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Abstract

An algorithm is presented for topology selection in graphical models of autoregressive Gaussian
time series. The graph topology of the model represents the sparsity pattern of the inverse spectrum
of the time series and characterizes conditional independence relations between the variables. The
method proposed in the paper is based on anℓ1-type nonsmooth regularization of the conditional
maximum likelihood estimation problem. We show that this reduces to a convex optimization prob-
lem and describe a large-scale algorithm that solves the dual problem via the gradient projection
method. Results of experiments with randomly generated andreal data sets are also included.
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1. Introduction

We consider graphical models of autoregressive (AR) Gaussian processes

x(t) =−
p

∑
k=1

Akx(t −k)+w(t), w(t)∼N (0,Σ) (1)

wherex(t) ∈ Rn, andw(t) ∈ Rn is Gaussian white noise. A graphical model of the time series is an
undirected graph withn nodes, one for each componentxi(t), and an edge connecting nodesi and
j if the componentsxi(t) andx j(t) areconditionally dependent, given the other components of the
time series. The conditional independence property has a simple characterization (which holds for
general Gaussian stationary processes) in terms of the spectrum of the process:xi(t) andx j(t) are
independent, conditional on the othern−2 components ofx(t), if and only if

(S(ω)−1)i j = 0

for all ω, whereS(ω) is the spectral density matrix (Brillinger, 1981, Chapter 8; Dahlhaus, 2000).
This characterization allows us to include the conditional independence relations in an estimation
problem by placing sparsity constraints on the inverse spectral density matrix.

In Songsiri et al. (2009) a convex optimization method was discussed for estimating the model
parametersAk, Σ from data, given the graph of conditional independence relations. Themethod is
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based on solving the convex optimization problem

minimize − logdetX00+ tr(CX)

subject to Yk =
p−k

∑
i=0

Xi,i+k, k= 0,1, . . . , p,

(Yk)i j = 0, (i, j) ∈ V , k= 0,1, . . . , p,
X � 0.

(2)

HereC is the sample covariance matrix andV is the set of conditionally independent pairs of
variables. The optimization variables areX ∈ Sn(p+1) (the symmetric matrices of ordern(p+1)),
Y0 ∈ Sn, andYk ∈ Rn×n, k = 1,2, . . . , p. Xi j denotes then×n subblock ofX in positioni, j, where
the indicesi and j run from 0 top. It was shown that if the sample covariance matrixC is block-
Toeplitz, then problem (2) is equivalent to the conditional maximum likelihood (ML) estimation
problem, and the ML estimates forAk andΣ are easily obtained from the optimal solutionX. If C is
not block-Toeplitz, the problem is a relaxation and in general not equivalent to the conditional ML
problem. However in practice, the relaxation often happens to be exact (Songsiri et al., 2009). This
will be discussed in more detail in §2.3.

In this paper we consider the more general problem of estimating the model parametersand the
topology of the graphical model. The topology selection problem can be solved by enumerating all
topologies, solving the ML estimation problem for each topology, and rankingthem via information-
theoretic criteria such as the Akaike or Bayes information criteria (Eichler, 2006; Songsiri et al.,
2009). However this combinatorial approach is clearly limited to small graphs.The goal of this
paper is to present an efficient alternative based on convex optimization.

Topology selection for graphical models of time series is of interest in many applications (see
Dahlhaus et al., 1997; Eichler et al., 2003; Salvador et al., 2005; Gatheret al., 2002; Timmer et al.,
2000; Feiler et al., 2005; Friedman et al., 2008). A common approach is to formulate hypothesis
testing problems to decide about the presence or absence of edges. Dahlhaus (2000) derives a
statistical test for the existence of an edge in the graph, based on the maximumof a nonparametric
estimate of the normalized inverse spectrum (see also Dahlhaus et al., 1997;Eichler et al., 2003;
Salvador et al., 2005; Gather et al., 2002; Timmer et al., 2000; Feiler et al., 2005; Fried and Didelez,
2003). Eichler (2008) presents a more general approach by introducing a hypothesis test based on
the norm of some suitable function of the spectral density matrix. A related problem was studied by
Bach and Jordan (2004). They use an efficient search procedureto learn the graph structure from
sample estimates of the joint spectral density matrix.

If p= 0, the problem (2) reduces to

minimize − logdetX+ tr(CX)
subject to Xi j = 0, (i, j) ∈ V

(3)

with variableX ∈ Sn. (Throughout the paper we take the set of positive definite matrices as thedo-
main of the function logdetX, so (3) includes an implicit constraintX ≻ 0.) Problem (3) is known
as thecovariance selectionproblem, that is, the problem of computing the ML estimate of the in-
verse covariance matrixX = Σ−1 of a multivariate Gaussian variableN (0,Σ), subject to conditional
independence constraints (which, for a normal distribution, correspond to zeros in the inverse co-
variance); see Dempster (1972) and Lauritzen (1996, §5.2). Recently, new heuristic methods for
topology selection in large Gaussian graphical models have been developed. These methods are
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based on augmenting the ML objective with anℓ1-norm regularization term, that is, on solving

minimize − logdetX+ tr(CX)+ γ∑i j |Xi j | (4)

(see Dahl et al., 2005; Meinshausen and Bühlmann, 2006; Banerjee et al., 2008; Ravikumar et al.,
2008; Friedman et al., 2008; Lu, 2009, 2010). The optimization problem (4) is convex but has
n(n+1)/2 variables (the elements ofX) and is nondifferentiable, so it can be challenging to solve
whenn is large. Several large-scale methods have been proposed. Banerjeeet al. (2008) apply a
block coordinate descent method to the dual problem. Each step of this methodreduces to solv-
ing a quadratic program with box constraints. They also apply Nesterov’soptimal gradient method
(Nesterov, 2005) to a smooth approximation of (4). Friedman et al. (2008)observe that the dual
of the subproblems in the coordinate descent algorithm can be regarded as a lasso-type problem
and solved with a method called graphical lasso. Scheinberg and Rish (2009) consider a coordinate
ascent method applied to the primal problem. A method based on column-wise updates is given by
Rothman et al. (2008). A related problem is explored in Yuan and Lin (2007) where the authors
make a connection between (4) and more general determinant maximization problems (Vanden-
berghe et al., 1998), and solve the problem using interior-point methods.Lu (2009) observes that
the dual of (4) is a smooth problem and applies Nesterov’s method (Nesterov, 2005) directly to the
dual. The algorithm is further extended by Lu (2010) and compared with a projected spectral gra-
dient method. Another closely related paper is Duchi et al. (2008) in whichthe gradient projection
method is applied to the dual problem.

The main purpose of this paper is to develop an efficient method for topologyselection in
AR models, based on augmenting the estimation problem (2) with a convex regularization term,
similar to theℓ1-norm regularization used in (4). We also discuss first-order methods for solving the
resulting large-scale and nondifferentiable convex optimization problem.

The paper is organized as follows. In Section 2 we review the definition of conditional indepen-
dence in time series and summarize the results from Songsiri et al. (2009). In Section 3 we set up
the topology selection problem as a regularized ML problem and discuss its properties. Examples
and applications are presented in Sections 4 and 5. We conclude in Section 6with a discussion of
gradient projection algorithms for solving large instances of the regularized ML estimation problem.

1.1 Notation

Sn is the set of real symmetric matrices of ordern. Sn
+ andSn

++ are the sets of symmetric positive
semidefinite, respectively, positive definite, matrices of ordern. Rm×n is the set ofm×n-matrices.
Mn,p is the set of matrices

X =
[

X0 X1 · · · Xp
]

with X0 ∈ Sn andX1, . . . ,Xp ∈ Rn×n. The standard trace inner product〈X,Y〉= tr(XTY) is used for
the three vector spacesSn, Rm×n, Mn,p. For a symmetric matrixX, the inequalitiesX � 0 andX ≻ 0
meanX is positive semidefinite, resp., positive definite. Row and column indices of submatrices
in a block matrix start at 0. IfX is a matrix with (block) entriesXi j , thenXi: j,k:l will denote the
submatrix formed by rowsi through j and columnsk through l :

Xi: j,k:l =











Xik Xi,k+1 · · · Xil

Xi+1,k Xi+1,k+1 · · · Xi+1,l
...

...
...

Xjk Xj,k+1 · · · Xj,l











.
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The linear mapping T :Mn,p → Sn(p+1) constructs a symmetric block Toeplitz matrix from its
first block row: ifX =

[

X0 X1 · · · Xp
]

∈ Mn,p, then

T(X) =











X0 X1 · · · Xp

XT
1 X0 · · · Xp−1
...

...
.. .

...
XT

p XT
p−1 · · · X0











. (5)

The adjoint of T is a mapping D :Sn(p+1) → Mn,p defined as follows. IfS∈ Sn(p+1) is partitioned as

S=











S00 S01 · · · S0p

ST
01 S11 · · · S1p
...

...
...

ST
0p ST

1p · · · Spp











,

then D(S) =
[

D0(S) D1(S) · · · Dp(S)
]

where

D0(S) =
p

∑
i=0

Sii , Dk(S) = 2
p−k

∑
i=0

Si,i+k, k= 1, . . . , p. (6)

A symmetric sparsity pattern of a sparse matrixX of ordern will be associated with the positions
V ⊆ {1, . . . ,n}×{1, . . . ,n} of its zero entries. We assume(i, i) 6∈ V for i = 1, . . . ,n, that is, the
diagonal entries are not included among the zeros. PV (X) denotes the projection of a matrixX ∈ Sn

or X ∈ Rn×n on the complement of the sparsity patternV :

PV (X)i j =

{

Xi j (i, j) ∈ V

0 otherwise.
(7)

The same notation is used for PV as a mapping fromRn×n → Rn×n and as a mapping fromSn → Sn.
In both cases, PV is self-adjoint. IfX is anr × s block matrix with i, j block Xi j , and each block
is square of ordern, then PV (X) denotes ther ×s block matrix withi, j block PV (X)i j = PV (Xi j ).
Similarly, PV (X) with X ∈ Mn,p denotes

[

PV (X0) PV (X1) · · · PV (Xp)
]

.

The subscriptV in PV is omitted if the sparsity pattern is clear from the context.

2. Graphical Models of Autoregressive Gaussian Processes

In this section we describe the conditional independence property for Gaussian time series, review
the maximum likelihood estimation of AR models, and provide a convex formulation for the esti-
mation problem with conditional independence constraints.

2.1 Conditional Independence

Let x(t) be ann-dimensional stationary zero-mean Gaussian process with spectrumS(ω):

S(ω) =
∞

∑
k=−∞

Rke
−jkω
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whereRk = Ex(t +k)x(t)T and j=
√
−1. We assume thatS(ω) is invertible for allω. Two compo-

nentsxi(t) andx j(t) of x(t) are conditionally independent (i.e., conditional on the other components
of x(t)) if

(S(ω)−1)i j = 0

for all ω (Brillinger, 1981; Dahlhaus, 2000). If we denote byV the set of index pairsi, j of con-
ditionally independent variables, then we can use the projection operator P= PV defined in (7) to
express the conditional independence relations as

P(S(ω)−1) = 0. (8)

In a graphical model of the process, the index setV is the set of missing edges in the graph.
To apply this result to AR processes (1) we need to express the inverse spectrum in terms of the

model parameters. The notation will simplify if we first normalize the input covariance and use the
model

B0x(t) =−
p

∑
k=1

Bkx(t −k)+v(t), v(t)∼N (0, I), (9)

whereB0 ∈ Sn
++ andBk ∈ Rn×n, k = 1, . . . , p. If Σ is nonsingular, the two models are equivalent,

and related asB0 = Σ−1/2, Bk = Σ−1/2Ak for k≥ 1. The inverse spectrumS(ω) of the process (9) is
a trigonometric matrix polynomial

S(ω)−1 =Y0+
1
2

p

∑
k=1

(e−jkωYk+ejkωYT
k ) (10)

whereY0 = ∑p
l=0BT

l Bl , andYk = 2∑p−k
l=0 BT

l Bk+l for k = 1, . . . , p. If we defineB =
[

B0 B1 · · · Bp
]

,
we can use the operator D defined in (6) to expressYk as

[

Y0 Y1 · · · Yp
]

= D(BTB).

The expression (10) shows that(S(ω)−1)i j is identically zero if and only if thei, j and j, i entries of
Yk are zero fork= 0, . . . , p. The conditional independence condition (8) is therefore equivalent toa
quadratic equation in the model parametersBk:

P
(

D(BTB)
)

= 0. (11)

(Recall from the Notation section that ifY is a block matrix with square submatricesYk of ordern,
then P(Y) denotes the block matrix with submatrices P(Yk).)

2.2 Conditional Maximum Likelihood Estimation

We now consider the problem of estimating the model parametersB from an observed sequence
x̃(1), x̃(2), . . . , x̃(N) of the AR process, subject to known conditional independence constraints (11).
In Songsiri et al. (2009) the estimation problem was formulated as the optimization problem

minimize −2logdetB0+ tr(CBTB)
subject to P(D(BTB)) = 0.

(12)
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The matrixC ∈ Sn(p+1)
+ is a sample estimate of the covariance matrix, that is, its blocksCi j , i ≤ j,

are estimates of the covariancesRj−i = Ex(t + j − i)x(t)T , calculated from the observed sequence.
Two choices ofC are common. The first choice is thenon-windowed estimate

C=
1

N− p
HHT , H =











x̃(p+1) x̃(p+2) · · · x̃(N)
x̃(p) x̃(p+1) · · · x̃(N−1)

...
...

...
x̃(1) x̃(2) · · · x̃(N− p)











. (13)

With this choice the estimation problem (12) can be interpreted as a maximum likelihood problem.
Indeed, from (9), the conditional density of a sequencex(t1), x(t1+1), . . .x(t2), givenx(t1− p), . . . ,
x(t1−1), is given by

(

detB0

(2π)n/2

)t2−t1+1

exp

(

−1
2

t2

∑
t=t1

x(t)TBTBx(t)

)

,

wherex(t) denotes then(p+ 1)-vector x(t) = (x(t),x(t − 1), . . . ,x(t − p)). From this it can be
shown that the cost function in (12) withC defined as in (13), is essentially the negative conditional
log-likelihood function of the observed sequence ˜x(p+ 1), x̃(p+ 2), . . . , x̃(N), given x̃(1), . . . ,
x̃(p). We therefore refer to (12) as theconditional maximum likelihood problem. For AR processes,
the conditional ML formulation is substantially simpler and more often used than theexact ML
formulation. Moreover, when the data lengthN is sufficiently large compared top, the difference
between the exact and conditional ML formulations is small.

The second choice forC is thewindowed estimate

C=
1
N

HHT , (14)

where

H =











x̃(1) x̃(2) · · · x̃(p+1) · · · x̃(N) 0 · · · 0
0 x̃(1) · · · x̃(p) · · · x̃(N−1) x̃(N) · · · 0
...

...
...

...
...

...
. . .

...
0 0 · · · x̃(1) · · · x̃(N− p) x̃(N− p+1) · · · x̃(N)











.

The windowed estimateC is block-Toeplitz, and this guarantees several useful properties of the
resulting modelB (for example, stability; see Songsiri et al., 2009). In practice, the differences
between the windowed and non-windowed estimates are small whenN ≫ p.

We will assume thatC is positive definite. Ifn is small compared toN, this is a reasonable
assumption but not guaranteed to be true. (As a counterexample, assume ˜x(1), . . . , x̃(n) are the
first n unit vectors and the remainder of the sequence is zero. The matrixC in (14) then has rank
n+ p.) If C is not positive definite, it may be necessary to add a small multiple of the identity. This
is equivalent to a quadratic regularization term proportional to‖B‖2

F in the objective of (12).
When there are no sparsity constraints in (12), the solution can be found by setting the gradient

of the cost function equal to zero, which gives










C00 C01 · · · C0p

C10 C11 · · · C1p
...

...
. . .

...
Cp0 Cp1 · · · Cpp





















B0

BT
1
...

BT
p











=











B−1
0
0
...
0











.
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Written in terms of the original variablesΣ = B−2
0 , Ak = B−1

0 Bk, this gives











C00 C01 · · · C0p

C10 C11 · · · C1p
...

...
. ..

...
Cp0 Cp1 · · · Cpp





















I
AT

1
...

AT
p











=











Σ
0
...
0











, (15)

with unknownsΣ = B−2
0 , Ak = B−1

0 Bk. The bottomp equations form a set of linear equations from
which A1, . . . ,Ap can be determined. Plugging in the solution in the first equation givesΣ. Later in
the paper we will refer to the solution as theleast-squares estimatebecause the bottomp equations
can be interpreted as normal equations for the least-squares problem

minimize tr(ACAT)

with variableA=
[

I A1 · · · Ap
]

. This method is also known as thecovariance methodif C
is the non-windowed sample covariance (13), and as thecorrelation methodif C is the windowed
sample covariance (14) (see Stoica and Moses, 1997).

2.3 Convex Formulation

The optimization problem (12) is non-convex because of the quadratic equality constraint. A convex
relaxation is

minimize − logdetX00+ tr(CX)
subject to P(D(X)) = 0

X � 0
(16)

with variableX ∈ Sn(p+1). The relaxation is exact, that is, the two problems (16) and (12) are
equivalent, if the optimal solutionX of (16) has rankn. In that case, the solutionB of (16) can be
calculated by factoringX asX = BTB.

A condition for exactness of the relaxation follows from the dual problem of (16), which is

maximize logdetW+n

subject to

[

W 0
0 0

]

�C+T(P(Z)),
(17)

with variablesW ∈ Sn andZ ∈ Mn,p (for the derivation, see Songsiri et al., 2009). The variable
Z is the Lagrange multiplier associated with the equality constraint in (16); the slack matrix in
the inequality in (17) is the multiplier associated with the primal inequalityX � 0. To find the
relation between primal and dual solutions, we first note that the primal and dual problems are
strictly feasible:X = I is strictly feasible in the primal problem (16), since by assumptionV does
not contain any diagonal entries; in the dual problemZ = 0 and a sufficiently small positive definite
W are strictly feasible, becauseC ≻ 0 by assumption. From convex duality, strict primal and dual
feasibility imply that the primal and dual problems are solvable, and that their optimal solutions are
related by the optimality conditions

X−1
00 =W, tr

(

X

(

C+T(P(Z))−
[

W 0
0 0

]))

= 0 (18)
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(Boyd and Vandenberghe, 2004, Chapter 5). The second condition isknown ascomplementary
slacknessbetween the optimalX and the dual variable associated with the inequalityX � 0. From
these optimality conditions, it can be shown that the relaxation is exact when thetrailing principal
submatrix of ordernp in the matrixC+T(P(Z)) ∈ Sn(p+1) is positive definite at the optimum, that
is,

(C+T(P(Z)))1:p,1:p ≻ 0. (19)

Under this condition, the rank of

C+T(P(Z))−
[

W 0
0 0

]

is at leastnp. SinceX has ordern(p+1), the two conditions in (18) imply that the optimalX has
rankn.

In general it is difficult to guarantee a priori that the condition (19) holdsat optimum. However,
whenC is block-Toeplitz, then (19) can be shown to hold for all dual feasibleZ. This follows from
the following easily established property of block-Toeplitz matrices: ifV ∈ Sn(p+1) is a symmetric
block-Toeplitz matrix withn×n blocksVi j , and

V =

[

V00 V0,1:p

V1:p,0 V1:p,1:p

]

�
[

W 0
0 0

]

for someW ≻ 0, thenV is positive definite (see Songsiri et al., 2009, §3.3.3). We therefore conclude
that for positive definite block-ToeplitzC (for example, the windowed sample covariance (14) or the
true covariance), the problems (12) and (16) areequivalent. For general non-block-ToeplitzC (for
example, the non-windowed sample covariance (13)), we cannot guarantee that (19) holds at the
optimum. However, we can note that the non-windowed sample covariance approaches a block-
Toeplitz matrix asN → ∞. It is therefore not surprising that even for the non-windowed estimate,
the relaxation is often exact, as was observed in the experimental results in Songsiri et al. (2009).

3. Topology Selection Via Nonsmooth Regularization

In the previous section we have described a convex formulation of the (conditional) ML estimation
problem with given conditional independence constraints, that is, a given graph topology. In many
applications the topology is not known, and needs to be discovered from the data. Information
theoretic model selection criteria such as the Akaike, second-order Akaike, or Bayes information
criteria can be used for this purpose. They require enumerating all possible topologies, solving
the ML problem for each topology, and ranking the ML estimates according totheir information
criterion score. These scores are defined as

AIC =−2L+2k, AICc =−2L+
2Nk

N−k−1
, BIC =−2L+k logN (20)

whereL is the log-likelihood of the ML estimate,N is the sample size, andk is the effective number
of parameters. In our application,L is given by

L =
N− p

2
(logdetX00− tr(CX))
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whereX is the optimal solution of (16), and we use fork the total number of parameters in the
estimation problem,

k=
n(n+1)

2
−|V |+ p(n2−2|V |),

where|V | is the number of conditionally independent pairs of variables. This topologyselection
method based on information-theoretic criteria is feasible if the number of possible topologies is
not too large, but quickly becomes intractable even for small values ofn. In this section and the
next we describe a more scalable approach based on a convex optimizationproblem that extends the
ℓ1-norm heuristic (4) for sparse covariance selection.

3.1 Regularized ML Problem

In analogy with the convex heuristic for covariance selection (4), we canformulate a regularized
ML problem by adding a nonsmoothℓ1-type penalty:

minimize − logdetX00+ tr(CX)+ γh(D(X))
subject to X � 0,

(21)

whereγ > 0 is a weighting parameter. The penaltyh : Mn,p → R is a convex function, chosen to
encourage a sparse solutionX with a common, symmetric sparsity pattern for thep+1 blocks of
D(X). We will use the penalty function

h∞(Y) = ∑
j>i

max

{

∣

∣(Y0)i j
∣

∣ , max
k=1,...,p

∣

∣(Yk)i j
∣

∣ , max
k=1,...,p

∣

∣(Yk) ji
∣

∣

}

(22)

that is, a sum of theℓ∞-norms of vectors ofi, j and j, i-entries of the coefficientsYk. In the examples
(Section 4) we will also discuss penalty functions defined as sums ofℓα-norms, withα = 1,2.

Regularization with a convex sum-of-norms penalty is a popular technique for achieving sparsity
of groups of variables. Examples from statistics are thecomposite absolute penalties(CAP) (Zhao
et al., 2009) and thegroup lasso(Yuan and Lin, 2006; Kim et al., 2006). Whenp= 0 andX ∈ Sn

in (21) the penalty term reduces to∑i> j |Xi j | and we obtain problem (4), studied in Banerjee et al.
(2008), Lu (2009) and Friedman et al. (2008), with the minor differencethat we do not penalize the
diagonal entries ofX.

We now derive the dual problem of (21) which will be important in Section 6.To simplify the
derivation we introduce a variableY = D(X) and write the problem as

minimize − logdetX00+ tr(CX)+ γh∞(Y)
subject to Y = D(X)

X � 0.

If we use a multiplierZ ∈ Mn,p for the equality constraintY = D(X) and a multiplierU ∈ Sn(p+1)

for the inequalityX � 0, the Lagrangian of the problem is

L(X,Y,Z,U) =− logdetX00+ tr(CX)+ γh∞(Y)− tr(UX)+ tr(ZT(D(X)−Y)) (23)

=− logdetX00+ tr((C+T(Z)−U)X)+ γh∞(Y)− tr(ZTY).
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(Recall that the mappings T and D defined in (5) and (6) are adjoints, that is, tr(ZT D(X)) =
tr(T(Z)X).) The dual function is the infimum of the Lagrangian overX andY. We first mini-
mize overY. The nonlinear penalty term does not depend on the diagonal entries of the blocksYk.
The minimization over the diagonal entries ofYk is therefore unbounded below unless

diag(Zk) = 0, k= 0,1, . . . , p. (24)

The minimization over the off-diagonal part of the blocksYk decomposes into independent mini-
mizations of the functions

−
p

∑
k=0

((Zk)i j (Yk)i j +(Zk) ji (Yk) ji )+ γmax

{

|(Y0)i j |, max
k=1,...,p

|(Yk)i j |, max
k=1,...,p

|(Yk) ji |
}

for each elementi, j with i > j. This expression is unbounded below unless

2|(Z0)i j |+
p

∑
k=1

(|(Zk)i j |+ |(Zk) ji |)≤ γ, i 6= j, (25)

and, if this condition holds, the infimum overY is zero. The result of the partial minimization of the
Lagrangian overY can be summarized as

inf
Y

L(X,Y,Z,U) =

{

− logdetX00+ tr((C+T(Z)−U)X) (24), (25)
−∞ otherwise.

Next, we carry out the minimization overX. The terms inX00 are bounded below if and only
if (C+T(Z)−U)00 ≻ 0, and if this holds, they are minimized byX00 = (C+T(Z)−U)−1

00 . The
Lagrangian is linear in the other blocksXi j , and therefore bounded below (and identically zero) only
if (C+T(Z)−U)i j = 0 for blocks(i, j) 6= (0,0). This gives a third set of dual feasibility conditions:

(C+T(Z)−U)00 ≻ 0, (C+T(Z)−U)i j = 0, (i, j) 6= 0, (26)

and an expression for the dual function

g(Z,U) = inf
X,Y

L(X,Y,Z,U) =

{

logdet(C+T(Z)−U)00+n (24), (25), (26)
−∞ otherwise.

The dual problem is to maximizeg(Z,U) subject toU � 0. If we add a variableW =C00+Z0−
U00 and eliminate the slack variableU , we can express the dual problem as

maximize logdetW+n

subject to

[

W 0
0 0

]

�C+T(Z)

p

∑
k=0

(|(Zk)i j |+ |(Zk) ji |)≤ γ, i 6= j

diag(Zk) = 0, k= 0, . . . , p.

(27)

The variables areW ∈ Sn andZ ∈ Mn,p. Whenp= 0, the problem reduces to

maximize logdet(C+Z)+n
subject to |Zi j | ≤ γ/2, i 6= j

diag(Z) = 0,
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Except for the equality constraint, this is the problem considered in Lu (2009) and Duchi et al.
(2008).

If a sum ofℓα-norms

hα(Y) = ∑
j>i

(

p

∑
k=0

(|(Yk)i j |α + |(Yk) ji |α)
)1/α

(28)

is used as penalty function in (21), the second constraint in the corresponding dual problem (27) is
replaced by

(

p

∑
k=0

(

|(Zk)i j |β + |(Zk) ji |β
)

)1/β

≤ γ, i 6= j

with β = α/(α−1).

3.2 Optimality Conditions

The primal problem (21) is always strictly feasible (X = I is strictly feasible). The dual problem (21)
is strictly feasible ifC ≻ 0 (we can takeZ = 0 andW positive definite and sufficiently small). It
follows that the primal and dual problems are solvable, have equal optimal values, and that their
solutions are characterized by the following set of necessary and sufficient optimality (or KKT)
conditions.

Primal feasibility. X andY satisfy

X � 0, X00 ≻ 0, Y = D(X).

Dual feasibility. W andZ satisfy

W ≻ 0, C+T(Z)�
[

W 0
0 0

]

,

p

∑
k=0

(|(Zk)i j |+ |(Zk) ji |)≤ γ, i 6= j, diag(Zk) = 0, k= 0,1, . . . p.

Zero duality gap. The Lagrangian evaluated at the primal and dual optimal solutions is equal to
the primal objective at the optimalX, Y, and equal to the dual objective evaluated at the
optimalW, Z. From (23), we have equality between the Lagrangian and the primal objective
if tr(UX) = 0. Therefore the complementary slackness condition

tr
(

X

(

C+T(Z)−
[

W 0
0 0

]))

= 0 (29)

holds at the optimum. Equality between the Lagrangian and the dual objective requires that
the primal optimalX, Y minimize the Lagrangian evaluated at the dual optimalW, Z. Re-
viewing the derivation of the dual problem, we see thatX00 minimizes the Lagrangian if

X−1
00 =W. (30)
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To express the conditions from the minimization overY, we define

ti j = max

{

|(Y0)i j |, max
k=1,...,p

|(Yk)i j |, max
k=1,...,p

|(Yk) ji |
}

.

Then we see thatY minimizes the Lagrangian if for alli 6= j, we either have

p

∑
k=0

(|(Zk)i j |+ |(Zk) ji |)< γ,

or we have∑p
k=0(|(Zk)i j |+ |(Zk) ji |) = γ and

(Zk)i j = 0, |(Yk)i j | ≤ ti j or (Zk)i j < 0, (Yk)i j =−ti j or (Zk)i j > 0, (Yk)i j = ti j

for k= 0, . . . , p.

The conditions (29)–(30) show that the optimalX has rankn under the same conditions as for the
problem with given sparsity pattern (16). If

(C+T(Z))1:p,1:p ≻ 0

then the optimalX has rankn, and this is always the case ifC is block-Toeplitz. Under these
conditions, the optimization problem (21) is equivalent to a regularized (conditional) ML estimation
problem for the model parametersB:

minimize −2logdetB0+ tr(CBTB)+ γh∞(D(BTB)).

4. Examples with Randomly Generated Data

Our interest in the regularized ML formulation (21) is motivated by the fact that the resulting AR
model typically has a sparse inverse spectrumS(ω)−1. Since the regularized problem is convex,
it is interesting as an efficient heuristic for topology selection. In this sectionwe illustrate several
aspects of this approach using experiments with randomly generated data. In Section 5 we will
apply the method to real data sets. Numerical algorithms for solving the regularized problem (21)
are discussed in Section 6.

4.1 Method

We first explain in greater detail how we will use the results of the regularized ML problem for
model selection.

4.1.1 CHOICE OFREGULARIZATION PARAMETER γ

The sparsity in the inverse spectrum of the solution of the regularized ML problem is controlled by
the weighting coefficientγ. As γ varies, the sparsity pattern varies from dense (γ small) to diagonal
(γ large). Several authors have discussed the choice ofγ in the context of covariance selection
(i.e., heuristics based on solving problem (4) or closely related problems).A common approach
is to selectγ via cross-validation; see, for example, Friedman et al. (2008), Huang et al. (2006)
and Banerjee et al. (2008). Meinshausen and Bühlmann (2006) give explicit formulas forγ based
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Figure 1: Method for approximating the trade-off curve between two convex objectives.

on a statistical analysis of the probability of errors in the topology (see also Yuan and Lin, 2007;
Banerjee et al., 2008). Asadi et al. (2009) considerγ as a random variable and use a maximum a
posteriori probability (MAP) estimation to chooseγ and the covariance matrix.

In the examples of this section we will use the following method for selectingγ. We first
compute the entire trade-off curve between the two terms in the objective of (21), that is, between
the log-likelihood and the penalty functionh∞(D(X)). The trade-off curve can be computed by
solving (21) for a number of different values ofγ (see below). We collect the topologies of the
solutions along the trade-off curve, and solve the ML problem (16) for each of these topologies. We
then rank the models using the Bayes information criterion (BIC), as discussed at the beginning of
Section 3, and select the model with the lowest score. In this approach, theconvex heuristic is used
as a preprocessing step to reduce the number of topologies that are examined using the BIC, and to
filter out topologies that are unlikely to be competitive.

4.1.2 TRACING TRADE-OFF CURVES

The trade-off curves are computed by solving (21) for a sequence ofvalues ofγ. To obtain an
accurate estimate of the curve with only a small number of valuesγ we use a method which is
illustrated in Figure 1 for a generic trade-off between two convex cost functions f1 and f2. We first
solve the scalarized problem

minimize f1(x)+ γ f2(x) (31)

for two positive valuesγ1, γ2 near the opposite ends of the trade-off curve. This gives the points
labeled 1 and 2 on the trade-off curve. The values ofγ1 andγ2 also define the slopes of straight
lines that support the trade-off curve at points 1 and 2. Since the trade-off curve is convex, we can
conclude that the curve between 1 and 2 lies somewhere in the shaded triangular region. Asγ3,
we choose the value that corresponds to the slope of the straight line between 1 and 2. Solving
problem (31) withγ = γ3 gives point 3 on the trade-off curve and a straight line that supports the
curve at point 3. The trade-off curve between points 1 and 2 is now known to lie in the union of the
two shaded triangles. Next, we solve the problem (31) for a valueγ4 corresponding to the slope of
the straight line between points 1 and 3, and a valueγ5 corresponding to the slope of the straight line
between 3 and 2. In this example, we obtain fairly accurate upper and lowerbounds of the actual
trade-off curve after solving five scalarized problems (31).
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4.1.3 THRESHOLDING

With a proper value ofγ, the regularized ML problem (21) has a sparse solutionY, resulting in
a sparse inverse spectrumS(ω)−1. When solved with a limited accuracy, the entries ofY are not
exactly zero. We will use the following method to determine the topology from the computed
solution.

We calculate the inverse spectrumS(ω)−1 and normalize it by scaling its rows and columns so
that the diagonal is one:

R(ω) = diag(S(ω)−1)−1/2S(ω)−1 diag(S(ω)−1)−1/2.

The normalized inverse spectrumR(ω) is known as thepartial coherence(Brillinger, 1981; Dahlhaus,
2000). Its entries are between 0 and 1 in magnitude, and measure the conditional dependence be-
tween the corresponding variables, after removing the linear effects from the other variables. In the
static case (p = 0), R(ω) reduces to the normalized concentration matrix. To estimate the graph
topology we compare theL∞-norms of the entries ofR(ω),

ρi j = sup
ω

|R(ω)i j |

with a given threshold. This thresholding step is similar to thresholding in other sparse methods, for
example the thresholded lasso and Dantzig estimators in Lounici (2008).

To simplify the interpretation we will use the same threshold value (10−1) in all the experiments,
that is, we remove edge(i, j) from the graph ifρi j ≤ 10−1.

4.2 Experiment 1

In the first series of experiments we generate AR models with sparse inverse spectra by setting
B0 = I and randomly choosing sparse lower triangular matricesBk with entries±0.5. The random
trials are continued until a stable AR model is found. The AR process is then used to generateN
samples of the time series. The model dimensions aren= 20 andp= 2.

4.2.1 TOPOLOGYSELECTION

We first illustrate the basic topology selection method outlined above using the correct model order
(p= 2). The sample size isN = 512.

Figure 2 shows the trade-off curve between the penaltyh∞(D(X)) and the log-likelihoodL(X).
We calculate the inverse spectra (10) for the computed points on the trade-off curve, and apply a
threshold to them (as explained above, by setting entries withρi j ≤ 10−1 to zero). The resulting
topologies are shown in Figure 3. The patterns range from quite dense (small γ) to very sparse
(largeγ). The sparsity of the densest solution (γ = 10−5) is identical to the sparsity of the least-
squares estimate (i.e., the solution of the equations (15) withC given in (13) or, equivalently, the
ML solution of (12) without the sparsity constraints). For each of the nine sparsity patterns, we
solve the ML problem subject to sparsity constraints (16). We rank the ninesolutions using the
AICc and BIC scores defined in (20). Figure 4 shows the two scores and the negative log-likelihood
as functions ofγ. The models that minimize the AICc/BIC scores turn out to be the same in this
example (the models forγ = 0.15) and the corresponding topology is shown in Figure 5 (left). Only
seven entries are misclassified (six entries are misclassified as zeros; oneas nonzero). The sparsity
pattern in the middle is the topology estimated by thresholding the partial coherence spectrum of
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Figure 2: Trade-off curve between the log-likelihoodL(X) andh∞(D(X)).
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the tradeoff curve).
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Figure 4: AICc and BIC scores, and maximized log-likelihood for solutions on the trade-offcurve
in Figure 2.

the least-squares solution with the correct model order (p= 2). This pattern is computed by solving
the ML problem (12) without constraints, and then thresholding the partial coherence (using the
same threshold value 0.1 as in the other experiments). The difference between the two patterns
clearly shows the benefits of the nonsmooth regularization for estimating a sparse topology. The
sparsity pattern on the right of Figure 5 is obtained from the covariance selection method withℓ1-
norm regularization (i.e., by settingp= 0 in the regularized ML problem (21)) and thresholding the
partial coherence. Ignoring the model dynamics substantially increased the error in the topology
selection.

4.2.2 COMPARISON WITH OTHER TYPES OFREGULARIZATION

To compare the quality of the sparse models with the models obtained from other estimation meth-
ods we evaluate the Kullback-Leibler (KL) divergence (Bach and Jordan, 2004) between the true
and the estimated spectra as a function of the sample sizeN for the following six methods.

1. ML estimation without conditional independence constraints (or least-squares estimate). This
is the solution of (12) without the constraints, and it can be computed by solving the normal
equations (15).

2. ML estimation with conditional independence constraints determined by thresholding the
partial coherence matrix of the least-squares estimate (solution 1).

3. ML estimation with Tikhonov regularization and without conditional independence constraints.
Tikhonov regularization (also known asridge regressionor ℓ2-regularization) is widely used
in statistics and estimation (Hastie et al., 2009, §3.4). A Tikhonov-regularizedML estimate
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Figure 5: Left. The sparsity pattern from the regularized ML problem withγ = 0.15. Middle. The
sparsity pattern estimated from the least-squares solution.Right. The sparsity pattern
from the regularized ML problem for a static model (p = 0). The blue squares are the
correctly identified nonzero entries (true positives). The red circles are the entries that are
misclassified as nonzero (false positives). The black crosses are entries that are misclas-
sified as zeros (false negatives).

is the solution of

minimize −2logdetB0+ tr(CBTB)+ γ‖B‖2
F .

The solution can be computed from the normal equations (15) withC replaced byC+γI . The
solution of this problem can therefore also be viewed as a ML estimate using a perturbed sam-
ple covariance matrixC+ γI . In the experiment, the value ofγ is determined by performing a
five-fold cross-validation (Hastie et al., 2009, §7.10).

4. ML estimation with conditional independence constraints determined by thresholding the
inverse spectral density for the Tikhonov estimate (solution 3).

5. Regularized ML estimation withh∞-penalty. This is the solution of problem (21) with penalty
function (22).

6. ML estimation with conditional independence constraints determined by thresholding the
inverse spectral density for theh∞-regularized ML estimate (solution 5).

The total number of variables in this example isn(n+1)/2+ pn2 = 1010 variables. We show the
results in Figure 6 in two different settings: with small sample sizes (N < 1010) and with moderate
to large sample sizes (N ≥ 1010). We can note that for small sample sizesN the constrained ML
estimates (models 2,4,6) are not better than the unconstrained estimates (models 1,3,5), and much
worse in the case of the Tikhonov-regularized estimates. This can be explained by large errors in the
estimated topology. For largerN the constrained estimates are consistently better than the uncon-
strained models, and for very largeN the three constrained ML estimates give the same accuracy.
For small and moderateN we also see that model 6 (ML estimate for the topology selected via
nonsmooth regularization) is much more accurate than the other methods.
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Figure 6: KL divergence between estimated AR models and the true model(n = 20, p = 2) ver-
sus the number of samplesN. We compare six methods: (1) least-squares estimate, (2)
constrained ML estimate with topology estimated by thresholding solution 1, (3) ML esti-
mate with Tikhonov regularization, (4) constrained ML estimate with topology estimated
by thresholding solution 3, (5) regularized ML estimate withh∞-penalty, (6) constrained
ML estimate with topology estimated by thresholding solution 5.
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4.2.3 ERRORS INTOPOLOGY AS AFUNCTION OF SAMPLE SIZE

In the last figure (Figure 7) we examine how fast the error in the topology selection decreases
with increasing sample lengthN for three topology selection methods: LS estimation followed
by thresholding, ML estimation with Tikhonov regularization followed by thresholding, and ML
estimation with nonsmooth regularization followed by thresholding. For each sample sizeN we
show the errors averaged over 50 sample sequences (i.e., 50 different sample covariance matrices
C). “False positives” refers to entries that are incorrectly classified as nonzeros (i.e., incorrectly
added edges in the graphical model). “False negatives” are entries thatare incorrectly classified
as zeros (i.e., incorrectly deleted edges). The top graphs in Figure 7 show the fraction of false
positives and false negatives versus the sample size. The bottom graphsshow the total fraction of
misclassified entries. We compare the three methods listed above. As can be seen, the total error in
the estimated topology is reduced in the regularized estimates, and the errors decrease more rapidly
when we regularize with the sum-of-norms penaltyh∞.

4.3 Experiment 2

In the second experiment we compare different penalty functionsh for the regularized ML prob-
lem (21): the ‘sum-of-ℓ∞-norms’ penaltyh∞ defined in (22), the ‘sum-of-ℓ2-norms’ penaltyh2 de-
fined in (28) withα = 2, and the ‘sum-of-ℓ1-norms’ penaltyh1 defined in (28) withα = 1. These
penalty functions all yield models with a sparse inverse spectrum

S(ω)−1 =Y0+
1
2

p

∑
k=1

(e−jkωYk+ejkωYT
k ),

but have different degrees of sparsity for the entries(Yk)i j within each groupi, j.
The data are generated by randomly choosing sparse coefficientsYk of an inverse spectrum (10).

For each(i, j) of nonzero locations inS(ω)−1, we select random values(Yk)i j with about the same
magnitude for allk. If necessary, a multiple of the identity matrix is added toY0 to guarantee
the positiveness of the spectrum. An AR realization of the spectrum is then computed by spectral
factorization and used to generate sample time series. The model dimensions aren= 5, p= 7.

Figure 8 shows typical values for the estimated coefficients(Yk)i j . The three penalty functions
all give the same topology, but a different sparsity with the same groupi, j of coefficients. The
sparsity within each group is largest for theh1-penalty and smallest for theh∞-penalty.

Table 1 shows the results of topology selection with the three penalties, for sample sizeN = 512
and averaged over 50 sample sequences. Theh∞-penalty gives the models with the smallest KL
divergence and smallest error in topology. This is to be expected, giventhe distribution of the
nonzero coefficients(Yk)i j in the AR models that were used to generate the data. The results also
agree with a comparison of different norms in a composite penalty function (Zhao et al., 2009).
In general the best choice of norm will depend on how the coefficients are distributed within each
group.

5. Applications

This section presents two examples of real data sets to demonstrate how topology selection can
facilitate studies of relationship in multivariate time series.
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Figure 7: Top left. Fraction of incorrectly added edges in the estimated graph (number of upper
triangular nonzeros in the estimated pattern that are incorrect, divided by the number
of upper triangular zeros in the correct pattern).Top right. Fraction of incorrectly re-
moved edges in the estimated graph (number of upper triangular zeros in the estimated
pattern that are incorrect, divided by the number of upper triangular nonzeros in the cor-
rect pattern). Bottom. The combined classification error computed as the sum of the
false positives and false negatives divided by the number of upper triangular entries in the
pattern.

5.1 Functional Magnetic Resonance Imaging (fMRI) Data

In this section we apply the topology selection method to a functional magnetic resonance imaging
(fMRI) time series. We use the StarPlus fMRI data set1 (Mitchell et al., 2004), which was analyzed

1. StarPlus data can be found atwww.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/ .
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Figure 8: Nonzero coefficients|(Yk)i j | for regularized ML estimates with penaltyhα, for α= 1,2,∞.

Dimensions
KL divergence Error in topology (%)

h1 h2 h∞ h1 h2 h∞
n= 20, p= 2 0.24 0.22 0.21 11.8 11.9 11.6
n= 20, p= 4 0.33 0.24 0.19 1.65 1.19 0.51
n= 30, p= 2 0.40 0.35 0.30 9.95 8.83 7.96
n= 30, p= 4 0.59 0.46 0.40 5.18 3.97 3.53

Table 1: Accuracy of topology selection methods with penaltyhα for α = 1,2,∞. The table shows
the average KL divergence with respect to the true model and the average percentage error
in the estimated topology (defined as the sum of the false positives and false negatives di-
vided by the number of upper triangular entries in the pattern), averaged over 50 instances.

using covariance selection in Scheinberg and Rish (2009). The data consists of 80 time series (runs)
of brain image scans. In half of the 80 runs the input stimulus shown to the subject is a picture; in
the other half it is a sentence. Each run contains 16 images, resulting in 640 images for each input.
Mitchell et al. (2004) suggest a region of interest (ROI) of 1718 voxels. To reduce the dimension
we took averages over groups of voxels in the ROI and considered four reduced graphs withn= 7,
50, 100, and 190 nodes, respectively.

We fit two different AR models, one for each input. The AR model orders selected by the BIC
are shown in Table 2. As the problem size (n) becomes larger, the BIC tends to pick a static model
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Input n= 7 n= 50 n= 100 n= 190
Picture p= 1 p= 1 p= 0 p= 0
Sentence p= 1 p= 1 p= 0 p= 0

Table 2: AR model orders for the fMRI data set.

Input
Static models (p= 0) Time series models (p= 1)
ℓ1 Tikhonov LS ℓ1 Tikhonov LS

Picture 991 4116 4203 0 13467 13465
Sentence 922 4021 4131 0 13240 13238

Table 3: Relative BIC scores of six models fitted to two fMRI time series of sizen = 50. The
‘static’ models are Gaussian graphical models (i.e., AR models of orderp= 0), the time
series models are AR models of orderp = 1. The models are constrained ML estimates
with topologies estimated using three different methods: Regularized ML estimatewith
hα-penalty, Tikhonov-regularized ML estimate, and the least-squares estimate. The BIC
scores are relative to the score of the best model (time series models of regularized ML
estimate withhα-penalty).
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Figure 9: Density of the graphical models of fMRI data for ‘picture’ stimulus(left) and for ‘sen-
tence’ stimulus (right). The density is computed as the number of nonzero entries in the
estimated inverse spectrum divided byn2.

(p= 0). Table 3 shows the BIC scores of different models for the experimentwith sizen= 50.
The topologies selected by the BIC are the regularized ML estimates withh∞-penalty. Figure 9

shows the sparsity of the estimated graphs from the least-squares, Tikhonov-regularized ML, and
h∞-regularized ML methods. The plots show that theh∞-regularization produces much sparser
graphs than the other two methods.

To get an idea of the accuracy of the estimated network structure, we validated the result with
a simple classification experiment. For each input we keep one fMRI run as atest problem and use
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model order n= 7 n= 50 n= 100 n= 190
p= 0 0.21 0.16 0.11 0.06
p= 1 0.20 0.16 0.16 0.11

Table 4: Classification error of fMRI data versus model size. The erroris the number of runs for
which the stimulus input is correctly identified divided by the total number of runs (40).

the 39 remaining runs to estimate a sparse AR model. The two models are then usedto guess the
inputs shown to the subject during the test run. The classification algorithm computes the likelihood
of each input, based on the two models, and selects the input with the highest likelihood. We repeat
this for each of the 40 choices of test run. Table 4 shows the classificationerror versus the number
of nodes in the graph. We see that the classification is quite successful and achieves an error in the
range 6–20%. The error tends to be smaller if we use less averaging (largern). We also note that for
eachn, the AR model of orderp chosen in Table 2 also performs slightly better in the classification
experiment.

5.2 International Stock Market Data

We consider a multivariate time series of 17 stock market indices: the S&P 5000 composite in-
dex (U.S.), Toronto stock exchange 300 index (Canada), the All ordinary composite stock index
(Australia), the Nikkei 225 stock index (Japan), the Hang Seng stock composite index (Hong
Kong), the FTSE 100 share index (United Kingdom), the Frankfurt DAX 30 composite index
(German), the CAC 40 stock composite index (France), MIBTEL index (Italy), the Zurich Swiss
Market composite index (Switzerland), the Amsterdam exchange index (Netherlands), the Austrian
traded index (Austria), IBEX 35 (Spain), BEL 20 (Belgium), the OMX Helsinki 25 index (Fin-
land), the Portugese stock index (Portugal), the Irish stock exchange index (Ireland). The data
were stock index closing prices recorded from June 3, 1997 to June 30, 1999 and obtained from
www.globalfinancialdata.com . The data were converted to US dollars. Missing data due to
national holidays were replaced by the most recent values. For each market we use as variable the
return between trading dayk−1 andk, defined as

rk = 100log(πk/πk−1),

whereπk is the closing price on dayk. This results in 17-dimensional time series of length 540.
Similar time series for a smaller number of markets were analyzed in Bessler and Yang (2003) and
Abdelwahab et al. (2008).

We solve theh∞-regularized ML problem with model orders ranging fromp = 0 to p = 3,
and for each value collect the topologies along the trade-off curve, as inthe previous examples.
The AICc and BIC criteria were then used to select a model. Both criteria selected a model of order
p= 1 and the same sparsity pattern (corresponding to a valueγ = 0.34). Figure 10 (right) showsρi j ,
the maximum magnitude of the partial coherence of the model, and compares it witha thresholded
nonparametric estimate obtained with Welch’s method (Proakis, 2001) and the constrained ML
model with topology obtained by thresholding the least-squares estimate. We note that the graph
topologies suggested by the nonparametric and least-squares estimates aremuch denser than the
regularized ML estimate.
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Figure 10: The maximum magnitudeρi j of the partial coherence for three models of the stock ex-
change data.Left: Thresholded nonparametric sample estimate using Welch’s method.
Middle: Constrained ML estimate with topology determined from the LS solution.
Right: Constrained ML estimate with topology determined from theh∞-regularized ML
estimate.

Figure 11 shows the graphical model estimated by theh∞-regularized ML problem. The thick-
ness of the edges is proportional toρi j . We recognize many connections that can be explained from
geographic proximity or economic ties between the countries. For example, wesee strong connec-
tions between the U.S. and Canada, between Australia, Japan, and Hong Kong, between Hong Kong
and U.K., between the southern European countries, et cetera. Overallthe graphical model seems
plausible, and the experiment suggests that the topology selection method is quite effective.

6. First-order Optimization Algorithms

In the preceding sections we have considered four convex optimization problems. The constrained
ML estimation problem (16) and its dual (17) have differentiable objectivesand linear equality and
matrix inequality constraints. The regularized ML problem (21) also includesa nondifferentiable
term in the objective, and its dual (27) has a differentiable objective but constraints that involve
nondifferentiable functions. These optimization problems can be solved by interior-point methods,
for example, the path-following methods developed for convex determinantmaximization problems
(Toh, 1999; Vandenberghe et al., 1998). In practice, however, theproblems are often too large
for interior-point methods because they involve matrix variables (X or Z) of high dimension. In
this section we therefore investigate less expensive first-order algorithmsapplied to a reformulation
of the dual problems (17) and (27). The dual approach avoids several difficulties that arise in
first-order methods applied to the primal problems: the complicated constraints inthe constrained
ML problem (16), the fact that its objective, which is also the first term in theobjective of the
regularized ML problem (21), is not strictly convex, the nondifferentiabilityof the penalty term
in (21), and, most important, the fact the solutionX has low rank and therefore lies on the boundary
of the feasible set. (For the regularized ML problem (21), these difficulties could be addressed as
in the covariance selection method of Banerjee et al. (2008), by applying Nesterov’s fast gradient
method to an approximation of the primal problem with a smoothed objective and a closed bounded
constraint set (Nesterov, 2005). In our limited experience, with a fixed and conservative choice of
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Figure 11: A graphical model of stock market data. The strength of connections is represented by
the width of the blue links, which is proportional toρi j = supω |R(ω)i j | if it is greater
than 0.15.

the smoothing and bounding parameters, this algorithm was slower than the dual gradient projection
method described in this section, so we will not pursue it here.)

6.1 Reformulated Dual Problems

To reformulate the dual problems we eliminate the variableW in (17) and (27). LetV = C+
T(P(Z)), respectively,V =C+T(Z). The inequality

V −
[

W 0
0 0

]

=

[

V00−W VT
1:p,0

V1:p,0 V1:p,1:p

]

� 0,

is equivalent to

V1:p,1:p � 0, range(V1:p,0)⊆ range(V1:p,1:p), V00−VT
1:p,0V

†
1:p,1:pV1:p,0 �W, (32)

whereV†
1:p,1:p is the pseudo-inverse ofV1:p,1:p. If V � 0, then the matrixW with maximum deter-

minant that satisfies (32) is equal toV00−VT
1:p,0V

†
1:p,1:pV1:p,0, theSchur complementof V1:p,1:p in V.

This observation allows us to eliminateW from (17) and (27). Problem (17) can be written as an
unconstrained problem

maximize −φ(C+T(P(Z))), (33)
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and problem (27) as a problem with simple constraints

maximize −φ(C+T(Z))

subject to
p

∑
k=0

(|(Zk)i j |+ |(Zk) ji |)≤ γ, i 6= j

diag(Zk) = 0, k= 0, . . . , p.

(34)

Hereφ : Sn(p+1) → R is defined as

φ(V) =− logdet
(

V00−VT
1:p,0V

†
1:p,1:pV1:p,0

)

−n,

with domaindomφ = {V ∈ Sn(p+1)
+ |V00−VT

1:p,0V
†
1:p,1:pV1:p,0 ≻ 0}. This function is convex, since it

can be expressed as

φ(V) = inf

{

− logdetW

∣

∣

∣

∣

[

W 0
0 0

]

�V

}

−n,

and convexity of this expression follows from results in convex analysis (Boyd and Vandenberghe,
2004, §3.2.5). It is also a smooth function on the interior of its domain and its gradient at a positive
definiteV can be expressed as

∇φ(V) =−V−1+

[

0 0
0 V−1

1:p,1:p

]

. (35)

This can be seen, for example, from the identity detV = detV1:p,1:pdet(V00−VT
1:p,0V

−1
1:p,1:pV1:p,0),

which givesφ(V) = − logdetV + logdetV1:p,1:p − n, and the fact that the gradient of logdetX is
X−1.

If V =C+T(P(Z))≻ 0 at the optimum of (33) then the primal optimal solution can be computed
from Z via the expressions

X =V−1−
[

0 0
0 V−1

1:p,1:p

]

=

[ −I
V−1

1:p,1:pV1:p,0

]

W−1
[ −I

V−1
1:p,1:pV1:p,0

]T

(36)

whereV = C+T(P(Z)) andW = V00−VT
1:p,0V

−1
1:p,1:pV1:p,0. The expression forX follows from the

optimality condition (18) and the identities

V =

[

V00−VT
1:p,0V

−1
1:p,1:pV1:p,0 0

0 0

]

+

[

VT
1:p,0V

−1
1:p,1:p

I

]

V1:p,1:p

[

VT
1:p,0V

−1
1:p,1:p

I

]T

,

V−1 =

[

0 0
0 V−1

1:p,1:p

]

+

[ −I
V−1

1:p,1:pV1:p,0

]

(V00−VT
1:p,0V

−1
1:p,1:pV1:p,0)

−1
[ −I

V−1
1:p,1:pV1:p,0

]T

. (37)

The formula forV−1 also provides an alternative form of the gradient (35).
Similarly, if C+T(Z) ≻ 0 at the optimum of (34) then the primal optimalX can be computed

from (36) withV =C+T(Z).
The reformulated dual problems are interesting because they can often besolved by gradient

algorithms for unconstrained optimization or gradient projection algorithms forproblems with sim-
ple constraints. To explain this, we again distinguish between Toeplitz and non-ToeplitzC. If C is
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block-Toeplitz, then it can be shown that the functionsφ(C+T(P(Z))) andφ(C+T(Z)) areclosed
convex functions (i.e., with closed sublevel sets) and that their domains areopen. Consider the
function φ restricted to the set of block-Toeplitz matrices, that is,φ(T(R)), whereR∈ Mn,p. By
definition,R is in the domain ofφ(T(R)) if T(R)� 0 and there exists a positive definiteW with

T(R)�
[

W 0
0 0

]

.

From the property of block-Toeplitz matrices mentioned in Section 2.3, this implies T(R) ≻ 0. In
other words, the domain ofφ(T(R)) is the open set{R | T(R) ≻ 0}. By a similar argument, if a
sequence of matricesR in the domain ofφ(T(R)) converges to a point̄R in the boundary of the
domain, then the Schur complement of T(R̄)1:p,1:p in T(R̄) must be singular, and henceφ(T(R))→
∞. For a continuous function with an open domain this is equivalent to closedness (Boyd and
Vandenberghe, 2004, p.639).

If C is not block-Toeplitz, then the functionsφ(C+T(P(Z))) andφ(C+T(Z)) are not necessarily
closed, and their domains not necessarily open. One implication is that it is possible that the optimal
solution of (33) or (34) is at a point in the boundary of the domain of the cost function, that is, a
point whereC+T(P(Z)) orC+T(Z) are singular. However in practice,C is usually approximately
block-Toeplitz and one can expect that the functions are often closed. Moreover, in order to apply
unconstrained minimization algorithms it is sufficient that the algorithm is started ata pointZ(0)

for which the sublevel set{Z | φ(C+T(P(Z))) ≤ φ(C+T(P(Z(0))))} is closed. This condition is
considerably weaker than the requirement that all sublevel sets are closed.

6.2 Gradient Projection Algorithms

We now present some details on first-order algorithms for the reformulated dual problems. We focus
on the constrained problem (34) since the unconstrained problem (33) can be handled as a special
case. We first describe a version of the classical gradient projection with a backtracking line search
(Polyak, 1987; Bertsekas, 1999). To simplify the notation we will use a generic problem format

minimize f (x)
subject to x∈ C

where f : Rn → R is convex and continuously differentiable with an open domain, andC is a closed
convex set. We assume that a feasible pointx(0) is known and that the sublevel set

S = {x∈ dom f ∩C | f (x)≤ f (x(0))}

is closed and bounded. The closedness assumption is satisfied iff is a closed function. (See the
previous paragraph on the validity of this assumption for problems (33) and(34).) We assume that
projections onC are inexpensive and we denote the projection operator byP :

P (y) = argmin
x∈C

‖x−y‖2.

Thegradient mapassociated withf andC is defined as

Gt(x) =
1
t
(x−P (x− t∇ f (x)))

for t > 0. For an unconstrained problem, the gradient map isGt(x) = ∇ f (x), independent oft.
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6.2.1 BASIC GRADIENT PROJECTION

The basic gradient projection method starts atx(0) and continues the iteration

x(k) = P
(

x(k−1)− tk∇ f (x(k−1))
)

= x(k−1)− tkGtk(x
(k−1)) (38)

until a stopping criterion is satisfied. A classical convergence result states thatx(k) converges to an
optimal solution iftk is fixed and equal to 1/L, whereL is a constant that satisfies

‖∇ f (u)−∇ f (v)‖2 ≤ L‖u−v‖2 ∀u,v∈ S , (39)

(Polyak, 1987, §7.2.1). Although our assumptions (S is closed and bounded, anddom f is open)
imply that the Lipschitz condition (39) holds for some constantL > 0, its value is not known in
practice, so the fixed step size ruletk = 1/L cannot be used. We therefore determinetk using a
backtracking search (Beck and Teboulle, 2009). The step size search algorithm in iterationk starts
at a valuetk := t̄k where

t̄k = min

{

sTs
sTy

, tmax

}

, (40)

where
s= x(k−1)−x(k−2), y= ∇ f (x(k−1))−∇ f (x(k−2)),

andtmax is a positive constant. (In the first iteration we initialize the step size ast1 = tmax.) The
search then repeats the updatetk := βtk (whereβ ∈ (0,1) is an algorithm parameter) untilx(k−1)−
tkGtk(x

(k−1)) ∈ dom f and

f (x(k−1)− tkGtk(x
(k−1)))≤ f (x(k−1))− tk∇ f (x(k−1))TGtk(x

(k−1))+
tk
2
‖Gtk(x

(k−1))‖2
2. (41)

The resulting step sizetk is used in the update tox(k) in (38). Note that the trial points

x(k−1)− tkGtk(x
(k−1)) = P

(

x(k−1)− tk∇ f (x(k−1))
)

generated during the step size search are not necessarily on a straightline. The trajectory is some-
times referred to as theprojection arc(Bertsekas, 1999, §2.3).

The step length‖s‖2
2/sTy is known as theBarzilai-Borweinstep size and forms the basis of

spectral gradientmethods (Barzilai and Borwein, 1988; Birgin et al., 2003; Figueiredo et al., 2007;
Wright et al., 2009). It can be motivated by the easily established fact that‖s‖2

2/sTy ≥ 1/L if f
satisfies (39), so it is a readily computed upper bound for 1/L.

6.2.2 VARIATIONS

The basic gradient projection method can be varied in several ways, someof which will be compared
in the numerical experiments below. To avoid computing a projection for each trial step sizetk in
the step size search, we can replace the gradient update with

x(k) = x(k−1)− tkGt̄k(x
(k−1)) (42)
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wheret̄k is held fixed at the value (40) andtk is determined by a backtracking search: we taketk := t̄k
and then backtrack (tk := βtk) until x(k−1)− tkGt̄k(x

(k−1)) ∈ dom f and

f (x(k−1)− tkGt̄k(x
(k−1)))≤ f (x(k−1))− tk∇ f (x(k−1))TGt̄k(x

(k−1))+
tk
2
‖Gt̄k(x

(k−1))‖2
2. (43)

In this method the trial points during the step size selection follow a straight line, and each step only
requires a function evaluation.

Many alternatives to the step size rules (38) and (42) are available in the literature, for example,
the Armijo rule (Bertsekas, 1999, §2.3), and conditions that allow non-monotone convergence (Bir-
gin et al., 2000; Lu and Zhang, 2009). In our experiments these variations gave similar results as
the step size rules outlined above.

Another attractive class of gradient projection algorithms are the optimal first-order methods
originated by Nesterov (Nesterov, 2004; Tseng, 2008; Beck and Teboulle, 2009). For functions
whose gradient is Lipschitz continuous onC , these algorithms have a better complexity than the
classical gradient projection method (at mostO(

√

1/ε) iterations are needed to reach an accuracy
ε, as opposed toO(1/ε) for the gradient projection method). These theoretical complexity results
are valid if a constant step sizetk = 1/L is used whereL is the Lipschitz constant for the gradient, or
if the step sizes form an nonincreasing sequence (tk+1 ≤ tk) determined by a backtracking line search
(Beck and Teboulle, 2009; Tseng, 2008). The assumption that the gradient is Lipschitz continuous
onC does not hold for the problem considered here, and it is not clear if the convergence analysis
can be extended to the case when the gradient is Lipschitz continuous only on the initial sublevel set.
Nevertheless, an implementation with a backtracking line search worked well inour experiments
(see next section).

6.2.3 IMPLEMENTATION DETAILS

The most important steps in the gradient projection algorithms applied to (33) are the evaluations of
the gradient of the objective function and the projections on the set definedby the constraints. We
now explain these two steps and the stopping criterion in more detail.

The gradient (35) ofφ at a pointV can be evaluated from a Cholesky factorizationV = LTL
with L lower triangular. If we partitionL as

L =

[

L00 0
L1:p,0 L1:p,1:p

]

then

∇φ(V) =

[

I
−L−1

1:p,1:pL1:p,0

]

L−1
00 L−T

00

[

I
−L−1

1:p,1:pL1:p,0

]T

.

The projectionP (U) of a matrixU ∈ Mp,n on the set defined by the constraints in (34) can be
efficiently computed as follows. Clearly, the diagonal entries ofP (U)k are zero fork= 0, . . . , p. To
find the off-diagonal entries we can solve an independent problem

minimize 2((Z0)i j − (U0)i j )
2+

p

∑
k=1

(

((Zk)i j − (Uk)i j )
2+((Zk) ji − (Uk) ji )

2
)

subject to
p

∑
k=0

(|(Zk)i j |+ |(Zk) ji |)≤ γ
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Figure 12: Convergence of gradient projection algorithms.Left: Relative error( f (Z(k))− f ⋆)/| f ⋆|
versus the number of iterations.Right: Duality gap versus the number of iterations.

for eachi, j with j > i. This is the problem of projecting a vector on theℓ1-norm ball. The solution
is easily derived from duality and can be calculated by applying to the entries(Uk)i j the shrinkage
operation familiar in sparse optimization (see, for example, Tibshirani, 1996).

The following stopping criterion will be used in the experiments. At each iteration, we compute
X in (36) from the current iterateZ. This matrixX is primal feasible, as can be seen from the
identity (37) and the fact thatC+T(Z) ≻ 0. By taking the Schur complement of(C+T(Z))1:p,1:p

we also find a dual feasibleW in (27). The duality gap between this primal feasibleX and the dual
feasibleZ, W is

η = − logdetX00+ tr(CX)+ γh(D(X))− logdetW−n

= tr(CX)−n+ γh(D(X))

= tr((C+T(Z))X)−n− tr(X T(Z))+ γh(D(X))

= − tr(X T(Z))+ γh(D(X)).

We terminate when the duality gap is below a given tolerance.

6.3 Numerical Example

We generate AR models as in the experiment described in Section 4.2. In the first experiment, the
model dimensions aren= 300, p= 2, N = 2n(p+1). The true inverse spectrum has 10428 non-
zero entries in the upper triangular part (a density of about 12%). The penalty parameterγ is set at
γ = 0.1. The variableZ in the reformulated dual problem (34) is a matrix inM300,2, so the problem
hasn(n+1)/2+ pn2 = 225150 optimization variables. We start the gradient projection algorithm
at a strictly feasibleZ(0) = 0, and terminate when the duality gap is below 10−2 (the optimal value
is on the order of hundreds).

Figure 12 shows the relative error( f (Z(k))− f ⋆)/| f ⋆| where f (Z) = φ(C+T(P(Z))) and f ⋆

is the optimal value. It also shows the duality gapη(k) versus the iteration number for a typical
instance. ‘GP with arc search’ refers to the gradient projection method (38) with step size rule (41).
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Figure 13: Average CPU times (averaged over 10 runs) of the gradientprojection algorithm versus
the problem size. The algorithm stops when the duality gap is less than 10−1. The red
squares correspond to ‘GP with line search’ and the blue squares correspond to ‘GP with
arc search’.

‘GP with line search’ refers to the gradient projection method (42) with step size rule (43). The
step size searches required at most 15 backtracking steps to find an acceptable step size. As can be
seen, a solution with a moderate accuracy (relative error in the range 10−4–10−3) is obtained after a
number of iterations that is only a fraction of the problem size. The convergence of the ‘arc search’
method is slightly faster, but it should be kept in mind that this method is more expensive than the
‘line search’.

The ‘Exact FISTA’ method is the gradient projection algorithm with backtracking line search
from Beck and Teboulle (2009) using monotonically decreasing step sizes(tk ≤ tk−1, as required
by the theory in Beck and Teboulle 2009). As can be seen the convergence was not faster than the
classical gradient projection method. A heuristic modification in which the step sizes are not forced
to be nonincreasing, but at each iteration the line searche is initialized at the Barzilai and Borwein
steplength (40), was often about five times faster. This algorithm is referred to as ‘Modified FISTA’
in the figure.

Figure 13 shows the CPU time versus problem size on a 3GHz Intel Pentium(R)4 processor
with 2.94 GB of RAM, for the ‘GP with arc search’ and ‘GP with line search’ algorithms. The test
problems are generated as in the previous experiment, withp = 2 and varyingn. The algorithms
stop when it achieves a duality gap less thanε= 0.1. This yields a solution with a moderate accuracy
(relative gap in the range 10−4–10−3). The plot shows that the times needed to solving the regu-
larized ML estimation using both algorithms are fairly comparable with a slight advantage for ‘GP
with arc search’ whenn is large. Although the backtracking steps in the arc search method are more
expensive, the gradient projection method with this step size selection required fewer iterations in
most cases.
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7. Conclusion

We have presented a convex optimization method for topology selection in graphical models of
autoregressive Gaussian processes. The method is based on augmenting the maximum likelihood
estimation problem with anℓ1-type penalty function, chosen to promote sparsity in the inverse spec-
trum. By tracing the trade-off curve between the log-likelihood and the penalty function, we obtain
a small set of sparse graph topologies, that can then be ranked according to information-theoretic
criteria such as the AIC or BIC. This procedure avoids the combinatorial complexity of enumerating
all possible topologies, and produces accurate results for smaller sample sizes than methods based
on empirical or least-squares estimates. To solve the large, nonsmooth convex optimization prob-
lems that result from this formulation, we have investigated a gradient projection method applied to
a reformulated dual problem. Experiments with randomly generated examples,and an analysis of
an fMRI time series and a time series of international stock market indices wereincluded to confirm
the effectiveness of this approach.

Acknowledgments

The authors thank Zhaosong Lu for interesting discussions on algorithms for the penalized ML
problem. This research was supported by NSF under grant ECCS-0824003 and by a Royal Thai
government scholarship.

References

A. Abdelwahab, O. Amor, and T. Abdelwahed. The analysis of the interdependence structure in
international financial markets by graphical models.International Research Journal of Finance
and Economics, 15:291–306, 2008.

N. Bani Asadi, I. Rish, K. Scheinberg, D. Kanevsky, and B. Ramabhadran. A MAP approach
to learning sparse Gaussian markov networks. InIEEE International Conference on Acoustics,
Speech and Signal Processing, pages 1721–1724, 2009.

F. R. Bach and M. I. Jordan. Learning graphical models for stationarytime series.IEEE Transac-
tions on Signal Processing, 32:2189–2199, 2004.

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maximum likeli-
hood estimation for multivariate Gaussian or binary data.Journal of Machine Learning Research,
9:485–516, 2008.

J. Barzilai and J. M. Borwein. Two-point step size gradient methods.IMA Journal of Numerical
Analysis, 8:141–148, 1988.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems.SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

D. P. Bertsekas.Nonlinear Programming. Athena Scientific, Nashua, New Hampshire, second
edition, 1999.

2702



TOPOLOGYSELECTION IN GRAPHICAL MODELS OFAUTOREGRESSIVEPROCESSES

D.A. Bessler and J. Yang. The structure of interdependence in international stock markets.Journal
of International Money and Finance, 22(2):261–287, 2003.

E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gradient methods
on convex sets.SIAM J. on Optimization, 10(4):1196–1211, 2000.

E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Inexact spectral projected gradient methods onconvex
sets.IMA Journal of Numerical Analysis, 23:539–559, 2003.

S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, Cambridge,
2004.www.stanford.edu/˜boyd/cvxbook .

D. R. Brillinger. Time series: Data analysis and theory. Holden-Day, San Francisco, California,
expanded edition, 1981.

J. Dahl, V. Roychowdhury, and L. Vandenberghe. Maximum-likelihood estimation of multivariate
normal graphical models: large-scale numerical implementation and topology selection. Techni-
cal report, Electrical Engineering Department, UCLA, 2005.

R. Dahlhaus. Graphical interaction models for multivariate time series.Metrika, 51(2):157–172,
2000.

R. Dahlhaus, M. Eichler, and J. Sandkühler. Identification of synaptic connections in neural ensem-
bles by graphical models.Journal of Neuroscience Methods, 77(1):93–107, 1997.

A. P. Dempster. Covariance selection.Biometrics, 28:157–175, 1972.

J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning sparse Gaussians. In
Proceeding of the Conference on Uncertainty in AI, 2008.

M. Eichler. Fitting graphical interaction models to multivariate time serie. InProceedings of the
22nd Conference on Uncertainty in Artificial Intelligence, 2006.

M. Eichler. Testing nonparametric and semiparametric hypotheses in vector stationary processes.
Journal of Multivariate Analysis, 99(5):968–1009, 2008.

M. Eichler, R. Dahlhaus, and J. Sandkühler. Partial correlation analysis for the identification of
synaptic connections.Biological Cybernetics, 89(4):289–302, 2003.

S. Feiler, K.G. M̈uller, A. Müller, R. Dahlhaus, and W. Eich. Using interaction graphs for analysing
the therapy process.Psychother Psychosom, 74(2):93–99, 2005.

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projectionfor sparse reconstruction:
Application to compressed sensing and other inverse problems.IEEE Journal of Selected Topics
in Signal Processing, 1(4):586–597, 2007.

R. Fried and V. Didelez. Decomposability and selection of graphical models for multivariate time
series.Biometrika, 90(2):251–267, 2003.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical
lasso.Biostatistics, 9(3):432, 2008.

2703



SONGSIRI AND VANDENBERGHE

U. Gather, M. Imhoff, and R. Fried. Graphical models for multivariate time series from intensive
care monitoring.Statistics in Medicine, 21(18):2685–2701, 2002.

T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning: Data Mining,
Inference and Prediction. Springer, New York, 2nd edition, 2009.

J. Z. Huang, N. Liu, M. Pourahmadi, and L. Liu. Covariance matrix selection and estimation via
penalised normal likelihood.Biometrika, 93(1):85–98, 2006.

Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression.Statistica Sinica, 16(2):375–390, 2006.

S. L. Lauritzen.Graphical Models. Oxford University Press, Oxford, 1996.

K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig
estimators.Electronic Journal of Statistics, 2:90–102, 2008.

Z. Lu. Smooth optimization approach for sparse covariance selection.SIAM Journal on Optimiza-
tion, 19:1807, 2009.

Z. Lu. Adaptive first-order methods for general sparse inverse covariance selection.SIAM Journal
on Matrix Analysis and Applications, 2010. forthcoming.

Z. Lu and Y. Zhang. An augmented lagrangian approach for sparse principal component analysis.
2009. Submitted.
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