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Abstract
A Hilbert space embedding for probability measures has recently been proposed, with applications
including dimensionality reduction, homogeneity testing, and independence testing. This embed-
ding represents any probability measure as a mean element ina reproducing kernel Hilbert space
(RKHS). A pseudometric on the space of probability measurescan be defined as the distance be-
tween distribution embeddings: we denote this asγk, indexed by the kernel functionk that defines
the inner product in the RKHS.

We present three theoretical properties ofγk. First, we consider the question of determining the
conditions on the kernelk for which γk is a metric: suchk are denotedcharacteristic kernels. Un-
like pseudometrics, a metric is zero only when two distributions coincide, thus ensuring the RKHS
embedding maps all distributions uniquely (i.e., the embedding is injective). While previously pub-
lished conditions may apply only in restricted circumstances (e.g., on compact domains), and are
difficult to check, our conditions are straightforward and intuitive: integrally strictly positive defi-
nite kernelsare characteristic. Alternatively, if a bounded continuous kernel is translation-invariant
on Rd, then it is characteristic if and only if the support of its Fourier transform is the entireRd.
Second, we show that the distance between distributions underγk results from an interplay between
the properties of the kernel and the distributions, by demonstrating that distributions are close in
the embedding space when their differences occur at higher frequencies. Third, to understand the
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nature of the topology induced byγk, we relateγk to other popular metrics on probability measures,
and present conditions on the kernelk under whichγk metrizes the weak topology.
Keywords: probability metrics, homogeneity tests, independence tests, kernel methods, universal
kernels, characteristic kernels, Hilbertian metric, weaktopology

1. Introduction

The concept of distance between probability measures is a fundamental one and has found many
applications in probability theory, information theory and statistics (Rachev, 1991; Rachev and
Rüschendorf, 1998; Liese and Vajda, 2006). In statistics, distances between probability measures
are used in a variety of applications, including hypothesis tests (homogeneitytests, independence
tests, and goodness-of-fit tests), density estimation, Markov chain monte carlo, etc. As an example,
homogeneity testing, also called the two-sample problem, involves choosing whether to accept or
reject a null hypothesisH0 : P = Q versus the alternativeH1 : P 6= Q, using random samples{Xj}m

j=1
and{Yj}n

j=1 drawn i.i.d. from probability distributionsP andQ on a topological space(M,A).
It is easy to see that solving this problem is equivalent to testingH0 : γ(P,Q) = 0 versusH1 :
γ(P,Q) > 0, whereγ is a metric (or, more generally, a semi-metric1) on the space of all probability
measures defined onM. The problems of testing independence and goodness-of-fit can be posed
in an analogous form. In non-parametric density estimation,γ(pn, p0) can be used to study the
quality of the density estimate,pn, that is based on the samples{Xj}n

j=1 drawn i.i.d. from p0.
Popular examples forγ in these statistical applications include theKullback-Leibler divergence, the
total variation distance, the Hellinger distance(Vajda, 1989)—these three are specific instances
of the generalizedφ-divergence (Ali and Silvey, 1966; Csiszár, 1967)—theKolmogorov distance
(Lehmann and Romano, 2005, Section 14.2), theWasserstein distance(del Barrio et al., 1999), etc.

In probability theory, the distance between probability measures is used in studying limit theo-
rems, the popular example being the central limit theorem. Another application is inmetrizing the
weak convergence of probability measures on a separable metric space,where theLévy-Prohorov
distance(Dudley, 2002, Chapter 11) anddual-bounded Lipschitz distance(also called theDudley
metric) (Dudley, 2002, Chapter 11) are commonly used.

In the present work, we will consider a particular pseudometric1 on probability distributions
which is an instance of anintegral probability metric(IPM) (Müller, 1997). DenotingP the set of
all Borel probability measures on(M,A), the IPM betweenP ∈ P andQ ∈ P is defined as

γF(P,Q) = sup
f∈F

∣∣∣∣
Z

M
f dP−

Z

M
f dQ

∣∣∣∣ , (1)

whereF is a class of real-valued bounded measurable functions onM. In addition to the general
application domains discussed earlier for metrics on probabilities, IPMs havebeen used in proving
central limit theorems using Stein’s method (Stein, 1972; Barbour and Chen,2005), and are popular
in empirical process theory (van der Vaart and Wellner, 1996). Since most of the applications listed

1. Given a setM, a metric for M is a functionρ : M ×M → R+ such that(i) ∀x, ρ(x,x) = 0, (ii) ∀x,y, ρ(x,y) =
ρ(y,x), (iii) ∀x,y,z, ρ(x,z) ≤ ρ(x,y)+ ρ(y,z), and(iv) ρ(x,y) = 0⇒ x = y. A semi-metric only satisfies(i), (ii) and
(iv). A pseudometric only satisfies(i)-(iii) of the properties of a metric. Unlike a metric space(M,ρ), points in a
pseudometric space need not be distinguishable: one may haveρ(x,y) = 0 for x 6= y.

Now, in the two-sample test, though we mentioned thatγ is a metric/semi-metric, it is sufficient thatγ satisfies
(i) and(iv).
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above requireγF to be a metric onP, the choice ofF is critical (note that irrespective ofF, γF is a
pseudometric onP). The following are some examples ofF for which γF is a metric.

(a) F = Cb(M), the space of bounded continuous functions on(M,ρ), whereρ is a metric
(Shorack, 2000, Chapter 19, Definition 1.1).

(b) F =Cbu(M), the space of boundedρ-uniformly continuous functions on(M,ρ)—Portmonteau
theorem (Shorack, 2000, Chapter 19, Theorem 1.1).

(c) F = { f : ‖ f‖∞ ≤ 1} =: FTV, where‖ f‖∞ = supx∈M | f (x)|. γF is called thetotal variation
distance(Shorack, 2000, Chapter 19, Proposition 2.2), which we denote asTV, that is,
γFTV =: TV.

(d) F = { f : ‖ f‖L ≤ 1} =: FW, where‖ f‖L := sup{| f (x)− f (y)|/ρ(x,y) : x 6= y in M}. ‖ f‖L is
the Lipschitz semi-norm of a real-valued functionf on M andγF is called theKantorovich
metric. If (M,ρ) is separable, thenγF equals theWasserstein distance(Dudley, 2002, Theo-
rem 11.8.2), denoted asW := γFW .

(e) F = { f : ‖ f‖BL ≤ 1} =: Fβ, where‖ f‖BL := ‖ f‖L + ‖ f‖∞. γF is called theDudley metric
(Shorack, 2000, Chapter 19, Definition 2.2), denoted asβ := γFβ .

(f) F = {1(−∞,t] : t ∈Rd}=: FKS. γF is called theKolmogorov distance(Shorack, 2000, Theorem
2.4).

(g) F = {e
√
−1〈ω,·〉 : ω ∈ Rd} =: Fc. This choice ofF results in the maximal difference between

the characteristic functions ofP andQ. ThatγFc is a metric onP follows from theuniqueness
theoremfor characteristic functions (Dudley, 2002, Theorem 9.5.1).

Recently, Gretton et al. (2007b) and Smola et al. (2007) consideredF to be the unit ball in a
reproducing kernel Hilbert space (RKHS)H (Aronszajn, 1950), withk as its reproducing kernel
(r.k.), that is,F = { f : ‖ f‖H ≤ 1} =: Fk (also see Chapter 4 of Berlinet and Thomas-Agnan, 2004,
and references therein for related work): we denoteγFk =: γk. While we have seen many possibleF

for which γF is a metric,Fk has a number of important advantages:

• Estimation of γF: In applications such as hypothesis testing,P andQ are known only through
the respective random samples{Xj}m

j=1 and{Yj}n
j=1 drawn i.i.d. from each, andγF(P,Q) is

estimated based on these samples. One approach is to computeγF(P,Q) using the empirical
measuresPm = 1

m ∑m
j=1 δXj andQn = 1

n ∑n
j=1 δYj , whereδx represents a Dirac measure atx.

It can be shown that choosingF asCb(M), Cbu(M), FTV or Fc results in this approach not
yielding consistent estimates ofγF(P,Q) for all P andQ (Devroye and Gÿorfi, 1990). Al-
though choosingF = FW or Fβ yields consistent estimates ofγF(P,Q) for all P andQ when
M = Rd, the rates of convergence are dependent ond and become slow for larged (Sriperum-
budur et al., 2009b). On the other hand,γk(Pm,Qn) is a

√
mn/(m+n)-consistent estimator

of γk(P,Q) if k is measurable and bounded, for allP andQ. If k is translation invariant on
M = Rd, the rate is independent ofd (Gretton et al., 2007b; Sriperumbudur et al., 2009b), an
important property when dealing with high dimensions. Moreover,γF is not straightforward
to compute whenF is Cb(M), Cbu(M), FW or Fβ (Weaver, 1999, Section 2.3): by contrast,
γ2

k(P,Q) is simply a sum of expectations of the kernelk (see (9) and Theorem 1).
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• Comparison to φ-divergences: Instead of usingγF in statistical applications, one can also
useφ-divergences. However, the estimators ofφ-divergences (especially the Kullback-Leibler
divergence) exhibit arbitrarily slow rates of convergence dependingon the distributions (see
Wang et al., 2005; Nguyen et al., 2008, and references therein for details), while, as noted
above,γk(Pm,Qn) exhibits good convergence behavior.

• Structured domains: Sinceγk is dependent only on the kernel (see Theorem 1) and kernels
can be defined on arbitrary domainsM (Aronszajn, 1950), choosingF = Fk provides the flex-
ibility of measuring the distance between probability measures defined on structured domains
(Borgwardt et al., 2006) like graphs, strings, etc., unlikeF = FKS or Fc, which can handle
only M = Rd.

The distance measureγk has appeared in a wide variety of applications. These include sta-
tistical hypothesis testing, of homogeneity (Gretton et al., 2007b), independence (Gretton et al.,
2008), and conditional independence (Fukumizu et al., 2008); as well as in machine learning ap-
plications including kernel independent component analysis (Bach and Jordan, 2002; Gretton et al.,
2005a; Shen et al., 2009) and kernel based dimensionality reduction forsupervised learning (Fuku-
mizu et al., 2004). In these applications, kernels offer a linear approachto deal with higher order
statistics: given the problem of homogeneity testing, for example, differences in higher order mo-
ments are encoded as differences in the means of nonlinear features of the variables. To capture
all nonlinearities that are relevant to the problem at hand, the embedding RKHS therefore has to be
“sufficiently large” that differences in the embeddings correspond to differences of interest in the
distributions. Thus, a natural question is how to guaranteek provides a sufficiently rich RKHS so
as to detectany difference in distributions. A second problem is to determine what properties of
distributions result in their being proximate or distant in the embedding space. Finally, we would
like to compareγk to the classical integral probability metrics listed earlier, when used to measure
convergence of distributions. In the following section, we describe the contributions of the present
paper, addressing each of these three questions in turn.

1.1 Contributions

The contributions in this paper are three-fold and explained in detail below.

1.1.1 WHEN IS H CHARACTERISTIC?

Recently, Fukumizu et al. (2008) introduced the concept of acharacteristic kernel, that is, a re-
producing kernel for whichγk(P,Q) = 0 ⇔ P = Q, P,Q ∈ P, that is,γk is a metric onP. The
corresponding RKHS,H is referred to as acharacteristic RKHS. The following are two characteri-
zations for characteristic RKHSs that have already been studied in literature:

1. WhenM is compact, Gretton et al. (2007b) showed thatH is characteristic ifk is universalin
the sense of Steinwart (2001, Definition 4), that is,H is dense in the Banach space of bounded
continuous functions with respect to the supremum norm. Examples of suchH include those
induced by the Gaussian and Laplacian kernels on every compact subset of Rd.

2. Fukumizu et al. (2008, 2009a) extended this characterization to non-compactM and showed
that H is characteristic if and only if the direct sum ofH and R is dense in the Banach
space ofr-integrable (for somer ≥ 1) functions. Using this characterization, they showed
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that the RKHSs induced by the Gaussian and Laplacian kernels (supported on the entireRd)
are characteristic.

In the present study, we provide alternative conditions for characteristic RKHSs which address
several limitations of the foregoing. First, it can be difficult to verify the conditions of denseness
in both of the above characterizations. Second, universality is in any case an overly restrictive
condition because universal kernels assumeM to be compact, that is, they induce a metric only on
the space of probability measures that are supported on compactM.

In Section 3.1, we present the simple characterization thatintegrally strictly positive definite
(pd) kernels (see Section 1.2 for the definition) are characteristic, that is, the induced RKHS is
characteristic (also see Sriperumbudur et al., 2009a, Theorem 4). Thiscondition is more natural—
strict pd is a natural property of interest for kernels, unlike the denseness condition—and much
easier to understand than the characterizations mentioned above. Examplesof integrally strictly
pd kernels onRd include the Gaussian, Laplacian, inverse multiquadratics, Matérn kernel family,
B2n+1-splines, etc.

Although the above characterization of integrally strictly pd kernels being characteristic is sim-
ple to understand, it is only a sufficient condition and does not provide ananswer for kernels that
are not integrally strictly pd,2 for example, a Dirichlet kernel. Therefore, in Section 3.2, we provide
an easily checkable condition, after making some assumptions on the kernel. We present a com-
plete characterization of characteristic kernels when the kernel is translation invariant onRd. We
show that a bounded continuous translation invariant kernel onRd is characteristic if and only if
the support of the Fourier transform of the kernel is the entireRd. This condition is easy to check
compared to the characterizations described above. An earlier version of this result was provided
by Sriperumbudur et al. (2008): by comparison, we now present a simpler and more elegant proof.
We also show that all compactly supported translation invariant kernels onRd are characteristic.
Note, however, that the characterization of integral strict positive definiteness in Section 3.1 does
not assumeM to beRd nork to be translation invariant.

We extend the result of Section 3.2 toM being ad-Torus, that is,Td = S1× d. . . ×S1 ≡ [0,2π)d,
whereS1 is a circle. In Section 3.3, we show that a translation invariant kernel onTd is characteristic
if and only if the Fourier series coefficients of the kernel are positive, that is, the support of the
Fourier spectrum is the entireZd. The proof of this result is similar in flavor to the one in Section 3.2.
As examples, the Poisson kernel can be shown to be characteristic, while the Dirichlet kernel is not.

Based on the discussion so far, it is clear that the characteristic propertyof k can be determined
in many ways. In Section 3.4, we summarize the relations between various kernel families (e.g.,
the universal kernels and the strictly pd kernels), and show how they relate in turn to characteristic
kernels. A summary is depicted in Figure 1.

1.1.2 DISSIMILAR DISTRIBUTIONS WITH SMALL γk

As we have seen, the characteristic property of a kernel is critical in distinguishing between distinct
probability measures. Suppose, however, that for a given characteristic kernelk and for anyε > 0,
there existP andQ, P 6= Q, such thatγk(P,Q) < ε. Thoughk distinguishes between suchP and
Q, it can be difficult to tell the distributions apart in applications (even with characteristic kernels),
sinceP andQ are then replaced with finite samples, and the distance between them may not be

2. It can be shown that integrally strictly pd kernels are strictly pd (see Footnote 4). Therefore, examples of kernels that
are not integrally strictly pd include those kernels that are not strictly pd.
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statistically significant (Gretton et al., 2007b). Therefore, given a characteristic kernel, it is of
interest to determine the properties of distributionsP andQ that will cause their embeddings to be
close. To this end, in Section 4, we show that given a kernelk (see Theorem 19 for conditions on
the kernel), for anyε > 0, there existsP 6= Q (with non-trivial differences between them) such that
γk(P,Q) < ε. These distributions are constructed so as to differ at a sufficiently high frequency,
which is then penalized by the RKHS norm when computingγk.

1.1.3 WHEN DOESγk METRIZE THE WEAK TOPOLOGY ONP?

Given γk, which is a metric onP, a natural question of theoretical and practical importance is
“how is γk related to other probability metrics, such as the Dudley metric (β), Wasserstein distance
(W), total variation metric (TV), etc?” For example, in applications like density estimation, where
the unknown density is estimated based on finite samples drawn i.i.d. from it, the quality of the
estimate is measured by computing the distance between the true density and the estimated density.
In such a setting, given two probability metrics,ρ1 andρ2, one might want to use thestronger3 of
the two to determine this distance, as the convergence of the estimated density to the true density
in the stronger metric implies the convergence in the weaker metric, while the converse is not true.
On the other hand, one might need to use a metric of weaker topology (i.e., coarser topology) to
show convergence of some estimators, as the convergence might not occur w.r.t. a metric of strong
topology. Clarifying and comparing the topology of a metric on the probabilities is, thus, important
in the analysis of density estimation. Based on this motivation, in Section 5, we analyze the relation
betweenγk and other probability metrics, and show thatγk is weaker than all these other metrics.

It is well known in probability theory thatβ is weaker thanW andTV, and it metrizes the weak
topology (we will provide formal definitions in Section 5) onP (Shorack, 2000; Gibbs and Su,
2002). Sinceγk is weaker than all these other probability metrics, that is, the topology inducedby
γk is coarser than the one induced by these metrics, the next interesting question to answer would
be, “When doesγk metrize the weak topology onP?” In other words, for whatk, does the topology
induced byγk coincide with the weak topology? Answering this question would show thatγk is
equivalent toβ, while it is weaker thanW andTV. In probability theory, the metrization of weak
topology is of prime importance in proving results related to the weak convergence of probability
measures. Therefore, knowing the answer to the above question will helpin usingγk as a theoretical
tool in probability theory. To this end, in Section 5, we show that universalkernels on compact
(M,ρ) metrize the weak topology onP. For the non-compact setting, we assumeM = Rd and
provide sufficient conditions on the kernel such thatγk metrizes the weak topology onP.

In the following section, we introduce the notation and some definitions that areused throughout
the paper. Supplementary results used in proofs are collected in AppendixA.

1.2 Definitions and Notation

For a measurable space,M andµ a Borel measure onM, Lr(M,µ) denotes the Banach space of
r-power (r ≥ 1) µ-integrable functions. We will also useLr(M) for Lr(M,µ) anddx for dµ(x) if µ is

3. Two metricsρ1 : Y×Y →R+ andρ2 : Y×Y →R+ are said to be equivalent ifρ1(x,y) = 0⇔ ρ2(x,y) = 0, ∀x,y∈Y.
On the other hand,ρ1 is said to be stronger thanρ2 if ρ1(x,y) = 0⇒ ρ2(x,y) = 0, ∀x,y∈ Y but not vice-versa. If
ρ1 is stronger thanρ2, then we sayρ2 is weaker thanρ1. Note that ifρ1 is stronger (resp.weaker) thanρ2, then the
topology induced byρ1 is finer (resp.coarser) than the one induced byρ2.
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the Lebesgue measure onM ⊂Rd. Cb(M) denotes the space of all bounded, continuous functions on
M. The space of allr-continuously differentiable functions onM is denoted byCr(M), 0≤ r ≤ ∞.
Forx∈ C, x represents the complex conjugate ofx. We denote asi the imaginary unit

√
−1.

For a measurable functionf and a signed measureP, P f :=
R

f dP =
R

M f (x)dP(x). δx repre-
sents the Dirac measure atx. The symbolδ is overloaded to represent the Dirac measure, the Dirac-
delta distribution, and the Kronecker-delta, which should be distinguishablefrom the context. For
M = Rd, the characteristic function,φP of P ∈ P is defined asφP(ω) :=

R

Rd eiωTxdP(x), ω ∈ Rd.
Support of a Borel measure:The support of a finite regular Borel measure,µ on a Hausdorff

space,M is defined to be the closed set,

supp(µ) := M\
[

{U ⊂ M : U is open, µ(U) = 0}. (2)

Vanishing at infinity and C0(M): A complex functionf on a locally compact Hausdorff space
M is said tovanish at infinityif for everyε > 0 there exists a compact setK ⊂M such that| f (x)|< ε
for all x /∈ K. The class of all continuousf onM which vanish at infinity is denoted asC0(M).

Holomorphic and entire functions:Let D ⊂ Cd be an open subset andf : D → C be a function.
f is said to beholomorphic(or analytic) at the pointz0 ∈ D if

f ′(z0) := lim
z→z0

f (z0)− f (z)
z0−z

exists. Moreover,f is called holomorphic if it is holomorphic at everyz0 ∈ D. f is called anentire
functionif f is holomorphic andD = Cd.

Positive definite and strictly positive definite:A function k : M ×M → R is calledpositive
definite(pd) if, for all n∈ N, α1, . . . ,αn ∈ R and allx1, . . . ,xn ∈ M, we have

n

∑
i, j=1

αiα jk(xi ,x j) ≥ 0. (3)

Furthermore,k is said to bestrictly pd if, for mutually distinctx1, . . . ,xn ∈ X, equality in (3) only
holds forα1 = · · · = αn = 0. ψ is said to be a positive definite function onRd if k(x,y) = ψ(x−y)
is positive definite.

Integrally strictly positive definite:Let M be a topological space. A measurable and bounded
kernel,k is said to be integrally strictly positive definite if

Z Z

M
k(x,y)dµ(x)dµ(y) > 0,

for all finite non-zero signed Borel measuresµ defined onM.
The above definition is a generalization ofintegrally strictly positive definite functionson Rd

(Stewart, 1976, Section 6):
RR

Rd k(x,y) f (x) f (y)dxdy> 0 for all f ∈ L2(Rd), which is the strictly
positive definiteness of the integral operator given by the kernel. Note that the above definition is
not equivalent to the definition of strictly pd kernels: ifk is integrally strictly pd, then it is strictly
pd, while the converse is not true.4

4. Supposek is not strictly pd. This means for somen ∈ N and for mutually distinctx1, . . . ,xn ∈ M, there exists
R ∋ α j 6= 0 for somej ∈ {1, . . . ,n} such that∑n

j,l=1 α j αl k(x j ,xl ) = 0. By definingµ = ∑n
j=1 α j δx j , it is easy to see

that there existsµ 6= 0 such that
RR

M k(x,y)dµ(x)dµ(y) = 0, which meansk is not integrally strictly pd. Therefore,
if k is integrally strictly pd, then it is strictly pd. However, the converse is not true. See Steinwart and Christmann
(2008, Proposition 4.60, Theorem 4.62) for an example.
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Fourier transform inRd: For f ∈ L1(Rd), f̂ and f ∨ represent the Fourier transform and inverse
Fourier transform off respectively, defined as

f̂ (y) :=
1

(2π)d/2

Z

Rd
e−iyTx f (x)dx, y∈ Rd, (4)

f ∨(x) :=
1

(2π)d/2

Z

Rd
eixTy f (y)dy, x∈ Rd. (5)

Convolution:If f andg are complex functions inRd, their convolutionf ∗g is defined by

( f ∗g)(x) :=
Z

Rd
f (y)g(x−y)dy,

provided that the integral exists for almost allx∈ Rd, in the Lebesgue sense. Letµ be a finite Borel
measure onRd and f be a bounded measurable function onRd. The convolution off andµ, f ∗µ,
which is a bounded measurable function, is defined by

( f ∗µ)(x) :=
Z

Rd
f (x−y)dµ(y).

Rapidly decaying functions,Dd andSd: Let Dd be the space of compactly supported infinitely
differentiable functions onRd, that is,Dd = { f ∈C∞(Rd) |supp( f ) is bounded}, where supp( f ) =
cl
(
{x∈ Rd | f (x) 6= 0}

)
. A function f : Rd → C is said to decay rapidly, or be rapidly decreasing,

if for all N ∈ N,
sup

‖α‖1≤N
sup
x∈Rd

(1+‖x‖2
2)

N|(Tα f )(x)| < ∞,

where α = (α1, . . . ,αd) is an orderedd-tuple of non-negativeα j , ‖α‖1 = ∑d
j=1 α j and

Tα =
(

1
i

∂
∂x1

)α1
· · ·
(

1
i

∂
∂xd

)αd
. Sd, called the Schwartz class, denotes the vector space of rapidly

decreasing functions. Note thatDd ⊂ Sd. Also, for anyp∈ [1,∞], Sd ⊂ Lp(Rd). It can be shown
that for anyf ∈ Sd, f̂ ∈ Sd and f ∨ ∈ Sd (see Folland, 1999, Chapter 9 and Rudin, 1991, Chapter
6 for details).

Distributions,D ′
d: A linear functional onDd which is continuous with respect to the Fréchet

topology (see Rudin, 1991, Definition 6.3) is called adistribution in Rd. The space of all distribu-
tions inRd is denoted byD ′

d.
As examples, iff is locally integrableon Rd (this means thatf is Lebesgue measurable and

R

K | f (x)|dx< ∞ for every compactK ⊂ Rd), then the functionalD f defined by

D f (ϕ) =
Z

Rd
f (x)ϕ(x)dx, ϕ ∈ Dd, (6)

is a distribution. Similarly, ifµ is a Borel measure onRd, then

Dµ(ϕ) =
Z

Rd
ϕ(x)dµ(x), ϕ ∈ Dd,

defines a distributionDµ in Rd, which is identified withµ.
Support of a distribution:For an open setU ⊂Rd, Dd(U) denotes the subspace ofDd consisting

of the functions with support contained inU . SupposeD ∈ D ′
d. If U is an open set ofRd and if
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D(ϕ) = 0 for everyϕ ∈ Dd(U), thenD is said tovanishor benull in U . Let W be the union of all
openU ⊂ Rd in whichD vanishes. The complement ofW is thesupportof D.

Tempered distributions,S ′
d and Fourier transform onS ′

d: A linear continuous functional (with
respect to the Fréchet topology) over the spaceSd is called atempered distributionand the space
of all tempered distributions inRd is denoted byS ′

d. For example, every compactly supported
distribution is tempered.

For any f ∈ S ′
d, the Fourier and inverse Fourier transforms are defined as

f̂ (ϕ) := f (ϕ̂), ϕ ∈ Sd,

f ∨(ϕ) := f (ϕ∨), ϕ ∈ Sd,

respectively. The Fourier transform is a linear, one-to-one, bicontinuous mapping fromS ′
d to S ′

d.
For complete details on distribution theory and Fourier transforms of distributions, we refer the

reader to Folland (1999, Chapter 9) and Rudin (1991, Chapter 6).

2. Hilbert Space Embedding of Probability Measures

Embeddings of probability distributions into reproducing kernel Hilbert spaces were introduced in
the late 70’s and early 80’s, generalizing the notion of mappings of individual points: see Berlinet
and Thomas-Agnan (2004, Chapter 4) for a survey. Following Gretton et al. (2007b) and Smola et al.
(2007),γk can be alternatively expressed as a pseudometric between such distribution embeddings.
The following theorem describes this relation.

Theorem 1 Let Pk := {P ∈ P :
R

M

√
k(x,x)dP(x) < ∞}, where k is measurable on M. Then for

anyP,Q ∈ Pk,

γk(P,Q) =

∥∥∥∥
Z

M
k(·,x)dP(x)−

Z

M
k(·,x)dQ(x)

∥∥∥∥
H

=: ‖Pk−Qk‖H, (7)

whereH is the RKHS generated by k.

Proof Let TP : H → R be the linear functional defined asTP[ f ] :=
R

M f (x)dP(x) with ‖TP‖ :=

supf∈H, f 6=0
|TP[ f ]|
‖ f‖H

. Consider

|TP[ f ]| =
∣∣∣∣
Z

M
f dP

∣∣∣∣≤
Z

M
| f (x)|dP(x) =

Z

M
|〈 f ,k(·,x)〉H|dP(x) ≤

Z

M

√
k(x,x)‖ f‖HdP(x),

which implies‖TP‖ < ∞, ∀P ∈ Pk, that is,TP is a bounded linear functional onH. Therefore, by
the Riesz representation theorem (Reed and Simon, 1980, Theorem II.4), for eachP ∈ Pk, there
exists a uniqueλP ∈ H such thatTP[ f ] = 〈 f ,λP〉H, ∀ f ∈ H. Let f = k(·,u) for someu∈ M. Then,
TP[k(·,u)] = 〈k(·,u),λP〉H = λP(u), which impliesλP =

R

M k(·,x)dP(x) =: Pk. Therefore, with

|P f −Q f | = |TP[ f ]−TQ[ f ]| = |〈 f ,λP〉H−〈 f ,λQ〉H| = |〈 f ,λP −λQ〉H| ,

we have
γk(P,Q) = sup

‖ f‖H≤1
|P f −Q f | = ‖λP −λQ‖H = ‖Pk−Qk‖H.

Note that this holds for anyP,Q ∈ Pk.
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Given a kernel,k, (7) holds for allP ∈ Pk. However, in practice, especially in statistical inference
applications, it is not possible to check whetherP ∈ Pk asP is not known. Therefore, one would
prefer to have a kernel such that

Z

M

√
k(x,x)dP(x) < ∞, ∀P ∈ P. (8)

The following proposition shows that (8) is equivalent to the kernel beingbounded. Therefore,
combining Theorem 1 and Proposition 2 shows that ifk is measurable and bounded, thenγk(P,Q) =
‖Pk−Qk‖H for anyP,Q ∈ P.

Proposition 2 Let f be a measurable function on M. Then
R

M f (x)dP(x) < ∞ for all P ∈ P if and
only if f is bounded.

Proof One direction is straightforward because iff is bounded, then
R

M f (x)dP(x) < ∞ for all
P ∈P. Let us consider the other direction. Supposef is not bounded. Then there exists a sequence
{xn} ⊂ M such thatf (xn)

n→∞−→ ∞. By taking a subsequence, if necessary, we can assumef (xn) > n2

for all n. Then,A := ∑∞
n=1

1
f (xn)

< ∞. Define a probability measureP on M by P = ∑∞
n=1

1
A f(xn)

δxn,

whereδxn is a Dirac measure atxn. Then,
R

M f (x)dP(x) = 1
A ∑∞

n=1
f (xn)
f (xn)

= ∞, which means iff is
not bounded, then there exists aP ∈ P such that

R

M f (x)dP(x) = ∞.

The representation ofγk in (7) yields the embedding,

Π : P → H P 7→
Z

M
k(·,x)dP(x),

as proposed by Berlinet and Thomas-Agnan (2004, Chapter 4, Section1.1) and Gretton et al.
(2007b); Smola et al. (2007). Berlinet and Thomas-Agnan derived thisembedding as a general-
ization of δx 7→ k(·,x), while Gretton et al. arrived at the embedding by choosingF = Fk in (1).
Sinceγk(P,Q) = ‖Π[P]−Π[Q]‖H, the question “When isγk a metric onP?” is equivalent to the
question “When isΠ injective?” Addressing these questions is the central focus of the paperand is
discussed in Section 3.

Before proceeding further, we present a number of equivalent representations ofγk, which will
improve our understanding ofγk and be helpful in its computation. First, Gretton et al. have shown
the reproducing property ofk leads to

γ2
k(P,Q) =

∥∥∥∥
Z

M
k(·,x)dP(x)−

Z

M
k(·,x)dQ(x)

∥∥∥∥
2

H

=

〈
Z

M
k(·,x)dP(x)−

Z

M
k(·,x)dQ(x),

Z

M
k(·,y)dP(y)−

Z

M
k(·,y)dQ(y)

〉

H

=

〈
Z

M
k(·,x)dP(x),

Z

M
k(·,y)dP(y)

〉

H

+

〈
Z

M
k(·,x)dQ(x),

Z

M
k(·,y)dQ(y)

〉

H

−2

〈
Z

M
k(·,x)dP(x),

Z

M
k(·,y)dQ(y)

〉

H

(a)
=

Z Z

M
k(x,y)dP(x)dP(y)+

Z Z

M
k(x,y)dQ(x)dQ(y)

−2
Z Z

M
k(x,y)dP(x)dQ(y) (9)

=
Z Z

M
k(x,y)d(P−Q)(x)d(P−Q)(y), (10)
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where(a) follows from the fact that
R

M f (x)dP(x) = 〈 f ,
R

M k(·,x)dP(x)〉H for all f ∈ H, P ∈ P

(see proof of Theorem 1), applied withf =
R

M k(·,y)dP(y). As motivated in Section 1,γ2
k is a

straightforward sum of expectations ofk, and can be computed easily, for example, using (9) either
in closed form or using numerical integration techniques, depending on thechoice ofk, P andQ. It
is easy to show that, ifk is a Gaussian kernel withP andQ being normal distributions onRd, thenγk

can be computed in a closed form (see Song et al., 2008 and Sriperumbudur et. al., 2009b, Section
III-C for examples). In the following corollary to Theorem 1, we prove three results which provide a
nice interpretation forγk whenM = Rd andk is translation invariant, that is,k(x,y)= ψ(x−y), where
ψ is a positive definite function. We provide a detailed explanation for Corollary 4 in Remark 5.
Before stating the results, we need a famous result due to Bochner, that characterizesψ. We quote
this result from Wendland (2005, Theorem 6.6).

Theorem 3 (Bochner) A continuous functionψ : Rd → R is positive definite if and only if it is the
Fourier transform of a finite nonnegative Borel measureΛ onRd, that is,

ψ(x) =
Z

Rd
e−ixT ω dΛ(ω), x∈ Rd. (11)

Corollary 4 (Different interpretations of γk) (i) Let M = Rd and k(x,y) = ψ(x− y), whereψ :
M → R is a bounded, continuous positive definite function. Then for anyP,Q ∈ P,

γk(P,Q) =

√
Z

Rd
|φP(ω)−φQ(ω)|2 dΛ(ω) =: ‖φP −φQ‖L2(Rd,Λ), (12)

whereφP andφQ represent the characteristic functions ofP andQ respectively.

(ii) Supposeθ ∈ L1(Rd) is a continuous bounded positive definite function and
R

Rd θ(x)dx= 1. Let
ψ(x) := ψt(x) = t−dθ(t−1x), t > 0. Assume that p and q are bounded uniformly continuous Radon-
Nikodym derivatives ofP and Q w.r.t. the Lebesgue measure, that is, dP = pdx and dQ = qdx.
Then,

lim
t→0

γk(P,Q) = ‖p−q‖L2(Rd). (13)

In particular, if |θ(x)| ≤C(1+‖x‖2)
−d−ε for some C, ε > 0, then (13) holds for all bounded p and

q (not necessarily uniformly continuous).

(iii) Supposeψ ∈ L1(Rd) and
√

ψ̂ ∈ L1(Rd). Then,

γk(P,Q) = (2π)−d/4‖Φ∗P−Φ∗Q‖L2(Rd), (14)

whereΦ :=
(√

ψ̂
)∨

and dΛ = (2π)−d/2ψ̂dω. Here,Φ∗P represents the convolution ofΦ andP.

Proof (i) Let us consider (10) withk(x,y) = ψ(x−y). Then, we have

γ2
k(P,Q) =

Z Z

Rd
ψ(x−y)d(P−Q)(x)d(P−Q)(y)

(a)
=

Z Z Z

Rd
e−i(x−y)Tω dΛ(ω)d(P−Q)(x)d(P−Q)(y)

(b)
=

Z Z

Rd
e−ixT ω d(P−Q)(x)

Z

Rd
eiyT ω d(P−Q)(y)dΛ(ω)

=
Z

Rd
(φP(ω)−φQ(ω))

(
φP(ω)−φQ(ω)

)
dΛ(ω) =

Z

Rd
|φP(ω)−φQ(ω)|2 dΛ(ω),
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where Bochner’s theorem (Theorem 3) is invoked in(a), while Fubini’s theorem (Folland, 1999,
Theorem 2.37) is invoked in(b).

(ii) Consider (9) withk(x,y) = ψt(x−y),

γ2
k(P,Q) =

Z Z

Rd
ψt(x−y)p(x)p(y)dxdy+

Z Z

Rd
ψt(x−y)q(x)q(y)dxdy

−2
Z Z

Rd
ψt(x−y)p(x)q(y)dxdy

=
Z

Rd
(ψt ∗ p)(x)p(x)dx+

Z

Rd
(ψt ∗q)(x)q(x)dx−2

Z

Rd
(ψt ∗q)(x)p(x)dx. (15)

Note that limt→0
R

Rd(ψt ∗ p)(x)p(x)dx=
R

Rd limt→0(ψt ∗ p)(x)p(x)dx, by invoking the dominated
convergence theorem. Sincep is bounded and uniformly continuous, by Theorem 25 (see Ap-
pendix A), we havep∗ψt → p uniformly ast → 0, which means limt→0

R

Rd(ψt ∗ p)(x)p(x)dx=
R

Rd p2(x)dx. Using this in (15), we have

lim
t→0

γ2
k(P,Q) =

Z

Rd
(p2(x)+q2(x)−2p(x)q(x))dx= ‖p−q‖2

L2(Rd).

Suppose|θ(x)| ≤ (1+ ‖x‖2)
−d−ε for someC, ε > 0. Sincep ∈ L1(Rd), by Theorem 26 (see Ap-

pendix A), we have(p∗ψt)(x) → p(x) as t → 0 for almost everyx. Therefore limt→0
R

Rd(ψt ∗
p)(x)p(x)dx=

R

Rd p2(x)dx and the result follows.

(iii) Sinceψ is positive definite,̂ψ is nonnegative and therefore
√

ψ̂ is valid. Since
√

ψ̂ ∈ L1(Rd),
Φ exists. DefineφP,Q := φP −φQ. Now, consider

‖Φ∗P−Φ∗Q‖2
L2(Rd) =

Z

Rd
|(Φ∗ (P−Q))(x)|2 dx

=
Z

Rd

∣∣∣∣
Z

Rd
Φ(x−y)d(P−Q)(y)

∣∣∣∣
2

dx

=
1

(2π)d

Z

Rd

∣∣∣∣
Z Z

Rd

√
ψ̂(ω)ei(x−y)T ω dω d(P−Q)(y)

∣∣∣∣
2

dx

(c)
=

1
(2π)d

Z

Rd

∣∣∣∣
Z

Rd

√
ψ̂(ω)(φP(ω)−φQ(ω))eixT ω dω

∣∣∣∣
2

dx

=
1

(2π)d

Z Z Z

Rd

√
ψ̂(ω)

√
ψ̂(ξ)φP,Q(ω)φP,Q(ξ)ei(ω−ξ)Txdωdξdx

(d)
=

Z Z

Rd

√
ψ̂(ω)

√
ψ̂(ξ)φP,Q(ω)φP,Q(ξ)

[
1

(2π)d

Z

Rd
ei(ω−ξ)Txdx

]
dωdξ

=
Z Z

Rd

√
ψ̂(ω)

√
ψ̂(ξ)φP,Q(ω)φP,Q(ξ)δ(ω−ξ)dωdξ

=
Z

Rd
ψ̂(ω) |φP(ω)−φQ(ω)|2 dω

= (2π)d/2γ2
k(P,Q),

where(c) and(d) are obtained by invoking Fubini’s theorem.
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Remark 5 (a) (12) shows thatγk is the L2-distance between the characteristic functions ofP and
Q computed w.r.t. the non-negative finite Borel measure,Λ, which is the Fourier transform ofψ. If
ψ ∈ L1(Rd), then (12) rephrases the well known fact (Wendland, 2005, Theorem 10.12) that for any
f ∈ H,

‖ f‖2
H =

Z

Rd

| f̂ (ω)|2
ψ̂(ω)

dω. (16)

Choosing f= (P−Q)∗ψ in (16) yieldsf̂ = (φP −φQ)ψ̂ and therefore the result in (12).

(b) Suppose dΛ(ω) = (2π)−d dω. AssumeP and Q have p and q as Radon-Nikodym derivatives
w.r.t. the Lebesgue measure, that is, dP = pdx and dQ = qdx. Using these in (12), it can be shown
that γk(P,Q) = ‖p− q‖L2(Rd). However, this result should be interpreted in a limiting sense as

mentioned in Corollary 4(ii) because the choice of dΛ(ω) = (2π)−d dω impliesψ(x) = δ(x), which
does not satisfy the conditions of Corollary 4(i). It can be shown thatψ(x) = δ(x) is obtained in a
limiting sense (Folland, 1999, Proposition 9.1):ψt → δ in D ′

d as t→ 0.

(c) Choosingθ(x) = (2π)−d/2e−‖x‖2
2/2 in Corollary 4(ii) corresponds toψt being a Gaussian kernel

(with appropriate normalization such that
R

Rd ψt(x)dx = 1). Therefore, (13) shows that as the
bandwidth, t of the Gaussian kernel approaches zero,γk approaches the L2-distance between the
densities p and q. The same result also holds for choosingψt as the Laplacian kernel, B2n+1-spline,
inverse multiquadratic, etc. Therefore,γk(P,Q) can be seen as a generalization of the L2-distance
between probability measures,P andQ.

(d) The result in (13) holds if p and q are bounded and uniformly continuous. Since any condition
on P andQ is usually difficult to check in statistical applications, it is better to impose conditions
on ψ rather than onP and Q. In Corollary 4(ii), by imposing additional conditions onψt , the
result in (13) is shown to hold for allP and Q with bounded densities p and q. The condition,
|θ(x)| ≤C(1+‖x‖2)

−d−ε for some C, ε > 0, is, for example, satisfied by the inverse multiquadratic

kernel,θ(x) = C̃(1+‖x‖2
2)

−τ, x∈ Rd, τ > d/2, whereC̃ =
(

R

Rd(1+‖x‖2
2)

−τ dx
)−1

.

(e) The result in Corollary 4(ii) has connections to the kernel density estimation in L2-sense using
Parzen windows (Rosenblatt, 1975), whereψ can be chosen as the Parzen window: see Gretton et al.
(2007a, Section 7.1) for further discussion. Note in particular that whenγk is used in a homogeneity
test, a constant kernel bandwidth results in a faster decrease of the TypeII error with increasing
sample size (Anderson et al., 1994, p. 43). A decreasing bandwidth is required for a consistent
estimate of‖p−q‖L2(Rd), however.

(f) (14) shows thatγk is proportional to the L2-distance betweenΦ ∗P and Φ ∗Q. Let Φ be such
that Φ is nonnegative andΦ ∈ L1(Rd). Then, defining̃Φ := (

R

Rd Φ(x)dx)−1 Φ = Φ/
√

ψ̂(0) =

(
R

Rd ψ(x)dx)−1/2 Φ and using this in (14), we have

γk(P,Q) = (2π)−d/4
√

ψ̂(0)
∥∥∥Φ̃∗P− Φ̃∗Q

∥∥∥
L2(Rd)

. (17)

The r.h.s. of (17) can be interpreted as follows. Let X, Y and N be independent random variables
such that X∼ P, Y ∼ Q and N∼ Φ̃. This meansγk is proportional to the L2-distance computed
between the densities associated with the perturbed random variables, X+ N and Y+ N. Note
that ‖p−q‖L2(Rd) is the L2-distance between the densities of X and Y. Examples ofψ that satisfy
the conditions in Corollary 4(iii) in addition to the conditions onΦ as mentioned here include the
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Gaussian and Laplacian kernels onRd. The result in (14) holds even if
√

ψ̂ /∈ L1(Rd) as the proof
of (iii) can be handled using distribution theory. However, we assumed

√
ψ̂ ∈ L1(Rd) to keep the

proof simple, without delving into distribution theory.

Although we will not be using all the results of Corollary 4 in deriving our mainresults in the
following sections, Corollary 4 was presented to provide a better intuitive understanding ofγk. To
summarize, the core results of this section are Theorem 1 (combined with Proposition 2), which pro-
vides a closed form expression forγk in terms of the measurable and boundedk, and Corollary 4(i),
which provides an alternative representation forγk whenk is bounded, continuous and translation
invariant onRd.

3. Conditions for Characteristic Kernels

In this section, we address the question, “When isγk a metric onP?”. In other words, “When isΠ
injective?” or “Under what conditions isk characteristic?”. To this end, we start with the definition
of characteristic kernels and provide some examples wherek is such thatγk is not a metric onP. As
discussed in Section 1.1.1, although some characterizations are available for k so thatγk is a metric
onP, they are difficult to check in practice. In Section 3.1, we provide the characterization that ifk
is integrally strictly pd, thenγk is a metric onP. In Section 3.2, we present more easily checkable
conditions wherein we show that if supp(Λ) = Rd (see (2) for the definition of the support of a Borel
measure), thenγk is a metric onP. This result is extended in a straightforward way toTd (d-Torus)
in Section 3.3. The main results of this section are summarized in Table 1.

We start by defining characteristic kernels.

Definition 6 (Characteristic kernel) A bounded measurable positive definite kernel k is charac-
teristic to a setQ ⊂ P of probability measures defined on(M,A) if for P,Q ∈ Q, γk(P,Q) = 0⇔
P = Q. k is simply said to be characteristic if it is characteristic toP. The RKHSH induced by
such a k is called a characteristic RKHS.

As mentioned before, the injectivity ofΠ is related to the characteristic property ofk. If k is
characteristic, thenγk(P,Q) = ‖Π[P]−Π[Q]‖H = 0⇒ P = Q, which meansP 7→ R

M k(·,x)dP(x),
that is,Π is injective. Therefore, whenM = Rd, the embedding of a distribution to a characteristic
RKHS can be seen as a generalization of the characteristic function,φP =

R

Rd ei〈·,x〉dP(x). This
is because, by the uniqueness theorem for characteristic functions (Dudley, 2002, Theorem 9.5.1),
φP = φQ ⇒ P = Q, which meansP 7→ R

Rd ei〈·,x〉dP(x) is injective. So, in this context, intuitively
ei〈y,x〉 can be treated as the characteristic kernel,k, although, formally, this is not true asei〈y,x〉 is not
a pd kernel.

Before we get to the characterization of characteristic kernels, the following examples show that
there exist bounded measurable kernels that are not characteristic.

Example 1 (Trivial kernel) Let k(x,y) = ψ(x− y) = C, ∀x,y∈ Rd with C > 0. Using this in (9),
we haveγ2

k(P,Q) = C+C−2C = 0 for anyP,Q ∈ P, which means k is not characteristic.

Example 2 (Dot product kernel) Let k(x,y) = xTy, x,y∈ Rd. Using this in (9), we have

γ2
k(P,Q) = µT

PµP +µT
QµQ −2µT

PµQ = ‖µP −µQ‖2
2,

where µP and µQ represent the means associated withP andQ respectively, that is, µP :=
R

Rd xdP(x).
It is clear that k is not characteristic asγk(P,Q) = 0⇒ µP = µQ ; P = Q for all P,Q ∈ P.

1530



HILBERT SPACE EMBEDDING AND CHARACTERISTIC KERNELS

Summary of Main Results

Domain Property Q Characteristic Reference

M k is integrally strictly pd P Yes Theorem 7

Rd Ω = Rd P Yes Theorem 9

Rd supp(ψ) is compact P Yes Corollary 10

Rd Ω ( Rd, int(Ω) 6= /0 P1 Yes Theorem 12

Rd Ω ( Rd P No Theorem 9

Td Aψ(0) ≥ 0, Aψ(n) > 0, ∀n 6= 0 P Yes Theorem 14

Td ∃n 6= 0|Aψ(n) = 0 P No Theorem 14

Table 1: The table should be read as: If “Property” is satisfied on “Domain”, thenk is characteris-
tic (or not) toQ. P is the set of all Borel probability measures on a topological space,
M. See Section 1.2 for the definition of integrally strictly pd kernels. WhenM = Rd,
k(x,y) = ψ(x− y), whereψ is a bounded, continuous positive definite function onRd.
ψ is the Fourier transform of a finite nonnegative Borel measure,Λ, andΩ := supp(Λ)
(see Theorem 3 and (2) for details).P1 := {P ∈ P : φP ∈ L1(Rd) ∪ L2(Rd), P ≪
λ and supp(P) is compact}, where φP is the characteristic function ofP and λ is the
Lebesgue measure.P ≪ λ denotes thatP is absolutely continuous w.r.t.λ. WhenM = Td,
k(x,y) = ψ(x− y), whereψ is a bounded, continuous positive definite function onTd.
{Aψ(n)}n∈Zd are the Fourier series coefficients ofψ which are nonnegative and summable
(see Theorem 13 for details).

Example 3 (Polynomial kernel of order 2) Let k(x,y) = (1+xTy)2, x,y∈ Rd. Using this in (10),
we have

γ2
k(P,Q) =

Z Z

Rd
(1+2xTy+xTyyTx)d(P−Q)(x)d(P−Q)(y)

= 2‖µP −µQ‖2
2 +‖ΣP −ΣQ +µPµT

P −µQµT
Q‖2

F ,

whereΣP andΣQ represent the covariance matrices associated withP andQ respectively, that is,
ΣP :=

R

Rd xxT dP(x)−µPµT
P . ‖ · ‖F represents the Frobenius norm. Sinceγk(P,Q) = 0 ⇒ (µP =

µQ andΣP = ΣQ) ; P = Q for all P,Q ∈ P, k is not characteristic.

In the following sections, we address the question of whenk is characteristic, that is, for whatk is
γk a metric onP?
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3.1 Integrally Strictly Positive Definite Kernels are Characteristic

Compared to the existing characterizations in literature (Gretton et al., 2007b; Fukumizu et al., 2008,
2009a), the following result provides a more natural and easily understandable characterization for
characteristic kernels, namely that integrally strictly pd kernels are characteristic toP.

Theorem 7 (Integrally strictly pd kernels are characteristic) Let k be an integrally strictly pos-
itive definite kernel on a topological space M. Then k is characteristic toP.

Before proving Theorem 7, we provide a supplementary result in Lemma 8 that provides neces-
sary and sufficient conditions for a kernelnot to be characteristic. We show that choosingk to be
integrally strictly pd violates the conditions in Lemma 8, andk is therefore characteristic toP.

Lemma 8 Let k be measurable and bounded on a topological space, M. Then∃P 6= Q where
P,Q ∈ P such thatγk(P,Q) = 0 if and only if there exists a finite non-zero signed Borel measure µ
that satisfies:

(i)
RR

M k(x,y)dµ(x)dµ(y) = 0,

(ii) µ(M) = 0.

Proof (⇐ ) Suppose there exists a finite non-zero signed Borel measure,µ that satisfies(i) and(ii) in
Lemma 8. By the Jordan decomposition theorem (Dudley, 2002, Theorem 5.6.1), there exist unique
positive measuresµ+ andµ− such thatµ= µ+ −µ− andµ+ ⊥ µ− (µ+ andµ− are singular). By(ii) ,
we haveµ+(M) = µ−(M) =: α. DefineP = α−1µ+ andQ = α−1µ−. Clearly,P 6= Q, P,Q ∈ P.
Then, by (10), we have

γ2
k(P,Q) =

Z Z

M
k(x,y)d(P−Q)(x)d(P−Q)(y) = α−2

Z Z

M
k(x,y)dµ(x)dµ(y)

(a)
= 0,

where(a) is obtained by invoking(i). So, we have constructedP 6= Q such thatγk(P,Q) = 0.

(⇒ ) Suppose∃P 6= Q, P,Q ∈ P such thatγk(P,Q) = 0. Let µ = P−Q. Clearly µ is a finite
non-zero signed Borel measure that satisfiesµ(M) = 0. Note that by (10),

γ2
k(P,Q) =

Z Z

M
k(x,y)d(P−Q)(x)d(P−Q)(y) =

Z Z

M
k(x,y)dµ(x)dµ(y),

and therefore(i) follows.

Proof (of Theorem 7)Sincek is integrally strictly pd onM, we have
Z Z

M
k(x,y)dη(x)dη(y) > 0,

for any finite non-zero signed Borel measureη. This means there does not exist a finite non-zero
signed Borel measure that satisfies(i) in Lemma 8. Therefore, by Lemma 8, there does not exist
P 6= Q, P,Q ∈ P such thatγk(P,Q) = 0, which impliesk is characteristic.

Examples of integrally strictly pd kernels onRd include the Gaussian, exp(−σ‖x− y‖2
2), σ > 0;

the Laplacian, exp(−σ‖x− y‖1), σ > 0; inverse multiquadratics,(σ2 + ‖x− y‖2
2)

−c, c > 0, σ > 0,
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etc, which are translation invariant kernels onRd. A translation variantintegrally strictly pd ker-
nel, k̃, can be obtained from a translation invariant integrally strictly pd kernel,k, as k̃(x,y) =
f (x)k(x,y) f (y), wheref : M →R is a bounded continuous function. A simple example of a transla-
tion variant integrally strictly pd kernel onRd is k̃(x,y) = exp(σxTy), σ > 0, where we have chosen
f (·) = exp(σ‖ · ‖2

2/2) andk(x,y) = exp(−σ‖x−y‖2
2/2), σ > 0. Clearly, this kernel is characteristic

on compact subsets ofRd. The same result can also be obtained from the fact thatk̃ is universal on
compact subsets ofRd (Steinwart, 2001, Section 3, Example 1), recalling that universal kernels are
characteristic (Gretton et al., 2007b, Theorem 3).

Although the condition for characteristick in Theorem 7 is easy to understand compared to other
characterizations in literature, it is not always easy to check for integralstrict positive definiteness
of k. In the following section, we assumeM = Rd andk to be translation invariant and present a
complete characterization for characteristick which is simple to check.

3.2 Characterization for Translation Invariant k on Rd

The complete, detailed proofs of the main results in this section are provided in Section 3.5. Com-
pared to Sriperumbudur et al. (2008), we now present simple proofs for these results without resort-
ing to distribution theory. Let us start with the following assumption.

Assumption 1 k(x,y) = ψ(x− y) whereψ is a bounded continuous real-valued positive definite
function on M= Rd.

The following theorem characterizes all translation invariant kernels inRd that are characteristic.

Theorem 9 Suppose k satisfies Assumption 1. Then k is characteristic if and only ifsupp(Λ) = Rd,
whereΛ is defined as in (11).

First, note that the condition supp(Λ) = Rd is easy to check compared to all other, aforementioned
characterizations for characteristick. Table 2 shows some popular translation invariant kernels onR

along with their Fourier spectra,̂ψ and its support: Gaussian, Laplacian,B2n+1-spline5 (Scḧolkopf
and Smola, 2002) and Sinc kernels are aperiodic while Poisson (Brémaud, 2001; Steinwart, 2001;
Vapnik, 1998), Dirichlet (Bŕemaud, 2001; Scḧolkopf and Smola, 2002), F́ejer (Bŕemaud, 2001)
and cosine kernels are periodic. Although the Gaussian and Laplacian kernels are shown to be
characteristic by all the characterizations we have mentioned so far, the case ofB2n+1-splines is
addressed only by Theorem 9, which shows them to be characteristic (note thatB2n+1-splines being
integrally strictly pd also follows from Theorem 9). In fact, one can provide a more general result on
compactly supported translation invariant kernels, which we do later in Corollary 10. The Mat́ern
class of kernels (Rasmussen and Williams, 2006, Section 4.2.1), given by

k(x,y) = ψ(x−y) =
21−ν

Γ(ν)

(√
2ν‖x−y‖2

σ

)ν

Kν

(√
2ν‖x−y‖2

σ

)
, ν > 0, σ > 0, (18)

5. A B2n+1-spline is aBn-spline of odd order. OnlyB2n+1-splines are admissible, that is,Bn-splines of odd order are
positive definite kernels whereas those of even order have negative components in their Fourier spectrum̂ψ, and

therefore are not admissible kernels. In Table 2, the symbol∗(2n+2)
1 represents the(2n+ 2)-fold convolution. An

important point to be noted with theB2n+1-spline kernel is that̂ψ has vanishing points atω = 2πα, α ∈ Z\{0},
unlike Gaussian and Laplacian kernels which do not have vanishing pointsin their Fourier spectrum. Nevertheless,
the spectrum of all these kernels has supportR.
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Kernel ψ(x) ψ̂(ω) supp(ψ̂)

Gaussian exp
(
− x2

2σ2

)
σexp

(
−σ2ω2

2

)
R

Laplacian exp(−σ|x|)
√

2
π

σ
σ2+ω2 R

B2n+1-spline ∗(2n+2)
1 1[− 1

2 , 1
2 ]

(x) 4n+1√
2π

sin2n+2(ω
2 )

ω2n+2 R

Sinc sin(σx)
x

√π
21[−σ,σ](ω) [−σ,σ]

Poisson 1−σ2

σ2−2σcos(x)+1
, 0 < σ < 1

√
2π∑∞

j=−∞ σ| j| δ(ω− j) Z

Dirichlet
sin (2n+1)x

2
sin x

2

√
2π∑n

j=−n δ(ω− j) {0,±1, . . . ,±n}

Féjer 1
n+1

sin2 (n+1)x
2

sin2 x
2

√
2π∑n

j=−n

(
1− | j|

n+1

)
δ(ω− j) {0,±1, . . . ,±n}

Cosine cos(σx)
√π

2 [δ(ω−σ)+δ(ω+σ)] {−σ,σ}

Table 2: Translation invariant kernels onR defined byψ, their spectra,̂ψ and its support, supp(ψ̂).
The first four are aperiodic kernels while the last four are periodic. The domain is con-
sidered to beR for simplicity. For x ∈ Rd, the above formulae can be extended by
computingψ(x) = ∏d

j=1 ψ(x j) where x = (x1, . . . ,xd) and ψ̂(ω) = ∏d
j=1 ψ̂(ω j) where

ω = (ω1, . . . ,ωd). δ represents the Dirac-delta distribution.

is characteristic as the Fourier spectrum ofψ, given by

ψ̂(ω) =
2d+νπd/2Γ(ν+d/2)νν

Γ(ν)σ2ν

(
2ν
σ2 +4π2‖ω‖2

2

)−(ν+d/2)

, ω ∈ Rd, (19)

is positive for anyω ∈Rd. Here,Γ is the Gamma function,Kν is the modified Bessel function of the
second kind of orderν, whereν controls the smoothness ofk. The case ofν = 1

2 in the Mat́ern class
gives the exponential kernel,k(x,y) = exp(−‖x−y‖2/σ), while ν → ∞ gives the Gaussian kernel.
Note thatψ̂(x−y) in (19) is actually the inverse multiquadratic kernel, which is characteristic both
by Theorem 7 and Theorem 9.

By Theorem 9, the Sinc kernel in Table 2 is not characteristic, which is noteasy to show using
other characterizations. By combining Theorem 7 with Theorem 9, it can beshown that the Sinc,
Poisson, Dirichlet, F́ejer and cosine kernels are not integrally strictly pd. Therefore, for translation
invariant kernels onRd, the integral strict positive definiteness of the kernel (or the lack of it) can
be tested using Theorems 7 and 9.

Of all the kernels shown in Table 2, only the Gaussian, Laplacian andB2n+1-spline kernels are
integrable and their correspondinĝψ are computed using (4). The other kernels shown in Table 2
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are not integrable and their correspondingψ̂ have to be treated as distributions (see Folland, 1999,
Chapter 9 and Rudin, 1991, Chapter 6 for details), except for the Sinc kernel whose Fourier trans-
form can be computed in theL2 sense.6

Proof (Theorem 9)We provide an outline of the complete proof, which is presented in Section 3.5.
The sufficient condition in Theorem 9 is simple to prove and follows from Corollary 4(i), whereas
we need a supplementary result to prove its necessity, which is presented inLemma 16 (see Sec-
tion 3.5). Proving the necessity of Theorem 9 is equivalent to showing thatif supp(Λ) ( Rd, then
∃P 6= Q, P,Q ∈ P such thatγk(P,Q) = 0. In Lemma 16, we present equivalent conditions for the
existence ofP 6= Q such thatγk(P,Q) = 0 if supp(Λ) ( Rd, using which we prove the necessity of
Theorem 9.

The whole family of compactly supported translation invariant continuous bounded kernels on
Rd is characteristic, as shown by the following corollary to Theorem 9.

Corollary 10 Suppose k6= 0 satisfies Assumption 1 andsupp(ψ) is compact. Then k is character-
istic.

Proof Sinceψ ∈Cb(R
d) is compactly supported onRd, by (6),ψ ∈ D ′

d. Therefore, by the Paley-
Wiener theorem (Theorem 29 in Appendix A),ψ̂ is the restriction toRd of an entire function on
Cd, which meanŝψ is an analytic function onRd. Suppose supp(ψ̂) is compact, which means
there exists an open set,U ⊂ Rd such that̂ψ(x) = 0, ∀x∈U . But being analytic, this implies that
ψ̂(x) = 0, ∀x∈Rd, that is,ψ = 0, which leads to a contradiction. Therefore,ψ̂ cannot be compactly
supported, that is, supp(ψ̂) = Rd, and the result follows from Theorem 9.

The above result is interesting in practice because of the computational advantage in dealing with
compactly supported kernels. Note that proving such a general result for compactly supported
kernels onRd is not straightforward (maybe not even possible) with the other characterizations.

As a corollary to Theorem 9, the following result provides a method to construct new character-
istic kernels from a given one.

Corollary 11 Let k, k1 and k2 satisfy Assumption 1. Suppose k is characteristic and k2 6= 0. Then
k+k1 and k·k2 are characteristic.

Proof Sincek, k1 andk2 satisfy Assumption 1,k+ k1 andk2 · k also satisfy Assumption 1. In
addition,

(k+k1)(x,y) := k(x,y)+k1(x,y) = ψ(x−y)+ψ1(x−y) =
Z

Rd
e−i(x−y)Tω d(Λ+Λ1)(ω),

(k ·k2)(x,y) := k(x,y)k2(x,y) = ψ(x−y)ψ2(x−y) =
Z Z

Rd
e−i(x−y)T(ω+ξ) dΛ(ω)dΛ2(ξ)

(a)
=:

Z

Rd
e−i(x−y)Tω d(Λ∗Λ2)(ω),

6. If f ∈ L2(Rd), the Fourier transform̥ [ f ] := f̂ of f is defined to be the limit, in theL2-norm, of the sequence{ f̂n} of
Fourier transforms of any sequence{ fn} of functions belonging toSd, such thatfn converges in theL2-norm to the
given function f ∈ L2(Rd), asn→ ∞. The function f̂ is defined almost everywhere onRd and belongs toL2(Rd).
Thus,̥ is a linear operator, mappingL2(Rd) into L2(Rd). See Gasquet and Witomski (1999, Chapter IV, Lesson
22) for details.
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where(a) follows from the definition of convolution of measures (see Rudin 1991, Section 9.14 for
details). Sincek is characteristic, that is, supp(Λ) = Rd, and supp(Λ) ⊂ supp(Λ + Λ1), we have
supp(Λ+Λ1) = Rd and thereforek+k1 is characteristic. Similarly, since supp(Λ) ⊂ supp(Λ∗Λ2),
we have supp(Λ∗Λ2) = Rd and therefore,k ·k2 is characteristic.

Note that in the above result, we do not needk1 or k2 to be characteristic. Therefore, one can
generate all sorts of kernels that are characteristic by starting with a characteristic kernel,k.

So far, we have considered characterizations fork such that it is characteristic toP. We showed
in Theorem 9 that kernels with supp(Λ) ( Rd are not characteristic toP. Now, we can question
whether such kernels can be characteristic to some proper subsetQ of P. The following result
addresses this. Note that these kernels, that is, the kernels with supp(Λ) ( Rd are usually not useful
in practice, especially in statistical inference applications, because the conditions onQ are usually
not easy to check. On the other hand, the following result is of theoreticalinterest: along with
Theorem 9, it completes the characterization of characteristic kernels thatare translation invariant
onRd. Before we state the result, we denoteP≪Q to mean thatP is absolutely continuous w.r.t.Q.

Theorem 12 Let P1 := {P ∈ P : φP ∈ L1(Rd)∪L2(Rd), P ≪ λ andsupp(P) is compact}, where
λ is the Lebesgue measure. Suppose k satisfies Assumption 1 andsupp(Λ) ( Rd has a non-empty
interior, whereΛ is defined as in (11). Then k is characteristic toP1.

Proof See Section 3.5.

Although, by Theorem 9, the kernels with supp(Λ) ( Rd are not characteristic toP, Theorem 12
shows that there exists a subset ofP to which a subset of these kernels are characteristic. This type
of result is not available for the previously mentioned characterizations. An example of a kernel
that satisfies the conditions in Theorem 12 is the Sinc kernel,ψ(x) = sin(σx)

x which has supp(Λ) =
[−σ,σ]. The condition that supp(Λ) ( Rd has a non-empty interior is important for Theorem 12 to
hold. If supp(Λ) has an empty interior (examples include periodic kernels), then one can construct
P 6= Q, P,Q ∈ P1 such thatγk(P,Q) = 0. This is illustrated in Example 5 of Section 3.5.

So far, we have characterized the characteristic property of kernels that satisfy (a) supp(Λ) = Rd

or (b) supp(Λ) ( Rd with int(supp(Λ)) 6= /0. In the following section, we investigate kernels that
have supp(Λ) ( Rd with int(supp(Λ)) = /0, examples of which include periodic kernels onRd.
This discussion uses the fact that a periodic function onRd can be treated as a function onTd, the
d-Torus.

3.3 Characterization for Translation Invariant k on Td

Let M = ×d
j=1[0,τ j) andτ := (τ1, . . . ,τd). A function defined onM with periodic boundary condi-

tions is equivalent to considering a periodic function onRd with periodτ. With no loss of gener-
ality, we can chooseτ j = 2π, ∀ j which yieldsM = [0,2π)d =: Td, called thed-Torus. The results
presented here hold for any 0< τ j < ∞, ∀ j but we chooseτ j = 2π for simplicity. Similar to As-
sumption 1, we now make the following assumption.

Assumption 2 k(x,y) = ψ((x− y)mod2π), whereψ is a continuous real-valued positive definite
function on M= Td.

Similar to Theorem 3, we now state Bochner’s theorem onM = Td.
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Theorem 13 (Bochner) A continuous functionψ : Td → R is positive definite if and only if

ψ(x) = ∑
n∈Zd

Aψ(n)eixTn, x∈ Td, (20)

where Aψ : Zd → R+, Aψ(−n) = Aψ(n) and ∑n∈Zd Aψ(n) < ∞. Aψ are called the Fourier series
coefficients ofψ.

Examples forψ include the Poisson, Dirichlet, Féjer and cosine kernels, which are shown in Table 2.
We now state the result that defines characteristic kernels onTd.

Theorem 14 Suppose k satisfies Assumption 2. Then k is characteristic (to the set of allBorel
probability measures onTd) if and only if Aψ(0) ≥ 0, Aψ(n) > 0, ∀n 6= 0.

The proof is provided in Section 3.5 and the idea is similar to that of Theorem 9.Based on the
above result, one can generate characteristic kernels by constructing an infinite sequence of positive
numbers that are summable and then using them in (20). It can be seen fromTable 2 that the Poisson
kernel onT is characteristic while the Dirichlet, Féjer and cosine kernels are not. Some examples
of characteristic kernels onT are:

(1) k(x,y) = eαcos(x−y) cos(αsin(x−y)), 0 < α ≤ 1 ↔ Aψ(0) = 1, Aψ(n) = α|n|
2|n|! , ∀n 6= 0.

(2) k(x,y) = − log(1−2αcos(x−y)+α2), |α| < 1 ↔ Aψ(0) = 0, Aψ(n) = αn

n , ∀n 6= 0.

(3) k(x,y) = (π− (x−y)mod2π)
2 ↔ Aψ(0) = π2

3 , Aψ(n) = 2
n2 , ∀n 6= 0.

(4) k(x,y) = sinhα
coshα−cos(x−y) , α > 0 ↔ Aψ(0) = 1,Aψ(n) = e−α|n|, ∀n 6= 0.

(5) k(x,y) = πcosh(α(π−(x−y)mod2π))
αsinh(πα) ↔ Aψ(0) = 1

α2 , Aψ(n) = 1
n2+α2 , ∀n 6= 0.

The following result relates characteristic kernels and universal kernels defined onTd.

Corollary 15 Let k be a characteristic kernel satisfying Assumption 2 with Aψ(0) > 0. Then k is
also universal.

Proof Sincek is characteristic withAψ(0) > 0, we haveAψ(n) > 0, ∀n. Therefore, by Corollary 11
of Steinwart (2001),k is universal.

Sincek being universal implies that it is characteristic, the above result shows that the converse is
not true (though almost true except thatAψ(0) can be zero for characteristic kernels). The condi-
tion on Aψ in Theorem 14, that is,Aψ(0) ≥ 0, Aψ(n) > 0, ∀n 6= 0 can be equivalently written as
supp(Aψ) = Zd or supp(Aψ) = Zd\{0}. Therefore, Theorems 9 and 14 are of similar flavor. In
fact, these results can be generalized to locally compact Abelian groups. Fukumizu et al. (2009b)
shows that a bounded continuous translation invariant kernel on a locallycompact Abelian group
G is characteristic to the set of all probability measures onG if and only if the support of the
Fourier transform of the translation invariant kernel is the dual group of G. In our case,(Rd,+)
and(Td,+) are locally compact Abelian groups with(Rd,+) and(Zd,+) as their respective dual
groups. In Fukumizu et al. (2009b), these results are also extended to translation invariant kernels
on non-Abelian compact groups and the semigroupRd

+.
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Figure 1: Summary of the relations between various families of kernels is shown along with the
reference. The letters “C”, “F”, and “T” refer to Corollary, Footnoteand Theorem re-
spectively. For example, T. 7 refers to Theorem 7. The implications which are open
problems are shown with “?”.A D B indicates thatA is a dense subset ofB. Refer to
Section 3.4 for details.

3.4 Overview of Relations Between Families of Kernels

So far, we have presented various characterizations of characteristickernels, which are easily check-
able compared with characterizations proposed in the earlier literature (Gretton et al., 2007b; Fuku-
mizu et al., 2008, 2009b). We now provide an overview of various useful conditions one can impose
on kernels (to be universal, strictly pd, integrally strictly pd, or characteristic), and the implications
that relate some of these conditions. A summary is provided in Figure 1.

Characteristic kernels vs. Integrally strictly pd kernels:It is clear from Theorem 7 that inte-
grally strictly pd kernels on a topological spaceM are characteristic, whereas the converse remains
undetermined. Whenk is translation invariant onRd, however, then the converse holds. This is
because ifk is characteristic, then by Theorem 9, supp(Λ) = Rd, whereΛ is defined as in (11). It is
easy to check that if supp(Λ) = Rd, thenk is integrally strictly pd.

Integrally strictly pd kernels vs. Strictly pd kernels:The relation between integrally strictly pd
and strictly pd kernels shown in Figure 1 is straightforward, as one direction follows from Foot-
note 4, while the other direction is not true, which follows from Steinwart andChristmann (2008,
Proposition 4.60, Theorem 4.62). However, ifM is a finite set, thenk being strictly pd also implies
it is integrally strictly pd.

Characteristic kernels vs. Strictly pd kernels:Since integrally strictly pd kernels are character-
istic and are also strictly pd, a natural question to ask is, “What is the relation between characteristic
and strictly pd kernels?” It can be seen that strictly pd kernels need not be characteristic because

the sinc-squared kernel,k(x,y) = sin2(σ(x−y))
(x−y)2 on R, which has supp(Λ) = [−σ,σ] ( R is strictly pd

(Wendland, 2005, Theorem 6.11), while it is not characteristic by Theorem 9. However, for any
generalM, it is not clear whetherk being characteristic implies that it is strictly pd. As a special
case, ifM = Rd or M = Td, then by Theorems 9 and 12, it follows that a translation invariantk
being characteristic also implies that it is strictly pd.

Universal kernels vs. Characteristic kernels:Gretton et al. (2007b) have shown that ifk is
universal in the sense of Steinwart (2001), then it is characteristic. Asmentioned in Section 3.3,
the converse is not true, that is, if a kernel is characteristic, then it neednot be universal, which
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follows from Corollary 15. Note that in this case,M is assumed to be a compact metric space. The
notion of universality of kernels was extended to non-compact domains byMicchelli et al. (2006):
k is said to be universal on a non-compact Hausdorff space,M, if for any compactZ ⊂ M, the set
K(Z) := span{k(·,y) : y∈ Z} is dense inCb(Z) w.r.t. the supremum norm. It is to be noted that when
M is compact, this notion of universality is same as that of Steinwart (2001). Micchelli et al. (2006,
Proposition 15) have provided a characterization of universality for translation invariant kernels on
Rd: k is universal ifλ(supp(Λ)) > 0, whereλ is the Lebesgue measure andΛ is defined as in (11).
This means if a translation invariant kernel onRd is characteristic, that is, supp(Λ) = Rd, then it
is also universal in the sense of Micchelli et al. (2006), while the converse is not true (e.g., sinc-
squared kernel is not characteristic as supp(Λ) = [−σ,σ] ( R but universal in the sense of Micchelli
asλ(supp(Λ)) = 2σ > 0). The relation between these notions for a general non-compact Hausdorff
spaceM (other thanRd) remains to be determined (whether or not the kernel is translation invariant).

Fukumizu et al. (2008, 2009b) have shown thatk is characteristic if and only ifH+R is dense
in Lr(M,P) for all P ∈ P and for somer ∈ [1,∞). Using this, it is easy to see that ifH is dense in
Lr(M,P) for all P ∈ P and for somer ∈ [1,∞), thenk is characteristic. Clearly, the converse is not
true. However, if constant functions are included inH, then it is easy to see that the converse is also
true.

Universal kernels vs. Strictly pd kernels:If a kernel is universal, then it is strictly pd, which
follows from Steinwart and Christmann (2008, Definition 4.53, Proposition 4.54, Exercise 4.11).
On the other hand, if a kernel is strictly pd, then it need not be universal,which follows from the
results due to Dahmen and Micchelli (1987) and Pinkus (2004) for Taylorkernels (Steinwart and
Christmann, 2008, Lemma 4.8, Corollary 4.57). Refer to Steinwart and Christmann (2008, Section
4.7, p. 161) for more details.

Recently, Sriperumbudur et al. (2010a,b) carried out a thorough studyrelating characteristic
kernels to various notions of universality, addressing some open questions mentioned in the above
discussion and Figure 1. This is done by relating universality to the injectiveembedding of regular
Borel measures into an RKHS, which can therefore be seen as a generalization of the notion of
characteristic kernels, as the latter deal with the injective RKHS embedding ofprobability measures.

3.5 Proofs

First, we present a supplementary result in Lemma 16 that will be used to prove Theorem 9. The
idea of Lemma 16 is to characterize the equivalent conditions for the existence of P 6= Q such that
γk(P,Q) = 0 when supp(Λ) ( Rd. Its proof relies on the properties of characteristic functions,
which we have collected in Theorem 27 in Appendix A.

Lemma 16 LetP0 := {P ∈ P : φP ∈ L1(Rd)∪L2(Rd) andP ≪ λ}, whereλ is the Lebesgue mea-
sure. Suppose k satisfies Assumption 1 andsupp(Λ) ( Rd, whereΛ is defined as in (11). Then, for
anyQ ∈ P0, ∃P 6= Q, P ∈ P0 such thatγk(P,Q) = 0 if and only if there exists a non-zero function
θ : Rd → C that satisfies the following conditions:

(i) θ ∈ (L1(Rd)∪L2(Rd))∩Cb(R
d) is conjugate symmetric, that is,θ(x) = θ(−x), ∀x∈ Rd,

(ii) θ∨ ∈ L1(Rd)∩ (L2(Rd)∪Cb(R
d)),

(iii)
R

Rd |θ(x)|2dΛ(x) = 0,
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(iv) θ(0) = 0,

(v) infx∈Rd{θ∨(x)+q(x)} ≥ 0.

Proof DefineL1 := L1(Rd), L2 := L2(Rd) andCb := Cb(R
d).

(⇐ ) Suppose there exists a non-zero functionθ satisfying(i) – (v). For anyQ ∈ P0, we have
φQ ∈ L1∪L2 andφQ ∈ Cb (by Theorem 27), that is,φQ ∈ (L1∪L2)∩Cb. Now, consider the case
of φQ ∈ L1 ∩Cb. SinceφQ ∈ L1, by the inversion theorem for characteristic functions (Dudley,
2002, Theorem 9.5.4),Q is absolutely continuous w.r.t.λ. If q is the Radon-Nikodym derivative
of Q w.r.t. λ, thenq = [φQ]∨ ∈ L1. In addition, by the Riemann-Lebesgue lemma (Lemma 28 in
Appendix A), we haveq∈C0(R

d) ⊂Cb, which therefore impliesq∈ L1∩Cb. WhenφQ ∈ L2∩Cb,
the Fourier transform in theL2 sense (see Footnote 6) implies thatq = [φQ]∨ ∈ L1∩L2. Therefore,
q∈ L1∩ (L2∪Cb). Definep := q+θ∨. Clearlyp∈ L1∩ (L2∪Cb). In addition,φP = p̂ = q̂+ θ̂∨ =
φQ +θ ∈ (L1∪L2)∩Cb. Sinceθ is conjugate symmetric,θ∨ is real valued and so isp. Consider

Z

Rd
p(x)dx=

Z

Rd
q(x)dx+

Z

Rd
θ∨(x)dx= 1+θ(0) = 1.

(v) implies thatp is non-negative. Therefore,p is the Radon-Nikodym derivative of a probability
measureP w.r.t. λ, whereP is such thatP 6= Q andP ∈ P0. By (12), we have

γ2
k(P,Q) =

Z

Rd
|φP(x)−φQ(x)|2dΛ(x) =

Z

Rd
|θ(x)|2dΛ(x) = 0.

(⇒ ) Suppose that there existsP 6= Q, P,Q ∈ P0 such thatγk(P,Q) = 0. Defineθ := φP −φQ. We
need to show thatθ satisfies(i) – (v). Recalling Theorem 27 in the appendix,P,Q ∈ P0 implies
φP,φQ ∈ (L1 ∪ L2)∩Cb and p,q ∈ L1 ∩ (L2 ∪Cb). Therefore,θ = φP − φQ ∈ (L1 ∪ L2)∩Cb and
θ∨ = p−q∈ L1∩ (L2∪Cb). By Theorem 27 (see Appendix A),φP andφQ are conjugate symmetric
and so isθ. Thereforeθ satisfies(i) andθ∨ satisfies(ii) . θ satisfies(iv) as

θ(0) =
Z

Rd
θ∨(x)dx=

Z

Rd
(p(x)−q(x))dx= 0.

Non-negativity ofp yields(v). By (12),γk(P,Q) = 0 implies(iii) .

Remark 17 Note that the dependence ofθ on the kernel appears in the form of (iii) in Lemma 16.
This condition shows thatλ(supp(θ)∩ supp(Λ)) = 0, that is, the supports ofθ and Λ are disjoint
w.r.t. the Lebesgue measure,λ. In other words,supp(θ) ⊂ cl(Rd\supp(Λ)). So, the idea is to
introduce the perturbation,θ over an open set, U whereΛ(U) = 0. The remaining conditions
characterize the nature of this perturbation so that the constructed measure, p= q+ θ∨, is a valid
probability measure. Conditions (i), (ii) and (iv) simply follow fromθ = φP −φQ, while (v) ensures
that p(x) ≥ 0, ∀x.

Using Lemma 16, we now present the proof of Theorem 9.

Proof(Theorem 9)The sufficiency follows from (12): if supp(Λ)= Rd, thenγ2
k(P,Q)=

R

Rd |φP(x)−
φQ(x)|2dΛ(x) = 0⇒ φP = φQ, a.e. Recalling from Theorem 27 thatφP andφQ are uniformly con-
tinuous onRd, we have thatP = Q, and thereforek is characteristic. To prove necessity, we need
to show that if supp(Λ) ( Rd, then there existsP 6= Q, P,Q ∈ P such thatγk(P,Q) = 0. By
Lemma 16, this is equivalent to showing that there exists a non-zeroθ satisfying the conditions in
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Lemma 16. Below, we provide a constructive procedure for such aθ when supp(Λ) ( Rd, thereby
proving the result.

Consider the following function,fβ,ω0 ∈C∞(Rd) supported in[ω0−β,ω0 +β],

fβ,ω0(ω) =
d

∏
j=1

hβ j ,ω0, j
(ω j) with ha,b(y) := 1[−a,a](y−b)e

− a2

a2−(y−b)2 ,

whereω = (ω1, . . . ,ωd), ω0 = (ω0,1, . . . ,ω0,d), β = (β1, . . . ,βd), a∈ R++, b∈ R andy∈ R. Since
supp(Λ) ( Rd, there exists an open setU ⊂ Rd such thatΛ(U) = 0. So, there existsβ ∈ Rd

++ and
ω0 > β (element-wise inequality) such that[ω0−β,ω0 +β] ⊂U . Let

θ = α( fβ,ω0 + fβ,−ω0), α ∈ R\{0},

which implies supp(θ) = [−ω0−β,−ω0 + β]∪ [ω0−β,ω0 + β] is compact. Clearlyθ ∈ Dd ⊂ Sd

which impliesθ∨ ∈ Sd ⊂ L1(Rd)∩ L2(Rd). Therefore, by construction,θ satisfies(i) – (iv) in
Lemma 16. Since

R

Rd θ∨(x)dx= θ(0) = 0 (by construction),θ∨ will take negative values, so we
need to show that there existsQ ∈ P0 such that(v) in Lemma 16 holds. LetQ be such that it has a
density given by

q(x) = Cl

d

∏
j=1

1
(1+ |x j |2)l , l ∈ N where Cl =

d

∏
j=1

(
Z

R
(1+ |x j |2)−l dxj

)−1

,

andx = (x1, . . . ,xd). It can be verified that choosingα such that

0 < |α| ≤ Cl

2supx

∣∣∣∏d
j=1h∨β j ,0

(x j)(1+ |x j |2)l cos(ωT
0 x)
∣∣∣
< ∞,

ensures thatθ satisfies(v) in Lemma 16. The existence of finiteα is guaranteed asha,0 ∈ D1 ⊂ S1

which impliesh∨a,0 ∈ S1, ∀a. We conclude there exists a non-zeroθ as claimed earlier, which
completes the proof.

To elucidate the necessity part in the above proof, in the following, we present a simple example
that provides an intuitive understanding about the construction ofθ such that for a givenQ, P 6= Q

can be constructed withγk(P,Q) = 0.

Example 4 LetQ be a Cauchy distribution inR, that is, q(x) = 1
π(1+x2)

with characteristic function,

φQ(ω) = 1√
2πe−|ω| in L1(R). Letψ be a Sinc kernel, that is,ψ(x) =

√
2
π

sin(βx)
x with Fourier transform

given byψ̂(ω) = 1[−β,β](ω) andsupp(ψ̂) = [−β,β] ( R. Letθ be

θ(ω) =
α
2i

[
∗N

11
[
− β

2 , β
2

](ω)

]
∗ [δ(ω−ω0)−δ(ω+ω0)] ,

where|ω0| ≥
(

N+2
2

)
β, N ≥ 2 andα 6= 0. ∗N

1 represents the N-fold convolution. Note thatθ is such
thatsupp(θ)∩supp(ψ̂) is a null set w.r.t. the Lebesgue measure, which satisfies (iii) in Lemma 16. It
is easy to verify thatθ ∈ L1(R)∩L2(R)∩Cb(R) also satisfies conditions (i) and (iv) in Lemma 16.
θ∨ can be computed as

θ∨(x) =
2Nα√

2π
sin(ω0x)

sinN
(

βx
2

)

xN ,
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andθ∨ ∈ L1(R)∩L2(R)∩Cb(R) satisfies(ii) in Lemma 16. Choose

0 < |α| ≤
√

2
√

πβN supx

∣∣∣(1+x2)sin(ω0x)sincN
(

βx
2π

)∣∣∣
,

wheresinc(x) := sin(πx)
πx . Define g(x) := sin(ω0x)sincN

(
βx
2π

)
. Since g∈S1, 0< supx |(1+x2)g(x)|<

∞ and, therefore,α is a finite non-zero number. It is easy to see thatθ satisfies(v) of Lemma 16.
Then, by Lemma 16, there existsP 6= Q, P ∈ P0, given by

p(x) =
1

π(1+x2)
+

2Nα√
2π

sin(ω0x)
sinN

(
βx
2

)

xN ,

with φP = φQ + θ = φQ + iθI whereθI = Im[θ] and φP ∈ L1(R). So, we have constructedP 6= Q,
such thatγk(P,Q) = 0. Figure 2 shows the plots ofψ, ψ̂, θ, θ∨, q,φQ, p and|φP| for β = 2π, N = 2,
ω0 = 4π andα = 1

50.

We now prove Theorem 12.

Proof(Theorem 12)Suppose∃P 6= Q, P,Q ∈ P1 such thatγk(P,Q) = 0. Since any positive Borel
measure onRd is a distribution (Rudin, 1991, p. 157),P andQ can be treated as distributions
with compact support. By the Paley-Wiener theorem (Theorem 29 in Appendix A), φP and φQ

are restrictions toRd of entire functions onCd. Let θ := φP − φQ. Sinceγk(P,Q) = 0, we have
from (12) that

R

Rd |θ(ω)|2dΛ(ω) = 0. From Remark 17, it follows that supp(θ) ⊂ cl(Rd\supp(Λ)).
Since supp(Λ) has a non-empty interior, we have supp(θ) ( Rd. Thus, there exists an open set,
U ⊂ Rd such thatθ(x) = 0, ∀x ∈ U . Sinceθ is analytic onRd, we haveθ = 0, which means
φP = φQ ⇒ P = Q, leading to a contradiction. So, there does not existP 6= Q, P,Q ∈ P1 such that
γk(P,Q) = 0, andk is therefore characteristic toP1.

The condition that supp(Λ) has a non-empty interior is important for Theorem 12 to hold. In the
following, we provide a simple example to show thatP 6= Q, P,Q ∈ P1 can be constructed such
thatγk(P,Q) = 0, if k is a periodic translation invariant kernel for which int(supp(Λ)) = /0.

Example 5 Let Q be a uniform distribution on[−β,β] ⊂ R, that is, q(x) = 1
2β1[−β,β](x) with its

characteristic function,φQ(ω) = 1
β
√

2π
sin(βω)

ω ∈ L2(R). Let ψ be the Dirichlet kernel with period

τ, whereτ ≤ β, that is, ψ(x) =
sin (2l+1)πx

τ
sin πx

τ
and ψ̂(ω) =

√
2π∑l

j=−l δ
(

ω− 2π j
τ

)
with supp(ψ̂) =

{
2π j

τ : j ∈ {0,±1, . . . ,±l}
}

. Clearly,supp(ψ̂) has an empty interior. Letθ be

θ(ω) =
8
√

2α
i
√

π
sin
(ωτ

2

) sin2
(ωτ

4

)

τω2 ,

with α ≤ 1
2β . It is easy to verify thatθ ∈ L1(R)∩L2(R)∩Cb(R), soθ satisfies(i) in Lemma 16.

Sinceθ(ω) = 0 at ω = 2πl
τ , l ∈ Z, supp(θ)∩supp(ψ̂) ⊂ supp(ψ̂) is a set of Lebesgue measure zero,

so(iii ) and(iv) in Lemma 16 are satisfied.θ∨ is given by

θ∨(x) =





2α|x+ τ
2|

τ −α, −τ ≤ x≤ 0

α− 2α|x− τ
2|

τ , 0≤ x≤ τ
0, otherwise,
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Figure 2: (a-a′) ψ and its Fourier spectrum̂ψ, (b-b′) θ∨ andiθ, (c-c′) the Cauchy distribution,q and
its characteristic functionφQ, and (d-d′) p = q+θ∨ and|φP|. See Example 4 for details.
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whereθ∨ ∈ L1(R)∩L2(R)∩Cb(R) satisfies(ii) in Lemma 16. Now, consider p= q+θ∨, which is
given as

p(x) =





1
2β , x∈ [−β,−τ]∪ [τ,β]

2α|x+ τ
2|

τ + 1
2β −α, x∈ [−τ,0]

α+ 1
2β −

2α|x− τ
2|

τ , x∈ [0,τ]
0, otherwise.

Clearly, p(x) ≥ 0, ∀x and
R

R p(x)dx = 1. φP = φQ + θ = φQ + iθI whereθI = Im[θ] and φP ∈
L2(R). We have therefore constructedP 6= Q, such thatγk(P,Q) = 0, whereP andQ are compactly
supported inR with characteristic functions in L2(R), that is,P,Q ∈ P1. Figure 3 shows the plots
of ψ, ψ̂, θ, θ∨, q, φQ, p and|φP| for τ = 2, l = 2, β = 3 andα = 1

8.

We now present the proof of Theorem 14, which is similar to that of Theorem 9.

Proof (Theorem 14)(⇐ ) From (10), we have

γ2
k(P,Q) =

Z Z

Td
ψ(x−y)d(P−Q)(x)d(P−Q)(y)

(a)
=

Z Z

Td
∑

n∈Zd

Aψ(n)ei(x−y)Tnd(P−Q)(x)d(P−Q)(y)

(b)
= ∑

n∈Zd

Aψ(n)

∣∣∣∣
Z

Td
e−ixTnd(P−Q)(x)

∣∣∣∣
2

(c)
= (2π)2d ∑

n∈Zd

Aψ(n) |AP(n)−AQ(n)|2 , (21)

where we have invoked Bochner’s theorem (Theorem 13) in(a), Fubini’s theorem in(b) and

AP(n) :=
1

(2π)d

Z

Td
e−inTxdP(x), n∈ Zd,

in (c). AP is the Fourier transform ofP in Td. SinceAψ(0) ≥ 0 andAψ(n) > 0, ∀n 6= 0, we have
AP(n) = AQ(n), ∀n. Therefore, by the uniqueness theorem of Fourier transform, we haveP = Q.

(⇒ ) Proving the necessity is equivalent to proving that ifAψ(0)≥ 0, Aψ(n) > 0, ∀n 6= 0 is violated,
thenk is not characteristic, which is equivalent to showing that∃P 6= Q such thatγk(P,Q) = 0. Let
Q be a uniform probability measure withq(x) = 1

(2π)d , ∀x∈ Td. Let k be such thatAψ(n) = 0 for
somen = n0 6= 0. Define

AP(n) :=

{
AQ(n), n 6= ±n0

AQ(n)+θ(n), n = ±n0
,

whereAQ(n) = 1
(2π)d δ0n andθ(−n0) = θ(n0). So,

p(x) = ∑
n∈Zd

AP(n)eixTn =
1

(2π)d +θ(n0)e
ixTn0 +θ(−n0)e

−ixTn0.

Chooseθ(n0) = iα, α ∈ R. Then,p(x) = 1
(2π)d −2αsin(xTn0). It is easy to check thatp integrates

to one. Choosing|α| ≤ 1
2(2π)d ensures thatp(x)≥ 0,∀x∈ Td. By usingAP(n) in (21), it is clear that

γk(P,Q) = 0. Therefore,∃P 6= Q such thatγk(P,Q) = 0, which meansk is not characteristic.
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Figure 3: (a-a′) ψ and its Fourier spectrum̂ψ, (b-b′) θ∨ andiθ, (c-c′) the uniform distribution,q and
its characteristic functionφQ, and (d-d′) p = q+θ∨ and|φP|. See Example 5 for details.
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4. Dissimilar Distributions with Small γk

So far, we have studied different characterizations for the kernelk such thatγk is a metric onP. As
mentioned in Section 1, the metric property ofγk is crucial in many statistical inference applications
like hypothesis testing. Therefore, in practice, it is important to use characteristic kernels. However,
in this section, we show that characteristic kernels, while guaranteeingγk to be a metric onP,
may nonetheless have difficulty in distinguishing certain distributions on the basis of finite samples.
More specifically, in Theorem 19 we show that for a given kernelk and for anyε > 0, there exist
P 6= Q such thatγk(P,Q) < ε. Before proving the result, we motivate it through the following
example.

Example 6 Let P be absolutely continuous w.r.t. the Lebesgue measure onR with the Radon-
Nikodym derivative defined as

p(x) = q(x)+αq(x)sin(νπx), (22)

where q is the Radon-Nikodym derivative ofQ w.r.t. the Lebesgue measure satisfying q(x)= q(−x), ∀x
andα ∈ [−1,1]\{0}, ν ∈ R\{0}. It is obvious thatP 6= Q. The characteristic function ofP is given
as

φP(ω) = φQ(ω)− iα
2

[φQ(ω−νπ)−φQ(ω+νπ)] , ω ∈ R,

whereφQ is the characteristic function associated withQ. Note that with increasing|ν|, p has
higher frequency components in its Fourier spectrum, as shown in Figure4. In Figure 4, (a-c)
show the plots of p when q= U[−1,1] (uniform distribution) and (a′-c′) show the plots of p when
q = N(0,2) (zero mean normal distribution with variance2) for ν = 0,2 and7.5 with α = 1

2.
Consider the B1-spline kernel onR given by k(x,y) = ψ(x−y) where

ψ(x) =

{
1−|x|, |x| ≤ 1

0, otherwise
, (23)

with its Fourier transform given by

ψ̂(ω) =
2
√

2√
π

sin2 ω
2

ω2 .

Sinceψ is characteristic toP, γk(P,Q) > 0 (see Theorem 9). However, it would be of interest to
study the behavior ofγk(P,Q) as a function ofν. We study the behavior ofγ2

k(P,Q) through its
unbiased, consistent estimator,7 γ2

k,u(m,m) as considered by Gretton et al. (2007b, Lemma 7).

Figure 5(a) shows the behavior ofγ2
k,u(m,m) as a function ofν for q= U[−1,1] and q= N(0,2)

using the B1-spline kernel in (23). Since the Gaussian kernel, k(x,y) = e−(x−y)2
is also a character-

istic kernel, its effect on the behavior ofγ2
k,u(m,m) is shown in Figure 5(b) in comparison to that of

the B1-spline kernel.
In Figure 5, we observe two circumstances under whichγ2

k may be small. First,γ2
k,u(m,m) decays

with increasing|ν|, and can be made as small as desired by choosing a sufficiently large|ν|. Second,

7. Let{Xj}m
j=1 and{Yj}m

j=1 be random samples drawn i.i.d. fromP andQ respectively. An unbiasedempirical estimate

of γ2
k(P,Q), denoted asγ2

k,u(m,m) is given byγ2
k,u(m,m) = 1

m(m−1) ∑m
l 6= j h(Zl ,Z j ), which is a one-sampleU-statistic

with h(Zl ,Z j ) := k(Xl ,Xj ) + k(Yl ,Yj )− k(Xl ,Yj )− k(Xj ,Yl ), whereZ1, . . . ,Zm are m i.i.d. random variables with
Z j := (Xj ,Yj ). See Gretton et al. (2007b, Lemma 7) for details.
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Figure 5: Behavior of the empirical estimate ofγ2
k(P,Q) w.r.t. ν for (a) theB1-spline kernel and (b)

the Gaussian kernel.P is constructed fromQ as defined in (22). “Uniform” corresponds
to Q = U[−1,1] and “Gaussian” corresponds toQ = N(0,2). m = 1000 samples are
generated fromP andQ to estimateγ2

k(P,Q) throughγ2
k,u(m,m). This is repeated 100

times and the averageγ2
k,u(m,m) is plotted in both figures. Since the quantity of interest

is the average behavior ofγ2
k,u(m,m), we omit the error bars. See Example 6 for details.

in Figure 5(a),γ2
k,u(m,m) has troughs atν = ω0

π whereω0 = {ω : ψ̂(ω) = 0}. Sinceγ2
k,u(m,m) is a

consistent estimate ofγ2
k(P,Q), one would expect similar behavior fromγ2

k(P,Q). This means that,
although the B1-spline kernel is characteristic toP, in practice, it becomes harder to distinguish
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betweenP and Q with finite samples, whenP is constructed as in (22) withν = ω0
π . In fact, one

can observe from a straightforward spectral argument that the troughsin γ2
k(P,Q) can be made

arbitrarily deep by widening q, when q is Gaussian.

For characteristic kernels, althoughγk(P,Q) > 0 whenP 6= Q, Example 6 demonstrates that one
can construct distributions such thatγ2

k,u(m,m) is indistinguishable from zero with high probability,
for a given sample sizem. Below, in Theorem 19, we explicitly constructP 6= Q such that|Pϕl −
Qϕl | is large for some largel , but γk(P,Q) is arbitrarily small, making it hard to detect a non-zero
value ofγk(P,Q) based on finite samples. Here,ϕl ∈ L2(M) represents the bounded orthonormal
eigenfunctions of a positive definite integral operator associated withk. Based on this theorem, for
example, in Example 6, the decay mode ofγk for large|ν| can be investigated.

Consider the formulation ofγF with F = Fk in (1). The construction ofP for a givenQ such
thatγk(P,Q) is small, though not zero, can be intuitively understood by re-writing (1) as

γk(P,Q) = sup
f∈H

|P f −Q f |
‖ f‖H

.

WhenP 6= Q, |P f −Q f | can be large for somef ∈ H. However,γk(P,Q) can be made small by
selectingP such that the maximization of|P f−Q f |

‖ f‖H
over H requires anf with large‖ f‖H. More

specifically, higher order eigenfunctions of the kernel (ϕl for largel ) have large RKHS norms, so, if
they are prominent inP andQ (i.e., highly non-smooth distributions), one can expectγk(P,Q) to be
small even when there exists anl for which |Pϕl −Qϕl | is large. To this end, we need the following
lemma, which we quote from Gretton et al. (2005b, Lemma 4).

Lemma 18 (Gretton et al., 2005b)Let F be the unit ball in an RKHS(H,k) defined on a com-
pact topological space, M, with k being measurable. Letϕl ∈ L2(M,µ) be absolutely bounded
orthonormal eigenfunctions andλl be the corresponding eigenvalues (arranged in decreasing or-
der for increasing l) of a positive definite integral operator associated withk and aσ-finite mea-
sure, µ. Assumeλ−1

l increases super-linearly with l. Then, for f∈ F where f(x) = ∑∞
j=1 f̃ jϕ j(x),

f̃ j := 〈 f ,ϕ j〉L2(M,µ), we have∑∞
j=1 | f̃ j | < ∞ and for everyε > 0, ∃ l0 ∈ N such that| f̃l | < ε if l > l0.

Theorem 19 (P 6= Q can have arbitrarily small γk) Suppose the conditions in Lemma 18 hold.
Then there exist probability measuresP 6= Q defined on M such thatγk(P,Q) < ε for any arbi-
trarily small ε > 0.

Proof Supposeq be the Radon-Nikodym derivative associated withQ w.r.t. theσ-finite measure,µ
(see Lemma 18). Let us constructp(x) = q(x)+αl e(x)+ τϕl (x) wheree(x) = 1M(x). ForP to be a
probability measure, the following conditions need to be satisfied:

Z

M
[αl e(x)+ τϕl (x)] dµ(x) = 0, (24)

min
x∈M

[q(x)+αl e(x)+ τϕl (x)] ≥ 0.

Expandinge(x) and f (x) in the orthonormal basis{ϕl}∞
l=1, we gete(x) = ∑∞

l=1 ẽl ϕl (x) and f (x) =

∑∞
l=1 f̃l ϕl (x), whereẽl := 〈e,ϕl 〉L2(M,µ) and f̃l := 〈 f ,ϕl 〉L2(M,µ). Therefore,

P f −Q f =
Z

M
f (x) [αl e(x)+ τϕl (x)] dµ(x)

=
Z

M

[
αl

∞

∑
j=1

ẽjϕ j(x)+ τϕl (x)

][
∞

∑
t=1

f̃tϕt(x)

]
dµ(x) = αl

∞

∑
j=1

ẽj f̃ j + τ f̃l , (25)
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where we used the fact that〈ϕ j ,ϕt〉L2(M,µ) = δ jt (here,δ is used in the Kronecker sense). Rewriting
(24) and substituting fore(x) gives

Z

M
[αl e(x)+ τϕl (x)]dµ(x) =

Z

M
e(x)[αl e(x)+ τϕl (x)]dµ(x) = αl

∞

∑
j=1

ẽ2
j + τẽl = 0,

which implies

αl = − τẽl

∑∞
j=1 ẽ2

j

. (26)

Now, let us considerPϕt −Qϕt = αl ẽt + τδtl . Substituting forαl gives

Pϕt −Qϕt = τδtl − τ
ẽt ẽl

∑∞
j=1 ẽ2

j

= τδtl − τρtl ,

whereρtl := ẽt ẽl

∑∞
j=1 ẽ2

j
. By Lemma 18,∑∞

l=1 |ẽl |< ∞⇒∑∞
j=1 ẽ2

j < ∞, and choosing large enoughl gives

|ρtl | < η, ∀ t, for any arbitraryη > 0. Therefore,|Pϕt −Qϕt | > τ−η for t = l and|Pϕt −Qϕt | < η
for t 6= l , which meansP 6= Q. In the following, we prove thatγk(P,Q) can be arbitrarily small,
though non-zero.

Recall thatγk(P,Q) = sup‖ f‖H≤1 |P f −Q f |. Substituting (26) in (25) and replacing|P f −Q f |
by (25) inγk(P,Q), we have

γk(P,Q) = sup
{ f̃ j}∞

j=1

{
τ

∞

∑
j=1

ν jl f̃ j :
∞

∑
j=1

f̃ 2
j

λ j
≤ 1

}
, (27)

where we used the definition of RKHS norm as‖ f‖H := ∑∞
j=1

f̃ 2
j

λ j
and ν jl := δ jl − ρ jl . (27) is

a convex quadratically constrained quadratic program in{ f̃ j}∞
j=1. Solving the Lagrangian yields

f̃ j =
ν jl λ j√

∑∞
j=1 ν2

jl λ j

. Therefore,

γk(P,Q) = τ

√
∞

∑
j=1

ν2
jl λ j = τ

√
λl −2ρll λl +

∞

∑
j=1

ρ2
jl λ j

l→∞−→ 0,

because(i) by choosing sufficiently largel , |ρ jl | < ε, ∀ j, for any arbitraryε > 0, and(ii) λl → 0 as
l → ∞ (Scḧolkopf and Smola, 2002, Theorem 2.10). Therefore, we have constructedP 6= Q such
thatγk(P,Q) < ε for any arbitrarily smallε > 0.

5. Metrization of the Weak Topology

So far, we have shown that a characteristic kernelk induces a metricγk on P. As motivated in
Section 1.1.3, an important question to consider that is useful both in theory and practice would
be: “How strong or weak isγk related to other metrics onP?” This question is addressed in Theo-
rem 21, where we compareγk to other metrics onP like the Dudley metric (β), Wasserstein distance
(W), total variation distance (TV), and show thatγk is weaker than all these metrics (see Footnote 3
for the definition of “strong” and “weak” metrics). Sinceγk is weaker than the Dudley metric, which
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is known to induce a topology onP that coincides with the standard topology onP, called the
weak-∗ (weak-star) topology (usually called the weak topology in probability theory), the next ques-
tion we are interested in is to understand the topology that is being induced byγk. In particular, we
are interested in determining the conditions onk for which the topology induced byγk coincides
with the weak topology onP. This is answered in Theorems 23 and 24, where Theorem 23 deals
with compactM and Theorem 24 provides a sufficient condition onk whenM = Rd. The proofs
of all these results are provided in Section 5.1. Before we motivate the needfor this study and its
implications, we present some preliminaries.

Theweak topologyonP is the weakest topology such that the mapP 7→ R

M f dP is continuous
for all f ∈ Cb(M). For a metric space(M,ρ), a sequencePn of probability measures is said to
converge weaklyto P, written asPn

w→ P, if and only if
R

M f dPn →
R

M f dP for every f ∈Cb(M). A
metricγ onP is said tometrizethe weak topology if the topology induced byγ coincides with the
weak topology, which is defined as follows: if, forP,P1,P2, . . . ∈ P, (Pn

w→ P ⇔ γ(Pn,P)
n→∞−→ 0)

holds, then the topology induced byγ coincides with the weak topology.
In the following, we collect well-known results on the relation between various metrics onP,

which will be helpful in understanding the behavior of these metrics, both withrespect to each other
and to ours. Let(M,ρ) be a separable metric space. TheProhorov metricon (M,ρ), defined as

ς(P,Q) := inf{ε > 0 : P(A) ≤ Q(Aε)+ ε, ∀Borel setsA},

metrizes the weak topology onP (Dudley, 2002, Theorem 11.3.3), whereP,Q ∈ P andAε :=
{y∈ M : ρ(x,y) < ε for somex∈ A}. Since the Dudley metric is related to the Prohorov metric as

1
2

β(P,Q) ≤ ς(P,Q) ≤ 2
√

β(P,Q), (28)

it also metrizes the weak topology onP (Dudley, 2002, Theorem 11.3.3). The Wasserstein distance
and total variation distance are related to the Prohorov metric as

ς2(P,Q) ≤W(P,Q) ≤ (diam(M)+1)ς(P,Q), (29)

and
ς(P,Q) ≤ TV(P,Q),

where diam(M) := sup{ρ(x,y) : x,y ∈ M} (Gibbs and Su, 2002, Theorem 2). This meansW and
TV are stronger thanς, while W andς are equivalent (i.e., induce the same topology) whenM is
bounded. By Theorem 4 in Gibbs and Su (2002),TV andW are related as

W(P,Q) ≤ diam(M)TV(P,Q),

which meansW andTV are comparable ifM is bounded. See Shorack (2000, Chapter 19, Theorem
2.4) and Gibbs and Su (2002) for further detail on the relationship between various metrics onP.

Let us now consider a sequence of of probability measures onR, Pn :=
(
1− 1

n

)
δ0+ 1

nδn and let

P := δ0. It can be shown thatβ(Pn,P)→ 0 asn→ ∞ which meansPn
w→ P, whileW(Pn,P) = 1 and

TV(Pn,P) = 1 for all n. γk(Pn,P) can be computed as

γ2
k(Pn,P) =

1
n2

Z Z

R
k(x,y)d(δ0−δn)(x)d(δ0−δn)(y) =

k(0,0)+k(n,n)−2k(0,n)

n2 .
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If k is, for example, a Gaussian, Laplacian or inverse multiquadratic kernel, then γk(Pn,P) → 0 as
n→ ∞. This example shows thatγk is weaker thanW andTV. It also shows that, for certain choices
of k, γk behaves similarly toβ, which leads to several questions: Doesγk metrize the weak topology
on P? What is the general behavior ofγk compared to other metrics? In other words, depending
onk, how weak or strong isγk compared to other metrics onP? Understanding the answer to these
questions is important both in theory and practice. Ifk is such thatγk metrizes the weak topology on
P, then it can be used as a theoretical tool in probability theory, similar to the Prohorov and Dudley
metrics. On the other hand, the answer to these questions is critical in applications as it will have a
bearing on the choice of kernels to be used. In applications like density estimation, one would need
a strong metric to ascertain that the density estimate is a good representation of the true underlying
density. For this reason, the total variation distance, Hellinger distance or Kullback-Leibler distance
are generally used. However, it is not always possible to show the convergence of a density estimate
to the true underlying density using a stronger metric and so, in such cases,one would need a weak
metric to analyze the quality of estimate. Therefore, studying the relation between γk and these
other metrics will provide an understanding of the choice of kernels to be used, depending on the
application.

With the above motivation, we first compareγk to β, W andTV. Sinceβ is equivalent toς,
we do not compareγk to ς. Before we provide the main result in Theorem 21 that comparesγk to
other metrics, we present an upper bound onγk in terms of the coupling formulation (Dudley, 2002,
Section 11.8), which is not only useful in deriving the main result but also interesting in its own
right.

Proposition 20 (Coupling bound) Let k be measurable and bounded on M. Then, for anyP,Q ∈
P,

γk(P,Q) ≤ inf
µ∈L(P,Q)

Z Z

M
‖k(·,x)−k(·,y)‖Hdµ(x,y), (30)

whereL(P,Q) represents the set of all laws on M×M with marginalsP andQ.

Proof For anyµ∈ L(P,Q), we have

∣∣∣∣
Z

M
f d(P−Q)

∣∣∣∣=
∣∣∣∣
Z Z

M
( f (x)− f (y))dµ(x,y)

∣∣∣∣≤
Z Z

M
| f (x)− f (y)|dµ(x,y)

=
Z Z

M
|〈 f ,k(·,x)−k(·,y)〉H|dµ(x,y) ≤ ‖ f‖H

Z Z

M
‖k(·,x)−k(·,y)‖Hdµ(x,y). (31)

Taking the supremum overf ∈Fk and the infimum overµ∈L(P,Q) in (31), whereP,Q∈P, gives
the result in (30).

We now present the main result that comparesγk to β, W andTV.

Theorem 21 (Comparison ofγk to β, W and TV) Assumesupx∈M k(x,x)≤C< ∞, where k is mea-
surable on M. Let

ρ̃(x,y) = ‖k(·,x)−k(·,y)‖H. (32)

Then, for anyP,Q ∈ P,

(i) γk(P,Q) ≤W(P,Q) ≤
√

γ2
k(P,Q)+4C if (M, ρ̃) is separable.
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(ii) γk(P,Q)

(1+
√

C)
≤ β(P,Q) ≤ 2(γ2

k(P,Q)+4C)
1
3 if (M, ρ̃) is separable.

(iii) γk(P,Q) ≤
√

CTV(P,Q).

The proof is provided in Section 5.1. Below are some remarks on Theorem 21.

Remark 22 (a) First, note that, since k is bounded,(M, ρ̃) is a bounded metric space. In addition,
the metric,ρ̃, which depends on the kernel as in (32), is a Hilbertian metric8 (Berg et al., 1984,
Chapter 3, Section 3) on M. A popular example of such a metric isρ̃(x,y) = ‖x−y‖2, which can be
obtained by choosing M to be a compact subset ofRd and k(x,y) = xTy.

(b) Theorem 21 shows thatγk is weaker thanβ, W and TV for the assumptions being made on
k and ρ̃. Note that the result holds irrespective of whether or not the kernel is characteristic, as
we have not assumed anything about the kernel except it being measurable and bounded. Also,
it is important to remember that the result holds whenρ̃ is Hilbertian, as mentioned in (32) (see
Remark 22(d)).

(c) Apart from showing thatγk is weaker thanβ, W and TV, the result in Theorem 21 can be used
to bound these metrics in terms ofγk. For β, which is primarily of theoretical interest, we do not
know a closed form expression, and likewise a closed form expression forW is known only forR
(Vallander, 1973).9 Sinceγk is easy to compute (see (9) and (10)), bounds on W can be obtained
from Theorem 21 in terms ofγk. A closed form expression for TV is available ifP and Q have
Radon-Nikodym derivatives w.r.t. aσ-finite measure. However, from Theorem 21, a simple lower
bound can be obtained on TV in terms ofγk for anyP,Q ∈ P.

(d) In Theorem 21, the kernel is fixed andρ̃ is defined as in (32), which is a Hilbertian metric. On
the other hand, suppose a Hilbertian metricρ̃ is given. Then the associated kernel k can be obtained
from ρ̃ (Berg et al., 1984, Chapter 3, Lemma 2.1) as

k(x,y) =
1
2
[ρ̃2(x,x0)+ ρ̃2(y,x0)− ρ̃2(x,y)], x,y,x0 ∈ M, (33)

which can then be used to computeγk.

The discussion so far has been devoted to relatingγk to β, W andTV to understand the strength
or weakness ofγk w.r.t. these metrics. In a next step, we address the second question of when
γk metrizes the weak topology onP. This question would have been answered had the result in
Theorem 21 shown that under some conditions onk, γk is equivalent toβ. Since Theorem 21 does
not help in this regard, we approach the problem differently. In the following, we provide two results
related to the question. The first result states that when(M,ρ) is compact,γk induced by universal
kernels metrizes the weak topology. In the second result, we relax the assumption of compactness
but restrict ourselves toM = Rd and provide a sufficient condition onk such thatγk metrizes the
weak topology onP. The proofs of both theorems are provided in Section 5.1.

Theorem 23 (Weak convergence-I)Let (M,ρ) be a compact metric space. If k is universal, then
γk metrizes the weak topology onP.

8. A metric ρ on M is said to beHilbertian if there exists a Hilbert space,H and a mappingΦ such thatρ(x,y) =
‖Φ(x)−Φ(y)‖H , ∀x,y∈ M. In our case,H = H andΦ : M → H, x 7→ k(·,x).

9. The explicit form for the Wasserstein distance is known for(M,ρ(x,y)) = (R, |x−y|), and isW(P,Q) =
R

R |FP(x)−
FQ(x)|dx, whereFP(x) = P((−∞,x]). It is easy to show that this explicit form can be extended to(Rd,‖ · ‖1).
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From Theorem 23, it is clear thatγk is equivalent toς, β andW (see (28) and (29)) whenM is
compact andk is universal.

Theorem 24 (Weak convergence-II)Let M = Rd and k(x,y) = ψ(x− y), whereψ ∈ C0(R
d)∩

L1(Rd) is a real-valued bounded strictly positive definite function. If there exists an l∈ N such that

Z

Rd

1
ψ̂(ω)(1+‖ω‖2)l dω < ∞, (34)

thenγk metrizes the weak topology onP.

The entire Mat́ern class of kernels in (18) satisfies the conditions of Theorem 24 and, therefore,
the correspondingγk metrizes the weak topology onP. Note that Gaussian kernels onRd do not
satisfy the condition in Theorem 24. The characterization ofk for general non-compact domainsM
(not necessarilyRd), such thatγk metrizes the weak topology onP, still remains an open problem.

5.1 Proofs

We now present the proofs of Theorems 21, 23 and 24.

Proof (Theorem 21)(i) When(M,ρ) is separable,W(P,Q) has a coupling formulation (Dudley,
2002, p. 420), given as

W(P,Q) = inf
µ∈L(P,Q)

Z Z

M
ρ(x,y)dµ(x,y), (35)

whereP,Q ∈ {P ∈ P :
R

M ρ(x,y)dP(y) < ∞, ∀x ∈ M}. In our caseρ(x,y) = ‖k(·,x)− k(·,y)‖H.
In addition, (M,ρ) is bounded, which means (35) holds for allP,Q ∈ P. The lower bound
therefore follows from (30). The upper bound can be obtained as follows. ConsiderW(P,Q) =
infµ∈L(P,Q)

RR

M ‖k(·,x)−k(·,y)‖Hdµ(x,y), which can be bounded as

W(P,Q) ≤
Z Z

M
‖k(·,x)−k(·,y)‖HdP(x)dQ(y)

(a)

≤
[

Z Z

M
‖k(·,x)−k(·,y)‖2

HdP(x)dQ(y)

] 1
2

≤
[

Z

M
k(x,x)d(P+Q)(x)−2

Z Z

M
k(x,y)dP(x)dQ(y)

] 1
2

≤
[

γ2
k(P,Q)+

Z Z

M
(k(x,x)−k(x,y))d(P⊗P+Q⊗Q)(x,y)

] 1
2

≤
√

γ2
k(P,Q)+4C, (36)

where we have used Jensen’s inequality (Folland, 1999, p. 109) in(a).

(ii) Let F := { f : ‖ f‖H < ∞} andG := { f : ‖ f‖BL < ∞}. For f ∈ F, we have

‖ f‖BL = sup
x6=y

| f (x)− f (y)|
ρ(x,y)

+ sup
x∈M

| f (x)| = sup
x6=y

|〈 f ,k(·,x)−k(·,y)〉H|
‖k(·,x)−k(·,y)‖H

+ sup
x∈M

|〈 f ,k(·,x)〉H|

≤ (1+
√

C)‖ f‖H < ∞,
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which implies f ∈ G and, therefore,F ⊂ G. For anyP,Q ∈ P,

γk(P,Q) = sup{|P f −Q f | : f ∈ Fk}
≤ sup{|P f −Q f | : ‖ f‖BL ≤ (1+

√
C), f ∈ F}

≤ sup{|P f −Q f | : ‖ f‖BL ≤ (1+
√

C), f ∈ G}
= (1+

√
C)β(P,Q).

The upper bound is obtained as follows. For anyP,Q ∈ P, by Markov’s inequality (Folland, 1999,
Theorem 6.17), for allε > 0, we have

ε2µ(‖k(·,X)−k(·,Y)‖H > ε) ≤
Z Z

M
‖k(·,x)−k(·,y)‖2

Hdµ(x,y),

whereX andY are distributed asP and Q respectively. Chooseε such thatε3 =
RR

M ‖k(·,x)−
k(·,y)‖2

H
dµ(x,y), such thatµ(‖k(·,X)− k(·,Y)‖H > ε) ≤ ε. From the proof of Theorem 11.3.5 in

Dudley (2002), when(M,ρ) is separable, we have

µ(ρ(X,Y) ≥ ε) < ε ⇒ ς(P,Q) ≤ ε,

which implies that

ς(P,Q) ≤
(

inf
µ∈L(P,Q)

Z Z

M
‖k(·,x)−k(·,y)‖2

Hdµ(x,y)

) 1
3

≤
(

Z Z

M
‖k(·,x)−k(·,y)‖2

HdP(x)dQ(y)

) 1
3 (b)

≤
(
γ2

k(P,Q)+4C
) 1

3 ,

where(b) follows from (36). The result follows from (28).

(iii) The proof of this result was presented in Sriperumbudur et al. (2009b)and is provided here
for completeness. To prove the result, we use (30) and the coupling formulation for TV (Lindvall,
1992, p. 19), given as

1
2

TV(P,Q) = inf
µ∈L(P,Q)

µ(X 6= Y),

whereL(P,Q) is the set of all measures onM ×M with marginalsP andQ. Here,X andY are
distributed asP andQ respectively. Consider

‖k(·,x)−k(·,y)‖H ≤ 1{x6=y}‖k(·,x)−k(·,y)‖H ≤ 2
√

C1{x6=y}. (37)

Taking expectations w.r.t.µand the infimum overµ∈L(P,Q) on both sides of (37) gives the desired
result, which follows from (30).

Proof (Theorem 23)We need to show that for measuresP,P1,P2, . . . ∈ P, Pn
w→ P if and only

if γk(Pn,P) → 0 asn → ∞. One direction is trivial asPn
w→ P implies γk(Pn,P) → 0 asn → ∞.

We prove the other direction as follows. Sincek is universal,H is dense inCb(M), the space of
bounded continuous functions, w.r.t. the uniform norm, that is, for anyf ∈Cb(M) and everyε > 0,
there exists ag∈ H such that‖ f −g‖∞ ≤ ε. Therefore,

|Pn f −P f | = |Pn( f −g)+P(g− f )+(Png−Pg)|
≤ Pn| f −g|+P| f −g|+ |Png−Pg|
≤ 2ε+ |Png−Pg| ≤ 2ε+‖g‖Hγk(Pn,P).
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Sinceγk(Pn,P) → 0 asn→ ∞ andε is arbitrary,|Pn f −P f | → 0 for any f ∈Cb(M).

Proof (Theorem 24) As mentioned in the proof of Theorem 23, one direction of the proof is
straightforward:Pn

w→ P ⇒ γk(Pn,P) → 0 asn → ∞. Let us consider the other direction. Since
ψ ∈ C0(R

d)∩L1(Rd) is a strictly positive definite function, anyf ∈ H satisfies (Wendland, 2005,
Theorem 10.12)

Z

Rd

| f̂ (ω)|2
ψ̂(ω)

dω < ∞.

Assume that
sup

ω∈Rd

(1+‖ω‖2)
l | f̂ (ω)|2 < ∞,

for any l ∈ N, which meansf ∈ Sd. Let (34) be satisfied for somel = l0. Then,

Z

Rd

| f̂ (ω)|2
ψ̂(ω)

dω =
Z

Rd

| f̂ (ω)|2(1+‖ω‖2)
l0

ψ̂(ω)(1+‖ω‖2)l0
dω

≤ sup
ω∈Rd

(1+‖ω‖2)
l0| f̂ (ω)|2

Z

Rd

1
ψ̂(ω)(1+‖ω‖2)l0

dω < ∞,

which meansf ∈ H, that is, if f ∈ Sd, then f ∈ H, which impliesSd ⊂ H. Note thatS (Rd) is
dense inC0(R

d). Sinceψ ∈C0(R
d), we haveH ⊂C0(R

d) (see the proof of Theorem 4.61 in Stein-
wart and Christmann, 2008) and, therefore,H is dense inC0(R

d) w.r.t. the uniform norm. Suppose
P,P1,P2, . . . ∈ P. Using a similar analysis as in the proof of Theorem 23, it can be shown thatfor
any f ∈C0(R

d) and everyε > 0, there exists ag∈H such that|Pn f −P f | ≤ 2ε+ |Png−Pg|. Since
ε is arbitrary andγk(Pn,P) → 0 asn→ ∞, the result follows.

6. Conclusion and Discussion

We have studied various properties associated with a pseudometricγk onP, which is based on the
Hilbert space embedding of probability measures. First, we studied the conditions on the kernel
(called the characteristic kernel) under whichγk is a metric, and showed that apart from universal
kernels, a large family of bounded continuous kernels induces a metric onP: (a) integrally strictly
pd kernels and (b) translation invariant kernels onRd andTd that have the support of their Fourier
transform to beRd and Zd respectively. Next, we showed that there exist distinct distributions
which will be considered close according toγk (whether or not the kernel is characteristic), and thus
may be hard to distinguish based on finite samples. Finally, we comparedγk to other metrics on
P and explicitly presented the conditions under which it induces a weak topology on P. These
results together provide a strong theoretical foundation for using theγk metric in both statistics and
machine learning applications.

We now discuss two topics related toγk, concerning the choice of kernel parameter and kernels
defined onP.

An important question not covered in the present paper is how to choose acharacteristic kernel.
Let us consider the following setting:M = Rd andkσ(x,y) = exp(−σ‖x−y‖2

2), σ ∈ R+, a Gaussian
kernel withσ as the bandwidth parameter.{kσ : σ ∈ R+} is the family of Gaussian kernels and
{γkσ : σ ∈ R+} is the associated family of distance measures indexed by the kernel parameter, σ.
Note thatkσ is characteristic for anyσ ∈ R++ and, therefore,γkσ is a metric onP for anyσ ∈ R++.
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In practice, one would prefer a single number that defines the distance betweenP and Q. The
question therefore to be addressed is how to choose an appropriateσ. Note that asσ → 0, kσ → 1
and asσ → ∞, kσ → 0 a.e., which meansγkσ(P,Q) → 0 asσ → 0 or σ → ∞ for all P,Q ∈ P.
This behavior is also exhibited bykσ(x,y) = exp(−σ‖x−y‖1), σ > 0 andkσ(x,y) = σ2/(σ2 +‖x−
y‖2

2), σ > 0, which are also characteristic. This means choosingsufficiently smallor sufficiently
large σ (depending onP andQ) makesγkσ(P,Q) arbitrarily small. Therefore,σ must be chosen
appropriately in applications to effectively distinguish betweenP andQ.

To this end, one can consider the following modification toγk, which yields a pseudometric on
P,

γ(P,Q) = sup{γk(P,Q) : k∈ K} = sup{‖Pk−Qk‖H : k∈ K}. (38)

Note thatγ is the maximal RKHS distance betweenP andQ over a family,K of measurable and
bounded positive definite kernels. It is easy to check that, if anyk ∈ K is characteristic, thenγ is a
metric onP. Examples forK include:

1. Kg :=
{

e−σ‖x−y‖2
2, x,y∈ Rd : σ ∈ R+

}
.

2. Kl :=
{

e−σ‖x−y‖1, x,y∈ Rd : σ ∈ R+

}
.

3. Kψ :=
{

e−σψ(x,y), x,y∈ M : σ ∈ R+

}
, whereψ : M ×M → R is a negative definite kernel

(Berg et al., 1984, Chapter 3).

4. Krb f :=
{

R ∞
0 e−λ‖x−y‖2

2 dµσ(λ),x,y∈ Rd, µσ ∈ M + : σ ∈ Σ ⊂ Rd
}

, whereM + is the set of

all finite nonnegative Borel measures,µσ onR+ that are not concentrated at zero, etc.

5. Klin :=
{

kλ = ∑l
j=1 λ jk j |kλ is pd, ∑l

j=1 λ j = 1
}

, which is the linear combination of pd ker-
nels{k j}l

j=1.

6. Kcon :=
{

kλ = ∑l
j=1 λ jk j |λ j ≥ 0, ∑l

j=1 λ j = 1
}

, which is the convex combination of pd ker-
nels{k j}l

j=1.

The idea and validity behind the proposal ofγ in (38) can be understood from a Bayesian per-
spective, where we define a non-negative finite measureλ overK, and averageγk over that mea-
sure, that is,α(P,Q) :=

R

K
γk(P,Q)dλ(k). This also yields a pseudometric onP. That said,

α(P,Q) ≤ λ(K)γ(P,Q), ∀P,Q, which means that, ifP andQ can be distinguished byα, then they
can be distinguished byγ, but not vice-versa. In this sense,γ is stronger thanα and therefore study-
ing γ makes sense. One further complication with the Bayesian approach is in defining a sensible
λ overK. Note thatγk0 can be obtained by definingλ(k) = δ(k−k0) in α(P,Q). Future work will
include analyzingγ and investigating its utility in applications compared to that ofγk (with a fixed
kernel,k). Sriperumbudur et al. (2009a) describes preliminary work, showing that γ(Pm,Qn) is a√

mn/(m+n)-consistent estimator ofγ(P,Q), for families of kernelsK including those mentioned
above.

We now discuss how kernels onP can be obtained fromγk. As noted by Gretton et al. (2007b,
Section 4), and following Hein et al. (2004),γk is aHilbertian metricon P: the associated kernel
can be easily computed using (33),

K(P,Q) =

〈
Z

M
k(·,x)dP(x),

Z

M
k(·,x)dQ(x)

〉

H

=
Z Z

M
k(x,y)dP(x)dQ(y),
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where the positive definite kernelK : P ×P → R is a dot-product kernel onP. Using the results
in Berg et al. (1984, Chapter 3, Theorems 2.2 and 2.3), Gaussian and inverse multi-quadratic kernels
onP can be defined as

K(P,Q) = exp
(
−σγ2

k(P,Q)
)
, σ > 0 andK(P,Q) =

(
σ+ γ2

k(P,Q)
)−1

, σ > 0

respectively. Further work on Hilbertian metrics and positive definite kernels on probability mea-
sures has been carried out by Hein and Bousquet (2005) and Fuglede and Topsøe (2003).
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Appendix A. Supplementary Results

For completeness, we present the supplementary results that were used toprove the results in this
paper. The following result is quoted from Folland (1999, Theorem 8.14).

Theorem 25 Supposeφ∈ L1(Rd),
R

Rd φ(x)dx= a andφt(x) = t−dφ(t−1x) for t > 0. If f is bounded
and uniformly continuous onRd, then f∗φt → a f uniformly as t→ 0.

By imposing slightly stronger conditions onφ, the following result quoted from Folland (1999,
Theorem 8.15) shows thatf ∗φt → a f almost everywhere forf ∈ Lr(Rd).

Theorem 26 Suppose|φ(x)| ≤ C(1+ ‖x‖2)
−d−ε for some C,ε > 0, and

R

Rd φ(x)dx = a. If f ∈
Lr(Rd) (1 ≤ r ≤ ∞), then f∗ φt(x) → a f(x) as t → 0 for every x in the Lebesgue set of f —in
particular, for almost every x, and for every x at which f is continuous.

Theorem 27 (Fourier transform of a measure) Let µ be a finite Borel measure onRd. The Fourier
transform of µ is given by

µ̂(ω) =
Z

Rd
e−iωTxdµ(x), ω ∈ Rd,

which is a bounded, uniformly continuous function onRd. In addition, µ̂ satisfies the following
properties:

(i) µ̂(ω) = µ̂(−ω), ∀ω ∈ Rd, that is,µ̂ is conjugate symmetric,

(ii) µ̂(0) = 1.
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The following result, called the Riemann-Lebesgue lemma, is quoted from Rudin(1991, Theorem
7.5).

Lemma 28 (Riemann-Lebesgue)If f ∈ L1(Rd), then f̂ ∈C0(R
d), and‖ f̂‖∞ ≤ ‖ f‖1.

The following theorem is a version of thePaley-Wiener theoremfor distributions, and is proved in
Rudin (1991, Theorem 7.23).

Theorem 29 (Paley-Wiener) If f ∈ D ′
d has compact support, then̂f is the restriction toRd of an

entire function onCd.
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