptions on the structure of the cost function andigttegmestrictions
of the proposed solution to special cases of optimal control problemsugehef this specific
cost function allows transforming the stochastic optimal control problem teterministic
optimal control problem. Under this transformation, the stochastic optimalaigrblem
can be solved by using deterministic algorithms.

With respect to the work in Broek et al. (2008), Wiegerinck et al. (2@G0&) Kappen et al.
(2009) ourPI1? algorithm has been derived for a rather general class of systems witfokco
transition matrix that is state dependent. In this general class, Rigid bodsnaltidbody
dynamics as well as the DMPs are included. Furthermore we have shawouraesults
generalize previous work.

4.2 Reinforcement Learning of Parameterized Policies

There are two main classes of related algorithms: Policy Gradient algorithdhgrababilistic
algorithms.

Policy Gradient algorithms (Peters and Schaal, 2006a,b) compute thergraidiee cost func-
tion (24) at every iteration and the policy parameters are updated acgdod@i™®" = 94 4
allgJ. Some well-established algorithms, which we will also use for comparisoagsaiollows
(see also Peters and Schaal, 2006a,b).

4.2.1 REINFORCE

Williams (1992) introduced the episodic REINFORCE algorithm, which is ddrxem taking the
derivative of (24) with respect to the policy parameters. This algoritherréifer slow convergence
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due to a very noisy estimate of the policy gradient. It is also very sensitiverdavard baseline
parameteby (see below). Recent work derived the optimal baseline for REINFOREEPeters
and Schaal, 2008a), which improved the performance significantly. pisedic REINFORCE
update equations are:

N-1

Hed = Exg (R(to) — bx) Z) g, In p(ati ’Xti)

)

Et, [(ZN O1 Uay In p(ay ’th)) (TO)}

by =
Er, [(zi;o De Inp(ag %)) }

wherek denotes thé-th coefficient of the parameter vector aRto) = LNt

4.2.2 GPOMDPAND THE PoLicY GRADIENT THEOREMALGORITHM

In their GPOMDP algorithm, Baxter and Bartlett (2001) introduced seym@iovements over RE-
INFORCE that made the gradient estimates more efficient. GPOMDP can alleribed from the
policy gradient theorem (Sutton et al., 2000; Peters and Schaal, 2@08@n optimal reward base-
line can be added (cf. Peters and Schaal, 2008a). In our contextPO&BGP learning algorithm
can be written as:

N-1 j
OsJd = Eg, ; rj — % O, Inp(ag %)) | »

bt(k) _ Eto [(Dekln p(ati|xti))2rti]
| Eto |:(|:|9k|n p(ay ’Xti))z} .

4.2.3 THE EPISODICNATURAL ACTOR CRITIC

One of the most efficient policy gradient algorithm was introduced in PataisSchaal (2008b),
called the Episodic Natural Actor Critic. In essence, the method uses ther Fisbrmation Matrix
to project the REINFORCE gradient onto a more effective update direatibich is motivated by
the theory of natural gradients by Amari (1999). The eNAC algorithmgale form of:

)

OgJ t= h
{ o ] _ EToli;zti,k&tT,k] =8

whereJp is a constant offset term.

Eti,k _ [Deklnq(ati‘xti)]

N-1
R(to) 5 zti,k] ,

4.2.4 PWER

The POWER algorithm (Koeber and Peters, 2008) is a probabilistic policyoieprent method, not
a gradient algorithm. It is derived from an Expectation-Maximization fraorewsing probability
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matching (Dayan and Hinton, 1997; Peters and Schaal, 2008c). Usingttttéon of this paper, the
parameter update of POWER becomes:

N—1 711 t T
O O, A O G &t
B=Ey |y RoL| E L
K !; gtTgn] N L_o o o ]

whereR, = 3" ry,. If we setR™* = ¢ | in the update (37) oPI?, and setg% =1 in the matrix
inversion term of (39), the two algorithms look essentially identical. But it khoe noted that
the rewardsy, in POWER need to behave like an improper probability, that is, be strictly pesitiv
and integrate to a constant number—this property can make the design blesgitat functions
more complicatedPI?, in contrast, uses exponentiated sum of reward terms, where the immedi-
ate reward can be arbitrary, and only the cost on the motor commands meegmdratic. Our
empirical evaluations revealed that, for cost functions that share theatmeum in the POWER
pseudo-probability formulation and tf&? notation, both algorithms perform essentially identical,
indicating that the matrix inversion term in POWER may be unimportant for mamgrsgs It should

be noted that in Vlassis et al. (2009), POWER was extended to the disdanfitite horizon case,
where POWER is the special case of a non-discounted finite horizoteprob

5. Evaluations

We evaluatedPI? in several synthetic examples in comparison with REINFORCE, GPOMDP,
eNAC, and, when possible, POWER. Except for POWER, all algorithmsaitable for optimiz-
ing immediate reward functions of the kind= ¢ + utRu;. As mentioned above, POWER requires
that the immediate reward behaves like an improper probability. This propéntyosipatible with

r: = ¢t + U;Ru; and requires some special nonlinear transformations, which usuallgehiaa na-
ture of the optimization problem, such that POWER optimizes a different costiun. Thus, only
one of the examples below has a compatible a cost function for all algorithchsdinmg POWER. In
all examples below, exploration noise and, when applicable, learning vagestuned for every in-
dividual algorithms to achieve the best possible numerically stable perfeem&mxploration noise
was only added to the maximally activated basis function in a motor primiftieed the noise was
kept constant for the entire time that this basis function had the highesttamti—empirically, this
tick helped improves the learning speed of all algorithms.

5.1 Learning Optimal Performance of a 1 DOF Reaching Task

The first evaluation considers learning optimal parameters for a 1 DOF (@VIEquation 30). The
immediate cost and terminal cost are, respectively:

r = 0.5f2+50000"8, @, = 10000y +10(g—yi,)?)

with y;, = 0 andg = 1—we useradiansas units motivated by our interest in robotics application,
but we could also avoid units entirely. The interpretation of this cost is thatoudd like to reach
the goalg with high accuracy while minimizing the acceleration of the movement and whileérgep
the parameter vector short. Each algorithm was run for 15 trials to comparameter update, and

10. That is, the noise vector in (25) has only one non-zero component.
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a total of 1000 updates were performed. Note that 15 trials per updagechesen as the DMP
had 10 basis functions, and the eNAC requires at least 11 trials to pedgarumerically stable
update due to its matrix inversion. The motor primitives were initialized to approxim&t¢h
order polynomial as point-to-point movement (cf. Figure 1la,b), called a mmijeuk trajectory

in the motor control literature; the movement duration was 0.5 seconds, wtdhilar to normal
human reaching movements. Gaussian noid¢(6f0.1) was added to the initial parameters of the
movement primitives in order to have different initial conditions for eveny ofi the algorithms.
The results are given in Figure 1. Figure 1a,b show the initial (beforailegrtrajectory generated
by the DMP together with the learning results of the four different algorithftes éearning—
essentially, all algorithms achieve the same result such that all trajectoriestl@ of each other.
In Figure 1c, however, it can be seen tiRi€ outperforms the gradient algorithms by an order
of magnitude. Figure 1d illustrates learning curves for the same task as ireFigujust that
parameter updates are computed already after two roll-outs—the eNACxelasled from this
evaluation as it would be too heuristic to stabilize its ill-conditioned matrix inversianrdsults
from such few roll-outs.P1? continues to converge much faster than the other algorithms even in
this special scenario. However, there are some noticeable fluctuatioe@iteergence. This noise
around the convergence baseline is caused by using only two noisyutsltedcontinue updating
the parameters, which causes continuous parameter fluctuations areuaptithal parameters.
Annealing the exploration noise, or just adding the optimal trajectory fronpiis&ous parameter
update as one of the roll-outs for the next parameter update can alleviatsstiés—we do not
illustrate such little “tricks” in this paper as they really only affect fine tuninghefalgorithm.

5.2 Learning Optimal Performance of a 1 DOF Via-Point Task

The second evaluation was identical to the first evaluation, just that thidéuration now forced
the movement to pass through an intermediate via-point8800ms This evaluation is an abstract
approximation of hitting a target, for example, as in playing tennis, and requsggnificant change
in how the movement is performed relative to the initial trajectory (Figure 2ag. cBbist function
was

r30ams = 100000000G — Yi,0,.) 2, @, =0

with G = 0.25. Only this single reward was given. For this cost function, the PoWg&ithm

can be applied, too, with cost functioBoons = exp(—1/A  raoams) andry = 0 otherwise. This
transformed cost function has the same optimum@sgs The resulting learning curves are given in
Figure 2 and resemble the previous evaluat®It: outperforms the gradient algorithms by roughly
an order of magnitude, while all the gradient algorithms have almost identaralitg) curves. As
was expected from the similarity of the update equations, POWERPEndave in this special case
the same performance and are hardly distinguishable in Figure 2. Figuen2anstrates that all
algorithms pass through the desired tat@gebut that there are remaining differences between the
algorithms in how they approach the target-these difference have a small numerical effect in
the final cost (wher®I? and POWER have the lowest cost), but these difference are hardly task
relevant.

5.3 Learning Optimal Performance of a Multi-DOF Via-Point Task

A third evaluation examined the scalability of our algorithms to a high-dimensiorthhayhly
redundant learning problem. Again, the learning task was to pass thaouigkermediate targés,
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Figure 1: Comparison of reinforcement learning of an optimized movementwdgtbr primitives.
a) Position trajectories of the initial trajectory (before learning) and théteesf all algo-
rithms after learning—the different algorithms are essentially indistighuishé&dl&he
same as a), just using the velocity trajectories. c) Average learningscfowvthe differ-
ent algorithms with 1 std error bars from averaging 10 runs for eactedltorithms. d)
Learning curves for the different algorithms when only two roll-outs aedper update

just that ad = 2,10, or 50 dimensional motor primitive was employed. We assume that the multi-
DOF systems model planar robot arms, whetinks of equal length = 1/d are connected in an
open chain with revolute joints. Essentially, these robots look like a multi-segnake in a plane,
where the tail of the snake is fixed at the origin of the 2D coordinate systetinthe head of the
snhake can be moved in the 2D plane by changing the joint angles betweenlalkth Figure 3b,d,f
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(note that the eNAC cannot work in this case and is omitted).

illustrate the movement over time of these robots: the initial position of the robotses all joint

angles are zero and the robot arm completely coincides witlx-ieds of the coordinate frame.
The goal states of the motor primitives command each DOF to move to a joint angftethat the
entire robot configuration afterwards looks like a semi-circle where the distal link of the robot
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Figure 2: Comparison of reinforcement learning of an optimized movementmatbr primitives
for passing through an intermediate tar@eta) Position trajectories of the initial trajec-
tory (before learning) and the results of all algorithms after learning.veyage learning
curves for the different algorithms with 1 std error bars from averagthguns for each
of the algorithms.

(the end-effector) touches tlyeaxis. The higher priority task, however, is to move the end-effector
through a via-poinG = (0.5,0.5). To formalize this task as a reinforcement learning problem, we
denote the joint angles of the robots&swith i = 1,2,...,d, such that the first line of (30) reads
now asti; = fit + g/ (6; +&i)—this small change of notation is to avoid a clash of variables with
the (x,y) task space of the robot. The end-effector position is computed as:

1 d i 1 d i
=5y cog) &), V=) sin() &)
PR P
The immediate reward function for this problem is defined as

yd,(d+1-i)(0.1f3+056]6;)

rh = . ) (39)
Sha(d+1-1i)
Arsgoms = 10000000(((0.5 — thoo“s)z +(0.5— yt300m5)2) ,
Gy = 0)

whereArzogns is added tor; at timet = 300ms that is, we would like to pass through the via-
point at this time. The individual DOFs of the motor primitive were initialized as intHBOF
examples above. The cost term in (39) penalizes each DOF for usingbiégterations and large
parameter vectors, which is a critical component to achieve a good resaddtiedundancy in the
arm. Equation (39) also has a weighting tesm 1 — i that penalizes DOFs proximal to the orgin
more than those that are distal to the origin—intuitively, applied to human armmess, this
would mean that wrist movements are cheaper than shoulder movementsjsvhimtivated by the
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fact that the wrist has much lower mass and inertia and is thus energeticaéyeffiorent to move.

The results of this experiment are summarized in Figure 3. The learningsciumthe left
column demonstrate again tHai® has an order of magnitude faster learning performance than the
other algorithms, irrespective of the dimensionaliii? also converges to the lowest cost in all
examples:

Algorithm | 2-DOFs 10-DOFs 50-DOFs
PI? 98000+5000  15706:1300 280Gt 150
REINFORCE| 125000+2000  22006t700 19500k 24000
PG 128000+2000 2800G-23000 2700640000
NAC 113000+ 10000  4800@-8000 22006t 2000

Figure 3 also illustrates the path taken by the end-effector before amdesftaing. All algo-
rithms manage to pass through the via-p@nappropriately, although the path particularly before
reaching the via-point can be quite different across the algorithmsn@iegP12 reached the low-
est cost with low variance in all examples, it appears to have found thedlaton. We also added
a “stroboscopic” sketch of the robot arm for tR& solution, which proceeds from the very right to
the left as a function of time. It should be emphasized that there were &igaio parameter tun-
ing needed to achieve ttRi? results, while all gradient algorithms required readjusting of learning
rates for every example to achieve best performance.

5.4 Application to Robot Learning

Figure 4 illustrates our application to a robot learning problem. The rolpigio jump across as
gap. The jump should make forward progress as much as possible, agniseaver in a legged
locomotion competition which scores the speed of the robot—note that we oediyauphysical
simulator of the robot for this experiment, as the actual robot was not bieil@he robot has three
DOFs per leg, and thus a total df= 12 DOFs. Each DOF was represented as a DMP with 50
basis functions. An initial seed behavior (Figure 5-top) was taught ogitegafrom demonstration,
which allowed the robot barely to reach the other side of the gap withoutdalite the gap—the
demonstration was generated from a manual adjustment of spline nodgdimealmsed trajectory
plan for each leg.

P12 learning used primarily the forward progress as a reward, and slightliped the squared
acceleration of each DOF, and the length of the parameter vector. Addifjoagenalty was
incurred if the yaw or the roll exceeded a threshold value—these perattesiraged the robot to
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Figure 3: Comparison of learning multi-DOF movements (2,10, and 50 DOFs)pldttar robot
arms passing through a via-poi@t a,c,e) illustrate the learning curves for different RL
algorithms, while b,d,f) illustrate the end-effector movement after learninglf@go-
rithms. Additionally, b,d,f) also show the initial end-effector movement, bdfaening
to pass througl, and a “stroboscopic” visualization of the arm movement for the final
result of PI? (the movements proceed in time starting at the very right and ending by
(almost) touching thg axis).
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Figure 4: Reinforcement learning of optimizing to jump over a gap with a robgt @he improve-
ment in cost corresponds to about 15 cm improvement in jump distance, ehbciyed
the robot's behavior from an initial barely successful jump to jump that caelgléa-
versed the gap with entire body. This learned behavior allowed the robav&rse a gap
at much higher speed in a competition on learning locomotion. The experimeititgsfo
paper were conducted only on the robot simulator.

jump straight forward and not to the side, and not to fall over. The easttfunction is:

d
e = Tl +ryawt Z (a1f3+0.52, 6] 6) (3 = 1.e— 6,2, = 1.e—8),
i=
100x (|rolly] —0.3)?, if (|roll¢| > 0.3)
Froll = .
0, otherwise

100+ (Jyaw| — 0.1)2, if (Jyaw| > 0.1)
fyaw = )
0, otherwise

@, = 5000Qgoal—Xnose?,

whereroll ,yaware the roll and yaw angles of the robot’s body, apgdcis the position of the front
tip (the “nose”) of the robot in the forward direction, which is the directionands thegoal. The
multipliers for each reward component were tuned to have a balancedicdlad all terms. Ten
learning trials were performed initially for the first parameter update. Thegaeials were kept, and
five additional new trials were performed for the second and all sules¢gpdates. Essentially, this
method performs importance sampling, as the rewards for the 5 trials in mem@yeveomputed
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Figure 5: Sequence of images from the simulated robot dog jumping ovenadap. Top: before
learning. Bottom: After learning. While the two sequences look quite similar diréte
glance, it is apparent that in the 4th frame, the robot’s body is significaighehin the
air, such that after landing, the body of the dog made about 15cm movarfbprogress
as before. In particular, the entire robot’'s body comes to rest on thesitieeof the gap,
which allows for an easy transition to walking. In contrast, before learrmgrobot’s
body (and its hind legs) are still on the right side of the gap, which doeallost for a
successful continuation of walking.

with the latest parameter vectors. A total of 100 trials was performed pelanthten runs were
collected for computing mean and standard deviations of learning curves.

Figure 4 illustrates that after about 30 trials (i.e., 5 updates), the perfemadrthe robot was
converged and significantly improved, such that after the jump, almost tine kady was lying on
the other side of the gap. Figure 4 captures the temporal performanceduanse of snapshots of
the robot. It should be noted that applyiRtf was algorithmically very simple, and manual tuning
only focused on generated a good cost function, which is a diffeesetirch topic beyond the scope
of this paper.

6. Discussion

This paper derived a more general version of stochastic optimal cawitiopath integrals, based
on the original work by Kappen (2007) and Broek et al. (2008). Tderkesults were presented in
Table 1 and Section 2.5, which considered how to compute the optimal comralgyeneral class
of stochastic control systems with state-dependent control transition m@an&.important class
of these systems can be interpreted in the framework of reinforcemeninigavith parameterized
policies. For this class, we derived Policy Improvement with Path IntegPaf3 &s a novel algo-
rithm for learning a parameterized polid9l? inherits its sound foundation in first order principles
of stochastic optimal control from the path integral formalism. It is a probaibilisarning method
without open algorithmic tuning parameters, except for the exploration.nbiseur evaluations,
PI? outperformed gradient algorithms significantly. It is also numerically simpldrias easier
cost function design than previous probabilistic RL methods that requiténimaediate rewards
are pseudo-probabilities. The similarity®F with algorithms based on probability matching indi-
cates that the principle of probability matching seems to approximate a stochatgt@locontrol
framework. Our evaluations demonstrated Rkt can scale to high dimensional control systems,
unlike many other reinforcement learning systems.

Some issues, however, deserve more detailed discussions in the foll@vagyaphs.
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6.1 The SimplificationAR™* = Z¢

In order to obtain linear™® order differential equations for the exponentially transformed HJB-equa
tions, the simplificatioMR~! = S¢ was applied. Essentially, this assumption couples the control
cost to the stochasticity of the system dynamics, that is, a control with higdnearwill have rela-
tively small cost, while a control with low variance will have relatively hightcdsis assumption
makes intuitively sense as it would be mostly unreasonable to attribute a lagtdbcan unreliable
control component. Algorithmically, this assumption transforms the Gaussiualpitity for state
transitions into a quadratic command cost, which is exactly what our immediatedréuvection
postulated. Future work may allow removing this simplification by applying géinedaversions

of the Feynman-Kac Lemma.

6.2 Model-based, Hybrid, and Model-free Learning

Stochastic optimal control with path integrals makes a strong link to the dynantensys be
optimized—indeed, originally, it was derived solely as model-based methothig\saper demon-
strated, however, this view can be relaxed. The roll-outs, neededrguuting the optimal controls,
can be generated either from simulating a model, or by gathering expefientan actual system.
In the latter case, only the control transition matrix of the model needs berkrsowh that we obtain
a hybrid model-based/model-free method. In this paper, we even wenefuamd interpreted the
stochastic dynamic system as a parameterized control policy, such thabwekige of the model
of the control system was needed anymore—that is, we entered a meddbdrning domain. It
seems that there is a rich variety of ways how the path integral formalismecasda in different
applications.

6.3 Rules of Cost Function Design

The cost functions allowed in our formulations can have arbitrary state lsosneed quadratic
command cost. This is somewhat restrictive, although the user can be fiexitiat is defined as
a command. For instance, the dynamic movement primitives (30) used in thisqaeplee written

in two alternative ways:

7z = fi+9 (0+%),

%'zt = [of f] ([ 2 }m)

where the new noise vectérhas one additional coefficient. The second equation tfeatsanother
basis function whose parameter is constant and is thus simply not updatesj.wie added; to the
command cost instead of treating it as a state cost.

We also numerically experimented with violations of the clean distinction betwetn atd
command cost. Equation (36) could be replaced by a cost term, which ibimraigyr function of
state and command. In the end, this cost term is just used to differentiate févemdifroll-outs
in a reward weighted average, similarly as in Peters and Schaal (2008d&aeber and Peters
(2008). We noticed in several instances Akt continued to work just fine with this improper cost
formulation.
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Again, it appears that the path integral formalism andrttfealgorithm allow the user to exploit
creativity in designing cost functions, without absolute need to adhefectlg to the theoretical
framework.

6.4 Dealing with Hidden State

Finally, it is interesting to consider in how f&? would be affected by hidden state. Hidden state
can either be of stochastic or deterministic nature, and we consider higde®as adding additional
equations to the system dynamics (3). Section 2.3 already derived thahotetic hidden states

drop out of theP1? update equations—these states of the system dynamics were termed as “ non-
directly actuated” states.

More interesting are hidden state variables that have stochastic diffémsi@tions, that is,
these equations are uncontrolled but do have a noise term and a worer@sponding coefficient
in G; in Equation (3), and these equations are coupled to the other equationghthheir passive
dynamics. The noise term of these equations would, in theory, contribats terEquation (36),
but given that neither the noise nor the state of these equations argaiileewe will not have the
knowledge to add these terms. However, as long as the magnitude of tmaséstemall relative to
the other terms in Equation (36))2 will continue to work fine, just a bit sub-optimally. This issue
would affect other reinforcement learning methods for parameteriziidgsin the same way, and
is not specific tdPI?.

6.5 Arbitrary States in the Cost Function

As a last point, we would like to consider which variables can actually entarastefunctions for
PI2. The path integral approach prescribes that the cost function nebdsatfunction of the state
and command variables of the system equations (3). It should be empghtszéhe state cosg
can be any deterministic function of the state, that is, anything that is preldi¢taim knowing the
state, even if we do not know the predictive function. There is a lot oitflity in this formulation,
but itis also more restrictive than other approaches, for example, likeygphclients or the POWER
algorithm, where arbitrary variables can be used in the cost, no matter whietlyeare states or
not.

We can think of any variable that we would like to use in the cost as havingraspmnding
differential equation in the system dynamics (3), that is, we simply add thersgbles as state
variables, just that we do not know the analytical form of these equatiéssin the previous
section, it is useful to distinguish whether these states have deterministicbastic differential
equations.

If the differential equation is deterministic, we can cover the case with theatiens from
Section 2.3, that is, we consider such an equation as uncontrolled deténwifisrential equation
in the system dynamics, and we already know that we can use its state in theitbosit any
problems as it does not contribute to the probability of a roll-out.

If the differential equation is stochastic, the same argument as in the pseséation applies,
that is, the (unknown) contribution of the noise term of this equation to theregiated cost (36)
needs to be small enough fBI? to work effectively. Future work and empirical evaluations will
have to demonstrate when these issues really matter—so far, we haveoohtned problems in
this regard.
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7. Conclusions

The path integral formalism for stochastic optimal control has a very integepotential to dis-

cover new learning algorithms for reinforcement learning. Pltealgorithm derived in this paper
for learning with parameterized policies demonstrated a surprisingly gaddrpance, literally

without any need for manual tuning of the parameters of the algorithm. Welafsonstrated that
the algorithm scales well into very high dimensional domains that were psdyibardly approach-
able for reinforcement learning. Future work will thus allow us to focus hmmore on machine
learning algorithms for cost function design, as the algorithmic componentg déalning algo-

rithm seem to be able to move towards a “black box” character.
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Appendix A.

AppendixA contains the lemma&al and A2 and one theorem. The theorem provides the main
result of the generalized path integral control formalism expressed&)y (19), (20). Its proof is
based on results proven in the lemnfels and A2. In appendixB we provide the Feynman-Kac
formula and we sketch the corresponding proof.

Lemma 1 : The optimal control solution to the stochastic optimal control problem essed by
(2),(2),(3) and (4) is formulated as:

= im [—Rth(iC)T/f’(Ti)Dxt(.C)é(Ti)dTi

~ o exp(—38T))
Where p(TI) - feXp(—%Aé(Ti))NdTi
a path function defined aS(t;) = S(1i) + %z'j\':jllog|Htj| that satisfies the following condition
limato f exp(—+ (1)) dt € ¢ for any sampled trajectory starting from state. Moreover the
termHy, is given byH;, = Gt(J.C)R‘let(jc)T while the term &) is defined according to

is a path dependent probability distribution. The teé(rri) is

N—1 N-1 x(© _y(©
S =@t 3 @ty 3 -
Proof The optimal controls at the state is expressed by the equation= —R1G;, Uy, Vy- Due
to the exponential transformation of the value functign= —AlogV;, the equation of the optimal
controls is written as:
U = )\R_th. w
i Ty,
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In discrete time the optimal control is expressed as follows:

O W
u; = lim [ AR7IG] :
dt—0 ' LIJ(dt)

t

By using equation (17) and substitutiig?? (x;,t) we have:

= lim ()\RlG;r DXti feXp(—)l\Z(ri))dTi> |
dt—0 " Jexp(—3Z(T))dy

Substitution of the ternZ(1;) results in the equation:

O, S exp(— (1) — 205 log (2rith) ) i
AR 1G| : .
exp(~£8(1) — 2% og (2ruith) ) i

Next we are using standard properties of the exponential function twatde

. = lim
dt—0

dt—0

Ox, [fexp(—%é(n))exp( AN |0g(2T[dt)\)>dT|])

g = lim [ ARIG] -
Jexp(—151)) exp( Iog(ZT[dt)\)>dri

The term exp(—% Iog(ZT[dt)\)> does not depend on the trajectarytherefore it can be taken
outside the integral as well as outside the gradient. Thus we will have that:

—— exp( Iog(2nth)> Ox, [/ exp(—38())dt]
t exp( (N Dl |og(2Trdt)\)) Jexp(—1S(ti))dr; .
The constant term drops from the hominator and denominator and thuswerite
Oy, [ exp(—3S(n))dr
Jexp(—1S(ti))dr; '

Under the assumption that term e(xp%é(ri))dri is continuously differentiable ir; anddt we
can change order of the integral with the differentiation operations. nergéforCy [ f(X,y)dy =
J Oxf(x,y)dy to be true,f(x,t) should be continuous iy and differentiable irx. Under this as-
sumption, the optimal controls can be further formulated as:

SOy exp(—%é(ri))dri

" Jexp(—i§T))dy

Application of the differentiation rule of the exponent results in:

167 Jexp(— %é(Ti))Dfn (—xS(1i)) dr;
Jexp(—1S(1))dr;

= lim
dt—0

Uy = lim ()\R ach
dt—0 !

ARIG

Uy = lim
dt—0

= lim |AR™

dt—0
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The denominator is a function & the current state and thus it can be pushed inside the integral
of the nominator:

)\Rfleili' eexp(_l)%é(.[i)) < S(T )> dTi] )

exp( ;3 S(Ti))
Jexp(—}S(T))dT,

o= g, PR ot (<350 ) o

Further simplification will result in:

By defining the probabilityp {Tj) = -the expression above can be written as:

= lim [—R1Gg/ﬁ(ri)DXti§(Ti)dri].

dt—0

We know that the control transition matrix has the fc@fb(t,) =[0T Gc(xxti)T}. In addition

the partial derivativel,, S(t;) can be written agly, S(tj)" = [0, §( )" O S(1))T]. By using
i 1 tj

these equations we will have that:

O, S(Ti)
= J{TO (—Rl[OT Gt(iC)T]/ﬁ(TO) ! 0 t(Zc))é(Ti) ] dTi> .

The equation above can be written in the form:

0, mS(Ti)
uhﬁg(dr R [ b [égU]%)

JSP(ti)-O0 t é( T;)dr;
JB(t)-O c>S(T)dT| '

or

U, = lim (—[0T R1G{9T
dt—0

Therefore we will have the result

dt—0

Uy = lim [—R 1T / (v)0, S(T)d'[}

Lemma 2 : Given the stochastic dynamics and the cost in (1),(2),(3) and(4) thdiggraof the
path functioné(ri) with respect to the directly actuated part of the sb&{féis formulated as:

: &rV) — _H-1(c@©s _
C“TO <|:|Xt(ic)S(T|)> - Hti (Gti Eti bti>
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.
where the function (x;,) defined as\H (x, )P, with H, = G R-1G(® " and the quantityd;, € 0'*2
is expressed as:

trace( Hg ! 0 Hy
i

trace( Hy ! 0 @ Hy
i

trace(Htil 6X<c|>Hti>
i

Proof
We are calculating the termx(c>§(To) . More precisely we have shown that
to

_ N-1 N-1 y(© (©) A

Xij1 — Xy (©)2 p
S(Ti):(p(N—F th]dH-é z || dt _ftj ||Hrjdt+§ ZIOg‘HtJ|
=i = =

To limit the length of our derivation we introduce the notatign= O(tTJ. hgl a; anday, =
© _,(©
<xt(jc+)l — xt(jc) — ft(jc)dt> and it is easy to show thﬁt% - ft(jc) ||ﬁtj dt= Jw, and therefore we will

have:

N 1 N1 AN-1
S(Ti) :(&N—i_ﬂ JZIVIJ +ZOQtJdt+§ JZI IOg’Htj‘.

In the analysis that follows we provide the derivative of the 1th, 2th andetth of the cost
function. We assume that the cost of the state during the time ho@gea 0. In cases that this
is not true then the derivativ@x(c> z{i“ Q;dt needs to be found as well. By calculating the term

G

0o §(T0) we can find the local controls(t;). It is important to mention that the derivative of the
to

path cosiS(1;) is taken only with respect to the current stafe
The first term is:

Dxl(ic) ((p(N) =0.

DERIVATIVE OF THE 2TH TERM [, (0 [ o7 Y{-1 W] OF THE COSTS(Ti).
4

The second term can be found as follows:

1 N-1
|:| C e .
%7 | 2dt J;y“
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The operatoD ) is linear and it can massaged inside the sum:

Terms that do not depend oxélc) drop and thus we will have:

1

2dt X<c) Y-

Substitution of the parametgy = ortTi Hy L ay, will result in:

1 _
0 lo] Hta).

By making the substitutiof, = Hy* a;, and applying the rulél (u(x)Tv(x)) = O (u(x)) v(x) +
O(v(x))u(x) we will have that:

1

ﬂ |:[|Xt(lc)ati Bti + DXt(-C) Bti ati:| . (40)

Next we find the derivative aofi,:
O g0y =0 (o X(C) —X(C) —f (X-)dt
&f i &f tiv1 t; c\AY; .
and the result is

Dxt(f)ati =~y — Dxl(ic) ft(.c)d'[.

We substitute back to (40) and we will have:

1
2dt[ <|IXI+D(C)ft dt) By, + L )Bti Qy | -

1
Zdt (|I><I + D ft, dt) Bt + Dxt(iC)Bti ag .

1 <N=1,\: .
After some algebra the result Efxg_c) (2—0It Yiq yti) is expressed as:

1 1
“ogt P2 X Bt, 2dt Xt<ic> B, -
The next step now is to find the limit of the expression abowdtas 0. More precisely we will
have that:

1

. 1
fim = o B 50

i Bt, 2dt Xt(ic)Bti g | -

3172



A GENERALIZED PATH INTEGRAL CONTROL APPROACH TOREINFORCEMENTLEARNING

!
LIMIT OF THE FIRST SUBTERM: —5g; By

We will continue our analysis by finding the limit for each one of the 3 terms @b®d¥e limit of
the first term is calculated as follows:

. 1 1
am <_2dt Bti) - dIt—>0<2d'[ Hy? t‘>

1
=2 H?! lima
2 0 grso !

S R R CEENCN G
=~ d'!To((X“H g )

LIMIT OF THE SECOND SUBTERM: —%D ft. By

The limit of the second term is calculated as follows:

The limit of the term liny;_,0 0y, is derived as:

lim (x( © Xt(. ) —fc(xt,)dt> = I|m (xt(ticzdt —xt(ic)) —dlmofc(xti)dt: 0-0=0.

dt—0 tit1

.1
LIMIT OF THE THIRD SUBTERM: 55 DXI(iC)Bti ol

Finally the limit of the third term can be found as:

. 1
dI{TO <2dt DXI(iC) B’[i ati> =
1
= lim D _ Im — a; | =
d{—> ti BI' I (Zdt t')

. 1
= lim O B, —dI{TO ((xt(i?l—xt(f))m—ft(f)).

dt—0 Xt

We substitutdd, = H; ' a;, and write the matriH; * in row form:
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1 1
= li -1 =i © JoyLt o) _
_dI{TODXt(iC) (Hti ati) Z(J{TO ((Xti Xti )dt fti >—
HY
HZ
I H . 1 . (C) (C) 1 (C)
_dIEToDXff) _ o EdI:To <(Xti+1_xti ) dt —fy
H
i Ht(il)’T o i
-T
Ht(i2> ay ) 1
I H . - (C)_ (C)i_(c)
Simoe | [Bdm (g n).
L Ht(ilrT ay 1

o ' 1. CEENCN G
= dm, . 24, <(Xti+1 ARFaLE

— i - © oyl <o
= ' am <(Xt”1 g )

)T URAY
Dx(c) Hy, ay + DX(C)ati Hy
G J

We can split the matrix above into two terms and then we pull out the tegmend U « o,
1
respectively :
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T T
ngﬂ4n i Hég T
2)” -7
Dxt(ic) Y Hy 1 1
— i T . . T = © )+ «(0)
_C!IIZTO A ) + . |:leic)ati ZJ{TO <(Xti+1 Xy; )dt fti )
- -
0 eHY Hy
L X ] B -
=lim (a] O H +H O 00 Lim (x\© —x(.c))i—f(.c)
dtso\ 0 xSl b T ] 2o \ Vet T g

1 1
—( lim (o -1 -1 T = im (© _«(0)
a <dILO (a“) Dxt(f)Hti +Hy J{To <|:|Xt(i6)ati>> 2d|{ﬁ0 <(Xti“ X )dt fi >

Since limy_,0 (0 ) = 011 and limy0 <Dx<c)a{> = —Ij the final result is expressed as fol-
1
lows

1 1
im ~myt Lim (@ oy L@
JLO(ZdtDX(CBt at‘) = 2(1'{%0(()("“ AR >

After we have calculated the 3 sub-terms, the 2th term of the of the degaftppath cos§(1,)
can be expressed in the following form:

1 N1 L . o1 o
DX‘. (2)\(:“: Z yt) - _Hti J{To <(Xti+1 — Xy )a _fti )> .

DERIVATIVE OF THE FOURTHTERM [, (¢ (% zﬂ-\‘:’illog\Htj |) OF THE COSTY(T;).
i

The analysis for the 4th term is given below:

A
Dx§i°> ( Z log |Hy;]| ) =0 N log[Hy |-

(cl) (c2) (cl)

If we assume thatt(oc) = [%, 7%, --.-%, '] and take the derivative with respect to each element we
will have
A Al
axt(ici) (2|OgHti|> = EW axt(ici)’Hti|.

A Al 9
0, <2I091Hti\> = 2H] |Hy| trace(Hti 'ax§i°i>Hti>~

A A _
axt(ici) (2 IOg’Hti ‘) = 2'[I‘ace<Hti 1 aX((iCi)Hti> .
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Where we make used of the identiglet(A) = det(A)Tr (A"0A). The result is expressed as:

trace( Hy* 0« Hy,
it

trace Hti_l ax(cz)Hti
1

A A
Dxt(ic) <2 IOg|HtI‘) = E

trace(Hti1 ax(cI)Hti)
tj |

or in a more compact form:

A _
Dxf.‘” <2|0g|Hti‘> =Hy 1bti'

whereb(x; ) = AH (x;, )@y, and the quantitgp, € 0'*1 is defined as:

trace( Hy " 0, e Hy
i

trace( Hy ' 0 o Hy,
1
Py == : : (41)

trace(Hti‘1 6X<c|>Hti)
G

Since we computed all the terms of the derivative of the path $as) and after putting all the
terms together we have the result expressed as follows:

- N W CHENCN G
i (0 < g, (0 1) ).

By taking into account the fact that Iy, ((xt(ii)1 —x{d — ft(ic)> = G%, we get the follow-
ing final expression:

dt—0

lim (Dx§i°>§‘(Ti)> = _Hﬂl <Gt(ic>€ti — bti> .

Theorem 3 : The optimal control solution to the stochastic optimal control problem exmed
by (1),(2),(3),(4) is formulated by the equation that follows:

= lim [ B(x) u () dr
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exp(—1S(T))
Jexp(—3S(Ti))dT;

-1

fined asu (1)) = R-1G{°7 (Gt(iC)R—th(iC)T) (Gt(ic)sti —bti) are the local controls of each sam-
pled trajectory starting from statex;,. The terms g and bt, are defined asg;, =
((xt(i?l —x L —ft(i°)> andb(x;,) = AH (x,)®;, with H, = G{"R-1G| 9" and @, given in (41).

wherefp(1;) = is a path depended probability distribution and the temundt;) de-

Proof
To prove the theorem we make use of the Lemma 2 and we subiﬁ;uié(n) in the main
1
result of Lemma 1. More precisely from lemma Al we have that:

_J{To< RG /p JHy <ngic>§(Ti)> dri>.

The termsR~1 and G, can be pushed insight the integral since they are independeqt=of
(X1,X2,...,Xn). Thus we have the expression:

st (/p RTGTH ! (ngiwé(ﬁ)) dTi> ,

p = | ) dT;
= fim, [ B(%) :
where the local controIB(Ldt) (Ti) are given as follows:

ul® () = R_th(ic)THti_lel@ ).

After applying the limit, and making use of the result in Lemma 2 the equation abaese is
pressed as:

Uy, = / P (Ti) UL (X, 1, % )dTi,
where the local controls, (x;. ,,X;;) are given as follows:
. 1
UL(T)) = UL (X1, %) = RTIGIITH (J:To <(Xt(ii)1 - Xt(iC))a - ft(iC)> - bn) :

or in a simpler form:

UL (X, %) = RIGETH H (Gegy —by).

By substituting withH (x,) = G{” R-1G{°T we have the final result:

-1
UL(Ti) _ UL(tirlaXti) _ R_th(iC)T <Gt(iC)R—th(iC)T> (Gt(iC)eti _ bti> )
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Appendix B.

Theorem 4 : Let us assume thak satisfies the SDE« = f(x,t) + G(x)e(t). Then W(x,tp) =

1
W(X,to,tn) = E (W(x,tN) eho *%q(x)dr> if and only if W(x,t) satisfies the backward Kolmogorov
PDE:

1 1
—oW = AL + 1 (OW) + étrace((Dxxtpt)Gtzgc;{),

with boundary condition:
1
WY(x,tn) = exp(—}\(p(x(tN))> :

Proof Given thatx satisfies the SDEK = f(x,t) + G(x)g(t) andW(x,t) satisfies the PDE above,
application of Ito lemma (Dksendal, 2003) to functioft) = W(x,t) efo =909 |eads to the final
1
result¥(x,to) = E (‘P(X,IN) efio *%q(x)dT) This result is the solution of the linear PDE.
|
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