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Abstract
With the goal to generate more scalable algorithms with higher efficiency and fewer open parame-
ters, reinforcement learning (RL) has recently moved towards combining classical techniques from
optimal control and dynamic programming with modern learning techniques from statistical esti-
mation theory. In this vein, this paper suggests to use the framework of stochastic optimal control
with path integrals to derive a novel approach to RL with parameterized policies. While solidly
grounded in value function estimation and optimal control based on the stochastic Hamilton-Jacobi-
Bellman (HJB) equations, policy improvements can be transformed into an approximation problem
of a path integral which has no open algorithmic parameters other than the exploration noise. The
resulting algorithm can be conceived of as model-based, semi-model-based, or even model free,
depending on how the learning problem is structured. The update equations have no danger of
numerical instabilities as neither matrix inversions nor gradient learning rates are required. Our
new algorithm demonstrates interesting similarities withprevious RL research in the framework
of probability matching and provides intuition why the slightly heuristically motivated probability
matching approach can actually perform well. Empirical evaluations demonstrate significant per-
formance improvements over gradient-based policy learning and scalability to high-dimensional
control problems. Finally, a learning experiment on a simulated 12 degree-of-freedom robot dog
illustrates the functionality of our algorithm in a complexrobot learning scenario. We believe that
Policy Improvement withPath Integrals (PI2) offers currently one of the most efficient, numeri-
cally robust, and easy to implement algorithms for RL based on trajectory roll-outs.
Keywords: stochastic optimal control, reinforcement learning, parameterized policies

1. Introduction

While reinforcement learning (RL) is among the most general frameworks of learning control to cre-
ate truly autonomous learning systems, its scalability to high-dimensional continuous state-action
systems, for example, humanoid robots, remains problematic. Classical value-function based meth-
ods with function approximation offer one possible approach, but function approximation under the
non-stationary iterative learning process of the value-function remains difficult when one exceeds
about 5-10 dimensions. Alternatively, direct policy learning from trajectory roll-outs has recently
made significant progress (Peters, 2007), but can still become numerically brittle and full of open
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tuning parameters in complex learning problems. In new developments, RL researchers have started
to combine the well-developed methods from statistical learning and empirical inference with clas-
sical RL approaches in order to minimize tuning parameters and numerical problems, such that ulti-
mately more efficient algorithms can be developed that scale to significantly morecomplex learning
system (Dayan and Hinton, 1997; Koeber and Peters, 2008; Peters and Schaal, 2008c; Toussaint
and Storkey, 2006; Ghavamzadeh and Yaakov, 2007; Deisenroth et al., 2009; Vlassis et al., 2009;
Jetchev and Toussaint, 2009).

In the spirit of these latter ideas, this paper addresses a new method of probabilistic reinforce-
ment learning derived from the framework of stochastic optimal control and path integrals, based on
the original work of Kappen (2007) and Broek et al. (2008). As will bedetailed in the sections be-
low, this approach makes an appealing theoretical connection between value function approximation
using the stochastic HJB equations and direct policy learning by approximating a path integral, that
is, by solving a statistical inference problem from sample roll-outs. The resulting algorithm, called
Policy Improvement withPath Integrals (PI2), takes on a surprisingly simple form, has no open
algorithmic tuning parameters besides the exploration noise, and it has numerically robust perfor-
mance in high dimensional learning problems. It also makes an interesting connection to previous
work on RL based on probability matching (Dayan and Hinton, 1997; Petersand Schaal, 2008c;
Koeber and Peters, 2008) and motivates why probability matching algorithms can be successful.

This paper is structured into several major sections:

• Section 2 addresses the theoretical development of stochastic optimal control with path in-
tegrals. This is a fairly theoretical section. For a quick reading, we would recommend Sec-
tion 2.1 for our basic notation, and Table 1 for the final results. Exposing the reader to a
sketch of the details of the derivations opens the possibility to derive path integral optimal
control solutions for other dynamical systems than the one we address in Section 2.1.

The main steps of the theoretical development include:

– Problem formulation of stochastic optimal control with the stochastic Hamilton-Jacobi-
Bellman (HJB) equation

– The transformation of the HJB into a linear PDE

– The generalized path integral formulation for control systems with controlledand un-
controlled differential equations

– General derivation of optimal controls for the path integral formalism

– Path integral optimal control applied to special cases of control systems

• Section 3 relates path integral optimal control to reinforcement learning. Several main issues
are addressed:

– Reinforcement learning with parameterized policies

– Dynamic Movement Primitives (DMP) as a special case of parameterized policies,
which matches the problem formulation of path integral optimal control.

– Derivation ofPolicy Improvement withPathIntegrals (PI2), which is an application of
path integral optimal control to DMPs.

• Section 4 discusses related work.
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• Section 5 illustrates several applications ofPI2 to control problems in robotics.

• Section 6 addresses several important issues and characteristics of RLwith PI2.

2. Stochastic Optimal Control with Path Integrals

The goal in stochastic optimal control framework is to control a stochastic dynamical system while
minimizing a performance criterion. Therefore, stochastic optimal control can be thought as a con-
strained optimization problem in which the constrains corresponds to stochastic dynamical systems.
The analysis and derivations of stochastic optimal control and path integrals in the next sections rely
on the Bellman Principle of optimality (Bellman and Kalaba, 1964) and the HJB equation.

2.1 Stochastic Optimal Control Definition and Notation

For our technical developments, we will use largely a control theoretic notation from trajectory-
based optimal control, however, with an attempt to have as much overlap as possible with the
standard RL notation (Sutton and Barto, 1998). Let us define a finite horizon cost function for a
trajectoryτi (which can also be a piece of a trajectory) starting at timeti in statexti and ending at
time1 tN

R(τi) = φtN +
∫ tN

ti
rt dt, (1)

with φtN = φ(xtN) denoting a terminal reward at timetN andrt denoting the immediate cost at time
t. In stochastic optimal control (Stengel, 1994), the goal is to find the controls ut that minimize the
value function:

V(xti ) =Vti = min
uti :tN

Eτi [R(τi)] , (2)

where the expectationEτi [.] is taken over all trajectories starting atxti . We consider the rather
general class of control systems:

ẋt = f(xt , t)+G(xt)(ut + εt) = ft +Gt (ut + εt) , (3)

with xt ∈ℜn×1 denoting the state of the system,Gt = G(xt) ∈ℜn×p the control matrix,ft = f(xt) ∈
ℜn×1 the passive dynamics,ut ∈ℜp×1 the control vector andεt ∈ℜp×1 Gaussian noise with vari-
anceΣε. As immediate cost we consider

rt = r(xt ,ut , t) = qt +
1
2

uT
t Rut , (4)

whereqt = q(xt , t) is an arbitrary state-dependent cost function, andR is the positive semi-definite
weight matrix of the quadratic control cost. The stochastic HJB equation (Stengel, 1994; Fleming
and Soner, 2006) associated with this stochastic optimal control problem is expressed as follows:

−∂tVt = min
u

(

rt +(∇xVt)
TFt +

1
2

trace
(

(∇xxVt)GtΣεGT
t

)

)

, (5)

1. If we need to emphasize a particular time, we denote it byti , which also simplifies a transition to discrete time
notation later. We uset without subscript when no emphasis is needed when this “time slice” occurs, t0 for the start
of a trajectory, andtN for the end of a trajectory.
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whereFt is defined asFt = f(xt , t)+G(xt)ut . To find the minimum, the cost function (4) is
inserted into (5) and the gradient of the expression inside the parenthesisis taken with respect to
controlsu and set to zero. The corresponding optimal control is given by the equation:

u(xt) = ut =−R−1GT
t (∇xtVt).

Substitution of the optimal control above, into the stochastic HJB (5), results inthe following
nonlinear and second order Partial Differential Equation (PDE):

−∂tVt = qt +(∇xVt)
T ft −

1
2
(∇xVt)

TGtR−1GT
t (∇xVt)+

1
2

trace
(

(∇xxVt)GtΣεGT
t

)

.

The∇x and∇xx symbols refer to the Jacobian and Hessian, respectively, of the value function
with respect to the statex, while ∂t is the partial derivative with respect to time. For notational
compactness, we will mostly use subscripted symbols to denote time and state dependencies, as
introduced in the equations above.

2.2 Transformation of HJB into a Linear PDE

In order to find a solution to the PDE above, we use a exponential transformation of the value
function:

Vt =−λ logΨt .

Given this logarithmic transformation, the partial derivatives of the value function with respect to
time and state are expressed as follows:

∂tVt =−λ
1

Ψt
∂tΨt ,

∇xVt =−λ
1

Ψt
∇xΨt ,

∇xxVt = λ
1

Ψ2
t

∇xΨt ∇xΨT
t −λ

1
Ψt

∇xxΨt .

Inserting the logarithmic transformation and the derivatives of the value function we obtain:

λ
Ψt

∂tΨt = qt −
λ

Ψt
(∇xΨt)

T ft −
λ2

2Ψ2
t
(∇xΨt)

TGtR−1GT
t (∇xΨt)+

1
2

trace(Γ) , (6)

where the termΓ is expressed as:

Γ =

(

λ
1

Ψ2
t

∇xΨt ∇xΨT
t −λ

1
Ψt

∇xxΨt

)

GtΣεGT
t .

The trace ofΓ is therefore:

trace(Γ) = λ
1

Ψ2 trace
(

∇xΨT
t GtΣεGt∇xΨt

)

−λ
1

Ψt
trace

(

∇xxΨtGtΣεGT
t

)

. (7)
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Comparing the underlined terms in (6) and (7), one can recognize that these terms will cancel
under the assumption ofλR−1 = Σε, which implies the simplification:

λGtR−1GT
t = GtΣεGT

t = Σ(xt) = Σt . (8)

The intuition behind this assumption (cf. also Kappen, 2007; Broek et al., 2008) is that, since the
weight control matrixR is inverse proportional to the variance of the noise, a high variance control
input implies cheap control cost, while small variance control inputs have high control cost. From
a control theoretic stand point such a relationship makes sense due to the fact that under a large
disturbance (= high variance) significant control authority is required tobring the system back to a
desirable state. This control authority can be achieved with corresponding low control cost inR.

With this simplification, (6) reduces to the following form

−∂tΨt =−
1
λ

qtΨt + fT
t (∇xΨt)+

1
2

trace
(

(∇xxΨt)GtΣεGT
t

)

, (9)

with boundary condition:ΨtN = exp
(

− 1
λ φtN

)

. The partial differential equation (PDE) in (9) corre-
sponds to the so called Chapman Kolmogorov PDE, which is of second orderand linear. Analytical
solutions of (9) cannot be found in general for general nonlinear systems and cost functions. How-
ever, there is a connection between solutions of PDEs and their representation as stochastic differ-
ential equation (SDEs), that is mathematically expressed by the Feynman-Kac formula (Øksendal,
2003; Yong, 1997). The Feynman-Kac formula (see appendix B) can be used to find distributions
of random processes which solve certain SDEs as well as to propose numerical methods for solving
certain PDEs. Applying the Feynman-Kac theorem, the solution of (9) is:

Ψti = Eτi

(

ΨtNe−
∫ tN
ti

1
λ qtdt

)

= Eτi

[

exp

(

−1
λ

φtN−
1
λ

∫ tN

ti
qt dt

)]

. (10)

Thus, we have transformed our stochastic optimal control problem into the approximation prob-
lem of a path integral. With a view towards a discrete time approximation, which will be needed for
numerical implementations, the solution (10) can be formulated as:

Ψti = lim
dt→0

∫
p(τi |xi)exp

[

−1
λ

(

φtN +
N−1

∑
j=i

qt j dt

)]

dτi , (11)

whereτi = (xti , .....,xtN) is a sample path (or trajectory piece) starting at statexti and the term
p(τi |xi) is the probability of sample pathτi conditioned on the start statexti . Since Equation (11)
provides the exponential cost to goΨti in statexti , the integration above is taken with respect to
sample pathsτi = (xti ,xti+1, .....,xtN). The differential termdτi is defined asdτi = (dxti , .....,dxtN).
Evaluation of the stochastic integral in (11) requires the specification ofp(τi |xi), which is the topic
of our analysis in the next section.

2.3 Generalized Path Integral Formulation

To develop our algorithms, we will need to consider a more general development of the path integral
approach to stochastic optimal control than presented in Kappen (2007) and Broek et al. (2008). In
particular, we have to address that in many stochastic dynamical systems, thecontrol transition
matrix Gt is state dependent and its structure depends on the partition of the state in directly and
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non-directly actuated parts. Since only some of the states are directly controlled, the state vector

is partitioned intox = [x(m)T x(c)
T
]T with x(m) ∈ ℜk×1 the non-directly actuated part andx(c) ∈

ℜl×1the directly actuated part. Subsequently, the passive dynamics term and thecontrol transition

matrix can be partitioned asft = [f(m)
t

T
f(c)t

T
]T with fm∈ℜk×1, fc ∈ℜl×1 andGt = [0k×p G(c)

t

T
]T

with G(c)
t ∈ℜl×p. The discretized state space representation of such systems is given as:

xti+1 = xti + fti dt+Gti

(

uti dt+
√

dtεti

)

,

or, in partitioned vector form:
(

x(m)
ti+1

x(c)ti+1

)

=

(

x(m)
ti

x(c)ti

)

+

(

f(m)
ti

f(c)ti

)

dt+

(

0k×p

G(c)
ti

)

(

uti dt+
√

dtεti

)

. (12)

Essentially the stochastic dynamics are partitioned into controlled equations in which the state
x(c)ti+1

is directly actuated and the uncontrolled equations in which the statex(m)
ti+1

is not directly actu-
ated. Since stochasticity is only added in the directly actuated terms(c) of (12), we can develop
p(τi |xi) as follows.

p(τi |xti ) = p(τi+1|xti )

= p(xtN , .....,xti+1|xti )

= ΠN−1
j=i p

(

xt j+1|xt j

)

,

where we exploited the fact that the start statexti of a trajectory is given and does not contribute
to its probability. For systems where the control has lower dimensionality than thestate (12), the
transition probabilitiesp

(

xt j+1|xt j

)

are factorized as follows:

p
(

xt j+1|xt j

)

= p
(

x(m)
t j+1
|xt j

)

· p
(

x(c)t j+1
|xt j

)

= p
(

x(m)
t j+1
|x(m)

t j
,x(c)t j

)

· p
(

x(c)t j+1
|x(m)

t j
,x(c)t j

)

∝ p
(

x(c)t j+1
|xt j

)

, (13)

where we have used the fact thatp
(

x(m)
ti+1
|x(m)

ti ,x(c)ti

)

is the Dirac delta function, sincex(m)
t j+1

can be

computed deterministically fromx(m)
t j

,x(c)t j
. For all practical purposes,2 the transition probability of

the stochastic dynamics is reduced to the transition probability of the directly actuated part of the
state:

p(τi |xti ) = ΠN−1
j=i p

(

xt j+1|xt j

)

∝ ΠN−1
j=i p

(

x(c)t j+1
|xt j

)

. (14)

Since we assume that the noiseε is zero mean Gaussian distributed with varianceΣε, where
Σε ∈ℜl×l , the transition probability of the directly actuated part of the state is defined as:3

p
(

x(c)t j+1
|xt j

)

=
1

(

(2π)l · |Σt j |
)1/2

exp

(

−1
2

w

w

w
x(c)t j+1
−x(c)t j

− f(c)t j
dt
w

w

w

2

Σ−1
t j

)

, (15)

2. The delta functions will all integrate to 1 in the path integral.
3. For notational simplicity, we write weighted square norms (or Mahalanobis distances) asvTMv = ‖v‖2M .
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where the covarianceΣt j ∈ ℜl×l is expressed asΣt j = G(c)
t j

ΣεG(c)
t j

T
dt. Combining (15) and (14)

results in the probability of a path expressed as:

p(τi |xti ) ∝
1

ΠN−1
j=i

(

(2π)l‖Σt j |
)1/2

exp

(

−1
2

N−1

∑
j=1

w

w

w
x(c)t j+1
−x(c)t j

− f(c)t j
dt
w

w

w

2

Σ−1
t j

)

.

Finally, we incorporate the assumption (8) about the relation between the control cost and the vari-

ance of the noise, which needs to be adjusted to the controlled space asΣt j = G(c)
t j

ΣεG(c)
t j

T
dt =

λG(c)
t j

R−1G(c)
t j

T
dt = λHt j dt with Ht j = G(c)

t j
R−1G(c)

t j

T
. Thus, we obtain:

p(τi |xti ) ∝
1

ΠN−1
j=i

(

(2π)l |Σt j |
)1/2

exp



− 1
2λ

N−1

∑
j=i

w

w

w

w

w

x(c)t j+1
−x(c)t j

dt
− f(c)t j

w

w

w

w

w

2

H−1
t j

dt



.

With this formulation of the probability of a trajectory, we can rewrite the the path integral (11)
as:

Ψti = lim
dt→0

∫ exp



− 1
λ



φtN +∑N−1
j=i qt j dt+ 1

2 ∑N−1
j=i

w

w

w

w

x(c)t j+1
−x(c)t j

dt − f(c)t j

w

w

w

w

2

H−1
t j

dt









ΠN−1
j=i

(

(2π)l/2|Σt j |1/2
) dτ(c)i

= lim
dt→0

∫
1

D(τi)
exp

(

−1
λ

S(τi

)

dτ(c)i , (16)

where, we defined

S(τi) = φtN +
N−1

∑
j=i

qt j dt+
1
2

N−1

∑
j=i

w

w

w

w

w

x(c)t j+1
−x(c)t j

dt
− f(c)t j

w

w

w

w

w

2

H−1
t j

dt,

and
D(τi) = ΠN−1

j=i

(

(2π)l/2|Σt j |1/2
)

.

Note that the integration is overdτ(c)i =
(

dx(c)ti , .....,dx(c)tN

)

, as the non-directly actuated states

can be integrated out due to the fact that the state transition of the non-directly actuated states is
deterministic, and just added Dirac delta functions in the integral (cf. Equation (13)). Equation (16)
is written in a more compact form as:

Ψti = lim
dt→0

∫
exp

(

−1
λ

S(τi)− logD(τi)

)

dτ(c)i

= lim
dt→0

∫
exp

(

−1
λ

Z(τi)

)

dτ(c)i , (17)

whereZ(τi) = S(τi)+λ logD(τi). It can be shown that this term is factorized in path dependent
and path independent terms of the form:
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Z(τi) = S̃(τi)+
λ(N− i)l

2
log(2πdtλ) ,

whereS̃(τi) = S(τi) +
λ
2 ∑N−1

j=i log|Ht j |. This formula is a required step for the derivation of

optimal controls in the next section. The constant termλ(N−i)l
2 log(2πdtλ) can be the source of

numerical instabilities especially in cases where fine discretizationdt of stochastic dynamics is
required. However, in the next section, and in a great detail in AppendixA, lemma 1, we show how
this term drops out of the equations.

2.4 Optimal Controls

For every moment of time, the optimal controls are given asuti = −R−1GT
ti (∇xti

Vti ). Due to the
exponential transformation of the value function, the equation of the optimal controls can be written
as

uti = λR−1Gti

∇xti
Ψti

Ψti
.

After substitutingΨti with (17) and canceling the state independent terms of the cost we have:

uti = lim
dt→0






λR−1GT

ti

∇
x(c)ti

(∫
e−

1
λ S̃(τi)dτ(c)i

)

∫
e−

1
λ S̃(τi)dτ(c)i






,

Further analysis of the equation above leads to a simplified version for the optimal controls as

uti =
∫

P(τi)uL (τi)dτ(c)i , (18)

with the probabilityP(τi) and local controlsuL (τi) defined as

P(τi) =
e−

1
λ S̃(τi )

∫
e−

1
λ S̃(τi )dτi

(19)

uL (τi) =−R−1G(c)
ti

T lim
dt→0

(

∇
x(c)ti

S̃(τi)

)

.

The path cost̃S(τi) is a generalized version of the path cost in Kappen (2005a) and Kappen(2007),
which only considered systems with state independent control transition4 Gti . To find the local
controlsuL (τi) we have to calculate the limdt→0 ∇

x(c)ti

S̃(τi). Appendix A and more precisely lemma

2 shows in detail the derivation of the final result:

lim
dt→0

(

∇
x(c)ti

S̃(τi)

)

=−H−1
ti

(

G(c)
ti εti −bti

)

,

where the new termbti is expressed asbti = λHti Φti andΦti ∈ℜl×1 is a vector with thej th element
defined as:

(Φti ) j =
1
2

trace

(

H−1
ti

(

∂
[x(c)ti

] j
Hti

))

.

4. More precisely ifG(c)
ti = G(c) then the termλ

2 ∑N−1
j=i log|Ht j | disappears since it is state independent and it appears in

both nominator and denominator in (19). In this case, the path cost is reduced toS̃(τi) = S(τi).
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The local control can now be expressed as:

uL(τi) = R−1G(c)
ti

TH−1
ti

(

G(c)
ti εti −bti

)

,

By substitutingHti = G(c)
ti R−1G(c)

ti
T in the equation above, we get our main result for the local

controls of the sampled path for the generalized path integral formulation:

uL(τi) = R−1G(c)
ti

T
(

G(c)
ti R−1G(c)

ti
T
)−1(

G(c)
ti εti −bti

)

. (20)

The equations in boxes (18), (19) and (20) form the solution for the generalized path integral
stochastic optimal control problem. Given that this result is of general value and constitutes the
foundation to derive our reinforcement learning algorithm in the next section, but also since many
other special cases can be derived from it, we summarized all relevant equations in Table 1.

TheGiven components of Table 1 include a model of the system dynamics, the cost function,
knowledge of the system’s noise process, and a mechanism to generate trajectoriesτi . It is important
to realize that this is amodel-basedapproach, as the computations of the optimal controls requires
knowledge ofεi . εi can be obtained in two ways. First, the trajectoriesτi can be generated purely
in simulation, where the noise is generated from a random number generator. Second, trajectories
could be generated by a real system, and the noiseεi would be computed from the difference be-
tween the actual and the predicted system behavior, that is,G(c)

ti εi = ẋti − ˆ̇xti = ẋti − (fti +Gti uti ).
Computing the predictioṅ̂xti also requires a model of the system dynamics.

Previous results in Kappen (2005a), Kappen (2007), Kappen (2005b) and Broek et al. (2008)
are special cases of our generalized formulation. In the next section weshow how our generalized
formulation is specialized to different classes of stochastic dynamical systems and we provide the
corresponding formula of local controls for each class.

2.5 Special Cases

The purpose of this section is twofold. First, it demonstrates how to apply the path integral approach
to specialized forms of dynamical systems, and how the local controls in (20)simplify for these
cases. Second, this section prepares the special case which we will need for our reinforcement
learning algorithm in Section 3.

2.5.1 SYSTEMS WITH ONE DIMENSIONAL DIRECTLY ACTUATED STATE

The generalized formulation of stochastic optimal control with path integrals in Table 1 can be
applied to a variety of stochastic dynamical systems with different types of control transition matri-
ces. One case of particular interest is where the dimensionality of the directlyactuated part of the
state is 1D, while the dimensionality of the control vector is 1D or higher dimensional. As will be
seen below, this situation arises when the controls are generated by a linearly parameterized func-
tion approximator. The control transition matrix thus becomes a row vectorG(c)

ti = g(c)Tti ∈ ℜ1×p.
According to (20), the local controls for such systems are expressed as follows:

uL(τi) =
R−1g(c)ti

g(c)Tti R−1g(c)ti

(

g(c)Tti εti −bti

)

.
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• Given:

– The system dynamicṡxt = ft +Gt (ut + εt) (cf. 3)

– The immediate costrt = qt +
1
2uT

t Rut (cf. 4)

– A terminal cost termφtN (cf. 1)

– The varianceΣε of the mean-zero noiseεt

– Trajectory starting atti and ending attN: τi = (xti , .....,xtN)

– A partitioning of the system dynamics into(c) controlled and(m) uncontrolled equa-
tions, wheren= c+m is the dimensionality of the statext (cf. Section 2.3)

• Optimal Controls :

– Optimal controls at every time stepti : uti =
∫

P(τi)u(τi)dτ(c)i

– Probability of a trajectory:P(τi) =
e−

1
λ S̃(τi )

∫
e−

1
λ S̃(τi )dτi

– Generalized trajectory cost:̃S(τi) = S(τi)+
λ
2 ∑N−1

j=i log|Ht j | where

∗ S(τi) = φtN +∑N−1
j=i qt j dt+ 1

2 ∑N−1
j=i

w

w

w

w

x(c)t j+1
−x(c)t j

dt − f(c)t j

w

w

w

w

2

H−1
t j

dt

∗ Ht j = G(c)
t j

R−1G(c)
t j

T

– Local Controls:uL(τi) = R−1G(c)
ti

T
(

G(c)
ti R−1G(c)

ti
T
)−1(

G(c)
ti εti −bti

)

where

∗ bti = λHti Φti

∗ [Φti ] j =
1
2trace

(

H−1
ti

(

∂
[x(c)ti

] j
Hti

))

Table 1: Summary of optimal control derived from the path integral formalizm.

Since the directly actuated part of the state is 1D, the vectorx(c)ti collapses into the scalarx(c)ti

which appears in the partial differentiation above. In the case thatg(c)ti does not depend onx(c)ti , the

differentiation with respect tox(c)ti results to zero and the the local controls simplify to:

uL(τi) =
R−1g(c)ti g(c)Tti

g(c)Tti R−1g(c)ti

εti .

2.5.2 SYSTEMS WITH PARTIALLY ACTUATED STATE

The generalized formula of the local controls (20) was derived for the case where the control transi-
tion matrix is state dependent and its dimensionality isG(c)

t ∈ℜl×p with l < n andp the dimension-
ality of the control. There are many special cases of stochastic dynamical systems in optimal control
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and robotic applications that belong into this general class. More precisely, for systems having a
state dependent control transition matrix that is square (G(c)

ti ∈ ℜl×l with l = p) the local controls
based on (20) are reformulated as:

uL(τi) = εti −G(c)
ti

−1
bti . (21)

Interestingly, a rather general class of mechanical systems such as rigid-body and multi-body
dynamics falls into this category. When these mechanical systems are expressed in state space
formulation, the control transition matrix is equal to rigid body inertia matrixG(c)

ti = M(θti ) (Sci-
avicco and Siciliano, 2000). Future work will address this special topic ofpath integral control for
multi-body dynamics.

Another special case of systems with partially actuated state is when the control transition matrix
is state independent and has dimensionalityG(c)

t = G(c) ∈ ℜl×p. The local controls, according to
(20), become:

uL(τi) = R−1G(c)T
(

G(c)R−1G(c)T
)−1

G(c)εti . (22)

If G(c)
ti is square and state independent,G(c)

ti = G(c) ∈ℜl×l , we will have:

uL(τi) = εti . (23)

This special case was explored in Kappen (2005a), Kappen (2007),Kappen (2005b) and Broek
et al. (2008). Our generalized formulation allows a broader application ofpath integral control
in areas like robotics and other control systems, where the control transition matrix is typically
partitioned into directly and non-directly actuated states, and typically also statedependent.

2.5.3 SYSTEMS WITH FULLY ACTUATED STATE SPACE

In this class of stochastic systems, the control transition matrix is not partitionedand, therefore, the
controlu directly affects all the states. The local controls for such systems are provided by simply
substitutingG(c)

ti ∈ℜn×p in (20) withGti ∈ℜn×n. SinceGti is a square matrix we obtain:

uL(τi) = εti −G−1
ti bti ,

with bti = λHti Φti and

(Φti ) j =
1
2

trace
(

H−1
ti

(

∂(xti ) j
Hti

))

,

where the differentiation is not taken with respect to(x(c)ti ) j but with respect to the full state(xti ) j .
For this fully actuated state space, there are subclasses of dynamical systems with square and/or
state independent control transition matrix. The local controls for these cases are found by just
substitutingG(c)

ti with Gti in (21), (22) and (23).

3. Reinforcement Learning with Parameterized Policies

Equipped with the theoretical framework of stochastic optimal control with pathintegrals, we can
now turn to its application to reinforcement learning with parameterized policies.Since the be-
ginning of actor-critic algorithms (Barto et al., 1983), one goal of reinforcement learning has been
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to learn compact policy representations, for example, with neural networks as in the early days of
machine learning (Miller et al., 1990), or with general parameterizations (Peters, 2007; Deisenroth
et al., 2009). Parameterized policies have much fewer parameters than the classical time-indexed
approach of optimal control, where every time step has it own set of parameters, that is, the optimal
controls at this time step. Usually, function approximation techniques are usedto represent the op-
timal controls and the open parameters of the function approximator become thepolicy parameters.
Function approximators use a state representation as input and not an explicit time dependent rep-
resentation. This representation allows generalization across states and promises to achieve better
generalization of the control policy to a larger state space, such that policies become re-usable and
do not have to be recomputed in every new situation.

The path integral approach from the previous sections also follows the classical time-based
optimal control strategy, as can be seen from the time dependent solution for optimal controls in
(33). However, a minor re-interpretation of the approach and some small mathematical adjustments
allow us to carry it over to parameterized policies and reinforcement learning, which results in a
new algorithm calledPolicy Improvement withPathIntegrals (PI2).

3.1 Parameterized Policies

We are focusing on direct policy learning, where the parameters of the policy are adjusted by a
learning rule directly, and not indirectly as in value function approaches of classical reinforcement
learning (Sutton and Barto, 1998)—see Peters (2007) for a discussionof pros and cons of direct
vs. indirect policy learning. Direct policy learning usually assumes a general cost function (Sutton
et al., 2000; Peters, 2007) in the form of

J(x0) =
∫

p(τ0)R(τ0)dτ0, (24)

which is optimized over states-action trajectories5 τ0=(xt0,at0, ...,xtN). Under the first order Markov
property, the probability of a trajectory is

p(τi) = p(xti )Π
N−1
j=i p(xt j+1|xt j ,at j )p(at j |xt j ).

Both the state transition and the policy are assumed to be stochastic. The particular formulation
of the stochastic policy is a design parameter, motivated by the application domain,analytical con-
venience, and the need to inject exploration during learning. For continuous state action domains,
Gaussian distributions are most commonly chosen (Gullapalli, 1990; Williams, 1992; Peters, 2007).
An interesting generalized stochastic policy was suggested in Rueckstiess et al. (2008) and applied
in Koeber and Peters (2008), where the stochastic policyp(ati |xti ) is linearly parameterized as:

ati = gT
ti (θ+ εti ), (25)

with gti denoting a vector of basis functions andθ the parameter vector. This policy has state de-
pendent noise, which can contribute to faster learning as the signal-to-noise ratio becomes adaptive
since it is a function ofgti . It should be noted that a standard additive-noise policy can be expressed
in this formulation, too, by choosing one basis function(gti ) j = 0. For Gaussian noiseε the proba-
bility of an action isp(ati |xti ) = N

(

θTgti ,Σti

)

with Σti = gT
ti Σεgti . Comparing the policy formulation

5. We useat to denote actions here in order to avoid using the symbolu in a conflicting way in the equations below, and
to emphasize that an action does not necessarily coincide with the control command to a physical system.
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in (25) with the control term in (3), one recognizes that the control policy formulation (25) should
fit into the framework of path integral optimal control.

3.2 Generalized Parameterized Policies

Before going into more detail of our proposed reinforcement learning algorithm, it is worthwhile
contemplating what the actionat actually represents. In many applications of stochastic optimal
control there are three main problems to be considered: i) trajectory planning, ii) feedforward con-
trol, and iii) feedback control. The results of optimization could thus be an optimal kinematic
trajectory, the corresponding feedforward commands to track the desired trajectory accurately in
face of the system’s nonlinearities, and/or time varying linear feedback gains (gain scheduling) for
a negative feedback controller that compensates for perturbations from accurate trajectory tracking.

There are very few optimal control algorithms which compute all three issuessimultaneously,
such as Differential Dynamic Programming(DDP) (Jacobson and Mayne,1970), or its simpler ver-
sion the Iterative Linear Quadratic Regulator(iLQR) (Todorov, 2005).However, these are model
based methods which require rather accurate knowledge of the dynamics and make restrictive as-
sumptions concerning differentiability of the system dynamics and the cost function.

Path integral optimal control allows more flexibility than these related methods. The concept of
an “action” can be viewed in a broader sense. Essentially, we consider any “input” to the control
system as an action, not unlike the inputs to a transfer function in classical linear control theory.
The input can be a motor command, but it can also be anything else, for instance, a desired state,
that is subsequently converted to a motor command by some tracking controller,or a control gain
(Buchli et al., 2010) . As an example, consider a robotic system with rigid body dynamics (RBD)
equations (Sciavicco and Siciliano, 2000) using a parameterized policy:

q̈ = M(q)−1(−C(q, q̇)−v(q))+M(q)−1u, (26)

u = G(q)(θ+ εti ), (27)

whereM is the RBD inertia matrix,C are Coriolis and centripetal forces, andv denotes gravity
forces. The state of the robot is described by the joint anglesq and joint velocitieṡq. The policy
(27) is linearly parameterized byθ, with basis function matrixG—one would assume that the di-
mensionality ofθ is significantly larger than that ofq to assure sufficient expressive power of this
parameterized policy. Inserting (27) into (26) results in a differential equation that is compatible
with the system equations (3) for path integral optimal control:

q̈ = f(q, q̇)+ G̃(q)(θ+ εti ) (28)

where

f(q, q̇) = M(q)−1(−C(q, q̇)−v(q)) ,

G̃(q) = M(q)−1G(q).

This example is a typical example where the policy directly represents motor commands.
Alternatively, we could create another form of control structure for theRBD system:

q̈ = M(q)−1(−C(q, q̇)−v(q))+M(q)−1u,

u = KP(qd−q)+KD(q̇d− q̇),

q̈d = G(qd, q̇d)(θ+ εti ). (29)
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Here, a Proportional-Derivative (PD) controller with positive definite gain matricesKP and KD

converts a desired trajectoryqd, q̇d into a motor commandu. In contrast to the previous example,
the parameterized policy generates the desired trajectory in (29), and the differential equation for
the desired trajectory is compatible with the path integral formalism.

What we would like to emphasize is that the control system’s structure is left to the creativity
of its designer, and that path integral optimal control can be applied on various levels. Importantly,
as developed in Section 2.3, only thecontrolleddifferential equations of the entire control system
contribute to the path integral formalism, that is, (28) in the first example, or (29) in the second
example. Andonly these controlled differential equationsneed to be known for applying path
integral optimal control—none of the variables of the uncontrolled equationsis ever used.

At this point, we make a very important transition from model-based to model-free learning.
In the example of (28), the dynamics model of the control system needs to beknown to apply
path integral optimal control, as this is acontrolleddifferential equation. In contrast, in (29), the
system dynamics are in anuncontrolleddifferential equation, and are thus irrelevant for applying
path integral optimal control. In this case, only knowledge of the desired trajectory dynamics is
needed, which is usually created by the system designer. Thus, we obtained a model-free learning
system.

3.3 Dynamic Movement Primitives as Generalized Policies

As we are interested in model-free learning, we follow the control structureof the 2nd example of
the previous section, that is, we optimize control policies which represent desired trajectories. We
use Dynamic Movement Primitives (DMPs) (Ijspeert et al., 2003) as a special case of parameterized
policies, which are expressed by the differential equations:

1
τ

żt = ft +gT
t (θ+ εt), (30)

1
τ

ẏt = zt ,

1
τ

ẋt = −αxt ,

ft = αz(βz(g−yt)−zt).

Essentially, these policies code a learnable point attractor for a movement from yt0 to the goal
g, whereθ determines the shape of the attractor.yt , ẏt denote the position and velocity of the
trajectory, whilezt ,xt are internal states.αz,βz,τ are time constants. The basis functionsgt ∈
ℜp×1are defined by a piecewise linear function approximator with Gaussian weighting kernels, as
suggested in Schaal and Atkeson (1998):

[gt ] j =
w j xt

∑p
k=1wk

(g−y0),

w j = exp
(

−0.5h j(xt −c j)
2) , (31)

with bandwithh j and centerc j of the Gaussian kernels—for more details see Ijspeert et al. (2003).
The DMP representation is advantageous as it guarantees attractor properties towards the goal while
remaining linear in the parametersθ of the function approximator. By varying the parameterθ the
shape of the trajectory changes while the goal stateg and initial stateyt0 remain fixed. These
properties facilitate learning (Peters and Schaal, 2008a).
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3.4 Policy Improvements with Path Integrals: The (PI2) Algorithm

As can be easily recognized, the DMP equations are of the form of our control system (3), with only
one controlled equation and a one dimensional actuated state. This case hasbeen treated in Section
2.5.1. The motor commands are replaced with the parametersθ—the issue of time dependent vs.
constant parameters will be addressed below. More precisely, the DMP equations can be written as:





ẋt

żt

ẏt



=





−αxt

yt

αz(βz(g−yt)−zt)



+





01×p

01×p

g(c)t
T



(θt + εt) .

The state of the DMP is partitioned into the controlled partx(c)t = yt and uncontrolled part
x(m)

t = (xt zt)
T . The control transition matrix depends on the state, however, it depends only on one

of the state variables of the uncontrolled part of the state, that is,xt . The path cost for the stochastic
dynamics of the DMPs is given by:

S̃(τi) = φtN +
N−1

∑
j=i

qt j dt+
1
2

N−1

∑
j=i

w

w

w

w

w

x(c)t j+1
−x(c)t j

dt
− f(c)t j

w

w

w

w

w

2

H−1
t j

dt+
λ
2

N−1

∑
j=i

log|Ht j |

∝ φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

w

w

wg(c)Tt j
(θt j + εt j )

w

w

w

2

H−1
t j

= φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

1
2
(θt j + εt j )

Tg(c)t j
H−1

t j
g(c)Tt j

(θt j + εt j )

= φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

1
2
(θt j + εt j )

T
g(c)t j

g(c)Tt j

g(c)Tt R−1 g(c)t

(θt j + εt j )

= φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

1
2
(θt j + εt j )

TMT
t j

RM t j (θt j + εt j ). (32)

with M t j =
R−1gt j gT

t j

gT
t j

R−1gt j
. Ht becomes a scalar given byHt = g(c)Tt R−1 g(c)t . Interestingly, the term

λ
2 ∑N−1

j=i log|Ht j | for the case of DMPs depends only onxt , which is a deterministic variable and
therefore can be ignored since it is the same for all sampled paths. We also absorbed, without
loss of generality, the time stepdt in cost terms. Consequently, the fundamental result of the path
integral stochastic optimal problem for the case of DMPs is expressed as:

uti =
∫

P(τi)uL (τi)dτ(c)i , (33)

where the probabilityP(τi) and local controlsu(τi) are defined as

P(τi) =
e−

1
λ S̃(τi)

∫
e−

1
λ S̃(τi)dτi

, uL(τi) =
R−1g(c)ti g(c)Tti

g(c)Tti R−1g(c)ti

εti ,
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and the path cost given as

S̃(τi) = φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

εT
t j

MT
t j

RM t j εt j .

Note thatθ = 0 in these equations, that is, the parameters are initialized to zero. These equations
correspond to the case where the stochastic optimal control problem is solved with one evaluation
of the optimal controls (33) using dense sampling of the whole state space under the “passive dy-
namics” (i.e.,θ = 0), which requires a significant amount of exploration noise. Such an approach
was pursued in the original work by Kappen (2007) and Broek et al. (2008), where a potentially
large number of sample trajectories was needed to achieve good results. Extending this sampling
approach to high dimensional spaces, however, is daunting, as with veryhigh probability, we would
sample primarily rather useless trajectories. Thus, biasing sampling towards good initial conditions
seems to be mandatory for high dimensional applications.

Thus, we consider only local sampling and an iterative update procedure. Given a current guess
of θ, we generate sample roll-outs using stochastic parametersθ+εt at every time step. To see how
the generalized path integral formulation is modified for the case of iterative updating, we start with
the equations of the update of the parameter vectorθ, which can be written as:

θ(new)
ti =

∫
P(τi)

R−1gti gti
T(θ+ εti )

gti
TR−1gti

dτi

=
∫

P(τi)
R−1gti gti

Tεti

gti
TR−1gti

dτi +
R−1gti gti

Tθ
gti

TR−1gti

= δθti +
R−1gti gti

T

trace(R−1gti gti
T)

θ

= δθti +M ti θ. (34)

The correction parameter vectorδθti is defined asδθti =
∫

P(τi)
R−1gti gti

Tεti
gti

TR−1gti
dτi . It is important to

note thatθ(new)
ti is now time dependent, that is, for every time stepti , a different optimal parameter

vector is computed. In order to return to one single time independent parameter vectorθ(new), the
vectorsθ(new)

ti need to be averaged over timeti .
We start with a first tentative suggestion of averaging over time, and then explain why it is

inappropriate, and what the correct way of time averaging has to look like.The tentative and most
intuitive time average is:

θ(new) =
1
N

N−1

∑
i=0

θ(new)
ti =

1
N

N−1

∑
i=0

δθti +
1
N

N−1

∑
i=0

M ti θ.

Thus, we would updateθ based on two terms. The first term is the average ofδθti , which is reason-
able as it reflects the knowledge we gained from the exploration noise. However, there would be a
second update term due to the average over projected mean parametersθ from every time step—it
should be noted thatM ti is a projection matrix onto the range space ofgti under the metricR−1, such
that a multiplication withM ti can only shrink the norm ofθ. From the viewpoint of having optimal
parameters forevery time step, this update component is reasonable as it trivially eliminates the part
of the parameter vector that lies in the null space ofgti and which contributes to the command cost
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of a trajectory in a useless way. From the view point of a parameter vector that isconstant and time
independentand that is updatediteratively, this second update is undesirable, as the multiplication
of the parameter vectorθ with M ti in (34) and the averaging operation over the time horizon reduces
the L2 norm of the parameters at every iteration, potentially in an uncontrolled way.6 What we
rather want is to achieve convergence when the average ofδθti becomes zero, and we do not want
to continue updating due to the second term.

The problem is avoided by eliminating the projection matrix in the second term of averaging,
such that it become:

θ(new) =
1
N

N−1

∑
i=0

δθti +
1
N

N−1

∑
i=0

θ =
1
N

N−1

∑
i=0

δθti +θ.

The meaning of this reduced update is simply that we keep a component inθ that is irrelevant and
contributes to our trajectory cost in a useless way. However, this irrelevant component will not
prevent us from reaching the optimal effective solution, that is, the solution that lies in the range
space ofgti . Given this modified update, it is, however, also necessary to derive a compatible cost
function. As mentioned before, in the unmodified scenario, the last term of (32) is:

1
2

N−1

∑
j=i

(θ+ εt j )
TMT

t j
RM t j (θ+ εt j )

To avoid a projection ofθ, we modify this cost term to be:

1
2

N−1

∑
j=i

(θ+M t j εt j )
TR(θ+M t j εt j ).

With this modified cost term, the path integral formalism results in the desiredθ(new)
ti without the

M ti projection ofθ.
The main equations of the iterative version of the generalized path integral formulation, called

Policy Improvement withPathIntegrals (PI2), can be summarized as:

P(τi) =
e−

1
λ S(τi)

∫
e−

1
λ S(τi)dτi

, (35)

S(τi) = φtN +
N−1

∑
j=i

qt j dt+
1
2

N−1

∑
j=i

(θ+M t j εt j )
TR(θ+M t j εt j )dt, (36)

δθti =
∫

P(τi)M ti εti dτi , (37)

[δθ] j =
∑N−1

i=0 (N− i) w j,ti [δθti ] j

∑N−1
i=0 w j,ti (N− i)

, (38)

θ(new) = θ(old)+δθ.

Essentially, (35) computes a discrete probability at timeti of each trajectory roll-out with the help
of the cost (36). For every time step of the trajectory, a parameter update iscomputed in (37) based

6. To be precise,θ would be projected and continue shrinking until it lies in the intersection of all null spaces of thegti
basis function—this null space can easily be of measure zero.
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on a probability weighted average over trajectories. The parameter updates at every time step are
finally averaged in (38). Note that we chose a weighted average by giving every parameter update a
weight7 according to the time steps left in the trajectory and the activation of the kernelin (31). This
average can be interpreted as using a function approximator with only a constant (offset) parameter
vector to approximate the time dependent parameters. Giving early points in thetrajectory a higher
weight is useful since their parameters affect a large time horizon and thushigher trajectory costs.
Other function approximation (or averaging) schemes could be used to arrive at a final parameter
update—we preferred this simple approach as it gave very good learningresults. The final parameter
update isθ(new) = θ(old)+δθ.

The parameterλ regulates the sensitivity of the exponentiated cost and can automatically be
optimized for every time stepi to maximally discriminate between the experienced trajectories.
More precisely, a constant term can be subtracted from (36) as long asall S(τi) remain positive—this
constant term8 cancels in (35). Thus, for a given number of roll-outs, we compute the exponential
term in (35) as

exp

(

−1
λ

S(τi)

)

= exp

(

−h
S(τi)−minS(τi)

maxS(τi)−minS(τi)

)

,

with h set to a constant, which we chose to beh = 10 in all our evaluations. The max and min
operators are over all sample roll-outs. This procedure eliminatesλ and leaves the variance of the
exploration noiseε as the only open algorithmic parameter forPI2. It should be noted that the
equations forPI2 have no numerical pitfalls: no matrix inversions and no learning rates,9 rendering
PI2 to be very easy to use in practice.

The pseudocode for the finalPI2 algorithm for a one dimensional control system with function
approximation is given in Table 2. A tutorial Matlab example of applyingPI2 can be found at
http://www-clmc.usc.edu/software .

4. Related Work

In the next sections we discuss related work in the areas of stochastic optimal control and rein-
forcement learning and analyze the connections and differences with thePI2 algorithm and the
generalized path integral control formulation.

4.1 Stochastic Optimal Control and Path Integrals

The path integral formalism for optimal control was introduced in Kappen (2005a,b). In this work,
the role of noise in symmetry breaking phenomena was investigated in the context of stochastic
optimal control. In Kappen et al. (2007), Wiegerinck et al. (2006), andBroek et al. (2008), the path
integral formalism is extended for the stochastic optimal control of multi-agentsystems.

Recent work on stochastic optimal control by Todorov (2008), Todorov (2007) and Todorov
(2009b) shows that for a class of discrete stochastic optimal control problems, the Bellman equa-

7. The use of the kernel weights in the basis functions (31) for the purpose of time averaging has shown better perfor-
mance with respect to other weighting approaches, across all of our experiments. Therefore this is the weighting that
we suggest. Users may develop other weighting schemes as more suitableto their needs.

8. In fact, the term inside the exponent results by adding hminS(τi)
maxS(τi)−minS(τi)

, which cancels in (35), to the term

− hS(τi)
maxS(τi)−minS(τi)

which is equal to− 1
λ S(τi).

9. R is a user design parameter and usually chosen to be diagonal and invertible.
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• Given:

– An immediate cost functionrt = qt +θT
t Rθt (cf. 1)

– A terminal cost termφtN (cf. 1)

– A stochastic parameterized policyat = gT
t (θ+ εt) (cf. 25)

– The basis functiongti from the system dynamics (cf. 3 and Section 2.5.1)

– The varianceΣε of the mean-zero noiseεt

– The initial parameter vectorθ

• Repeatuntil convergence of the trajectory costR:

– CreateK roll-outs of the system from the same start statex0 using stochstic parameters
θ+ εt at every time step

– For k= 1...K, compute:

∗ P(τi,k) =
e−

1
λ S(τi,k)

∑K
k=1[e

− 1
λ S(τi,k)]

∗ S(τi,k) = φtN,k+∑N−1
j=i qt j ,k+

1
2 ∑N−1

j=i+1(θ+M t j ,kεt j ,k)
TR(θ+M t j ,kεt j ,k)

∗ M t j ,k =
R−1gt j ,k gT

t j ,k

gT
t j ,k

R−1gt j ,k

– For i = 1...(N−1), compute:

∗ δθti = ∑K
k=1 [P(τi,k)M ti ,k εti ,k]

– Compute[δθ] j =
∑N−1

i=0 (N−i) w j,ti [δθti ] j

∑N−1
i=0 w j,ti (N−i)

– Updateθ← θ+δθ
– Create one noiseless roll-out to check the trajectory costR= φtN +∑N−1

i=0 rti . In case
the noise cannot be turned off, that is, a stochastic system, multiple roll-outs need be
averaged.

Table 2: Pseudocode of thePI2 algorithm for a 1D Parameterized Policy (Note that the discrete
time stepdt was absorbed as a constant multiplier in the cost terms).

tion can be written as the KL divergence between the probability distribution ofthe controlled and
uncontrolled dynamics. Furthermore it is shown that the class of discrete KLdivergence control
problem is equivalent to the continuous stochastic optimal control formalism with quadratic cost
control function and under the presence of Gaussian noise. In Kappen et al. (2009), the KL diver-
gence control formalism is considered and it is transformed to a probabilisticinference problem.
In all this aforementioned work, both in the path integral formalism as well as inKL divergence
control, the class of stochastic dynamical systems under consideration is rather restrictive since the
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control transition matrix is state independent. Moreover, the connection to direct policy learning in
RL and model-free learning was not made in any of the previous projects.

OurPI2 algorithm differs with respect to the aforementioned work in the following points.

• In Todorov (2009b) the stochastic optimal control problem is investigated for discrete action
- state spaces and therefore it is treated as Markov Decision Process (MDP). To apply ourPI2

algorithm, we do not discretize the state space and we do not treat the problem as an MDP.
Instead we work in continuous state - action spaces which are suitable for performing RL in
high dimensional robotic systems. To the best of our knowledge, our results present RL in
one of the most high dimensional continuous state action spaces.

• In our derivations, the probabilistic interpretation of control comes directlyfrom the Feynman-
Kac Lemma. Thus we do not have to impose any artificial “pseudo-probability“ treatment of
the cost as in Todorov (2009b). In addition, for the continuous state - action spaces we do not
have to learn the value function as it is suggested in Todorov (2009b) via Z-learning. Instead
we directly find the controls based on our generalization of optimal controls.

• In the previous work, the problem of how to sample trajectories is not addressed. Sampling
is performed at once with the hope to cover the all state space. We follow a rather different
approach that allows to attack robotic learning problems of the complexity and dimensionality
of the little dog robot.

• The work in Todorov (2009a) considers stochastic dynamics with state dependent control
matrix. However, the way of how the stochastic optimal control problem is solved is by
imposing strong assumptions on the structure of the cost function and, therefore, restrictions
of the proposed solution to special cases of optimal control problems. Theuse of this specific
cost function allows transforming the stochastic optimal control problem to a deterministic
optimal control problem. Under this transformation, the stochastic optimal control problem
can be solved by using deterministic algorithms.

• With respect to the work in Broek et al. (2008), Wiegerinck et al. (2006)and Kappen et al.
(2009) ourPI2 algorithm has been derived for a rather general class of systems with control
transition matrix that is state dependent. In this general class, Rigid body andmulti-body
dynamics as well as the DMPs are included. Furthermore we have shown how our results
generalize previous work.

4.2 Reinforcement Learning of Parameterized Policies

There are two main classes of related algorithms: Policy Gradient algorithms and probabilistic
algorithms.

Policy Gradient algorithms (Peters and Schaal, 2006a,b) compute the gradient of the cost func-
tion (24) at every iteration and the policy parameters are updated according to θ(new) = θ(old) +
α∇θJ. Some well-established algorithms, which we will also use for comparisons, are as follows
(see also Peters and Schaal, 2006a,b).

4.2.1 REINFORCE

Williams (1992) introduced the episodic REINFORCE algorithm, which is derived from taking the
derivative of (24) with respect to the policy parameters. This algorithm has rather slow convergence
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due to a very noisy estimate of the policy gradient. It is also very sensitive to areward baseline
parameterbk (see below). Recent work derived the optimal baseline for REINFORCE(cf. Peters
and Schaal, 2008a), which improved the performance significantly. The episodic REINFORCE
update equations are:

∇θkJ = Eτ0

[

(R(τ0)−bk)
N−1

∑
i=0

∇θk ln p(ati |xti )

]

,

bk =
Eτ0

[

(

∑N−1
i=0 ∇θk ln p(ati |xti )

)2
R(τ0)

]

Eτ0

[

(

∑N−1
i=0 ∇θk ln p(ati |xti )

)2
] ,

wherek denotes thek-th coefficient of the parameter vector andR(τ0) =
1
N ∑N−1

i=0 rti .

4.2.2 GPOMDPAND THE POLICY GRADIENT THEOREM ALGORITHM

In their GPOMDP algorithm, Baxter and Bartlett (2001) introduced severalimprovements over RE-
INFORCE that made the gradient estimates more efficient. GPOMDP can also bederived from the
policy gradient theorem (Sutton et al., 2000; Peters and Schaal, 2008a), and an optimal reward base-
line can be added (cf. Peters and Schaal, 2008a). In our context, the GPOMDP learning algorithm
can be written as:

∇θkJ = Eτ0

[

N−1

∑
j=0

(rt j −b(k)t j
)

j

∑
i=0

(∇θk ln p(ati |xti ))

]

,

b(k)ti =
Eτ0

[

(∇θk ln p(ati |xti ))
2 rti

]

Eτ0

[

(∇θk ln p(ati |xti ))
2
] .

4.2.3 THE EPISODICNATURAL ACTOR CRITIC

One of the most efficient policy gradient algorithm was introduced in Petersand Schaal (2008b),
called the Episodic Natural Actor Critic. In essence, the method uses the Fisher Information Matrix
to project the REINFORCE gradient onto a more effective update direction, which is motivated by
the theory of natural gradients by Amari (1999). The eNAC algorithm takes the form of:

ξti ,k =

[

∇θk ln p(ati |xti )
1

]

,

[

∇θJ
J0

]

= Eτ0

[

N−1

∑
i=0

ξti ,kξT
ti ,k

]−1

Eτ0

[

R(τ0)
N−1

∑
i=0

ξti ,k

]

,

whereJ0 is a constant offset term.

4.2.4 POWER

The PoWER algorithm (Koeber and Peters, 2008) is a probabilistic policy improvement method, not
a gradient algorithm. It is derived from an Expectation-Maximization framework using probability
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matching (Dayan and Hinton, 1997; Peters and Schaal, 2008c). Using thenotation of this paper, the
parameter update of PoWER becomes:

δθ = Eτ0

[

N−1

∑
i=0

Rti

gti g
T
ti

gT
ti gti

]−1

Eτ0

[

tN

∑
ti=to

Rti

gti g
T
ti εt

gT
ti gti

]

,

whereRti = ∑N−1
j=i rt j . If we setR−1 = c I in the update (37) ofPI2, and set

gti g
T
ti

gT
ti

gti
= I in the matrix

inversion term of (39), the two algorithms look essentially identical. But it should be noted that
the rewardsrti in PoWER need to behave like an improper probability, that is, be strictly positive
and integrate to a constant number—this property can make the design of suitable cost functions
more complicated.PI2, in contrast, uses exponentiated sum of reward terms, where the immedi-
ate reward can be arbitrary, and only the cost on the motor commands needsbe quadratic. Our
empirical evaluations revealed that, for cost functions that share the sameoptimum in the PoWER
pseudo-probability formulation and thePI2 notation, both algorithms perform essentially identical,
indicating that the matrix inversion term in PoWER may be unimportant for many systems. It should
be noted that in Vlassis et al. (2009), PoWER was extended to the discounted infinite horizon case,
where PoWER is the special case of a non-discounted finite horizon problem.

5. Evaluations

We evaluatedPI2 in several synthetic examples in comparison with REINFORCE, GPOMDP,
eNAC, and, when possible, PoWER. Except for PoWER, all algorithms are suitable for optimiz-
ing immediate reward functions of the kindrt = qt +utRut . As mentioned above, PoWER requires
that the immediate reward behaves like an improper probability. This property isincompatible with
rt = qt +utRut and requires some special nonlinear transformations, which usually change the na-
ture of the optimization problem, such that PoWER optimizes a different cost function. Thus, only
one of the examples below has a compatible a cost function for all algorithms, including PoWER. In
all examples below, exploration noise and, when applicable, learning rates, were tuned for every in-
dividual algorithms to achieve the best possible numerically stable performance. Exploration noise
was only added to the maximally activated basis function in a motor primitive,10 and the noise was
kept constant for the entire time that this basis function had the highest activation—empirically, this
tick helped improves the learning speed of all algorithms.

5.1 Learning Optimal Performance of a 1 DOF Reaching Task

The first evaluation considers learning optimal parameters for a 1 DOF DMP(cf. Equation 30). The
immediate cost and terminal cost are, respectively:

rt = 0.5 f 2
t +5000θTθ, φtN = 10000(ẏ2

tN +10(g−ytN)
2)

with yt0 = 0 andg= 1—we useradiansas units motivated by our interest in robotics application,
but we could also avoid units entirely. The interpretation of this cost is that wewould like to reach
the goalg with high accuracy while minimizing the acceleration of the movement and while keeping
the parameter vector short. Each algorithm was run for 15 trials to compute a parameter update, and

10. That is, the noise vector in (25) has only one non-zero component.
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a total of 1000 updates were performed. Note that 15 trials per update were chosen as the DMP
had 10 basis functions, and the eNAC requires at least 11 trials to perform a numerically stable
update due to its matrix inversion. The motor primitives were initialized to approximatea 5-th
order polynomial as point-to-point movement (cf. Figure 1a,b), called a minimum-jerk trajectory
in the motor control literature; the movement duration was 0.5 seconds, which issimilar to normal
human reaching movements. Gaussian noise ofN(0,0.1) was added to the initial parameters of the
movement primitives in order to have different initial conditions for every run of the algorithms.
The results are given in Figure 1. Figure 1a,b show the initial (before learning) trajectory generated
by the DMP together with the learning results of the four different algorithms after learning—
essentially, all algorithms achieve the same result such that all trajectories lie on top of each other.
In Figure 1c, however, it can be seen thatPI2 outperforms the gradient algorithms by an order
of magnitude. Figure 1d illustrates learning curves for the same task as in Figure 1c, just that
parameter updates are computed already after two roll-outs—the eNAC was excluded from this
evaluation as it would be too heuristic to stabilize its ill-conditioned matrix inversion that results
from such few roll-outs.PI2 continues to converge much faster than the other algorithms even in
this special scenario. However, there are some noticeable fluctuation after convergence. This noise
around the convergence baseline is caused by using only two noisy roll-outs to continue updating
the parameters, which causes continuous parameter fluctuations around the optimal parameters.
Annealing the exploration noise, or just adding the optimal trajectory from theprevious parameter
update as one of the roll-outs for the next parameter update can alleviate thisissue—we do not
illustrate such little “tricks” in this paper as they really only affect fine tuning ofthe algorithm.

5.2 Learning Optimal Performance of a 1 DOF Via-Point Task

The second evaluation was identical to the first evaluation, just that the cost function now forced
the movement to pass through an intermediate via-point att = 300ms. This evaluation is an abstract
approximation of hitting a target, for example, as in playing tennis, and requires a significant change
in how the movement is performed relative to the initial trajectory (Figure 2a). The cost function
was

r300ms= 100000000(G−yt300ms)
2, φtN = 0

with G = 0.25. Only this single reward was given. For this cost function, the PoWER algorithm
can be applied, too, with cost function ˜r300ms= exp(−1/λ r300ms) and ˜rti = 0 otherwise. This
transformed cost function has the same optimum asr300ms. The resulting learning curves are given in
Figure 2 and resemble the previous evaluation:PI2 outperforms the gradient algorithms by roughly
an order of magnitude, while all the gradient algorithms have almost identical learning curves. As
was expected from the similarity of the update equations, PoWER andPI2 have in this special case
the same performance and are hardly distinguishable in Figure 2. Figure 2ademonstrates that all
algorithms pass through the desired targetG, but that there are remaining differences between the
algorithms in how they approach the targetG—these difference have a small numerical effect in
the final cost (wherePI2 and PoWER have the lowest cost), but these difference are hardly task
relevant.

5.3 Learning Optimal Performance of a Multi-DOF Via-Point Task

A third evaluation examined the scalability of our algorithms to a high-dimensional and highly
redundant learning problem. Again, the learning task was to pass throughan intermediate targetG,
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Figure 1: Comparison of reinforcement learning of an optimized movement withmotor primitives.
a) Position trajectories of the initial trajectory (before learning) and the results of all algo-
rithms after learning—the different algorithms are essentially indistighuishable. b) The
same as a), just using the velocity trajectories. c) Average learning curves for the differ-
ent algorithms with 1 std error bars from averaging 10 runs for each of the algorithms. d)
Learning curves for the different algorithms when only two roll-outs are used per update
(note that the eNAC cannot work in this case and is omitted).

just that ad = 2,10, or 50 dimensional motor primitive was employed. We assume that the multi-
DOF systems model planar robot arms, whered links of equal lengthl = 1/d are connected in an
open chain with revolute joints. Essentially, these robots look like a multi-segmentsnake in a plane,
where the tail of the snake is fixed at the origin of the 2D coordinate system, and the head of the
snake can be moved in the 2D plane by changing the joint angles between all the links. Figure 3b,d,f
illustrate the movement over time of these robots: the initial position of the robots is when all joint
angles are zero and the robot arm completely coincides with thex-axis of the coordinate frame.
The goal states of the motor primitives command each DOF to move to a joint angle, such that the
entire robot configuration afterwards looks like a semi-circle where the most distal link of the robot
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Figure 2: Comparison of reinforcement learning of an optimized movement withmotor primitives
for passing through an intermediate targetG. a) Position trajectories of the initial trajec-
tory (before learning) and the results of all algorithms after learning. b) Average learning
curves for the different algorithms with 1 std error bars from averaging10 runs for each
of the algorithms.

(the end-effector) touches they-axis. The higher priority task, however, is to move the end-effector
through a via-pointG= (0.5,0.5). To formalize this task as a reinforcement learning problem, we
denote the joint angles of the robots asξi , with i = 1,2, ...,d, such that the first line of (30) reads
now asξ̈i,t = fi,t +gT

i,t(θi + εi,t)—this small change of notation is to avoid a clash of variables with
the(x,y) task space of the robot. The end-effector position is computed as:

xt =
1
d

d

∑
i=1

cos(
i

∑
j=1

ξ j,t), yt =
1
d

d

∑
i=1

sin(
i

∑
j=1

ξ j,t).

The immediate reward function for this problem is defined as

rt =
∑d

i=1(d+1− i)
(

0.1 f 2
i,t +0.5 θT

i θi
)

∑d
i=1(d+1− i)

, (39)

∆r300ms = 100000000
(

(0.5−xt300ms)
2+(0.5−yt300ms)

2) ,

φtN = 0,

where∆r300ms is added tort at time t = 300ms, that is, we would like to pass through the via-
point at this time. The individual DOFs of the motor primitive were initialized as in the1 DOF
examples above. The cost term in (39) penalizes each DOF for using highaccelerations and large
parameter vectors, which is a critical component to achieve a good resolution of redundancy in the
arm. Equation (39) also has a weighting termd+1− i that penalizes DOFs proximal to the orgin
more than those that are distal to the origin—intuitively, applied to human arm movements, this
would mean that wrist movements are cheaper than shoulder movements, whichis motivated by the
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fact that the wrist has much lower mass and inertia and is thus energetically more efficient to move.

The results of this experiment are summarized in Figure 3. The learning curves in the left
column demonstrate again thatPI2 has an order of magnitude faster learning performance than the
other algorithms, irrespective of the dimensionality.PI2 also converges to the lowest cost in all
examples:

Algorithm 2-DOFs 10-DOFs 50-DOFs
PI2 98000±5000 15700±1300 2800±150
REINFORCE 125000±2000 22000±700 19500±24000
PG 128000±2000 28000±23000 27000±40000
NAC 113000±10000 48000±8000 22000±2000

Figure 3 also illustrates the path taken by the end-effector before and after learning. All algo-
rithms manage to pass through the via-pointG appropriately, although the path particularly before
reaching the via-point can be quite different across the algorithms. Given thatPI2 reached the low-
est cost with low variance in all examples, it appears to have found the best solution. We also added
a “stroboscopic” sketch of the robot arm for thePI2 solution, which proceeds from the very right to
the left as a function of time. It should be emphasized that there were absolutely no parameter tun-
ing needed to achieve thePI2 results, while all gradient algorithms required readjusting of learning
rates for every example to achieve best performance.

5.4 Application to Robot Learning

Figure 4 illustrates our application to a robot learning problem. The robot dog is to jump across as
gap. The jump should make forward progress as much as possible, as it is amaneuver in a legged
locomotion competition which scores the speed of the robot—note that we only used a physical
simulator of the robot for this experiment, as the actual robot was not available. The robot has three
DOFs per leg, and thus a total ofd = 12 DOFs. Each DOF was represented as a DMP with 50
basis functions. An initial seed behavior (Figure 5-top) was taught by learning from demonstration,
which allowed the robot barely to reach the other side of the gap without falling into the gap—the
demonstration was generated from a manual adjustment of spline nodes in a spline-based trajectory
plan for each leg.

PI2 learning used primarily the forward progress as a reward, and slightly penalized the squared
acceleration of each DOF, and the length of the parameter vector. Additionally, a penalty was
incurred if the yaw or the roll exceeded a threshold value—these penaltiesencouraged the robot to
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Figure 3: Comparison of learning multi-DOF movements (2,10, and 50 DOFs) withplanar robot
arms passing through a via-pointG. a,c,e) illustrate the learning curves for different RL
algorithms, while b,d,f) illustrate the end-effector movement after learning forall algo-
rithms. Additionally, b,d,f) also show the initial end-effector movement, beforelearning
to pass throughG, and a “stroboscopic” visualization of the arm movement for the final
result ofPI2 (the movements proceed in time starting at the very right and ending by
(almost) touching they axis).
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0

100

200

300

400

500

600

1 10 100

C
o
s
t

Number of Roll-Outs

(b) Learning curve for Dog Jump withPI2 ±1std

Figure 4: Reinforcement learning of optimizing to jump over a gap with a robot dog. The improve-
ment in cost corresponds to about 15 cm improvement in jump distance, whichchanged
the robot’s behavior from an initial barely successful jump to jump that completely tra-
versed the gap with entire body. This learned behavior allowed the robot totraverse a gap
at much higher speed in a competition on learning locomotion. The experiments for this
paper were conducted only on the robot simulator.

jump straight forward and not to the side, and not to fall over. The exactcost function is:

rt = rroll + ryaw+
d

∑
i=1

(

a1 f 2
i,t +0.5a2 θT

i θ
)

(a1 = 1.e−6,a2 = 1.e−8),

rroll =

{

100∗ (|roll t |−0.3)2, if (|roll t |> 0.3)

0, otherwise,

ryaw =

{

100∗ (|yawt |−0.1)2, if (|yawt |> 0.1)

0, otherwise,

φtN = 50000(goal−xnose)
2,

whereroll ,yaware the roll and yaw angles of the robot’s body, andxnoseis the position of the front
tip (the “nose”) of the robot in the forward direction, which is the direction towards thegoal. The
multipliers for each reward component were tuned to have a balanced influence of all terms. Ten
learning trials were performed initially for the first parameter update. The best 5 trials were kept, and
five additional new trials were performed for the second and all subsequent updates. Essentially, this
method performs importance sampling, as the rewards for the 5 trials in memory were re-computed
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Figure 5: Sequence of images from the simulated robot dog jumping over a 14cm gap. Top: before
learning. Bottom: After learning. While the two sequences look quite similar at thefirst
glance, it is apparent that in the 4th frame, the robot’s body is significantly higher in the
air, such that after landing, the body of the dog made about 15cm more forward progress
as before. In particular, the entire robot’s body comes to rest on the other side of the gap,
which allows for an easy transition to walking. In contrast, before learning, the robot’s
body (and its hind legs) are still on the right side of the gap, which does notallow for a
successful continuation of walking.

with the latest parameter vectors. A total of 100 trials was performed per run, and ten runs were
collected for computing mean and standard deviations of learning curves.

Figure 4 illustrates that after about 30 trials (i.e., 5 updates), the performance of the robot was
converged and significantly improved, such that after the jump, almost the entire body was lying on
the other side of the gap. Figure 4 captures the temporal performance in a sequence of snapshots of
the robot. It should be noted that applyingPI2 was algorithmically very simple, and manual tuning
only focused on generated a good cost function, which is a different research topic beyond the scope
of this paper.

6. Discussion

This paper derived a more general version of stochastic optimal controlwith path integrals, based
on the original work by Kappen (2007) and Broek et al. (2008). The key results were presented in
Table 1 and Section 2.5, which considered how to compute the optimal controls for a general class
of stochastic control systems with state-dependent control transition matrix.One important class
of these systems can be interpreted in the framework of reinforcement learning with parameterized
policies. For this class, we derived Policy Improvement with Path Integrals (PI2) as a novel algo-
rithm for learning a parameterized policy.PI2 inherits its sound foundation in first order principles
of stochastic optimal control from the path integral formalism. It is a probabilistic learning method
without open algorithmic tuning parameters, except for the exploration noise. In our evaluations,
PI2 outperformed gradient algorithms significantly. It is also numerically simpler and has easier
cost function design than previous probabilistic RL methods that require that immediate rewards
are pseudo-probabilities. The similarity ofPI2 with algorithms based on probability matching indi-
cates that the principle of probability matching seems to approximate a stochastic optimal control
framework. Our evaluations demonstrated thatPI2 can scale to high dimensional control systems,
unlike many other reinforcement learning systems.

Some issues, however, deserve more detailed discussions in the following paragraphs.
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6.1 The SimplificationλR−1 = Σε

In order to obtain linear 2nd order differential equations for the exponentially transformed HJB equa-
tions, the simplificationλR−1 = Σε was applied. Essentially, this assumption couples the control
cost to the stochasticity of the system dynamics, that is, a control with high variance will have rela-
tively small cost, while a control with low variance will have relatively high cost. This assumption
makes intuitively sense as it would be mostly unreasonable to attribute a lot of cost to an unreliable
control component. Algorithmically, this assumption transforms the Gaussian probability for state
transitions into a quadratic command cost, which is exactly what our immediate reward function
postulated. Future work may allow removing this simplification by applying generalized versions
of the Feynman-Kac Lemma.

6.2 Model-based, Hybrid, and Model-free Learning

Stochastic optimal control with path integrals makes a strong link to the dynamic system to be
optimized—indeed, originally, it was derived solely as model-based method. Asthis paper demon-
strated, however, this view can be relaxed. The roll-outs, needed for computing the optimal controls,
can be generated either from simulating a model, or by gathering experiencefrom an actual system.
In the latter case, only the control transition matrix of the model needs be known, such that we obtain
a hybrid model-based/model-free method. In this paper, we even went further and interpreted the
stochastic dynamic system as a parameterized control policy, such that no knowledge of the model
of the control system was needed anymore—that is, we entered a model-free learning domain. It
seems that there is a rich variety of ways how the path integral formalism can be used in different
applications.

6.3 Rules of Cost Function Design

The cost functions allowed in our formulations can have arbitrary state cost, but need quadratic
command cost. This is somewhat restrictive, although the user can be flexiblein what is defined as
a command. For instance, the dynamic movement primitives (30) used in this paper can be written
in two alternative ways:

1
τ

żt = ft +gT
t (θ+ εt),

or
1
τ

żt =
[

gT
t ft
]

([

θ
1

]

+ ε̃t

)

,

where the new noise vectorε̃t has one additional coefficient. The second equation treatsft as another
basis function whose parameter is constant and is thus simply not updated. Thus, we addedft to the
command cost instead of treating it as a state cost.

We also numerically experimented with violations of the clean distinction between state and
command cost. Equation (36) could be replaced by a cost term, which is an arbitrary function of
state and command. In the end, this cost term is just used to differentiate the different roll-outs
in a reward weighted average, similarly as in Peters and Schaal (2008c) and Koeber and Peters
(2008). We noticed in several instances thatPI2 continued to work just fine with this improper cost
formulation.
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Again, it appears that the path integral formalism and thePI2 algorithm allow the user to exploit
creativity in designing cost functions, without absolute need to adhere perfectly to the theoretical
framework.

6.4 Dealing with Hidden State

Finally, it is interesting to consider in how farPI2 would be affected by hidden state. Hidden state
can either be of stochastic or deterministic nature, and we consider hidden state as adding additional
equations to the system dynamics (3). Section 2.3 already derived that deterministic hidden states
drop out of thePI2 update equations—these states of the system dynamics were termed as “ non-
directly actuated” states.

More interesting are hidden state variables that have stochastic differential equations, that is,
these equations are uncontrolled but do have a noise term and a non-zero corresponding coefficient
in Gt in Equation (3), and these equations are coupled to the other equations through their passive
dynamics. The noise term of these equations would, in theory, contribute terms in Equation (36),
but given that neither the noise nor the state of these equations are observable, we will not have the
knowledge to add these terms. However, as long as the magnitude of these terms is small relative to
the other terms in Equation (36),PI2 will continue to work fine, just a bit sub-optimally. This issue
would affect other reinforcement learning methods for parameterized policies in the same way, and
is not specific toPI2.

6.5 Arbitrary States in the Cost Function

As a last point, we would like to consider which variables can actually enter thecost functions for
PI2. The path integral approach prescribes that the cost function needs tobe a function of the state
and command variables of the system equations (3). It should be emphasized that the state costqt

can be any deterministic function of the state, that is, anything that is predictable from knowing the
state, even if we do not know the predictive function. There is a lot of flexibility in this formulation,
but it is also more restrictive than other approaches, for example, like policy gradients or the PoWER
algorithm, where arbitrary variables can be used in the cost, no matter whether they are states or
not.

We can think of any variable that we would like to use in the cost as having a corresponding
differential equation in the system dynamics (3), that is, we simply add these variables as state
variables, just that we do not know the analytical form of these equations. As in the previous
section, it is useful to distinguish whether these states have deterministic or stochastic differential
equations.

If the differential equation is deterministic, we can cover the case with the derivations from
Section 2.3, that is, we consider such an equation as uncontrolled deterministic differential equation
in the system dynamics, and we already know that we can use its state in the cost without any
problems as it does not contribute to the probability of a roll-out.

If the differential equation is stochastic, the same argument as in the previous section applies,
that is, the (unknown) contribution of the noise term of this equation to the exponentiated cost (36)
needs to be small enough forPI2 to work effectively. Future work and empirical evaluations will
have to demonstrate when these issues really matter—so far, we have not encountered problems in
this regard.
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7. Conclusions

The path integral formalism for stochastic optimal control has a very interesting potential to dis-
cover new learning algorithms for reinforcement learning. ThePI2 algorithm derived in this paper
for learning with parameterized policies demonstrated a surprisingly good performance, literally
without any need for manual tuning of the parameters of the algorithm. We alsodemonstrated that
the algorithm scales well into very high dimensional domains that were previously hardly approach-
able for reinforcement learning. Future work will thus allow us to focus much more on machine
learning algorithms for cost function design, as the algorithmic components of the learning algo-
rithm seem to be able to move towards a “black box” character.
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Appendix A.

AppendixA contains the lemmasA1 andA2 and one theorem. The theorem provides the main
result of the generalized path integral control formalism expressed by (18), (19), (20). Its proof is
based on results proven in the lemmasA1 andA2. In appendixB we provide the Feynman-Kac
formula and we sketch the corresponding proof.

Lemma 1 : The optimal control solution to the stochastic optimal control problem expressed by
(1),(2),(3) and (4) is formulated as:

uti = lim
dt→0

[

−R−1G(c)
ti

T
∫

p̃(τi)∇
x(c)ti

S̃(τi)dτi

]

where p̃(τi) =
exp(− 1

λ S̃(τi))∫
exp(− 1

λ S̃(τi))dτi
is a path dependent probability distribution. The term̃S(τi) is

a path function defined as̃S(τi) = S(τi) +
λ
2 ∑N−1

j=i log|Ht j | that satisfies the following condition

limdt→0
∫

exp
(

− 1
λ S̃(τi)

)

dτi ∈ C (1) for any sampled trajectory starting from statexti . Moreover the

termHt j is given byHt j = G(c)
t j

R−1G(c)
t j

T while the term S(τi) is defined according to

S(τi) = φtN +
N−1

∑
j=i

qt j dt+
1
2

N−1

∑
j=i

‖
x(c)t j+1
−x(c)t j

dt
− f(c)t j

‖2Ht j
dt.

Proof The optimal controls at the statexti is expressed by the equationuti = −R−1Gti ∇xti
Vti . Due

to the exponential transformation of the value functionΨti = −λ logVti the equation of the optimal
controls is written as:

uti = λR−1Gti

∇xti
Ψti

Ψti
.
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In discrete time the optimal control is expressed as follows:

uti = lim
dt→0

(

λR−1GT
ti

∇xti
Ψ(dt)

ti

Ψ(dt)
ti

)

.

By using equation (17) and substitutingΨ(dt)(xti , t) we have:

uti = lim
dt→0

(

λR−1GT
ti

∇xti

∫
exp
(

− 1
λZ(τi)

)

dτi∫
exp
(

− 1
λZ(τi)

)

dτi

)

.

Substitution of the termZ(τi) results in the equation:

uti = lim
dt→0



λR−1GT
ti

∇xti

∫
exp
(

− 1
λ S̃(τi)− λ(N−i)l

2 log(2πdtλ)
)

dτi

∫
exp
(

− 1
λ S̃(τi)− λ(N−i)l

2 log(2πdtλ)
)

dτi



 .

Next we are using standard properties of the exponential function that lead to:

uti = lim
dt→0



λR−1GT
ti

∇xti

[∫
exp
(

− 1
λ S̃(τi)

)

exp
(

−λ(N−i)l
2 log(2πdtλ)

)

dτi

]

∫
exp
(

− 1
λ S̃(τi)

)

exp
(

−λ(N−i)l
2 log(2πdtλ)

)

dτi



 .

The term exp
(

−λNl
2 log(2πdtλ)

)

does not depend on the trajectoryτi , therefore it can be taken

outside the integral as well as outside the gradient. Thus we will have that:

uti = lim
dt→0



λR−1GT
ti

exp
(

−λ(N−i)l
2 log(2πdtλ)

)

∇xti

[∫
exp
(

− 1
λ S̃(τi)

)

dτi
]

exp
(

−λ(N−i)l
2 log(2πdtλ)

)∫
exp
(

− 1
λ S̃(τi)

)

dτi



 .

The constant term drops from the nominator and denominator and thus we can write:

uti = lim
dt→0

(

λR−1GT
ti

[

∇xti

∫
exp
(

− 1
λ S̃(τi)

)

dτi∫
exp
(

− 1
λ S̃(τi)

)

dτi

])

.

Under the assumption that term exp
(

− 1
λ S̃(τi)

)

dτi is continuously differentiable inxti anddt we
can change order of the integral with the differentiation operations. In general for∇x

∫
f (x,y)dy=∫

∇x f (x,y)dy to be true,f (x, t) should be continuous iny and differentiable inx. Under this as-
sumption, the optimal controls can be further formulated as:

uti = lim
dt→0

[

λR−1GT
ti

∫
∇xti

exp
(

− 1
λ S̃(τi)

)

dτi∫
exp
(

− 1
λ S̃(τi)

)

dτi

]

.

Application of the differentiation rule of the exponent results in:

uti = lim
dt→0

[

λR−1GT
ti

∫
exp
(

− 1
λ S̃(τi)

)

∇xti

(

− 1
λ S̃(τi)

)

dτi∫
exp
(

− 1
λ S̃(τi)

)

dτi

]

.
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The denominator is a function ofxti the current state and thus it can be pushed inside the integral
of the nominator:

uti = lim
dt→0

[

λR−1GT
ti

∫ exp
(

− 1
λ S̃(τi)

)

∫
exp
(

− 1
λ S̃(τi)

)

dτi
∇xti

(

−1
λ

S̃(τi)

)

dτi

]

.

By defining the probability ˜p(τi) =
exp(− 1

λ S̃(τi))∫
exp(− 1

λ S̃(τi))dτi
the expression above can be written as:

uti = lim
dt→0

[

λR−1GT
ti

∫
p̃(τi)∇xti

(

−1
λ

S̃(τi)

)

dτi

]

.

Further simplification will result in:

uti = lim
dt→0

[

−R−1GT
ti

∫
p̃(τi)∇xti

S̃(τi)dτi

]

.

We know that the control transition matrix has the formG(xti )
T = [0T Gc(xxti

)T ]. In addition
the partial derivative∇xti

S̃(τi) can be written as∇xti
S̃(τi)

T = [∇
x(m)

ti

S̃(τi)
T ∇

x(c)ti

S̃(τi)
T ]. By using

these equations we will have that:

uti = lim
dt→0

(

−R−1[0T G(c)
ti

T ]
∫

p̃(τo)

[

∇
x(m)

ti

S̃(τi)

∇
x(c)ti

S̃(τi)

]

dτi

)

.

The equation above can be written in the form:

uti = lim
dt→0

(

−[0T R−1G(c)
ti

T ]
∫

p̃(τi)

[

∇
x(m)

ti

S̃(τi)

∇
x(c)ti

S̃(τi)

]

dτi

)

.

or

uti = lim
dt→0

(

−[0T R−1G(c)
ti

T ]

[
∫

p̃(τi) ·∇x(m)
ti

S̃(τi)dτi∫
p̃(τi) ·∇x(c)ti

S̃(τi)dτi

])

.

Therefore we will have the result

uti = lim
dt→0

[

−R−1G(c)
ti

T
∫

p̃(τi)∇
x(c)ti

S̃(τi)dτi

]

.

Lemma 2 : Given the stochastic dynamics and the cost in (1),(2),(3) and(4) the gradient of the

path functionS̃(τi) with respect to the directly actuated part of the statex(c)ti is formulated as:

lim
dt→0

(

∇
x(c)ti

S̃(τi)

)

=−H−1
ti

(

G(c)
ti εti −bti

)

3170



A GENERALIZED PATH INTEGRAL CONTROL APPROACH TOREINFORCEMENTLEARNING

where the function b(xti ) defined asλH(xti )Φti with Hti =G(c)
ti R−1G(c)

ti

T
and the quantityΦti ∈ℜl×1

is expressed as:

Φti =
1
2





























trace

(

H−1
ti ∂

x(c1)
ti

Hti

)

trace

(

H−1
ti ∂

x(c2)
ti

Hti

)

.

.

.

trace

(

H−1
ti ∂

x(cl)
ti

Hti

)





























.

Proof
We are calculating the term∇

x(c)to
S̃(τo) . More precisely we have shown that

S̃(τi) = φtN +
N−1

∑
j=i

qt j dt+
1
2

N−1

∑
j=i

‖
x(c)t j+1
−x(c)t j

dt
− f(c)t j

‖2Ht j
dt+

λ
2

N−1

∑
j=i

log|Ht j |.

To limit the length of our derivation we introduce the notationγt j = αT
t j

h−1
t j

αt j and αt j =
(

x(c)t j+1
−x(c)t j

− f(c)t j
dt
)

and it is easy to show that‖
x(c)t j+1

−x(c)t j

dt − f(c)t j
‖2Ht j

dt = 1
dt γt j and therefore we will

have:

S̃(τi) = φtN +
1

2dt

N−1

∑
j=i

γt j +
tN

∑
to

Qt j dt+
λ
2

N−1

∑
j=i

log|Ht j |.

In the analysis that follows we provide the derivative of the 1th, 2th and 4thterm of the cost
function. We assume that the cost of the state during the time horizonQti = 0. In cases that this
is not true then the derivative∇

x(c)ti
∑tN

ti Qti dt needs to be found as well. By calculating the term

∇
x(c)to

S̃(τo) we can find the local controlsu(τi). It is important to mention that the derivative of the

path costS(τi) is taken only with respect to the current statexto.
The first term is:

∇
x(c)ti

(φtN) = 0.

DERIVATIVE OF THE 2TH TERM ∇
x(c)ti

[

1
2dt ∑N−1

i=1 γti

]

OF THE COSTS(τi).

The second term can be found as follows:

∇
x(c)ti

[

1
2dt

N−1

∑
j=i

γt j

]

.
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The operator∇
x(c)to

is linear and it can massaged inside the sum:

1
2dt

N−1

∑
j=i

∇
x(c)t j

(

γt j

)

.

Terms that do not depend onx(c)ti drop and thus we will have:

1
2dt

∇
x(c)ti

γti .

Substitution of the parameterγti = αT
ti H−1

ti αti will result in:

1
2dt

∇
x(c)ti

[

αT
ti H−1

ti αti

]

.

By making the substitutionβti =H−1
ti αti and applying the rule∇

(

u(x)Tv(x)
)

=∇(u(x))v(x)+
∇(v(x))u(x) we will have that:

1
2dt

[

∇
x(c)ti

αti βti +∇
x(c)ti

βti αti

]

. (40)

Next we find the derivative ofαto:

∇
x(c)ti

αti = ∇
x(c)ti

[

x(c)ti+1
−x(c)ti − fc(xti )dt

]

.

and the result is

∇
x(c)ti

αti =−Il×l −∇
x(c)ti

f(c)ti dt.

We substitute back to (40) and we will have:

1
2dt

[

−
(

Il×l +∇
x(c)ti

f(c)ti dt

)

βti +∇
x(c)ti

βti αti

]

.

− 1
2dt

(

Il×l +∇
x(c)ti

f(c)ti dt

)

βti +
1

2dt
∇

x(c)ti

βti αti .

After some algebra the result of∇
x(c)ti

(

1
2dt ∑N−1

i=1 γti

)

is expressed as:

− 1
2dt

βti −
1
2

∇
x(c)ti

f(c)ti βti +
1

2dt
∇

x(c)ti

βti αti .

The next step now is to find the limit of the expression above asdt→ 0. More precisely we will
have that:

lim
dt→0

[

− 1
2dt

βti −
1
2

∇
x(c)ti

f(c)ti βti +
1

2dt
∇

x(c)ti

βti αti

]

.
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L IMIT OF THE FIRST SUBTERM: − 1
2dt βti

We will continue our analysis by finding the limit for each one of the 3 terms above. The limit of
the first term is calculated as follows:

lim
dt→0

(

− 1
2dt

βti

)

=− lim
dt→0

(

1
2dt

H−1
ti αti

)

=−1
2

H−1
ti lim

dt→0
αti

=−1
2

H−1
ti lim

dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

.

L IMIT OF THE SECOND SUBTERM: −1
2∇

x(c)ti

f(c)ti βti

The limit of the second term is calculated as follows:

− lim
dt→0

(

1
2

∇
x(c)ti

f(c)ti βti

)

=−1
2

∇
x(c)ti

fc(xti ) lim
dt→0

βti

=−1
2

∇
x(c)ti

f(c)ti lim
dt→0

(

H−1
ti αti

)

=−1
2

∇
x(c)ti

fc(xti ) H−1
ti lim

dt→0
αti

= 0.

The limit of the term limdt→0 αti is derived as:

lim
dt→0

(

x(c)ti+1
−x(c)ti − fc(xti )dt

)

= lim
dt→0

(

x(c)tti+dt
−x(c)ti

)

− lim
dt→0

fc(xti )dt = 0−0= 0.

L IMIT OF THE THIRD SUBTERM: 1
2dt ∇

x(c)ti

βti αti

Finally the limit of the third term can be found as:

lim
dt→0

(

1
2dt

∇
x(c)ti

βti αti

)

=

= lim
dt→0

∇
x(c)ti

βti lim
dt→0

(

1
2dt

αti

)

=

= lim
dt→0

∇
x(c)ti

βti

1
2

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

.

We substituteβti = H−1
ti αti and write the matrixH−1

ti in row form:
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= lim
dt→0

∇
x(c)ti

(

H−1
ti αti

) 1
2

lim
dt→0

(

(x(c)ti −x(c)ti )
1
dt
− f(c)ti

)

=

= lim
dt→0

∇
x(c)ti









































H(1)−T

ti

H(2)−T

ti
.
.
.

H(l)−T

ti





















αti





















1
2

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

= lim
dt→0

∇
x(c)ti





















H(1)−T

ti αti

H(2)−T

ti αti
.
.
.

H(l)−T

ti αti





















1
2

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

.

We can push the operator∇
x(c)ti

insight the matrix and apply it to each element.

= lim
dt→0

























∇T
x(c)ti

(

H(1)−T

ti αti

)

∇T
x(c)ti

(

H(2)−T

ti αti

)

.

.

.

∇T
x(c)ti

(

H(l)−T

ti αti

)

























1
2

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

.

We again use the rule∇
(

u(x)Tv(x)
)

= ∇(u(x))v(x)+∇(v(x))u(x) and thus we will have:

= lim
dt→0































(

∇
x(c)ti

H(1)−T

ti αti +∇
x(c)ti

αti H(1)−T

ti

)T

(

∇
x(c)ti

H(2)−T

ti αti +∇
x(c)ti

αti H(2)−T

ti

)T

.

.

.
(

∇
x(c)ti

H(l)−T

ti αti +∇
x(c)ti

αti H(l)−T

ti

)T































lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

.

We can split the matrix above into two terms and then we pull out the termsαti and∇
x(c)ti

αti

respectively :
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= lim
dt→0

























αT
ti

























∇
x(c)ti

H(1)−T

ti

∇
x(c)ti

H(2)−T

ti

.

.

.

∇
x(c)ti

H(l)−T

ti

























+





















H(1)−T

ti

H(2)−T

ti
.
.
.

H(l)−T

ti





















∇
x(c)ti

αT
ti

























1
2

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

= lim
dt→0

(

αT
ti ∇

x(c)ti

H−1
ti +H−1

ti ∇
x(c)ti

αT
ti

)

1
2

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

=

(

lim
dt→0

(

αT
ti

)

∇
x(c)ti

H−1
ti +H−1

ti lim
dt→0

(

∇
x(c)ti

αT
ti

))

1
2

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

.

Since limdt→0
(

αT
ti

)

= 01×l and limdt→0

(

∇
x(c)ti

αT
ti

)

= −Il×l the final result is expressed as fol-

lows

lim
dt→0

(

1
2dt

∇
x(c)ti

βti αti

)

=−H−1
ti

1
2

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)to

)

.

After we have calculated the 3 sub-terms, the 2th term of the of the derivative of path costS(τo)
can be expressed in the following form:

∇
x(c)ti

(

1
2λdt

N−1

∑
j=i

γt j

)

=−H−1
ti lim

dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti )

)

.

DERIVATIVE OF THE FOURTH TERM ∇
x(c)ti

(

λ
2 ∑N−1

j=i log|Ht j |
)

OF THE COSTS(τi).

The analysis for the 4th term is given below:

∇
x(c)ti

(

λ
2

N−1

∑
j=i

log|Ht j |
)

=
λ
2

∇
x(c)ti

log|Hti |.

If we assume thatx(c)to = [x(c1)
to ,x(c2)

to ....x(cl)
to ] and take the derivative with respect to each element we

will have

∂
x(ci)

ti

(

λ
2

log|Hti |
)

=
λ
2

1
|Hti |

∂
x(ci)

ti

|Hti |.

∂
x(ci)

ti

(

λ
2

log|Hti |
)

=
λ
2

1
|H(xti )|

|Hti | trace

(

H−1
ti ·∂x(ci)

ti

Hti

)

.

∂
x(ci)

ti

(

λ
2

log|Hti |
)

=
λ
2

trace

(

H−1
ti ∂

x(ci)
ti

Hti

)

.
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Where we make used of the identity∂det(A) = det(A)Tr
(

A−1∂A
)

. The result is expressed as:

∇
x(c)ti

(

λ
2

log|Hti |
)

=
λ
2





























trace

(

H−1
ti ∂

x(c1)
ti

Hti

)

trace

(

H−1
ti ∂

x(c2)
ti

Hti

)

.

.

.

trace

(

H−1
ti ∂

x(cl)
ti

Hti

)





























.

or in a more compact form:

∇
x(c)ti

(

λ
2

log|Hti |
)

= H−1
ti bti .

whereb(xti ) = λH(xti )Φti and the quantityΦti ∈ℜl×1 is defined as:

Φti =
1
2





























trace

(

H−1
ti ∂

x(c1)
ti

Hti

)

trace

(

H−1
ti ∂

x(c2)
ti

Hti

)

.

.

.

trace

(

H−1
ti ∂

x(cl)
ti

Hti

)





























. (41)

Since we computed all the terms of the derivative of the path costS̃(τo) and after putting all the
terms together we have the result expressed as follows:

lim
dt→0

(

∇
x(c)ti

S̃(τi)

)

=−H−1
ti

(

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

−bti

)

.

By taking into account the fact that limdt→0

(

(x(c)ti+1
−x(c)ti ) 1

dt − f(c)ti

)

= G(c)
ti εti we get the follow-

ing final expression:

lim
dt→0

(

∇
x(c)ti

S̃(τi)

)

=−H−1
ti

(

G(c)
ti εti −bti

)

.

Theorem 3 : The optimal control solution to the stochastic optimal control problem expressed
by (1),(2),(3),(4) is formulated by the equation that follows:

uti = lim
dt→0

∫
p̃(τi) uL (τi) dτi ,
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where p̃(τi) =
exp(− 1

λ S̃(τi))∫
exp(− 1

λ S̃(τi))dτi
is a path depended probability distribution and the termu(τi) de-

fined asuL (τi) = R−1G(c)
ti

T
(

G(c)
ti R−1G(c)

ti
T
)−1(

G(c)
ti εti −bti

)

are the local controls of each sam-

pled trajectory starting from statexti . The terms εti and bti are defined as εti =
(

(x(c)ti+1
−x(c)ti ) 1

dt − f(o)ti

)

andb(xti ) = λH(xti )Φti with Hti = G(c)
ti R−1G(c)

ti

T
and Φti given in (41).

Proof
To prove the theorem we make use of the Lemma 2 and we substitute∇

x(c)ti

S̃(τi) in the main

result of Lemma 1. More precisely from lemma A1 we have that:

uti = lim
dt→0

(

R−1G(c)
ti

T
∫

p̃(τi)H−1
ti

(

∇
x(c)ti

S̃(τi)

)

dτi

)

.

The termsR−1 andGti can be pushed insight the integral since they are independent ofτi =
(x1,x2, ...,xN). Thus we have the expression:

uti = lim
dt→0

(∫
p̃(τi)R−1G(c)

ti
TH−1

ti

(

∇
x(c)ti

S̃(τi)

)

dτi

)

,

uti = lim
dt→0

∫
p̃(τi) u(dt)

L (τi) dτi ,

where the local controlsu(dt)
L (τi) are given as follows:

u(dt)
L (τi) = R−1G(c)

ti
TH−1

ti ∇
x(c)ti

S̃(τi).

After applying the limit, and making use of the result in Lemma 2 the equation above isex-
pressed as:

uti =
∫

p̃(τi)uL(xti+1,xti )dτi ,

where the local controlsuL(xti+1,xti ) are given as follows:

uL(τi) = uL(xti+1,xti ) = R−1G(c)
ti

TH−1
ti

(

lim
dt→0

(

(x(c)ti+1
−x(c)ti )

1
dt
− f(c)ti

)

−bti

)

,

or in a simpler form:

uL(xti+1,xti ) = R−1G(c)
ti

TH−1
ti (Gcεti −bti ) .

By substituting withH(xti ) = G(c)
ti R−1G(c)

ti
T we have the final result:

uL(τi) = uL(xti+1,xti ) = R−1G(c)
ti

T
(

G(c)
ti R−1G(c)

ti
T
)−1(

G(c)
ti εti −bti

)

.
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Appendix B.

Theorem 4 : Let us assume thatx satisfies the SDĖx = f(x, t) +G(x)ε(t). Then Ψ(x, to) =

Ψ(x, to, tN) = E
(

Ψ(x, tN) e
∫ tN
to − 1

λ q(x)dτ
)

if and only if Ψ(x, t) satisfies the backward Kolmogorov
PDE:

−∂tΨt =−
1
λ

qtΨt + fT
t (∇xΨt)+

1
2

trace
(

(∇xxΨt)GtΣεGT
t

)

,

with boundary condition:

Ψ(x, tN) = exp

(

−1
λ

φ(x(tN))
)

.

Proof Given thatx satisfies the SDĖx = f(x, t)+G(x)ε(t) andΨ(x, t) satisfies the PDE above,

application of Ito lemma (Øksendal, 2003) to functionY(t) = Ψ(xt , t) e
∫ t

to−
1
λ q(x)dτ leads to the final

resultΨ(x, to) = E
(

Ψ(x, tN) e
∫ tN
to − 1

λ q(x)dτ
)

. This result is the solution of the linear PDE.

References

S. Amari. Natural gradient learning for over- and under-complete bases in ica.Neural Computation,
11(8):1875–83, 1999.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems.IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5):
115–133, 1983.

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation.Journal of Artificial Intelli-
gence Research, 15:319–350, 2001.

R. Bellman and R. Kalaba.Selected Papers On mathematical trends in Control Theory. Dover
Publications, 1964.

B. Van Den Broek, W. Wiegerinck, and H. J. Kappen. Graphical modelinference in optimal control
of stochastic multi-agent systems.Journal of Artificial Intelligence Research, 32(1):95–122,
2008.

J. Buchli, E. Theodorou, F. Stulp, and S. Schaal. Variable impedance control - a reinforcement
learning approach. InRobotics Science and Systems, 2010.

P. Dayan and G. Hinton. Using em for reinforcement learning.Neural Computation, 9, 1997.

M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian ProcessDynamic Programming.Neu-
rocomputing, 72(7–9):1508–1524, March 2009.

W. H. Fleming and H. M. Soner.Controlled Markov Processes and Viscosity Solutions. Applications
of aathematics. Springer, New York, 2nd edition, 2006.

3178



A GENERALIZED PATH INTEGRAL CONTROL APPROACH TOREINFORCEMENTLEARNING

M. Ghavamzadeh and E. Yaakov. Bayesian actor-critic algorithms. InICML ’07: Proceedings of
The 24th International Conference on Machine Learning, pages 297–304, 2007.

V. Gullapalli. A stochastic reinforcement learning algorithm for learning real-valued functions.
Neural Networks, 3:671–692, 1990.

A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor primitives.
In S. Becker, S. Thrun, and K. Obermayer, editors,Advances in Neural Information Processing
Systems 15, pages 1547–1554. Cambridge, MA: MIT Press, 2003.

D. H. Jacobson and D. Q. Mayne.Differential dynamic programming. American Elsevier Pub. Co.,
New York,, 1970.

N. Jetchev and M Toussaint. Trajectory prediction: learning to map situationsto robot trajectories.
In ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning,
pages 449–456, 2009.

H. J. Kappen. Linear theory for control of nonlinear stochastic systems. Phys. Rev. Lett., 95:200201,
Nov 2005a.

H. J. Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of Statistical
Mechanics: Theory and Experiment, (11):P11011, 2005b.

H. J. Kappen. An introduction to stochastic control theory, path integrals and reinforcement learn-
ing. In J. Marro, P. L. Garrido, and J. J. Torres, editors,Cooperative Behavior in Neural Systems,
volume 887 ofAmerican Institute of Physics Conference Series, pages 149–181, February 2007.

H. J. Kappen, W. Wiegerinck, and B. van den Broek. A path integral approach to agent planning.
In AAMAS, 2007.

H. J. Kappen, Gmez V., and Opper M. Optimal control as a graphical modelinference problem.
Journal for Machine Learning Research (JMLR), arXiv:0901.0633v, 2009. Submitted.

J. Koeber and J. Peters. Policy search for motor primitives. In D. Schuurmans, J. Benigio, and
D. Koller, editors,Advances in Neural Information Processing Systems 21 (NIPS 2008), pages
297–304, Vancouver, BC, Dec. 8-11, 2008. Cambridge, MA: MIT Press.

W. Thomas Miller, Richard S., and Paul J. Werbos.Neural Networks for Control. Neural network
modeling and connectionism. MIT Press, Cambridge, Mass., 1990.

B. K. Øksendal.Stochastic Differential Equations : An Introduction with Applications. Springer,
Berlin; New York, 6th edition, 2003.

J. Peters. Machine Learning of Motor Skills for Robotics.PhD thesis, University of Southern
California, 2007.

J. Peters and S. Schaal. Policy gradient methods for robotics. InProceedings of the IEEE Interna-
tional Conference on Intelligent Robotics Systems (IROS 2006), 2006a.

J. Peters and S. Schaal. Reinforcement learning for parameterized motorprimitives. InProceedings
of the 2006 International Joint Conference on Neural Networks (IJCNN 2006), 2006b.

3179



THEODOROU, BUCHLI AND SCHAAL

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21(4):682–97, 2008a.

J. Peters and S. Schaal. Natural actor critic.Neurocomputing, 71(7-9):1180–1190, 2008b.

J. Peters and S. Schaal. Learning to control in operational space.International Journal of Robotics
Research, 27:197–212, 2008c.

T. Rueckstiess, M. Felder, and J. Schmidhuber. State-dependent exploration for policy gradient
methods. InECML PKDD ’08: Proceedings of the European Conference on MachineLearning
and Knowledge Discovery in Databases - Part II, pages 234–249, 2008.

S. Schaal and C. G. Atkeson. Constructive incremental learning from only local information.Neural
Computation, 10(8):2047–2084, 1998.

L. Sciavicco and B. Siciliano.Modelling and Control of Robot Manipulators. Advanced textbooks
in control and signal processing. Springer, London ; New York, 2000.

R. F. Stengel.Optimal Control and Estimation. Dover books on advanced mathematics. Dover
Publications, New York, 1994.

R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. Adaptive computation and
machine learning. MIT Press, Cambridge, 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. InAdvances in Neural Information Processing Systems
12, pages 1057–1063. MIT Press, 2000.

E. Todorov. Stochastic optimal control and estimation methods adapted to the noise characteristics
of the sensorimotor system.Neural Computation, 17(5):1084, 2005.

E. Todorov. Linearly-solvable markov decision problems. In B. Scholkopf, J. Platt, and T. Hoffman,
editors,Advances in Neural Information Processing Systems 19 (NIPS 2007), Vancouver, BC,
2007. Cambridge, MA: MIT Press.

E. Todorov. General duality between optimal control and estimation. InIn Proceedings of the 47th
IEEE Conference on Decision and Control, 2008.

E. Todorov. Classic maximum principles and estimation-control dualities for nonlinear stochastic
systems. 2009a. (Submitted).

E. Todorov. Efficient computation of optimal actions.Proceedings National Academy of Science
USA, 106(28):11478–83, 2009b.

M. Toussaint and A. Storkey. Probabilistic inference for solving discrete and continuous state
markov decision processes, 2006.

N. Vlassis, M. Toussaint, G. Kontes, and Piperidis. S. Learning model-free control by a monte-carlo
em algorithm.Autonomous Robots, 27(2):123–130, 2009.

3180



A GENERALIZED PATH INTEGRAL CONTROL APPROACH TOREINFORCEMENTLEARNING

W. Wiegerinck, B. van den Broek, and H. J. Kappen. Stochastic optimal control in continuous
space-time multi-agent system. InUAI, 2006.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning.Machine Learning, 8:229–256, 1992.

J. Yong. Relations among odes, pdes, fsdes, bsdes, and fbsdes. InProceedings of the 36th IEEE
Conference on Decision and Control, volume 3, pages 2779–2784, Dec 1997.

3181


