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Abstract

An algorithm is presented for topology selection in graphimodels of autoregressive Gaussian
time series. The graph topology of the model representgidusity pattern of the inverse spectrum
of the time series and characterizes conditional indeparedeelations between the variables. The
method proposed in the paper is based or;atype nonsmooth regularization of the conditional
maximum likelihood estimation problem. We show that thifurees to a convex optimization prob-
lem and describe a large-scale algorithm that solves theplablem via the gradient projection
method. Results of experiments with randomly generatedeaidiata sets are also included.
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1. Introduction

We consider graphical models of autoregressive (AR) Gaussiapgses
Xt)=— Y Ax(t—k)+w(t),  w(t)~N(03) (1)

wherex(t) € R", andw(t) € R" is Gaussian white noise. A graphical model of the time series is an
undirected graph witin nodes, one for each componeqit), and an edge connecting nodeand

j if the components; (t) andx;(t) areconditionally dependengiven the other components of the
time series. The conditional independence property has a simple chaaaer(which holds for
general Gaussian stationary processes) in terms of the spectrum obdessx (t) andx;(t) are
independent, conditional on the othrer 2 components ok(t), if and only if

(S(w)Hij =0

for all w, whereS(w) is the spectral density matrix (Brillinger, 1981, Chapter 8; Dahlhaus,)2000
This characterization allows us to include the conditional independendm®nsian an estimation
problem by placing sparsity constraints on the inverse spectral densitixmatr

In Songsiri et al. (2009) a convex optimization method was discussedtiorating the model
parameterg\y, = from data, given the graph of conditional independence relationsmitieod is
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based on solving the convex optimization problem

minimize —logdetXpo+tr(CX)
p—k
subjectto Yk= S Xk, k=0,1,...,p,
i (2)
(Yk)ij:Oa (|,J)€{V, k:0717"'7p7
X = 0.

Here C is the sample covariance matrix afid is the set of conditionally independent pairs of
variables. The optimization variables afec gp+D) (the symmetric matrices of ordefp+ 1)),
Yo € S", andYy € R™", k=1,2,...,p. Xj denotes the x n subblock ofX in positioni, j, where
the indices andj run from O top. It was shown that if the sample covariance ma@iis block-
Toeplitz, then problem (2) is equivalent to the conditional maximum likelihoodl)(Bktimation
problem, and the ML estimates f8x andZ are easily obtained from the optimal solut&nIf C is
not block-Toeplitz, the problem is a relaxation and in general not elguivéo the conditional ML
problem. However in practice, the relaxation often happens to be exaug$ii et al., 2009). This
will be discussed in more detail in §2.3.

In this paper we consider the more general problem of estimating the modeti@@randthe
topology of the graphical model. The topology selection problem can bedbly enumerating all
topologies, solving the ML estimation problem for each topology, and rarikamg via information-
theoretic criteria such as the Akaike or Bayes information criteria (Eich@¥62Songsiri et al.,
2009). However this combinatorial approach is clearly limited to small graphs. goal of this
paper is to present an efficient alternative based on convex optimization.

Topology selection for graphical models of time series is of interest in mapljcagions (see
Dahlhaus et al., 1997; Eichler et al., 2003; Salvador et al., 2005; Geitlagér 2002; Timmer et al.,
2000; Feiler et al., 2005; Friedman et al., 2008). A common approach isrufate hypothesis
testing problems to decide about the presence or absence of edgekhalu3af2000) derives a
statistical test for the existence of an edge in the graph, based on the maginaumonparametric
estimate of the normalized inverse spectrum (see also Dahlhaus et al.,Ei&89iér et al., 2003;
Salvador et al., 2005; Gather et al., 2002; Timmer et al., 2000; Feiler eb@b; Eried and Didelez,
2003). Eichler (2008) presents a more general approach by intrgdadypothesis test based on
the norm of some suitable function of the spectral density matrix. A relatddggmovas studied by
Bach and Jordan (2004). They use an efficient search procemligarn the graph structure from
sample estimates of the joint spectral density matrix.

If p=0, the problem (2) reduces to

minimize —logdetX +tr(CX) 3)
subjectto X; =0, (i,j)e¥

with variableX € S". (Throughout the paper we take the set of positive definite matrices dsthe
main of the function logdeX, so (3) includes an implicit constraiMt = 0.) Problem (3) is known
as thecovariance selectioproblem, that is, the problem of computing the ML estimate of the in-
verse covariance matri = -1 of a multivariate Gaussian varialié(0, Z), subject to conditional
independence constraints (which, for a normal distribution, corresfmaeros in the inverse co-
variance); see Dempster (1972) and Lauritzen (1996, 85.2). Receetlyheuristic methods for
topology selection in large Gaussian graphical models have been develdpese methods are
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based on augmenting the ML objective with@morm regularization term, that is, on solving
minimize —logdetX +tr (CX) +yy;; [Xj| 4)

(see Dahl et al., 2005; Meinshausen arichBhann, 2006; Banerjee et al., 2008; Ravikumar et al.,
2008; Friedman et al., 2008; Lu, 2009, 2010). The optimization problénis(donvex but has
n(n+1)/2 variables (the elements ¥f) and is nondifferentiable, so it can be challenging to solve
whenn is large. Several large-scale methods have been proposed. Baatesje€2008) apply a
block coordinate descent method to the dual problem. Each step of this nrethazks to solv-
ing a quadratic program with box constraints. They also apply Nestewptitmal gradient method
(Nesterov, 2005) to a smooth approximation of (4). Friedman et al. (20@8)rve that the dual
of the subproblems in the coordinate descent algorithm can be regadethsso-type problem
and solved with a method called graphical lasso. Scheinberg and Rish) @f@tsider a coordinate
ascent method applied to the primal problem. A method based on column-wigeesjglgiven by
Rothman et al. (2008). A related problem is explored in Yuan and Lin (R@®iére the authors
make a connection between (4) and more general determinant maximizatliarso(Vanden-
berghe et al., 1998), and solve the problem using interior-point methad&009) observes that
the dual of (4) is a smooth problem and applies Nesterov's method (Nes2€6b) directly to the
dual. The algorithm is further extended by Lu (2010) and compared witbjagied spectral gra-
dient method. Another closely related paper is Duchi et al. (2008) in whielgradient projection
method is applied to the dual problem.

The main purpose of this paper is to develop an efficient method for topaelggtion in
AR models, based on augmenting the estimation problem (2) with a convex niggtitan term,
similar to the/;-norm regularization used in (4). We also discuss first-order methodsidng the
resulting large-scale and nondifferentiable convex optimization problem.

The paper is organized as follows. In Section 2 we review the definitioarafitional indepen-
dence in time series and summarize the results from Songsiri et al. (200Sgction 3 we set up
the topology selection problem as a regularized ML problem and discus®fienies. Examples
and applications are presented in Sections 4 and 5. We conclude in Seutitngdiscussion of
gradient projection algorithms for solving large instances of the reguthkiteestimation problem.

1.1 Notation

S" is the set of real symmetric matrices of oraerS] andS] , are the sets of symmetric positive
semidefinite, respectively, positive definite, matrices of ordd®™ " is the set ofn x n-matrices.
M"™P is the set of matrices

X=[% X = %]
with Xp € S" andXy, ..., X, € R™". The standard trace inner prodyst,Y) = tr (XTY) is used for
the three vector spac&5, R™", M™P. For a symmetric matriX, the inequalitieX = 0 andX = 0
meanX is positive semidefinite, resp., positive definite. Row and column indicesbwhatiices
in a block matrix start at 0. IX is a matrix with (block) entries(j, thenX;:j . will denote the
submatrix formed by rowsthroughj and columnk through I:

Xik Xiket - X
Xivik Xitikrr - Xt
Xiijkl = : ) :
Xik  Xikrr - X

)
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The linear mapping TM™P — S"(P*1) constructs a symmetric block Toeplitz matrix from its

first block row: ifX = Xo X1 -+ Xp | € M™P, then
)($ X1 o Xp
o= | YT )
XT XT, %

The adjoint of T is a mapping DS"(P*Y —, M"P defined as follows. I6€ S"P*Y s partitioned as

S0 S o Sop
S Su o S
S= . . . ’
S&) qu e pr
then D(S) = [ Do(S) Di(S) -+ Dp(S) | where
p p—k
Do(S):'ZSi, Dk(S)ZZ_ZJS,Hk, k=1,....p. (6)

A symmetric sparsity pattern of a sparse ma¥iaf ordern will be associated with the positions
VY C{1,...,n} x{1,...,n} of its zero entries. We assuntei) ¢ 9 fori =1,...,n, that is, the
diagonal entries are not included among the zerggXP denotes the projection of a matike S"
or X € R™" on the complement of the sparsity patt@rn
Xj (i,j)eV

Py (X)i :{ 0 otherwise. 0

The same notation is used foy,Rs a mapping frorR™" — R™" and as a mapping frod' — S".
In both cases, P is self-adjoint. IfX is anr x s block matrix withi, j block X;j, and each block
is square of ordem, then B,(X) denotes the x s block matrix withi, j block Py, (X)ij = Py (Xij).
Similarly, P,,(X) with X € M™P denotes

[ Pp(Xo) Py(X1) - Pyp(Xp) |.

The subscript’ in P, is omitted if the sparsity pattern is clear from the context.

2. Graphical M odels of Autoregressive Gaussian Processes

In this section we describe the conditional independence property fsgszen time series, review
the maximum likelihood estimation of AR models, and provide a convex formulatiothéoesti-
mation problem with conditional independence constraints.

2.1 Conditional Independence

Letx(t) be ann-dimensional stationary zero-mean Gaussian process with speStem

Sw= Y Re

k=—o0
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whereR, = Ex(t +K)x(t)T and j= v/—1. We assume th&w) is invertible for allw. Two compo-
nentsx (t) andx;(t) of x(t) are conditionally independent (i.e., conditional on the other components
of x(t)) if

(S(w))ij =0

for all w (Brillinger, 1981; Dahlhaus, 2000). If we denote ¥/the set of index pairg j of con-
ditionally independent variables, then we can use the projection operatd?,Pdefined in (7) to
express the conditional independence relations as

P(S(w) ™) =0. 8)

In a graphical model of the process, the indexBes the set of missing edges in the graph.
To apply this result to AR processes (1) we need to express the inyersisn in terms of the
model parameters. The notation will simplify if we first normalize the input danae and use the

model
p

Box(1) = — ¥ Bex(t—K)+v(t),  v(t) ~ N(O,1), (9)
k=1

whereBg € SL andBx € R™", k=1,...,p. If Zis nonsingular, the two models are equivalent,

and related aBy = >~1/2, B, = -1/2A, for k > 1. The inverse spectru(w) of the process (9) is

a trigonometric matrix polynomial

1

p . :
St =Yo+35 Y (e N+ ) (10)
k=1

NI

whereYo = 3 BB, andYy = 22{’;&‘ BB for k=1,...,p. If we defineB = [By By -+ Bp],
we can use the operator D defined in (6) to expiess

[Yo 1 -+ Y, ] =D(B"B).

The expression (10) shows th& w) ~1);; is identically zero if and only if the j andj,i entries of
Yk are zero fok =0,..., p. The conditional independence condition (8) is therefore equivalemt to
guadratic equation in the model parame®ys

P(D(B"B)) =0. (11)

(Recall from the Notation section that¥fis a block matrix with square submatricgsof ordern,
then RY) denotes the block matrix with submatrice&ip.)

2.2 Conditional Maximum Likelihood Estimation

We now consider the problem of estimating the model param&drsm an observed sequence
%(1),X(2), ...,X(N) of the AR process, subject to known conditional independence conist(al).
In Songsiri et al. (2009) the estimation problem was formulated as the optinmizatblem

minimize —2logdeB +tr (CB'B)

subjectto  PD(B"B)) = 0. (12)
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The matrixC € Si(pH) is a sample estimate of the covariance matrix, that is, its blGgks < j,
are estimates of the covariand@s = Ex(t + j —i)x(t)T, calculated from the observed sequence.
Two choices ofC are common. The first choice is then-windowed estimate

)?(P—i—l) )E(p+2) ~)~((N)
C:NipHHT’ = X@) Xm?i)'“ MN?” (13)
X(1) %(2) .+ K(N=Dp)

With this choice the estimation problem (12) can be interpreted as a maximum likeinoblem.
Indeed, from (9), the conditional density of a sequexitg, x(t1+1), .. .x(t2), givenx(ty — p), ...,

X(t1 — 1), is given by
detBy to—t1+1 1k Tor
—= t)' B'Bx(t
() e[5> xoremexo).

wherex(t) denotes then(p+ 1)-vector x(t) = (x(t),x(t —1),...,x(t — p)). From this it can be
shown that the cost function in (12) wighdefined as in (13), is essentially the negative conditional
log-likelihood function of the observed sequenge + 1), X(p+2), ..., X(N), givenX(1), ...,
X(p). We therefore refer to (12) as tkenditional maximum likelihood problerfror AR processes,
the conditional ML formulation is substantially simpler and more often used thaexhet ML
formulation. Moreover, when the data lengthis sufficiently large compared tp, the difference
between the exact and conditional ML formulations is small.

The second choice f& is thewindowed estimate

1
CZNHHK (14)
where
K1) K2) - Kp+1) - KN 0 0
S| 0 W mR) e mN-D N o
0 0 - 1) - KN-p) KN-p+1) - KN

The windowed estimat€ is block-Toeplitz, and this guarantees several useful properties of the
resulting modeB (for example, stability; see Songsiri et al., 2009). In practice, the dififezs
between the windowed and non-windowed estimates are small Wherp.

We will assume tha€ is positive definite. Ifn is small compared td, this is a reasonable
assumption but not guaranteed to be true. (As a counterexample, as§lme . X(n) are the
first n unit vectors and the remainder of the sequence is zero. The n@ainix14) then has rank
n+ p.) If Cis not positive definite, it may be necessary to add a small multiple of the identity. Th
is equivalent to a quadratic regularization term proportiongBg¢ in the objective of (12).

When there are no sparsity constraints in (12), the solution can be fgusetting the gradient
of the cost function equal to zero, which gives

Coo Cor --- Cop Bo Byt
Cio Cin - Cyp BJ |0
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Written in terms of the original variables= Baz, A= Bngk, this gives

Coo Cor -+ Cop |T z
Co Cuu -+ G A 0
oo ! =, (15)

with unknownsz = Bgz, Ac= Bngk. The bottomp equations form a set of linear equations from
whichAy, ...,Ap can be determined. Plugging in the solution in the first equation givester in
the paper we will refer to the solution as tleast-squares estimabecause the bottomequations
can be interpreted as normal equations for the least-squares problem

minimize tr(ACAT)

with variableA= [ | A; --- Ap |. This method is also known as tkevariance methodf C
is the non-windowed sample covariance (13), and asdnelation methodf C is the windowed
sample covariance (14) (see Stoica and Moses, 1997).

2.3 Convex Formulation

The optimization problem (12) is non-convex because of the quadratidiggronstraint. A convex
relaxation is
minimize —logdetXgo+tr(CX)
subjectto PD(X))=0 (16)
X*=0

with variableX € S"P*Y_ The relaxation is exact, that is, the two problems (16) and (12) are
equivalent, if the optimal solutioX of (16) has rank. In that case, the solutidd of (16) can be
calculated by factoringt asX = B"B.

A condition for exactness of the relaxation follows from the dual problé(d®), which is

maximize logdetV +n

subject to [V(\)/ (())} <C+T(P(2)),

(17)

with variablesw € S" andZ € M™P (for the derivation, see Songsiri et al., 2009). The variable
Z is the Lagrange multiplier associated with the equality constraint in (16); thk slatrix in

the inequality in (17) is the multiplier associated with the primal inequadity 0. To find the
relation between primal and dual solutions, we first note that the primal aakdpdoblems are
strictly feasible:X = | is strictly feasible in the primal problem (16), since by assumpfibdoes
not contain any diagonal entries; in the dual probem 0 and a sufficiently small positive definite
W are strictly feasible, becauge>- 0 by assumption. From convex duality, strict primal and dual
feasibility imply that the primal and dual problems are solvable, and that thiémalgsolutions are
related by the optimality conditions

Xoor =W,  tr (x <C+T(P(Z))—[Vg 8])):0 (18)
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(Boyd and Vandenberghe, 2004, Chapter 5). The second conditiamign ascomplementary
slacknesdetween the optimaX and the dual variable associated with the inequadity 0. From
these optimality conditions, it can be shown that the relaxation is exact wherailrey principal
submatrix of ordenpin the matrixC + T(P(Z)) € S"P*Y is positive definite at the optimum, that
is,

(C + T(P(Z))>1:p.,1:p ~0. (19)

Under this condition, the rank of
W 0
C+T(P(2))— [ 0 0 }

is at leasihp. SinceX has orden(p+ 1), the two conditions in (18) imply that the optim#lhas
rankn.

In general it is difficult to guarantee a priori that the condition (19) haldsptimum. However,
whenC is block-Toeplitz, then (19) can be shown to hold for all dual feastbl&his follows from
the following easily established property of block-Toeplitz matrice¥ & S"P*Y is a symmetric
block-Toeplitz matrix withn x n blocksV;;, and

Voo  Voip ] [ W 0 ]
V = ; o
[ V15P70 Vl:p,l:p 0 O

for somew = 0, thenV is positive definite (see Songsiri et al., 2009, §3.3.3). We thereforduztmc
that for positive definite block-Toeplit2 (for example, the windowed sample covariance (14) or the
true covariance), the problems (12) and (16)egaivalent For general non-block-Toepli2 (for
example, the non-windowed sample covariance (13)), we cannotrgaarthat (19) holds at the
optimum. However, we can note that the non-windowed sample covariapceaghes a block-
Toeplitz matrix adN — oo. It is therefore not surprising that even for the non-windowed estimate,
the relaxation is often exact, as was observed in the experimental resutisgsi et al. (2009).

3. Topology Selection Via Nonsmooth Regularization

In the previous section we have described a convex formulation of tineli(@mal) ML estimation

problem with given conditional independence constraints, that is, a girsph topology. In many
applications the topology is not known, and needs to be discovered frerdatta. Information
theoretic model selection criteria such as the Akaike, second-order dkaikBayes information
criteria can be used for this purpose. They require enumerating albpos$spologies, solving
the ML problem for each topology, and ranking the ML estimates accorditigeio information

criterion score. These scores are defined as

2Nk

AIC = —2L+2k, A|Cc =21+ m,

BIC = —2L£ + klogN (20)

whereZL is the log-likelihood of the ML estimaté is the sample size, ards the effective number
of parameters. In our application,is given by

[ =

N ; P (log detxgo — tr (CX))
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where X is the optimal solution of (16), and we use fothe total number of parameters in the

estimation problem,

(n+1)
2

where| V| is the number of conditionally independent pairs of variables. This topaetgction
method based on information-theoretic criteria is feasible if the number ofigb®sspologies is
not too large, but quickly becomes intractable even for small values ¢fi this section and the
next we describe a more scalable approach based on a convex optimaratitem that extends the
£1-norm heuristic (4) for sparse covariance selection.

n
k= —|VI+p(n®~27)),

3.1 Regularized ML Problem

In analogy with the convex heuristic for covariance selection (4), wefaamulate a regularized
ML problem by adding a nonsmooth-type penalty:

minimize —logdetXpo+tr (CX) +yh(D(X)) (21)
subjectto X =0,

wherey > 0 is a weighting parameter. The pendityM™P — R is a convex function, chosen to
encourage a sparse solutignwith a common, symmetric sparsity pattern for fhe 1 blocks of
D(X). We will use the penalty function

ho(Y) =5 max{ | (Yo)ij

I>i

max | ()i ) hax | (V)i \} (22)

that is, a sum of thé,-norms of vectors off, j and j,i-entries of the coefficienté. In the examples
(Section 4) we will also discuss penalty functions defined as sufisérms, witha = 1, 2.
Regularization with a convex sum-of-norms penalty is a popular technigaeliteving sparsity
of groups of variables. Examples from statistics aredbmposite absolute penaltié€SAP) (Zhao
et al., 2009) and thgroup lassa(Yuan and Lin, 2006; Kim et al., 2006). When= 0 andX € S"
in (21) the penalty term reduces ¥9. ; |Xj| and we obtain problem (4), studied in Banerjee et al.
(2008), Lu (2009) and Friedman et al. (2008), with the minor differeahaewe do not penalize the
diagonal entries oX.
We now derive the dual problem of (21) which will be important in Sectiod@simplify the
derivation we introduce a variab¥e= D(X) and write the problem as

minimize —logdetXoo+tr (CX) + Yhe(Y)
subjectto Y = D(X)
X > 0.

If we use a multiplieiZ € M™P for the equality constrairt = D(X) and a multipliety e S"(P+%)
for the inequalityX = 0, the Lagrangian of the problem is

L(X,Y,Z,U) = —logdetXoo+ tr (CX) 4 yhe (Y) — tr (UX) +tr (ZT (D(X) —Y)) (23)
= —logdetXoo+tr ((C+T(Z) —U)X) + yheo(Y) —tr (ZTY).
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(Recall that the mappings T and D defined in (5) and (6) are adjoints, that(&' D(X)) =
tr(T(Z)X).) The dual function is the infimum of the Lagrangian overandY. We first mini-
mize overY. The nonlinear penalty term does not depend on the diagonal entries loloibksY.
The minimization over the diagonal entries¥@fis therefore unbounded below unless

diag(zZ) =0, k=0,1,...,p. (24)

The minimization over the off-diagonal part of the blodksdecomposes into independent mini-
mizations of the functions
p
= 3 (@ (R + 23 )+ ymax{ |06 . ma Ol .m0
& k=1,...,p k=1,...,p
for each elemernit j with i > j. This expression is unbounded below unless

p
2!(Zo)ij!+kzl(!(2k)ij\+|(Zk)ji|) <y, i#], (25)

and, if this condition holds, the infimum ov¥ris zero. The result of the partial minimization of the
Lagrangian oveY can be summarized as

{ —logdetXpo+tr ((C+T(Z)—U)X) (24), (25)

infL(X,Y,Z,U) =43 _ otherwise.

Next, we carry out the minimization ovet. The terms inXgg are bounded below if and only
if (C+T(Z)—U)oo = 0, and if this holds, they are minimized Bo = (C+T(Z) —U)y3. The
Lagrangian is linear in the other blocKg, and therefore bounded below (and identically zero) only
if (C+T(Z)—U)ij =0forblocks(i, j) # (0,0). This gives a third set of dual feasibility conditions:

(C+T(Z)=U)oo~0,  (C+T(Z2)-VU);ij=0, (i,j)#0, (26)
and an expression for the dual function

logde{(C+T(Z) —U)oo+n (24), (25), (26)

g(Z,uU) = ;(r]\f(L(X,Y,Z,U) = { otherwise.

The dual problem is to maximizgZ,U ) subject tdJ > 0. If we add a variabl&/ = Cyp+ Zo —
Upo and eliminate the slack variable, we can express the dual problem as

maximize logdetV+n

. W 0
subject to <C+T(Z
) [o o} @) (27)

S (@il + 1@ <y, 1#]

d_iag(Zk) =0, k=0,...,p.
The variables ar#/ € S" andZ € M™P. Whenp = 0, the problem reduces to

maximize logdelC+2Z)+n
subjectto |Z;| <y/2, i#]j
diag(Z) =0,
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Except for the equality constraint, this is the problem considered in Lu9j286d Duchi et al.
(2008).
If a sum of¢y-norms

p 1/a
ha(Y) =3 <k;(|(Yk)ij|u+|(Yk)ji|a)> (28)

I>i

is used as penalty function in (21), the second constraint in the conéisodual problem (27) is
replaced by

p 1/
(kZOO(Zk)ij|B+I(Zk)ji!B)> <y, i#]
withB=a/(a—1).

3.2 Optimality Conditions

The primal problem (21) is always strictly feasibl£ | is strictly feasible). The dual problem (21)
is strictly feasible ifC > O (we can tak&Z = 0 andW positive definite and sufficiently small). It
follows that the primal and dual problems are solvable, have equal optahats; and that their
solutions are characterized by the following set of necessary andisnffoptimality (or KKT)
conditions.

Primal feasibility. X andY satisfy

X>=0, Xpo=0, Y=D(X).

Dual feasibility. W andZ satisfy

W = 0, C+T(Z)t[v(\)/ (())]’
p
Z)(\(Zk)inl(Zk)jil)Sv, i£j, diag(z)) =0, k=0,1,...p.
k=

Zeroduality gap. The Lagrangian evaluated at the primal and dual optimal solutions is equal to
the primal objective at the optim&{, Y, and equal to the dual objective evaluated at the
optimalW, Z. From (23), we have equality between the Lagrangian and the primaltiobjec
if tr (UX) = 0. Therefore the complementary slackness condition

tr <x<c+T(Z)—[‘g’ 8}))_0 (29)

holds at the optimum. Equality between the Lagrangian and the dual objeatjueeas that
the primal optimalX, Y minimize the Lagrangian evaluated at the dual optiialZ. Re-
viewing the derivation of the dual problem, we see ¥gtminimizes the Lagrangian if

Xog = W. (30)
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To express the conditions from the minimization ov¥exve define

(Yie)ij |, max|(¥i) !}-

,,,,, p| N

Then we see that minimizes the Lagrangian if for ail# j, we either have
p
> (@il +1(Z0iih <V,
K=0
or we haves P (|(Z)ij| + |(Z)ji|) = yand
(Ze)ij =0, [(Mij| <tij or (Z)ij <0, (Yi)ij = —tij or (Zij >0, (Yi)ij = tij
fork=0,...,p.

The conditions (29)—(30) show that the optinxahas rankn under the same conditions as for the
problem with given sparsity pattern (16). If

(C+T(Z))1pa:p = 0

then the optimalX has rankn, and this is always the case @ is block-Toeplitz. Under these
conditions, the optimization problem (21) is equivalent to a regularizedi{ttonal) ML estimation
problem for the model parameteBs

minimize —2logdeBg -+ tr (CBTB) + yhe(D(B'B)).

4. Examples with Randomly Generated Data

Our interest in the regularized ML formulation (21) is motivated by the fadttti@resulting AR
model typically has a sparse inverse specti$(m) 1. Since the regularized problem is convex,
it is interesting as an efficient heuristic for topology selection. In this segtmillustrate several
aspects of this approach using experiments with randomly generated da®ection 5 we will
apply the method to real data sets. Numerical algorithms for solving the rizgpaaroblem (21)
are discussed in Section 6.

4.1 Method

We first explain in greater detail how we will use the results of the regukhiize problem for
model selection.

4.1.1 CHOICE OFREGULARIZATION PARAMETER Y

The sparsity in the inverse spectrum of the solution of the regularized lgthlgm is controlled by
the weighting coefficieny. Asy varies, the sparsity pattern varies from densenfall) to diagonal
(y large). Several authors have discussed the choigeimfthe context of covariance selection
(i.e., heuristics based on solving problem (4) or closely related probleaspmmon approach
is to selecty via cross-validation; see, for example, Friedman et al. (2008), Huaaly €£006)
and Banerjee et al. (2008). Meinshausen aiddlBiann (2006) give explicit formulas fgrbased
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fz (X)
fz(X)
fz(X)

f1(x)

Figure 1: Method for approximating the trade-off curve between two@onbjectives.

on a statistical analysis of the probability of errors in the topology (see alao ¥nd Lin, 2007,
Banerjee et al., 2008). Asadi et al. (2009) consiglas a random variable and use a maximum a
posteriori probability (MAP) estimation to choogand the covariance matrix.

In the examples of this section we will use the following method for selectiniyVe first
compute the entire trade-off curve between the two terms in the objectivd pftliat is, between
the log-likelihood and the penalty functidn,(D(X)). The trade-off curve can be computed by
solving (21) for a number of different values pf(see below). We collect the topologies of the
solutions along the trade-off curve, and solve the ML problem (16)dohef these topologies. We
then rank the models using the Bayes information criterion (BIC), as disdugghe beginning of
Section 3, and select the model with the lowest score. In this approaduritiex heuristic is used
as a preprocessing step to reduce the number of topologies that are edasiing the BIC, and to
filter out topologies that are unlikely to be competitive.

4.1.2 TRACING TRADE-OFF CURVES

The trade-off curves are computed by solving (21) for a sequenealoés ofy. To obtain an
accurate estimate of the curve with only a small number of vayuse use a method which is
illustrated in Figure 1 for a generic trade-off between two convex costtions f; and f,. We first
solve the scalarized problem

minimize f1(X) +yf2(x) (31)

for two positive valuegs, y» near the opposite ends of the trade-off curve. This gives the points
labeled 1 and 2 on the trade-off curve. The valueg,adindy, also define the slopes of straight
lines that support the trade-off curve at points 1 and 2. Since the tfadarve is convex, we can
conclude that the curve between 1 and 2 lies somewhere in the shadedlatamegion. Asys,

we choose the value that corresponds to the slope of the straight linedpetwend 2. Solving
problem (31) withy = y3 gives point 3 on the trade-off curve and a straight line that supports the
curve at point 3. The trade-off curve between points 1 and 2 is nowkna lie in the union of the

two shaded triangles. Next, we solve the problem (31) for a waJuerresponding to the slope of
the straight line between points 1 and 3, and a vgduwmrresponding to the slope of the straight line
between 3 and 2. In this example, we obtain fairly accurate upper and bmweds of the actual
trade-off curve after solving five scalarized problems (31).
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4.1.3 THRESHOLDING

With a proper value ofy, the regularized ML problem (21) has a sparse soludomesulting in
a sparse inverse spectru®w) 1. When solved with a limited accuracy, the entriesrare not
exactly zero. We will use the following method to determine the topology from tinepated
solution.

We calculate the inverse spectr@fw) ! and normalize it by scaling its rows and columns so
that the diagonal is one:

R(w) = diag(S(w) 1) /?5(c) " diag(S(w) 1) 2

The normalized inverse spectriRfw) is known as th@artial coherencgBrillinger, 1981; Dahlhaus,
2000). Its entries are between 0 and 1 in magnitude, and measure the camidigpendence be-
tween the corresponding variables, after removing the linear effectstfre other variables. In the
static casef§ = 0), R(w) reduces to the normalized concentration matrix. To estimate the graph
topology we compare thie,-norms of the entries dR(w),

pij = SUp/R(w)ij |
w

with a given threshold. This thresholding step is similar to thresholding in offaess methods, for
example the thresholded lasso and Dantzig estimators in Lounici (2008).

To simplify the interpretation we will use the same threshold value{)Lid all the experiments,
that is, we remove edge, j) from the graph ifp;; < 102,

4.2 Experiment 1

In the first series of experiments we generate AR models with sparseenspestra by setting
Bo = | and randomly choosing sparse lower triangular matrigiesith entries+0.5. The random
trials are continued until a stable AR model is found. The AR process is themtto generathl
samples of the time series. The model dimensionsar0 andp = 2.

4.2.1 TOPOLOGY SELECTION

We first illustrate the basic topology selection method outlined above using teetmodel order
(p=2). The sample size N =512.

Figure 2 shows the trade-off curve between the pergl{p(X)) and the log-likelihood.(X).
We calculate the inverse spectra (10) for the computed points on the ftifacleae, and apply a
threshold to them (as explained above, by setting entries gyitkt 10! to zero). The resulting
topologies are shown in Figure 3. The patterns range from quite demsd! (3 to very sparse
(largey). The sparsity of the densest solution=f 10~°) is identical to the sparsity of the least-
squares estimate (i.e., the solution of the equations (15)@vifiven in (13) or, equivalently, the
ML solution of (12) without the sparsity constraints). For each of the npaesity patterns, we
solve the ML problem subject to sparsity constraints (16). We rank thesulutions using the
AIC. and BIC scores defined in (20). Figure 4 shows the two scores anédga¢ive log-likelihood
as functions ofy. The models that minimize the ABIC scores turn out to be the same in this
example (the models fgr= 0.15) and the corresponding topology is shown in Figure 5 (left). Only
seven entries are misclassified (six entries are misclassified as zer@s oezero). The sparsity
pattern in the middle is the topology estimated by thresholding the partial cokespactrum of
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Figure 2: Trade-off curve between the log-likeliha6¢X) andh., (D(X)).
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Figure 3: Topologies of solutions along the tradeoff curve in Figure @fed from right to left on
the tradeoff curve).
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Figure 4: AIC and BIC scores, and maximized log-likelihood for solutions on the tradecwife
in Figure 2.

the least-squares solution with the correct model ordef R). This pattern is computed by solving

the ML problem (12) without constraints, and then thresholding the padiarence (using the
same threshold value Das in the other experiments). The difference between the two patterns
clearly shows the benefits of the nonsmooth regularization for estimatingsesjppology. The
sparsity pattern on the right of Figure 5 is obtained from the covariaeetss method with/;-

norm regularization (i.e., by setting= 0 in the regularized ML problem (21)) and thresholding the
partial coherence. Ignoring the model dynamics substantially increasestribr in the topology
selection.

4.2.2 GOMPARISON WITHOTHER TYPES OFREGULARIZATION

To compare the quality of the sparse models with the models obtained from stimeaton meth-
ods we evaluate the Kullback-Leibler (KL) divergence (Bach andalord004) between the true
and the estimated spectra as a function of the samplé\siaethe following six methods.

1. ML estimation without conditional independence constraints (or leasireg@stimate). This
is the solution of (12) without the constraints, and it can be computed by gdlvnormal
equations (15).

2. ML estimation with conditional independence constraints determined byhtiidisg the
partial coherence matrix of the least-squares estimate (solution 1).

3. ML estimation with Tikhonov regularization and without conditional indegercg constraints.
Tikhonov regularization (also known aislge regressioror £»-regularization) is widely used
in statistics and estimation (Hastie et al., 2009, 83.4). A Tikhonov-regulakitedstimate
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Figure 5: Left. The sparsity pattern from the regularized ML problem with 0.15. Middle. The
sparsity pattern estimated from the least-squares solutRght. The sparsity pattern
from the regularized ML problem for a static mod@l£€ 0). The blue squares are the
correctly identified nonzero entries (true positives). The red circketharentries that are
misclassified as nonzero (false positives). The black crosses aiesdhtt are misclas-
sified as zeros (false negatives).

is the solution of
minimize —2logdeBy -+ tr (CBTB) +v]||BJ|2.

The solution can be computed from the normal equations (15)@ui#placed byC+yl. The
solution of this problem can therefore also be viewed as a ML estimate usertualed sam-
ple covariance matri€ +yl. In the experiment, the value gis determined by performing a
five-fold cross-validation (Hastie et al., 2009, §7.10).

4. ML estimation with conditional independence constraints determined byhtiidisg the
inverse spectral density for the Tikhonov estimate (solution 3).

5. Regularized ML estimation with,-penalty. This is the solution of problem (21) with penalty
function (22).

6. ML estimation with conditional independence constraints determined byhtiidésg the
inverse spectral density for tiig,-regularized ML estimate (solution 5).

The total number of variables in this exampleni® + 1) /24 pr? = 1010 variables. We show the
results in Figure 6 in two different settings: with small sample sikes (1010) and with moderate

to large sample sizeN(> 1010). We can note that for small sample sikethe constrained ML
estimates (models 2,4,6) are not better than the unconstrained estimates (n&8glstd much
worse in the case of the Tikhonov-regularized estimates. This can beredlgy large errors in the
estimated topology. For larg®t the constrained estimates are consistently better than the uncon-
strained models, and for very lar@jethe three constrained ML estimates give the same accuracy.
For small and moderatd we also see that model 6 (ML estimate for the topology selected via
nonsmooth regularization) is much more accurate than the other methods.
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Figure 6: KL divergence between estimated AR models and the true mwdeR0, p = 2) ver-
sus the number of samplés We compare six methods: (1) least-squares estimate, (2)
constrained ML estimate with topology estimated by thresholding solution 1, (3)skilL e
mate with Tikhonov regularization, (4) constrained ML estimate with topology estiina
by thresholding solution 3, (5) regularized ML estimate withpenalty, (6) constrained
ML estimate with topology estimated by thresholding solution 5.
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4.2.3 BRRORS INTOPOLOGY AS AFUNCTION OF SAMPLE SIZE

In the last figure (Figure 7) we examine how fast the error in the topolopctsen decreases
with increasing sample lengtN for three topology selection methods: LS estimation followed
by thresholding, ML estimation with Tikhonov regularization followed by thoédimg, and ML
estimation with nonsmooth regularization followed by thresholding. For eatiplsasizeN we
show the errors averaged over 50 sample sequences (i.e., 50 difareple covariance matrices
C). “False positives” refers to entries that are incorrectly classifiedoagearos (i.e., incorrectly
added edges in the graphical model). “False negatives” are entriearéhaicorrectly classified
as zeros (i.e., incorrectly deleted edges). The top graphs in Figurew/ tekdfraction of false
positives and false negatives versus the sample size. The bottom glaphshe total fraction of
misclassified entries. We compare the three methods listed above. As cambthsdotal error in
the estimated topology is reduced in the regularized estimates, and the eamast more rapidly
when we regularize with the sum-of-norms penéity

4.3 Experiment 2

In the second experiment we compare different penalty functidios the regularized ML prob-
lem (21): the ‘sum-oft,.-norms’ penaltyh.,, defined in (22), the ‘sum-ofs-norms’ penaltyh, de-

fined in (28) witha = 2, and the ‘sum-ofq-norms’ penaltyh; defined in (28) witha = 1. These
penalty functions all yield models with a sparse inverse spectrum

P . .
S =Yo+5 Y (e N+eY),

k=1

NI =

but have different degrees of sparsity for the entfi&$; within each group, j.

The data are generated by randomly choosing sparse coeffigiaftan inverse spectrum (10).
For each(i, j) of nonzero locations i8(w) 1, we select random valug¥y);; with about the same
magnitude for allk. If necessary, a multiple of the identity matrix is addedygoto guarantee
the positiveness of the spectrum. An AR realization of the spectrum is theputed by spectral
factorization and used to generate sample time series. The model dimensiorsByp=7.

Figure 8 shows typical values for the estimated coefficiénits;. The three penalty functions
all give the same topology, but a different sparsity with the same grgupf coefficients. The
sparsity within each group is largest for thepenalty and smallest for the,-penalty.

Table 1 shows the results of topology selection with the three penaltiesnfipltesaizeN = 512
and averaged over 50 sample sequences. hikhgenalty gives the models with the smallest KL
divergence and smallest error in topology. This is to be expected, ¢gnedistribution of the
nonzero coefficient§yy);; in the AR models that were used to generate the data. The results also
agree with a comparison of different norms in a composite penalty functibao(2t al., 2009).
In general the best choice of norm will depend on how the coefficieptdliatributed within each

group.

5. Applications

This section presents two examples of real data sets to demonstrate howgyopelection can
facilitate studies of relationship in multivariate time series.
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Figure 7: Top left. Fraction of incorrectly added edges in the estimated graph (number of uppe
triangular nonzeros in the estimated pattern that are incorrect, dividedebyutinber
of upper triangular zeros in the correct patteriipp right. Fraction of incorrectly re-
moved edges in the estimated graph (number of upper triangular zeros istithated
pattern that are incorrect, divided by the number of upper triangulazeros in the cor-
rect pattern). Bottom. The combined classification error computed as the sum of the
false positives and false negatives divided by the number of uppegtferentries in the
pattern.

5.1 Functional Magnetic Resonance Imaging (fMRI) Data

In this section we apply the topology selection method to a functional magneticanese imaging
(fMRI) time series. We use the StarPlus fMRI datd §dtitchell et al., 2004), which was analyzed

1. StarPlus data can be foundaatw.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
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Figure 8: Nonzero coefficientY);j| for regularized ML estimates with penalty, fora = 1,2, .

KL divergence | Errorin topology (%)
hy hy heo hy ho oo
n=20,p=2]024|022|021|11.8|119| 116
n=20,p=4|033|0.24|019|1.65|1.19| 0.51
n=30,p=2|040| 035/ 030 | 9.95| 883| 7.96
n=30,p=4|059| 0.46| 040 | 5.18| 3.97| 3.53

Dimensions

Table 1: Accuracy of topology selection methods with penlaftyor a = 1,2, 0. The table shows
the average KL divergence with respect to the true model and the aveeacentage error
in the estimated topology (defined as the sum of the false positives and églatves di-
vided by the number of upper triangular entries in the pattern), average®®0 instances.

using covariance selection in Scheinberg and Rish (2009). The datstsoof 80 time series (runs)
of brain image scans. In half of the 80 runs the input stimulus shown to thecsidpa picture; in
the other half it is a sentence. Each run contains 16 images, resulting in 6¢€stiust each input.
Mitchell et al. (2004) suggest a region of interest (ROI) of 1718 isx&o reduce the dimension
we took averages over groups of voxels in the ROI and considereddduced graphs with=7,
50, 100, and 190 nodes, respectively.

We fit two different AR models, one for each input. The AR model ordelscsed by the BIC
are shown in Table 2. As the problem sirg lpecomes larger, the BIC tends to pick a static model
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Input n=7|nN=50| n=100| n=190
Picture | p=1| p=1 p=0 p=0
Sentenceg p=1| p=1 p=0 p=0

Table 2: AR model orders for the fMRI data set.

Input Static models|y=0) | Time series modelsp(= 1)
¢1 | Tikhonov| LS | ¢; | Tikhonov LS
Picture | 991 4116 4203 | O 13467 13465
Sentence 922 4021 4131| O 13240 13238

Table 3: Relative BIC scores of six models fitted to two fMRI time series of size50. The
‘static’ models are Gaussian graphical models (i.e., AR models of qrde0), the time
series models are AR models of orgee= 1. The models are constrained ML estimates
with topologies estimated using three different methods: Regularized ML estinithte
hq-penalty, Tikhonov-regularized ML estimate, and the least-squares estiifta¢eBIC
scores are relative to the score of the best model (time series modelsutzrizgd ML
estimate withhy-penalty).

- & — | 1-static
—o—L1-ts

- 4 -Tikhonov-static
——Tikhonov-ts

- = - | S-static

- e —| 1-static
—e—L1-ts

- 4 -Tikhonov-static
—4—Tikhonov-ts

- = - S-static
—=—LS-ts

—=—LS-ts

50

Figure 9: Density of the graphical models of fMRI data for ‘picture’ stimufie$t) and for ‘sen-
tence’ stimulusright). The density is computed as the number of nonzero entries in the
estimated inverse spectrum divided gy

(p=0). Table 3 shows the BIC scores of different models for the experimigmsizen = 50.

The topologies selected by the BIC are the regularized ML estimatedwgienalty. Figure 9
shows the sparsity of the estimated graphs from the least-squares, Nkiegutarized ML, and
h.-regularized ML methods. The plots show that theregularization produces much sparser
graphs than the other two methods.

To get an idea of the accuracy of the estimated network structure, wetealithee result with
a simple classification experiment. For each input we keep one fMRI rurness problem and use
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model orderl Nn=7 | n=50| n=100 | n=190
p=0 0.21 | 0.16 0.11 0.06
p=1 0.20 0.16 0.16 0.11

Table 4: Classification error of fMRI data versus model size. The ésrtbre number of runs for
which the stimulus input is correctly identified divided by the total number of (40).

the 39 remaining runs to estimate a sparse AR model. The two models are thdp gseds the
inputs shown to the subject during the test run. The classification algorahmputes the likelihood

of each input, based on the two models, and selects the input with the highkisbtikie We repeat
this for each of the 40 choices of test run. Table 4 shows the classifieationversus the number
of nodes in the graph. We see that the classification is quite succesdfathieves an error in the
range 6—20%. The error tends to be smaller if we use less averagingr (iargVe also note that for
eachn, the AR model of ordep chosen in Table 2 also performs slightly better in the classification
experiment.

5.2 International Stock Market Data

We consider a multivariate time series of 17 stock market indices: the S&P s®0posite in-
dex (U.S.), Toronto stock exchange 300 index (Canada), the All axdit@mposite stock index
(Australia), the Nikkei 225 stock index (Japan), the Hang Seng stookpesite index (Hong
Kong), the FTSE 100 share index (United Kingdom), the Frankfurt DAXc8mposite index
(German), the CAC 40 stock composite index (France), MIBTEL indeXyjltéhe Zurich Swiss
Market composite index (Switzerland), the Amsterdam exchange indeké€Ngnds), the Austrian
traded index (Austria), IBEX 35 (Spain), BEL 20 (Belgium), the OMX Helki@5 index (Fin-
land), the Portugese stock index (Portugal), the Irish stock exchadge {freland). The data
were stock index closing prices recorded from June 3, 1997 to Jun¥9%9 and obtained from
www.globalfinancialdata.com . The data were converted to US dollars. Missing data due to
national holidays were replaced by the most recent values. For ea&etmar use as variable the
return between trading d&y— 1 andk, defined as

re = 100log T /T_1),

whererTy is the closing price on dalg. This results in 17-dimensional time series of length 540.
Similar time series for a smaller number of markets were analyzed in Bessleragd 2003) and
Abdelwahab et al. (2008).

We solve theh,-regularized ML problem with model orders ranging frgm= 0 to p = 3,
and for each value collect the topologies along the trade-off curve, tmiprevious examples.
The AIC; and BIC criteria were then used to select a model. Both criteria selected d ohodder
p=1 and the same sparsity pattern (corresponding to a yatu@34). Figure 10 (right) shows;j,
the maximum magnitude of the partial coherence of the model, and comparesat thitsholded
nonparametric estimate obtained with Welch’s method (Proakis, 2001) andiseained ML
model with topology obtained by thresholding the least-squares estimate. té&/habthe graph
topologies suggested by the nonparametric and least-squares estimateschrdenser than the
regularized ML estimate.
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Figure 10: The maximum magnitugsg of the partial coherence for three models of the stock ex-
change dataleft: Thresholded nonparametric sample estimate using Welch’s method.
Middle: Constrained ML estimate with topology determined from the LS solution.
Right: Constrained ML estimate with topology determined fromhheegularized ML
estimate.

Figure 11 shows the graphical model estimated byhtheegularized ML problem. The thick-
ness of the edges is proportionalg. We recognize many connections that can be explained from
geographic proximity or economic ties between the countries. For exampbkgev&trong connec-
tions between the U.S. and Canada, between Australia, Japan, and blogydoétween Hong Kong
and U.K., between the southern European countries, et cetera. Qtaerghaphical model seems
plausible, and the experiment suggests that the topology selection methate isfipctive.

6. First-order Optimization Algorithms

In the preceding sections we have considered four convex optimizatiatepns. The constrained
ML estimation problem (16) and its dual (17) have differentiable objectwveklinear equality and
matrix inequality constraints. The regularized ML problem (21) also incladesndifferentiable
term in the objective, and its dual (27) has a differentiable objective dmstraints that involve
nondifferentiable functions. These optimization problems can be solveddnoinpoint methods,
for example, the path-following methods developed for convex determinaxitnization problems
(Toh, 1999; Vandenberghe et al., 1998). In practice, howeverpithlelems are often too large
for interior-point methods because they involve matrix variab¥e®i1( Z) of high dimension. In
this section we therefore investigate less expensive first-order algorpptied to a reformulation
of the dual problems (17) and (27). The dual approach avoids aledificulties that arise in
first-order methods applied to the primal problems: the complicated constraiiis gonstrained
ML problem (16), the fact that its objective, which is also the first term indhjective of the
regularized ML problem (21), is not strictly convex, the nondifferentiabitifythe penalty term
in (21), and, most important, the fact the solutias low rank and therefore lies on the boundary
of the feasible set. (For the regularized ML problem (21), these diffisuttdeild be addressed as
in the covariance selection method of Banerjee et al. (2008), by apply@éstehv’'s fast gradient
method to an approximation of the primal problem with a smoothed objective dodeidounded
constraint set (Nesterov, 2005). In our limited experience, with a fireidcanservative choice of
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Pij
(0, 0.15)

[0.15, 0.25
[0.25,0.35
[0.35, 0.45
[0.45, 0.55
[0.55, 0.65
[0.65, 0.75

Figure 11: A graphical model of stock market data. The strength ofeszifums is represented by
the width of the blue links, which is proportional iy = sup, |R(w);;| if it is greater
than 015.

the smoothing and bounding parameters, this algorithm was slower than thygahliant projection
method described in this section, so we will not pursue it here.)
6.1 Reformulated Dual Problems

To reformulate the dual problems we eliminate the varidblén (17) and (27). LeV =C+
T(P(2)), respectivelyV =C+T(Z). The inequality

V—[W O]Z[Voo—W V0 .0
0 0 Vipo Vipip |
is equivalent to
Vip1p = 0, rangéVi.po) C rangeVip1:p), VOO_V]-_I:p./OV]T;py]_:le:p,O =W, (32
WhereVlT:pJ:p is the pseudo-inverse 8.y 1:p. If V = 0, then the matrixV with maximum deter-

minant that satisfies (32) is equal\l@)—Vlfpaovﬂpvl:pvl;p’o, the Schur complemerf Vi.p 1.5 in V.
This observation allows us to eliminafé from (17) and (27). Problem (17) can be written as an
unconstrained problem

maximize —@C+T(P(2))), (33)

2695



SONGSIRI AND VANDENBERGHE

and problem (27) as a problem with simple constraints
maximize —@(C+T(2))
. p .,
subjectto 5 ([(ZJil+[(Zosl) <y, 1#] (34)
diag(zZx) =0, k=0,...,p.

Hereg: S"P*D s R is defined as
(p(V) = — |Og det(Voo—V]—_Izp7OV1T:p’1:pV1;p7o> —n,

with domaindom@= {V € S|PV | Voo — Vi oV,
can be expressed as

o val;p,o > 0}. This function is convex, since it

W 0
< —
o o)z
and convexity of this expression follows from results in convex analgigd and Vandenberghe,

2004, 83.2.5). Itis also a smooth function on the interior of its domain and itbayreat a positive
definiteV can be expressed as

@V) =inf {—Iog detW

(35)

D(p(V)_—V_l—i—[o 9 }

0 Vli:pl,l:p

This can be seen, for example, from the identity\tlet det\/l;m;pdet(voo—VlT:pﬁovl‘:&lzpvl;p’o),
which gives@(V) = —logdetV + logdetVi.,1.p — N, and the fact that the gradient of log dets
X1

If V=C+T(P(Z)) > 0 at the optimum of (33) then the primal optimal solution can be computed
from Z via the expressions

A Y ) R R A L Ve A
0 VlTp},l:p VlT&l:pV11P70 VlT[},l:pvlipao

whereV = C+T(P(Z)) andW = Vyo —V1T:p,oV1_;pl,1:pV1:p70- The expression foX follows from the
optimality condition (18) and the identities

_yT y-1 _ T -1 T -1 T
V= [ Voo V1;p,o?)/1;p,1;pV1.p-,0 8 } T [ Vl:p,O\Ill:pJ:p :|V1:p71:p [ Vl:p70\|/1:p,1:p } ,

—I
-1
Vl:p,l:pvlillo

T

- 0 0 — B )

Vs { 0 Vip, } * { ] (VOO_VlTipDVl:pl,l:le:p,O) 1[ } . (37)
p.Lp

Vli:[];,l:pvlip-,o
The formula fov —* also provides an alternative form of the gradient (35).
Similarly, if C+T(Z) > 0 at the optimum of (34) then the primal optim¥lcan be computed
from (36) withV =C+T(Z).
The reformulated dual problems are interesting because they can ofsaivied by gradient
algorithms for unconstrained optimization or gradient projection algorithmgrtdslems with sim-
ple constraints. To explain this, we again distinguish between Toeplitz andoeplitzC. If Cis
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block-Toeplitz, then it can be shown that the functig€ + T(P(Z))) andg(C + T(Z)) areclosed
convex functions (i.e., with closed sublevel sets) and that their domaingpare Consider the
function @ restricted to the set of block-Toeplitz matrices, thatgsl(R)), whereR € M™P. By
definition,Ris in the domain ofp(T(R)) if T (R) = 0 and there exists a positive definitéwith

W 0 }

T(R)t[ 0 0

From the property of block-Toeplitz matrices mentioned in Section 2.3, this imp(ies:F 0. In
other words, the domain af(T(R)) is the open sefR | T(R) - 0}. By a similar argument, if a
sequence of matriceR in the domain ofgp(T(R)) converges to a poirk in the boundary of the
domain, then the Schur complement ¢RJ1. 1 in T(R) must be singular, and hengeT (R)) —
o. For a continuous function with an open domain this is equivalent to clossedB®yd and
Vandenberghe, 2004, p.639).

If Cis not block-Toeplitz, then the functioggC+T(P(Z))) and@(C+T(Z)) are not necessarily
closed, and their domains not necessarily open. One implication is that isibgohat the optimal
solution of (33) or (34) is at a point in the boundary of the domain of thé ftoetion, that is, a
point whereC+ T(P(Z)) or C+ T(Z) are singular. However in practicg,is usually approximately
block-Toeplitz and one can expect that the functions are often closededver, in order to apply
unconstrained minimization algorithms it is sufficient that the algorithm is startadpatntZ©)
for which the sublevel sefZ | @C+ T(P(Z))) < @(C+ T(P(Z(?)))} is closed. This condition is
considerably weaker than the requirement that all sublevel sets aeglclos

6.2 Gradient Projection Algorithms

We now present some details on first-order algorithms for the reformulatdgrbblems. We focus

on the constrained problem (34) since the unconstrained problemdB3)echandled as a special
case. We first describe a version of the classical gradient projectibrawacktracking line search
(Polyak, 1987; Bertsekas, 1999). To simplify the notation we will use ageproblem format

minimize f(X)
subjectto xe C

wheref : R" — R is convex and continuously differentiable with an open domain,@isda closed
convex set. We assume that a feasible pefifitis known and that the sublevel set

S={xedomfnc|f(x) < fx))

is closed and bounded. The closedness assumption is satisfied & closed function. (See the
previous paragraph on the validity of this assumption for problems (33§3#)d We assume that
projections orC are inexpensive and we denote the projection operatet:by

P(y) = argmin|[x—y|2.
xeC
Thegradient mapassociated witif and(C is defined as
1
Gi(x) = n (x—P(x—tOf(x)))

fort > 0. For an unconstrained problem, the gradient mag (%) = O (x), independent of.
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6.2.1 Basic GRADIENT PROJECTION

The basic gradient projection method starts8tand continues the iteration

x® — p (X<k71> _tkgf(xw—n))
= XD 4G, (x*)y (38)

until a stopping criterion is satisfied. A classical convergence resulsdtaae<) converges to an
optimal solution ift is fixed and equal to/L, whereL is a constant that satisfies

IOf(u)—Of(v)|l2<L|ju=v|]2 Yuves, (39)

(Polyak, 1987, §7.2.1). Although our assumptiofisg closed and bounded, addm f is open)
imply that the Lipschitz condition (39) holds for some constant 0, its value is not known in
practice, so the fixed step size raje= 1/L cannot be used. We therefore determipesing a
backtracking search (Beck and Teboulle, 2009). The step sizensglgarithm in iteratiork starts
at a valudy := t, where

_ _(s's
k= mm{STy,tmax} ) (40)
where
s= xk-1) _x(k-2), y=0f (x*V) —0f (xk2)),

andtnax is a positive constant. (In the first iteration we initialize the step sizg astmax) The
search then repeats the updte= Btx (wherep € (0,1) is an algorithm parameter) unsif<-1 —
tGy, (x*~Y) € dom f and

XD 4Gy (X)) < F () O F (D) TGy (X Y) + t§k||Gtk<X(k71))”§‘ (41)
The resulting step sizg is used in the update %% in (38). Note that the trial points
XD G, (xXK V) = (x(k‘l) —tOf (x““”))

generated during the step size search are not necessarily on a dingigfihe trajectory is some-
times referred to as tharojection arc(Bertsekas, 1999, §2.3).

The step lengths||3/s"y is known as theBarzilai-Borweinstep size and forms the basis of
spectral gradientmethods (Barzilai and Borwein, 1988; Birgin et al., 2003; Figueiredd. 2@07;
Wright et al., 2009). It can be motivated by the easily established fact|#iats'y > 1/L if f
satisfies (39), so it is a readily computed upper bound far 1

6.2.2 ARIATIONS

The basic gradient projection method can be varied in several ways asavhech will be compared
in the numerical experiments below. To avoid computing a projection for egttstiep sizdy in
the step size search, we can replace the gradient update with

XK = x*=D G (xk1)y (42)
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wherety is held fixed at the value (40) amgis determined by a backtracking search: we take: ty
and then backtracky(:= Btc) until x*-9 —,Gg (x*~Y) € dom f and

FOY — G () < F(x) 4O () e (xKY) + tEklth‘k(X(k‘l)) 15 (43)

In this method the trial points during the step size selection follow a straight lgeeach step only
requires a function evaluation.

Many alternatives to the step size rules (38) and (42) are available in tradditerfor example,
the Armijo rule (Bertsekas, 1999, §2.3), and conditions that allow non-toaeaonvergence (Bir-
gin et al., 2000; Lu and Zhang, 2009). In our experiments these vaisagiave similar results as
the step size rules outlined above.

Another attractive class of gradient projection algorithms are the optimabfider methods
originated by Nesterov (Nesterov, 2004; Tseng, 2008; Beck andulleb 2009). For functions
whose gradient is Lipschitz continuous g these algorithms have a better complexity than the
classical gradient projection method (at mOst/1/) iterations are needed to reach an accuracy
€, as opposed t®(1/¢) for the gradient projection method). These theoretical complexity results
are valid if a constant step siie= 1/L is used wher¢ is the Lipschitz constant for the gradient, or
if the step sizes form an nonincreasing sequetice € tx) determined by a backtracking line search
(Beck and Teboulle, 2009; Tseng, 2008). The assumption that thieegtaslLipschitz continuous
on C does not hold for the problem considered here, and it is not clear ifaineeegence analysis
can be extended to the case when the gradient is Lipschitz continuousdhly initial sublevel set.
Nevertheless, an implementation with a backtracking line search worked waalliexperiments
(see next section).

6.2.3 IMPLEMENTATION DETAILS

The most important steps in the gradient projection algorithms applied to @®)eevaluations of
the gradient of the objective function and the projections on the set ddfindee constraints. We
now explain these two steps and the stopping criterion in more detail.

The gradient (35) ofp at a pointV can be evaluated from a Cholesky factorizatios= LTL
with L lower triangular. If we partitior. as

SN

I—1:p,0 I-l:p,l:p

then

T
1:p,1:p|-11I0,0 ]

The projection?(U) of a matrixU € MP" on the set defined by the constraints in (34) can be
efficiently computed as follows. Clearly, the diagonal entrie® @ ) are zero fok=0,...,p. To
find the off-diagonal entries we can solve an independent problem

To) = | 1.

I
L‘lL‘T[ .
1:p,1:pL11P~,0] 00700 | —L

minimize  2(Zo);j — (UO)ij)2+k§1(((Zk)ij — (Uij)? + ((Z)ji — (U)i1)?)

_ p
subject to kzo(\(Zk)ij | +1(Za)jil) <y
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Figure 12: Convergence of gradient projection algorithbedt: Relative error(f (Z) — £*) /| f*|
versus the number of iteratiorRight: Duality gap versus the number of iterations.

for eachi, j with j > i. This is the problem of projecting a vector on thenorm ball. The solution
is easily derived from duality and can be calculated by applying to the efitfigs the shrinkage
operation familiar in sparse optimization (see, for example, Tibshirani, 1996)

The following stopping criterion will be used in the experiments. At each itarati®@ compute
X in (36) from the current iteratg. This matrixX is primal feasible, as can be seen from the
identity (37) and the fact th& + T(Z) > 0. By taking the Schur complement @ + T(Z))1:p.1:p
we also find a dual feasibW& in (27). The duality gap between this primal feasiKland the dual
feasiblez, W is

n = —logdetXgpo+tr(CX)+yh(D(X))—logdeW —n
tr (CX) —n+yh(D(X))

tr((C+T(Z2))X) —n—tr(XT(Z)) +yh(D(X))
= —tr(XT(2))+yh(D(X)).

We terminate when the duality gap is below a given tolerance.

6.3 Numerical Example

We generate AR models as in the experiment described in Section 4.2. Irsttexfieriment, the
model dimensions ane= 300,p =2, N = 2n(p+1). The true inverse spectrum has 10428 non-
zero entries in the upper triangular part (a density of about 12%). &halty parametey is set at
y=0.1. The variablé& in the reformulated dual problem (34) is a matrix\it°%?, so the problem
hasn(n+1)/2+ pr? = 225150 optimization variables. We start the gradient projection algorithm
at a strictly feasibl@© = 0, and terminate when the duality gap is below ¢the optimal value
is on the order of hundreds).

Figure 12 shows the relative err¢f (Z) — £*)/|f*| where f(Z) = ¢(C+ T(P(Z))) and f*
is the optimal value. It also shows the duality ggiy versus the iteration number for a typical
instance. ‘GP with arc search’ refers to the gradient projection mett&)dvigh step size rule (41).
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Figure 13: Average CPU times (averaged over 10 runs) of the grauliejection algorithm versus
the problem size. The algorithm stops when the duality gap is less thdn The red
squares correspond to ‘GP with line search’ and the blue squarespond to ‘GP with
arc search’.

‘GP with line search’ refers to the gradient projection method (42) with steprsle (43). The
step size searches required at most 15 backtracking steps to findegotiedde step size. As can be
seen, a solution with a moderate accuracy (relative error in the rande @ 2) is obtained after a
number of iterations that is only a fraction of the problem size. The coaneryof the ‘arc search’
method is slightly faster, but it should be kept in mind that this method is more sixpahan the
‘line search’.

The ‘Exact FISTA method is the gradient projection algorithm with backirag line search
from Beck and Teboulle (2009) using monotonically decreasing step @iz€sx_1, as required
by the theory in Beck and Teboulle 2009). As can be seen the coneergexs not faster than the
classical gradient projection method. A heuristic modification in which the &ep are not forced
to be nonincreasing, but at each iteration the line searche is initialized atthgaBand Borwein
steplength (40), was often about five times faster. This algorithm is eef¢oras ‘Modified FISTA
in the figure.

Figure 13 shows the CPU time versus problem size on a 3GHz Intel PentiyirgR)cessor
with 2.94 GB of RAM, for the ‘GP with arc search’ and ‘GP with line seardgcgithms. The test
problems are generated as in the previous experiment, witt2 and varyingn. The algorithms
stop when it achieves a duality gap less than0.1. This yields a solution with a moderate accuracy
(relative gap in the range 16-103). The plot shows that the times needed to solving the regu-
larized ML estimation using both algorithms are fairly comparable with a slightradge for ‘GP
with arc search’ when s large. Although the backtracking steps in the arc search method are more
expensive, the gradient projection method with this step size selectioneddeiwer iterations in
most cases.
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7. Conclusion

We have presented a convex optimization method for topology selection ihigaijnodels of
autoregressive Gaussian processes. The method is based on augrtientiraximum likelihood
estimation problem with afy-type penalty function, chosen to promote sparsity in the inverse spec-
trum. By tracing the trade-off curve between the log-likelihood and thelpgefuaction, we obtain

a small set of sparse graph topologies, that can then be ranked iagctranformation-theoretic
criteria such as the AIC or BIC. This procedure avoids the combinatanmaptexity of enumerating
all possible topologies, and produces accurate results for smaller sangselsan methods based
on empirical or least-squares estimates. To solve the large, nonsmoo#xaptimization prob-
lems that result from this formulation, we have investigated a gradient pimjenethod applied to
a reformulated dual problem. Experiments with randomly generated exaraptesn analysis of
an fMRI time series and a time series of international stock market indicesnmoduded to confirm
the effectiveness of this approach.
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