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Abstract

A wide variety of machine learning problems can be describedas minimizing a regularized risk
functional, with different algorithms using different notions of risk and different regularizers. Ex-
amples include linear Support Vector Machines (SVMs), Gaussian Processes, Logistic Regression,
Conditional Random Fields (CRFs), and Lasso amongst others. This paper describes the theory
and implementation of a scalable and modular convex solver which solves all these estimation
problems. It can be parallelized on a cluster of workstations, allows for data-locality, and can deal
with regularizers such asL1 andL2 penalties. In addition to the unified framework we present tight
convergence bounds, which show that our algorithm converges in O(1/ε) steps toε precision for
general convex problems and inO(log(1/ε)) steps for continuously differentiable problems. We
demonstrate the performance of our general purpose solver on a variety of publicly available data
sets.
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1. Introduction

At the heart of many machine learning algorithms is the problem of minimizing a regularized risk
functional. That is, one would like to solve

min
w

J(w) := λΩ(w)+Remp(w), (1)

whereRemp(w) :=
1
m

m

∑
i=1

l(xi ,yi ,w) (2)

is the empirical risk. Moreover,xi ∈ X ⊆ R
d are referred to as training instances andyi ∈ Y are

the corresponding labels.l is a (surrogate) convex loss function measuring the discrepancy be-
tweeny and the predictions arising from usingw. For instance,w might enter our model via
l(x,y,w) = (〈w,x〉 − y)2, where〈·, ·〉 denotes the standard Euclidean dot product. Finally,Ω(w)
is a convex function serving the role of a regularizer with regularization constantλ > 0. Typically
Ω is differentiable and cheap to compute. In contrast, the empirical risk termRemp(w) is often
non-differentiable, and almost always computationally expensive to dealwith.

For instance, if we consider the problem of predicting binary valued labelsy∈ {±1}, we can set
Ω(w) = 1

2 ‖w‖
2
2 (i.e.,L2 regularization), and the lossl(x,y,w) to be the binary hinge loss, max(0,1−

y〈w,x〉), thus recovering linear Support Vector Machines (SVMs) (Joachims, 2006). Using the
same regularizer but changing the loss function tol(x,y,w) = log(1+exp(−y〈w,x〉)), yields logistic
regression. Extensions of these loss functions allow us to handle structure in the output space
(Bakir et al., 2007) (also see Appendix A for a comprehensive exposition of many common loss
functions). On the other hand, changing the regularizerΩ(w) to the sparsity inducing‖w‖1 (i.e.,
L1 regularization) leads to Lasso-type estimation algorithms (Mangasarian, 1965; Tibshirani, 1996;
Candes and Tao, 2005).

If the objective functionJ is differentiable, for instance in the case of logistic regression, we
can use smooth optimization techniques such as the standard quasi-Newtons methods likeBFGS or
its limited memory variantLBFGS (Nocedal and Wright, 1999). These methods are effective and
efficient even whenm andd are large (Sha and Pereira, 2003; Minka, 2007). However, it is not
straightforward to extend these algorithms to optimize a non-differentiable objective, for instance,
when dealing with the binary hinge loss (see, e.g., Yu et al., 2008).

WhenJ is non-differentiable, one can use nonsmooth convex optimization techniques such as
the cutting plane method (Kelly, 1960) or itsstabilizedversion the bundle method (Hiriart-Urruty
and Lemaŕechal, 1993). The bundle methods not only stabilize the optimization procedure but
make the problem a well-posed one, that is, with unique solution. However, the amount ofexternal
stabilization that needs to be added is a parameter that requires careful tuning.

In this paper, we bypass this stabilization parameter tuning problem by taking adifferent route.
The resultant algorithm – Bundle Method for Regularized Risk Minimization (BMRM) – has certain
desirable properties: a) it has no parameters to tune, and b) it is applicableto a wide variety of
regularized risk minimization problems. Furthermore, we show thatBMRM has anO(1/ε) rate of
convergence for nonsmooth problems andO(log(1/ε)) for smooth problems. This is significantly
tighter than theO(1/ε2) rates provable for standard bundle methods (Lemaréchal et al., 1995). A
related optimizer,SVMstruct (Tsochantaridis et al., 2005), which is widely used in machine learning
applications was also shown to converge atO(1/ε2) rates. Our analysis also applies toSVMstruct,
which we show to be a special case of our solver, and hence tightens its convergence rate toO(1/ε).
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Very briefly, we highlight the two major advantages of our implementation. First,it is com-
pletely modular; new loss functions, regularizers, and solvers can be added with relative ease. Sec-
ond, our architecture allows the empirical risk computation (2) to be easily parallelized. This makes
our solver amenable to large data sets which cannot fit into the memory of a single computer. Our
open source C/C++ implementation is freely available for download.1

The outline of our paper is as follows. In Section 2 we describeBMRM and contrast it with stan-
dard bundle methods. We also prove rates of convergence. In Section 3we discuss implementation
issues and present principled techniques to control memory usage, as well as to speed up computa-
tion via parallelization. Section 4 puts our work in perspective, and discusses related work. Section
5 is devoted to extensive experimental evaluation, which shows that our implementation is compa-
rable to or better than specialized state-of-the-art solvers on a number ofpublicly available data sets.
Finally, we conclude our work and discuss related issues in Section 6. In Appendix A we describe
variousclassesof loss functions organized according to their common traits in computation. Long
proofs are relegated to Appendix B. Before we proceed a brief note about our notation:

1.1 Notation

The indices of elements of a sequence or a set appear in subscript, for example,u1,u2. The i-th
component of a vectoru is denoted byu(i). [k] is the shorthand for the set{1,2, . . . ,k}. TheLp norm
is defined as‖u‖p = (∑d

i=1 |u(i)|p)1/p, for p≥ 1, and we use‖·‖ to denote‖·‖2 whenever the context
is clear.1d and0d denote thed-dimensional vectors of all ones and zeros respectively.

2. Bundle Methods

The precursor to the bundle methods is the cutting plane method (CPM) (Kelly, 1960). CPM uses
subgradients, which are a generalization of gradients appropriate for convex functions, including
those which are not necessarily smooth. Supposew′ is a point where a convex functionJ is finite.
Then a subgradient is the normal vector of any tangential supporting hyperplane ofJ at w′ (see
Figure 1 for geometric intuition). Formallys′ is called a subgradient ofJ atw′ if, and only if,

J(w)≥ J(w′)+
〈
w−w′,s′

〉
∀w. (3)

The set of all subgradients atw′ is called the subdifferential, and is denoted by∂wJ(w′). If this set is
not empty thenJ is said to besubdifferentiable at w′. On the other hand, if this set is a singleton then
the function is said to bedifferentiableat w′. Convex functions are subdifferentiable everywhere in
their domain (Hiriart-Urruty and Lemaréchal, 1993).

As implied by (3),J is bounded from below by its linearization (i.e., first order Taylor approx-
imation) atw′. Given subgradientss1,s2, . . . ,st evaluated at locationsw0,w1, . . . ,wt−1, we can state
a tighter (piecewise linear) lower bound forJ as follows

J(w)≥ JCP
t (w) := max

1≤i≤t
{J(wi−1)+ 〈w−wi−1,si〉}. (4)

This lower bound forms the basis of the CPM, where at iterationt the set{wi}t−1
i=0 is augmented by

wt := argmin
w

JCP
t (w).

1. Software available athttp://users.rsise.anu.edu.au/ ˜ chteo/BMRM.html .
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This iteratively refines the piecewise linear lower boundJCP and allows us to get close to the mini-
mum ofJ (see Figure 2 for an illustration).

If w∗ denotes the minimizer ofJ, then clearly eachJ(wi) ≥ J(w∗) and hence min0≤i≤t J(wi) ≥
J(w∗). On the other hand, sinceJ ≥ JCP

t it follows that J(w∗) ≥ JCP
t (wt). In other words,J(w∗)

is sandwiched between min0≤i≤t J(wi) and JCP
t (wt) (see Figure 3 for an illustration). The CPM

monitors the monotonically decreasing quantity

εt := min
0≤i≤t

J(wi)−JCP
t (wt),

and terminates wheneverεt falls below a predefined thresholdε. This ensures that the solutionJ(wt)
satisfiesJ(wt)≤ J(w∗)+ ε.

Figure 1: Geometric intuition of a subgradient. The nonsmooth convex function (solid blue) is only
subdifferentiable at the “kink” points. We illustrate two of its subgradients (dashed green
and red lines) at a “kink” point which are tangential to the function. The normal vectors
to these lines are subgradients.

2.1 Standard Bundle Methods

Although CPM was shown to be convergent (Kelly, 1960), it is well known(see, e.g., Lemaréchal
et al., 1995; Belloni, 2005) that CPM can be very slow when new iterates move too far away from
the previous ones (i.e., causing unstable “zig-zag” behavior in the iterates).

Bundle methods stabilize CPM by augmenting the piecewise linear lower bound (e.g., JCP
t (w)

as in (4)) with a prox-function (i.e., proximity control function) which prevents overly large steps in
the iterates (Kiwiel, 1990). Roughly speaking, there are 3 popular types of bundle methods, namely,
proximal(Kiwiel, 1990), trust region(Schramm and Zowe, 1992), andlevel set(Lemaŕechal et al.,
1995).2 All three versions use12 ‖·‖

2 as their prox-function, but differ in the way they compute the

2. For brevity we will only describe “first-order” bundle methods, and omit discussion about “second-order” variants
such as the bundle-Newton method of Lukšan and Vľcek (1998).
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Figure 2: A convex function (blue solid curve) is bounded from below byits linearizations (dashed
lines). The gray area indicates the piecewise linear lower bound obtained by using the
linearizations. We depict a few iterations of the cutting plane method. At each iteration
the piecewise linear lower bound is minimized and a new linearization is added at the
minimizer (red rectangle). As can be seen, adding more linearizations improves the lower
bound.

Figure 3: A convex function (blue solid curve) with three linearizations (dashed lines) evaluated
at three different locations (red squares). The approximation gapε3 at the end of third
iteration is indicated by the height of the magenta horizontal band, that is, difference
between lowest value ofJ(w) evaluated so far (lowest black circle) and the minimum of
JCP

3 (w) (red diamond).
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new iterate:

proximal: wt := argmin
w
{ ζt

2 ‖w− ŵt−1‖2 +JCP
t (w)}, (5)

trust region: wt := argmin
w
{JCP

t (w) | 1
2 ‖w− ŵt−1‖2≤ κt}, (6)

level set: wt := argmin
w
{1

2 ‖w− ŵt−1‖2 | JCP
t (w)≤ τt},

whereŵt−1 is the current prox-center, andζt ,κt , and τt are positive trade-off parameters of the
stabilization. Although (5) can be shown to be equivalent to (6) for appropriately chosenζt and
κt , tuningζt is rather difficult while a trust region approach can be used for automatically tuning
κt . Consequently the trust region algorithmBT of Schramm and Zowe (1992) is widely used in
practice.

Since our methods (see Section 2.2) are closely related to the proximal bundlemethod, we
will now describe them in detail. Similar to the CPM the proximal bundle method also builds
a piecewise linear lower boundJCP

t (see (4)). In contrast to the CPM, the piecewise linear lower
bound augmented with a stabilization termζt

2 ‖w− ŵt−1‖2, is minimized to produce the intermediate
iteratew̄t . The approximation gap in this case includes the prox-function:

εt := J(ŵt−1)−
[

JCP
t (w̄t)+

ζt

2
‖w̄t − ŵt−1‖2

]

.

If εt is less than the pre-defined thresholdε the algorithm exits. Otherwise, a line search is performed
along the line joining ˆwt−1 andw̄t to produce the new iteratewt . If wt results in a sufficient decrease
of the objective function then it is accepted as the new prox-center ˆwt ; this is called a serious step.
Otherwise, the prox-center remains the same; this is called a null step. Detailedpseudocode can be
found in Algorithm 1.

If the approximation gapεt is smaller thanε, then this ensures that the solutionJ(ŵt−1) satisfies
J(ŵt−1)≤ J(w)+ ζt

2 ‖w− ŵt−1‖2+ε for all w. In particular, ifJ(w∗) denotes the optimum as before,

thenJ(ŵt−1)≤ J(w∗)+ ζt
2 ‖w∗− ŵt−1‖2 + ε. Contrast this with the approximation guarantee of the

CPM, which does not involve theζt
2 ‖w∗− ŵt−1‖2 term.

Although the positive coefficientζt is assumed fixed throughout the algorithm, in practice it
must be updated after every iteration to achieve faster convergence, and to guarantee a good quality
solution (Kiwiel, 1990). Same is the case forκt andτt in trust region and level set bundle methods,
respectively. Although the update is not difficult, the procedure relies onother parameters which
require carefultuning(Kiwiel, 1990; Schramm and Zowe, 1992; Lemaréchal et al., 1995).

In the next section, we will describe our method (BMRM) which avoids this problem. There
are two key differences betweenBMRM and the proximal bundle method: Firstly,BMRM main-
tains a piecewise linear lower bound ofRemp(w) instead ofJ(w). Secondly, the the stabilizer (i.e.,
‖w− ŵt‖2) in proximal bundle method is replaced by the regularizerΩ(w) hence there is no stabi-
lization parameter to tune. As we will see, not only is the implementation straightforward, but the
rates of convergence also improve fromO(1/ε3) or O(1/ε2) to O(1/ε).
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Algorithm 1 Proximal Bundle Method
1: input & initialization: ε≥ 0, ρ ∈ (0,1), w0, t← 0, ŵ0← w0

2: loop
3: t← t +1
4: ComputeJ(wt−1) andst ∈ ∂wJ(wt−1)
5: Update modelJCP

t (w) := max1≤i≤t{J(wi−1)+ 〈w−wi−1,si〉}
6: w̄t ← argminwJCP

t (w)+ ζt
2 ‖w− ŵt−1‖2

7: εt ← J(ŵt−1)−
[

JCP
t (w̄t)+ ζt

2 ‖w̄t − ŵt−1‖2
]

8: if εt < ε then return w̄t

9: Linesearch:ηt ← argminη∈R
J(ŵt−1 +η(w̄t − ŵt−1)) (if expensive, setηt = 1)

10: wt ← ŵt−1 +ηt(w̄t − ŵt−1)
11: if J(ŵt−1)−J(wt)≥ ρεt then
12: SERIOUS STEP: ˆwt ← wt

13: else
14: NULL STEP:ŵt ← ŵt−1

15: end if
16: end loop

2.2 Bundle Methods for Regularized Risk Minimization (BMRM)

Define:

(subgradient ofRemp) at ∈ ∂wRemp(wt−1),

(offset) bt := Remp(wt−1)−〈wt−1,at〉 ,
(piecewise linear lower bound ofRemp) RCP

t (w) := max
1≤i≤t
{〈w,ai〉+bi},

(piecewise convex lower bound ofJ) Jt(w) := λΩ(w)+RCP
t (w),

(iterate) wt := min
w

Jt(w),

(approximation gap) εt := min
0≤i≤t

J(wi)−Jt(wt).

We now describeBMRM (Algorithm 2), and contrast it with the proximal bundle method. At it-
erationt the algorithm builds the lower boundRCP

t to the empirical riskRemp. The new iteratewt

is then produced by minimizingJt which isRCP
t augmented with the regularizerΩ; this is the key

difference from the proximal bundle method which uses theζt
2 ‖w− ŵt−1‖2 prox-function for stabi-

lization. The algorithm repeats until the approximation gapεt is less than the pre-defined threshold
ε. Unlike standard bundle methods there is no notion of a serious or null step inour algorithm.
In fact, our algorithm does not even maintain a prox-center. It can be viewed as a special case of
standard bundle methods where the prox-center is always the origin and never updated (hence every
step is a null step). Furthermore, unlike the proximal bundle method, the approximation guarantees
of our algorithm do not involve theζt

2 ‖w∗−wt‖2 term.

Algorithm 2 is simple and easy to implement as it does not involve a line search. Infact,
whenever efficient (exact) line search is available, it can be used to achieve faster convergence as
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Algorithm 2 BMRM
1: input & initialization: ε≥ 0, w0, t← 0
2: repeat
3: t← t +1
4: Computeat ∈ ∂wRemp(wt−1) andbt ← Remp(wt−1)−〈wt−1,at〉
5: Update model:RCP

t (w) := max1≤i≤t{〈w,ai〉+bi}
6: wt ← argminwJt(w) := λΩ(w)+RCP

t (w)
7: εt ←min0≤i≤t J(wi)−Jt(wt)
8: until εt ≤ ε
9: return wt

observed by Franc and Sonnenburg (2008) in the case of linear SVMswith binary hinge loss.3 We
now turn to a variant ofBMRM which uses a line search (Algorithm 3); this is a generalization of the
optimized cutting plane algorithm for support vector machines (OCAS) of Franc and Sonnenburg
(2008). This variant first buildsRCP

t and minimizesJt to obtain an intermediate iteratewt . Then, it
performs a line search along the line joiningwb

t−1 andwt to producewb
t which acts like the new prox-

center. Note thatwt −wb
t−1 is not necessarily a direction of descent; therefore the line search might

return a zero step. Instead of usingwb
t as the new iterate the algorithm uses the pre-set parameter

θ to generatewc
t on the line segment joiningwb

t andwt . Franc and Sonnenburg (2008) report that
settingθ = 0.9 works well in practice. It is easy to see that Algorithm 3 reduces to Algorithm 2
if we setηt = 1 for all t, and use the same termination criterion. It is worthwhile noting that this
variant is not applicable for structured learning problems such as Max-Margin Markov Networks
(Taskar et al., 2004), because no efficient line search is known for such problems.

A specialized variant ofBMRM which handles quadratic regularizers, that is,Ω(w) = 1
2‖w‖2

was first introduced to the machine learning community by Tsochantaridis et al.(2005) asSVMstruct.
In particular,SVMstruct handles quadratic regularizersΩ(w) = 1

2‖w‖2 and non-differentiable large
margin loss functions such as (24). Its 1-slack formulation (Joachims et al.,2009) can be shown to
be equivalent toBMRM for this specific type of regularizer and loss function. Somewhat confusingly,
these algorithms are called the cutting plane method even though they are closerin spirit to bundle
methods.

2.3 Dual Problems

In this section, we describe how the sub-problem

wt = argmin
w

Jt(w) := λΩ(w)+ max
1≤i≤t

〈w,ai〉+bi (7)

in Algorithms 2 and 3 is solved via a dual formulation. In fact, we will show that we need not know
Ω(w) at all, instead it is sufficient to work with its Fenchel dual (Hiriart-Urruty and Lemaŕechal,
1993):

Definition 1 (Fenchel Dual) Denote byΩ : W → R a convex function on a convex setW . Then
the dualΩ∗ of Ω is defined as

Ω∗(µ) := sup
w∈W
〈w,µ〉−Ω(w). (8)

3. A different optimization method but with identical efficient line search procedure is described in Yu et al. (2008).

318



BUNDLE METHODS FORREGULARIZED RISK M INIMIZATION

Algorithm 3 BMRM with Line Search

1: input & initialization: ε≥ 0, θ ∈ (0,1], wb
0, wc

0← wb
0, t← 0

2: repeat
3: t← t +1
4: Computeat ∈ ∂wRemp(wc

t−1), andbt ← Remp(wc
t−1)−

〈
wc

t−1,at
〉

5: Update model:RCP
t (w) := max1≤i≤t{〈w,ai〉+bi}

6: wt ← argminwJt(w) := λΩ(w)+RCP
t (w)

7: Linesearch:ηt ← argminη∈R
J(wb

t−1 +η(wt −wb
t−1))

8: wb
t ← wb

t−1 +ηt(wt −wb
t−1)

9: wc
t ← (1−θ)wb

t +θwt

10: εt ← J(wb
t )−Jt(wt)

11: until εt ≤ ε
12: return wb

t

Several choices of regularizers are common. ForW = R
d the squared norm regularizer yields

Ω(w) =
1
2
‖w‖22 and Ω∗(µ) =

1
2
‖µ‖22 .

More generally, forLp norms one obtains (Boyd and Vandenberghe, 2004; Shalev-Shwartz and
Singer, 2006):

Ω(w) =
1
2
‖w‖2p and Ω∗(µ) =

1
2
‖µ‖2q where

1
p

+
1
q

= 1.

For any positive definite matrixB, we can construct a quadratic form regularizer which allows non-
uniform penalization of the weight vector as:

Ω(w) =
1
2

w⊤Bw and Ω∗(µ) =
1
2

µ⊤B−1µ.

For theunnormalizednegative entropy, whereW = R
d
+, we have

Ω(w) = ∑
i

w(i) logw(i) and Ω∗(µ) = ∑
i

expµ(i).

For thenormalizednegative entropy, whereW = {w | w≥ 0 and‖w‖1 = 1} is the probability sim-
plex, we have

Ω(w) = ∑
i

w(i) logw(i) and Ω∗(µ) = log∑
i

expµ(i).

If Ω is differentiable thew at which the supremum of (8) is attained can be written asw = ∂µΩ∗(µ)
(Boyd and Vandenberghe, 2004). In the sequel we will always assume thatΩ∗ is twice differentiable.
Note that all the regularizers we discussed above are twice differentiable. The following theorem
states the dual problem of (7).
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Theorem 2 Denote by A= [a1, . . . ,at ] the matrix whose columns are the (sub)gradients, and let
b = [b1, . . . ,bt ]. The dual problem of

wt = argmin
w∈Rd

{Jt(w) := max
1≤i≤t

〈w,ai〉+bi +λΩ(w)} is (9)

αt = argmax
α∈Rt

{J∗t (α) :=−λΩ∗(−λ−1Aα)+α⊤b | α≥ 0, ‖α‖1 = 1}. (10)

Furthermore, wt andαt are related by the dual connection wt = ∂Ω∗(−λ−1Aαt).

Proof We rewrite (9) as a constrained optimization problem: minw,ξ λΩ(w) + ξ subject toξ ≥
〈w,ai〉+ bi for i = 1, . . . , t. By introducing non-negative Lagrange multipliersα and recalling that
1t denotes thet dimensional vector of all ones, the corresponding Lagrangian can be written as

L(w,ξ,α) = λΩ(w)+ξ−α⊤
(

ξ1t −A⊤w−b
)

with α≥ 0, (11)

whereα≥ 0 denotes that each component ofα is non-negative. Taking derivatives with respect toξ
yields 1− α⊤1t = 0. Moreover, minimization ofL with respect to w implies solving
maxw

〈
w,−λ−1Aα

〉
−Ω(w) = Ω∗(−λ−1Aα). Plugging both terms back into (11) we eliminate the

primal variablesξ andw.

SinceΩ∗ is assumed to be twice differentiable and the constraints of (10) are simple, one can easily
solve (10) with standard smooth optimization methods such as thepenalty/barrier methods (No-
cedal and Wright, 1999). Recall that for the square norm regularizerΩ(w) = 1

2 ‖w‖
2
2, commonly

used in SVMs and Gaussian Processes, the Fenchel dual is given byΩ∗(µ) = 1
2 ‖µ‖

2
2. The following

corollary is immediate:

Corollary 3 For quadratic regularization, that is,Ω(w) = 1
2 ‖w‖

2
2, (10)becomes

αt = argmax
α∈Rt

{− 1
2λα⊤A⊤Aα+α⊤b | α≥ 0, ‖α‖1 = 1}.

This means that for quadratic regularization the dual optimization problem is a quadratic program
(QP) where the number of constraints equals the number of (sub)gradients computed previously.
Sincet is typically in the order of 10s to 100s, the resulting QP is very cheap to solve.In fact, we
do not even need to know the (sub)gradients explicitly. All that is requiredto define the QP are the
inner products between (sub)gradients

〈
ai ,a j

〉
.

2.4 Convergence Analysis

While the variants of bundle methods we proposed are intuitively plausible, it remains to be shown
that they have good rates of convergence. In fact, past results, such as those by Tsochantaridis
et al. (2005) suggest a slowO(1/ε2) rate of convergence. In this section we tighten their results and
show anO(1/ε) rate of convergence for nonsmooth loss functions andO(log(1/ε)) rates for smooth
loss functions under mild assumptions. More concretely we prove the following two convergence
results:

(a) Assume that maxu∈∂wRemp(w) ‖u‖ ≤ G. For regularizersΩ(w) for which
∥
∥∂2

µΩ∗(µ)
∥
∥ ≤ H∗ we

proveO(1/ε) rate of convergence, that is, we show that our algorithm converges to within ε
of the optimal solution inO(1/ε) iterations.
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(b) Under the above conditions, if furthermore
∥
∥∂2

wJ(w)
∥
∥≤H, that is, the Hessian ofJ is bounded,

we can showO(log(1/ε)) rate of convergence.

For our convergence proofs we use a duality argument similar to those putforward in Shalev-
Shwartz and Singer (2006) and Tsochantaridis et al. (2005), both of which share key techniques
with Zhang (2003). Recall thatεt denotes our approximation gap, which in turn upper bounds how
far away we are from the optimal solution. In other words,εt ≥ min0≤i≤t J(wi)− J∗, whereJ∗

denotes the optimum value of the objective functionJ. The quantityεt−εt+1 can thus be viewed as
the “progress” made towardsJ∗ in iterationt. The crux of our proof argument lies in showing that
for nonsmooth loss functions the recurrenceεt − εt+1 ≥ c · ε2

t holds for some appropriately chosen
constantc. The rates follow by invoking a lemma from Abe et al. (2001). In the case ofthe smooth
losses we show thatεt − εt+1≥ c′ · εt thus implying anO(log(1/ε)) rate of convergence.

In order to show the required recurrence, we first observe that by strong duality the values of
the primal and dual problems (9) and (10) are equal at optimality. Hence, any progress inJt+1 can
be computed in the dual. Next, we observe that the solution of the dual problem (10) at iteration
t, denoted byαt , forms a feasible set of parameters for the dual problem (10) at iterationt + 1 by
means of the parameterization(αt ,0), that is, by paddingαt with a 0. The value of the objective
function in this case equalsJt(wt).

To obtain a lower bound on the improvement due toJt+1(wt+1) we perform a 1-d optimization
along((1−η)αt ,η) in (10). The constraintη ∈ (0,1) ensures dual feasibility. We will then bound
this improvement in terms ofεt . Note that, in general, solving the dual problem (10) results in a
increase which is larger than that obtained via the line search. The 1-d minimization is used only
for analytic tractability. We now state our key theorem and prove it in Appendix B.

Theorem 4 Assume thatmaxu∈∂wRemp(w) ‖u‖ ≤ G for all w ∈ dom J. Also assume thatΩ∗ has

bounded curvature, that is,
∥
∥∂2

µΩ∗(µ)
∥
∥ ≤ H∗ for all µ ∈ {−λ−1 ∑t+1

i=1 αiai whereαi ≥ 0, ∀i and

∑t+1
i=1 αi = 1}. In this case we have

εt − εt+1≥ εt
2 min(1,λεt/4G2H∗). (12)

Furthermore, if
∥
∥∂2

wJ(w)
∥
∥≤ H, then we have

εt − εt+1≥







εt/2 if εt > 4G2H∗/λ
λ/8H∗ if 4G2H∗/λ≥ εt ≥ H/2

λεt/4HH∗ otherwise.

Note that the error keeps on halving initially and settles for a somewhat slowerrate of convergence
after that, whenever the Hessian of the overall risk is bounded from above. The reason for the
difference in the convergence bound for differentiable and non-differentiable losses is that in the
former case the gradient of the risk converges to 0 as we approach optimality, whereas in the former
case, no such guarantees hold (e.g., when minimizing|x| the (sub)gradient does not vanish at the
optimum). The dual of many regularizers, for example, norm, squaredLp norm, and the entropic
regularizer have bounded second derivative. See, for example, Shalev-Shwartz and Singer (2006)
for a discussion and details. Thus our condition

∥
∥∂2

µΩ∗(µ)
∥
∥≤ H∗ is not unreasonable. We are now

in a position to state our convergence results. The proof is in Appendix B.
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Theorem 5 Assume that J(w)≥ 0 for all w. Under the assumptions of Theorem 4 we can give the
following convergence guarantee for Algorithm 2. For anyε < 4G2H∗/λ the algorithm converges
to the desired precision after

n≤ log2
λJ(0)

G2H∗
+

8G2H∗

λε
−1

steps. Furthermore if the Hessian of J(w) is bounded, convergence to anyε ≤ H/2 takes at most
the following number of steps:

n≤ log2
λJ(0)

4G2H∗
+

4H∗

λ
max

[
0,H−8G2H∗/λ

]
+

4HH∗

λ
log(H/2ε).

Several observations are in order: First, note that the number of iterations only dependslogarithmi-
cally on how far the initial valueJ(0) is away from the optimal solution. Compare this to the result
of Tsochantaridis et al. (2005), where the number of iterations is linear inJ(0).

Second, we have anO(1/ε) dependence in the number of iterations in the non-differentiable
case, as opposed to theO(1/ε2) rates of Tsochantaridis et al. (2005). In addition to that, the conver-
gence isO(log(1/ε)) for continuously differentiable problems.

Note that wheneverRemp is the average over many piecewise linear functions,Remp behaves
essentially like a function with bounded Hessian as long as we are taking largeenough steps not to
“notice” the fact that the term is actually nonsmooth.

Remark 6 For Ω(w) = 1
2 ‖w‖

2 the dual Hessian is exactly H∗ = 1. Moreover we know that H≥ λ
since

∥
∥∂2

wJ(w)
∥
∥= λ+

∥
∥∂2

wRemp(w)
∥
∥.

Effectively the rate of convergence of the algorithm is governed by upper bounds on the primal and
dual curvature of the objective function. This acts like a condition number of the problem—for
Ω(w) = 1

2w⊤Qw the dual isΩ∗(z) = 1
2z⊤Q−1z, hence the largest eigenvalues ofQ andQ−1 would

have a significant influence on the convergence.
In terms ofλ the number of iterations needed for convergence isO(λ−1). In practice the iteration

countdoesincrease withλ, albeit not as badly as predicted. This is likely due to the fact that the
empirical riskRemp is typically rather smooth and has a certain inherent curvature which acts asa
natural regularizer in addition to the regularization afforded byλΩ(w).

For completeness we also state the convergence guarantees for Algorithm3 and provide a proof
in Appendix B.3.

Theorem 7 Under the assumptions of Theorem 4 Algorithm 3 converges to the desiredprecisionε
after

n≤ 8G2H∗

λε

steps for anyε < 4G2H∗/λ.

3. Implementation Issues

In this section, we discuss the memory and computational issues of the implementation of BMRM.
In addition, we provide two variants ofBMRM: one is memory efficient and the other one is paral-
lelized.
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3.1 Solving theBMRM Subproblem (7) with Limited Memory Space

In Section 2.3 we mentioned the dual of subproblem (7) (i.e., (10)) which is usually easier to solve
when the dimensionalityd of the problem is larger than the number of iterationst required by
BMRM to reach desired precisionε. Although t is usually in the order of 102, a problem withd
in the order of 106 or higher may use up all memory of a typical machine to store the bundle, that
is, linearizations{(ai ,bi)}, before the convergence is achieved.4 Here we describe a principled
technique which controls the memory usage while maintaining convergence guarantees.

Note that at iterationt, before the computation for new iteratewt , Algorithm 2 maintains a
bundle oft (sub)gradients{ai}ti=1 of Remp computed at the locations{wi}t−1

i=0. Furthermore, the

Lagrange multipliersαt−1 obtained in iterationt − 1 satisfyαt−1 ≥ 0 and∑t−1
i=1 α(i)

t−1 = 1 by the
constraints of (10). We define theaggregated(sub)gradient ˆaI , offset b̂I and Lagrange multiplier
α̂(I)

t−1 as

âI :=
1

α̂(I)
t−1

∑
i∈I

α(i)
t−1ai , b̂I :=

1

α̂(I)
t−1

∑
i∈I

α(i)
t−1bi , and α̂(I)

t−1 := ∑
i∈I

α(i)
t−1,

respectively, whereI ⊆ [t−1] is an index set (Kiwiel, 1983). Clearly, the optimality of (10) at the

end of iterationt−1 is maintained when a subset
{

(ai ,bi ,α
(i)
t−1)

}

i∈I
is replaced by the aggregate

(âI , b̂I , α̂
(I)
t−1)) for anyI ⊆ [t−1].

To obtain a new iteratewt via (10) with memory space for at mostk linearizations, we can,
for example, replace{(ai ,bi)}i∈I with (âI , b̂I ) whereI = [t− k+1] and 2≤ k≤ t. Then, we solve
a k-dimensional variant of (10) withA := [âI ,at−k+2, . . . ,at ], b := [b̂I ,bt−k+2, . . . ,bt ], andα ∈ R

k.
The optimum of this variant will be lower than or equal to that of (10) as the latter has higher
degree of freedom than the former. Nevertheless, solving this variant with 2 ≤ k ≤ t will still
guarantee convergence (recall that our convergence proof only usesk = 2). In the sequel we name
the aforementioned numberk as the “bundle size” since it indicates the number of linearizations the
algorithm keeps.

For concreteness, we provide here a memory efficientBMRM variant for the cases whereΩ(w) =
1
2 ‖w‖

2
2 andk = 2. We first see that the dual of subproblem (7) now reads:

η = argmax
0≤η≤1

− 1
2λ

∥
∥â[t−1] +η(at− â[t−1])

∥
∥2

2
+ b̂[t−1] +η(bt− b̂[t−1])

≡ argmax
0≤η≤1

−η
λ â⊤[t−1](at − â[t−1])− η2

2λ

∥
∥
∥at − â⊤[t−1]

∥
∥
∥

2
+η(bt− b̂[t−1]). (13)

Since (13) is quadratic inη, we can obtain the optimalη by setting the derivative of the objective in
(13) to zero and clippingη in the range[0,1]:

η = min

(

max

(

0,
bt − b̂[t−1] +w⊤t−1at +λ‖wt−1‖2

1
λ ‖at +λwt−1‖2

)

,1

)

(14)

4. In practice, we can remove those linearizations{(ai ,bi)} whose Lagrange multipliersαi are 0 after solving (10).
Although this heuristic works well and does not affect the convergenceguarantee, there is no bound on the minimum
number of linearizations with non-zero Lagrange multipliers needed to achieve convergence.
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wherewt−1 = − 1
λ â[t−1] by the dual connection. With the optimalη, we obtain the new primal

iteratewt = (1−η)wt−1− (η/λ)at . Algorithm 4 lists the details. Note that this variant is simple to
implement and does not require a QP solver.

Algorithm 4 BMRM with Aggregation of Previous Linearizations
1: input & initialization: ε≥ 0, w0, t← 1
2: Computea1 ∈ ∂wRemp(w0), andb1← Remp(w0)−〈w0,a1〉
3: w1←− 1

λa1

4: b̂[1]← b1

5: repeat
6: t← t +1
7: Computeat ∈ ∂wRemp(wt−1) andbt ← Remp(wt−1)−〈wt−1,at〉
8: Computeη using Eq. (14)
9: wt ← (1−η)wt−1− (η/λ)at

10: b̂[t]← (1−η)b̂[t−1] +ηbt

11: εt ←min0≤i≤t
λ
2 ‖wi‖2 +Remp(wi)− λ

2 ‖wt‖2− b̂[t]

12: until εt ≤ ε

3.2 Parallelization

Algorithms 2, 3, and 4 the evaluation ofRemp(w) (and∂wRemp(w)) is cleanly separated from the
computation of new iterate and the choice of regularizer. IfRemp is additively decomposable over
the examples(xi ,yi), that is, can be expressed as a sum of some independent loss termsl(xi ,yi ,w),
then we can parallelize these algorithms easily by splitting the data sets and the computationRemp

over multiple machines. This parallelization scheme not only reduces the computation time but also
allows us to handle data set with size exceeding the memory available on a single machine.

Without loss of generality, we describe a parallelized version of Algorithm 2here. Assume
there arep slave machines and 1 master machine available. At the beginning, we partition a given
data setD = {(xi ,yi)}mi=1 into p disjoint sub-datasets{Di}p

i=1 and assign one sub-dataset to each
slave machine. At iterationt, the master first broadcasts the current iteratewt−1 to all p slaves
(e.g., using MPI functionMPI::Broadcast Gropp et al. 1999). The slaves then compute the losses
and (sub)gradients on their local sub-datasets in parallel. As soon as thelosses and (sub)gradients
computation finished, the master combines the results (e.g., usingMPI::AllReduce ). With the
combined (sub)gradient and offset, the master computes the new iteratewt as in Algorithms 2 and
3. This process repeats until convergence is achieved. Detailed pseudocode can be found in Algo-
rithm 5.

4. Related Research

Thekernel trick is widely used to transform many existing machine learning algorithms into ones
operating on a Reproducing Kernel Hilbert Space (RKHS). One liftsw into an RKHS and replaces
all inner product computations with a positive definite kernel functionk(x,x′)← 〈x,x′〉. Examples
of algorithms which employ the kernel trick (but essentially still solve (1)) include Support Vector
regression (Vapnik et al., 1997), novelty detection (Schölkopf et al., 2001), Huber’s robust regres-
sion, quantile regression (Takeuchi et al., 2006), ordinal regression (Herbrich et al., 2000), rank-
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Algorithm 5 ParallelBMRM
1: input: ε≥ 0, w0, data setD, number of slave machinesp
2: initialization: t← 0, assign sub-datasetDi to slavei, i = 1, . . . , p
3: repeat
4: t← t +1
5: Master: Broadcastwt−1 to all slaves
6: Slaves: ComputesRi

emp(wt−1) := ∑(x,y)∈Di
l(x,y,wt−1) andai

t ∈ ∂wRi
emp(wt−1)

7: Master: Aggregateat := 1
|D| ∑

p
i=1ai

t andbt := 1
|D| ∑

p
i=1Ri

emp(wt−1)−〈wt−1,at〉
8: Master: Update modelRCP

t (w) := max1≤ j≤t{
〈
w,a j

〉
+b j}

9: Master:wt ← argminwJt(w) := λΩ(w)+RCP
t (w)

10: Master:εt ←min0≤i≤t J(wi)−Jt(wt)
11: until εt ≤ ε
12: return wt

ing (Crammer and Singer, 2005), maximization of multivariate performance measures (Joachims,
2005), structured estimation (Taskar et al., 2004; Tsochantaridis et al., 2005), Gaussian Process
regression (Williams, 1998), conditional random fields (Lafferty et al., 2001), graphical models
(Cowell et al., 1999), exponential families (Barndorff-Nielsen, 1978), and generalized linear mod-
els (Fahrmeir and Tutz, 1994).

Traditionally, specialized solvers have been developed for solving the kernel version of (1) in
the dual (see, e.g., Chang and Lin, 2001; Joachims, 1999). These algorithms construct the La-
grange dual, and solve for the Lagrange multipliers efficiently. Only recently, research focus has
shifted back to solving (1) in the primal (see, e.g., Chapelle, 2007; Joachims, 2006; Sindhwani and
Keerthi, 2006). This spurt in research interest is due to three main reasons: First, many interesting
problems in diverse areas such as text classification, word-sense disambiguation, and drug design
already employ rich high dimensional data which does not necessarily benefit from the kernel trick.
All these domains are characterized by large data sets (withm in the order of a million) and very
sparse features (e.g., the bag of words representation of a document).Second, efficient factorization
methods (e.g., Fine and Scheinberg, 2001) can be used for a low rank representation of the kernel
matrix thereby effectively rendering the problem linear. Third, approximation methods such as the
Random Feature Mapproposed by Rahimi and Recht (2008) can efficiently approximate a infinite
dimensional nonlinear feature map associated to a kernel by a finite dimensional one. Therefore our
focus on the primal optimization problem is not only pertinent but also timely.

The widely usedSVMstruct optimizer of Thorsten Joachims5 is closely related toBMRM. While
BMRM can handle many different regularizers and loss functions,SVMstruct is mainly geared towards
square norm regularizers and non-differentiable soft-margin type lossfunctions. On the other hand,
SVMstruct can handle kernels whileBMRM mainly focuses on the primal problem.

Our convergence analysis is closely related to Shalev-Shwartz and Singer (2006) who prove
mistake bounds for online algorithms by lower bounding the progress in the dual. Although not
stated explicitly, essentially the same technique of lower bounding the dual improvement was used
by Tsochantaridis et al. (2005) to show polynomial time convergence of theSVMstruct algorithm.
The main difference however is that Tsochantaridis et al. (2005) only work with a quadratic ob-

5. Software available athttp://svmlight.joachims.org/svm_struct.html .
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jective function while the framework proposed by Shalev-Shwartz and Singer (2006) can handle
arbitrary convex functions. In both cases, a weaker analysis led toO(1/ε2) rates of convergence for
nonsmooth loss functions. On the other hand, our results establish aO(1/ε) rate for nonsmooth loss
functions andO(log(1/ε)) rates for smooth loss functions under mild technical assumptions.

Another related work isSVMperf (Joachims, 2006) which solves the SVM with linear kernel in
linear time.SVMperf finds a solution with accuracyε in O(md/(λε2)) time, where them training pat-
ternsxi ∈R

d. This bound was improved by Shalev-Shwartz et al. (2007) toÕ(1/λδε) for obtaining
an accuracy ofε with confidence 1− δ. Their algorithm,Pegasos, essentially performs stochastic
(sub)gradient descent but projects the solution back onto theL2 ball of radius 1/

√
λ. Note thatPe-

gasos also can be used in an online setting. This, however, only applies whenever the empirical risk
decomposes into individual loss terms (e.g., it is not applicable to multivariate performance scores
Joachims 2005).

The third related strand of research considers gradient descent in theprimal with a line search
to choose the optimal step size (see, e.g., Boyd and Vandenberghe, 2004, Section 9.3.1). Under
assumptions of smoothness and strong convexity – that is, the objective function can be upper and
lower bounded by quadratic functions – it can be shown that gradient descent with line search will
converge to an accuracy ofε in O(log(1/ε)) steps. Our solver achieves the same rate guarantees for
smooth functions, under essentially similar technical assumptions.

We would also like to point out connections to subgradient methods (Nedich and Bertsekas,
2000). These algorithms are designed for nonsmooth functions, and essentially choose an arbitrary
element of the subgradient set to perform a gradient descent like update. Let maxu∈∂wJ(w) ‖u‖ ≤
G, andB(w∗, r) denote a ball of radiusr centered around the minimizer ofJ(w). By applying
the analysis of Nedich and Bertsekas (2000) to the regularized risk minimization problem with
Ω(w) := λ

2‖w‖2, Ratliff et al. (2007) show that subgradient descent with a fixed, but sufficiently
small, stepsize will converge linearly toB(w∗,G/λ).

Finally, several papers (Keerthi and DeCoste, 2005; Chapelle, 2007) advocate the use of Newton-
like methods to solve Support Vector Machines in the “primal”. However, theyneed to take precau-
tions when dealing with the fact that the soft-margin type of loss functions such as the hinge loss is
only piecewise differentiable. Instead, our method only requiressubdifferentials, which always ex-
ist for convex functions, in order to make progress. The large number of and variety of implemented
problems shows the flexibility of our approach.

5. Experiments

In this section, we examine the convergence behavior ofBMRM and show that it is versatile enough
to solve a variety of machine learning problems. All our experiments were carried out on a cluster of
24 machines each with a 2.4GHz AMD Dual Core processor and 4GB of RAM. Details of the loss
functions, data sets, competing solvers and experimental objectives are described in the following
subsections.

5.1 Convergence Behavior

We investigated the convergence rate of our method (Algorithm 2) empirically with respect to reg-
ularization constantλ, approximation gapε, and bundle sizek. In addition, we investigated the
speedup gained by parallelizing the empirical risk computation. Finally, we examined empirically
how generalization performance is related to approximation gap. For simplicity,we focused on the
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training of a linear SVM with binary hinge loss:6

min
w

J(w) :=
λ
2
‖w‖2 +

1
m

m

∑
i=1

max(0,1−yi 〈w,xi〉). (15)

The experiments were conducted on 6 data sets commonly used in binary classification studies,
namely,adult9, astro-ph, news20-b,7 rcv1, real-sim, andworm. adult9, news20-b, rcv1, andreal-
sim are available on the LIBSVM tools website.8 astro-ph (Joachims, 2006) andworm (Franc and
Sonnenburg, 2008) are available upon request from Thorsten Joachims and Soeren Sonnenburg,
respectively. Table 1 summarizes the properties of the data sets.

Data Set #examplesm dimensiond density %

adult9 48,842 123 11.27
astro-ph 94,856 99,757 0.08
news20-b 19,954 1,355,191 0.03
rcv1 677,399 47,236 0.15
real-sim 72,201 20,958 0.25
worm 1,026,036 804 25.00

Table 1: Properties of the binary classification data sets used in our experiments.

5.1.1 REGULARIZATION CONSTANT λ AND APPROXIMATION GAP ε

As suggested by the convergence analysis, the linear SVM with the nonsmooth binary hinge loss
should converge inO( 1

λε) iterations, whereλ andε are two parameters which one normally tunes
during the model selection phase. Therefore, we investigated the scaling behavior of our method
w.r.t. these two parameters. We performed the experiments with unlimited bundle size and with a
heuristic that removes subgradients which remained inactive (i.e., Lagrangemultiplier = 0) for 10
or more consecutive iterations.9

Figure 4 shows the approximation gapεt as a function of number of iterationst. As predicted by
our convergence analysis,BMRM converges faster for larger values ofλ. Furthermore, the empirical
convergence curves exhibit aO(log(1/ε)) rate instead of the (pessimistic) theoretical rate ofO(1

ε ),
especially for large values ofλ. Interestingly,BMRM converges faster on high-dimensional text data
sets (i.e.,astro-ph, news20-b, rcv1, andreal-sim) than on lower dimensional data sets (i.e.,adult9
andworm).

5.1.2 BUNDLE SIZE

The dual of our method (10) is a concave problem which has dimensionality equal to the number of
iterations executed. In the case of linear SVM, (10) is a QP. Hence, as described in Section 3.1, we
can trade potentially greater bundle improvement for memory efficiency.

6. Similar behavior was observed with other loss functions.
7. The data set is originally namednews20; we renamed it to avoid confusion with the multiclass version of the data

set.
8. Software available athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/binary.html .
9. Note that this heuristic does not have any implication in the convergence analysis.
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 4: Approximation gapεt as a function of number of iterationst; for different regularization
constantsλ (and unlimited bundle size).

Figure 5 shows the approximation gapεt during the training of linear SVM as a function of the
number of iterationst, for different bundle sizesk ∈ {2,10,50,∞}. In the case ofk = ∞, we em-
ployed the same heuristics which remove inactive linearizations as those mentioned in Section 5.1.1.
As expected, the largerk is, the faster the algorithm converges. Although the casek = 2 is the slow-
est, its convergence rate is still faster than the theoretical bound1

λε .

5.1.3 PARALLELIZATION

When the empirical riskRemp is additively decomposable, the loss and subgradient computation can
be executed concurrently on multiple processors for different subsetsof data points.10

We performed experiments for linear SVMs training with parallelized risk computation on the
worm data set. Figure 6(a) shows the wallclock time for the overall training phase (e.g., data loading,
risk computation, and solving the QP) and CPU time for just the risk computation asa function of
number of processorsp. Note that the gap between the two curves essentially tells the runtime upper
bound of the sequential part of the algorithm. As expected, both overall and risk computation time
decrease as the number of processorsp increases. However, in Figure 6(b), we see two different
speedups.11 The speedup for the risk computation is roughly linear as there is no sequential part in

10. This requires only slight modification to the data loading process and theaddition of some parallelization related
code before and after the code segment for empirical risk computation.

11. SpeedupSp = T1
Tp

where p is the number of processors andTq is the runtime of the parallelized algorithm onq
processors.
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 5: Approximation gapεt as a function of number of iterationst; for different bundle sizesk
(and fixed regularization constantλ = 10−4).

it; the speedup of overall computation is approaching a limit12 as well-explained by Amdahl’s law
(Amdahl, 1967).

5.1.4 GENERALIZATION VERSUSAPPROXIMATION GAP

Since the problems we are considering are convex, all properly convergent optimizers will converge
to the same solution. Therefore, comparing generalization performance ofthe final solution is mean-
ingless. But, in real life one is often interested in the speed with which the algorithm achieves good
generalization performance. In this section we study this question. We focus on the generalization
(in terms of accuracy) as a function of approximation gap during training. For this experiment, we
randomly split each of the data sets into training (60%), validation (20%) and testing (20%) sets.

We first obtained the bestλ ∈ {2−20, . . . ,20} for each of the data sets using their corresponding
validation sets. With these bestλ’s, we (re)trained linear SVMs and recorded the testing accuracy
as well as the approximation gap at every iteration, with termination criterionε = 10−4. Figure 7
shows the difference between the testing accuracy evaluated at every iteration and that after training,
as a function of approximation gap at each iteration.

From the figure, we see that the testing accuracies foradult9 andworm data sets are less stable
in general and the approximation gap must be reduced to at least 10−3 to reach the 0.5% regime

12. The limit of speedup is the inverse of the sequential fraction of the algorithm such as the QP.
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(a) Risk computation in CPU time (red solid line) and over-
all computation (i.e., data loading + risk computation +
solving the QP) in wallclock time (green dashed line) as
a function of number of processors.

(b) Speedup in risk computation (in CPU time) and overall
computation (in wallclock time) as a function of number of
processors.

Figure 6: CPU and wallclock time for training linear SVM using parallelBMRM on worm data set
with varying number of processorsp∈ {1,2,4,8,16}. In these experiments, regulariza-
tion constantλ = 10−6, and termination criterionε = 10−4.

of the final testing accuracies; the testing accuracies for the rest of the data sets arrived at the same
regime with approximation gap of 10−2 or lower.

In general, the generalization improved as the approximation gap decreased. The improvement
in generalization became rather insignificant (say, the maximum of changes intesting accuracies is
less than 0.1%) when the approximation gap was further reduced to below some effective threshold
εeff; that said, it is not necessary to continue the optimization whenεt ≤ εeff.13 Sinceεeff (or its
scale) is not knowna priori and the asymptotic analysis in Shalev-Schwartz and Srebro (2008)
does not reveal the actual scale ofεeff directly applicable in our case, we carried out another set of
experiments to investigate ifεeff could be estimated with as little effort as possible: For each data
set, we randomly subsampled 10%, . . . ,50% of the training set as sub-datasets and performed the
same experiment on all sub-datasets. We then determined the largestεeff such that the maximum
changes in testing accuracies is less than 0.1%.

Table 5.1.4 shows the (base 10 logarithm of)εeff for all sub-datasets as well as the full data sets.
It seems that theεeff estimated on a smaller sub-dataset is at most 1 order of magnitude larger than
the actualεeff required on full data set. In addition, we show in the table that the necessary threshold
ε10% required by the sub-datasets and the full data sets to attain the final testing accuracies attained
by the 10% sub-datasets. The observations obey the analysis in Shalev-Schwartz and Srebro (2008)
that for a fixed testing accuracy, approximation gap (i.e., optimization error)can be relaxed when
more data is given.

13. Heuristically, we could terminate the training phase following theearly stoppingstrategy by monitoring the changes
in accuracies on validation set evaluated in some most recent iterations.
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Figure 7: Difference between testing accuracies of intermediate and finalmodels.

5.2 Comparison with Existing Bundle Methods

In this section we compareBMRM with a BT implementation obtained from Schramm and Zowe
(1992).14 We also compare the performance ofBMRM (Algorithm 2) andLSBMRM (Algorithm 3).
The multiclass line search used inLSBMRM can be found in Yu et al. (2008).

For binary classification, we solve the linear SVM (15) on the data sets:adult9, astro-ph,
news20-b, rcv1, real-sim, and worm as mentioned in Section 5.1. For multiclass classification,
we solve (Crammer and Singer, 2003):

min
w

J(w) :=
λ
2
‖w‖2 +

1
m

m

∑
i=1

max
y′i∈[c]

〈

w,ey′i
⊗xi−eyi ⊗xi

〉

+ I(yi 6= y′i), (16)

wherec is the number of classes in the problem,ei is the i-th standard basis forRc, ⊗ denotes
Kronecker product; andI(·) is an indicator function that has value 1 if its argument is evaluated true,
and 0 otherwise. The data sets used in multiclass classification experiments were inex, letter, mnist,
news20-m,15 protein, andusps. inex is available for download on the website of Antoine Bordes16

and the rest can be found on the LIBSVM tools website.17 Table 3 summarizes the properties of
these data sets.

In each of the experiments, we first obtain the optimal weight vector ¯w by runningBMRM until
the termination criteriaJ(wt)− Jt(wt) ≤ 0.01J(wt) is satisfied. Then we runBT, LSBMRM, and

14. The original FORTRAN implementation was automatically converted into C for use in our library.
15. The data set is originally namednews20; we renamed it to avoid confusion with the binary version of the data set.
16. Software available athttp://webia.lip6.fr/ ˜ bordes/datasets/multiclass/inex.tar.gz .
17. Software available athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/multiclass.html .
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10% 20% 30% 40% 50% 100%

adult9
Acc. (%) 84.3 84.7 84.9 85.1 85.1 85.2
log10εeff -3.90 -3.72 -3.77 -3.88 -3.64 -4.00
log10ε10% -4.01 -1.18 -1.07 -1.16 -1.27 -1.04

astro-ph
Acc. (%) 96.1 96.6 96.4 96.6 96.8 97.4
log10εeff -1.48 -1.70 -1.57 -1.49 -1.68 -1.84
log10ε10% -4.00 -1.15 -1.06 -0.98 -1.02 -0.87

news20-b
Acc. (%) 89.9 92.9 94.3 94.5 95.4 96.6
log10εeff -2.00 -2.48 -3.87 -1.65 -3.71 -2.84
log10ε10% -4.02 -0.92 -0.70 -0.80 -0.80 -0.67

rcv1
Acc. (%) 96.9 97.2 97.4 97.2 97.5 97.6
log10εeff -2.02 -2.40 -1.99 -2.16 -2.34 -2.28
log10ε10% -4.07 -1.19 -1.30 -1.29 -1.13 -1.11

real-sim
Acc. (%) 95.0 95.9 96.3 96.6 96.6 97.2
log10εeff -1.74 -1.84 -1.71 -1.99 -1.74 -1.75
log10ε10% -4.02 -1.04 -0.88 -0.87 -0.85 -0.82

worm
Acc. (%) 98.2 98.2 98.2 98.3 98.3 98.4
log10εeff -2.43 -2.47 -2.48 -3.62 -2.81 -3.55
log10ε10% -4.00 -1.38 -1.28 -1.37 -1.28 -1.31

Table 2: The first sub-row in each data set row indicates the testing accuracies of models trained on
the corresponding proportions of the training set. The second sub-rowindicates the (base
10 logarithm of) effective threshold such that the maximum difference in testing accuracies
of models with approximation gap smaller than that is less than 0.1%. The third sub-row
indicates the (base 10 logarithm of) threshold necessary for models to attain the testing
accuracy attained by the model trained on the 10% sub-dataset with defaultε = 10−4.

Data Set #examplesm #classesc dimensiond density %

inex 12,107 18 167,295 0.48
letter 20,000 26 16 100.00
mnist 70,000 10 780 19.24
news20-m 19,928 20 62,061 0.13
protein 21,516 3 357 28.31
usps 9,298 10 256 96.70

Table 3: Properties of the multiclass classification data sets used in the experiments.

BMRM until the following termination criteria is satisfied:

J(wt)−J(w̄)≤ 0.01J(w̄). (17)

Figure 8 shows the number of iterationst required by the three methods on each data set to
satisfy (17) as a function of regularization constantλ ∈

{
10−3,10−4,10−5,10−6

}
. As expected,

LSBMRM, which uses an exact line search, outperformed bothBMRM andBT on all data sets.BMRM
performed better thanBT on all high dimensional data sets exceptnews20-m but worse on the rest.
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AlthoughBT tunes the stabilization trade-off parameterκt automatically, it still does not guarantee
superiority overBMRM which is considerably simpler. Nevertheless, external stabilization (inBT)
clearly helps speed up the convergence in certain cases.

5.3 Versatility

In the following subsections, we will illustrate some of the applications ofBMRM to various machine
learning problems with smooth and non-differentiable loss functions, and withdifferent regularizers.
Our aim is to show thatBMRM is versatile enough to be used in a variety of seemingly different
problems. Readers not interested in this aspect ofBMRM can safely skip this subsection.

5.3.1 BINARY CLASSIFICATION

In this section, we evaluate the performance of our methodBMRM in the training of binary classifier
using linear SVMs (15) and logistic loss:

min
w

J(w) :=
λ
2
‖w‖2 +

1
m

m

∑
i=1

log(1+exp(−yi 〈w,xi〉)),

on the binary classification data sets mentioned in Section 5.1 with split similar to that inSec-
tion 5.1.4. Since we will compareBMRM with other solvers which use different termination crite-
ria, we consider the CPU time used in reducing the relative difference between the current smallest
objective function value and the optimum:

mini≤t J(wi)−J(w∗)
J(w∗)

,

wherewi is the weight vector at time/iterationi, andw∗ is the minimizer obtained by runningBMRM
until the approximation gapεt < 10−4. The bestλ ∈

{
2−20, . . . ,20

}
for each of the data sets was

determined by evaluating the performance on the corresponding validation set.18

In the case of linear SVMs, we comparedBMRM to three publicly available state of the artbatch
learningsolvers:

1. OCAS (Franc and Sonnenburg, 2008). Since this method is equivalent toLSBMRM with
binary hinge loss, we refer to this software byLSBMRM for naming consistency.

2. LIBLINEAR (Fan et al., 2008) version 1.33 with option “-s 3”.

3. SVMperf (Joachims, 2006) version 2.5 with option “-w 3” and with double precision floating
point numbers.

LIBLINEAR solves the dual problem of linear SVM using a coordinate descent method (Hsieh et al.,
2008). SVMperf was chosen for comparison as it is algorithmically identical toBMRM in this case.
Both LIBLINEAR andSVMperf provide a “shrinking” technique to speed up the algorithms by ignor-
ing some data points which are not likely to affect the objective. SinceBMRM does not provide such
shrinking technique, we excluded this option in bothLIBLINEAR andSVMperf for a fair comparison.

Figure 9 shows the relative difference in objective value as a function oftraining time (CPU
seconds) for three methods on various data sets.BMRM is faster thanSVMperf on all data sets

18. The corresponding penalty parameterC for LIBLINEAR andOCAS is 1/(mλ), and forSVMperf is 1/(100λ).
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

(g) inex (h) letter (i) mnist

(j) news20-m (k) protein (l) usps

Figure 8: Smallest number of iterations required to satisfy the termination criterion (17) for each
data set and various regularization constants. (BT did not satisfy (17) in theinex andusps
experiments forλ = 10−6 after 6000 iterations.)
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 9: Linear SVMs. Relative primal objective value difference during training.

exceptnews20-b. The performance difference observed here is largely due to the differences in the
implementations (e.g., feature vector representation, QP solver, etc.). Nevertheless, bothBMRM and
SVMperf are significantly outperformed byLSBMRM andLIBLINEAR on all data sets, andLIBLINEAR
is almost always faster thanLSBMRM. It is clear from the figure thatLSBMRM and LIBLINEAR
enjoy progression with “strictly” decreasing objective values; whereasthe progress of bothBMRM
andSVMperf are hindered by the “stalling” steps (i.e., the flat line segments in the plots). Thefact
thatLSBMRM is different fromBMRM andSVMperf by one additional line search step implies that
the “stalling” steps is the time thatBMRM andSVMperf improve the approximation at the regions
which do not help reducing the primal objective function value.

In the case of logistic regression, we compareBMRM to the state of the art trust region Newton
method for logistic regression (Lin et al., 2008) which is also available in theLIBLINEAR package
(option “-s 0”). From Figure 10, we see thatLIBLINEAR outperformsBMRM on all data sets and
thatBMRM suffers from the same “stalling” phenomenon as observed in the linear SVMs case.

5.3.2 LEARNING THE COST MATRIX FOR GRAPH MATCHING

In computer vision, there are problems which require matching the objects of interest in a pair
of images. These problems are often modeled as attributed graph matching problems where the
(extracted) landmark pointsxi in the first imagex must be matched to the corresponding pointsx′i′
in the second imagex′. Note that we represent thepoint xi or x′i′ asd-dimensional feature vectors.
The attributed graph matching problem is then cast as aLinear Assignment Problem(LAP) which
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 10: Logistic regression. Relative primal objective value difference during training.

can be solved in worst caseO(n3) time wheren is the number of landmark points (Kuhn, 1955).19

Formally, the LAP reads

max
y∈Y

n

∑
i=1

n

∑
i′=1

yii ′Cii ′ ,

whereY is the set of alln×n permutation matrices, andCii ′ is the cost of matching pointxi to point
x′i′ . In the standard setting of graph matching, one way to determine the cost matrixC is as

Cii ′ :=−
d

∑
k=1

∣
∣
∣x

(k)
i −x′(k)i′

∣
∣
∣

2
.

Instead of finding more features to describe the pointsxi andx′i′ that might improve the matching
results, Caetano et al. (2007) propose to learn a weighting to a given setof features that actually
improved the matching results in many cases (Caetano et al., 2008).

In Caetano et al. (2007, 2008) the problem of learning the cost matrix forgraph matching is
formulated as aL2 regularized risk minimization with loss function

l(x,x′,y,w) = max
ȳ∈Y

〈
w,φ(x,x′, ȳ)−φ(x,x′,y)

〉
+∆(ȳ,y), (18)

where the feature mapφ is defined as

φ(x,x′,y) =−
n

∑
i=1

n

∑
i′=1

yii ′(|x(1)
i −x′(1)

i′ |2, . . . , |x
(d)
i −x′(d)

i′ |2), (19)

19. To achieve better matching results, one could further enforce edge-to-edge matching where edge refers to pair of
landmark points. This additional matching requirement renders the problem as aQuadratic Assignment Problem.
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and the label loss∆ is defined as the normalized Hamming loss

∆(ȳ,y) = 1− 1
n

n

∑
i=1

n

∑
i′=1

ȳii ′yii ′ . (20)

By (19) and (20), the argument of (18) becomes

〈
w,φ(x,x′, ȳ)−φ(x,x′,y)

〉
+∆(ȳ,y) =

n

∑
i=1

n

∑
i′=1

ȳii ′C̃ii ′ +constant,

whereC̃ii ′ = −∑d
k=1wk|x(k)

i − x′(k)i′ |2− yii ′/n. Therefore, (18) is exactly a LAP. We refer interested
readers to Caetano et al. (2007, 2008) for more detailed exposition especially on the use of edge
matching (in addition to point matching) which leads to much better performance.

We reproduced the experiment in Caetano et al. (2008) that usedBMRM with L2 regularization
on the CMU house data set.20 For this data set, there are 30 hand-labeled landmark points in each
image and the features for those points are the 60-dimensional Shape Context features (Belongie
et al., 2001; Caetano et al., 2008). The experiments evaluated the performance of the method for
training/validation/testing pairs fixed at baselines (separation of frames) 0,10, . . . ,90. Additionally,
we ran the same set of experiments withL1 regularization, that is,Ω(w) = ‖w‖1.21 The matching
performance of the cost matrices augmented with learned weight vectorsw’s are compared with the
original non-learning cost matrix, that is, with uniform weight vectorw = (1, . . . ,1).

Figure 11 shows the results of the experiments. On the left, we see that the matching perfor-
mance with learned cost matrices are getting more superior to that of non-learning as the baseline
increases. The performance ofL1 andL2 regularized learning are quite similar on average. On the
right are the best learned weights for the features usingL1 regularization (top) andL2 regulariza-
tion (bottom) for baseline 50. The weights due toL1 regularization is considerably sparser (i.e., 42
non-zeros) than that due toL2 regularization (i.e., 52 non-zeros).

5.3.3 HUMAN ACTION SEGMENTATION AND RECOGNITION

In this section, we consider the problem of joint segmentation and recognitionof human action
from a video sequence using the discriminative Semi-Markov Models (SMM)proposed by Shi
et al. (2008). Denote byx = {xi}ni=1 ∈ X a sequence ofn video frames, and byy= {(si ,ci)}n̄i=1 ∈ Y
the corresponding segment labeling wheresi is the starting location of thei-th segment which ends
at si+1−1, ci is the frame label for all frames in the segment, and ¯n≤ n the number of segments.
For ease of presentation, we append a dummy video framexn+1 to x and a dummy segment label
(sn̄+1,cn̄+1) to y to markxn+1 as the last segment.

In SMM, there exists asegmentvariable for each possible segment (i.e., multiple frames) of
x that model the frame label and the boundaries (or length) of a segment jointly; thesesegment
variables form a Markov Chain. On the contrary, the Hidden Markov Model (HMM) for the same
videox has oneframe labelvariableyi for each video framexi . The fact that SMM models multiple
frames as one variable allows one to exploit thestructureand information in the problem more
efficiently than in HMM. Thestructureexploitation is due to the fact that one human action usually

20. This data set consist of a sequence of 111 images of a toy house. Available athttp://vasc.ri.cmu.edu/idb/
html/motion/house/index.html .

21. Further description onL1 regularizedBMRM can be found in Appendix C.

337



TEO, V ISHWANATHAN , SMOLA AND LE

F
e
a
t
u
r
e
w
e
i
g
h
t

Feature index

Figure 11: Left: Performance on the house data set as the baseline varies. For each baseline, the
minimizer of validation loss is evaluated on all testing examples. The corresponding
mean normalized Hamming losses (as points) and its standard errors (as error bars) are
reported.Right: Feature weights for best models trained withL1 regularization (top)
andL2 regularization (bottom) for baseline 50. Dashed lines indicate the feature weight
value 1.

spans several consecutive frames, and theinformationexploitation is due to the possibility to extract
features which only become apparent within a segment of several frames.

The discriminative SMM in Shi et al. (2008) is formulated as a regularized risk minimization
problem where the loss function is

l(x,y,w) = max
ȳ∈Y
〈w,φ(x, ȳ)−φ(x,y)〉+∆(ȳ,y). (21)

The feature mapφ is defined as

φ(x,y) =

(
n̄

∑
i=1

φ1(x,si ,ci),
n̄

∑
i=1

φ2(x,si ,si+1,ci),
n̄

∑
i=1

φ3(x,si ,si+1,ci ,ci+1)

)

,

whereφ1,φ2, andφ3 are some feature functions for the segment boundaries, segments, and adjacent
segments, respectively. Letyi be the frame label forxi according to segment labelingy, the label
loss function∆ is defined as

∆(ȳ,y) =
n

∑
i=1

I(ȳi 6= yi), (22)

whereI(·) is an indicator function as defined in (16). We refer interested readers toShi et al. (2008)
for more details on the features and the dynamic programming to compute (21) and its subgradient.

We followed the experimental setup of Shi et al. (2008) by runningBMRM for this problem with
L2 (i.e.,Ω(w) = 1

2 ‖w‖
2) andL1 (i.e.,Ω(w) = ‖w‖1) regularization, on the Walk-Bend-Draw (WBD)

data sets (Shi et al., 2008) which consists of 18 video sequences with 3 human action classes (i.e.,
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walking, bending, drawing). For this data set, the dimensionality of the image of the feature mapφ
is d = 9917.

Table 4 shows the 6 fold cross validation results for our methods (L1 andL2 SMM),22 SVMs
and SVM-HMM (Tsochantaridis et al., 2005). The latter two are adopted from Shi et al. (2008).
SMM outperforms SVM-HMM and SVM as reported in Shi et al. (2008). Amongst L1 and L2

SMMs, the latter performs the best and converged to optimal. AlthoughL1 SMM failed to satisfy
the termination criterion, the performance is comparable to that ofL2 SMM even with a 40 times
sparser weight vector (see Figure 12 for the feature weights distributions ofL1 andL2 SMMs).

Methods CV mean (std. err.) #iter. CPU seconds nnz(w)

L2 SMM 0.954 (0.006) 231 1129 3690
L1 SMM 0.930 (0.010) 500 2659 84
SVM-HMM 0.870 (0.020) – – –
SVM 0.840 (0.030) – – –

Table 4: Experimental results on WBD data set. The second column indicates the mean and stan-
dard error of the test accuracy (22). The third and fourth columns indicate the number of
iterations and CPU seconds for the training of the final model with the best parameter, and
the last column indicates the number of nonzero in the final weight vectorw.
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Figure 12: Feature weights for best models trained withL1 regularization (top) andL2 regulariza-
tion (bottom). Dashed lines indicate the feature weight range [±10].

22. We set termination criterionε = 10−4 and limited the maximum number of iteration to 500.
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6. Discussion and Conclusion

The experiments presented in the paper indicate thatBMRM is suitable for a wide variety of machine
learning problems. In fact, themodularityof BMRM not only brings the benefits of parallel and
distributed computation but also makesBMRM a natural test bed for trying out new models/ideas
on any particular problem with less effort, that is, the user is only requiredto implement the loss
functions and/or regularizers corresponding to different models/ideas.

Nevertheless, we saw in the experiments thatBMRM does not guarantee strict improvement
in the primal when the dual is solved instead. This phenomenon could significantly hinder the
performance ofBMRM as seen in some of the experiments. Since efficient line search procedure
may not exist for general structured prediction tasks, thetrust regionphilosophy used inBT could
be a potential strategy to alleviate this problem; we leave this to the future work. We also note
that for computationally expensive nonsmooth loss functions, one way to make fuller use of each
loss function evaluation is by updating the modelRCP

t with two or more linearizations at a non-
diffferentiable location (Frangioni, 1997).

In conclusion, we have presented a variant of standard bundle methods, that is,BMRM, which is
algorithmically simpler and, in some senses, more straightforward for regularized risk minimization
problems than the standard bundle methods. We also showed aO(1/ε) rate of convergence for
nonsmooth objective functions andO(log(1/ε)) rates for smooth objective functions.
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Appendix A. Loss Functions

A multitude of loss functions are commonly used to derive seemingly different algorithms. This
often blurs the similarities as well as subtle differences between them, often for historic reasons:
Each new loss is typically accompanied by at least one publication dedicated toit. In many cases,
the loss is not spelled out explicitly either but instead, it is only given by meansof a constrained
optimization problem. A case in point are the papers introducing (binary) hinge loss (Bennett and
Mangasarian, 1992; Cortes and Vapnik, 1995) and structured loss (Taskar et al., 2004; Tsochan-
taridis et al., 2005). Likewise, a geometric description obscures the underlying loss function, as in
novelty detection (Scḧolkopf et al., 2001).

In this section we give an expository yet unifying presentation of many of those loss functions.
Many of them are well known, while others, such as multivariate ranking, hazard regression, or
Poisson regression are not commonly used in machine learning. Tables 5 and 6 contain a choice
subset of simple scalar and vectorial losses. Our aim is to put the multitude of loss functions in
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an unified framework, and to show how these losses and their (sub)gradients can be computed
efficiently for use in our solver framework.

Note that not all losses, while convex, are continuously differentiable. In this situation we give
a subgradient. While this may not be optimal, the convergence rates of our algorithm do not depend
on which element of the subdifferential we provide: in all cases the first order Taylor approximation
is a lower bound which is tight at the point of expansion.

In this setion, with little abuse of notation,vi is understood as thei-th component of vectorv
whenv is clearly not an element of a sequence or a set.

A.1 Scalar Loss Functions

It is well known (Wahba, 1997) that the convex optimization problem

min
ξ

ξ subject toy〈w,x〉 ≥ 1−ξ andξ≥ 0

takes on the value max(0,1− y〈w,x〉). The latter is a convex function inw andx. Likewise, we
may rewrite theε-insensitive loss, Huber’s robust loss, the quantile regression loss, and the novelty
detection loss in terms of loss functions rather than a constrained optimization problem. In all cases,
〈w,x〉 will play a key role insofar as the loss is convex in terms of thescalarquantity〈w,x〉. A large
number of loss functions fall into this category, as described in Table 5. Note that not all functions
of this type are continuously differentiable. In this case we adopt the convention that

∂xmax( f (x),g(x)) =

{

∂x f (x) if f (x)≥ g(x)

∂xg(x) otherwise.

Since we are only interested in obtaining an arbitrary element of the subdifferential this convention
is consistent with our requirements.

Let us discuss the issue of efficient computation. For all scalar losses wemay writel(x,y,w) =
l̄(〈w,x〉 ,y), as described in Table 5. In this case a simple application of the chain rule yields that
∂wl(x,y,w) = l̄ ′(〈w,x〉 ,y) ·x. For instance, for squared loss we have

l̄(〈w,x〉 ,y) = 1
2(〈w,x〉−y)2 andl̄ ′(〈w,x〉 ,y) = 〈w,x〉−y.

Consequently, the derivative of the empirical risk term is given by

∂wRemp(w) =
1
m

m

∑
i=1

l̄ ′(〈w,xi〉 ,yi) ·xi .

This means that if we want to computel and∂wl on a large number of observationsxi , represented
as matrixX, we can make use of fast linear algebra routines to pre-compute the vectors

f = Xwandg⊤X wheregi = l̄ ′( fi ,yi).

This is possible for any of the loss functions listed in Table 5, and many other similar losses. The
advantage of this unified representation is that implementation of each individual loss can be done in
very little time. The computational infrastructure for computingXw andg⊤X is shared. Evaluating
l̄( fi ,yi) and l̄ ′( fi ,yi) for all i can be done inO(m) time and it is not time-critical in comparison to
the remaining operations. Algorithm 6 describes the details.
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Algorithm 6 ScalarLoss(w,X,y)
1: input: Weight vectorw, feature matrixX, and labelsy
2: Computef = Xw
3: Computer = ∑i l̄( fi ,yi) andg = l̄ ′( f ,y)
4: g← g⊤X
5: return Risk r and gradientg

An important but often neglected issue is worth mentioning. Computingf requires us toright
multiply the matrixX with the vectorw while computingg requires theleft multiplication ofX with
the vectorg⊤. If X is stored in a row major format thenXwcan be computed rather efficiently while
g⊤X is expensive. This is particularly true ifX cannot fit in main memory. Converse is the case
whenX is stored in column major format. Similar problems are encountered whenX is a sparse
matrix and stored in either compressed row format or in compressed column format.

A.2 Structured Loss

In recent years structured estimation has gained substantial popularity in machine learning (Tsochan-
taridis et al., 2005; Taskar et al., 2004; Bakir et al., 2007). At its core it relies on two types of convex
loss functions: logistic loss:

l(x,y,w) = log ∑
y′∈Y

exp
(〈

w,φ(x,y′)
〉)
−〈w,φ(x,y)〉 , (23)

and soft-margin loss:

l(x,y,w) = max
y′∈Y

Γ(y,y′)
〈
w,φ(x,y′)−φ(x,y)

〉
+∆(y,y′). (24)

Hereφ(x,y) is a joint feature map,∆(y,y′) ≥ 0 describes the cost of misclassifyingy by y′, and
Γ(y,y′)≥ 0 is a scaling term which indicates by how much the large margin property shouldbe en-
forced. For instance, Taskar et al. (2004) chooseΓ(y,y′) = 1. On the other hand, Tsochantaridis et al.
(2005) suggestΓ(y,y′) = ∆(y,y′), which reportedly yields better performance. Finally, McAllester
(2007) recently suggested generic functionsΓ(y,y′).

The logistic loss can also be interpreted as the negative log-likelihood of a conditional exponen-
tial family model:

p(y|x;w) := exp(〈w,φ(x,y)〉−g(w|x)), (25)

where the normalizing constantg(w|x), often called the log-partition function, reads

g(w|x) := log ∑
y′∈Y

exp
(〈

w,φ(x,y′)
〉)

.

As a consequence of the Hammersley-Clifford theorem (Jordan, 2002)every exponential family
distribution corresponds to a undirected graphical model. In our case thisimplies that the labels
y factorize according to an undirected graphical model. A large number of problems have been
addressed by this setting, amongst them named entity tagging (Lafferty et al.,2001), sequence
alignment (Tsochantaridis et al., 2005), segmentation (Rätsch et al., 2007) and path planning (Ratliff
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et al., 2006). It is clearly impossible to give examples of all settings in this section, nor would a
brief summary do this field any justice. We therefore refer the reader to the edited volume by Bakir
et al. (2007) and the references therein.

If the underlying graphical model is tractable then efficient inference algorithms based on dy-
namic programming can be used to compute (23) and (24). We discuss intractable graphical models
in Section A.2.1, and now turn our attention to the derivatives of the above structured losses.

When it comes to computing derivatives of the logistic loss, (23), we have

∂wl(x,y,w) =
∑y′ φ(x,y′)exp〈w,φ(x,y′)〉

∑y′ exp〈w,φ(x,y′)〉 −φ(x,y)

= Ey′∼p(y′|x)
[
φ(x,y′)

]
−φ(x,y).

wherep(y|x) is the exponential family model (25). In the case of (24) we denote by ¯y(x) the argmax
of the RHS, that is

ȳ(x) := argmax
y′

Γ(y,y′)
〈
w,φ(x,y′)−φ(x,y)

〉
+∆(y,y′).

This allows us to compute the derivative ofl(x,y,w) as

∂wl(x,y,w) = Γ(y, ȳ(x)) [φ(x, ȳ(x))−φ(x,y)] .

In the case where the loss is maximized for more than one distinct value ¯y(x) we may average over
the individual values, since any convex combination of such terms lies in the subdifferential.

Note that (24) majorizes∆(y,y∗), wherey∗ := argmaxy′ 〈w,φ(x,y′)〉 (Tsochantaridis et al., 2005).
This can be seen via the following series of inequalities:

∆(y,y∗)≤ Γ(y,y∗)〈w,φ(x,y∗)−φ(x,y)〉+∆(y,y∗)≤ l(x,y,w).

The first inequality follows becauseΓ(y,y∗) ≥ 0 andy∗ maximizes〈w,φ(x,y′)〉 thus implying that
Γ(y,y∗)〈w,φ(x,y∗)−φ(x,y)〉 ≥ 0. The second inequality follows by definition of the loss.

We conclude this section with a simple lemma which is at the heart of several derivations of
Joachims (2005). While the proof in the original paper is far from trivial, itis straightforward in our
setting:

Lemma 8 Denote byδ(y,y′) a loss and letφ(xi ,yi) be a feature map for observations(xi ,yi) with
1≤ i ≤m. Moreover, denote by X,Y the set of all m patterns and labels respectively. Finally let

Φ(X,Y) :=
m

∑
i=1

φ(xi ,yi) and∆(Y,Y′) :=
m

∑
i=1

δ(yi ,y
′
i).

Then the following two losses are equivalent:

m

∑
i=1

max
y′

〈
w,φ(xi ,y

′)−φ(xi ,yi)
〉
+δ(yi ,y

′) and max
Y′

〈
w,Φ(X,Y′)−Φ(X,Y)

〉
+∆(Y,Y′).

This is immediately obvious, since both feature map and loss decompose, which allows us to per-
form maximization overY′ by maximizing each of itsm components. In doing so, we showed that
aggregating all data and labels into a single feature map and loss yields resultsidentical to minimiz-
ing the sum over all individual losses. This holds, in particular, for the sample error loss of Joachims
(2005). Also note that this equivalence doesnot hold wheneverΓ(y,y′) is not constant.
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A.2.1 INTRACTABLE MODELS

We now discuss cases where computingl(x,y,w) itself is too expensive. For instance, for intractable
graphical models, the computation of∑yexp〈w,φ(x,y)〉 cannot be computed efficiently. Wainwright
and Jordan (2003) propose the use of a convex majorization of the log-partition function in those
cases. In our setting this means that instead of dealing with

l(x,y,w) = g(w|x)−〈w,φ(x,y)〉 whereg(w|x) := log∑
y

exp〈w,φ(x,y)〉

one uses a more easily computable convex upper bound ong via

sup
µ∈MARG(x)

〈w,µ〉+HGauss(µ|x). (26)

Here MARG(x) is an outer bound on the conditional marginal polytope associated with the map
φ(x,y). Moreover,HGauss(µ|x) is an upper bound on the entropy by using a Gaussian with identical
variance. More refined tree decompositions exist, too. The key benefit of our approach is that the
solutionµ of the optimization problem (26) can immediately be used as a gradient of the upper
bound. This is computationally rather efficient.

Likewise, note that Taskar et al. (2004) use relaxations when solving structured estimation prob-
lems of the form

l(x,y,w) = max
y′

Γ(y,y′)
〈
w,φ(x,y′)−φ(x,y)

〉
+∆(y,y′),

by enlarging the domain of maximization with respect toy′. For instance, instead of an integer
programming problem we might relax the setting to a linear program which is much cheaper to
solve. This, again, provides an upper bound on the original loss function.

In summary, we have demonstrated that convex relaxation strategies are well applicable for
bundle methods. In fact, the results of the corresponding optimization procedures can be used
directly for further optimization steps.

A.3 Scalar Multivariate Performance Scores

We now discuss a series of structured loss functions and how they can beimplemented efficiently.
For the sake of completeness, we give a concise representation of previous work on multivariate
performance scores and ranking methods. All these loss functions rely on having access to〈w,x〉,
which can be computed efficiently by using the same operations as in Section A.1.

A.3.1 ROC SCORE

Denote byf = Xw the vector of function values on the training set. It is well known that the area
under the ROC curve is given by

AUC(x,y,w) =
1

m+m−
∑

yi<y j

I(〈w,xi〉<
〈
w,x j

〉
),

wherem+ andm− are the numbers of positive and negative observations respectively, and I(·) is
indicator function. Directly optimizing the cost 1−AUC(x,y,w) is difficult as it is not continuous
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Algorithm 7 ROCScore(X,y,w)

1: input: Feature matrixX, labelsy, and weight vectorw
2: initialization: s− = m− ands+ = 0 andl = 0m andc = Xw− 1

2y
3: π←{1, . . . ,m} sorted in ascending order ofc
4: for i = 1 to m do
5: if yπi =−1 then
6: lπi ← s+ ands−← s−−1
7: else
8: lπi ←−s− ands+← s+ +1
9: end if

10: end for
11: Rescalel ← l/(m+m−) and computer = 〈l ,c〉 andg = l⊤X.
12: return Risk r and subgradientg

in w. By using max(0,1+
〈
w,xi−x j

〉
) as the surrogate loss function for all pairs(i, j) for which

yi < y j we have the following convex multivariate empirical risk

Remp(w) =
1

m+m−
∑

yi<y j

max(0,1+
〈
w,xi−x j

〉
) =

1
m+m−

∑
yi<y j

max(0,1+ fi− f j). (27)

Obviously, we could computeRemp(w) and its derivative by anO(m2) operation. However Joachims
(2005) shows that both can be computed inO(mlogm) time using a sorting operation, which we
now describe.

Denote byc= f − 1
2y an auxiliary variable and leti and j be indices such thatyi =−1 andy j = 1.

It follows thatci − c j = 1+ fi − f j . The efficient algorithm is due to the observation that there are
at mostm distinct termsck, k = 1, . . . ,m, each with different frequencylk and sign, appear in (27).
These frequencieslk can be determined by first sortingc in ascending order then scanning through
the labels according to the sorted order ofc and keeping running statistics such as the numbers− of
negative labels yet to encounter, and the numbers+ of positive labels encountered. When visiting
yk, we knowck should appearss+ (or s−) times with positive (or negative) sign in (27) ifyk = −1
(or yk = 1). Algorithm 7 spells out explicitly how to computeRemp(w) and its subgradient.

A.3.2 ORDINAL REGRESSION

Essentially the same preference relationships need to hold for ordinal regression. The only differ-
ence is thatyi need not take on binary values any more. Instead, we may have an arbitrary number of
different valuesyi (e.g., 1 corresponding to ’strong reject’ up to 10 corresponding to ’strong accept’,
when it comes to ranking papers for a conference). That is, we now haveyi ∈ {1, . . . ,n} rather than
yi ∈ {±1}. Our goal is to find somew such that

〈
w,xi−x j

〉
< 0 wheneveryi < y j . Whenever this

relationship is not satisfied, we incur a costC(yi ,y j) for preferringxi to x j . For examples,C(yi ,y j)
could be constant, that is,C(yi ,y j) = 1 (Joachims, 2006) or linear, that is,C(yi ,y j) = y j −yi .

Denote bymi the number ofx j for which y j = i. In this case, there arēM = m2−∑n
i=1m2

i
pairs(yi ,y j) for which yi 6= y j ; this implies that there areM = M̄/2 pairs(yi ,y j) such thatyi < y j .

346



BUNDLE METHODS FORREGULARIZED RISK M INIMIZATION

Normalizing by the total number of comparisons we may write the overall cost ofthe estimator as

1
M ∑

yi<y j

C(yi ,y j)I(〈w,xi〉>
〈
w,x j

〉
) whereM =

1
2

[

m2−
n

∑
i

m2
i

]

.

Using the same convex majorization as above when we were maximizing the ROC score, we obtain
an empirical risk of the form

Remp(w) =
1
M ∑

yi<y j

C(yi ,y j)max(0,1+
〈
w,xi−x j

〉
).

Now the goal is to find an efficient algorithm for obtaining the number of times when the individual
losses are nonzero such as to compute both the value and the gradient ofRemp(w). The complication
arises from the fact that observationsxi with label yi may appear in either side of the inequality
depending on whethery j < yi or y j > yi . This problem can be solved as follows: sortf = Xw in
ascending order and traverse it while keeping track of how many items with a lower valuey j are
no more than 1 apart in terms of their value offi . This way we may compute the count statistics
efficiently. Algorithm 8 describes the details, generalizing the results of Joachims (2006). Again,
its runtime isO(mlogm), thus allowing for efficient computation.

A.3.3 PREFERENCERELATIONS

In general, our loss may be described by means of a set of preferencerelations j � i for arbitrary
pairs(i, j) ∈ {1, . . .m}2 associated with a costC(i, j) which is incurred wheneveri is ranked above
j. This set of preferences may or may not form a partial or a total order on the domain of all
observations. In these cases efficient computations along the lines of Algorithm 8 exist. In general,
this is not the case and we need to rely on the fact that the setP containing all preferences is
sufficiently small that it can be enumerated efficiently. The risk is then givenby

1
|P| ∑

(i, j)∈P

C(i, j)I(〈w,xi〉>
〈
w,x j

〉
).

Again, the same majorization argument as before allows us to write a convex upper bound

Remp(w) =
1
|P| ∑

(i, j)∈P

C(i, j)max
(
0,1+ 〈w,xi〉−

〈
w,x j

〉)

where∂wRemp(w) =
1
|P| ∑

(i, j)∈P

C(i, j)

{

0 if
〈
w,x j −xi

〉
≥ 1

xi−x j otherwise.

The implementation is straightforward, as given in Algorithm 9.

A.3.4 RANKING

In webpage and document ranking we are often in a situation similar to that described in Sec-
tion A.3.2, however with the difference that we do not only care about objects xi being ranked
according to scoresyi but moreover that different degrees of importance are placed on different
documents.
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Algorithm 8 OrdinalRegression(X,y,w,C)

1: input: Feature matrixX, labelsy, weight vectorw, and score matrixC
2: initialization: l = 0n andui = mi ∀i ∈ [n] andr = 0 andg = 0m

3: Computef = Xwand setc = [ f − 1
2, f + 1

2] ∈ R
2m (concatenate the vectors)

4: ComputeM = (m2−∑n
i=1m2

i )/2
5: RescaleC←C/M
6: π←{1, . . . ,2m} sorted in ascending order ofc
7: for i = 1 to 2m do
8: j = πi modm
9: if πi ≤m then

10: for k = 1 to y j −1 do
11: r ← r−C(k,y j)ukc j

12: g j ← g j −C(k,y j)uk

13: end for
14: ly j ← ly j +1
15: else
16: for k = y j +1 to n do
17: r ← r +C(y j ,k)lkc j+m

18: g j ← g j +C(y j ,k)lk
19: end for
20: uy j ← uy j −1
21: end if
22: end for
23: g← g⊤X
24: return: Risk r and subgradientg

Algorithm 9 Preference(X,w,C,P)

1: input: Feature matrixX, weight vectorw, score matrixC, and preference setP
2: initialization: r = 0 andg = 0m

3: Computef = Xw
4: while (i, j) ∈ P do
5: if f j − fi < 1 then
6: r ← r +C(i, j)(1+ fi− f j)
7: gi ← gi +C(i, j) andg j ← g j −C(i, j)
8: end if
9: end while

10: g← g⊤X
11: return Risk r and subgradientg

The information retrieval literature is full with a large number of different scoring functions.
Examples are criteria such asNormalized Discounted Cumulative Gain (NDCG), Mean Recipro-
cal Rank (MRR), Precision@n, or Expected Rank Utility (ERU). They are used to address the is-
sue of evaluating rankers, search engines or recommender sytems (Voorhees, 2001; Jarvelin and
Kekalainen, 2002; Breese et al., 1998; Basilico and Hofmann, 2004). For instance, in webpage

348



BUNDLE METHODS FORREGULARIZED RISK M INIMIZATION

Algorithm 10 Ranking(X,y,w)

1: input: Feature matrixX, relevancesy, and weight vectorw
2: Compute vectorsa andb(y) according to some ranking measure
3: Computef = Xw
4: Compute elements of matrixCi j = ci f j −bia j

5: π = LinearAssignment(C)
6: r = c⊤( f (π)− f )+(a−a(π))⊤b
7: g = c(π−1)−c andg← g⊤X
8: return Risk r and subgradientg

ranking only the firstk retrieved documents that matter, since users are unlikely to look beyond the
first k, say 10, retrieved webpages in an internet search. Le and Smola (2007) show that these scores
can be optimized directly by minimizing the following loss:

l(X,y,w) = max
π ∑

i

ci
〈
w,xπ(i)−xi

〉
+ 〈a−a(π),b(y)〉 . (28)

Hereci is a monotonically decreasing sequence, the documents are assumed to be arranged in or-
der of decreasing relevance,π is a permutation, the vectorsa andb(y) depend on the choice of a
particular ranking measure, anda(π) denotes the permutation ofa according toπ. Pre-computing
f = Xwwe may rewrite (28) as

l( f ,y) = max
π

[

c⊤ f (π)−a(π)⊤b(y)
]

−c⊤ f +a⊤b(y)

and consequently the derivative ofl(X,y,w) with respect tow is given by

∂wl(X,y,w) = (c(π̄−1)−c)⊤X whereπ̄ = argmax
π

c⊤ f (π)−a(π)⊤b(y).

Hereπ−1 denotes the inverse permutation, such thatπ◦π−1 = 1. Finding the permutation maximiz-
ing c⊤ f (π)−a(π)⊤b(y) is a linear assignment problem which can be easily solved by the Hungarian
Marriage algorithm, that is, the Kuhn-Munkres algorithm.

The original papers by Kuhn (1955) and Munkres (1957) implied an algorithm with O(m3) cost
in the number of terms. Later, Karp (1980) suggests an algorithm with expected quadratic time in
the size of the assignment problem (ignoring log-factors). Finally, Orlin and Lee (1993) propose a
linear time algorithm for large problems. Since in our case the number of pagesis fairly small (in
the order of 50 to 200per query) the scaling behavior per query is not too important. We used an
existing implementation due to Jonker and Volgenant (1987).

Note also that training sets consist of acollectionof ranking problems, that is, we have several
ranking problems of size 50 to 200. By means of parallelization we are able to distribute the work
onto a cluster of workstations, which is able to overcome the issue of the rather costly computation
per collection of queries. Algorithm 10 spells out the steps in detail.

A.3.5 CONTINGENCY TABLE SCORES

Joachims (2005) observed thatFβ scores and related quantities dependent on a contingency table can
also be computed efficiently by means of structured estimation. Such scores depend in general on
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the number of true and false positives and negatives alike. Algorithm 11 shows how a corresponding
empirical risk and subgradient can be computed efficiently. As with the previous losses, here again
we use convex majorization to obtain a tractable optimization problem.

Given a set of labelsy and an estimatey′, the numbers of true positives (T+), true negatives
(T−), false positives (F+), and false negatives (F−) are determined according to a contingency table
as follows:

y > 0 y < 0
y′ > 0 T+ F+

y′ < 0 F− T−

In the sequel, we denote bym+ = T+ +F− andm− = T−+F+ the numbers of positives and negative
labels iny, respectively. We note thatFβ score can be computed based on the contingency table
(Joachims, 2005) as

Fβ(T+,T−) =
(1+β2)T+

T+ +m−−T−+β2m+
.

If we want to use〈w,xi〉 to estimate the label of observationxi , we may use the following
structured loss to “directly” optimize w.r.t.Fβ score (Joachims, 2005):

l(X,y,w) = max
y′

[

(y′−y)⊤ f +∆(T+,T−)
]

,

where f = Xw, ∆(T+,T−) := 1−Fβ(T+,T−), and(T+,T−) is determined by usingy andy′. Since∆
does not depend on the specific choice of(y,y′) but rather just on which sets they disagree,l can be
maximized as follows: Enumerating all possiblem+m− contingency tables in a way such that given
a configuration(T+,T−), T+ (T−) positive (negative) observationsxi with largest (lowest) value of
〈w,xi〉 are labeled as positive (negative). This is effectively implemented as a nested loop hence run
in O(m2) time. Algorithm 11 describes the procedure in details.

A.4 Vector Loss Functions

Next we discuss “vector” loss functions, that is, functions wherew is best described as a matrix
(denoted byW) and the loss depends onWx. Here, we have feature vectorx∈R

d, labely∈R
k, and

weight matrixW ∈ R
d×k. We also denote feature matrixX ∈ R

m×d as a matrix ofm feature vectors
xi , and stack up the columnsWi of W as a vectorw.

Some of the most relevant cases are multiclass classification using both the exponential families
model and structured estimation, hierarchical models, that is, ontologies, and multivariate regres-
sion. Many of those cases are summarized in Table 6.

A.4.1 UNSTRUCTUREDSETTING

The simplest loss is multivariate regression, wherel(x,y,W) = 1
2(y− x⊤W)⊤M(y− x⊤W). In this

case it is clear that by pre-computingXW subsequent calculations of the loss and its gradient are
significantly accelerated.

A second class of important losses is given by plain multiclass classification problems, for
example, recognizing digits of a postal code or categorizing high-level document categories. In this
case,φ(x,y) is best represented byey⊗ x (using a linear model). Clearly we may view〈w,φ(x,y)〉
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Algorithm 11 Fβ(X,y,w)

1: input: Feature matrixX, labelsy, and weight vectorw
2: Computef = Xw
3: π+←{i : yi = 1} sorted in descending order off
4: π−←{i : yi =−1} sorted in ascending order off
5: Let p0 = 0 andpi = 2∑m+

k=i fπ+
k
, i = 1, . . . ,m+

6: Let n0 = 0 andni = 2∑m−
k=i fπ−k

, i = 1, . . . ,m−
7: y′←−y andr ←−∞
8: for i = 0 to m+ do
9: for j = 0 to m− do

10: rtmp = ∆(i, j)− pi +n j

11: if rtmp > r then
12: r ← rtmp

13: T+← i andT−← j
14: end if
15: end for
16: end for
17: y′π+

i
← 1, i = 1, . . . ,T+

18: y′π−i
←−1, i = 1, . . . ,T−

19: g← (y′−y)⊤X
20: return Risk r and subgradientg

as an operation which chooses a column indexed byy from xW, since all labelsy correspond to a
different weight vectorWy. Formally we set〈w,φ(x,y)〉= [xW]y. In this case, structured estimation
losses can be rewritten as

l(x,y,W) = max
y′

Γ(y,y′)
〈
Wy′−Wy,x

〉
+∆(y,y′) (29)

and∂Wl(x,y,W) = Γ(y,y∗)(ey∗−ey)⊗x.

HereΓ and∆ are defined as in Section A.2 andy∗ denotes the value ofy′ for which the RHS of
(29) is maximized. This means that for unstructured multiclass settings we may simplycompute
xW. Since this needs to be performed for all observationsxi we may take advantage of fast linear
algebra routines and computef = XW for efficiency. Likewise note that computing the gradient
over m observations is now a matrix-matrix multiplication, too: denote byG the matrix of rows
of gradientsΓ(yi ,y∗i )(ey∗i −eyi ). Then∂WRemp(X,y,W) = G⊤X. Note thatG is very sparse with at
most two nonzero entries per row, which makes the computation ofG⊤X essentially as expensive
as two matrix vector multiplications. Whenever we have many classes, this may yieldsignificant
computational gains.

Log-likelihood scores of exponential families share similar expansions. We have

l(x,y,W) = log∑
y′

exp
〈
w,φ(x,y′)

〉
−〈w,φ(x,y)〉= log∑

y′
exp
〈
Wy′ ,x

〉
−〈Wy,x〉

∂Wl(x,y,W) =
∑y′(ey′⊗x)exp

〈
Wy′ ,x

〉

∑y′ exp
〈
Wy′ ,x

〉 −ey⊗x.
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The main difference to the soft-margin setting is that the gradients arenot sparse in the number of
classes. This means that the computation of gradients is slightly more costly.

A.4.2 ONTOLOGIES

Figure 13: Two ontologies.Left: a binary hierarchy with internal nodes{1, . . . ,7} and labels
{8, . . .15}. Right: a generic directed acyclic graph with internal nodes{1, . . . ,6,12}
and labels{7, . . . ,11,13, . . . ,15}. Note that node 5 has two parents, namely nodes 2 and
3. Moreover, the labels need not be found at the same level of the tree: nodes 14 and 15
are one level lower than the rest of the nodes.

Assume that the labels we want to estimate can be found to belong to a directed acyclic graph
(DAG). For instance, this may be a gene-ontology graph (Ashburner etal., 2000) a patent hierarchy
(Cai and Hofmann, 2004), or a genealogy. In these cases we have a hierarchy of categories to which
an elementx may belong. Figure 13 gives two examples of such directed acyclic graphs. The first
example is a binary tree, while the second contains nodes with different numbers of children (e.g.,
node 4 and 12), nodes at different levels having children (e.g., nodes5 and 12), and nodes which
have more than one parent (e.g., node 5). It is a well known fundamentalproperty of trees that they
have at most as many internal nodes as they have leaf nodes.

It is now our goal to build a classifier which is able to categorize observations according to
which leaf node they belong to (each leaf node is assigned a labely). Denote byk+1 the number
of nodes in the DAG including the root node. In this case we may design a feature mapφ(y) ∈ R

k

(Cai and Hofmann, 2004) by associating with every labely the vector describing the path from the
root node toy, ignoring the root node itself. For instance, for the first DAG in Figure 13we have

φ(8) = (1,0,1,0,0,0,1,0,0,0,0,0,0,0) andφ(13) = (0,1,0,0,1,0,0,0,0,0,0,1,0,0)

Whenever several paths are admissible, as in the right DAG of Figure 13 we average over all possible
paths. For example, we have

φ(10) = (0.5,0.5,0,1,0,0,0,0,1,0,0,0,0,0) andφ(15) = (0,1,0,0,1,0,0,0,0,0,0,1,0,0,1).

Also note that the lengths of the paths need not be the same (e.g., to reach 15 ittakes a longer path
than to reach 13). Likewise, it is natural to assume that∆(y,y′), that is, the cost for mislabelingy
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Algorithm 12 Ontology(X,y,W)

1: input: Feature matrixX ∈ R
m×d, labelsy, and weight matrixW ∈ R

d×k

2: initialization: G = 0∈ R
m×k andr = 0

3: Computef = XW and let fi = xiW
4: for i = 1 to m do
5: Let Di be the DAG with edges annotated with the values offi
6: TraverseDi to find a pathy∗ that maximizes the valuezy∗ := ∑k

j=1[φ(y∗)] j fi j +∆(yi ,y∗)
7: Gi = φ(y∗)−φ(yi)
8: r ← r +zy∗−zyi

9: end for
10: g = G⊤X
11: return Risk r and subgradientg

asy′ will depend on the similarity of the path. In other words, it is likely that the cost for placingx
into the wrong sub-sub-category is less than getting the main category of the object wrong.

To complete the setting, note that forφ(x,y) = φ(y)⊗ x the cost of computing all labels isk
inner products, since the value of〈w,φ(x,y)〉 for a particulary can be obtained by the sum of the
contributions for the segments of the path. This means that the values forall terms can be computed
by a simple breadth first traversal through the graph. As before, we maymake use of vectorization
in our approach, since we may computexW∈ R

k to obtain the contributions on all segments of the
DAG before performing the graph traversal. Since we havem patternsxi we may vectorize matters
by pre-computingXW.

Also note thatφ(y)−φ(y′) is nonzero only for those edges where the paths fory andy′ differ.
Hence we only change weights on those parts of the graph where the categorization differs. Algo-
rithm 12 describes the subgradient and loss computation for the soft-margintype of loss function.

The same reasoning applies to estimation when using an exponential families model. The only
difference is that we need to compute asoft-maxover paths rather than exclusively choosing the
best path over the ontology. Again, a breadth-first recursion suffices: each of the leavesy of the
DAG is associated with a probabilityp(y|x). To obtainEy∼p(y|x) [φ(y)] all we need to do is perform
a bottom-up traversal of the DAG summing over all probability weights on the path. Wherever a
node has more than one parent, we distribute the probability weight equally over its parents.

Appendix B. Proofs

This section contains the proofs of Theorems 4, 5, and 7, along with the technical lemmas required
for these.

B.1 Proof of Theorem 4

To show Theorem 4 we need several technical intermediate steps. Letγt := J(wt)−Jt(wt) and recall
thatεt := mint ′≤t J(wt ′)−Jt(wt). The following lemma establishes some useful properties ofγt and
εt .
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Lemma 9 We have Jt ′(wt ′) ≤ Jt(wt) ≤ J(w∗) ≤ J(wt) = Jt+1(wt) for all t ′ ≤ t. Furthermore,εt

is monotonically decreasing withεt − εt+1 ≥ Jt+1(wt+1)− Jt(wt) ≥ 0. Also,εt upper bounds the
distance from optimality viaγt ≥ εt ≥mint ′≤t J(wt ′)−J(w∗).

Proof SinceJt ′(w)≤ Jt(w)≤ J(w) for all t ′≤ t this property also applies to their respective minima.
Moreover, sincew∗ minimizesJ(w) we haveJ(w∗) ≤ J(wt). Since Taylor expansions are exact at
the point of expansionJ(wt) = Jt+1(wt). The first inequality follows from the definition ofεt , and
the fact thatJt is monotonically increasing. Finally, sinceJt ′+1(wt ′) = J(wt ′) it is easy to see that
γt ≥ εt = mint ′≤t J(wt ′)−Jt(wt)≥mint ′≤t J(wt ′)−J(w∗).

Our second technical lemma allows us to bound the maximum value of a concave function provided
that we know its first derivative and a bound on the second derivative.

Lemma 10 Denote by f: [0,1]→ R a concave function with f(0) = 0, f ′(0) = l, and | f ′′(x)| ≤
K ∀x∈ [0,1]. Then we havemaxx∈[0,1] f (x)≥ l

2 min( l
K ,1).

Proof We first observe thatg(x) := lx− K
2 x2≤ f (x) ∀x implies maxx∈[0,1] f (x)≥maxx∈[0,1] g(x). g

attains the unconstrained maximuml
2

2K at x = l
K . Sinceg is monotonically increasing in[0, l

K ], if
l > K we pickx = 1 which yields constrained maximuml − K

2 > l
2. Taking the minimum over both

maxima proves the claim.

To apply the above result, we need to compute the gradient and Hessian ofJ∗t+1(α) with respect
to the search direction((1−η)αt ,η). The following lemma takes care of the gradient:

Lemma 11 Denote byαt the solution of(9) at time instance t. Moreover, denote bȳA = [A,at+1]
andb̄= [b,bt+1] the extended matrices and vectors needed to define the dual problem for step t+1,
and letᾱ ∈ R

t+1. Then the following holds:

∂ᾱJ∗t+1([αt ,0]) = Ā⊤wt + b̄ and

[−αt ,1]⊤
[

Ā⊤wt + b̄
]

= Jt+1(wt)−Jt(wt) = γt . (30)

Proof By the dual connection∂Ω∗(−λ−1Aαt) = wt . Hence we have that∂ᾱ− λΩ∗(−λ−1Āᾱ)+
ᾱ⊤b̄ = Ā⊤wt + b̄ for ᾱ = [αt ,0]⊤. This proves the first claim. To see the second part we eliminateξ
from of the Lagrangian (11) and write the partial Lagrangian

L(w,α) = λΩ(w)+α⊤
(

A⊤w+b
)

with α≥ 0.

The result follows by noting that at optimalityL(wt ,αt)= Jt(wt) andJt+1(wt)= λΩ(wt)+〈wt ,at+1〉+
bt+1. Consequently we have

Jt+1(wt)−Jt(wt) = λΩ(wt)+ 〈wt ,at+1〉+bt+1−λΩ(wt)−αt(A
⊤wt +bt).

Rearranging terms proves the claim.

To apply Lemma 10 we also need to bound the second derivative.
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Lemma 12 Under the assumptions of Lemma 11 we have

∂2
ᾱJ∗t+1(ᾱ) =−λ−1Ā⊤∂2Ω∗(−λ−1Āᾱ)Ā (31)

moreoverĀ[−αt ,1] = st ∈ ∂wJ(wt). (32)

Proof The first equality is immediate from the chain rule. Next note that∂wΩ(wt) =−λ−1Aαt by
dual connection. Sinceat+1 ∈ ∂wRemp(wt) the claim follows fromJ(w) = Remp(w)+λΩ(w).

This result allows us to express the second derivative of the dual objective function (10) in terms of
the gradient of the risk functional. The idea is that as we approach optimality,the second derivative
will vanish. We will use this fact to argue that for continuously differentiable lossesRemp(w) we
enjoy linear convergence throughout.
Proof [Theorem 4] We overload the notation forJ∗t+1 by defining the following one dimensional
concave function

J∗t+1(η) := J∗t+1([(1−η)αt ,η]) =−λΩ∗(−λ−1Ā[(1−η)α⊤t ,η])+ [(1−η)α⊤t ,η]b̄.

Clearly,J∗t+1(0) = Jt(wt). Furthermore, by (30), (31), and (32) it follows that

∂ηJ∗t+1(η)|η=0 = [−αt ,1]⊤∂ᾱJ∗t+1([αt ,0]) = γt and

∂2
ηJ∗t+1(η) =−λ−1[−αt ,1]⊤Ā⊤∂2Ω∗(−λ−1Ā[(1−η)αt ,η])Ā[−αt ,1]⊤

=−λ−1s⊤t ∂2Ω∗(−λ−1Ā[(1−η)αt ,η])st := r.

By our assumption on‖∂2Ω∗‖ ≤ H∗ we have

|r| ≤ H∗‖st‖2/λ.

Next we need to bound the gradient ofJ. For this purpose note that∂wλΩ(wt) = −A⊤αt and
moreover that‖αt‖1 = 1. This implies that∂wλΩ(wt) lies in the convex hull of the past gradients,
at ′ . By our assumption that maxu∈∂wRemp(w) ‖u‖ ≤G it follows that‖∂wλΩ(wt)‖ ≤G. We conclude
that

‖st‖2≤ 4G2 and|r| ≤ 4G2H∗/λ.

Invoking Lemma 10 onJ∗t+1(η)−Jt(wt) shows that

J∗t+1(η)−Jt(wt)≥ γt
2 min(1,λγt/4G2H∗).

We now upper bound the LHS of the above inequality as follows:

εt − εt+1≥ Jt+1(wt+1)−Jt(wt)≥ J∗t+1(η)−Jt(wt)≥ γt
2 min(1,λγt/4G2H∗). (33)

The first inequality follows from Lemma 9 while the second follows by observing thatJt+1(wt+1) =
J∗t+1(αt+1)≥ J∗t+1(η). The RHS of the third inequality on the other hand can be lower bounded by
observing thatγt ≥ εt , which follows from Lemma 9. This in turn obtains (12).

For the second part note that (12) already yields theεt/2 decrease whenεt ≥ 4G2H∗/λ. To show
the other parts we need to show that the gradient of the regularized risk vanishes as we converge
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to the optimal solution. Towards this end, we apply Lemma 10 in theprimal.23 This allows us to
bound‖∂wJ(wt)‖ in terms ofγt . Plugging in the first and second derivative ofJ(wt) we obtain

γt ≥
1
2
‖∂wJ(wt)‖min(1,‖∂wJ(wt)‖/H).

If ‖∂wJ(wt)‖ > H, thenγt ≥ 1
2 ‖∂wJ(wt)‖ which in turn yields|r| ≤ 4γ2

t H∗/λ. Plugging this into
Lemma 10 yields a lower bound on the improvement ofλ/8H∗.

Finally, for‖∂wJ(wt)‖≤H we haveγt ≥‖∂wJ(wt)‖2/2H, which implies|r| ≤ 2HH∗γt/λ. Plug-
ging this into Lemma 10 yields an improvement ofλγt/4HH∗ ≥ λεt/4HH∗.

Since both cases cover the remaining range of convergence, the minimum min(λ/8H∗,λεt/4HH∗)
provides a lower bound for the improvement. The crossover point between both terms occurs at
εt = H/2. Rearranging the conditions leads to the (pessimistic) improvement guarantees of the
second claim.

Note that a key step in the above analysis involved boundingr := ∂2
ηJ∗t+1(η). For a number of

regularizers tighter bounds can be obtained. The following bounds are essentially due to Shalev-
Shwartz and Singer (2006):

• For squared norm regularization, that is,Ω∗(µ) = 1
2 ‖µ‖

2
2 we haver = ‖∂wJ(wt)‖22.

• For Lp norm regularization, that is,Ω∗(µ) = 1
2 ‖µ‖

2
q we haver ≤ (q−1)‖∂wJ(wt)‖2q.

• For quadratic form regularization with PD matrixB, that is,Ω∗(µ) = 1
2µB−1µ, we haver =

∂wJ(wt)
⊤B−1∂wJ(wt).

• For unnormalized entropic regularization we have∂2
µΩ∗(µ) = diag

(

eµ(1)
, . . . ,eµ(d)

)

. Hence

we may boundr ≤ ‖∂wJ(wt)‖22exp(‖µ‖∞). Clearly this bound may be very loose wheneverµ
has only very few large coefficients.

• For normalized entropy regularization, that is,Ω∗(µ)= log∑i expµ(i) we haver ≤ ‖∂wJ(wt)‖2∞.

B.2 Proof of Theorem 5

We need the following technical lemma for the proof:

Lemma 13 Let 〈ρ1,ρ2, . . .〉 be a sequence of non-negative numbers satisfying the following recur-
rence, for t≥ 1: ρt −ρt+1≥ c(ρt)

2, where c> 0 is a constant. Then for all integers t≥ 1,

ρt ≤
1

c(t−1+ 1
ρ1c)

.

Furthermoreρt ≤ ρ whenever

t ≥ 1
cρ
− 1

ρ1c
+1.

23. DefineJ̄(η) := J(wt)− J(wt + ηp) wherep = − ∂wJ(wt )
‖∂wJ(wt )‖ is the unit-length gradient. We see thatd

dη J̄(η)
∣
∣
∣
η=0

=

[−∂wJ(wt +ηp)⊤p]|η=0 = ‖∂wJ(wt)‖, andJ̄(0) = 0. Hence Lemma 10 is applicable in this case.
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This is Sublemma 5.4 of Abe et al. (2001) which is easily proven by induction. Now we can prove
the main result.
Proof [Theorem 5] For anyεt > 4G2H∗/λ it follows from (12) thatεt+1 ≤ εt/2. Moreover,ε0 ≤
J(0), since we know thatJ is non-negative. Hence we need at most log2[λJ(0)/4G2H∗] to achieve
this level of precision. Subsequently we have

εt − εt+1≥
λ

8G2H∗
ε2

t .

Invoking Lemma 13 by settingc= λ
8G2H∗ andρ1 = 4G2H∗/λ shows thatεt ≤ ε after at most8G2H∗

λε −
1 more steps. This proves the first claim.

To analyze convergence in the second case we need to study two additional phases: forεt ∈
[H/2,4G2H∗/λ] we see constant progress. Hence it takes us 4λ−2[8G2(H∗)2−HH∗λ] steps to cover
this interval. Finally in the third phase we haveεt+1≤ εt [1−λ/4HH∗]. Starting fromεt = H/2 we
need log2[2ε/H]/ log2[1−λ/4HH∗] steps to converge. Expanding the logarithm in the denominator
close to 1 proves the claim.

B.3 Proof of Theorem 7

We first note that the termination criterion of Algorithm 3 is slightly different from that of Algo-
rithm 2. In order to apply the convergence results for Algorithm 2 to Algorithm 3 we redefine the
following notations:

εt := J(wb
t )−Jt(wt) (34)

at+1 ∈ ∂wRemp(w
c
t ),

bt+1 := Remp(w
c
t )−〈wt ,at+1〉 ,

where

ηt := argmin
η

J(wb
t−1 +η(wt −wb

t−1)),

wb
t := ŵt−1 +ηt(w̄t − ŵt−1), and

wc
t := (1−θ)wb

t +θwt .

Then we state and prove the following lemma which is crucial to the application of Lemma 11 in
the proof.

Lemma 14 Jt+1(wt) = λΩ(wt)+ 〈wt ,at+1〉+bt+1

Proof wb
t is the optimal value ofJ on the line joiningwt andwb

t−1 while wc
t is a convex combination

of wt andwb
t . Moreover by definition ofat+1 andbt+1 we haveJ(wc

t ) = Jt+1(wc
t ). Therefore,

J(wc
t ) = Jt+1(w

c
t ) = λΩ(wc

t )+ 〈at+1,w
c
t 〉+bt+1≥ J(wb

t ). (35)

But sinceΩ is convex

Ω((1−θ)wb
t +θwt

︸ ︷︷ ︸

wc
t

)≤ (1−θ)Ω(wb
t )+θΩ(wt),
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which can be rearranged to

θ(Ω(wb
t )−Ω(wt))≤Ω(wb

t )−Ω(wc
t ).

Multiplying by λ and adding and subtractingθRemp(wb
t ) and θRt(wt) respectively to the above

equation

λθΩ(wb
t )+θRemp(w

b
t )

︸ ︷︷ ︸

θJ(wb
t )

−λθΩ(wt)−θRt(wt)
︸ ︷︷ ︸

θJt(wt)

≤λΩ(wb
t )+Remp(w

b
t )

︸ ︷︷ ︸

J(wb
t )

−λΩ(wc
t )

− (1−θ)Remp(w
b
t )−θRt(wt).

Plugging in (34) obtains

θεt ≤ J(wb
t )−λΩ(wc

t )− (1−θ)Remp(w
b
t )−θRt(wt). (36)

Putting (35) and (36) together

〈at+1,w
c
t 〉+bt+1≥ J(wb

t )−λΩ(wc
t )≥ (1−θ)Remp(w

b
t )+θRt(wt)+θεt .

Sincewc
t = (1−θ)wb

t +θwt it follows that

(1−θ)
〈

at+1,w
b
t

〉

+θ〈at+1,wt〉+bt+1≥ (1−θ)Remp(w
b
t )+θRt(wt)+θεt .

Which can be rearranged to

(1−θ)
(〈

at+1,w
b
t

〉

−Remp(w
b
t )
)

+θ(〈at+1,wt〉−Rt(wt))+bt+1≥ θεt .

Since
〈
wb

t ,at+1
〉
+bt+1 is the Taylor approximation of the convex functionRemparoundwc

t evaluated
atwb

t it follows thatRemp(wb
t )≥

〈
wb

t ,at+1
〉
+bt+1. Plugging this into the above equation yields

(1−θ)(−bt+1)+θ(〈wt ,at+1〉−Rt(wt))+bt+1≥ θεt .

Dividing by θ > 0 and rearranging yields

〈wt ,at+1〉+bt+1≥ Rt(wt)+ εt .

The conclusion of the lemma follows from observing thatRt+1(wt)= max(〈wt ,at+1〉+bt+1,Rt(wt))=
〈wt ,at+1〉+bt+1 andJt+1(wt) = λΩ(wt)+Rt+1(wt).

We also need the following two lemmas before we can proceed to the final proof.

Lemma 15 εt − εt+1≥ Jt+1(wt+1)−Jt(wt)

Proof

εt − εt+1 = J(wb
t )−Jt(wt)−J(wb

t+1)+Jt+1(wt+1)

= (J(wb
t )−J(wb

t+1))
︸ ︷︷ ︸

≥0

+Jt+1(wt+1)−Jt(wt) (by the definition ofwb
t )

≥ Jt+1(wt+1)−Jt(wt).
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Lemma 16 Let αt , Ā := [a1, . . . ,at+1], and b̄ := [b1, . . . ,bt+1] be as defined in Lemma 11. Then
under the assumption of Theorem 4 thatmaxu∈∂wRemp(w) ‖u‖ ≤G, we have

[−αt ,1]⊤Ā⊤Ā[−αt ,1]≤ 4G2.

Proof By the dual connection,∂wλΩ(wt) = −Aαt . Also, αt ≥ 0, and‖αt‖1 = 1 as it is the
optimal solution of (10) at iterationt. It follows that ∂wλΩ(wt) lies in the convex hull ofat ′ ∈
∂wRemp(wc

t ′) ∀t ′ ≤ t. Therefore‖∂wλΩ(wt)‖ ≤G. Consequently,

[−αt ,1]⊤Ā⊤Ā[−αt ,1] = ‖∂wλΩ(wt)+at+1‖2

= ‖∂wλΩ(wt)‖2 +2∂wλΩ(wt)
⊤at+1 +‖at+1‖2≤ 4G2,

by Cauchy-Schwarz inequality.

Finally, we sketch the proof for Theorem 7.
Proof [Theorem 7] (Sketch) Theorem 4 holds for Algorithm 3 by applying Lemmas14, 15, and 16
into the first part of the proof. Therefore, forε < 4G2H∗/λ, (33) reduces toεt−εt+1≥ λεt/4G2H∗.
Applying Lemma 13 yieldsεt ≤ 1

c
(

t−1+ 1
ε1c

) , with c = λ/8G2H∗. Setting 1

c
(

t−1+ 1
ε1c

) = ε, assuming

thatε1 > 0, and solving forn yieldsn≤ 1
cε = 8G2H∗

λε .

Appendix C. L1 RegularizedBMRM

Following our convention, theL1 norm regularizedBMRM reads

min
ξ,w

ξ+λ‖w‖1 subject tow⊤ai +bi ≤ ξ, i = 1, . . . , t. (37)

An equivalent formulation is

min
ξ,w

ξ subject tow⊤ai +bi ≤ ξ, i = 1, . . . , t and‖w‖1≤ τ, (38)

where one can show a monotone correspondence betweenτ and theλ in (37) by comparison of the
KKT conditions for the two problems.

Note that our convergence proof does not apply in this case as the Fenchel dual ofΩ(w) = ‖w‖1
fails to satisfy the strong convexity assumption. Nevertheless, we see that (38) can be easily solved
by CPM where the solution must lie in theL1 ball of radiusτ. Finally, we note that theL1 regularized
BMRM can be written in a rather standard linear programming (LP) formulation:

min
ξ,u,v

ξ+λ1⊤d (u+v)

s.t. a⊤i u−a⊤i v+bi ≤ ξ, i = 1, . . . , t

u,v≥ 0,

with the variable of interestw = u−v.
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G. Bakir, T. Hofmann, B. Scḧolkopf, A. J. Smola, B. Taskar, and S. V. N. Vishwanathan.Predicting
Structured Data. MIT Press, Cambridge, Massachusetts, 2007.

O. E. Barndorff-Nielsen.Information and Exponential Families in Statistical Theory. John Wiley
and Sons, New York, 1978.

J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In Proceedings of
the International Conference on Machine Learning, pages 65–72, New York, NY, 2004. ACM
Press.

A. Belloni. Introduction to bundle methods. Technical report, Operation Research Center, M.I.T.,
2005.

S. Belongie, J. Malik, and J. Puzicha. Matching shapes. InEighth IEEE International Conference
on Computer Vision, Vancouver, Canada, July 2001.

K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly
inseparable sets.Optimization Methods Software, 1:23–34, 1992.

S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, Cambridge,
England, 2004.

J. S. Breese, D. Heckerman, and C. Kardie. Empirical analysis of predictive algorithms for collab-
orative filtering. InProceedings of the 14th Conference on Uncertainty in Artificial Intelligence,
pages 43–52, 1998.

T. Caetano, L. Cheng, Q. V. Le, and A. J. Smola. Learning graph matching. In Proceedings of the
11th International Conference On Computer Vision, pages 1–8, Los Alamitos, CA, 2007. IEEE
Computer Society.

T. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola. Learning graph matching.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2008. submitted.

L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. InPro-
ceedings of the Thirteenth ACM conference on Information and knowledgemanagement, pages
78–87, New York, NY, USA, 2004. ACM Press.

360



BUNDLE METHODS FORREGULARIZED RISK M INIMIZATION

E. Candes and T. Tao. Decoding by linear programming.IEEE Transactions on Information Theory,
51(12):4203–4215, 2005.

C. C. Chang and C.-J. Lin.LIBSVM: a library for support vector machines, 2001. Software available
at http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm .

O. Chapelle. Training a support vector machine in the primal.Neural Computation, 19(5):1155–
1178, 2007.

M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. In
Proceedings of the 13th Annual Conference on Computational LearningTheory, pages 158–169.
Morgan Kaufmann, San Francisco, 2000.

C. Cortes and V. Vapnik. Support vector networks.Machine Learning, 20(3):273–297, 1995.

R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter.Probabilistic Networks and Expert Sytems.
Springer, New York, 1999.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal
of Machine Learning Research, 3:951–991, January 2003.

K. Crammer and Y. Singer. Online ranking by projecting.Neural Computation, 17(1):145–175,
2005.

N. A. C. Cressie.Statistics for Spatial Data. John Wiley and Sons, New York, 1993.

L. Fahrmeir and G. Tutz.Multivariate Statistical Modelling Based on Generalized Linear Models.
Springer, 1994.

R.-E. Fan, J.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: a library for large
linear classification.Journal of Machine Learning Research, 9:1871–1874, August 2008.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.Journal
of Machine Learning Research, 2:243–264, Dec 2001.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support vector machines. In
A. McCallum and S. Roweis, editors,Proceedings of the International Conference on Machine
Learning, pages 320–327. Omnipress, 2008.

A. Frangioni.Dual-Ascent Methods and Multicommodity Flow Problems. PhD thesis, Dipartimento
di Informatica, Universita’ di Pisa, 1997. TD 5/97.

W. Gropp, E. Lusk, and R. Thakur.Using MPI-2. MIT Press, 1999.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors,Advances in Large Margin
Classifiers, pages 115–132, Cambridge, MA, 2000. MIT Press.
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