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Abstract

A Hilbert space embedding for probability measures hasthcbeen proposed, with applications
including dimensionality reduction, homogeneity testiagd independence testing. This embed-
ding represents any probability measure as a mean elemanejproducing kernel Hilbert space
(RKHS). A pseudometric on the space of probability measoassbe defined as the distance be-
tween distribution embeddings: we denote thigiasndexed by the kernel functidnthat defines
the inner product in the RKHS.

We present three theoretical propertiegiofFirst, we consider the question of determining the
conditions on the kerndd for which yg is a metric: suclk are denotedharacteristic kernelsUn-
like pseudometrics, a metric is zero only when two distiiing coincide, thus ensuring the RKHS
embedding maps all distributions uniquely (i.e., the endrgglis injective). While previously pub-
lished conditions may apply only in restricted circumsesi¢e.g., on compact domains), and are
difficult to check, our conditions are straightforward antlitive: integrally strictly positive defi-
nite kernelsare characteristic. Alternatively, if a bounded continsikarnel is translation-invariant
onRY, then it is characteristic if and only if the support of itsufier transform is the entir&¢.
Second, we show that the distance between distributionsrypdesults from an interplay between
the properties of the kernel and the distributions, by destrating that distributions are close in
the embedding space when their differences occur at higeguéncies. Third, to understand the
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nature of the topology induced lyy, we relatey to other popular metrics on probability measures,
and present conditions on the kerkelnder whichy, metrizes the weak topology.

Keywords: probability metrics, homogeneity tests, independends,tkernel methods, universal
kernels, characteristic kernels, Hilbertian metric, weadology

1. Introduction

The concept of distance between probability measures is a fundameatahdrhas found many
applications in probability theory, information theory and statistics (Rach@®1;1Rachev and
Ruschendorf, 1998; Liese and Vajda, 2006). In statistics, distantesée probability measures
are used in a variety of applications, including hypothesis tests (homogéestity independence
tests, and goodness-of-fit tests), density estimation, Markov chain memide &tc. As an example,
homogeneity testing, also called the two-sample problem, involves choosirtbexte accept or
reject a null hypothesidp : P = Q versus the alternativg; : P # Q, using random samplg; }rj“:l
and {Yj}?:]_ drawn i.i.d. from probability distribution® and@Q on a topological spacéM,A).
It is easy to see that solving this problem is equivalent to tedting y(P,Q) = O versusHj :
y(P,Q) > 0, wherey is a metric (or, more generally, a semi-metyion the space of all probability
measures defined di. The problems of testing independence and goodness-of-fit cansed po
in an analogous form. In non-parametric density estimatyop,, po) can be used to study the
quality of the density estimatey,, that is based on the sampl@Xj}?zl drawn i.i.d. frompg.
Popular examples forin these statistical applications include thalback-Leibler divergencehe
total variation distancethe Hellinger distance(Vajda, 1989)—these three are specific instances
of the generalized-divergence (Ali and Silvey, 1966; Csaz 1967)—theKolmogorov distance
(Lehmann and Romano, 2005, Section 14.2) Wasserstein distandeel Barrio et al., 1999), etc.

In probability theory, the distance between probability measures is usedlyirgjuimit theo-
rems, the popular example being the central limit theorem. Another applicatiomistiizing the
weak convergence of probability measures on a separable metric sgwre, thel évy-Prohorov
distance(Dudley, 2002, Chapter 11) arttlial-bounded Lipschitz distangelso called thédudley
metric) (Dudley, 2002, Chapter 11) are commonly used.

In the present work, we will consider a particular pseudomewit probability distributions
which is an instance of aintegral probability metrig(IPM) (Muller, 1997). Denoting? the set of
all Borel probability measures qiM,.A), the IPM betweel® € &7 andQ € &7 is defined as

/deP’ /fd@‘ (1)

whereJ is a class of real-valued bounded measurable functiond.oim addition to the general
application domains discussed earlier for metrics on probabilities, IPMsheereused in proving
central limit theorems using Stein’s method (Stein, 1972; Barbour and @868), and are popular
in empirical process theory (van der Vaart and Wellner, 1996). Sins ofithe applications listed

+(P,Q) = sup
feF

1. Given a seM, a metric for M is a functionp : M x M — R4 such that(i) Vx, p(x,x) = 0, (i) Vx,y, p(X,y) =
p(y,X), (i) VX,¥,Z, p(x,2) < p(xY) + p(y,2), and(iv) p(x,y) = 0= x =y. A semi-metric only satisfie@), (ii) and
(iv). A pseudometric only satisfigg-(iii) of the properties of a metric. Unlike a metric spddé, p), points in a
pseudometric space need not be distinguishable: one mayfraye = 0 for x # y.

Now, in the two-sample test, though we mentioned thiata metric/semi-metric, it is sufficient thgsatisfies
(i) and(iv).
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above requirg/s to be a metric org?, the choice off is critical (note that irrespective &f, ys is a
pseudometric ot¥?). The following are some examples®ffor which ys is a metric.

(@) F = Cy(M), the space of bounded continuous functions(bhp), wherep is a metric
(Shorack, 2000, Chapter 19, Definition 1.1).

(b) F=Cuu(M), the space of boundgduniformly continuous functions ofM, p)—Portmonteau
theorem (Shorack, 2000, Chapter 19, Theorem 1.1).

() F={f:|flle <1} =: Frv, where||f||c = Supem|f(X)|. Y7 is called thetotal variation
distance(Shorack, 2000, Chapter 19, Proposition 2.2), which we denof€\gsthat is,
Yo7y = TV.

(d) F={f:|f|L <1} =: Fw, where|f||L :=sup{|f(X) — f(y)|/p(X,y) : x£AYyinM}. ||f|Lis
the Lipschitz semi-norm of a real-valued functiéron M andys is called theKantorovich
metric. If (M, p) is separable, theyy equals théNasserstein distang®udley, 2002, Theo-
rem 11.8.2), denoted &% := vy, .

() I ={f:|flle. <1} =: Fp, where||f|gL := || f[[L + || f||. Y5 is called theDudley metric
(Shorack, 2000, Chapter 19, Definition 2.2), denotefl asys,.

() F={l_wy:te RY} =: Fks. v+ is called theKolmogorov distancéShorack, 2000, Theorem
2.4).

(9) F= {em“"v'> : we RY} =: F. This choice off results in the maximal difference between
the characteristic functions BfandQ. Thatys, is a metric on# follows from theuniqueness
theoremfor characteristic functions (Dudley, 2002, Theorem 9.5.1).

Recently, Gretton et al. (2007b) and Smola et al. (2007) considetedbe the unit ball in a
reproducing kernel Hilbert space (RKH$) (Aronszajn, 1950), withk as its reproducing kernel
(rk.), thatis,F = {f : || f||5c <1} =: F (also see Chapter 4 of Berlinet and Thomas-Agnan, 2004,
and references therein for related work): we derygfe=: yk. While we have seen many possibile
for whichyy is a metric, ¥« has a number of important advantages:

e Estimation of y4: In applications such as hypothesis testihgndQ are known only through
the respective random sampips; }i; and{Y;}}_; drawn i.i.d. from each, angx(P,Q) is
estimated based on these samples. One approach is to comfBi€®) using the empirical
measure®y, = n%z?‘:léxj andQ, = %ZT:]_éYj, wheredy represents a Dirac measurexat
It can be shown that choosirfgasCy(M), Cou(M), Fv or F¢ results in this approach not
yielding consistent estimates gf(P, Q) for all P andQ (Devroye and Ggrfi, 1990). Al-
though choosing” = J or F yields consistent estimates gf(P, Q) for all P andQ when
M = RY, the rates of convergence are dependernt and become slow for large(Sriperum-
budur et al., 2009b). On the other haydPm, Qn) is a/mn/(m+ n)-consistent estimator
of (P, Q) if kis measurable and bounded, for BlandQ. If k is translation invariant on
M = RY, the rate is independent df(Gretton et al., 2007b; Sriperumbudur et al., 2009b), an
important property when dealing with high dimensions. Moreoygeis not straightforward
to compute wherd is Co(M), Cou(M), Fw or Fg (Weaver, 1999, Section 2.3): by contrast,
yﬁ(IP’, Q) is simply a sum of expectations of the kerkékee (9) and Theorem 1).
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e Comparison to @-divergences:Instead of using/ in statistical applications, one can also
useg@-divergences. However, the estimatorgafivergences (especially the Kullback-Leibler
divergence) exhibit arbitrarily slow rates of convergence depenalintpe distributions (see
Wang et al., 2005; Nguyen et al., 2008, and references therein faitsjewhile, as noted
above yk(Pm, Qn) exhibits good convergence behavior.

e Structured domains: Sinceyk is dependent only on the kernel (see Theorem 1) and kernels
can be defined on arbitrary domaMs(Aronszajn, 1950), choosiri§j= Fi provides the flex-
ibility of measuring the distance between probability measures defined on sédidiomains
(Borgwardt et al., 2006) like graphs, strings, etc., unlike- Fxs or F¢, which can handle
only M =R9Y.

The distance measusg has appeared in a wide variety of applications. These include sta-
tistical hypothesis testing, of homogeneity (Gretton et al., 2007b), indepeed Gretton et al.,
2008), and conditional independence (Fukumizu et al., 2008); as weil machine learning ap-
plications including kernel independent component analysis (Bachaddrl, 2002; Gretton et al.,
2005a; Shen et al., 2009) and kernel based dimensionality reductiengervised learning (Fuku-
mizu et al., 2004). In these applications, kernels offer a linear appitoadeal with higher order
statistics: given the problem of homogeneity testing, for example, diffeseimchigher order mo-
ments are encoded as differences in the means of nonlinear features\a@irigibles. To capture
all nonlinearities that are relevant to the problem at hand, the embeddikigRierefore has to be
“sufficiently large” that differences in the embeddings correspond ferdifices of interest in the
distributions. Thus, a natural question is how to guaraktpmvides a sufficiently rich RKHS so
as to detecany difference in distributions. A second problem is to determine what propestie
distributions result in their being proximate or distant in the embedding spaceallyi-we would
like to comparey to the classical integral probability metrics listed earlier, when used to measure
convergence of distributions. In the following section, we describe thaibations of the present
paper, addressing each of these three questions in turn.

1.1 Contributions

The contributions in this paper are three-fold and explained in detail below.

1.1.1 WHEN ISHH CHARACTERISTIC?

Recently, Fukumizu et al. (2008) introduced the concept ohaacteristic kernelthat is, a re-
producing kernel for whicly(P,Q) =0< P =Q, P,Q € £, that is,yk is a metric on#. The
corresponding RKHSK is referred to as aharacteristic RKHSThe following are two characteri-
zations for characteristic RKHSs that have already been studied in literatur

1. WhenM is compact, Gretton et al. (2007b) showed tHais characteristic ik is universalin
the sense of Steinwart (2001, Definition 4), thaffisis dense in the Banach space of bounded
continuous functions with respect to the supremum norm. Examples offSuatiude those
induced by the Gaussian and Laplacian kernels on every compact sfifise

2. Fukumizu et al. (2008, 2009a) extended this characterization tooropactM and showed
that H is characteristic if and only if the direct sum #f andR is dense in the Banach
space ofr-integrable (for some > 1) functions. Using this characterization, they showed
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that the RKHSs induced by the Gaussian and Laplacian kernels (suppartBe entiréR®)
are characteristic.

In the present study, we provide alternative conditions for charaiteREHSs which address
several limitations of the foregoing. First, it can be difficult to verify thedibons of denseness
in both of the above characterizations. Second, universality is in argy ara®verly restrictive
condition because universal kernels assivin® be compact, that is, they induce a metric only on
the space of probability measures that are supported on coivipact

In Section 3.1, we present the simple characterizationithegrally strictly positive definite
(pd) kernels (see Section 1.2 for the definition) are characteristic, thteésnduced RKHS is
characteristic (also see Sriperumbudur et al., 2009a, Theorem 4)cdrd#tion is more natural—
strict pd is a natural property of interest for kernels, unlike the desssenondition—and much
easier to understand than the characterizations mentioned above. Examipliegrally strictly
pd kernels oY include the Gaussian, Laplacian, inverse multiquadraticseividternel family,
Bon.1-sSplines, etc.

Although the above characterization of integrally strictly pd kernels beiagacheristic is sim-
ple to understand, it is only a sufficient condition and does not providenawer for kernels that
are not integrally strictly pd,for example, a Dirichlet kernel. Therefore, in Section 3.2, we provide
an easily checkable condition, after making some assumptions on the keragiregént a com-
plete characterization of characteristic kernels when the kernel is tiiansiiavariant onR9. We
show that a bounded continuous translation invariant kernébis characteristic if and only if
the support of the Fourier transform of the kernel is the efitfte This condition is easy to check
compared to the characterizations described above. An earlier vefdiois cesult was provided
by Sriperumbudur et al. (2008): by comparison, we now present a sigpdemore elegant proof.
We also show that all compactly supported translation invariant kerneR9aare characteristic.
Note, however, that the characterization of integral strict positive itkxfiess in Section 3.1 does
not assumé/ to beRY nork to be translation invariant.

We extend the result of Section 3.2Nbbeing ad-Torus, that isT = Stx .9. xSt = [0, 2m)°,
whereSt is a circle. In Section 3.3, we show that a translation invariant kern&fas characteristic
if and only if the Fourier series coefficients of the kernel are positivat, i) the support of the
Fourier spectrum is the enti#&'. The proof of this result is similar in flavor to the one in Section 3.2.
As examples, the Poisson kernel can be shown to be characteristic, venidrithlet kernel is not.

Based on the discussion so far, it is clear that the characteristic prajjé&etyan be determined
in many ways. In Section 3.4, we summarize the relations between variows kamilies (e.g.,
the universal kernels and the strictly pd kernels), and show how tlegye i@ turn to characteristic
kernels. A summary is depicted in Figure 1.

1.1.2 DSSIMILAR DISTRIBUTIONS WITH SMALL Vg

As we have seen, the characteristic property of a kernel is critical in gisthing between distinct
probability measures. Suppose, however, that for a given chastict&ernelk and for anye > 0,

there existP andQ, P # Q, such thaty(P,Q) < €. Thoughk distinguishes between suéhand

Q, it can be difficult to tell the distributions apart in applications (even with @tiaristic kernels),
sinceP andQ are then replaced with finite samples, and the distance between them may not be

2. It can be shown that integrally strictly pd kernels are strictly pd (se&nbt®4). Therefore, examples of kernels that
are not integrally strictly pd include those kernels that are not strictly pd.
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statistically significant (Gretton et al., 2007b). Therefore, given aatheristic kernel, it is of
interest to determine the properties of distributi@nandQ that will cause their embeddings to be
close. To this end, in Section 4, we show that given a ketrfeee Theorem 19 for conditions on
the kernel), for ang > 0, there exist® # Q (with non-trivial differences between them) such that
Vk(P,Q) < €. These distributions are constructed so as to differ at a sufficiently hégjiuéncy,
which is then penalized by the RKHS norm when computing

1.1.3 WHEN DOESYx METRIZE THEWEAK TOPOLOGY ONZ?

Given yg, which is a metric on#Z, a natural question of theoretical and practical importance is
“how is Yk related to other probability metrics, such as the Dudley mejic/asserstein distance
(W), total variation metricTV), etc?” For example, in applications like density estimation, where
the unknown density is estimated based on finite samples drawn i.i.d. from it, aieyapf the
estimate is measured by computing the distance between the true density arishtagdsiensity.
In such a setting, given two probability metrigg, andp,, one might want to use thetrongef of
the two to determine this distance, as the convergence of the estimated densityrtetbensity
in the stronger metric implies the convergence in the weaker metric, while therserig not true.
On the other hand, one might need to use a metric of weaker topology (i.esecoapology) to
show convergence of some estimators, as the convergence might notwoct a metric of strong
topology. Clarifying and comparing the topology of a metric on the probabilitigbus, important
in the analysis of density estimation. Based on this motivation, in Section 5, Wearle relation
betweeny and other probability metrics, and show thiats weaker than all these other metrics.

It is well known in probability theory theb is weaker thawV andTV, and it metrizes the weak
topology (we will provide formal definitions in Section 5) a® (Shorack, 2000; Gibbs and Su,
2002). Sincey is weaker than all these other probability metrics, that is, the topology induced
Yk is coarser than the one induced by these metrics, the next interesting guestitswer would
be, “When doegi metrize the weak topology o?” In other words, for whak, does the topology
induced byyk coincide with the weak topology? Answering this question would showyihat
equivalent to3, while it is weaker thawv andTV. In probability theory, the metrization of weak
topology is of prime importance in proving results related to the weak conveegaf probability
measures. Therefore, knowing the answer to the above question wilhhedmgyi as a theoretical
tool in probability theory. To this end, in Section 5, we show that univetsabels on compact
(M, p) metrize the weak topology o#?. For the non-compact setting, we assulte= RY and
provide sufficient conditions on the kernel such thametrizes the weak topology of?.

In the following section, we introduce the notation and some definitions thasarkthroughout
the paper. Supplementary results used in proofs are collected in App®ndix

1.2 Definitions and Notation

For a measurable spadd, andp a Borel measure oM, L"(M,u) denotes the Banach space of
r-power ¢ > 1) p-integrable functions. We will also ugé(M) for L" (M, ) anddx for du(x) if pis

3. Two metric1 : Y xY — R andpy:Y xY — R are said to be equivalentff (x,y) = 0< pa(x,y) =0, VX, y €Y.
On the other handp; is said to be stronger thamp if p1(x,y) = 0= p2(x,y) = 0,Vx,y € Y but not vice-versa. If
p1 is stronger tham,, then we say, is weaker thamp;. Note that ifp1 is stronger fesp. weaker) tharp,, then the
topology induced by is finer fesp.coarser) than the one induced y.
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the Lebesgue measure bhc RY. C,(M) denotes the space of all bounded, continuous functions on
M. The space of ali-continuously differentiable functions dvi is denoted byC" (M), 0 <r < co.
Forx € C, X represents the complex conjugatexofVe denote asthe imaginary unit/—1.

For a measurable functiohand a signed measufe Pf := [ fdP = [, f(x) dP(x). & repre-
sents the Dirac measurexatThe symbob is overloaded to represent the Dirac measure, the Dirac-
delta distribution, and the Kronecker-delta, which should be distinguisliiaistethe context. For
M = R, the characteristic functioms of P € 7 is defined agp(w) = fps €% *dP(x), w € RY.

Support of a Borel measurerhe support of a finite regular Borel measuuegn a Hausdorff
spaceM is defined to be the closed set,

suppp) ;=M\ {U c M : U is open p(U) = 0}. 2)

Vanishing at infinity and gfM): A complex functionf on a locally compact Hausdorff space
M is said tovanish at infinityif for every € > 0 there exists a compact 3¢t M such thatf(x)| < €
for all x ¢ K. The class of all continuouson M which vanish at infinity is denoted &(M).
Holomorphic and entire functiond:et D ¢ C% be an open subset arid D — C be a function.
f is said to beholomorphic(or analytic) at the pointzy € D if

f%aﬁ:::yﬂ%f(fi__ico

exists. Moreoverf is called holomorphic if it is holomorphic at every € D. f is called arentire
functionif f is holomorphic andD = C¢.
Positive definite and strictly positive definité&s functionk: M x M — R is called positive
definite(pd) if, foralln € N, ay,...,a, € Rand allxy, ..., x, € M, we have
n
Z Giij(Xi,Xj)ZO. 3)
i,]=1
Furthermorek is said to bestrictly pdif, for mutually distinctxy,...,x, € X, equality in (3) only
holds fora; = --- = o, = 0. Y is said to be a positive definite function &9 if k(x,y) = W(x—Y)
is positive definite.
Integrally strictly positive definiteLet M be a topological space. A measurable and bounded
kernel,k is said to be integrally strictly positive definite if

/] Koxy) e dugy) >0,

for all finite non-zero signed Borel measugedefined orM.

The above definition is a generalizationinfegrally strictly positive definite functioren RY
(Stewart, 1976, Section 6)fza k(x,y) f(x)f(y)dxdy> 0 for all f € L?(RY), which is the strictly
positive definiteness of the integral operator given by the kernel. Natahk above definition is
not equivalent to the definition of strictly pd kernels:kifis integrally strictly pd, then it is strictly
pd, while the converse is not trde.

4. Supposek is not strictly pd. This means for somee N and for mutually distinciy,...,x, € M, there exists
R > aj # 0 for somej € {1,...,n} such thatzrj‘J:lajou K(xj,x) = 0. By definingu = z?:lajéxj, it is easy to see
that there existgt # 0 such thatff, k(x,y) du(x) dp(y) = O, which means is not integrally strictly pd. Therefore,
if k is integrally strictly pd, then it is strictly pd. However, the converse is not t&ee Steinwart and Christmann
(2008, Proposition 4.60, Theorem 4.62) for an example.
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Fourier transform inR9: For f € L1(RY), f and f" represent the Fourier transform and inverse
Fourier transform off respectively, defined as

-~ l _j TX

fly) == (Z'IT)d/Z/Rde Y Xf(x)dx y e R, 4)
% . 1 ixT

(x) = (2n)d/2/Rdé Yf(y)dy, x € RY. )

Convolution:If f andg are complex functions iR9, their convolutionf x g is defined by
(fxg)( / f(y)g(x—y)dy,

provided that the integral exists for almostalt RY, in the Lebesgue sense. Liebe a finite Borel
measure oiRY and f be a bounded measurable function®h The convolution off andp, fxp,
which is a bounded measurable function, is defined by

(fsp)(x /fx y)du(y)

Rapidly decaying function®/y and.#y: Let Z4 be the space of compactly supported infinitely
differentiable functions oY, that is, 24 = {f € C*(RY) |sup f) is bounded, where suppf) =
cl ({x e RY| f(x) # O}). A function f : RY — C is said to decay rapidly, or be rapidly decreasing,
if forall N € N,
sup sup(L+ X2 (Ta f) (X)] < o,
la]1<NxeRd
where a = (0y,...,0q) is an orderedd-tuple of non-negativeaj, |afly = Z?:laj and

Ty = <|16i1) .. <|162d) d. Y4, called the Schwartz class, denotes the vector space of rapidly

decreasing functions. Note th@t c 4. Also, for anyp € [1,], .74 C LP(RY). It can be shown
that for anyf € .4, fe.ZyandfV e (see Folland, 1999, Chapter 9 and Rudin, 1991, Chapter
6 for details).

Distributions, Z;: A linear functional onZy which is continuous with respect to the&ehet
topology (see Rudin, 1991, Definition 6.3) is calledistributionin RY. The space of all distribu-
tions inRY is denoted byZ).

As examples, iff is locally integrableon RY (this means thaf is Lebesgue measurable and
Ji | f(x)|dx < o for every compacK C RY), then the functionaD+ defined by

Di(¢) = |, TX)0(x)dx ¢ € Za, (6)
is a distribution. Similarly, ifu1is a Borel measure dR¢, then

Du(®) = [ 009 adMx). 6 € Za.
defines a distributio®,, in RY which is identified withu

Support of a distributionFor an open sé c RY, 24(U) denotes the subspace®j consisting
of the functions with support containedih SupposeD € Z;. If U is an open set oRY and if
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D(¢) = 0 for everyp € Z4(U), thenD is said tovanishor benull in U. LetW be the union of all
openU c RY in which D vanishes. The complement\of is thesupportof D.

Tempered distributionsy and Fourier transform onj: A linear continuous functional (with
respect to the Fxchet topology) over the spack; is called atempered distributiomnd the space
of all tempered distributions iiR? is denoted by#;. For example, every compactly supported
distribution is tempered.

For anyf € Yd’, the Fourier and inverse Fourier transforms are defined as

~

(4) = f(9), ¢ €7,
() = f(¢"),0 €A,

respectively. The Fourier transform is a linear, one-to-one, bicomtismapping fromz;; to ..
For complete details on distribution theory and Fourier transforms of distriisjtie refer the
reader to Folland (1999, Chapter 9) and Rudin (1991, Chapter 6).

2. Hilbert Space Embedding of Probability Measures

Embeddings of probability distributions into reproducing kernel Hilbertepavere introduced in
the late 70’s and early 80’s, generalizing the notion of mappings of indiVidoints: see Berlinet
and Thomas-Agnan (2004, Chapter 4) for a survey. Following Grettain(@007b) and Smola et al.
(2007),yk can be alternatively expressed as a pseudometric between such distrdmbeddings.
The following theorem describes this relation.

Theorem 1 Let Z :={P € & : [, VK(X,X)dP(X) < o}, where k is measurable on M. Then for
anyP,Q € %,

yk(PaQ) =

= [[IPk— QK]|3¢, (7)
I

/k(-,x)dIP’(x)f/ K(-,x)dQ(X)
M M

whereJ is the RKHS generated by k.

Proof Let Tp : H — R be the linear functional defined ds[f] := [, f(x)dP(x) with ||Tp| :=

Tolf .
SUPrege 10 % Consider

Telf) = | [, 1P| < [ 16910700 = [ 1(F.KC0)2d 0800 < [ VR0 cdPC),

which implies||Tp|| < o, VP € 2, that is,Tp is a bounded linear functional di. Therefore, by
the Riesz representation theorem (Reed and Simon, 1980, Theorenidt.éachP € &, there
exists a uniquép € H such thaflp[f] = (f,Ap)g¢, V f € H. Let f =k(-,u) for someu € M. Then,
Tek(-,u)] = (k(-,u),Ap)5¢ = Ap(u), which implieshp = [y, k(-,x) dP(x) =: Pk. Therefore, with

IPf—Qf| = [Tp[f] — To[f]| = [(f,Ap) 3¢ — (F, Aq@) 3| = [{f, Ap — Ag) sl

we have
W(P,Q) = sup |[Pf—Qf|=][Ap—Aqllsc = |[Pk— QK|
[[fllac<1
Note that this holds for an§, Q € . |
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Given a kernelk, (7) holds for allP € . However, in practice, especially in statistical inference
applications, it is not possible to check whetlter &% asP is not known. Therefore, one would
prefer to have a kernel such that

/M VKOG dP(X) < o0, VP € 2. ®)

The following proposition shows that (8) is equivalent to the kernel beimgnded. Therefore,
combining Theorem 1 and Proposition 2 shows thiisfmeasurable and bounded, the(P, Q) =
|IPk — QK] 4¢ for anyP,Q € £.

Proposition 2 Let f be a measurable function on M. Thigpf (x) dP(x) < o for all P € &7 if and
only if f is bounded.

Proof One direction is straightforward becausefifs bounded, thery, f(x)dP(x) < o for all
P e &. Let us consider the other direction. Suppdss not bounded. Then there exists a sequence
{X} € M such thatf (x,) == . By taking a subsequence, if necessary, we can as$(xae> n?
foralln. ThenA:=3S7 4 o) Xn) < . Define a probability measuigon M by P = Zﬁzlﬁ Ox,s

whered,, is a Dirac measure a. Then, [, f(x)dP(x) = AZn 17 Xng = o0, which means iff is
not bounded, then there exist®& & such thatf,, f (x) dP(x) = [

The representation gf in (7) yields the embedding,
n: o % PH/ K(-,x)dP(X),
M

as proposed by Berlinet and Thomas-Agnan (2004, Chapter 4, Secfiprand Gretton et al.
(2007b); Smola et al. (2007). Berlinet and Thomas-Agnan derivedethisedding as a general-
ization of &y — K(-,x), while Gretton et al. arrived at the embedding by choosing Fi in (1).
Sincey(P, Q) = ||[M[P] — N[Q]| 5, the question “When ig a metric onZ??” is equivalent to the
guestion “When if1 injective?” Addressing these questions is the central focus of the papds
discussed in Section 3.

Before proceeding further, we present a number of equivalen¢septations of, which will
improve our understanding gf and be helpful in its computation. First, Gretton et al. have shown
the reproducing property ¢fleads to

V(P,Q) = XdE() — [ KX

— </ k(-,x) dP(x /k X) dQ(x /k y)—/k(-,y)dQ(y)>

_ </Mk(-,x)d]P>(x),/Mk(~,y)dIP’ > </k )dQ(x /k >
—2( [ ke a0, [ Keyda)

/ /M k(x,y) dP(x) dP(y) + / /M k(x,y) dQ(x) dQ(y)

2 / /M k(x,y) dP(x) dQ(y) )
~ [ Kxy)dE- Q)0 dE-Q)W) (10)

—
&



HILBERT SPACE EMBEDDING AND CHARACTERISTIC KERNELS

where(a) follows from the fact thatjy, f(x) dP(x) = (f, [y K(-,x)dP(x))gc for all f e H, P € &
(see proof of Theorem 1), applied with= [,,k(-,y)dP(y). As motivated in Section 1y? is a
straightforward sum of expectationslgfand can be computed easily, for example, using (9) either
in closed form or using numerical integration techniques, depending atiee ofk, P andQ. It

is easy to show that, Kis a Gaussian kernel wihandQ being normal distributions oR¢, thenyj
can be computed in a closed form (see Song et al., 2008 and Sriperunatbudll, 2009b, Section
111-C for examples). In the following corollary to Theorem 1, we provesthresults which provide a
nice interpretation foy, whenM =R andk is translation invariant, that i&(x, y) = W(x—y), where
U is a positive definite function. We provide a detailed explanation for Coyoftan Remark 5.
Before stating the results, we need a famous result due to Bochnerhtratterizeg). We quote
this result from Wendland (2005, Theorem 6.6).

Theorem 3 (Bochner) A continuous functio : RY — R is positive definite if and only if it is the
Fourier transform of a finite nonnegative Borel measfirenRY, that is,

W(x) = /R e "OdA(w), xe RS, (11)

Corollary 4 (Different interpretations of i) (i) Let M = RY and kx,y) = W(x—y), wherey :
M — R is a bounded, continuous positive definite function. Then folfaflye &7,

W) =/ [ 100(6)~ 9al0) @) = [~ Golzse 12)

where@p and @g represent the characteristic functionsandQ respectively.

(i) Supposed € L1(RY) is a continuous bounded positive definite function and(x)dx= 1. Let

W(X) := W (x) =t98(t"1x),t > 0. Assume that p and q are bounded uniformly continuous Radon-
Nikodym derivatives dP and Q w.r.t. the Lebesgue measure, that i ¢ pdx and @@ = qdx.
Then,

lim (P, Q) = [Ip — ql 2(r)- (13)

In particular, if |8(x)| < C(1+ ||x||2)~9¢ for some Ge > 0, then (13) holds for all bounded p and
g (not necessarily uniformly continuous).

(iii) Supposey € LY(RY) and /P € LY(RY). Then,
Y(P,Q) = (2m) V4|0 xP— ® Q| 2(g0), (14)

whered :— (\/@)v and dA — (21)~9/2{idc. Here, ® + P represents the convolution @fandP.
Proof (i) Let us consider (10) witk(x,y) = Y(x—y). Then, we have
RE.Q) = [[ bx-ydP-)dE-0)y)
J][e " @ dp -0 dE-o))
e dE-@ [ @ dE-a)ydrw
[ (@e(0) = @0(0) (@009 00l@)) dA@) = [ [0r(0) — () A (@),

&

—
CANN
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where Bochner’s theorem (Theorem 3) is invokedai, while Fubini’s theorem (Folland, 1999,
Theorem 2.37) is invoked ifb).

(if) Consider (9) withk(x,y) = Wt (x—y),

Q) = //Rd wt(x—y)p(X)p(y)dxdy+/Ad Y (x—y)a(x)aly) dxdy
—2 [ [, lx=y)p0x)a(y) dxdy

= [P opeodxt [ (@era)atgdx—2 [ (@era)0gpiode  (15)
R R R

Note that lim_o [pa (Wt * P)(X) P(X) dX = [galimi_o(Wt * p)(X) p(X) dX, by invoking the dominated
convergence theorem. Singeis bounded and uniformly continuous, by Theorem 25 (see Ap-
pendix A), we havep sy — p uniformly ast — 0, which means lifL.g [ra (Pt * p)(X) p(X) dx =

Jre PP(X)dx. Using this in (15), we have

lim2(E.Q) = [ (P00 + () ~2P(x)q()) dx= [Ip— [z
SupposeB(x)| < (1+|x||2) "9~ for someC, € > 0. Sincep € L*(RY), by Theorem 26 (see Ap-

pendix A), we havg p= yx)(x) — p(x) ast — 0 for almost everyx. Therefore lim g [pa(Wt *
P)(X) p(X) dx= [za P?(X)dxand the result follows.

(iii) Sincey is positive definite{]) is nonnegative and therefogg@ is valid. Since\/@ € LY(RY),
® exists. Definepp g := @ — Q. Now, consider

| ®+P—®s Qe = [ 1(@+(B—Q)00[ dx
2

= | [, ex-yar-a
2
2111 d /R / /R Vo é“*y)T‘*’dwd(P—@)(y)
< 7/ ’/ F e'X “’dw
- (2nd ///Rd \/7\/7(91»@ W) @p.0 (&) €@ 9 ¥ dwde dx

o T o e
= [ V000 000 () 800 &) doct

= [0 (0 ~ @2 (0)* o
= (V*4(P,Q),

dx

where(c) and(d) are obtained by invoking Fubini’s theorem. [
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Remark 5 (a) (12) shows thayy is the 1>-distance between the characteristic function®afnd
Q computed w.r.t. the non-negative finite Borel measfirayhich is the Fourier transform ap. If
P € LY(RY), then (12) rephrases the well known fact (Wendland, 2005, Thedeifi)lthat for any

fe X,
o _ [ |f@)p
I113= [, By 9 (16)

Choosing f= (P—Q) =« in (16) yieldsz: (@p — @)Y and therefore the result in (12).

(b) Suppose A(w) = (2m) 9dw. AssuméP and Q have p and q as Radon-Nikodym derivatives
w.r.t. the Lebesgue measure, that i®,€d pdx and d) = gdx. Using these in (12), it can be shown
that yk(P,Q) = ||p — dl[2(re). However, this result should be interpreted in a limiting sense as
mentioned in Corollary 4(ii) because the choice &) = (2~ dw impliesy(x) = &(x), which
does not satisfy the conditions of Corollary 4(i). It can be showndi{a = &(x) is obtained in a
limiting sense (Folland, 1999, Proposition 9.1); — din ) ast— 0.

(c) Choosingd(x) = (2m)~9/2e-IM3/2 in Corollary 4(ii) corresponds tap; being a Gaussian kernel
(with appropriate normalization such thgka U (x) dx = 1). Therefore, (13) shows that as the
bandwidth, t of the Gaussian kernel approaches 2gr@pproaches the d-distance between the
densities p and g. The same result also holds for choagjras the Laplacian kernel, B, 1-spline,
inverse multiquadratic, etc. Thereforg(P,Q) can be seen as a generalization of tiedistance
between probability measurddand Q.

(d) The result in (13) holds if p and g are bounded and uniformly contisu&ince any condition
onP andQ is usually difficult to check in statistical applications, it is better to impose contditio
on Y rather than onP and Q. In Corollary 4(ii), by imposing additional conditions af;, the
result in (13) is shown to hold for alP and Q with bounded densities p and g. The condition,
B(x)| <C(1+ HXHZ) d-¢ for some Ce > 0, is, for example satisfied by the i mverse multiquadratic

kernel,B(x) = C(1+||x||3) %, xe RY, T > d/2, whereC = (Jra(1+[X]13) de)

(e) The result in Corollary 4(ii) has connections to the kernel density asitimin L?-sense using
Parzen windows (Rosenblatt, 1975), whgrean be chosen as the Parzen window: see Gretton et al.
(20074, Section 7.1) for further discussion. Note in particular that whénused in a homogeneity
test, a constant kernel bandwidth results in a faster decrease of thellTgper with increasing
sample size (Anderson et al., 1994, p. 43). A decreasing bandwiddlyusred for a consistent
estimate of| p — q|_2(r), however.

(f) (14) shows thay is proportional to the B-distance betweem « P and ® Q. Let® be such
that ® is nonnegative and € LY(RY). Then, definingd := (fpa ®(X)dx) 1 ® = ®/,/P(0) =
(Jra W(X) dx) 2@ and using this in (14), we have

W(P,Q) = (2m) d/“FHcp*P $+0Q

The r.h.s. of (17) can be interpreted as follows. Let X, Y and N be indeperandom variables
such that X~ P, Y ~ Q and N~ ®. This means is proportional to the B-distance computed
between the densities associated with the perturbed random variables\ ¥nd Y+ N. Note
that ||p — q|2(r) is the 12-distance between the densities of X and Y. Examplestiodt satisfy
the conditions in Corollary 4(iii) in addition to the conditions @has mentioned here include the

(17)

L2( Rd
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Gaussian and Laplacian kernels &. The result in (14) holds evenfQ ¢ L(RY) as the proof
of (iii) can be handled using distribution theory. However, we assury@ie LY(RY) to keep the
proof simple, without delving into distribution theory.

Although we will not be using all the results of Corollary 4 in deriving our magsults in the
following sections, Corollary 4 was presented to provide a better intuitidenstanding ofx. To
summarize, the core results of this section are Theorem 1 (combined withsitrop 2), which pro-
vides a closed form expression f@grin terms of the measurable and boun#tednd Corollary 4),
which provides an alternative representationyipwhenk is bounded, continuous and translation
invariant onRY.

3. Conditions for Characteristic Kernels

In this section, we address the question, “Wheyk ia metric on#??”. In other words, “When i§l
injective?” or “Under what conditions ischaracteristic?”. To this end, we start with the definition
of characteristic kernels and provide some examples whisrguch thaty is not a metric on?. As
discussed in Section 1.1.1, although some characterizations are avaitdbgofthatyy is a metric
on &2, they are difficult to check in practice. In Section 3.1, we provide theadtarization that ik
is integrally strictly pd, thery is a metric onZ?. In Section 3.2, we present more easily checkable
conditions wherein we show that if su@p) = RY (see (2) for the definition of the support of a Borel
measure), they is a metric onZ. This result is extended in a straightforward waylfo(d-Torus)
in Section 3.3. The main results of this section are summarized in Table 1.

We start by defining characteristic kernels.

Definition 6 (Characteristic kernel) A bounded measurable positive definite kernel k is charac-
teristic to a set2 C & of probability measures defined ¢ll, A) if for P,Q € 2, w(P,Q) =0<

P = Q. kis simply said to be characteristic if it is characteristic#6. The RKHSH induced by
such a k is called a characteristic RKHS.

As mentioned before, the injectivity dil is related to the characteristic property lof If k is
characteristic, thew (P, Q) = ||N[P] — N[Q]||3¢ = 0= P = Q, which mean® — [, k(-,x)dP(x),
that is, I is injective. Therefore, whekl = RY the embedding of a distribution to a characteristic
RKHS can be seen as a generalization of the characteristic fungtion, [« €¢> dP(x). This
is because, by the uniqueness theorem for characteristic functiodte¢p@002, Theorem 9.5.1),
@ = @y = P = Q, which mean® [« €{¥ dP(x) is injective. So, in this context, intuitively
¥ can be treated as the characteristic ketked/though, formally, this is not true @&¥* is not
a pd kernel.

Before we get to the characterization of characteristic kernels, the foljoexamples show that
there exist bounded measurable kernels that are not characteristic.

Example 1 (Trivial kernel) Let k(x,y) = Q(x—y) = C, ¥x,y € RY with C > 0. Using this in (9),
we haveyﬁ(P,Q) =C+C—-2C =0foranyP,Q € £, which means k is not characteristic.

Example 2 (Dot product kernel) Let k(x,y) = x"y, x y € RY. Using this in (9), we have

YVe(P,Q) = P e + BOHo — 2U5Hg = [|pe — Mo I3,

where p and | represent the means associated itndQ respectively, that is,jt= [ps XdP(X).
Itis clear that k is not characteristic ag(P,Q) =0=pp =g = P=Qforall P,Q € 2.
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Summary of Main Results

Domain Property 2  Characteristic Referencq
M kis integrally strictly pd P Yes Theorem 7
RY Q=R P Yes Theorem 9
RY supg W) is compact P Yes Corollary 10
RY QCRY,int(Q) #0 P Yes Theorem 12
RY QC R P No Theorem 9
Td Ay(0) >0,Ay(n) >0,Vn#£0 2 Yes Theorem 14
Td In#£0|Ay(n) =0 P No Theorem 14

Table 1: The table should be read as: If “Property” is satisfied on “Doimntliank is characteris-
tic (or not) to2. & is the set of all Borel probability measures on a topological space,
M. See Section 1.2 for the definition of integrally strictly pd kernels. Whea: R¢,
k(x,y) = @(x—y), wherey is a bounded, continuous positive definite functionRth
Y is the Fourier transform of a finite nonnegative Borel meastiregndQ := supfA\)
(see Theorem 3 and (2) for details)?; ;= {P € & : @ € LY(RY) UL?RY), P <«

A and supfP) is compac}, where @p is the characteristic function df and A is the
Lebesgue measur®.< A denotes thaP is absolutely continuous w.rx. WhenM = T9,
k(x,y) = W(x—y), wherey is a bounded, continuous positive definite functionTh
{Ay(n) }hcza are the Fourier series coefficientsyfvhich are nonnegative and summable
(see Theorem 13 for details).

Example 3 (Polynomial kernel of order 2) Let k(x,y) = (1+x"y)?, x,y € RY. Using this in (10),
we have

RE.Q) = [[ @+20yxydE -0 dE-Q)y)
= 2|l — oll3 + |12 — Zo + Hebtp — Mok 7

whereZp andZg represent the covariance matrices associated Witnd Q respectively, that is,
Tp == [paXX dP(X) — hpll. | - || represents the Frobenius norm. SingéP,Q) = 0= (p =
Hg and>p = Zg) = P =Qfor all P,Q € &, k is not characteristic.

In the following sections, we address the question of whencharacteristic, that is, for whtis
Yk @ metric on??
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3.1 Integrally Strictly Positive Definite Kernels are Characteristic

Compared to the existing characterizations in literature (Gretton et al., 200Kinfzu et al., 2008,
2009a), the following result provides a more natural and easily undelaée characterization for
characteristic kernels, namely that integrally strictly pd kernels are desistic to 2.

Theorem 7 (Integrally strictly pd kernels are characteristic) Let k be an integrally strictly pos-
itive definite kernel on a topological space M. Then k is characteristi¢’to

Before proving Theorem 7, we provide a supplementary result in Lemmat&thvides neces-
sary and sufficient conditions for a kerrmedt to be characteristic. We show that chooskgp be
integrally strictly pd violates the conditions in Lemma 8, &nid therefore characteristic t¢’.

Lemma 8 Let k be measurable and bounded on a topological space, M. Tlifeg Q where
P,Q € & such thaty(P,Q) = 0if and only if there exists a finite non-zero signed Borel measure p
that satisfies:

() JImk(x,y)dux)duy) =0,
(i) p(M) =0.

Proof (<) Suppose there exists a finite non-zero signed Borel megstiva, satisfiesi) and(ii) in
Lemma 8. By the Jordan decomposition theorem (Dudley, 2002, Theore), Jttere exist unique
positive measurgs™ andy~ such thapt= ™ —u~ anduy™ L u= (U™ andu™ are singular). By(ii),
we haveu™ (M) = p= (M) =: a. DefineP = a~tyt andQ = a~u. Clearly,P # Q,P,Q € 2.
Then, by (10), we have

B(E.Q) = [ [ kxy)d® -0 dE-Q)y) a2 [ kxy duxduy) 2o

where(a) is obtained by invokingi). So, we have constructé# Q such thaty(P,Q) = 0.

(=) SupposedP # Q, P,Q € & such thaty(P,Q) =0. Letp=P—Q. Clearlypu is a finite
non-zero signed Borel measure that satigii@d) = 0. Note that by (10),

R(E.Q) = [ [ kxy)dE-Q)dE-0)) = [ ] kixy)duduy),
and thereforéi) follows. [ |

Proof (of Theorem 7)Sincek is integrally strictly pd orM, we have

/ /M k(x,y)dn(x)dn(y) >0,

for any finite non-zero signed Borel measuyeThis means there does not exist a finite non-zero
signed Borel measure that satisf{@sin Lemma 8. Therefore, by Lemma 8, there does not exist
P#Q,P,Q € & such thaty(P,Q) = 0, which impliesk is characteristic. [ |

Examples of integrally strictly pd kernels @&f' include the Gaussian, ekpal|x —Y||3), 0 > 0;
the Laplacian, exp-o|[x—y||1), 0 > 0; inverse multiquadratic§o? + ||x—y||3) ¢, ¢ > 0,0 > 0,
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etc, which are translation invariant kernelsBf. A translation variantintegrally strictly pd ker-
nel, k, can be obtained from a translation invariant integrally strictly pd kernehs k(x y) =
f(x)k(x,y) f(y), wheref : M — R is a bounded continuous function. A simple example of a transla-
tion variant integrally strictly pd kernel dR9 is E(x, y) = exp(ox"y), o > 0, where we have chosen
f(-) = exp(o]| - |3/2) andk(x,y) = exp(—a]||x—y]||3/2), 0 > 0. Clearly, this kernel is characteristic
on compact subsets &Y. The same result can also be obtained from the facktfsatiniversal on
compact subsets @ (Steinwart, 2001, Section 3, Example 1), recalling that universal leane
characteristic (Gretton et al., 2007b, Theorem 3).

Although the condition for characteristién Theorem 7 is easy to understand compared to other
characterizations in literature, it is not always easy to check for intstyiat positive definiteness
of k. In the following section, we assuné = RY andk to be translation invariant and present a
complete characterization for characterigtiwhich is simple to check.

3.2 Characterization for Translation Invariant k on RY

The complete, detailed proofs of the main results in this section are providettiin$3.5. Com-
pared to Sriperumbudur et al. (2008), we now present simple prootisdee results without resort-
ing to distribution theory. Let us start with the following assumption.

Assumption 1 k(x,y) = W(x—y) wherey is a bounded continuous real-valued positive definite
function on M= RY.

The following theorem characterizes all translation invariant kernék'ithat are characteristic.

Theorem 9 Suppose k satisfies Assumption 1. Then k is characteristic if and snlydf\) = R,
whereA\ is defined as in (11).

First, note that the condition su@p) = RYis easy to check compared to all other, aforementioned
characterizations for characteriskicTable 2 shows some popular translation invariant kernel® on
along with their Fourier spectrd) and its support: Gaussian, Laplaci®@,. 1-spline (Schlkopf
and Smola, 2002) and Sinc kernels are aperiodic while Poiss@m@rd, 2001; Steinwart, 2001;
Vapnik, 1998), Dirichlet (Bemaud, 2001; Saitkopf and Smola, 2002), &er (Biemaud, 2001)
and cosine kernels are periodic. Although the Gaussian and Lapladiaelkeare shown to be
characteristic by all the characterizations we have mentioned so far, $heo€B;,, 1-splines is
addressed only by Theorem 9, which shows them to be characteriggctkiatB,,, . 1-splines being
integrally strictly pd also follows from Theorem 9). In fact, one can prexaanore general result on
compactly supported translation invariant kernels, which we do later inll@grd0. The Maérn
class of kernels (Rasmussen and Williams, 2006, Section 4.2.1), given by

k(x,y) =W(x—y) = lgl(v; (‘@”X_Wh) Ky (W),V>O,0>O, (18)

o

5. A Bony1-spline is aBp-spline of odd order. Onlan1-splines are admissible, that By-splines of odd order are
positive definite kernels whereas those of even order have negativponents in their Fourier spectruih and
therefore are not admissible kernels. In Table 2, the synaﬁBTZ) represents thé2n+ 2)-fold convolution. An
important point to be noted with thBy,,1-spline kernel is thaf) has vanishing points ab = 2m, a € Z\{0},
unlike Gaussian and Laplacian kernels which do not have vanishing poititsir Fourier spectrum. Nevertheless,
the spectrum of all these kernels has supfort
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Kernel Y(x) P(w) supd )
. 2 2
Gaussian exé—%) cexp(—g) R
Laplacian exp—alx|) \/%025:(.02 R
. 2n+2 n+1 sig+2( 9
Bont1-spline *<1 m )]1[7%’%] (x) f/;nSIuﬁ% R
Sinc sin(ox) VL 60(0) [~0,0]
. 2 o ; .
Poisson Wﬁqu’0<o<l vy e, ollg(w—j) Z
. sin (2n+1)x n .
Dirichlet WZ vy [ 3(w—j) {0,£1,...,+n}
" sirP (0L | .
Féjer o 75 vemyh_ (1— %) dw—j) {0,41,...,£n}
Cosine cofox) V3 [8(w—0) + 3(w-+0)] {—0,0}

Table 2: Translation invariant kernels Bndefined byy, their spectraip and its support, sugp).
The first four are aperiodic kernels while the last four are periodiee démain is con-
sidered to beR for simplicity. Forx € RY, the above formulae can be extended by
computing P(x) = 15, W(x;) wherex = (x1,...,xq) and P(w) = [1%_; P(cd;) where
w=(wy,...,uq). 0 represents the Dirac-delta distribution.

is characteristic as the Fourier spectrumppfjiven by

" 29V /20 (v +d/2)vY [ 2v ANL d
B = A (B artulg) weR, (19)

is positive for anyw € RY. Here,I" is the Gamma functiorK,, is the modified Bessel function of the
second kind of ordev, wherev controls the smoothness kf The case of = 3 in the Magrn class
gives the exponential kerné{(x,y) = exp(—|[x—Y||2/0), while v — « gives the Gaussian kernel.
Note that(i(x—y) in (19) is actually the inverse multiquadratic kernel, which is characteristic both
by Theorem 7 and Theorem 9.

By Theorem 9, the Sinc kernel in Table 2 is not characteristic, which isasy} to show using
other characterizations. By combining Theorem 7 with Theorem 9, it cadwen that the Sinc,
Poisson, Dirichlet, Ejer and cosine kernels are not integrally strictly pd. Therefore, faskation
invariant kernels oiRY, the integral strict positive definiteness of the kernel (or the lack of it) ca
be tested using Theorems 7 and 9.

Of all the kernels shown in Table 2, only the Gaussian, LaplaciarBapnd-spline kernels are
integrable and their correspondigpare computed using (4). The other kernels shown in Table 2
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are not integrable and their correspondipfpave to be treated as distributions (see Folland, 1999,
Chapter 9 and Rudin, 1991, Chapter 6 for details), except for the 8imekwhose Fourier trans-
form can be computed in tHe sensé.

Proof (Theorem 9)We provide an outline of the complete proof, which is presented in Section 3.5.
The sufficient condition in Theorem 9 is simple to prove and follows fronmoQany 4(i), whereas

we need a supplementary result to prove its necessity, which is preseritethina 16 (see Sec-
tion 3.5). Proving the necessity of Theorem 9 is equivalent to showingftsapp(A) C RY, then

P # Q, P,Q € & such thaty(P,Q) = 0. In Lemma 16, we present equivalent conditions for the
existence of? # Q such thaty(P,Q) = 0 if supp(A) € RY, using which we prove the necessity of
Theorem 9. |

The whole family of compactly supported translation invariant continuousdexlikernels on
RY is characteristic, as shown by the following corollary to Theorem 9.

Corollary 10 Suppose k- 0 satisfies Assumption 1 asdipgy) is compact. Then k is character-
istic.

Proof Sincey € Cp(RY) is compactly supported dR®, by (6),y € 2}. Therefore, by the Paley-
Wiener theorem (Theorem 29 in Appendix A)),is the restriction tdR9 of an entire function on
€Y, which meand] is an analytic function ofRY. Suppose sud@) is compact, which means
there exists an open sét,c RY such thaifi(x) = 0, Vx € U. But being analytic, this implies that

§(x) =0, Vx € RY, that is, = 0, which leads to a contradiction. Therefofecannot be compactly
supported, that is, supp) = RY and the result follows from Theorem 9. [ |

The above result is interesting in practice because of the computatioraitage in dealing with
compactly supported kernels. Note that proving such a general resutbmpactly supported
kernels orRY is not straightforward (maybe not even possible) with the other chaizatiens.

As a corollary to Theorem 9, the following result provides a method to aactstew character-
istic kernels from a given one.

Corollary 11 Letk, k and k satisfy Assumption 1. Suppose k is characteristic and Q. Then
k+ ki and k- ko are characteristic.

Proof Sincek, k; andk; satisfy Assumption 1k+ k; andk; - k also satisfy Assumption 1. In
addition,

() (xy) = kouy)kaly) = Wix—y) +ta(x=y) = [ e *Y Ca(A+A) (@)

(k-ka)(xy) = Kxyko(xy) = Wx—ya(x—y) = [ [ eI dA@)dAg(E)

(:a): /de—i(X—y)de(/\*/\z)(w)’
R

6. If f € L2(RY), the Fourier transform [f] := f of f is defined to be the limit, in the?-norm, of the sequendief, } of
Fourier transforms of any sequenft } of functions belonging tay, such thatf, converges in th&?-norm to the
given functionf € L2(RY), asn — . The functionf is defined almost everywhere @ and belongs ta.2(RY).
Thus, F is a linear operator, mapping?(RY) into L2(RY). See Gasquet and Witomski (1999, Chapter IV, Lesson
22) for details.
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where(a) follows from the definition of convolution of measures (see Rudin 199dti@e9.14 for
details). Sincek is characteristic, that is, supp) = RY, and suppA) C supd/A + A1), we have
sup /A + A1) = RY and thereforé + k; is characteristic. Similarly, since su@p) C supgA xA2),
we have supf\ « \) = RY and thereforek - k; is characteristic. |

Note that in the above result, we do not ndedor k, to be characteristic. Therefore, one can
generate all sorts of kernels that are characteristic by starting with aathestic kernelk.

So far, we have considered characterizationg& farch that it is characteristic t&. We showed
in Theorem 9 that kernels with su@l) C RY are not characteristic 6. Now, we can question
whether such kernels can be characteristic to some proper sghset??. The following result
addresses this. Note that these kernels, that is, the kernels with‘sup;ﬁ@d are usually not useful
in practice, especially in statistical inference applications, because td#dioos on2 are usually
not easy to check. On the other hand, the following result is of theoretitakst: along with
Theorem 9, it completes the characterization of characteristic kernelarth&rianslation invariant
onRRY. Before we state the result, we denBte Q to mean thaP is absolutely continuous w.r@.

Theorem 12 Let 2, .= {P € & : @p € LY(RY) UL?(RY), P <« A andsupfP) is compac}, where
) is the Lebesgue measure. Suppose k satisfies Assumptiorstiggl) C RY has a non-empty
interior, whereA is defined as in (11). Then Kk is characteristic# .

Proof See Section 3.5. [ ]

Although, by Theorem 9, the kernels with sipp C RY are not characteristic t6?, Theorem 12
shows that there exists a subsetZfto which a subset of these kernels are characteristic. This type
of result is not available for the previously mentioned characterizatiomsexample of a kernel
that satisfies the conditions in Theorem 12 is the Sinc ketned), = w which has sup\) =
[—0,a]. The condition that sugp) € RY has a non-empty interior is important for Theorem 12 to
hold. If sup@/\) has an empty interior (examples include periodic kernels), then one catrwan
P#Q,P,Q € 22 such thaty(P,Q) = 0. This is illustrated in Example 5 of Section 3.5.

So far, we have characterized the characteristic property of kermeksatisfy (a) sup@\) = RY
or (b) supgA) C RY with int(supgA)) # 0. In the following section, we investigate kernels that
have supp\) € RY with int(supdA)) = 0, examples of which include periodic kernels BAi.
This discussion uses the fact that a periodic functiof®Brcan be treated as a function @#, the
d-Torus.

3.3 Characterization for Translation Invariant k on Td

LetM = x‘j‘:l[o,rj) andt := (Ty,...,Tq). A function defined oM with periodic boundary condi-
tions is equivalent to considering a periodic function®fhwith periodt. With no loss of gener-
ality, we can choosg; = 21, V j which yieldsM = [0, 2m)9 =: TY, called thed-Torus. The results
presented here hold for any<0tj < o,V j but we choose; = 2 for simplicity. Similar to As-

sumption 1, we now make the following assumption.

Assumption 2 K(x,y) = W((X— Y)mod2n), Wherey is a continuous real-valued positive definite
function on M= T4,

Similar to Theorem 3, we now state Bochner’s theorenvios T9Y.
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Theorem 13 (Bochner) A continuous functiony : T¢ — R is positive definite if and only if

= 3 Ay, xe T, (20)

nezd

where Ay : Z9 — Ry, Ay(—n) = Ay(n) and 3,z Ay(n) < «. Ay are called the Fourier series
coefficients ofp.

Examples forp include the Poisson, Dirichletéer and cosine kernels, which are shown in Table 2.
We now state the result that defines characteristic kernel§' on

Theorem 14 Suppose k satisfies Assumption 2. Then k is characteristic (to the setBdrall
probability measures ofi%) if and only if Ay(0) > 0, Ay(n) >0, Vn# 0.

The proof is provided in Section 3.5 and the idea is similar to that of TheoreBaSed on the
above result, one can generate characteristic kernels by construtiimignée sequence of positive
numbers that are summable and then using them in (20). It can be seefafta? that the Poisson
kernel onT is characteristic while the Dirichlet,éfer and cosine kernels are not. Some examples
of characteristic kernels dii are:

(1) k(x,y) = 1Y) cogasin(x—y)), 0 < a < 1« Ay(0) =1, Ay(n) = %,Vn;& 0.
(2) k(x,y) = —log(1—2acogx—y) +a?), [a] < 1 < Ay(0) =0, Ay(n) = &, Vn #0.
(3) k(xy) = (1= (X~ Y)modzn)? < Ay(0) = 5, Ay(n) = 3, Vn#0.

(4) k(x,y) = ﬁg&xy) o >0« Ay(0) =1,Ay(n) =e " vn#£o0.

(5) k(xy) = Tt tnen) oy AL(0) = &, Ay(n) = gz, VN # 0.

The following result relates characteristic kernels and universakkedefined ord.

Corollary 15 Let k be a characteristic kernel satisfying Assumption 2 wighOA> 0. Then k is
also universal.

Proof Sincek is characteristic witt\y(0) > 0, we haveAy(n) > 0, Vn. Therefore, by Corollary 11
of Steinwart (2001)k is universal. |

Sincek being universal implies that it is characteristic, the above result showthéhaonverse is
not true (though almost true except tgs(0) can be zero for characteristic kernels). The condi-
tion on Ay in Theorem 14, that isf\y(0) > 0, Ay(n) > 0,Vn # 0 can be equivalently written as
supdAy) = Z9 or supgAy) = Z9\{0}. Therefore, Theorems 9 and 14 are of similar flavor. In
fact, these results can be generalized to locally compact Abelian grougamiizu et al. (2009b)
shows that a bounded continuous translation invariant kernel on a lawatipact Abelian group
G is characteristic to the set of all probability measures®if and only if the support of the
Fourier transform of the translation invariant kernel is the dual grdu@.oln our case(RY, +)
and(T9, +) are locally compact Abelian groups witlR?, +) and(Z9, +) as their respective dual
groups. In Fukumizu et al. (2009b), these results are also extendexthtation invariant kernels
on non-Abelian compact groups and the semigrﬁ&p
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integrally strictly pd

N

T.7 ? Foal ]

K & L"(M,P) ? |

L !
’ A .
VP e & and characteristic strictly pd
some r € [1, oo)<¢ éT;g
(C. 15 A

universal kernel (Steinwart, 2001)

Figure 1: Summary of the relations between various families of kernels isrshtimag with the
reference. The letters “C”, “F”, and “T” refer to Corollary, Footn@ed Theorem re-
spectively. For example, T. 7 refers to Theorem 7. The implications wirelopen
problems are shown with “?”A @ B indicates thafA is a dense subset & Refer to
Section 3.4 for details.

3.4 Overview of Relations Between Families of Kernels

So far, we have presented various characterizations of charactkeistals, which are easily check-
able compared with characterizations proposed in the earlier literaturgdi®et al., 2007b; Fuku-
mizu et al., 2008, 2009b). We now provide an overview of various lisehditions one can impose
on kernels (to be universal, strictly pd, integrally strictly pd, or charétte), and the implications
that relate some of these conditions. A summary is provided in Figure 1.

Characteristic kernels vs. Integrally strictly pd kernels:is clear from Theorem 7 that inte-
grally strictly pd kernels on a topological spadeare characteristic, whereas the converse remains
undetermined. Whek is translation invariant ok, however, then the converse holds. This is
because ik is characteristic, then by Theorem 9, sufsp= RY whereA is defined as in (11). Itis
easy to check that if sugp) = RY, thenk is integrally strictly pd.

Integrally strictly pd kernels vs. Strictly pd kernelBhe relation between integrally strictly pd
and strictly pd kernels shown in Figure 1 is straightforward, as one diretiws from Foot-
note 4, while the other direction is not true, which follows from Steinwart @hdstmann (2008,
Proposition 4.60, Theorem 4.62). Howevenfis a finite set, thek being strictly pd also implies
it is integrally strictly pd.

Characteristic kernels vs. Strictly pd kerneBince integrally strictly pd kernels are character-
istic and are also strictly pd, a natural question to ask is, “What is the relagiarekn characteristic
and strictly pd kernels?” It can be seen that strictly pd kernels needenchdracteristic because

the sinc-squared kernéd(x,y) = w on R, which has supf\) = [-0,0] C R is strictly pd
(Wendland, 2005, Theorem 6.11), while it is not characteristic by T#red. However, for any
generalM, it is not clear whethek being characteristic implies that it is strictly pd. As a special
case, ifM = R or M = T¢, then by Theorems 9 and 12, it follows that a translation invakant
being characteristic also implies that it is strictly pd.

Universal kernels vs. Characteristic kernel&retton et al. (2007b) have shown thakiis
universal in the sense of Steinwart (2001), then it is characteristianéioned in Section 3.3,

the converse is not true, that is, if a kernel is characteristic, then it neelde universal, which
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follows from Corollary 15. Note that in this cadd, is assumed to be a compact metric space. The
notion of universality of kernels was extended to non-compact domaiMidghelli et al. (2006):

k is said to be universal on a non-compact Hausdorff spdcéf, for any compacZ C M, the set
K(Z) :=spafk(-,y):ye€ Z} is dense irCy(Z) w.r.t. the supremum norm. It is to be noted that when
M is compact, this notion of universality is same as that of Steinwart (2001xhdik et al. (2006,
Proposition 15) have provided a characterization of universality fostation invariant kernels on
RY: kis universal ifA(supdA)) > 0, where is the Lebesgue measure ahds defined as in (11).
This means if a translation invariant kernel Bf is characteristic, that is, supp) = RY, then it

is also universal in the sense of Micchelli et al. (2006), while the c@avis not true (e.g., sinc-
squared kernel is not characteristic as ¥pp= [—0, 0] C R but universal in the sense of Micchelli
asA(supfA)) = 20 > 0). The relation between these notions for a general non-compactiétéius
spaceM (other tharRY) remains to be determined (whether or not the kernel is translation invariant)

Fukumizu et al. (2008, 2009b) have shown thé& characteristic if and only tH + R is dense
in L"(M,P) for all P € &7 and for some € [1,). Using this, it is easy to see that is dense in
L"(M,P) for all P € & and for some € [1, ), thenk is characteristic. Clearly, the converse is not
true. However, if constant functions are includedinthen it is easy to see that the converse is also
true.

Universal kernels vs. Strictly pd kernell:a kernel is universal, then it is strictly pd, which
follows from Steinwart and Christmann (2008, Definition 4.53, Propositiéd 4Exercise 4.11).
On the other hand, if a kernel is strictly pd, then it need not be univesgath follows from the
results due to Dahmen and Micchelli (1987) and Pinkus (2004) for T&gorels (Steinwart and
Christmann, 2008, Lemma 4.8, Corollary 4.57). Refer to Steinwart andt@fans (2008, Section
4.7, p. 161) for more details.

Recently, Sriperumbudur et al. (2010a,b) carried out a thorough saldiing characteristic
kernels to various notions of universality, addressing some open questientioned in the above
discussion and Figure 1. This is done by relating universality to the injesthkedding of regular
Borel measures into an RKHS, which can therefore be seen as a ligatema of the notion of
characteristic kernels, as the latter deal with the injective RKHS embeddprgladibility measures.

3.5 Proofs

First, we present a supplementary result in Lemma 16 that will be used te pireorem 9. The
idea of Lemma 16 is to characterize the equivalent conditions for the exastéfiftc~ (Q such that
vk(P,Q) = 0 when supp\) C RY. Its proof relies on the properties of characteristic functions,
which we have collected in Theorem 27 in Appendix A.

Lemma 16 Let Zy:= {P € 2 : @p € LY (RY) UL?(RY) andP < A}, where is the Lebesgue mea-
sure. Suppose k satisfies Assumption 1smiA) C RY, whereA is defined as in (11). Then, for
anyQ € 2, dP # Q, P € & such thaty (P, Q) = 0 if and only if there exists a non-zero function
8:RY — C that satisfies the following conditions:

(i) 8€ (LYRY)UL2(RY))NCy(RY) is conjugate symmetric, that i8(x) = B(—x), ¥x € RY,
(i) 8¥ e LY(RY) N (LARY)UC,(RY)),
(iii) Jra [B(X)[2dA(X) =0,
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(iv) 6(0) =0,

(v) infycge{8"(x) +a(x)} > 0.

Proof DefineL! :=L1(RY), L?:=L%(RY) andCy := Cp(RY).

(<) Suppose there exists a non-zero functiosatisfying(i) — (v). For anyQ € %%,, we have
@ € L*UL? and@y € Cy (by Theorem 27), that ispy € (L1UL?)NCp. Now, consider the case
of @g € L1 N Cp. Sinceqg € LY, by the inversion theorem for characteristic functions (Dudley,
2002, Theorem 9.5.4)Q is absolutely continuous w.ri. If qis the Radon-Nikodym derivative
of Q w.rt. A, theng = [@g]" € LY. In addition, by the Riemann-Lebesgue lemma (Lemma 28 in
Appendix A), we havey € Co(RY)  Cp, which therefore implieg € L1 N Cp. Whengyg € L>NGCy,
the Fourier transform in the? sense (see Footnote 6) implies that [@y]" € L1 NL2. Therefore,
qe LN (L2UGy). Definep:=q+6Y. Clearlyp € L1 N (L2UG). In addition,gp = p= G+ 6" =
@o +6 € (L'UL?)NC,. Sinced is conjugate symmetri@" is real valued and so is. Consider

[ P dx= /Rd q(x) dx+ /Rd 8" (x)dx=1+6(0) = 1.

(v) implies thatp is non-negative. Thereforg, is the Radon-Nikodym derivative of a probability
measureé? w.r.t. A, whereP is such thal® # Q andP € &. By (12), we have

V(B.Q) = [ 1000~ @9 PaA0) = [ | 1800]2AAM

(=) Suppose that there exists# Q, P,Q € &g such thaty(P,Q) = 0. Defined := @ — @p. We
need to show that satisfies(i) — (v). Recalling Theorem 27 in the appendiX,Q € &, implies
@, @ € (LUL?)NCy and p,g € L1N(L2UCy). Therefore, = @ — @y € (L' UL NG, and
8Y = p—qe LN (L2UCy). By Theorem 27 (see Appendix Adp andgg are conjugate symmetric
and so i. Therefored satisfieqi) and8" satisfieqii). 0 satisfiegiv) as

8(0) = /0”00 dx= [ (p(x) ~q0x))dx=0,
Non-negativity ofp yields(v). By (12),yk(P,Q) = 0 implies(iii) . |

Remark 17 Note that the dependence@®bn the kernel appears in the form of (iii) in Lemma 16.
This condition shows that(supg®) NsupgA)) = 0, that is, the supports d and A are disjoint
w.rt. the Lebesgue measure, In other words,supg®) C cl(R9\supdA)). So, the idea is to
introduce the perturbation® over an open set, U whe®(U) = 0. The remaining conditions
characterize the nature of this perturbation so that the constructed meass g+ 6", is a valid
probability measure. Conditions (i), (ii) and (iv) simply follow frdim= @ — @g, while (v) ensures
that p(x) > 0, Vx.

Using Lemma 16, we now present the proof of Theorem 9.

Proof(Theorem 9) The sufficiency follows from (12): if sug\) = RY, theny2 (P, Q) = [ |@p(X) —
@o(X)|?dA(X) = 0= @ = @y, a.e. Recalling from Theorem 27 that andqy are uniformly con-
tinuous onRY, we have thaP = Q, and thereford is characteristic. To prove necessity, we need
to show that if supp\) C RY, then there exist® # Q, P,Q € & such thaty(P,Q) = 0. By
Lemma 16, this is equivalent to showing that there exists a non&satisfying the conditions in
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Lemma 16. Below, we provide a constructive procedure for si&when supp\) C RY, thereby
proving the result.
Consider the following functionfg ,,, € C* (RY) supported irfuwy — B, wo + B,

a2

g cop (@ I_thl (wy) with hap(y) := 1{_aq(y—b)e & 02,

wherew = (wy,...,Wq4), Wo = (Wo.1,...,Wod), B= (B1,...,Bd),a€ Ry, be R andy € R. Since
supgA) € RY, there exists an open ddtc RY such that\(U) = 0. So, there exist8 € RY, and

wo > B (element-wise inequality) such thiaty — 3, + ] C U. Let
0 =a(fguw + fp—w) a € R\{0},

which implies supf®) = [—uwo — B, —p + B] U [t — B, wp + B] is compact. ClearlP € 4 C .4
which implies8Y € .7 c LY(RY) nL2(RY). Therefore, by constructior§ satisfies(i) — (iv) in
Lemma 16. Sincgrq6"(x)dx = 8(0) = 0 (by construction)p" will take negative values, so we
need to show that there exigfse &7, such tha{v) in Lemma 16 holds. Lef be such that it has a
density given by

aq(x) =G rl(lﬂlj)ll € Nwhere G =f|1</R(l+|Xj|2)"de)la

andx = (x,...,Xq). It can be verified that choosirgsuch that

G
25uR|M-1h, o)) (L-+ g [2)' cos(e x|
ensures tha satisfiegv) in Lemma 16. The existence of finiteis guaranteed d%o € 71 C .71

which implieshy, € 1, Va. We conclude there exists a non-zéfas claimed earlier, which
completes the proof. |

0<|al <

< 0o,

To elucidate the necessity part in the above proof, in the following, weeptessimple example
that provides an intuitive understanding about the constructiénsoth that for a give®@, P £ Q
can be constructed wity(P,Q) =0

Example 4 LetQ be a Cauchy distribution i}, that is, dx) = with characteristic function,

1+x2)
@ (W) = fe @lin LY(R). Lety be a Sinc kernel, that ig)(x) = \FS'”(BX) with Fourier transform
given byi(w) = 1_g g (w) andsupdP) = [-B,B] S R. Let6 be

0(c) = 55 |1 (@] + Bleo-— ) ~ (et ).

where|wy| > (%) B,N > 2anda # 0. ) represents the N-fold convolution. Note tBas such
thatsupg8) Nsupd ) is a null set w.r.t. the Lebesgue measure, which satisfies (iii) in Lemma 16. |
is easy to verify tha® € L1(R) N L?(R) NCy(R) also satisfies conditions (i) and (iv) in Lemma 16.
6" can be computed as
Bx
ZNG Sln ( )
8" (X) = ——= sin(wWeX) ———=,
(%) omt (woX) N
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and8” € LY(R) NL%(R) NCy(R) satisfieq(ii) in Lemma 16. Choose
V2
N sug(‘(1+x2)sin(wox)sind\‘ (%) 7

O0<|al <

__ sin(m)

wheresingx) := =1 Define gx) := sin(wpx)sinc" (g—;‘[) Since g= .71, 0 < sup, | (1+x2)g(x)| <
o and, thereforeq is a finite non-zero number. It is easy to see thaatisfies(v) of Lemma 16.
Then, by Lemma 16, there exiBtst Q, P € &, given by

0=t 2% x)SinN(BZX)
PO= 1) T o T
with @p = @ + 0 = @ +i6; whered, = Im[6] and @r € L}(R). So, we have constructét# Q,
such thaty(P,Q) = 0. Figure 2 shows the plots df, §J, 6, 6", g, @y, p and|@p| for B =21, N =2,
wp = 4mando = .

9

We now prove Theorem 12.

Proof(Theorem 12)SupposelP # Q, P,Q € 421 such thaty(P,Q) = 0. Since any positive Borel
measure oRY is a distribution (Rudin, 1991, p. 157, andQ can be treated as distributions
with compact support. By the Paley-Wiener theorem (Theorem 29 in AfpeX), @r and @y
are restrictions t@®Y of entire functions orC9. Let 8 := @r — @p. Sincey(P,Q) = 0, we have
from (12) that/gq |8(w)|>dA(w) = 0. From Remark 17, it follows that su@@ C cl(RY\supgA)).
Since supp\) has a non-empty interior, we have sg@pC RY. Thus, there exists an open set,
U c RY such thatB(x) = 0,Vx € U. Since® is analytic onRY, we haved = 0, which means
¢r = g = P = Q, leading to a contradiction. So, there does not éRigtQ, P, Q € &1 such that
Yk(P,Q) = 0, andk is therefore characteristic t&;. [

The condition that sugp\) has a non-empty interior is important for Theorem 12 to hold. In the
following, we provide a simple example to show tffaf Q, P,Q € &7, can be constructed such
thatyk(P,Q) = 0, if kis a periodic translation invariant kernel for which(stipgA)) = 0.

Example 5 Let Q be a uniform distribution on—f,p] C R, that is, x) = 2—1[3]1[,[37,3] (x) with its

characteristic functiongg(w) = 15" ¢ | 2(R). Lety be the Dirichlet kernel with period

= s
(24D .
1, wheret < B, that is, Y(x) = S'”Smé and (w) = v2my'__ 6(w— @) with supg(@) =
{@ Lje {O,il,...,il}}. Clearly,supd () has an empty interior. Led be
8v20 sty Sir? (<)
0w =T (%) Ter
with a < 2—1[3 It is easy to verify tha® € L1(R) N L?(R) NCy(R), s08 satisfies(i) in Lemma 16.

Sincef(w) =0atw= @, | € Z, sup0) NsupgP) C supd ) is a set of Lebesgue measure zero,
so (i ) and(iv) in Lemma 16 are satisfie@. is given by

M—a, —-T1<x<0
vV _ _ I
e(X)_ G_M’ nggr
0, otherwise,
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Figure 2: (a-§ Y and its Fourier spectrum, (b-b) 6 andi6, (c-c) the Cauchy distributiorg and
its characteristic functiopy, and (d-d) p=q+6Y and|@p|. See Example 4 for details.
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where8” € L1(R) NL%(R) NCp(R) satisfies(ii) in Lemma 16. Now, considerspq+ 6", which is
given as

5. € [-B.~TU[t.B]
2 s
=) eA-a xelrg
1 2a|x—}]
Otz ——7 x € [0,7]
0, otherwise.
Clearly, p(x) > 0,Vx and [ p(x)dx=1. @ = @p+ 6 = @y +i6 whereB =Im[0] and @ €

L?(R). We have therefore construct®d“ Q, such thaty (P, Q) = 0, whereP and@ are compactly
supported inR with characteristic functions ini(R), that is,, Q € 4?;. Figure 3 shows the plots
of §, §, 6, 6", g, @y, pand|gp| fort=2,1=2,p=3anda = 3.

We now present the proof of Theorem 14, which is similar to that of The&e

Proof (Theorem 14)(<«) From (10), we have

BE.Q = [[ wx-ydE-QxdE-0)

@ (x=y)Tn -

] 3 Ame e - 0w de-Q))

(b) —ix"n ?

= 3 Al /T NP - Q)9

D 2™y Ay Ae(n) — Ag(m) 2, (21)

nezd
where we have invoked Bochner’s theorem (Theorem 18)inFubini’s theorem ir(b) and
. 1 —inTx d
As(n) = (ZT[)d/Tde dP(x), ne 79,

in (c). Ap is the Fourier transform dP in T9. SinceAy(0) > 0 andAy(n) > 0,¥n # 0, we have
Ap(n) = Ag(n), Vn. Therefore, by the uniqueness theorem of Fourier transform, wekhavQ.

(=) Proving the necessity is equivalent to proving that,if0) > 0, Ay(n) > 0, Vn # O is violated,
thenk is not characteristic, which is equivalent to showing &t Q such thaty(P,Q) = 0. Let
Q be a uniform probability measure wit{x) = ﬁ, vx € T9. Letk be such thafy(n) = 0 for
somen = ng # 0. Define

._ Ag(n), n# =£n
Ap(n) = { Ag(n)+86(n), n= ing ’

whereAg(n) = ) 7800 @and@(—ng) = B(ng). So,
ix™n 1 ix"no —ix"ng
p(x) = nede p(n)e* " (2T[) +8(ng)e™ ™ +6(—ng)e )

Choosef(ng) =ia, a € R. Then,p(x) = o 1) —2asin(x"ng). Itis easy to check that integrates
to one. Choosingp| < ﬁ ensures thap(x) > 0,Vx € T9. By usingAg(n) in (21), it is clear that

Yk(P,Q) = 0. ThereforedP # Q such thaty(P,Q) = 0, which meangk is not characteristic. W
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Figure 3: (a-§ Y and its Fourier spectrum, (b-b) 8" andi®, (c-¢) the uniform distributiong and
its characteristic functiopy, and (d-d) p=q+6Y and|@p|. See Example 5 for details.
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4. Dissimilar Distributions with Small i

So far, we have studied different characterizations for the ké&rsgth thaty is a metric on#. As
mentioned in Section 1, the metric propertypfs crucial in many statistical inference applications
like hypothesis testing. Therefore, in practice, it is important to use clegist kernels. However,
in this section, we show that characteristic kernels, while guarantgrit@gbe a metric on#?,
may nonetheless have difficulty in distinguishing certain distributions on the dffnite samples.
More specifically, in Theorem 19 we show that for a given keknahd for anye > 0, there exist

P # Q such thaty(P,Q) < €. Before proving the result, we motivate it through the following
example.

Example 6 Let P be absolutely continuous w.r.t. the Lebesgue measur® evith the Radon-
Nikodym derivative defined as

pP(X) = q(x) +aq(x) sin(v), (22)

where g is the Radon-Nikodym derivativeoiv.r.t. the Lebesgue measure satisfyifig)g= q(—x), VX
anda € [-1,1]\{0}, v € R\{0}. Itis obvious thaf® # Q. The characteristic function @ is given
as

02(0) = 93(0) — 3 [P~V — (w4 VD) € .

where @y is the characteristic function associated with Note that with increasingv|, p has

higher frequency components in its Fourier spectrum, as shown in Figurn Figure 4, (a-c)

show the plots of p when-g U[—1,1] (uniform distribution) and (ac’) show the plots of p when

g=N(0,2) (zero mean normal distribution with varian@for v =0,2 and7.5witha = %
Consider the B-spline kernel orR given by Kx,y) = Y(x—y) where

_J 1= X<1
Wix) = { 0, otherwise ’ (23)
with its Fourier transform given by
B(o) = 2\/2sint
VO ="Tm

Sincey is characteristic toZ, y(P,Q) > 0 (see Theorem 9). However, it would be of interest to
study the behavior ofi(P,Q) as a function of. We study the behavior gf(P,Q) through its
unbiased, consistent estimafoyﬁu(m, m) as considered by Gretton et al. (2007b, Lemma 7).

Figure 5(a) shows the behavior gf ,(m,m) as a function ob for = U[-1,1] and g= N(0,2)
using the B-spline kernel in (23). Since the Gaussian kerngt, k) = e~ is also a character-
istic kernel, its effect on the behavioryifu(m, m) is shown in Figure 5(b) in comparison to that of
the Bi-spline kernel.

In Figure 5, we observe two circumstances under wigiahay be small. FirstZ (m,m) decays
with increasingv|, and can be made as small as desired by choosing a sufficientlylarggecond,

7. Let{Xj}L; and{Y;}[, be random samples drawn i.i.d. frdandQ respectively. An unbiasesmpirical estimate
of yi(P,Q), denoted agg ,(m,m) is given byyZ ,(m,m) = m 31 h(Z1,Z;), which is a one-sample -statistic
with h(Z;,Z;) == k(X4,Xj) +k(1,Yj) —k(X,Y)) —k(Xj,Y), whereZy,...,Zn arem ii.d. random variables with
Zj = (X],Yj). See Gretton et al. (2007b, Lemma 7) for details.
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Figure 4: (a)g = U[-1,1], (d) g=N(0,2). (b-c) and (bc’) denotep(x) computed agp(x) =
q(x) + %q(x) sin(vix) with q=U[—1,1] andq = N(0, 2) respectivelyv is chosen to be 2
in (b,0) and 75 in (c,¢). See Example 6 for details.

0.3

—e— Uniform —e— Uniform
- 8- Gaussian - 8- Gaussian

0.25

(m,m)

3

~20.15

@ (b)

Figure 5: Behavior of the empirical estimate\,ﬁﬂ[”,@) w.r.t. v for (a) theB;-spline kernel and (b)
the Gaussian kerneP is constructed fronf) as defined in (22). “Uniform” corresponds
to Q = U[—1,1] and “Gaussian” corresponds @ = N(0,2). m= 1000 samples are
generated fronP andQ to estimatey2 (P, Q) throughyﬁu(m, m). This is repeated 100
times and the averagéyu(m, m) is plotted in both figures. Since the quantity of interest
is the average behavior qiu(m, m), we omit the error bars. See Example 6 for details.

in Figure 5(a),y§7u(m, m) has troughs av = %2 wherewg = {w: Ji(w) = 0}. Sinceyzk’u(m, m) is a
consistent estimate qﬁ(IP’,@), one would expect similar behavior froyfn(IP’,Q). This means that,

although the B-spline kernel is characteristic t67, in practice, it becomes harder to distinguish
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betweenP and Q with finite samples, wheli is constructed as in (22) with =
can observe from a straightforward spectral argument that the trounghé
arbitrarily deep by widening g, when g is Gaussian.

£ In fact, one

Q) can be made
For characteristic kernels, althougf(P,Q) > 0 whenP # Q, Example 6 demonstrates that one
can construct distributions such théL(m, m) is indistinguishable from zero with high probability,
for a given sample sizen. Below, in Theorem 19, we explicitly construBt# Q such thatP¢, —
Qd| is large for some largk butyi(P, Q) is arbitrarily small, making it hard to detect a non-zero
value ofyk(P,Q) based on finite samples. Hedg, € L?(M) represents the bounded orthonormal
eigenfunctions of a positive definite integral operator associatedkwBased on this theorem, for
example, in Example 6, the decay modeypofor large|v| can be investigated.

Consider the formulation ofs with F = JFy in (1). The construction of for a givenQ such

thatyx(P, Q) is small, though not zero, can be intuitively understood by re-writing (1) as

W(P, Q) = supw-
tesc [ fllac
WhenP #£ Q, |Pf —Qf| can be large for somé € H. However,y(P,Q) can be made small by
selectingP such that the maximization dw over H requires anf with large||f||sc. More
specifically, higher order eigenfunctions o# tﬁé kergelfor largel) have large RKHS norms, so, if
they are prominent i? andQ (i.e., highly non-smooth distributions), one can expgr@®, Q) to be
small even when there exists bfor which [Pd; — Q¢ | i
lemma, which we quote from Gretton et al. (2005b, Lemma 4).

Lemma 18 (Gretton et al., 2005b)Let F be the unit ball in an RKH$J, k) defined on a com-
pact topological space, M, with k being measurable. et L?(M, ) be absolutely bounded
orthonormal eigenfunctions arg be the corresponding eigenvalues (arranged in decreasing or-
der for increasing I) of a positive definite integral operator associated widnd ac-finite mea-
sure, M. Assumkl‘1 increases super-linearly with I. Then, foref§ where f(x) = 357, ﬂq)j(x),

fj = (f,9)12m. We haves$; |fj| < o and for everye > 0, 3lo € N such that fi| < g if | > lo.

Theorem 19 (P # Q can have arbitrarily small y) Suppose the conditions in Lemma 18 hold.
Then there exist probability measur@sZ Q defined on M such thak(P,Q) < € for any arbi-
trarily small € > O.

Proof Supposey be the Radon-Nikodym derivative associated v@gthv.r.t. theo-finite measureyl
(see Lemma 18). Let us constryx(ix) = q(X) + a;e(x) 4+t (X) wheree(x) = Iu(X). ForPto be a
probability measure, the following conditions need to be satisfied:

[+ 11 (] dpig =0, (24
min () + e + 161 (9] = .

Expandinge(x) and f (x) in the orthonormal basig; };>,, we gete(x) = 3>, 8¢ (x) and f (x) =
Yie1 fidi(x), whered = (e,¢1) 2w andfi := <f,¢|>|_2(M¢u). Therefore,

Pf—Qf = /Mf(x)[a|e(x)+T¢|(x)}du(x)

/M[O(IJZL i (X) 41 (x ][thﬁbt ] :Glgléjﬂ+rﬁa (25)
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where we used the fact thalj, ¢t) 2wy = Ojt (here,d is used in the Kronecker sense). Rewriting
(24) and substituting foe(x) gives

| e + 1 00] i = [ etfane(x) + (0] dux) = 3 &-+8 =0,
M M =1

which implies B
18
Y&

Now, let us considePd; — Qb = a,& + 1. Substituting for, gives

Poy — Q¢ = 18 — zjo_e‘ézzral—rpu,

]

wherepy 1= 22?612. By Lemma 1857, [§| <o = 3% ;& < , and choosing large enouglives

|pu | < n, Vt, for any arbitraryn > 0. Therefore|P¢; — Q| > 1—n fort =1 and|Pd; — Qd¢| < n
for t # 1, which mean® # Q. In the following, we prove thayk(P,Q) can be arbitrarily small,
though non-zero.

Recall thatyi(P, Q) = supf, <1 |[Pf — Qf|. Substituting (26) in (25) and replacingf — Qf|
by (25) iny(P,Q), we have

© fZ
P,Q) = sup fi L <1 (27)
" {we 1{ ,; " zl" }

where we used the definition of RKHS norm @§||s¢ := 35 “ andv| =9 —pji. (27)is

a convex quadratically constrained quadratic prograr{lfmjzl. Solving the Lagrangian yields
fNj _ i)

VZ;lWMJ

. Therefore,

Yk(P,Q) —T\/Z ijl)\j —T\/N 2pi A+ ijlxj 'l"io
j=1

becausgi) by choosing sufficiently largk |p;j | < €, V j, for any arbitrarye > 0, and(ii) Aj — 0 as
| — oo (Schdlkopf and Smola, 2002, Theorem 2.10). Therefore, we have catstfi # Q such
thatyx(P,Q) < € for any arbitrarily smalk > 0. [ ]

5. Metrization of the Weak Topology

So far, we have shown that a characteristic kekniglduces a metrigx on &2. As motivated in
Section 1.1.3, an important question to consider that is useful both in thaedrpractice would
be: “How strong or weak ig related to other metrics a#??” This question is addressed in Theo-
rem 21, where we compaygto other metrics or” like the Dudley metricf§), Wasserstein distance
(W), total variation distanceT(V), and show thayy is weaker than all these metrics (see Footnote 3
for the definition of “strong” and “weak” metrics). Singgis weaker than the Dudley metric, which
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is known to induce a topology o#? that coincides with the standard topology 6, called the
weak* (weak-star) topology (usually called the weak topology in probability thetmg next ques-

tion we are interested in is to understand the topology that is being inducgd loyparticular, we

are interested in determining the conditionslofor which the topology induced by coincides

with the weak topology o”. This is answered in Theorems 23 and 24, where Theorem 23 deals
with compactM and Theorem 24 provides a sufficient conditionkowhenM = RY. The proofs

of all these results are provided in Section 5.1. Before we motivate thefaetds study and its
implications, we present some preliminaries.

Theweak topologyn &7 is the weakest topology such that the niap- |, f dP is continuous
for all f € Cy(M). For a metric spacéM,p), a sequenc®, of probability measures is said to
converge weakljo P, written asP, = P, if and only if fy, f dP — [, f dP for everyf € Co(M). A
metricy on & is said tometrizethe weak topology if the topology induced fgoincides with the
weak topology, which is defined as follows: if, fBtP1,Ps,... € 2, (Py — P < y(Py,P) =5 0)
holds, then the topology induced lggoincides with the weak topology.

In the following, we collect well-known results on the relation between varioetrics onZ,
which will be helpful in understanding the behavior of these metrics, bothregbect to each other
and to ours. LetM, p) be a separable metric space. Hrehorov metricon (M, p), defined as

¢(P,Q):=inf{e > 0:P(A) < Q(A®) +¢, VBorel setA},

metrizes the weak topology o (Dudley, 2002, Theorem 11.3.3), whePeQ € & and A® .=
{yeM:p(x,y) < € for somex € A}. Since the Dudley metric is related to the Prohorov metric as

2B(.Q) <<(P,Q) < 2//BF0) (29

it also metrizes the weak topology @i (Dudley, 2002, Theorem 11.3.3). The Wasserstein distance
and total variation distance are related to the Prohorov metric as

(P,Q) <W(P,Q) < (diamM) + 1)¢(P,Q), (29)

and
¢(P,Q) < TV(P,Q),

where dianiM) := sup{p(x,y) : X,y € M} (Gibbs and Su, 2002, Theorem 2). This me#hsnd
TV are stronger than, while W and¢ are equivalent (i.e., induce the same topology) whkis
bounded. By Theorem 4 in Gibbs and Su (2002y,andW are related as

W(P,Q) < diam(M)TV(P,Q),

which mean®V andTV are comparable i1 is bounded. See Shorack (2000, Chapter 19, Theorem
2.4) and Gibbs and Su (2002) for further detail on the relationship betwa@us metrics or”.

Let us now consider a sequence of of probability measurd® & := (1— 1) & + 18, and let
P := . It can be shown thdi(P,,, P) — 0 asn — c which mean®, — P, while W(P,,,P) = 1 and
TV(P,,P) =1 for all n. y(Pn,P) can be computed as

k(0,0) + k(n,n) — 2k(0,n)
n? ‘

VF0P) = 5 [ [ Koxy)d(8o—80) (¥ d(Bo— )(y) =
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If kis, for example, a Gaussian, Laplacian or inverse multiquadratic kernalyt{i&,,P) — 0 as
n— o, This example shows thgt is weaker thaiV andTV. It also shows that, for certain choices
of k, ykx behaves similarly t§, which leads to several questions: Dggsnetrize the weak topology
on #? What is the general behavior gf compared to other metrics? In other words, depending
onk, how weak or strong ig« compared to other metrics o#? Understanding the answer to these
guestions is important both in theory and practicd iff such thaty metrizes the weak topology on
Z, then it can be used as a theoretical tool in probability theory, similar to the@Ryand Dudley
metrics. On the other hand, the answer to these questions is critical in applécasidt will have a
bearing on the choice of kernels to be used. In applications like density éstirmane would need
a strong metric to ascertain that the density estimate is a good representatiertraétinderlying
density. For this reason, the total variation distance, Hellinger distancellya€k-Leibler distance
are generally used. However, it is not always possible to show theeaganwce of a density estimate
to the true underlying density using a stronger metric and so, in such casespuld need a weak
metric to analyze the quality of estimate. Therefore, studying the relation betyesnd these
other metrics will provide an understanding of the choice of kernels to be, Wepending on the
application.

With the above motivation, we first compayeto 3, W and TV. Sincef is equivalent toc,
we do not comparg to ¢. Before we provide the main result in Theorem 21 that comparés
other metrics, we present an upper boundioim terms of the coupling formulation (Dudley, 2002,
Section 11.8), which is not only useful in deriving the main result but alseresting in its own
right.

Proposition 20 (Coupling bound) Let k be measurable and bounded on M. Then, forlay €
2,

WB.Q) < inf [ [ K0 k) lacdhixy). (30)

pe L(P,Q)

whereL(P,Q) represents the set of all laws on ¥M with marginalsP and Q.

Proof Foranype L(P,Q), we have

‘/fdP @' ‘// duxy' [ 1160~ 1)l duxy

= [ [ K20 = KCad duiey) < 1 Flc [ [ IKCo0) =Ky lacdbiey). (3D

Taking the supremum ovdre Fy and the infimum ovep e L(P,Q) in (31), wherdP,Q € &2, gives
the resultin (30). |

We now present the main result that compage® 3, W andTV.

Theorem 21 (Comparison ofy to B, W and TV) Assumeupy k(x,x) <C < o, where k is mea-
surable on M. Let

Then, for anyP,Q € &2,

(i) W(P,Q) <W(P,Q) < /V2(P,Q)+4C if (M,p) is separable.
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(ii) (V;f“’% < B(P,Q) < 2(3(P,Q) + 4C)* if (M, p) is separable.

(i) w(P,Q) <VCTV(P,Q).
The proof is provided in Section 5.1. Below are some remarks on Thedtem 2

Remark 22 (a) First, note that, since k is bounded, p) is a bounded metric space. In addition,
the metric,p, which depends on the kernel as in (32), is a Hilbertian m&tfRerg et al., 1984,
Chapter 3, Section 3) on M. A popular example of such a metp¢xisy) = ||x— |2, which can be
obtained by choosing M to be a compact subs@®bénd kx,y) = xTy.

(b) Theorem 21 shows thgt is weaker thar3, W and TV for the assumptions being made on
k andp. Note that the result holds irrespective of whether or not the kernelasacteristic, as
we have not assumed anything about the kernel except it being rabkesand bounded. Also,

it is important to remember that the result holds wigeis Hilbertian, as mentioned in (32) (see
Remark 22(d)).

(c) Apart from showing thay is weaker thar3, W and TV, the result in Theorem 21 can be used
to bound these metrics in termswf For B, which is primarily of theoretical interest, we do not
know a closed form expression, and likewise a closed form expressitv feknown only folR
(Vallander, 1973F Sincey is easy to compute (see (9) and (10)), bounds on W can be obtained
from Theorem 21 in terms gk. A closed form expression for TV is availablePifand Q have
Radon-Nikodym derivatives w.r.t.&finite measure. However, from Theorem 21, a simple lower
bound can be obtained on TV in termsypfor anyP,Q € £.

(d) In Theorem 21, the kernel is fixed apds defined as in (32), which is a Hilbertian metric. On
the other hand, suppose a Hilbertian mefiés given. Then the associated kernel k can be obtained
fromp (Berg et al., 1984, Chapter 3, Lemma 2.1) as

1. - -
k(x.y) = 5[6(x.%0) +B7(y,%0) — PA(XY), X.%:%0 € M, (33)
which can then be used to compuyite

The discussion so far has been devoted to relaginig 3, W andTV to understand the strength
or weakness ofi w.r.t. these metrics. In a next step, we address the second question of whe
Yk metrizes the weak topology a#”. This question would have been answered had the result in
Theorem 21 shown that under some condition&op is equivalent tg3. Since Theorem 21 does
not help in this regard, we approach the problem differently. In the fatigywe provide two results
related to the question. The first result states that wiMgip) is compactyy induced by universal
kernels metrizes the weak topology. In the second result, we relax thepissn of compactness
but restrict ourselves thl = RY and provide a sufficient condition dnsuch thaty, metrizes the
weak topology onZ?. The proofs of both theorems are provided in Section 5.1.

Theorem 23 (Weak convergence-l)Let (M, p) be a compact metric space. If k is universal, then
Yk metrizes the weak topology @#.

8. A metricp on M is said to beHilbertian if there exists a Hilbert spacé] and a mappingp such thatp(x,y) =
[|P(X) — D(Y)|IH, VXY € M. In our caseH = 3 and® : M — H, x — K(-,X).

9. The explicit form for the Wasserstein distance is knownfrp(x,y)) = (R, [x—y|), and isW(P,Q) = [ |Fp(X) —
Fo(X)|dx, whereFp(x) = P((—,X]). It is easy to show that this explicit form can be extende(Rt, || - ||1).
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From Theorem 23, it is clear thgt is equivalent tog, B andW (see (28) and (29)) wheM is
compact andk is universal.

Theorem 24 (Weak convergence-ll)Let M = RY and Kx,y) = W(x —Y), wherey € Co(RY) N
L1(RY) is a real-valued bounded strictly positive definite function. If there existssal buch that

1
re P(0) (14 ]w2)

thenyk metrizes the weak topology GA.

dw < oo, (34)

The entire Magrn class of kernels in (18) satisfies the conditions of Theorem 24 amickfoine,
the corresponding, metrizes the weak topology af?. Note that Gaussian kernels &Y do not
satisfy the condition in Theorem 24. The characterizatiokfof general non-compact domaikbk
(not necessarilikY), such thati metrizes the weak topology o, still remains an open problem.

5.1 Proofs
We now present the proofs of Theorems 21, 23 and 24.

Proof (Theorem 21)(i) When (M, p) is separableW(P,Q) has a coupling formulation (Dudley,
2002, p. 420), given as

W(P,Q) = inf / ) di( 35

(P, pelp@ P(X,y) dH(x,y), (35)

whereP,Q € {P € & : [yp(X,y)dP(y) < o, ¥x e M}. In our casep(x,y) = [|K(:,X) — K(-,y)| 5.
In addition, (M, p) is bounded, which means (35) holds for BIQ € &2. The lower bound
therefore follows from (30). The upper bound can be obtained asafsllcConsideWV (P,Q) =
infue . e,0) [fw [IK(-,X) = K(-,¥)[|acd(x, ), which can be bounded as

WE.Q) < [ K20~ K6y lacdP( dQ0)
2 ([ ke -k lBaroosam)]
< /kxx (P+Q)(x 2//kxydIP’ d@()]
< REQ+ [[ (kx-kxy)dEeP+QeQ(x y)]%
< EQ (36

where we have used Jensen’s inequality (Folland, 1999, p. 108).in
(i) Let T := {f : ||f||s¢ < o} andG := {f : || f||pL < »}. For f € F, we have
[0 —fy)l (K%)= k(. Y)) ol
f = sup————+sup|f(x)|=su + sup|{f,k(-,x
Il = ooy o T =S o) —KCylloe T (K00
< (1+VO)|flgc < oo,
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which impliesf € G and, thereforef C G. For anyP,Q € &,

W(P,Q) = sup{|Pf—Qf|: feF}
sup({|Pf —Qf|: ||f|lsL < (1+VC), f € F}
sup{|Pf —Qf|: ||f||lsL < (1+VC), f € G}
= (1+VO)B(P,Q).

The upper bound is obtained as follows. For @) € &2, by Markov’s inequality (Folland, 1999,
Theorem 6.17), for alt > 0, we have

UK, X) k(- Y)lloc > €) < [ [ [k = KC.y)lediey)

whereX andY are distributed a® and Q respectively. Choose such thate® = [J,, ||k(-,X) —
K(-,y)|13.dp(x,y), such that(|[K(-,X) —K(-,Y)||s¢ > €) < &. From the proof of Theorem 11.3.5 in
Dudley (2002), wheriM, p) is separable, we have

H(P(X,Y) > €) <& = ¢(P,Q) <&,

which implies that

(%ggQ/‘|w K y)lcauey) )

(/10— .yl dam)) - < (6r.0)-+40)’,

where(b) follows from (36). The result follows from (28).

q(P,Q)

IN

IN

(iif) The proof of this result was presented in Sriperumbudur et al. (200%th)s provided here
for completeness. To prove the result, we use (30) and the coupling ladiamufor TV (Lindvall,

1992, p. 19), given as
1
~TV(P,Q)= inf X£Y),
s V(PQ) = inf HXZY)
where L(P,Q) is the set of all measures ot x M with marginalsP andQ. Here,X andY are

distributed a® andQ respectively. Consider

k(%) = KCY)ll9¢ < Ly [KG%) =K 130 < 2VCT sy 37
Taking expectations w.rjtand the infimum ovep € £(P,Q) on both sides of (37) gives the desired
result, which follows from (30). |

Proof (Theorem 23)We need to show that for measut®sPy, P, ... € &, P, - P if and only
if Y(Pn,P) — 0 asn — . One direction is trivial a®n Xp implies yi(Pn,P) — 0 asn — co.
We prove the other direction as follows. Sirkés universal,H is dense irCy(M), the space of
bounded continuous functions, w.r.t. the uniform norm, that is, forfaayCp(M) and everye > 0,
there exists @ € H such thaf| f — g||. < €. Therefore,

Pnf —Pf| = |Pn(f—9g)+P(g— f)+ (Png—Pg)|
Pn|f —g|+P|f —g| + |Png - Pg|
2e + |Png—Pg| < 2&+ |9l 5cYk(Pn, P).
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Sinceyk(Pn,P) — 0 asn — o« ande is arbitrary,|P,f —Pf| — 0 for any f € Cy(M). [ |

Proof (Theorem 24) As mentioned in the proof of Theorem 23, one direction of the proof is
straightforward:P, — P = yk(Pn,P) — 0 asn — . Let us consider the other direction. Since
W € Co(RY) NLL(RY) is a strictly positive definite function, anfyc I satisfies (Wendland, 2005,

Theorem 10.12) R
|f(w)?
= dw < oo.
/. 0w

Assume that R
sup(1+ J|wlf2)'| F(w)|? < o,

weRd

for anyl € N, which meand € .%4. Let (34) be satisfied for sorme=lo. Then,

F@P [ f@P o)
fo 50 % = L S ol
1

< sup 1+ [|ol|2)"| F(w 2/ o dw < e,

which meansf € 3(, that is, if f € .7y, thenf € I, which implies.#y 3. Note that¥(RY) is
dense irCo(RRY). Sincey € Co(RY), we have C Co(RY) (see the proof of Theorem 4.61 in Stein-
wart and Christmann, 2008) and, therefdreis dense irCo(RY) w.r.t. the uniform norm. Suppose
P,IP1,IP5,... € &. Using a similar analysis as in the proof of Theorem 23, it can be showiothat
any f € Co(RY) and every > 0, there exists g € H such thatP, f —Pf| < 2e+ [P,g—Pg|. Since
€ is arbitrary and(Pn,P) — 0 asn — oo, the result follows. [ ]

6. Conclusion and Discussion

We have studied various properties associated with a pseudometrc??, which is based on the
Hilbert space embedding of probability measures. First, we studied thétioosdon the kernel
(called the characteristic kernel) under whighis a metric, and showed that apart from universal
kernels, a large family of bounded continuous kernels induces a metré:d) integrally strictly

pd kernels and (b) translation invariant kernelskShandT¢ that have the support of their Fourier
transform to beRY and Z® respectively. Next, we showed that there exist distinct distributions
which will be considered close accordingya(whether or not the kernel is characteristic), and thus
may be hard to distinguish based on finite samples. Finally, we compatedother metrics on
& and explicitly presented the conditions under which it induces a weak topolog”. These
results together provide a strong theoretical foundation for usingtheetric in both statistics and
machine learning applications.

We now discuss two topics relatedytg concerning the choice of kernel parameter and kernels
defined onZ.

An important question not covered in the present paper is how to chatbsracteristic kernel.
Let us consider the following setting! = RY andks(x,y) = exp(—0]||x—Y||3), 0 € R, a Gaussian
kernel witho as the bandwidth parametefk; : 0 € R, } is the family of Gaussian kernels and
{¥, : 0 € R} is the associated family of distance measures indexed by the kernel paramete
Note thatks is characteristic for ang € R, | and, thereforey, is a metric on# foranyoc e R ..
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In practice, one would prefer a single number that defines the distatwedreP and Q. The
guestion therefore to be addressed is how to choose an apprapridtge that asw — 0, ky; — 1
and aso — o, k; — 0 a.e., which meang_ (P,Q) — 0 aso — 0 or g — o for all P,Q € 2.
This behavior is also exhibited b (x,y) = exp(—a]|[x—V||1), 0 > 0 andks(X,y) = 02/(02 + ||x —
y|l3), 0 > 0, which are also characteristic. This means choosirficiently smallor sufficiently
large o (depending or® and Q) makesyi, (P,Q) arbitrarily small. Thereforepg must be chosen
appropriately in applications to effectively distinguish betw®eand(Q.

To this end, one can consider the following modificationgowhich yields a pseudometric on
2,

Y(P.Q) = sup{yk(P,Q) : k € K} = sup{ [Pk — QK||s¢ : k € K. (38)

Note thaty is the maximal RKHS distance betweBrandQ over a family, X of measurable and
bounded positive definite kernels. It is easy to check that, ifkanyX is characteristic, thepis a
metric on?. Examples fotK include:

1. Kgi= {e*UHX*yH%,x,yeRd : 06R+}.
2. K= {e 0Vl xyeRI: 0 R, }.

3. Ky == {e WY xye M :0 R, }, wherey : M x M — R is a negative definite kernel
(Berg et al., 1984, Chapter 3).

4, Kpt i= {fﬁe‘““x—y“gdm()\),x,ye Ry, et 0escC Rd}, where.#" is the set of
all finite nonnegative Borel measurgg,onR., that are not concentrated at zero, etc.

5. Kiin = {kn = ¥i_1Ajkj |k is pd 3}_1 A} = 1}, which is the linear combination of pd ker-
nels{kj}\_;.

6. Keon:= {kn = ¥'_1Ajkj|Aj > 0, ¥|_; Aj = 1}, which is the convex combination of pd ker-
nels{kj}\_;.

The idea and validity behind the proposalyah (38) can be understood from a Bayesian per-
spective, where we define a non-negative finite measweer X, and averaggy over that mea-
sure, that isa(P,Q) := [4W(P,Q)dA(k). This also yields a pseudometric a#. That said,
a(P,Q) < AX)y(P,Q), VIP,Q, which means that, i andQ can be distinguished hy, then they
can be distinguished by but not vice-versa. In this sensgs stronger tham and therefore study-
ing y makes sense. One further complication with the Bayesian approach is imdefisensible
A over K. Note thatyy, can be obtained by definingk) = d(k— ko) in o (P, Q). Future work will
include analyzingy and investigating its utility in applications compared to thayofwith a fixed
kernel,k). Sriperumbudur et al. (2009a) describes preliminary work, showiatytf®m, Qn) is a
\/mn/(m+ n)-consistent estimator gf?, Q), for families of kernelsK including those mentioned
above.

We now discuss how kernels g can be obtained frory. As noted by Gretton et al. (2007b,
Section 4), and following Hein et al. (2004), is aHilbertian metricon &: the associated kernel
can be easily computed using (33),

(@) = ( [ K000, [ k29800 ) = [ kixy)dE ) day)
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where the positive definite kerniél: &2 x &2 — R is a dot-product kernel o#?. Using the results
in Berg et al. (1984, Chapter 3, Theorems 2.2 and 2.3), Gaussian amgamaulti-quadratic kernels
on & can be defined as

K(P,Q) = exp(—0yi(P,Q)), 0 > 0 andK (P,Q) = (0+yE(IP>,Q))71, 0c>0

respectively. Further work on Hilbertian metrics and positive definiteédsron probability mea-
sures has been carried out by Hein and Bousquet (2005) and Ewiddropsge (2003).
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Appendix A. Supplementary Results

For completeness, we present the supplementary results that were ggedetdhe results in this
paper. The following result is quoted from Folland (1999, Theorem)8.14

Theorem 25 Suppos@< L1(RY), [pa ®(x) dx=a andg (x) =t~ 9¢(t~1x) fort > 0. If f is bounded
and uniformly continuous oRY, then fx@ — af uniformly as t— 0.

By imposing slightly stronger conditions ap the following result quoted from Folland (1999,
Theorem 8.15) shows thétx @ — af almost everywhere fof € L' (RY).

Theorem 26 Supposg@(x)| < C(1+ ||x|[2)~9~¢ for some Ce > 0, and [ra@(X)dx=a. If f €
L"(RY) (1 <r < ), then fx@(x) — af(x) as t— O for every x in the Lebesgue set of f—in
particular, for almost every x, and for every x at which f is continuous.

Theorem 27 (Fourier transform of a measure) Let p be a finite Borel measure &9. The Fourier
transform of p is given by

(W) :/de*i‘”Txdp(x), we RY,
R

which is a bounded, uniformly continuous function®% In addition, i satisfies the following
properties:

() f(w) =(—w), Ywe RY, that is,{i is conjugate symmetric,
(i) {(0)=1.
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The following result, called the Riemann-Lebesgue lemma, is quoted from RL@1, Theorem
7.5).

Lemma 28 (Riemann-Lebesgue)f f € LL(RY), thenf e Co(RY), and || | < || f||1.

The following theorem is a version of thaley-Wiener theoreror distributions, and is proved in
Rudin (1991, Theorem 7.23).

Theorem 29 (Paley-Wiener)If f € 2} has compact support, thefis the restriction taR9 of an
entire function orC¢.
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