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Abstract

A wide variety of machine learning problems can be descréxedhinimizing a regularized risk
functional, with different algorithms using different imats of risk and different regularizers. Ex-
amples include linear Support Vector Machines (SVMs), GeumsProcesses, Logistic Regression,
Conditional Random Fields (CRFs), and Lasso amongst otliérs paper describes the theory
and implementation of a scalable and modular convex solvechwsolves all these estimation
problems. It can be parallelized on a cluster of workstatiatiows for data-locality, and can deal
with regularizers such ds, andL, penalties. In addition to the unified framework we presegtttti
convergence bounds, which show that our algorithm conegeirg®(1/¢) steps tae precision for
general convex problems and @(log(1/¢)) steps for continuously differentiable problems. We
demonstrate the performance of our general purpose salvarvariety of publicly available data
sets.
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1. Introduction

At the heart of many machine learning algorithms is the problem of minimizing danézred risk
functional. That is, one would like to solve

min J(w) := AQ(W) + Remp(W), (1)

whereRemp(w) := :"il (X, i, W) 2

is the empirical risk. Moreover; € X C RY are referred to as training instances and 9" are

the corresponding labeld. is a (surrogate) convex loss function measuring the discrepancy be-
tweeny and the predictions arising from usimg For instancew might enter our model via
L(x,y,w) = ((wW,x) —y)?, where(-,-) denotes the standard Euclidean dot product. Fin&lyy)

is a convex function serving the role of a regularizer with regularizatiostzmtA > 0. Typically

Q is differentiable and cheap to compute. In contrast, the empirical risk Repp(w) is often
non-differentiable, and almost always computationally expensive tondtal

For instance, if we consider the problem of predicting binary valued latselst1}, we can set
Q(w)=3 |w||3 (i.e., L, regularization), and the lo$éx, y,w) to be the binary hinge loss, m@x1—
y{(w,X)), thus recovering linear Support Vector Machines (SVMs) (Joachif®@6)2 Using the
same regularizer but changing the loss functiolfxgy,w) = log(1+exp(—y (W, X))), yields logistic
regression. Extensions of these loss functions allow us to handle s&unttine output space
(Bakir et al., 2007) (also see Appendix A for a comprehensive expositianany common loss
functions). On the other hand, changing the regulafzer) to the sparsity inducingw||, (i.e.,

L1 regularization) leads to Lasso-type estimation algorithms (Mangasarian, Ti®8hkirani, 1996;
Candes and Tao, 2005).

If the objective function] is differentiable, for instance in the case of logistic regression, we
can use smooth optimization techniques such as the standard quasi-NewtioodstikeBFGS or
its limited memory variantBFGS (Nocedal and Wright, 1999). These methods are effective and
efficient even whemm andd are large (Sha and Pereira, 2003; Minka, 2007). However, it is not
straightforward to extend these algorithms to optimize a non-differentiabletmgjefor instance,
when dealing with the binary hinge loss (see, e.g., Yu et al., 2008).

WhenJ is non-differentiable, one can use nonsmooth convex optimization teclsnsgeé as
the cutting plane method (Kelly, 1960) or gtabilizedversion the bundle method (Hiriart-Urruty
and Lemagchal, 1993). The bundle methods not only stabilize the optimization praedur
make the problem a well-posed one, that is, with unique solution. Howeeesntiount oexternal
stabilization that needs to be added is a parameter that requires carefgl tun

In this paper, we bypass this stabilization parameter tuning problem by takiiffg@nt route.
The resultant algorithm — Bundle Method for Regularized Risk MinimizatBWiRM) — has certain
desirable properties: a) it has no parameters to tune, and b) it is applicahleide variety of
regularized risk minimization problems. Furthermore, we showBMRM has anO(1/¢) rate of
convergence for nonsmooth problems @idbg(1/€)) for smooth problems. This is significantly
tighter than theD(1/€?) rates provable for standard bundle methods (Lé&cizal et al., 1995). A
related optimizersvms™e (Tsochantaridis et al., 2005), which is widely used in machine learning
applications was also shown to convergedél /€?) rates. Our analysis also appliesggmse,
which we show to be a special case of our solver, and hence tightensvisrgence rate t0(1/¢).
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Very briefly, we highlight the two major advantages of our implementation. Firit,com-
pletely modular; new loss functions, regularizers, and solvers candezlaxith relative ease. Sec-
ond, our architecture allows the empirical risk computation (2) to be easiiji@ired. This makes
our solver amenable to large data sets which cannot fit into the memory ofla sorgputer. Our
open source C/C++ implementation is freely available for download.

The outline of our paper is as follows. In Section 2 we desdita@M and contrast it with stan-
dard bundle methods. We also prove rates of convergence. In Seatierdi3cuss implementation
issues and present principled techniques to control memory usagell as teespeed up computa-
tion via parallelization. Section 4 puts our work in perspective, and dissustated work. Section
5 is devoted to extensive experimental evaluation, which shows that oummaptation is compa-
rable to or better than specialized state-of-the-art solvers on a numellafly available data sets.
Finally, we conclude our work and discuss related issues in Section 6pperilix A we describe
variousclassef loss functions organized according to their common traits in computatiorg Lon
proofs are relegated to Appendix B. Before we proceed a brief natet aoir notation:

1.1 Notation

The indices of elements of a sequence or a set appear in subscriptafople,u;,u,. Thei-th
component of a vectaris denoted by, [K] is the shorthand for the sét, 2, ..., k}. TheLp norm
is defined agul|, = (3{_; [uV|P)Y/P, for p > 1, and we us¢- | to denot- ||, whenever the context
is clear.1q andQq denote thel-dimensional vectors of all ones and zeros respectively.

2. Bundle Methods

The precursor to the bundle methods is the cutting plane method (CPM) (Ke89).1CPM uses
subgradients, which are a generalization of gradients appropriat@feex functions, including
those which are not necessarily smooth. Suppdse a point where a convex functiahis finite.
Then a subgradient is the normal vector of any tangential supportingrplgme ofJ atw (see
Figure 1 for geometric intuition). Formally is called a subgradient dfatw’ if, and only if,

Jw) > JIW) +{w—-w.,s) Ww. (3)

The set of all subgradientsat is called the subdifferential, and is denoteddgy(w'). If this set is
not empty thed is said to besubdifferentiable at (v On the other hand, if this set is a singleton then
the function is said to bdifferentiableatw’. Convex functions are subdifferentiable everywhere in
their domain (Hiriart-Urruty and Lemachal, 1993).

As implied by (3),J is bounded from below by its linearization (i.e., first order Taylor approx-
imation) atw’. Given subgradients,s,, ..., evaluated at locationsg, wy, ..., W _1, we can state
a tighter (piecewise linear) lower bound fbas follows

I(W) > JP(w) := max{I(Wig) + (W—wi-1,5)}. (4)

1<i<t
This lower bound forms the basis of the CPM, where at iterdtitie set{w; };3 is augmented by

w; := argminJP(w).
w

1. Software available dittp://users.rsise.anu.edu.au/ ~ chteo/BMRM.html
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This iteratively refines the piecewise linear lower bouff and allows us to get close to the mini-
mum ofJ (see Figure 2 for an illustration).

If w* denotes the minimizer af, then clearly eacl(w;) > J(w*) and hence migxi<t J(w;) >
J(w*). On the other hand, sinck> JCP it follows that J(w*) > J*P(w;). In other words,J(w*)
is sandwiched between min<; J(w;) and JtCP(Wt) (see Figure 3 for an illustration). The CPM
monitors the monotonically decreasing quantity

& = min J(w) — 3P (w),

and terminates whenevarfalls below a predefined threshaldThis ensures that the solutidtw; )
satisfies)(w) < J(w*) + €.

Figure 1: Geometric intuition of a subgradient. The nonsmooth convex funidid blue) is only
subdifferentiable at the “kink” points. We illustrate two of its subgradiengsked green
and red lines) at a “kink” point which are tangential to the function. Thenadb vectors
to these lines are subgradients.

2.1 Standard Bundle Methods

Although CPM was shown to be convergent (Kelly, 1960), it is well kngsge, e.g., Leméachal
et al., 1995; Belloni, 2005) that CPM can be very slow when new iterateg noavfar away from
the previous ones (i.e., causing unstable “zig-zag” behavior in the itgrates

Bundle methods stabilize CPM by augmenting the piecewise linear lower bowndjf&(w)
as in (4)) with a prox-function (i.e., proximity control function) which preteoverly large steps in
the iterates (Kiwiel, 1990). Roughly speaking, there are 3 popular tyfgmsdle methods, namely,
proximal (Kiwiel, 1990), trust region(Schramm and Zowe, 1992), alaVel set(Lemagéchal et al.,
1995)? All three versions usé H~Hz as their prox-function, but differ in the way they compute the

2. For brevity we will only describe “first-order” bundle methods, amtitadiscussion about “second-order” variants
such as the bundle-Newton method of Eak and iek (1998).
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Figure 2:

Figure 3:

BUNDLE METHODS FORREGULARIZED RISK MINIMIZATION
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A convex function (blue solid curve) is bounded from belovitbiinearizations (dashed
lines). The gray area indicates the piecewise linear lower bound obtajnesiry the
linearizations. We depict a few iterations of the cutting plane method. At eaciidte

the piecewise linear lower bound is minimized and a new linearization is added at th
minimizer (red rectangle). As can be seen, adding more linearizations inggre/®wer
bound.

A convex function (blue solid curve) with three linearizationsiied lines) evaluated
at three different locations (red squares). The approximatioregap the end of third
iteration is indicated by the height of the magenta horizontal band, that isratiffe
between lowest value dffw) evaluated so far (lowest black circle) and the minimum of
JSP(w) (red diamond).
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new iterate:

proximal: w; := argmin{$ [|w— 1%+ J°P(w)}, (5)
w

trust region: w; := argmin{JEP(w) | 3 [lw—ik_1]|* < k¢, (6)
w

level set: w; := argmin{3 [[w—We_1[|* | 3°P(w) < 1},
w

wherew;_; is the current prox-center, ar@@,K;, andt; are positive trade-off parameters of the
stabilization. Although (5) can be shown to be equivalent to (6) for gppately choseri{; and
K¢, tuning{; is rather difficult while a trust region approach can be used for autoriigtioaing

K. Consequently the trust region algorittsm of Schramm and Zowe (1992) is widely used in
practice.

Since our methods (see Section 2.2) are closely related to the proximal buathed, we
will now describe them in detail. Similar to the CPM the proximal bundle method alddsbu
a piecewise linear lower bounitf® (see (4)). In contrast to the CPM, the piecewise linear lower
bound augmented with a stabilization te%TNW—VAVt,1H2, is minimized to produce the intermediate
iteratew;. The approximation gap in this case includes the prox-function:

ey 1= 3(0k1) — [IC7) + 5 0 i1

If & is less than the pre-defined threshottie algorithm exits. Otherwise, a line search is performed
along the line joiningy{_1 andw; to produce the new iterat&. If w; results in a sufficient decrease
of the objective function then it is accepted as the new prox-cewtehis is called a serious step.
Otherwise, the prox-center remains the same; this is called a null step. Dgtsd#ledocode can be
found in Algorithm 1.

If the approximation gap; is smaller tharg, then this ensures that the solutid(W_,) satisfies
J(Wg—1) < JI(w) +Z—2‘ W —\ir_1|® 4 for all w. In particular, ifJ(w*) denotes the optimum as before,
thenJ(Wi_1) < J(w*) + % |w* —\ir_1||* + €. Contrast this with the approximation guarantee of the
CPM, which does not involve thé |lw* —v‘\/t,1||2 term.

Although the positive coefficient; is assumed fixed throughout the algorithm, in practice it
must be updated after every iteration to achieve faster convergentct gnarantee a good quality
solution (Kiwiel, 1990). Same is the case fqrandt; in trust region and level set bundle methods,
respectively. Although the update is not difficult, the procedure reliestbar parameters which
require carefutuning (Kiwiel, 1990; Schramm and Zowe, 1992; Leraeahal et al., 1995).

In the next section, we will describe our meth@&MRM) which avoids this problem. There
are two key differences betwe@&MRM and the proximal bundle method: FirstMRM main-
tains a piecewise linear lower bound Rfmp(w) instead ofJ(w). Secondly, the the stabilizer (i.e.,
lw—i]||) in proximal bundle method is replaced by the regular2éw) hence there is no stabi-
lization parameter to tune. As we will see, not only is the implementation straiglatfdryut the
rates of convergence also improve fr@il/e3) or O(1/€?) to O(1/e).
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Algorithm 1 Proximal Bundle Method
1: input & initialization: €>0,p € (0,1), wo, t < 0, Wp <— Wp
2: loop
3: t—t+1
Computed(w_1) ands € dwJ(W—1)
Update modedCP(w) := max<j<t{J(Wi_1) + (W—wi_1,5)}
W — argmin, JEP(w) + & w— 4>
£ I(Wh) — [IEPW) + § 1% — it 1]
if & < €then return w
Linesearchn « argmin,cg J(W—1 +nN(W — W-1)) (if expensive, sef); = 1)
100 W — W1 + Ne(We — We—1)
11 if J(W—1) — I(W) > peg; then
12: SERIOUS STEPW «— w;

© o N 9 g~

13: else

14: NULL STEP: W « W_1
15:  endif

16: end loop

2.2 Bundle Methods for Regularized Risk Minimization BMRM)

Define:

(subgradient oRemp) & € OwRemp(Wt—1),
(offset) by := Remp(Wh—1) — (We—1, &),
(piecewise linear lower bound &mp) REF(w) := 1n<1_zi>t<{<w,ai> +bi},
SIS

(piecewise convex lower bound 8f  J(w) := AQ(w) + R°P(w),
(iterate) w; = mvjn\]t(w),

(approximation gap) & = min J(w;) — J(W).
o<i<t

We now describé8MRM (Algorithm 2), and contrast it with the proximal bundle method. At it-
erationt the algorithm builds the lower bourf® to the empirical riskRemp The new iteratev
is then produced by minimizing which is R°P augmented with the regulariz€; this is the key
difference from the proximal bundle method which uses%hkw—wt_lﬂz prox-function for stabi-
lization. The algorithm repeats until the approximation ggais less than the pre-defined threshold
€. Unlike standard bundle methods there is no notion of a serious or null stayr ialgorithm.
In fact, our algorithm does not even maintain a prox-center. It can lveedi@s a special case of
standard bundle methods where the prox-center is always the origiresadupdated (hence every
step is a null step). Furthermore, unlike the proximal bundle method, thexdpm@tion guarantees
of our algorithm do not involve théL [w* —w||* term.

Algorithm 2 is simple and easy to implement as it does not involve a line searcfactn
whenever efficient (exact) line search is available, it can be used tevactaster convergence as
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Algorithm 2 BMRM
1. input & initialization: €>0,wp,t« 0

2: repeat

3 t—t+1

4:  Computes; € dwRemp(Wt—1) andby < Remp(We—1) — (W¢—1,8;)
5. Update modelRCP(w) := maxy<i<{(w,a;) + by}

6. W < argmin, & (w) := AQ(w) + REP(w)

70 & < Ming<i<t J(Wi) — & (W)

8: until & <g¢
9: return w;

observed by Franc and Sonnenburg (2008) in the case of linear S¥thibinary hinge loss. We
now turn to a variant oBBMRM which uses a line search (Algorithm 3); this is a generalization of the
optimized cutting plane algorithm for support vector machines (OCAS) ofid=aad Sonnenburg
(2008). This variant first buildB” and minimizes}, to obtain an intermediate iteratg. Then, it
performs a line search along the line join'mr@Ll andw to producen® which acts like the new prox-
center. Note that —wP_, is not necessarily a direction of descent; therefore the line search might
return a zero step. Instead of using as the new iterate the algorithm uses the pre-set parameter
0 to generatenf on the line segment joining? andw;. Franc and Sonnenburg (2008) report that
setting® = 0.9 works well in practice. It is easy to see that Algorithm 3 reduces to Algaorizh
if we setn; = 1 for all t, and use the same termination criterion. It is worthwhile noting that this
variant is not applicable for structured learning problems such as Margill Markov Networks
(Taskar et al., 2004), because no efficient line search is knowmébr groblems.

A specialized variant oBMRM which handles quadratic regularizers, that@$w) = 1 |lw/|?
was first introduced to the machine learning community by Tsochantaridig208b) assvms™<,
In particular,SVMs™ handles quadratic regularize@¥w) = 1||w||> and non-differentiable large
margin loss functions such as (24). Its 1-slack formulation (Joachims 208P) can be shown to
be equivalent tBMRM for this specific type of regularizer and loss function. Somewhat corglys
these algorithms are called the cutting plane method even though they areirtlegieit to bundle
methods.

2.3 Dual Problems
In this section, we describe how the sub-problem

W = argwmin]t(w) =AQ(w) + ln;@t((W,aﬁ + by (7)
in Algorithms 2 and 3 is solved via a dual formulation. In fact, we will show thainged not know

Q(w) at all, instead it is sufficient to work with its Fenchel dual (Hiriart-Urrutyddremagéchal,
1993):

Definition 1 (Fenchel Dual) Denote byQ : 7/ — R a convex function on a convex s@t. Then
the dualQ* of Q is defined as

Q7 (M) := sup (W, 1) — Q(w). 8
wew

3. A different optimization method but with identical efficient line searabcpdure is described in Yu et al. (2008).
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Algorithm 3 BMRM with Line Search
1: input & initialization: &> 0,0 € (0,1], w5, w§ « w3, t < 0

2: repeat

3 t—t+1

4: Computes; € dwRemp(Wf_y), andby — Remp(W{_1) — (W{_ 1, &)
5. Update modelRCP(w) := maxy<i<{(w,a) + by}

6. W« argmin, & (w) := AQ(w) + REP(w)

7. Linesearchn « argmin, g JWP_; +n(w —wP_ ,))

8 W t_1+ﬂt(Wt—V\ff_1)

9 W (1—0)WP +bw

10: & «— J(V\}t)) — Jt(Wt>
11: until & <e¢
12: return wp

Several choices of regularizers are common. Boe= RY the squared norm regularizer yields
1. .2 * 1,2
Q(w) = w3 and N MEITER

More generally, forL, norms one obtains (Boyd and Vandenberghe, 2004; Shalev-Shwaitz a
Singer, 2006):

1 . 1 1 1
QW) =5 [ and QW=7 [ WhereB T3 1

For any positive definite matri®, we can construct a quadratic form regularizer which allows non-
uniform penalization of the weight vector as:

Q(w) :% "Bw and Q* (W) :% "Bl

For theunnormalizechegative entropy, where = Ri, we have

Q(w) = Zw(i) Iogw(i) and Q* (M) = zexpu(i)'
' [

For thenormalizednegative entropy, wher@/’ = {w | w > 0 and ||w||, = 1} is the probability sim-
plex, we have

Q(w) = ZW(” logw" and Q* (W) = IogZexpu(i).
|

If Q is differentiable thev at which the supremum of (8) is attained can be writtewaso,,Q* ()
(Boyd and Vandenberghe, 2004). In the sequel we will alwaysassoatQ™ is twice differentiable.
Note that all the regularizers we discussed above are twice differentiib&following theorem
states the dual problem of (7).
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Theorem 2 Denote by A= [ay,...,a] the matrix whose columns are the (sub)gradients, and let
b= [b,...,b]. The dual problem of

W = argmin{  (w) := max(w,a) + b +AQ(w)} is 9)
weRd 1=i<t

oy = argmax () := -AQ*(-AtAa)+a'b|a >0, |laf, = 1}. (10)
acRt

Furthermore, wanda; are related by the dual connection w OQ*(—}\*lAat).

Proof We rewrite (9) as a constrained optimization problem: yaikQ(w) + & subject tog >
(w,a) +b; fori =1,...,t. By introducing non-negative Lagrange multipliersand recalling that
1; denotes thé dimensional vector of all ones, the corresponding Lagrangian camitiewas

L(W,E,a) =AQ(W)+E—a' (Elt —ATw— b) with a > 0, (11)

wherea > 0 denotes that each componentidé non-negative. Taking derivatives with respecf to
yields 1—a'l; = 0. Moreover, minimization ofL with respect tow implies solving
maxy (W, —A~*Aa) — Q(w) = Q*(—A~*Aa). Plugging both terms back into (11) we eliminate the
primal variables, andw. |

SinceQ* is assumed to be twice differentiable and the constraints of (10) are simpleaareasily
solve (10) with standard smooth optimization methods such apdhaltybarrier methods (No-
cedal and Wright, 1999). Recall that for the square norm regulafizen = %kug, commonly
used in SVMs and Gaussian Processes, the Fenchel dual is gig&r{jy= 3 ||uH§. The following

corollary is immediate:

Corollary 3 For quadratic regularization, that iQ(w) = 3 HwH%, (10) becomes

o = argmax — o ATAa+a b |a >0, [jaf, =1}.
aeRt
This means that for quadratic regularization the dual optimization problemusd@ratic program
(QP) where the number of constraints equals the number of (sub)gidiemputed previously.
Sincet is typically in the order of 10s to 100s, the resulting QP is very cheap to slriviact, we
do not even need to know the (sub)gradients explicitly. All that is requoettfine the QP are the
inner products between (sub)gradie(ds a; ).

2.4 Convergence Analysis

While the variants of bundle methods we proposed are intuitively plausiblen#ins to be shown
that they have good rates of convergence. In fact, past results,asuthose by Tsochantaridis
et al. (2005) suggest a slo®(1/¢?) rate of convergence. In this section we tighten their results and
show anO(1/¢) rate of convergence for nonsmooth loss functions@fidg(1/¢)) rates for smooth
loss functions under mild assumptions. More concretely we prove the folipimiao convergence
results:

(@) Assume that maxy, r.,w) Ul < G. For_regularizersf)(w) for which_ HaﬁQ*(u)H < |._|*.We
proveO(1/¢) rate of convergence, that is, we show that our algorithm convergeghimw

of the optimal solution ifO(1/¢) iterations.
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(b) Under the above conditions, if furthermdji@,J(w)|| < H, thatis, the Hessian dfis bounded,
we can showD(log(1/¢)) rate of convergence.

For our convergence proofs we use a duality argument similar to thoderpurd in Shalev-
Shwartz and Singer (2006) and Tsochantaridis et al. (2005), botthighvehare key techniques
with Zhang (2003). Recall that denotes our approximation gap, which in turn upper bounds how
far away we are from the optimal solution. In other worels> ming<i<tJ(w;) — J*, whereJ*
denotes the optimum value of the objective functioThe quantitye; — &1 can thus be viewed as
the “progress” made towards in iterationt. The crux of our proof argument lies in showing that
for nonsmooth loss functions the recurrege &1 > c- &2 holds for some appropriately chosen
constant. The rates follow by invoking a lemma from Abe et al. (2001). In the caskeo§mooth
losses we show that — &1 > C - & thus implying anO(log(1/¢)) rate of convergence.

In order to show the required recurrence, we first observe thatrbggsduality the values of
the primal and dual problems (9) and (10) are equal at optimality. Hengegragress ink, 1 can
be computed in the dual. Next, we observe that the solution of the dual prqh® at iteration
t, denoted by, forms a feasible set of parameters for the dual problem (10) at itetatidnby
means of the parameterizati¢a;,0), that is, by padding; with a 0. The value of the objective
function in this case equalb(w;).

To obtain a lower bound on the improvement duétq (w-.1) we perform a 1-d optimization
along((1—n)at,n) in (10). The constraing € (0,1) ensures dual feasibility. We will then bound
this improvement in terms af. Note that, in general, solving the dual problem (10) results in a
increase which is larger than that obtained via the line search. The 1-d mitionimused only
for analytic tractability. We now state our key theorem and prove it in AppeBd

Theorem 4 Assume thamax,cy, R, w) [[Ull < G for all w e dom J. Also assume tha" has

bounded curvature, that iqwﬁQ*(u)H < H* for all p € {-A"1y!"}aia whereo; > 0, Viand

|
t1aj = 1}. In this case we have

& — &1 > 3 min(L e /AG?H"). (12)
Furthermore, if||03J(w)|| < H, then we have

&/2 if & > 4G?H* /A
& — €11 > ¢ A/BH” if AG?H* /A > >H/2
Aet/4HH*  otherwise.

Note that the error keeps on halving initially and settles for a somewhat stateeof convergence
after that, whenever the Hessian of the overall risk is bounded fromeab®he reason for the
difference in the convergence bound for differentiable and noesifitiable losses is that in the
former case the gradient of the risk converges to 0 as we approach lijytimiaereas in the former
case, no such guarantees hold (e.g., when minimizinthe (sub)gradient does not vanish at the
optimum). The dual of many regularizers, for example, norm, squiagetrm, and the entropic
regularizer have bounded second derivative. See, for exampéevsBhwartz and Singer (2006)
for a discussion and details. Thus our conditﬁp}ﬁQ*(u)H < H* is not unreasonable. We are now
in a position to state our convergence results. The proof is in Appendix B.
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Theorem 5 Assume that ) > 0 for all w. Under the assumptions of Theorem 4 we can give the
following convergence guarantee for Algorithm 2. For any 4G?H* /A the algorithm converges
to the desired precision after

N©) 8G%H*
G2H* Ae
steps. Furthermore if the Hessian dfn) is bounded, convergence to aayx H/2 takes at most
the following number of steps:

AJ(0)  4H* 4HH*
aG2H T A A
Several observations are in order: First, note that the number of itesatioy dependkgarithmi-
cally on how far the initial valud(0) is away from the optimal solution. Compare this to the result
of Tsochantaridis et al. (2005), where the number of iterations is lineHOin

Second, we have aB(1/¢) dependence in the number of iterations in the non-differentiable
case, as opposed to ti¢1/¢?) rates of Tsochantaridis et al. (2005). In addition to that, the conver-
gence i90(log(1/¢)) for continuously differentiable problems.

Note that wheneveRen, is the average over many piecewise linear functid®s,, behaves
essentially like a function with bounded Hessian as long as we are takingelaoggh steps not to
“notice” the fact that the term is actually nonsmooth.

1

n<log,

n < log, max[0,H — 8G?H* /A] + log(H /2¢).

Remark 6 For Q(w) = 3 |w||? the dual Hessian is exactly*H= 1. Moreover we know that £ A
since||823(w)|| = A+ ||02Remp(w)|-

Effectively the rate of convergence of the algorithm is governed bguppunds on the primal and
dual curvature of the objective function. This acts like a condition numbéneoproblem—for
Q(w) = 2w’ Qwthe dual isQ*(2) = 32" Q 1z, hence the largest eigenvalues@andQ~* would
have a significant influence on the convergence.

In terms ofA the number of iterations needed for convergen&(}s1). In practice the iteration
countdoesincrease with\, albeit not as badly as predicted. This is likely due to the fact that the
empirical riskRemp is typically rather smooth and has a certain inherent curvature which aats as
natural regularizer in addition to the regularization afforded8yw).

For completeness we also state the convergence guarantees for Algdatiohprovide a proof
in Appendix B.3.

Theorem 7 Under the assumptions of Theorem 4 Algorithm 3 converges to the dpsé@dione
after

8G2H*

n<
- A&

steps for ang < 4G2H*/A.

3. Implementation Issues

In this section, we discuss the memory and computational issues of the implenrenf&idRM.
In addition, we provide two variants &MRM: one is memory efficient and the other one is paral-
lelized.

322



BUNDLE METHODS FORREGULARIZED RISK MINIMIZATION

3.1 Solving theBMRM Subproblem (7) with Limited Memory Space

In Section 2.3 we mentioned the dual of subproblem (7) (i.e., (10)) whickually easier to solve
when the dimensionalitg of the problem is larger than the number of iterationequired by
BMRM to reach desired precisian Althought is usually in the order of ) a problem withd
in the order of 18 or higher may use up all memory of a typical machine to store the bundle, that
is, linearizations{(a;,b;)}, before the convergence is achieveddere we describe a principled
technique which controls the memory usage while maintaining convergenEngess.

Note that at iteration, before the computation for new iteratg, Algorithm 2 maintains a

bundle oft (sub)gradients{a;}}:l of Remp computed at the locationgw; f;cl,. Furthermore, the

Lagrange multipliersx;_1 obtained in iteratiort — 1 satisfya;_; > 0 and z};}aﬂl =1 by the
constraints of (10). We define ttaggregatedsub)gradienty’ offsetb, and Lagrange multiplier

dt('_)l as

A l . ~ 1 . (1 . .
& = Zafgla;, b = WZathbi, and at(Jl = at@l,
O, q i€ ;4 i€ 1€

respectively, wheré C [t — 1] is an index set (Kiwiel, 1983). Clearly, the optimality of (10) at the
end of iterationt — 1 is maintained when a SUbS%(ahbivath)}iel is replaced by the aggregate
(&,B,6("))) foranyl C [t —1].

To obtain a new iteratey via (10) with memory space for at moktlinearizations, we can,
for example, replacé(a;, bj)};, with (&,b)) wherel = [t —k+ 1] and 2< k < t. Then, we solve
a k-dimensional variant of (10) with := [&,&_k;2,...,&], b= [B|,bt,k+2,...,bt], anda € RK.
The optimum of this variant will be lower than or equal to that of (10) as therlatis higher
degree of freedom than the former. Nevertheless, solving this vari@mt2x< k <t will still
guarantee convergence (recall that our convergence proof eakt= 2). In the sequel we hame
the aforementioned numblkis the “bundle size” since it indicates the number of linearizations the
algorithm keeps.

For concreteness, we provide here a memory effi@®®RM variant for the cases whe€¥w) =
3 |w||2 andk = 2. We first see that the dual of subproblem (7) now reads:

N = argmax- % ||&; g +N(a — &)+ By +n (b~ by_y)

0<n<1

R ~ 2
= argmax-1ag y(a — & 1) — %

2 ~
a—al_y| +nbx—b 1), (13)
0<n<1

Since (13) is quadratic in, we can obtain the optimal by setting the derivative of the objective in
(13) to zero and clipping in the rang€g0, 1]:

— by W@+
n = min | max O,bt L 11] S 2” 1 1 (14)
x [lac + Awg_1]|

4. In practice, we can remove those linearizati¢te,bj)} whose Lagrange multipliers; are 0 after solving (10).
Although this heuristic works well and does not affect the converggneeantee, there is no bound on the minimum
number of linearizations with non-zero Lagrange multipliers needed ievachonvergence.
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wherew; 1 = —%é[t_u by the dual connection. With the optimgl we obtain the new primal
iteratews = (1—n)wi—1 — (N/A)a. Algorithm 4 lists the details. Note that this variant is simple to
implement and does not require a QP solver.

Algorithm 4 BMRM with Aggregation of Previous Linearizations
1: input & initialization: €>0,wp, t«— 1

2: Computea; € dwRemp(Wo), andby < Remp(Wo) — (Wo, a1)
3. Wp —%a]_

4: 6[1} — b

5: repeat

6: t—t+1

7. Computea; € OwRemp(Wt—1) andby < Remp(Wr—1) — (W1, &)
8: Computen using Eq. (14)

9 W (I-n)w-1—(n/MNa

10: by < (1—n)bg_q+nb X

11 & < MiNosict 3 | Wil|* + Remp(Wi) — 3 [[wi||* — by

12: until & <e¢

3.2 Parallelization

Algorithms 2, 3, and 4 the evaluation BEmp(W) (and dwRemp(W)) is cleanly separated from the
computation of new iterate and the choice of regularizeRcH is additively decomposable over
the examplesx;, y;), that is, can be expressed as a sum of some independent loss (tergsw),
then we can parallelize these algorithms easily by splitting the data sets and thetatomiRemp
over multiple machines. This parallelization scheme not only reduces the cdroptie but also
allows us to handle data set with size exceeding the memory available on a singiaea

Without loss of generality, we describe a parallelized version of Algorithheiz. Assume
there arep slave machines and 1 master machine available. At the beginning, we partitieena gi
data seD = {(x;,yi)}!" into p disjoint sub-dataset§D;}P , and assign one sub-dataset to each
slave machine. At iteratioh the master first broadcasts the current itemate to all p slaves
(e.g., using MPI functioMPI::Broadcast ~ Gropp et al. 1999). The slaves then compute the losses
and (sub)gradients on their local sub-datasets in parallel. As soon ksdes and (sub)gradients
computation finished, the master combines the results (e.g., Msthd\lIReduce ). With the
combined (sub)gradient and offset, the master computes the new itgragein Algorithms 2 and
3. This process repeats until convergence is achieved. Detailedgeeeledcan be found in Algo-
rithm 5.

4. Related Research

The kernel trickis widely used to transform many existing machine learning algorithms into ones
operating on a Reproducing Kernel Hilbert Space (RKHS). Oneuifisto an RKHS and replaces

all inner product computations with a positive definite kernel funckionx') < (x,x’). Examples

of algorithms which employ the kernel trick (but essentially still solve (1)) idelSupport Vector
regression (Vapnik et al., 1997), novelty detection @kbpf et al., 2001), Huber’s robust regres-
sion, quantile regression (Takeuchi et al., 2006), ordinal regmegklerbrich et al., 2000), rank-
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Algorithm 5 ParallelBMRM
1: input: € > 0, wp, data seD, number of slave machings

2: initialization: t « 0, assign sub-dataset to slavei,i=1,...,p

3: repeat

4: t+—t+1

5.  Master: Broadcast;_4 to all slaves

6:  Slaves: ComputeRy,(Wi-1) := ¥ (xy)ep; | (XY, We-1) anda; € OwRemp(We-1)
7:  Master: Aggregate; := \%I sP & andb = ﬁ S RempWe-1) — (Wh—1,8)
8:  Master: Update modd®-P(w) := maxi<j<{{wa;j) +bj}

9. Master:w; « argmin, J(w) := AQ(w) 4+ REP(w)

10:  Master:g < Mino<i<t J(W;) — J (W)
11: until & <e¢
12: return w

ing (Crammer and Singer, 2005), maximization of multivariate performanceuresagloachims,

2005), structured estimation (Taskar et al., 2004; Tsochantaridis et08b),2Gaussian Process
regression (Williams, 1998), conditional random fields (Lafferty et @Q13, graphical models

(Cowell et al., 1999), exponential families (Barndorff-Nielsen, 19384 generalized linear mod-
els (Fahrmeir and Tutz, 1994).

Traditionally, specialized solvers have been developed for solving tmelkeersion of (1) in
the dual (see, e.g., Chang and Lin, 2001; Joachims, 1999). Thes#hatgoconstruct the La-
grange dual, and solve for the Lagrange multipliers efficiently. Only thgamsearch focus has
shifted back to solving (1) in the primal (see, e.g., Chapelle, 2007; Joachd@6; Sindhwani and
Keerthi, 2006). This spurt in research interest is due to three mainnmgaBwst, many interesting
problems in diverse areas such as text classification, word-sensebitisetion, and drug design
already employ rich high dimensional data which does not necessarilfitfeora the kernel trick.
All these domains are characterized by large data sets (withthe order of a million) and very
sparse features (e.g., the bag of words representation of a docuBeeud, efficient factorization
methods (e.g., Fine and Scheinberg, 2001) can be used for a low ekeatation of the kernel
matrix thereby effectively rendering the problem linear. Third, approtiotnanethods such as the
Random Feature Maproposed by Rahimi and Recht (2008) can efficiently approximate a infinite
dimensional nonlinear feature map associated to a kernel by a finite dimdrmiend herefore our
focus on the primal optimization problem is not only pertinent but also timely.

The widely usedsvVMS™t optimizer of Thorsten Joachimss closely related t@MRM. While
BMRM can handle many different regularizers and loss functigwsis"'“ is mainly geared towards
square norm regularizers and non-differentiable soft-margin typduastions. On the other hand,
svmstUet can handle kernels whiBMRM mainly focuses on the primal problem.

Our convergence analysis is closely related to Shalev-Shwartz andr $28§%) who prove
mistake bounds for online algorithms by lower bounding the progress in thle éilthough not
stated explicitly, essentially the same technique of lower bounding the duahierpemt was used
by Tsochantaridis et al. (2005) to show polynomial time convergence as\iwe'™ algorithm.
The main difference however is that Tsochantaridis et al. (2005) onik with a quadratic ob-

5. Software available dittp://svmlight.joachims.org/svm_struct.html
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jective function while the framework proposed by Shalev-Shwartz angegi(2006) can handle
arbitrary convex functions. In both cases, a weaker analysis I&dlt¢e?) rates of convergence for
nonsmooth loss functions. On the other hand, our results estatili§lya) rate for nonsmooth loss
functions andD(log(1/¢)) rates for smooth loss functions under mild technical assumptions.

Another related work iSVMP™ (Joachims, 2006) which solves the SVM with linear kernel in
linear time.SVMPe" finds a solution with accuraayin O(md/(Ae?)) time, where thentraining pat-
ternsx; € RY. This bound was improved by Shalev-Shwartz et al. (2000)(ty/Ad¢) for obtaining
an accuracy of with confidence 1 . Their algorithm,Pegasos, essentially performs stochastic
(sub)gradient descent but projects the solution back ontbhell of radius Zv/A. Note thatPe-
gasos also can be used in an online setting. This, however, only applies whrehevempirical risk
decomposes into individual loss terms (e.g., it is not applicable to multivarigierpance scores
Joachims 2005).

The third related strand of research considers gradient descentpnittinel with a line search
to choose the optimal step size (see, e.g., Boyd and Vandenberghe S¥fdibn 9.3.1). Under
assumptions of smoothness and strong convexity —that is, the objectit@funan be upper and
lower bounded by quadratic functions —it can be shown that gradiscedewith line search will
converge to an accuracy ®fn O(log(1/¢€)) steps. Our solver achieves the same rate guarantees for
smooth functions, under essentially similar technical assumptions.

We would also like to point out connections to subgradient methods (NedidiBartsekas,
2000). These algorithms are designed for nonsmooth functions, aewtielg choose an arbitrary
element of the subgradient set to perform a gradient descent likaeupdat maxea,jw) I|ull <
G, andB(w*,r) denote a ball of radius centered around the minimizer dfw). By applying
the analysis of Nedich and Bertsekas (2000) to the regularized risk mininmizatadlem with
Q(w) = %HWHZ, Ratliff et al. (2007) show that subgradient descent with a fixed, bfficently
small, stepsize will converge linearly B{w*,G/\).

Finally, several papers (Keerthi and DeCoste, 2005; Chapelle) 200@cate the use of Newton-
like methods to solve Support Vector Machines in the “primal”. However, tie®d to take precau-
tions when dealing with the fact that the soft-margin type of loss functiorts asithe hinge loss is
only piecewise differentiable. Instead, our method only requgulifferentialswhich always ex-
ist for convex functions, in order to make progress. The large nunilagbvariety of implemented
problems shows the flexibility of our approach.

5. Experiments

In this section, we examine the convergence behavieMitM and show that it is versatile enough
to solve a variety of machine learning problems. All our experiments weriedarut on a cluster of
24 machines each with a 2.4GHz AMD Dual Core processor and 4GB of R¥dthils of the loss
functions, data sets, competing solvers and experimental objectivessmebed in the following
subsections.

5.1 Convergence Behavior

We investigated the convergence rate of our method (Algorithm 2) empiricétyrespect to reg-
ularization constank, approximation gag, and bundle siz&. In addition, we investigated the
speedup gained by parallelizing the empirical risk computation. Finally, waieea empirically

how generalization performance is related to approximation gap. For simphetiocused on the
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training of a linear SVM with binary hinge lo$s:

minJ(w) := 2||w||2+;_;max<o,1yi W), (15)

The experiments were conducted on 6 data sets commonly used in binaifjoelisa studies,
namely,adult9, astro-ph, news20-b, rcvi, real-sim, andworm. adult9, news20-b, rcvl, andreal-
sim are available on the LIBSVM tools websfteastro-ph (Joachims, 2006) angorm (Franc and
Sonnenburg, 2008) are available upon request from Thorstehidmaand Soeren Sonnenburg,
respectively. Table 1 summarizes the properties of the data sets.

| Data Set || #examplesn | dimensiond | density %

adult9 48,842 123 11.27
astro-ph 94,856 99,757 0.08
news20-b 19,954 1,355,191 0.03
revl 677,399 47,236 0.15
real-sim 72,201 20,958 0.25
worm 1,026,036 804 25.00

Table 1: Properties of the binary classification data sets used in oulireeds.

5.1.1 REGULARIZATION CONSTANTA AND APPROXIMATION GAP €

As suggested by the convergence analysis, the linear SVM with the notisimioary hinge loss
should converge i|®(./\—1£) iterations, where\ ande are two parameters which one normally tunes
during the model selection phase. Therefore, we investigated the scaliagibr of our method
w.r.t. these two parameters. We performed the experiments with unlimited bunellarglavith a
heuristic that removes subgradients which remained inactive (i.e., Lagnamgplier = 0) for 10

or more consecutive iteratiofls.

Figure 4 shows the approximation gams a function of number of iteratiohsAs predicted by
our convergence analysBMRM converges faster for larger valuesiofFurthermore, the empirical
convergence curves exhibit@(log(1/¢)) rate instead of the (pessimistic) theoretical rat@()g),
especially for large values &f InterestinglyBMRM converges faster on high-dimensional text data
sets (i.e.astro-ph, news20-b, rcvl, andreal-sim) than on lower dimensional data sets (ialylt9
andworm).

5.1.2 BUNDLE SIZE

The dual of our method (10) is a concave problem which has dimensiongligl o the number of
iterations executed. In the case of linear SVM, (10) is a QP. Hencesaslged in Section 3.1, we
can trade potentially greater bundle improvement for memory efficiency.

6. Similar behavior was observed with other loss functions.

7. The data set is originally namedws20; we renamed it to avoid confusion with the multiclass version of the data
set.

8. Software available dittp://www.csie.ntu.edu.tw/ ~ cjlin/libsvmtools/datasets/binary.html

9. Note that this heuristic does not have any implication in the convergeadgsas.
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Figure 4: Approximation gap; as a function of number of iteratiobsfor different regularization
constants\ (and unlimited bundle size).

Figure 5 shows the approximation gapuring the training of linear SVM as a function of the
number of iterations, for different bundle sizek € {2,10,50,}. In the case ok = o, we em-

ployed the same heuristics which remove inactive linearizations as those neehtiddection 5.1.1.

As expected, the largdris, the faster the algorithm converges. Although the &ase is the slow-
est, its convergence rate is still faster than the theoretical bg}ynd

5.1.3 RARALLELIZATION

When the empirical risRempis additively decomposable, the loss and subgradient computation can
be executed concurrently on multiple processors for different subsdeta points?

We performed experiments for linear SVMs training with parallelized risk cdatfmn on the
worm data set. Figure 6(a) shows the wallclock time for the overall training pleage data loading,
risk computation, and solving the QP) and CPU time for just the risk computatiaritasction of
number of processofs Note that the gap between the two curves essentially tells the runtime upper
bound of the sequential part of the algorithm. As expected, both oveidiliisk computation time
decrease as the number of procesgoiscreases. However, in Figure 6(b), we see two different
speedups! The speedup for the risk computation is roughly linear as there is no séjysart in

10. This requires only slight modification to the data loading process anddifion of some parallelization related
code before and after the code segment for empirical risk computation

11. Speedufs, = % where p is the number of processors afig is the runtime of the parallelized algorithm an
processors.
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Figure 5: Approximation gap: as a function of number of iteratiomsfor different bundle sizek
(and fixed regularization constakt= 10~4).

it; the speedup of overall computation is approaching a s well-explained by Amdahl's law
(Amdahl, 1967).

5.1.4 (ENERALIZATION VERSUSAPPROXIMATION GAP

Since the problems we are considering are convex, all properly geweoptimizers will converge
to the same solution. Therefore, comparing generalization performatieefafal solution is mean-
ingless. But, in real life one is often interested in the speed with which thei@lgoachieves good
generalization performance. In this section we study this question. We totthe generalization
(in terms of accuracy) as a function of approximation gap during trainingthts experiment, we
randomly split each of the data sets into training (60%), validation (20%) atidgg20%) sets.
We first obtained the beate {2-20,...,20} for each of the data sets using their corresponding
validation sets. With these bess, we (re)trained linear SVMs and recorded the testing accuracy
as well as the approximation gap at every iteration, with termination criterierl0—4. Figure 7

shows the difference between the testing accuracy evaluated at evatipitend that after training,
as a function of approximation gap at each iteration.

From the figure, we see that the testing accuracieadoit9 andworm data sets are less stable
in general and the approximation gap must be reduced to at leadtd®each the B% regime

12. The limit of speedup is the inverse of the sequential fraction of theitdgosuch as the QP.
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Figure 6: CPU and wallclock time for training linear SVM using paraii®iRM on worm data set
with varying number of processopse {1,2,4,8,16}. In these experiments, regulariza-
tion constani = 106, and termination criterioa = 104

of the final testing accuracies; the testing accuracies for the rest oataeselts arrived at the same
regime with approximation gap of 18 or lower.

In general, the generalization improved as the approximation gap dedrddseimprovement
in generalization became rather insignificant (say, the maximum of chantgstiing accuracies is
less than 0.1%) when the approximation gap was further reduced to baioevestective threshold
gefr; that said, it is not necessary to continue the optimization wdaen ge¢.'2 Sinceses (or its
scale) is not knowra priori and the asymptotic analysis in Shalev-Schwartz and Srebro (2008)
does not reveal the actual scalesgf directly applicable in our case, we carried out another set of
experiments to investigate ét¢ could be estimated with as little effort as possible: For each data
set, we randomly subsampled 10%,50% of the training set as sub-datasets and performed the
same experiment on all sub-datasets. We then determined the lasgesth that the maximum
changes in testing accuracies is less than 0.1%.

Table 5.1.4 shows the (base 10 logarithmagf)for all sub-datasets as well as the full data sets.
It seems that thegs; estimated on a smaller sub-dataset is at most 1 order of magnitude larger than
the actuakes required on full data set. In addition, we show in the table that the negeblsashold
€109 required by the sub-datasets and the full data sets to attain the final testing@es attained
by the 10% sub-datasets. The observations obey the analysis in Skalsar& and Srebro (2008)

that for a fixed testing accuracy, approximation gap (i.e., optimization ezaorpe relaxed when
more data is given.

13. Heuristically, we could terminate the training phase followingethdy stoppingstrategy by monitoring the changes
in accuracies on validation set evaluated in some most recent iterations.
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5.2 Comparison with Existing Bundle Methods

In this section we compar@MRM with a BT implementation obtained from Schramm and Zowe
(1992)14 We also compare the performanceadirM (Algorithm 2) andLSBMRM (Algorithm 3).
The multiclass line search usedLi8BMRM can be found in Yu et al. (2008).

For binary classification, we solve the linear SVM (15) on the data satsit9, astro-ph,
news20-b, rcvl, real-sim, andworm as mentioned in Section 5.1. For multiclass classification,
we solve (Crammer and Singer, 2003):

: A 12
minaw) = 3 W7 5 ma(wey % — ey @)+ £ ) (16)

wherec is the number of classes in the probleenjs thei-th standard basis fdR®, ® denotes
Kronecker product; anl(-) is an indicator function that has value 1 if its argument is evaluated true,
and 0 otherwise. The data sets used in multiclass classification experimeaisaxgletter, mnist,
news20-m,® protein, andusps. inex is available for download on the website of Antoine Bofdes
and the rest can be found on the LIBSVM tools websftdable 3 summarizes the properties of
these data sets.

In each of the experiments, we first obtain the optimal weight veetoy runningBMRM until
the termination criterial(w ) — J (W) < 0.01J(w) is satisfied. Then we ruBT, LSBMRM, and

14. The original FORTRAN implementation was automatically converted intar Qe in our library.

15. The data set is originally nameédws20; we renamed it to avoid confusion with the binary version of the data set.
16. Software available &ttp://webia.lip6.fr/ ~ bordes/datasets/multiclass/inex.tar.gz

17. Software available attp://www.csie.ntu.edu.tw/ ~ cjlin/libsvmtools/datasets/multiclass.html
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[ 10% 20% 30% 40% 50% 100%

Acc. (%) | 843 847 849 851 851 85
adultd 1ok | -3.90 -3.72 -3.77 -3.88 -3.64 -4.0
logyo€10% | -4.01 -1.18 -1.07 -1.16 -1.27 -1.0
Acc. (%) | 96.1 96.6 964 966 968 97
astro-ph  10g;€er | -1.48 -1.70 -157 -1.49 -1.68 -1.8
logyo€10% | -4.00 -1.15 -1.06 -0.98 -1.02 -0.8
Acc. (%) | 89.9 929 943 945 954 96
news20-b l0g;€err | -2.00 -2.48 -387 -1.65 -3.71 -2.8
logyo€10% | -4.02 -0.92 -0.70 -0.80 -0.80 -0.6
Acc. (%) | 96.9 97.2 974 972 975 97
revl logyogeri | -2.02 -2.40 -1.99 -2.16 -2.34 -2.2
logyo€10% | -4.07 -1.19 -1.30 -129 -1.13 -1.
Acc. (%) | 95.0 959 963 966 966 97
real-sim  l0g;€err | -1.74 -1.84 -171 -1.99 -1.74 -17
logyo€10% | -4.02 -1.04 -0.88 -0.87 -0.85 -0.8
Acc. (%) | 982 982 982 983 983 08
worm logoteri | -2.43 -2.47 -2.48 -3.62 -2.81 -3.5
logyo€10% | -4.00 -1.38 -128 -1.37 -1.28 -1.3

R OaOR~ANOONPFPOONRPRONRRBMAPMODN

Table 2: The first sub-row in each data set row indicates the testingaaoesiof models trained on
the corresponding proportions of the training set. The second suindigates the (base
10 logarithm of) effective threshold such that the maximum difference iimtgaccuracies
of models with approximation gap smaller than that is less than 0.1%. The thincbsub-
indicates the (base 10 logarithm of) threshold necessary for models to atatiesting
accuracy attained by the model trained on the 10% sub-dataset with defatii—=.

| Data Set || #examplesn | #classes | dimensiond | density %|

inex 12,107 18 167,295 0.48
letter 20,000 26 16 100.00
mnist 70,000 10 780 19.24
news20-m 19,928 20 62,061 0.13
protein 21,516 3 357 28.31
usps 9,298 10 256 96.70

Table 3: Properties of the multiclass classification data sets used in the expistime

BMRM until the following termination criteria is satisfied:
J(w) —J(w) <0.013(w). (a7)

Figure 8 shows the number of iterationsequired by the three methods on each data set to
satisfy (17) as a function of regularization constant {103,1074,10°°,10°°}. As expected,
LSBMRM, which uses an exact line search, outperformed BoRM andBT on all data setBMRM
performed better thaBT on all high dimensional data sets excepivs20-m but worse on the rest.
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AlthoughBT tunes the stabilization trade-off parameteautomatically, it still does not guarantee
superiority oveBMRM which is considerably simpler. Nevertheless, external stabilizatioRT)n
clearly helps speed up the convergence in certain cases.

5.3 Versatility

In the following subsections, we will illustrate some of the applicatior@RM to various machine
learning problems with smooth and non-differentiable loss functions, andlikfighent regularizers.
Our aim is to show thaBMRM is versatile enough to be used in a variety of seemingly different
problems. Readers not interested in this aspeBMRM can safely skip this subsection.

5.3.1 BNARY CLASSIFICATION

In this section, we evaluate the performance of our meBMEM in the training of binary classifier
using linear SVMs (15) and logistic loss:

minJ(w) := %ku2+ ;ilog(lﬂt exp(—Yi (W, X)),

on the binary classification data sets mentioned in Section 5.1 with split similar to tisscin
tion 5.1.4. Since we will compa®@MRM with other solvers which use different termination crite-
ria, we consider the CPU time used in reducing the relative difference bptilie current smallest
objective function value and the optimum:

mini<¢ J(w) — J(W*)
J(w) ’

wherew; is the weight vector at time/iteratiopandw* is the minimizer obtained by runnirgMRM
until the approximation gap < 10~4. The best € {2720,...,2°} for each of the data sets was
determined by evaluating the performance on the corresponding validatith s

In the case of linear SVMs, we compam@®dRM to three publicly available state of the agtch
learningsolvers:

1. OCAS (Franc and Sonnenburg, 2008). Since this method is equivaldrBB8IRM with
binary hinge loss, we refer to this software llyBMRM for naming consistency.

2. LIBLINEAR (Fan et al., 2008) version 1.33 with option “-s 3".

3. SVMP® (Joachims, 2006) version 2.5 with option “-w 3” and with double precisioatifhg
point numbers.

LIBLINEAR solves the dual problem of linear SVM using a coordinate descent mettsieh(et al.,
2008). svMPe" was chosen for comparison as it is algorithmically identicaMRM in this case.
Both LIBLINEAR andSVMPe™ provide a “shrinking” technique to speed up the algorithms by ignor-
ing some data points which are not likely to affect the objective. IiteM does not provide such
shrinking technique, we excluded this option in bbBLINEAR andSVMPe" for a fair comparison.
Figure 9 shows the relative difference in objective value as a functidrawfing time (CPU
seconds) for three methods on various data sBMMRM is faster thanrSVMP®™ on all data sets

18. The corresponding penalty param&dor LIBLINEAR andOCAS is 1/(m\), and forsvMPe is 1/(100\).
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Figure 8: Smallest number of iterations required to satisfy the termination cnitéxit) for each
data set and various regularization constar$.did not satisfy (17) in thinex andusps
experiments foh = 10~ after 6000 iterations.)
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Figure 9: Linear SVMs. Relative primal objective value difference dytiaining.

exceptnews20-b. The performance difference observed here is largely due to theatitfes in the
implementations (e.g., feature vector representation, QP solver, etc.)tiNdgss, botBMRM and
SVMPeT are significantly outperformed hyBBMRM andLIBLINEAR on all data sets, andBLINEAR

is almost always faster tharSBMRM. It is clear from the figure thatSBMRM and LIBLINEAR
enjoy progression with “strictly” decreasing objective values; whetieaprogress of botBMRM
andSVMPe™ are hindered by the “stalling” steps (i.e., the flat line segments in the plots)fathe
thatLSBMRM is different fromBMRM andSVMP®™ by one additional line search step implies that
the “stalling” steps is the time th&VRM and SVMP®" improve the approximation at the regions
which do not help reducing the primal objective function value.

In the case of logistic regression, we compBkRM to the state of the art trust region Newton
method for logistic regression (Lin et al., 2008) which is also available iniBEINEAR package
(option “-s 0”). From Figure 10, we see thaBLINEAR outperformsBMRM on all data sets and
thatBMRM suffers from the same “stalling” phenomenon as observed in the linearsSXbe.

5.3.2 LEARNING THE COSTMATRIX FOR GRAPH MATCHING

In computer vision, there are problems which require matching the objecttenésh in a pair

of images. These problems are often modeled as attributed graph matchignmsavhere the

(extracted) landmark pointg in the first imagex must be matched to the corresponding poijts

in the second image. Note that we represent tiint % or x|, asd-dimensional feature vectors.
The attributed graph matching problem is then cast Bim@ar Assignment Probleifi.AP) which
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Figure 10: Logistic regression. Relative primal objective value diffeeeturing training.

can be solved in worst ca&(n®) time wheren is the number of landmark points (Kuhn, 1958).
Formally, the LAP reads

n n
max "/C"/,
vey Z iZlyu i
where? is the set of alh x n permutation matrices, ar@- is the cost of matching point to point
x;. In the standard setting of graph matching, one way to determine the cost G\&iras
d 2
Grim— 5 W9 Y]
2
Instead of finding more features to describe the pointndx;, that might improve the matching
results, Caetano et al. (2007) propose to learn a weighting to a giverfi fegttures that actually
improved the matching results in many cases (Caetano et al., 2008).

In Caetano et al. (2007, 2008) the problem of learning the cost matrigraggh matching is
formulated as &, regularized risk minimization with loss function

1(x,X,y,w) = ryner’;X<w7 @x,X,y) — @x.X,y)) +A(Y,Y), (18)
where the feature mapis defined as
n n
WXy ==3 5 yir (X =2, X 2), (19)
i=1i"=1

19. To achieve better matching results, one could further enforcetedegge matching where edge refers to pair of
landmark points. This additional matching requirement renders thégonadis 2Quadratic Assignment Problem
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and the label losA is defined as the normalized Hamming loss

n n

_ 1 _
Afy,y)=1- o i;igl)’ii'y“u (20)

By (19) and (20), the argument of (18) becomes

n n

<\N7 (p(X7X,795 - (p(X>X/>y)> +A(%y) = Zl Z %i’éii’ +ConStanat
i=1i"=1

whereCj = — zﬂzlwk\xi(k) — Xi’,(k)IZ —Viir/n. Therefore, (18) is exactly a LAP. We refer interested

readers to Caetano et al. (2007, 2008) for more detailed expositionigbpen the use of edge
matching (in addition to point matching) which leads to much better performance.

We reproduced the experiment in Caetano et al. (2008) thatBded! with L, regularization
on the CMU house data s&.For this data set, there are 30 hand-labeled landmark points in each
image and the features for those points are the 60-dimensional ShaptGeatares (Belongie
et al., 2001; Caetano et al., 2008). The experiments evaluated thenpanice of the method for
training/validation/testing pairs fixed at baselines (separation of fram#8).0.,90. Additionally,
we ran the same set of experiments withregularization, that isQ(w) = ||w||,.?* The matching
performance of the cost matrices augmented with learned weight vedsarse compared with the
original non-learning cost matrix, that is, with uniform weight veator (1,...,1).

Figure 11 shows the results of the experiments. On the left, we see that thenmgaierfor-
mance with learned cost matrices are getting more superior to that of namigars the baseline
increases. The performancelafandL;, regularized learning are quite similar on average. On the
right are the best learned weights for the features ukingegularization (top) andl, regulariza-
tion (bottom) for baseline 50. The weights dud_toregularization is considerably sparser (i.e., 42
non-zeros) than that due kg regularization (i.e., 52 non-zeros).

5.3.3 HUMAN ACTION SEGMENTATION AND RECOGNITION

In this section, we consider the problem of joint segmentation and recogwitiboman action
from a video sequence using the discriminative Semi-Markov Models (Sihdposed by Shi
etal. (2008). Denote by= {x}{L, € X a sequence af video frames, and by= {(s,c)}_, €Y
the corresponding segment labeling whgris the starting location of thieth segment which ends
ats.1— 1, ¢ is the frame label for all frames in the segment, and n the number of segments.
For ease of presentation, we append a dummy video fsgmeto x and a dummy segment label
(S7+1,Car1) toy to markxs 1 as the last segment.

In SMM, there exists @aegmentwariable for each possible segment (i.e., multiple frames) of
x that model the frame label and the boundaries (or length) of a segment ;jdhlyesegment
variables form a Markov Chain. On the contrary, the Hidden Markov él@gdMM) for the same
videox has ondrame labelvariabley; for each video frama;. The fact that SMM models multiple
frames as one variable allows one to exploit gteictureand informationin the problem more
efficiently than in HMM. Thestructureexploitation is due to the fact that one human action usually

20. This data set consist of a sequence of 111 images of a toy howadabe athttp://vasc.ri.cmu.edu/idb/
html/motion/house/index.html
21. Further description oy regularizedBMRM can be found in Appendix C.
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Figure 11: Left: Performance on the house data set as the baseline varies. For ealaeb#se
minimizer of validation loss is evaluated on all testing examples. The corresgond
mean normalized Hamming losses (as points) and its standard errors (asaesjcare
reported. Right: Feature weights for best models trained withregularization (top)
andL, regularization (bottom) for baseline 50. Dashed lines indicate the featightwve
value 1.

spans several consecutive frames, andrtftgmationexploitation is due to the possibility to extract
features which only become apparent within a segment of several frames

The discriminative SMM in Shi et al. (2008) is formulated as a regularizédmisimization
problem where the loss function is

L(x,y, W) = ry_r;gxwv, PX,y) — 9(x,y)) +A(Y,Y). (21)

The feature mapis defined as

n n n
X? = X?S7C. ) X?S?S ’C. ) X?S’S ’C.7Ci b
o(X,y) (izl([’l( i) i;q’z( +1,Ci) I;%( +1,Ci +1)>

whereq@y, ¢, andqs are some feature functions for the segment boundaries, segmentsljareha
segments, respectively. Lgtbe the frame label fox; according to segment labeling the label
loss functionA is defined as

ATy = 5 167 7 ) 22)

wherel (-) is an indicator function as defined in (16). We refer interested read&ifs et al. (2008)
for more details on the features and the dynamic programming to compute (Pit$ subgradient.
We followed the experimental setup of Shi et al. (2008) by runBiM&M for this problem with
Lo (i.e.,Q(w) = % |w||?) andLy (i.e.,Q(w) = |\wl|;) regularization, on the Walk-Bend-Draw (WBD)
data sets (Shi et al., 2008) which consists of 18 video sequences witlhé&nhaction classes (i.e.,
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walking, bending, drawing For this data set, the dimensionality of the image of the featuregnap
isd=9917.

Table 4 shows the 6 fold cross validation results for our methbdsuGd Lo SMM),22 SVMs
and SVM-HMM (Tsochantaridis et al., 2005). The latter two are adopteu f8hi et al. (2008).
SMM outperforms SVM-HMM and SVM as reported in Shi et al. (2008). AwgstL; andL;
SMMs, the latter performs the best and converged to optimal. AlthaydMM failed to satisfy
the termination criterion, the performance is comparable to thap &M even with a 40 times
sparser weight vector (see Figure 12 for the feature weights distrilsutidn andL, SMMSs).

| Methods || CV mean (std. err.] #iter. | CPU seconds nnz) |

L, SMM 0.954 (0.006) | 231 1129 3690
L1 SMM 0.930 (0.010) | 500 2659 84
SVM-HMM 0.870 (0.020) - - -
SVM 0.840 (0.030) - - -

Table 4. Experimental results on WBD data set. The second column indicatesetim and stan-
dard error of the test accuracy (22). The third and fourth columnsatalihe number of
iterations and CPU seconds for the training of the final model with the bestyeter, and
the last column indicates the number of nonzero in the final weight vector

Feature weight

Feature index

Figure 12: Feature weights for best models trained Wwitihegularization (top) and, regulariza-
tion (bottom). Dashed lines indicate the feature weight radde].

22. We set termination critericn= 10~% and limited the maximum number of iteration to 500.
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6. Discussion and Conclusion

The experiments presented in the paper indicate3ki&M is suitable for a wide variety of machine
learning problems. In fact, theodularity of BMRM not only brings the benefits of parallel and
distributed computation but also mak@sIRM a natural test bed for trying out new models/ideas
on any particular problem with less effort, that is, the user is only requoréchplement the loss
functions and/or regularizers corresponding to different models/ideas

Nevertheless, we saw in the experiments tBBRM does not guarantee strict improvement
in the primal when the dual is solved instead. This phenomenon could sigtiifiddander the
performance oBMRM as seen in some of the experiments. Since efficient line search procedure
may not exist for general structured prediction tasks tthst regionphilosophy used BT could
be a potential strategy to alleviate this problem; we leave this to the future woekal$®¥ note
that for computationally expensive nonsmooth loss functions, one way te fuli&r use of each
loss function evaluation is by updating the mo&ef with two or more linearizations at a non-
diffferentiable location (Frangioni, 1997).

In conclusion, we have presented a variant of standard bundle methatlis,BMRM, which is
algorithmically simpler and, in some senses, more straightforward for régpdaisk minimization
problems than the standard bundle methods. We also show¥d/a) rate of convergence for
nonsmooth objective functions a@{log(1/¢)) rates for smooth objective functions.
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Appendix A. Loss Functions

A multitude of loss functions are commonly used to derive seemingly diffelgotitnms. This
often blurs the similarities as well as subtle differences between them, oftésforic reasons:
Each new loss is typically accompanied by at least one publication dedicatedrtanany cases,
the loss is not spelled out explicitly either but instead, it is only given by meaasconstrained
optimization problem. A case in point are the papers introducing (binaryeHogs (Bennett and
Mangasarian, 1992; Cortes and Vapnik, 1995) and structured laskdiTet al., 2004; Tsochan-
taridis et al., 2005). Likewise, a geometric description obscures the lyimdeloss function, as in
novelty detection (Saslkopf et al., 2001).

In this section we give an expository yet unifying presentation of manyasfethoss functions.
Many of them are well known, while others, such as multivariate rankiagaitd regression, or
Poisson regression are not commonly used in machine learning. Tables@camtain a choice
subset of simple scalar and vectorial losses. Our aim is to put the multitudesofuoctions in
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an unified framework, and to show how these losses and their (suBgimdan be computed
efficiently for use in our solver framework.

Note that not all losses, while convex, are continuously differentiabléhi$ situation we give
a subgradient. While this may not be optimal, the convergence rates of ouitlatgalo not depend
on which element of the subdifferential we provide: in all cases the fidgtraraylor approximation
is a lower bound which is tight at the point of expansion.

In this setion, with little abuse of notatiow;, is understood as thieth component of vector
whenv is clearly not an element of a sequence or a set.

A.1 Scalar Loss Functions

It is well known (Wahba, 1997) that the convex optimization problem

mEin & subjecttoy(w,x) >1—& and >0

takes on the value m&®,1—y(w,x)). The latter is a convex function w andx. Likewise, we
may rewrite thee-insensitive loss, Huber’s robust loss, the quantile regression ledgha novelty
detection loss in terms of loss functions rather than a constrained optimizatiolempr. In all cases,
(w, x) will play a key role insofar as the loss is convex in terms ofgbalar quantity (w, x). A large
number of loss functions fall into this category, as described in Table & tdat not all functions
of this type are continuously differentiable. In this case we adopt theetion that

oxf(x) if F(x) > g(x)
0xg(x)  otherwise.

dxmax(f (x),9(x)) = {

Since we are only interested in obtaining an arbitrary element of the suleditif@ this convention
is consistent with our requirements.

_Letus discuss the issue of efficient computation. For all scalar lossesayevritel (x,y,w) =
I((w,x),y), as described in Table 5. In this case a simple application of the chain ruls yeitl
awl (x,y,w) =1"((w,X),y) - x. For instance, for squared loss we have

L((wx),y) = 3 (W) —y)? andl’((w,X) ,y) = (W, x) .

Consequently, the derivative of the empirical risk term is given by
12
/
OuRempW) = T3 '({wx) ) -x.

This means that if we want to computandd,l on a large number of observatioxs represented
as matrixX, we can make use of fast linear algebra routines to pre-compute thessector

f = Xwandg' X whereg, = I"(f;,y;).

This is possible for any of the loss functions listed in Table 5, and many adthdasslosses. The
advantage of this unified representation is that implementation of each inalildds can be done in
very little time. The computational infrastructure for computig andg’ X is shared. Evaluating

[(fi,yi) andl’(fi,y;) for all i can be done i©®(m) time and it is not time-critical in comparison to
the remaining operations. Algorithm 6 describes the detalils.
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Algorithm 6 ScalarLoséw, X, y)
1: input: Weight vectomw, feature matrixX, and labels
Computef = Xw _
Computer = 3;1(fi,yi) andg=1'(f,y)
g—g'X
return Riskr and gradieng

An important but often neglected issue is worth mentioning. Computirgguires us taight
multiply the matrixX with the vectow while computingg requires theéeft multiplication of X with
the vectorg". If X is stored in a row major format thefw can be computed rather efficiently while
g' X is expensive. This is particularly true X cannot fit in main memory. Converse is the case
whenX is stored in column major format. Similar problems are encountered whsra sparse
matrix and stored in either compressed row format or in compressed columatfo

A.2 Structured Loss

Inrecent years structured estimation has gained substantial popularitgliimasearning (Tsochan-
taridis et al., 2005; Taskar et al., 2004; Bakir et al., 2007). At its cosdiés on two types of convex
loss functions: logistic loss:

I(Xv Y, W) =log z exp(<W, (p(X,)/)>) - <VV, (p(X,y)>, (23)
yey
and soft-margin loss:
|(x,y, w) = maxt :Y) (Wa(xy) — @(x,y)) +AY,Y). (24)

Here @(x,y) is ajoint feature mapA(y,y') > 0 describes the cost of misclassifyigdy y', and
F(y,y') > 0is a scaling term which indicates by how much the large margin property shewd-
forced. For instance, Taskar et al. (2004) chdosey') = 1. On the other hand, Tsochantaridis et al.
(2005) suggesk (y,y') = A(y,Y'), which reportedly yields better performance. Finally, McAllester
(2007) recently suggested generic functidiig y').

The logistic loss can also be interpreted as the negative log-likelihood oftitiomal exponen-
tial family model:

p(y[x; w) = exp((w, @(x,y)) — g(w|x)), (25)

where the normalizing constagfw|x), often called the log-partition function, reads

g(W‘X) = log Z exp(<W7 (p<xayl>>) :

yey

As a consequence of the Hammersley-Clifford theorem (Jordan, 28@2y exponential family
distribution corresponds to a undirected graphical model. In our casertpis that the labels
y factorize according to an undirected graphical model. A large numberofiiggmns have been
addressed by this setting, amongst them named entity tagging (Lafferty 20@1), sequence
alignment (Tsochantaridis et al., 2005), segmentatiéigéh et al., 2007) and path planning (Ratliff
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et al., 2006). It is clearly impossible to give examples of all settings in this sgctimr would a
brief summary do this field any justice. We therefore refer the reader talitezlesolume by Bakir
et al. (2007) and the references therein.

If the underlying graphical model is tractable then efficient inferencerélgns based on dy-
namic programming can be used to compute (23) and (24). We discuss ibleagt@phical models
in Section A.2.1, and now turn our attention to the derivatives of the abavetsted losses.

When it comes to computing derivatives of the logistic loss, (23), we have

o Zy’ (P(X,)/) exp(vv, (p(X,}/»
Ol (VW) = 20 expw 9% y)
=Eypiyi [OXY)] —0(x.Y).

wherep(y|x) is the exponential family model (25). In the case of (24) we denotgXythe argmax
of the RHS, that is

—9(x,y)

V()—awmwfm ) (W, o(x,Y) = @(x.y)) +A(Y,Y).

This allows us to compute the derivativel ¢k, y,w) as

Ol (Xv Y, W) - I'(y,Y(X)) [(p(X,y(X)) - ([)(X, y)] .

In the case where the loss is maximized for more than one distinct yatue/e may average over
the individual values, since any convex combination of such terms lies inbitéferential.

Note that (24) majorize&(y,y*), wherey" := argmay, (W, @(x,y')) (Tsochantaridis et al., 2005).
This can be seen via the following series of inequalities:

Aly,y) <T (1Y) (W axy") — 0(x,y)) +AY,Y") <HX.Y,w).

The first inequality follows becaudgy,y*) > 0 andy* maximizes(w,@(x,y')) thus implying that
C(y,y") (w,@(x,y*) — @(x,y)) > 0. The second inequality follows by definition of the loss.
We conclude this section with a simple lemma which is at the heart of severahtitans of
Joachims (2005). While the proof in the original paper is far from triviag straightforward in our
setting:

Lemma 8 Denote byd(y,y') a loss and letp(x;,y;) be a feature map for observatioiis, y;) with
1 <i <m. Moreover, denote by, X the set of all m patterns and labels respectively. Finally let

d(X, Zl(p Xi,yi) andA(Y,Y’) 216 Yi,Vi
Then the following two losses are equivalent:
Zmax W (p Xl y’ Xl>yl > + 6<yl7y,) and %?X<W CD(XaY/) - CD(X7Y)> +A(Y7Y/)
This is immediately obvious, since both feature map and loss decompose, Wbweh @s to per-
form maximization ovel'” by maximizing each of iten components. In doing so, we showed that
aggregating all data and labels into a single feature map and loss yields idsuotitsal to minimiz-

ing the sum over all individual losses. This holds, in particular, for thepta error loss of Joachims
(2005). Also note that this equivalence doeshold whenevef (y,y') is not constant.
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A.2.1 INTRACTABLE MODELS

We now discuss cases where computipgy, w) itself is too expensive. For instance, for intractable
graphical models, the computationpfexp(w, ¢(x, y)) cannot be computed efficiently. Wainwright
and Jordan (2003) propose the use of a convex majorization of thealbigigm function in those
cases. In our setting this means that instead of dealing with

106y, W) = g(Wix) — (W, @(x,y)) whereg(w|x) :=log exp(w, ¢(x,y))
y

one uses a more easily computable convex upper bougdrian

sup <\Nv |J-> + HGauss{MX)- (26)
HEMARG(x)

Here MARGX) is an outer bound on the conditional marginal polytope associated with the map
@(x,y). Moreover,Hgausé M/X) is an upper bound on the entropy by using a Gaussian with identical
variance. More refined tree decompositions exist, too. The key befeiiir @approach is that the
solution p of the optimization problem (26) can immediately be used as a gradient of theg upp
bound. This is computationally rather efficient.

Likewise, note that Taskar et al. (2004) use relaxations when solvimgfsted estimation prob-
lems of the form

L(X,y, W) = my,axr(y,y) (W, @(x,Y) —0(x,y)) +Ay,Y),

by enlarging the domain of maximization with respectyto For instance, instead of an integer
programming problem we might relax the setting to a linear program which is nuedper to
solve. This, again, provides an upper bound on the original loss fumctio

In summary, we have demonstrated that convex relaxation strategies lapplecable for
bundle methods. In fact, the results of the corresponding optimization guroe can be used
directly for further optimization steps.

A.3 Scalar Multivariate Performance Scores

We now discuss a series of structured loss functions and how they dgempleanented efficiently.
For the sake of completeness, we give a concise representation aiysrevork on multivariate
performance scores and ranking methods. All these loss functionsmrédgving access tow, x),
which can be computed efficiently by using the same operations as in Section A.1

A.3.1 ROC SORE

Denote byf = Xwthe vector of function values on the training set. It is well known that thea are
under the ROC curve is given by

1
AUC(X,Y,W) = ——— 5 1({W,Xi) < (WX;)),
m: M-y,
wherem; andm_ are the numbers of positive and negative observations respectivdly(-aris
indicator function. Directly optimizing the cost-1AUC(x,y,w) is difficult as it is not continuous
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Algorithm 7 ROCScoréX,y,w)

1: input: Feature matrix, labelsy, and weight vectow
initialization: s =m_ ands,. =0 andl = 0y, andc = Xw— %y
— {1,...,m} sorted in ascending order of
fori=1tomdo

if yy = —1then
Iy <—syands. «—s_ —1
else
Iy < —s_ands; «—s; +1
end if
. end for
: Rescald « | /(mym_) and compute = (I,c) andg=1"X.
: return Riskr and subgradierg

e
N B O

in w. By using max0,1+ (w,x —X;)) as the surrogate loss function for all pafisj) for which
yi <Y; we have the following convex multivariate empirical risk

1 1
Remp(w) = ——— max0,1+ (W, % —Xj)) = ——— max0,1+ fi—f;).  (27)
" m, m- inYJ < | J> mym- YiZyi | J

Obviously, we could computRemp(W) and its derivative by a®(nm?) operation. However Joachims
(2005) shows that both can be computedifmlogm) time using a sorting operation, which we
now describe.

Denote byc=f — %y an auxiliary variable and letandj be indices such that = —1 andy; = 1.
It follows thatc; — ¢j = 1+ fi — f;. The efficient algorithm is due to the observation that there are
at mostm distinct termscg, k= 1,...,m, each with different frequendy and sign, appear in (27).
These frequencidg can be determined by first sortimgn ascending order then scanning through
the labels according to the sorted ordecaind keeping running statistics such as the nursbaf
negative labels yet to encounter, and the nunsheof positive labels encountered. When visiting
Yk, Wwe knowgy should appears, (or s_) times with positive (or negative) sign in (27)yif = —1
(oryk = 1). Algorithm 7 spells out explicitly how to compuRemp(W) and its subgradient.

A.3.2 ORDINAL REGRESSION

Essentially the same preference relationships need to hold for ordimekségn. The only differ-
ence is thay; need not take on binary values any more. Instead, we may have anrgnbitraber of
different valuegy; (e.g., 1 corresponding to 'strong reject’ up to 10 corresponding tagteecept’,
when it comes to ranking papers for a conference). That is, we neewha {1,...,n} rather than
yi € {#1}. Our goal is to find some such that<w,xi —xj> < 0 whenever; <y;. Whenever this
relationship is not satisfied, we incur a c@gy;,y;) for preferringx; to xj. For examplesC(y;,y;)
could be constant, that i€y;,y;) = 1 (Joachims, 2006) or linear, that &(y;,y;) =Yy; — Vi

Denote bym the number of; for whichy; = i. In this case, there afél = m? — 3, n¢
pairs(y;,y;) for whichy; # y;; this implies that there arel = M /2 pairs(y;,y;) such thaty; <y;.
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Normalizing by the total number of comparisons we may write the overall cabeadstimator as

% S CO Y ((whx) > (wx;)) whereM :% [mz—limz] :

Yi<yj

Using the same convex majorization as above when we were maximizing the R@Cwse obtain
an empirical risk of the form

1

Remp(W) = M
Yi

z C(yi,yj) max(0, 1+ (w,X; — X; )).
559

Now the goal is to find an efficient algorithm for obtaining the number of timesnithe individual
losses are nonzero such as to compute both the value and the gradgri(ef). The complication
arises from the fact that observatiogswith labely; may appear in either side of the inequality
depending on whethef; <y; ory; >Y;. This problem can be solved as follows: sér&= Xwin
ascending order and traverse it while keeping track of how many items withex laluey; are

no more than 1 apart in terms of their valuefaf This way we may compute the count statistics
efficiently. Algorithm 8 describes the details, generalizing the results ahims (2006). Again,
its runtime isO(mlogm), thus allowing for efficient computation.

A.3.3 PREFERENCERELATIONS

In general, our loss may be described by means of a set of prefer@atiensj > i for arbitrary
pairs(i, j) € {1,...m}? associated with a coX(i, j) which is incurred whenevéris ranked above
j. This set of preferences may or may not form a partial or a total ordegh® domain of all
observations. In these cases efficient computations along the lines oftAtg@ exist. In general,
this is not the case and we need to rely on the fact that th® ssintaining all preferences is
sufficiently small that it can be enumerated efficiently. The risk is then diyen

1 S Cl0L DI (wx) > (wx;)).
Pl fiep

Again, the same majorization argument as before allows us to write a congex lipund

1 .
Remp(W) = 15 3 C{i, ) max(0. 1+ (wix) — (w.x)))
(i,))eP
whereduRemg(w) = 15 cm){ (=)
(i,)eP Xi —Xj otherwise.

The implementation is straightforward, as given in Algorithm 9.

A.3.4 RANKING

In webpage and document ranking we are often in a situation similar to thetitbe in Sec-

tion A.3.2, however with the difference that we do not only care aboutctibje being ranked

according to scoreg; but moreover that different degrees of importance are placed omatiffe
documents.
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Algorithm 8 OrdinalRegressigiX,y,w,C)

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

input: Feature matrix, labelsy, weight vectow, and score matri€

2: initialization: | =0, andy; = m Vi € [n] andr = 0 andg = O,

3: Computef = Xwand set = [f — %, f+ %] € R?™ (concatenate the vectors)
4: ComputeM = (m? — 5, m?)/2

5:
6
7
8
9

RescaleC — C/M

. T+ {1,...,2m} sorted in ascending order of
: for i =1to 2mdo

j =TE modm
if T§ < mthen
fork=1toy;—1do
r—r —C(k,yj)Uij
g — 9j — C(k,yj)uk
end for
ly; —ly;+1
else
for k=yj+1tondo
r —r+C(yj,K)kCj+m
gj < 9j +C(y;j. Kk
end for
Uy, Uy —1
end if
end for
g—g'X
return: Riskr and subgradierg

Algorithm 9 PreferenceX,w,C,P)

1:

=
)

input: Feature matrix, weight vectow, score matrixC, and preference s&t
initialization: r =0 andg = Op
Computef = Xw
while (i, j) e Pdo
if fj —fi <1then
r—r+C(,j)(1+ fi—fj)
g < i +C(i,j) andgj < g; — C(i, j)
end if
end while

:g—g'X
: return Riskr and subgradierg

The information retrieval literature is full with a large number of differerdrgty functions.

Examples are criteria such &brmalized Discounted Cumulative Gain (NDC®)ean Recipro-
cal Rank (MRR)Precision@n or Expected Rank Utility (ERU)'hey are used to address the is-
sue of evaluating rankers, search engines or recommender sytembd®902001; Jarvelin and
Kekalainen, 2002; Breese et al., 1998; Basilico and Hofmann, 2004).inBtance, in webpage

348



BUNDLE METHODS FORREGULARIZED RISK MINIMIZATION

Algorithm 10 RankingX,y, w)

1: input: Feature matri¥, relevancey, and weight vectow
Compute vectora andb(y) according to some ranking measure
Computef = Xw
Compute elements of matr;; = ¢ f; — bia;
1= LinearAssignmer{C)
r=c’'(f(m—-f)+(a—a(m)'b
g=c(mrl)—candg«g'X
return Riskr and subgradierdg

ranking only the firsk retrieved documents that matter, since users are unlikely to look beyond the
firstk, say 10, retrieved webpages in an internet search. Le and Smolg &@@vthat these scores
can be optimized directly by minimizing the following loss:

(X, y,w) = mr?xz Gi (W, Xiy — Xi ) + (@a—a(T), b(y)) . (28)

Herec; is a monotonically decreasing sequence, the documents are assumedrambediin or-
der of decreasing relevance,s a permutation, the vectoesandb(y) depend on the choice of a
particular ranking measure, aa@n) denotes the permutation afaccording tort. Pre-computing
f = Xwwe may rewrite (28) as

I(f,y) = max|cT () — () "b(y)| ¢ f +a’b(y)
and consequently the derivativeldX,y,w) with respect tov is given by

Ol (X,y,w) = (c(Tt'1) —¢) "X wheremt= argmaxc’ f (1) — a(m0) "b(y).

Herert 1 denotes the inverse permutation, such thatt 1 = 1. Finding the permutation maximiz-
ingc' f(m) —a(m) "b(y) is a linear assignment problem which can be easily solved by the Hungarian
Marriage algorithm, that is, the Kuhn-Munkres algorithm.

The original papers by Kuhn (1955) and Munkres (1957) implied arritihgo with O(m®) cost
in the number of terms. Later, Karp (1980) suggests an algorithm with esggaadratic time in
the size of the assignment problem (ignoring log-factors). Finally, Orlthlaee (1993) propose a
linear time algorithm for large problems. Since in our case the number of patEdy small (in
the order of 50 to 20@er query the scaling behavior per query is not too important. We used an
existing implementation due to Jonker and Volgenant (1987).

Note also that training sets consist of@lectionof ranking problems, that is, we have several
ranking problems of size 50 to 200. By means of parallelization we are ablsttibdte the work
onto a cluster of workstations, which is able to overcome the issue of the catbtey computation
per collection of queries. Algorithm 10 spells out the steps in detail.

A.3.5 CONTINGENCY TABLE SCORES

Joachims (2005) observed thtscores and related quantities dependent on a contingency table can
also be computed efficiently by means of structured estimation. Such s@pesdlin general on
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the number of true and false positives and negatives alike. Algorithmdigssow a corresponding
empirical risk and subgradient can be computed efficiently. As with thaqugVosses, here again
we use convex majorization to obtain a tractable optimization problem.

Given a set of labely and an estimatg/, the numbers of true positive3 (), true negatives
(T_), false positivesK, ), and false negative$() are determined according to a contingency table
as follows:

y>0|y<O
y>0| T, F.
y<0| FE T

In the sequel, we denote Iy, =T, +F_ andm_ = T_ +F, the numbers of positives and negative
labels iny, respectively. We note thddz score can be computed based on the contingency table
(Joachims, 2005) as

_ (1+PB)T
S To+mo T +f2my

FB(TJMT*)

If we want to use(w,x;) to estimate the label of observation we may use the following
structured loss to “directly” optimize w.r.Eg score (Joachims, 2005):

(X yw) = max|(y —y) 't + AT, T

wheref = Xw, A(T,,T_) :=1—Fg(T,,T-), and(T,, T_) is determined by usingandy’. SinceA
does not depend on the specific choicéyoy/) but rather just on which sets they disagreean be
maximized as follows: Enumerating all possibiem_ contingency tables in a way such that given
a configuration(T;,T_), T, (T_) positive (negative) observationswith largest (lowest) value of
(w,x;) are labeled as positive (negative). This is effectively implemented agediesp hence run
in O(m?) time. Algorithm 11 describes the procedure in details.

A.4 Vector Loss Functions

Next we discuss “vector” loss functions, that is, functions where best described as a matrix
(denoted byw) and the loss depends Wix Here, we have feature vectoe RY, labely € R¥, and
weight matrixW € R9K, We also denote feature mattixe R™9 as a matrix ofn feature vectors
i, and stack up the columig of W as a vectow.

Some of the most relevant cases are multiclass classification using both timepkal families
model and structured estimation, hierarchical models, that is, ontologigsnaltivariate regres-
sion. Many of those cases are summarized in Table 6.

A.4.1 UNSTRUCTUREDSETTING

The simplest loss is multivariate regression, whekey, W) = Z(y—x"W) M(y—x"W). In this
case it is clear that by pre-computiXyV subsequent calculations of the loss and its gradient are
significantly accelerated.

A second class of important losses is given by plain multiclass classificataiepns, for
example, recognizing digits of a postal code or categorizing high-lexeirdent categories. In this
case@(x,y) is best represented gy ® x (using a linear model). Clearly we may view, ¢(x,y))
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Algorithm 11 Fg(X,y,w)
1: input: Feature matrix, labelsy, and weight vectow
Computef = Xw
" «— {i:y; = 1} sorted in descending order bf
T — {i:y; = —1} sorted in ascending order 6f
Let po =0 andp; =23, feni=1,...,my
Letng =0 andn; = 25", fri=1,...m
y «— —yandr « —oo
fori=0tom, do
for j =0tom._ do
Fmp = A(1, j) — pi + N
if rimp > r then
I« l'mp
T, —iandT_ « ]
end if
end for

. end for
: qu+ —~1i=1..T,
: yrr( —-1i=1...T
Lg— (Y -y)'X
. return Riskr and subgradierg

e I e o i =
NS gk wdhdE O

[EnY
[ee]

N =
o ©

as an operation which chooses a column indexeg fsgm xXW, since all labels correspond to a
different weight vectoW\{,. Formally we setw, @(x,y)) = [XW]y. In this case, structured estimation
losses can be rewritten as

L(%,y,W) =m y,axr(y,y ) (W — W, x) +A(Y,Y) (29)

andowl (x,y,W) =T (y,y") (e —&y) ®x.

Herel andA are defined as in Section A.2 agtldenotes the value of for which the RHS of
(29) is maximized. This means that for unstructured multiclass settings we may siompute
XW. Since this needs to be performed for all observatignge may take advantage of fast linear
algebra routines and compute= XW for efficiency. Likewise note that computing the gradient
over m observations is now a matrix-matrix multiplication, too: denoteGyhe matrix of rows
of gradients (yi, ;) (ey: —€y,). ThendwRemp(X,y,W) = G"X. Note thatG is very sparse with at
most two nonzero entries per row, which makes the computati@' of essentially as expensive
as two matrix vector multiplications. Whenever we have many classes, this maysigalficant
computational gains.

Log-likelihood scores of exponential families share similar expansions.ae h

[(X,y,W) = Ioggem(w, o(x,Y)) — (W @(x,y)) = IoggeXp<V\4/,X> — (W, x)

Ty (6y ®x) exp(Wy,X)

owl (Xv y7W) = Zy’ exp<V\ly/,x>

—g QX
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The main difference to the soft-margin setting is that the gradients@gparse in the number of
classes. This means that the computation of gradients is slightly more costly.

A.4.2 ONTOLOGIES

©

Figure 13: Two ontologies.Left: a binary hierarchy with internal noddd,...,7} and labels
{8,...15}. Right: a generic directed acyclic graph with internal nodés...,6,12}
and labeld7,...,11, 13 ...,15}. Note that node 5 has two parents, namely nodes 2 and
3. Moreover, the labels need not be found at the same level of the tdes 114 and 15
are one level lower than the rest of the nodes.

Assume that the labels we want to estimate can be found to belong to a diregptéd gaph
(DAG). For instance, this may be a gene-ontology graph (Ashburradr, @000) a patent hierarchy
(Cai and Hofmann, 2004), or a genealogy. In these cases we h&mechy of categories to which
an elemenk may belong. Figure 13 gives two examples of such directed acyclic graplesfirst
example is a binary tree, while the second contains nodes with differenterarobchildren (e.g.,
node 4 and 12), nodes at different levels having children (e.g., odesl 12), and nodes which
have more than one parent (e.g., node 5). It is a well known fundanmoiagrty of trees that they
have at most as many internal nodes as they have leaf nodes.

It is now our goal to build a classifier which is able to categorize obsenstgoording to
which leaf node they belong to (each leaf node is assigned ayabBkenote byk + 1 the number
of nodes in the DAG including the root node. In this case we may desigrtademapg(y) € RX
(Cai and Hofmann, 2004) by associating with every labttle vector describing the path from the
root node toy, ignoring the root node itself. For instance, for the first DAG in Figurevéhave

¢(8) =(1,0,1,0,0,0,1,0,0,0,0,0,0,0) andg(13) = (0,1,0,0,1,0,0,0,0,0,0,1,0,0)

Whenever several paths are admissible, as in the right DAG of Figure B8evage over all possible
paths. For example, we have

®(10) = (0.5,0.5,0,1,0,0,0,0,1,0,0,0,0,0) andg(15) = (0,1,0,0,1,0,0,0,0,0,0,1,0,0,1).

Also note that the lengths of the paths need not be the same (e.qg., to reatak®s i longer path
than to reach 13). Likewise, it is natural to assume t#ty'), that is, the cost for mislabeling
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Algorithm 12 Ontology(X,y,W)

input: Feature matrixX € R™9, labelsy, and weight matrijsV € R9*K

initialization: G =0¢c R™Xandr =0

Computef = XW and letf; = xW

fori=1tomdo
Let D; be the DAG with edges annotated with the valued; of
TraverseD; to find a pathy* that maximizes the valug- := z'le[(p(y*)]j fij + AV, Y")
Gi = Q(y") — O(y1)
re—r+z—2z

end for

:g=G"X

. return Riskr and subgradierg

=

R
[N=)

asy will depend on the similarity of the path. In other words, it is likely that the cospfacingx
into the wrong sub-sub-category is less than getting the main category dfjget wrong.

To complete the setting, note that fofx,y) = ¢(y) ® x the cost of computing all labels ls
inner products, since the value of, @(x,y)) for a particulary can be obtained by the sum of the
contributions for the segments of the path. This means that the valuals terms can be computed
by a simple breadth first traversal through the graph. As before, wamaltg use of vectorization
in our approach, since we may comput < RX to obtain the contributions on all segments of the
DAG before performing the graph traversal. Since we haymatternsg we may vectorize matters
by pre-computing{W.

Also note thatp(y) — @(y') is nonzero only for those edges where the pathyfandy differ.
Hence we only change weights on those parts of the graph where therizdtign differs. Algo-
rithm 12 describes the subgradient and loss computation for the soft-ntygpginf loss function.

The same reasoning applies to estimation when using an exponential familiels rtoelenly
difference is that we need to computeaft-maxover paths rather than exclusively choosing the
best path over the ontology. Again, a breadth-first recursion ssffieach of the leavegof the
DAG is associated with a probability(y|x). To obtainEy,. .y [@(y)] all we need to do is perform
a bottom-up traversal of the DAG summing over all probability weights on the paftierever a
node has more than one parent, we distribute the probability weight equalyteyparents.

Appendix B. Proofs

This section contains the proofs of Theorems 4, 5, and 7, along with thei¢catlemmas required
for these.

B.1 Proof of Theorem 4

To show Theorem 4 we need several technical intermediate stepg.:£et(w) — J (W) and recall
thate; := ming <t J(W) — k(W ). The following lemma establishes some useful propertias afid
&t.
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Lemma 9 We have g(wy) < k(W) < J(W*) < I(w) = J41(w) for all t/ <t. Furthermore,g
is monotonically decreasing withh — €1 > J1(Wi+1) — k(W) > 0. Also, & upper bounds the
distance from optimality vig > & > miny < J(Wy) — J(W*).

Proof Sincedy(w) < J(w) < J(w) for allt’ <t this property also applies to their respective minima.
Moreover, sincev* minimizesJ(w) we havel(w*) < J(w). Since Taylor expansions are exact at
the point of expansiod(w;) = J1(W). The first inequality follows from the definition &f, and
the fact thatd; is monotonically increasing. Finally, sinde,1(wy) = J(wy) it is easy to see that
Vi > & = Miny < J(Wy ) — J(We) > miny<¢ J(Wy ) — I(W*). [ |
Our second technical lemma allows us to bound the maximum value of a concat®ih provided
that we know its first derivative and a bound on the second derivative

Lemma 10 Denote by f: [0,1] — R a concave function with (D) =0, f'(0) =1, and |f"(x)| <
K ¥x € [0,1]. Then we havenaxcoq f(X) > 5 min(j,1).

Proof We first observe thai(x) := Ix — %xz < f(x) Vximplies maxe o1 f(X) > maxe(o19(x). 9
attains the unconstrained maximué@% atx = . Sinceg is monotonically increasing if0, ], if
| > K we pickx = 1 which yields constrained maximulm- % > 'é Taking the minimum over both
maxima proves the claim.

[ |

To apply the above result, we need to compute the gradient and Hessjan(af) with respect
to the search directiof{1—n)a¢,n). The following lemma takes care of the gradient:

Lemma 11 Denote bya, the solution of(9) at time instance t. Moreover, denote Ey: (A ar11]
andb = [b, b, 1] the extended matrices and vectors needed to define the dual probleteypios4,
and leta € R, Then the following holds:

0sd,1([0r,0]) = A'wt +b and

[~ae, 27 [ATW+ B] = Jaa () — H(wh) = . (30)

Proof By the dual connectiodQ*(—A~!Aa;) = w. Hence we have thalg — AQ* (—A~1Aa) +
a'b=A"w+bfora= [at,O]T. This proves the first claim. To see the second part we elimiate
from of the Lagrangian (11) and write the partial Lagrangian

L(w,a) = A\Q(W) +a " (ATW+ b) with o > 0.

The result follows by noting that at optimalityw;, a;) = J (W) anddi 1 (W) =AQ (W) + (W, &41) +
bt 1. Consequently we have

Jra (W) — (W) = AQ(W) + (W, 8c1) + brya — AQ(We) — o (AT wy + by).

Rearranging terms proves the claim. |

To apply Lemma 10 we also need to bound the second derivative.

354



BUNDLE METHODS FORREGULARIZED RISK MINIMIZATION

Lemma 12 Under the assumptions of Lemma 11 we have

02y 1 (o) = —AIAT%Q (—AtAd)A (31)

moreoverA|—0t, 1] = s € OwJ(W). (32)
Proof The first equality is immediate from the chain rule. Next note @ (W) = —A~*Aa; by
dual connection. Sinca 1 € dwRemp(W) the claim follows fromJ(w) = Remp(w) +AQ(w). W

This result allows us to express the second derivative of the dualtivejéenction (10) in terms of
the gradient of the risk functional. The idea is that as we approach optintaétgecond derivative
will vanish. We will use this fact to argue that for continuously differeridbssesRemp(w) we
enjoy linear convergence throughout.

Proof [Theorem 4] We overload the notation fdf, ; by defining the following one dimensional
concave function

Fa(n) = Fa(((X-nag,n]) = -AQ* (A A1 —n)ay,n)) +[(1—n)ay ,n]b.
Clearly,J, 1(0) = J(w). Furthermore, by (30), (31), and (32) it follows that
O 1(n)ln=o = [—0r, 1] " 9a’ 1([ar, 0]) = vt and
0% 1(n) = —A =0y, 1] TATOPQ (A TA(1—n)ar, n)A[—ar, 1] T
= A 15 0%Q (A tA[(1— n)og,n])s ==
By our assumption ofid?Q*|| < H* we have
Ir| < H*[lst]|?/A

Next we need to bound the gradient df For this purpose note thayAQ(w) = —A'a; and
moreover thaf|at||; = 1. This implies thab,AQ(w) lies in the convex hull of the past gradients,
ay. By our assumption that mgX%, r..,w) [[Ul| < G it follows that [[0wAQ(wt)|| < G. We conclude
that

|s||? < 4G? and|r| < 4G?H*/A.
Invoking Lemma 10 o, ;(n) — & (W) shows that
31(n) — J(we) > % min(L, Ay /4G2H).
We now upper bound the LHS of the above inequality as follows:
& — &1 > Jra(Wern) — h(W) > F1(n) — k(we) > % min(L, Ay /4GPH"). (33)

The first inequality follows from Lemma 9 while the second follows by obserthat; (W 1) =
i 1(aty1) > 11 (n). The RHS of the third inequality on the other hand can be lower bounded by
observing thay; > &;, which follows from Lemma 9. This in turn obtains (12).
For the second part note that (12) already yieldsi/2 decrease whesm > 4G?H* /A. To show
the other parts we need to show that the gradient of the regularized nghea as we converge
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to the optimal solution. Towards this end, we apply Lemma 10 irpti@al.?® This allows us to
bound||owJ(wW; )| in terms ofy. Plugging in the first and second derivativeJo#; ) we obtain

= 3 10,304) | min(L, 0,9(w4) | /H).

If |owd(w)|| > H, theny > 1 dwJ(w)|| which in turn yields|r| < 42H*/A. Plugging this into
Lemma 10 yields a lower bound on the improvemen 8H*.

Finally, for ||dwJ(w)|| < H we havey, > [|dwJ(W)||* /2H, which implies|r| < 2HH*y /A. Plug-
ging this into Lemma 10 yields an improvement\yf /4AHH* > Ag; /4AHH*.

Since both cases cover the remaining range of convergence, the minimghy 8kiri, Ag; /4HH™)
provides a lower bound for the improvement. The crossover point batve#h terms occurs at
& = H/2. Rearranging the conditions leads to the (pessimistic) improvement guesaftéhe
second claim.

[ |

Note that a key step in the above analysis involved bounding aﬁJt*H(n). For a number of
regularizers tighter bounds can be obtained. The following boundssaemally due to Shalev-
Shwartz and Singer (2006):

e For squared norm regularization, that®(y) = % ||p|\§ we haver = |\aWJ(wt)|y§.

For L, norm regularization, that i€)* (1) = 3 HMHS we haver < (q—1) HGWJ(wt)Hé.

For quadratic form regularization with PD mati that is,Q*(u) = %pB*lp, we haver =

For unnormalized entropic regularization we ha)ﬁé)*(u) = diag(e“(l),...,e“(d)>. Hence

we may bound < ||6WJ(Wt)H§exp(HuHm). Clearly this bound may be very loose whengver
has only very few large coefficients.

For normalized entropy regularization, that®s;(1) = log 5 ; expu’) we haver < [|Owd (W) ||

B.2 Proof of Theorem 5

We need the following technical lemma for the proof:

Lemma 13 Let (p1,p2,...) be a sequence of non-negative numbers satisfying the following recur-
rence, for t> 1: py — pr41 > ¢(pt)?, where c> Qs a constant. Then for all integers+t 1,

1
< ———~-
C(t -1+ PTl)
Furthermorep; < p whenever
1 1
t>———+1
cp  PaC

23. Defined(n) := J(wt) — J(w + np) wherep = 7% is the unit-length gradient. We see tf\%tJ_(n)‘n:O =

[—0wd(Wt +np) " plln=o = [|dwI(wt)||, andJ(0) = 0. Hence Lemma 10 is applicable in this case.

356



BUNDLE METHODS FORREGULARIZED RISK MINIMIZATION

This is Sublemma 5.4 of Abe et al. (2001) which is easily proven by inductiom e can prove
the main result.

Proof [Theorem 5] For ang; > 4G?H* /A it follows from (12) thate; 1 < & /2. Moreover,gg <
J(0), since we know thal is non-negative. Hence we need at most|dd(0)/4G?H*] to achieve
this level of precision. Subsequently we have

2

A
— P — el
BT RS et

Invoking Lemma 13 by setting= s andp; = 4G?H* /A shows that; < € after at mos G./\ZH —

1 more steps. This proves the first claim.

To analyze convergence in the second case we need to study two additiasas: fore; €
[H/2,4G?H* /A] we see constant progress. Hence it take\ag[8G?(H*)2 — HH* )| steps to cover
this interval. Finally in the third phase we hasie; < &[1—A/4HH*|. Starting frome; =H /2 we
need log[2¢/H]/log,[1—A/4HH*] steps to converge. Expanding the logarithm in the denominator
close to 1 proves the claim. |

B.3 Proof of Theorem 7

We first note that the termination criterion of Algorithm 3 is slightly differentfirthat of Algo-
rithm 2. In order to apply the convergence results for Algorithm 2 to Algoritwe redefine the
following notations:

& 1= I(WP) — J(w) (34)
A1 € awRemp(Wtc)>
D1 = Remp(V\/t:) — (W, a41),

where
Nt = argmind(We_, +n(we —wP_,)),
n
W{J = V’\\/tfl‘f—nt(vvt _V’\\Itfl)7 and
wE = (1—8)wP + 6.

Then we state and prove the following lemma which is crucial to the applicatioemita 11 in
the proof.

Lemma 14 Ji1(Wt) = AQ(W) + (W, 8c+1) +brya

Proof wP is the optimal value o on the line joiningw andvv{’_1 while wf is a convex combination
of w andv\/f. Moreover by definition 081 andb1 we havel(wf) = & 1(Wr). Therefore,

IWE) = I (WE) = AQ(WE) + (a1, WE) +brya > I(wp). (35)
But sinceQ is convex
Q((1—0)wp +6w) < (1—6)Q(wP) +6Q(w),
we
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which can be rearranged to
B(Q(WY) — Q(W)) < QW) — Q(Wf).

Multiplying by A and adding and subtractir@'«’emp(\/\/{’) and 6R; (w;) respectively to the above
equation

ABQ(WP) + BRemp(WP) — ABQ (W) — BR: (W) <AQ(WP) + Remp(WP) —AQ(Wf)
8I(WP) 03 (W) J(wP)
— (1 - 8)Remp(WP) — OR ().

Plugging in (34) obtains
Ber < I(WP) —AQ(W) — (1— B)Remp(WP) — ORe(Wt). (36)
Putting (35) and (36) together
(81, W) + b1 > JO0P) ~ AQ(WE) > (1—8)Remp(WP) -+ BR () + Ber.
Sincewf = (1— 0)wP + 6w, it follows that

(1) (242,00 ) +8 (@1, W) + B2 > (1— 6)Remg() -+ BR: (wh) + 6.

Which can be rearranged to
(1-6) (@2, — RempP) ) + (@1, W) — Re(Wh)) + b1 > B

Since(w{’, at+1> + by 1 is the Taylor approximation of the convex functiBgmparoundaf evaluated
atwf it follows thatRemp(WP) > (WP, a11) + by 1. Plugging this into the above equation yields

(1-6)(—bty1) +6((W, 1) — R(w)) + by > B
Dividing by 6 > 0 and rearranging yields

(W, 8e41) +bry1 > Re(w) + &.

The conclusion of the lemma follows from observing tRat; (W) = max((W, & +1) + b1, R(W)) =
(Wi, 8 y1) +brea andda(we) = AQ(We) + R (wh). u

We also need the following two lemmas before we can proceed to the findl proo
Lemma 15 & — &1 > Jra(Wes1) — k(W)
Proof

& — €1 = JWP) — J (W) — (WP, 1) + Jva (W)
= (IWP) —IWP, 1) +ds1(Wi1) — k(W)  (by the definition ofay)

>0

> J1(Wepn) — e (we).
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Lemma 16 Let ay, A= [a,...,a+1], and b:= [b1,...,b11] be as defined in Lemma 11. Then
under the assumption of Theorem 4 theX,cs, r.myw) (U] < G, we have

[—ay, 1] TATA[—ay, 1] < 4G2.

Proof By the dual connectiondyAQ(w) = —Aa;. Also, oy > 0, and|jo¢||; =1 as it is the
optimal solution of (10) at iteratiot. It follows that 9,AQ(w;) lies in the convex hull ofy €
OwRemp(Wf ) Vt' < t. Therefore|0w,AQ(w;)|| < G. Consequently,

[—a, 1 TATA[—a, 1] = [|0wAQ(W) + 1]
= [|0wAQ(Wt)[|* + 20, AQ (W) 1 + [Jas1]|? < 4G,

by Cauchy-Schwarz inequality. |

Finally, we sketch the proof for Theorem 7.

Proof [Theorem 7] (Sketch) Theorem 4 holds for Algorithm 3 by applying Lemf#gsl5, and 16

into the first part of the proof. Therefore, forx 4G?H* /A, (33) reduces te; — g1 > A&t /4G?H*.

Applying Lemma 13 yields; < —2—, with c = A/8G?H*. Setting——L—— = &, assuming
c ( L c (tfl+ 1 )

t-14L)

thate; > 0, and solving fon yieldsn <

B
__ 8G?H*
- A u

Appendix C. L1 RegularizedBMRM

Following our convention, the; norm regularize@MRM reads

r?in &+ \|wl|, subjecttona +b <& i=1,....t. (37)
w

An equivalent formulation is
r?in & subjecttow’a +b <& i=1,...,tand|w|; <T, (38)
W

where one can show a monotone correspondence betwasahthel in (37) by comparison of the
KKT conditions for the two problems.

Note that our convergence proof does not apply in this case as thedtelal ofQ(w) = ||w|;
fails to satisfy the strong convexity assumption. Nevertheless, we se@®)aiah be easily solved
by CPM where the solution must lie in the ball of radiust. Finally, we note that thi; regularized
BMRM can be written in a rather standard linear programming (LP) formulation:

min & +A14 (U+V)
g,uv

stau—a'v+b <& i=1,...t
u,v>0,

with the variable of interesv = u—v.
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