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Abstract

In this paper, we introduce a new family of probability deiesi called_p-nested symmetric distri-
butions. The common property, shared by all members of thvctass, is the same functional form
p(x) = p(f(x)), wheref is a nested cascadelof-norms||x||p = (¥ [%i|P)¥/P. L,-nested symmetric
distributions thereby are a special case-pherical distributions for whiclf is only required to
be positively homogeneous of degree one. While botbpherical and.,-nested symmetric dis-
tributions, contain many widely used families of probailnodels such as the Gaussian, spher-
ically and elliptically symmetric distributions,p-spherically symmetric distributions, and certain
types of independent component analysis (ICA) and indep@rslibspace analysis (ISA) models,
v-spherical distributions are usually computationallyractable. Here we demonstrate that
nested symmetric distributions are still computationélysible by deriving an analytic expression
for its normalization constant, gradients for maximum lilkeod estimation, analytic expressions
for certain types of marginals, as well as an exact and efidampling algorithm. We discuss
the tight links ofLp-nested symmetric distributions to well known machinen&sy methods such
as ICA, ISA and mixed norm regularizers, and introduce thstetkeradial factorization algorithm
(NRF), which is a form of non-linear ICA that transforms aityelarly mixed, non-factorial p-
nested symmetric source into statistically independegitads. As a corollary, we also introduce
the uniform distribution on the,-nested unit sphere.

Keywords: parametric density model, symmetric distributiorgpherical distributions, non-linear
independent component analysis, independent subspdgsianabust Bayesian inference, mixed
norm density model, uniform distributions on mixed normey@s, nested radial factorization

1. Introduction

High-dimensional data analysis virtually always starts with the measuremdéinstadind second-
order moments that are sufficient to fit a multivariate Gaussian distribution, tkienuna entropy
distribution under these constraints. Natural data, however, ofteniesigibificant deviations from
a Gaussian distribution. In order to model these higher-order corredaiitois necessary to have
more flexible distributions available. Therefore, it is an important challendgadogeneraliza-
tions of the Gaussian distribution which are more flexible but still computationatlyaaalytically
tractable. In particular, density models with an explicit normalization constentiesirable be-
cause they make direct model comparison possible by comparing the likeldiduld out test
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SINZ AND BETHGE

samples for different models. Additionally, such models often allow for a&tioptimization of the
likelihood.

One way of imposing structure on probability distributions is to fix the generah fof the
iso-density contour lines. This approach was taken by Fernandez(298k). They modeled the
contour lines by the level sets of a positively homogeneous function oédeme, that is functions
v that fulfill v(a-x) = a-v(x) for x € R" anda € Rj . The resulting class of-spherical distributions
have the general formp(x) = p(v(x)) for an appropriatg which cause®(x) to integrate to one.
Since the only access pfto X is viav one can show that, for a fixad those distributions are gen-
erated by a univariate radial distribution. In other wordspherically distributed random variables
can be represented as a product of two independent random variahke positive radial variable
and another variable which is uniform on the 1-level sev.ofThis property makes this class of
distributions easy to fit to data since the maximum likelihood procedure canrthedcaut on the
univariate radial distribution instead of the joint density. Unfortunatelgivolgy the normalization
constant for the joint distribution in the general case is intractable bedaleygends on the surface
area of those level sets which can usually not be computed analytically.

Known tractable subclasseswtpherical distributions are the Gaussian, elliptically contoured,
andLp-spherical distributions. The Gaussian is a special case of elliptically wattalistributions.
After centering and whitening:= C~/?(s— E|[g]) a Gaussian distribution is spherically symmetric
and the squaretl,-norm||x||3 = x2 + - -- 4+ x2 of the samples follow ?-distribution (that is, the
radial distribution is g-distribution). Elliptically contoured distributions other than the Gaussian
are obtained by using a radial distribution different from jadistribution (Kelker, 1970; Fang
et al., 1990).

The extension fronh,- to Lp-spherically symmetric distributions is based on replacing the
norm by thel ,-norm

P

V(%) = o= (imﬂ p>0

in the density definition. That is, the densitylgf-spherically symmetric distributions can always
be written in the formp(x) = p(||X||p). Those distributions have been studied by Osiewalski and
Steel (1993) and Gupta and Song (1997). We will adopt the naming etomeof Gupta and
Song (1997) and cal|x||p an Lp-norm even though the triangle inequality only holds foz> 1.
Lp-spherically symmetric distributions with# 2 are no longer invariant with respect to rotations
(transformations fron®Q(n)). Instead, they are only invariant under permutations of the coordinate
axes. In some cases, it may not be too restrictive to assume permutati@mootational symmetry

for the data. In other cases, such symmetry assumptions might not be juestifiezhuse the model

to miss important regularities.

Here, we present a generalization of the classg$pherically symmetric distributions within
the class ofv-spherical distributions that makes weaker assumptions about the symnretties
data but still is analytically tractable. Instead of using a sihgl@orm to define the contour of the
density, we use a nested cascadé ghorms where ah p-norm is computed over groups bp-
norms over groups dfp-norms ..., each of which having a possibly differgntDue to this nested
structure we call this new class of distributidnsnested symmetric distributionghe nested com-
bination ofLy-norms preserves positive homogeneity but does not require permutatarance
anymore. Whild.,-nested symmetric distributions are still invariant under reflections of thelcoo
nate axes, permutation symmetry only holds within the subspaces bfherms at the bottom of
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Lp-NESTEDSYMMETRIC DISTRIBUTIONS

the cascade. As demonstrated in Sinz et al. (2009b), one possible @ippla@main ofL,-nested
symmetric distributions is natural image patches. In the current paper, wie Vike to present a
formal treatment of this class of distributions. Readers interested in the aipliof these distri-
butions to natural images should refer to Sinz et al. (2009b).

We demonstrate below that the construction of the nelsgedorm cascade still bears enough
structure to compute the Jacobian of polar-like coordinates similar to thosengf &d Gupta
(1997), and Gupta and Song (1997). With this Jacobian at hand it iff@&s compute the uni-
variate radial distribution for an arbitratty,-nested symmetric density and to define the uniform
distribution on thelp-nested unit spheri, = {x € R"|v(x) = 1}. Furthermore, we compute the
surface area of thép-nested unit sphere and, therefore, the general normalization cbifistan
Lp-nested symmetric distributions. By deriving these general relations farldéiss oflLy-nested
symmetric distributions we have determined a new class of tractadpderical distributions which
is so far the only one containing the Gaussian, elliptically contoured. gispherical distributions
as special cases.

Lp-spherically symmetric distributions have been used in various contexts iristadisd ma-
chine learning. Many results carry overltg-nested symmetric distributions which allow a wider
application range. Osiewalski and Steel (1993) showed that the postartbe location of d p-
spherically symmetric distributions together with an improper Jeffrey’s prnidihe scale does not
depend on the particular type bf-spherically symmetric distribution used. Below, we show that
this results carries over tbp-nested symmetric distributions. This means that we can robustly
determine the location parameter by Bayesian inference for a very laggedfldistributions.

A large class of machine learning algorithms can be written as an optimizatiolepraim the
sum of aregularizer and a loss function. For certain regularizers aafloctions, like the sparte
regularizer and the mean squared loss, the optimization problem can kesgbermaximum a pos-
teriori (MAP) estimate of a stochastic model in which the prior and the likelihoedre negative
exponentiated regularizer and loss terms. Smoe 0 exp(—||x||p) is anL,-spherically symmet-
ric model, regularizers which can be written in terms of a norm have a tight lihl-gpherically
symmetric distributions. In an analogous way;nested symmetric distributions exhibit a tight link
to mixed-norm regularizers which have recently gained increasing inhteréise machine learn-
ing community (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; Kowals#i,e2008).L ,-nested
symmetric distributions can be used for a Bayesian treatment of mixed-ngutarized algorithms.
Furthermore, they can be used to understand the prior assumptions msulhbregularizers. Be-
low we discuss an implicit dependence assumption between the regularizuesthat follows
from the theory oL ,-nested symmetric distributions.

Finally, the only factorialL,-spherically symmetric distribution (Sinz et al., 2009a), the
generalized Normal distribution, has been used as an ICA model in whicimanginals follow
an exponential power distribution. This class of ICA is particularly suitech&dural signals like
images and sounds (Lee and Lewicki, 2000; Zhang et al., 2004; Le\#i@R). Interestinglyi_p-
spherically symmetric distributions other than thgeneralized Normal give rise to a non-linear
ICA algorithm called radial Gaussianization fpe= 2 (Lyu and Simoncelli, 2009) or radial factor-
ization for arbitraryp (Sinz and Bethge, 2009). As discussed beloynested symmetric distribu-
tions are a natural extension of the lineéarspherically symmetric ICA algorithm to ISA, and give
rise to a more general non-linear ICA algorithm in the spirit of radial fazadion.

The remaining part of the paper is structured as follows: in Section 2 weedadiar-like coordi-
nates fol,-nested symmetrically distributed random variables and present an arlaypcassion
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for the determinant of the Jacobian for this coordinate transformation.glisis expression, we
define the uniform distribution on the,-nested unit sphere and the clasd gfnested symmetric
distributions for an arbitrary.,-nested function in Section 3. In Section 4 we derive an analytical
form of Ly-nested symmetric distributions when marginalizing out lower levels ot fherested
cascade and demonstrate that marginalsghested symmetric distributions are not necessarily
Lp-nested symmetric. Additionally, we demonstrate that the only factbgalested symmetric
distribution is necessarilip-spherically symmetric and discuss the implications of this result for
mixed norm regularizers. In Section 5 we propose an algorithm for fittibigrary L ,-nested sym-
metric models. We derive a sampling scheme for arbittgyynested symmetric distributions in
Section 6. In Section 7 we generalize a result by Osiewalski and Ste33) 8 robust Bayesian
inference on the location parameteritg-nested symmetric distributions. In Section 8 we discuss
the relationship ot p-nested symmetric distributions to ICA and ISA, and their possible role as
priors on hidden variables in over-complete linear models. Finally, wealarivon-linear ICA al-
gorithm for linearly mixed non-factoridlp-nested symmetric sources in Section 9 which we call
nested radial factorization (NRF).

2. Lp-nested Functions, Coordinate Transformation and Jacobia

Consider the function

1

() = (Pxal™ + (gl + ) ) ™ @

with pg, p1 € R*. This function is obviously a cascade of tw@-norms and is thus positively
homogeneous of degree one. Figure 1(a) shows this function visualizadree. Naturally, any
tree like the ones in Figure 1 corresponds to a function of the kind of Equét)oin general, the
leaves of the tree correspond to theoefficients of the vectax € IR" and each inner node computes
the L,-norm of its children using its specifie. We call the class of functions which is generated
in this way L p-nestedand the corresponding distributions, which are symmetric or invariant with
respect to it p-nested symmetric distributions

Lp-nested functions are much more flexible in creating different shapegadfdets than single
Lp-norms. Those level sets become the iso-density contours in the fanifymésted symmetric
distributions. Figure 2 shows a variety of contours generated by the sinmplestivial L ,-nested
function shown in Equation (1). The shapes show the unit spheredl fopssible combinations
of pe, p1 € {0.5,1,2,10}. On the diagonalpy andp; are equal and therefore constitlitg-norms.
The corresponding distributions are members oflthspherically symmetric class.

To make general statements about genegatested functions, we introduce a notation that is
suitable for the tree structure bf-nested functions. As we will heavily use that notation in the
remainder of the paper, we would like to emphasize the importance of the fojquaragraphs.
We will illustrate the notation with an example below. Additionally, Figure 1 and Taldan be
used for reference.

We use multi-indices to denote the different nodes of the tree corresgptalenL p-nested
function f. The functionf = fp itself computes the valugy at the root node (see Figure 1).
Those values are denoted by variablesThe functions corresponding to its children are denoted
by f1,..., T, thatis, f(-) = fo(-) = ||(f1(), ..., T, (-)) || p- We always use the letter™indexed by
the node’s multi-index to denote the total number of direct children of thag.ndte functions of
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(a) Equation (1) as tree. (b) Equation (1) as tree in multi-index notation.

Figure 1: Equation (1) visualized as a tree with two different naming cdioren Figure (a) shows
the tree where the nodes are labeled with the coefficientsscoR". Figure (b) shows
the same tree in multi-index notation where the multi-index of a node describeatthe p
from the root node to that node in the tree. The leaxe®, ; andv, still correspond to
X1, X2 andxs, respectively, but have been renamed to the multi-index notation used in this

article.

f(-)=fo(-) Lp-nested function

| =i1,...,im Multi-index denoting a node in the tree: The single indices describe
the path from the root node to the respective nde

X All entries inx that correspond to the leaves in the subtree under
the nodd

Xp All entries inx that are not leaves in the subtree under
the nodd

fi(-) Lp-nested function corresponding to the subtree under the Inode

Vo Function value at the root node

v Function value at an arbitrary node with multi-index

2 The number of direct children of a notle

n The number of leaves in the subtree under the node

Vi1 Vector with the function values at the direct children of a nbde

Table 1: Summary of the notation used fgrnested functions in this article.

the children of the' child of the root node are denoted Iy, .., fi , and so on. In this manner,
an index is added for denoting the children of a particular node in the tict@arh multi-index
denotes the path to the respective node in the tree. For the sake of comfzdicin, we use upper
case letters to denote a single multi-indexiy, ..., i,. The range of the single indices and the length
of the multi-index should be clear from the context. A concatendtjkrof a multi-index! with

a single indexk corresponds to addinigto the index tuple, that id, k =i1,...,im,k. We use the
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Figure 2: Variety of contours created by thg-nested function of Equation (1) for all combinations
of pp, p1 € {0.5,1,2,10}.

convention that,® = |. Those coefficients of the vect&that correspond to leaves of the subtree
under a node with the inddxare denoted by,. The complement of those coefficients, that is, the
ones that are not in the subtree under the riode denoted bx;. The number of leaves in a
subtree under a nodés denoted byy,. If | denotes a leaf them = 1.

TheLp-nested function associated with the subtree under a hisdgenoted by

fi (%) = 1(fia(Xia),- fra(Xie) g
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Just like for the root node, we use the variagléo denote the function valug = f,(x;) of a subtree
I. A vector with the function values of the childrenlois denoted with bold fonw, 1., where the
colon indicates that we mean the vector of the function values dof tbleildren of nodd :

fi(x) = [[(fia(x.a),- fro (X)) llp

= H(V|71,...,V|,g|)THpI = thliﬁ le'

Note that we can assign an arbitrgryo leaf nodes sinces for single variables always cancel.
For that reason we can choose an arbitgafgr convenience and fix its value fo= 1. Figure 1(b)
shows the multi-index notation for our example of Equation (1).

To illustrate the notation: Let =i4,...,ig be the multi-index of a node in the treé;,...,iq
describes the path to that node, that is, the respective node i¥ ttieild of theill ; child of
theill , child of the ... of thei{" child of the root node. Assume that the leaves in the subtree
below the nodd cover the vector entries, ...,Xi0. Thenx; = (Xz,...,X10), Xp = (X1,X11,X12, --),
andn, = 9. Assume that nodk has/, = 2 children. Those would be denoted byl andl,?2.

The function realized by nodewould be denoted by, and only acts orx;. The value of the
function would bef|(x;) = v and the vector containing the values of the childrer wfould be
Vizo=Ma1,Vi2) " = (fia(X1), fia(xi2)".

We now introduce a coordinate representation specially tailordd,oested symmetrically
distributed variables: One of the most important consequences of thevpdsitinogeneity off
is that it can be used to “normalize” vectors and, by that property, ceegtdar like coordinate
representation of a vector Such polar-like coordinates generalize the coordinate representation
for Lp-norms by Gupta and Song (1997).

Definition 1 (Polar-like Coordinates) We define the following polar-like coordinates for a vector
x € R™
——fori=1,...n—1

X

Ui f
f(x).

Xi
(

The inverse coordinate transformation is given by

xi=rufori=1,..n-1
Xn:rAnUn

Xn|

wherel, = sgnx, and 4, = fl(x).

Note thatu, is not part of the coordinate representation since normalization wittix}. de-
creases the degrees of freedarby one, that isy, can always be computed from all othgrby
solving f(u) = f (x/f(x)) = 1 for u,. We use the ternu, only for notational simplicity. With a
slight abuse of notation, we will useto denote the normalized vector f (X) or only its firstn — 1
components. The exact meaning should always be clear from the context.

The definition of the coordinates is exactly the same as the one by Gupta agd®7)
with the only difference that thip-norm is replaced by ahp-nested function. Just as in the case
of Lp-spherical coordinates, it will turn out that the determinant of the Janaifithe coordinate
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transformation does not depend on the valué&pfind can be computed analytically. The deter-
minant is essential for deriving the uniform distribution on the uninested spheré¢, that is,

the 1-level set off. Apart from that, it can be used to compute the radial distribution for angive
Lp-nested symmetric distribution. We start by stating the general form of thentasnt in terms

of the partial derivativeSﬂ—E, ux andr. Afterwards we demonstrate that those partial derivatives have
a special form and that most of them cancel in Laplace’s expansior afetterminant.

Lemma 2 (Determinant of the Jacobian) Let r and w be defined as in Definition 1. The general
form of the determinant of the Jacobign= (3—2) of the inverse coordinate transformation for
ij

yi=randy =uj_jfori=2,....n,is given by

|detg| =r"1 —n_l%-u +u (2)
k; ou ")
Proof The proof can be found in the Appendix A. |

The problematic parts in Equation (2) are the tegﬁi\swhich obviously involve extensive usage
of the chain rule. Fortunately, most of them cancel when inserting thekibt Equation (2),
leaving a comparably simple formula. The remaining part of this section is det@@mputing
those terms and demonstrating how they vanish in the formula for the deterniedote we state
the general case we would like to demonstrate the basic mechanism throughle example.
We urge the reader to follow this example as it illustrates all important ideag #imuaoordinate
transformation and its Jacobian.

Example 1 Consider an lg-nested function very similar to our introductory example of Equation

(1):

1

N .
P00 = ((balP+ el ™)t + gl ™) ™

Settinguw= % and solving for g yields

1
W =1 vo= (1= (™ + P R) ™ ®

We would like to emphasize again, thatisiactually not part of the coordinate representation and
only used for notational simplicity. By constructios,isialways positive. This is no restriction since
Lemma 2 shows that the determinant of the Jacobian does not depeétsds@gn. However, when
computing the volume and the surface area of thanksted unit sphere, it will become important
since it introduces a factor & to account for the fact thatau(or u, in general) can in principle
also attain negative values.

Now, consider

1-pp

Po
Ga(y) = Ga(t)* P = (1 ([P ™) ) ™
Po—P1
Fa(ug) = fa(u)P P = (JuafP + gl ™)
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where the subindices af di, g, G and F have to be read as multi-indices. The functipoamputes
the value of the node | from all other leaves that are not part of the seilineler | by fixing the
value of the root node to one.

Gz(u;) and R (uy) are terms that arise from applying the chain rule when computing the partial
derlvatlvesg“i. Taking those partial derivatives can be thought of as peeling off laydayer
of Equation(3) via the chain rule. By doing so, we “move” on a path betwegrand . Each
application of the chain rule corresponds to one step up or down in theRiest, we move upwards
in the tree, starting from 41 This produces the G-terms. In this example, there is only one step
upwards, but in general, there can be several, depending on the dépthin the tree. Each step
up will produce one G-term. At some point, we will move downwards in ¢eettr reach |1 This
will produce the F-terms. While there are as many G-terms as upward,dtegre is one term less
when moving downwards. Therefore, in this example, there is one te(m)Gvhich originates
from using the chain rule upwards in the tree and one tegfufj from using it downwards. The
indices correspond to the multi-indices of the respective nodes.

Computing the derivative yields

6u3 _
- RV E A p1—1
FY Ga(Us)Fr(ug) A ug|

By inserting the results in Equation (2) we obtain

1
ﬁ’]’ Z Ga(us)Fr(ug)|ug|P +us
Po
= Go(Up) (Fl(ul) > Ju P+ 1= Fu(un)Fo(un) ™ (Jua | + !UZ’pl)m)
K=1

2 2
= Gz(Uﬁ) (Fl(ul) Z ‘uk|pl—|-1—F1(U1) Z ‘uk|pl>
k=1 k=1
::Gzﬂﬁ)

The example suggests that the terms from using the chain rule downwards tiee¢hcancel
while the terms from using the chain rule upwards remain. The following gitipo states that
this is true in general.

Proposition 3 (Determinant of the Jacobian) Let £ be the set of multi-indices of the path from
the leaf y to the root node (excluding the root node) and let the term@(@lz) recursively be
defined as 7

Py =PI
P

(-1
Gio (U7) =0 (u)?0 P = <9|(Ur)'°' - Zl fi i ()P
J:

where each of the functionsg g computes the value of tH® child of a node | as a function of its
neighbors(l, 1), ..., (1,4, — 1) and its parent | while fixing the value of the root node to one. This
is equivalent to computing the value of the node | from all coefficigntisat are not leaves in the
subtree under |. Then, the determinant of the Jacobian forandsted function is given by

ety =r""* [ Gu(up)-
LeL
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Proof The proof can be found in the Appendix A. |

Let us illustrate the determinant with two examples:

Example 2 Consider a normal p-norm

which is obviously also ang-nested function. Resolving the equation for the last coordinate of

1
the normalized vectou yields g (us) = up = (1— st ui|P) ?. Thus, the term uy) is given by
1—

1—
(1— 35 ulP) " which yields a determinant ¢flety| = r"~1 (1— 3" u|P) » . This is exactly
the one derived by Gupta and Song (1997).

Example 3 Consider the introductory example

1
L
700 = (bl + (el + xalP) 7 ) ™.

Normalizing and resolving for the last coordinate yields

Py 1
= (1 ™) — )

and the terms @u;) and G2(u5>) of the determinantdet?| = r?G(u5)G2 2(u5>) are given by

P1—-Pp
Ga(uz) = (1—[ug|P) P,
1p

p;
G272(u2/.\2) = ((17 ‘ul‘po)Fé o |u2|p1> [ ‘

Note the difference to Example 1 whegawas at depth one in the tree whilg is at depth two in
the current case. For that reason, the determinant of the Jacobiaxamiple 1 involved only one
G-term while it has two G-terms here.

3. Lp-Nested Symmetric and_p-Nested Uniform Distribution

In this section, we define thg,-nested symmetric and thg-nested uniform distribution and derive
their partition functions. In particular, we derive the surface area ddraitrary L-nested unit
spherells = {x € R" | f(X) = 1} corresponding to ahp-nested functionf. By Equation (5) of
Fernandez et al. (1995) everyspherical and hence ahy-nested symmetric density has the form

of(x)

p(x) = 0™ 15 (1) (4)

whereSs is the surface area dif and@is a density orR™. Thus, we need to compute the surface
area of an arbitraryp-nested unit sphere to obtain the partition function of Equation (4).
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Proposition 4 (Volume and Surface of thel ,-nested Sphere)Let f be an L,-nested function and
let I be the set of all multi-indices denoting the inner nodes of the tree structsmemted with f.
The volumels (R) and the surfaces (R) of the L-nested sphere with radius R are given by

Vi(R) = R:]Zn |_| ( II - ID B [Z 1Mk nlSﬁl]) 5)

e [3]

; (6)
N el P _1|_ [ﬂ}
- 1 - Z 1M, k M k1
5f (R) — Rn 12n 1= (7)
||;|] | |(IjI p| p|
Meal |5
— R M /'fllM (8)
ter p' T [%]
where Ba,b] = rr[gi[t?]] denotes th@-function.
Proof The proof can be found in the Appendix B. |

Inserting the surface area in Equation 4, we obtain the general formlgf-aested symmetric
distribution for any given radial density.

Corollary 5 (Lp-nested Symmetric Distribution) Let f be an L,-nested function ang a density
onIR™. The corresponding §-nested symmetric distribution is given by

_ ®(f(x)
P00 T s

~1
(p(f(x Z. 1nlk N k+1
2nf(x) l_l( l_LB[ o ] ) 9

The results of Fernandez et al. (1995) imply that for argpherically symmetric distribution,
the radial part is independent of the directional part, thatisindependent ofi. The distribution
of uis entirely determined by the choice of or by thelLy-nested functionf in our case. The
distribution ofr is determined by the radial densipy Together, ath.,-nested symmetric distribution
is determined by both, the,-nested functiorf and the choice of. From Equation (9), we can see
that its density function must be the inverse of the surface ar&a times the radial density when
transforming (4) into the coordinates of Definition 1 and separatiagdu (the factorf (x)"1 =r
cancels due to the determinant of the Jacobian). For that reason weeadiBtttibution ofu uniform
on the Ly-spherellt in analogy to Song and Gupta (1997). Next, we state its form in terms of the
coordinates.

Proposition 6 (Lp-nested Uniform Distribution) Let f be an l,-nested function. Let be the
set of multi-indices on the path from the root node to the leaf corresporiditg The uniform
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distribution on the L-nested unit sphere, that is, the digt= {x € R"|f(x) = 1} is given by the
following density overy...,un_1

1
I_ILeLGL(uE pa 1nlk N k+1
Pl ootha) = 5 |z< HB[ p ] )

Proof Since thelp-nested sphere is a measurable and compact set, the density of the uhgform
tribution is simply one over the surface area of thenested unit sphere. The surfaggl) is given
by Proposition 4. Transformin% into the coordinates of Definition 1 introduces the determinant

of the Jacobian from Proposition 3 and an additional factor of 2 sinceuihe.,u_1) € IR"-1 have
to account for both half-shells of thg,-nested unit sphere, that is, to account for the fact that
could have been be positive or negative. This yields the expressior.abo |

Example 4 Let us again demonstrate the proposition at the special case where flig-anrm
f(X)=||X|[p= (311 ymp)%. Using Proposition 4, the surface area is given by

M0
ol

1ot TsK e Mg
Sie=2"7-1 [ B[ =X } =
Po k=1 Po Po

1—
The factor G(ug) is given by(l— zi";ll ]ui|p)Tp (see the k-norm example before), which, after
including the factor, yields the uniform distribution on the,tsphere as defined in Song and Gupta

(1997) )
p(u) = - 1F[ | ( |u.|p> .
on- 1rn[ } 21

Example 5 As a second illustrative example, we consider the uniform density ongtinedted
unit ball, that is, the sefx € R"| f(x) < 1}, and derive its radial distributiorp. The density of the
uniform distribution on the unit j-nested ball does not dependxand is given bp(x) =1/7%4(1).

Transforming the density into the polar-like coordinates with the determinant Rroposition 3

yields
-1
1 N e, Gu(up) éh K Mk N
I 21 feh ) PP ‘

€

After separating out the uniform distribution on thg-hested unit sphere, we obtain the radial
distribution

or)=n"tforo<r<1

which is ap-distribution with parameters n antl
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The radial distribution from the preceeding example is of great importasrceur sampling
scheme derived in Section 6. The idea behind it is the following: First, a sdnophea “simple”
Lp-nested symmetric distribution is drawn. Since the radial and the uniform awenpon thelp-
nested unit sphere are statistically independent, we can get a sample &omifdrm distribution
on thel p-nested unit sphere by simply normalizing the sample from the simple distributfter- A
wards we can multiply it with a radius drawn from the radial distribution oflth@ested symmetric
distribution that we actually want to sample from. The role of the simple distributitbbevplayed
by the uniform distribution within thé.,-nested unit ball. Sampling from it is basically done by
applying the steps in Proposition 4’s proof backwards. We lay out the Isaggtheme in more
detail in Section 6.

4. Marginals

In this section we discuss two types of marginals: First, we demonstrate thaintrast tol p-
spherically symmetric distributions, marginals lgf-nested symmetric distributions are not nec-
essarilyLp-nested symmetric again. The second type of marginals we discuss areedhitgin
collapsing all leaves of a subtree into the value of the subtree’s root mtehat case we derive
an analytical expression and show that the values of the root nodleisechfollow a special kind
of Dirichlet distribution.

Gupta and Song (1997) show that marginalk gEpherically symmetric distributions are again
Lp-spherically symmetric. This does not hold, howeverlfgnested symmetric distributions. This
can be shown by a simple counterexample. Considel §heested function

1

o 1
F00 = ((palP -+ ol )2 + gl ™) ™
The uniform distribution inside the,-nested ball corresponding fois given by
L
SR BELE]
PL Po Po

The marginap(xi, x3) is given by

ot 41 [E] (e
PO rgle ]

This marginal is not_p-spherically symmetric. Since ary-nested symmetric distribution in two
dimensions must bep-spherically symmetric, it cannot ldg,-nested symmetric as well. Figure
3 shows a scatter plot of the marginal distribution. Besides the fact that ttginala are not
contained in the family ot ,-nested symmetric distributions, it is also hard to derive a general
form for them. This is not surprising given that the general form of inaitg for L,-spherically
symmetric distributions involves an integral that cannot be solved analyticalijgneral and is
therefore not very useful in practice (Gupta and Song, 1997). Fdrréason we cannot expect
marginals ofL,-nested symmetric distributions to have a simple form.

In contrast to single marginals, it is possible to specify the joint distributionavég and inner
nodes of arl,-nested tree if all descendants of their inner nodes in question haverttegrated
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a - b
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Figure 3: Marginals of ,-nested symmetric distributions are not necessagtypested symmetric:
Figure @) shows a scatter plot of the, x2)-marginal of the counterexample in the text
with pp =2 andp; = % Figure @) displays the correspondirigy-nested sphere.b{

c) show the univariate marginals for the scatter plot. Since any two-dimenhdigna
nested symmetric distribution must bg-spherically symmetric, the marginals should be

identical. This is clearly not the case. Thum), i§ notLy-nested symmetric.

out. For the simple function above (the same that has been used in Exantpkejint distribution
of x3 andvy = ||(x1,%2) " ||p, Would be an example of such a marginal. Since marginalization affects
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the L,-nested tree vertically, we call this type of marginiger marginals In the following, we
present their general form.

From the form of a general,-nested function and the corresponding symmetric distribution,
one might think that the layer marginals argnested symmetric again. However, this is not the case
since the distribution over thig,-nested unit sphere would deviate from the uniform distribution in
most cases if the distribution of its children werg-spherically symmetric.

Proposition 7 Let f be an l,-nested function. Suppose we integrate out complete subtrees from
the tree associated with f, that is, we transform subtrees into radial timesromifariables and
integrate out the latter. Let be the set of multi-indices of those nodes that have become new leaves,
that is, whose subtrees have been removed, and le¢ the number of leaves (in the original tree)

in the subtree under the node J. bet IR™ denote those coefficients »ftiat are still part of

that smaller tree and levydenote the vector of inner nodes that became new leaves. The joint
distribution of)@ andwy is given by

o(f(x;,vy)) .
P(X:,Vy) = o []VP . (10)
U5V = 5 (f o)) [
Proof The proof can be found in the Appendix C. |

Equation (10) has an interesting special case when considering theigiittiution of the root
node’s children.

Corollary 8 The children of the root nodey, = (vi,...,Vs,) " follow the distribution

P T 4]

f(va, ...,vgo)nflzml_l/ko:lr [&

P(Viyy) =
Po

} O(f(Va,...,Vep)) iﬁvp—l

where m< /y is the number of leaves directly attached to the root node. In particuiaj, ean
be written as the product RU, where R is therested radius and the singd;|P are Dirichlet

distributed, that is(|Uy|Pe, ..., |Ug,|P) ~ Dir [%7_ %]

..,E

Proof The joint distribution is simply the application of Proposition (7). Note tha, ..., vy,) =
V10| po- APPlying the pointwise transformaticg = |u;|P yields

.M ny,
U1|P, ..., Uz 1|P) ~ Dir [,...,”].
(U4 Uge—1[™) 50" To

The Corollary shows that the valu@égx, ) at inner nodes, in particular the ones directly below
the root node, deviate considerably framm-spherical symmetry. If they welgy,-spherically sym-
metric, the|U;|P should follow a Dirichlet distribution with parametens = % as has been already
shown by Song and Gupta (1997). The Corollary is a generalization iofr&seilt.

We can use the Corollary to prove an interesting fact ahgutested symmetric distributions:
The only factorial p-nested symmetric distribution must bg-spherically symmetric.
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Proposition 9 Let x be Ly-nested symmetric distributed with independent marginals. Hisn x
Lp-spherically symmetric distributed. In particulat,fallows a p-generalized Normal distribution.

Proof The proof can be found in the Appendix D. |

One immediate implication of Proposition 9 is that there is no factorial probability hoode-
sponding to mixed norm regularizers which have the fgifn, || %, ||} where the index setg form
a partition of the dimensions, 1.,n (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; Kowalski
et al., 2008). Many machine learning algorithms are equivalent to minimizingutineo$ a regu-
larizer R(w) and a loss functio.(W, X1, ...,Xm) over the coefficient vectow. If the exp(—R(w))
and exg—L(w,Xy,...,Xm)) correspond to normalizeable density models, the minimizing solution
of the objective function can be seen as the maximum a posteriori (MAP) éstoh#he poste-
rior p(W|Xq,...,Xm) O p(W) - p(Xq, ..., Xm|W) = exp(—R(W)) - exp(—L(W, X1, ...,Xm)). In that sense,
the regularizer naturally corresponds to the prior and the loss functisaspmnds to the likeli-
hood. Very often, regularizers are specified as a norm over théaesf vectorw which in turn
correspond to certain priors. For example, in Ridge regression (H#6R) the coefficients are
regularized vid|w||3 which corresponds to a factorial zero mean Gaussian priwr. dheL;-norm
|lw||1 in the LASSO estimator (Tibshirani, 1996), again, is equivalent to a fattajaacian prior
onw. Like in these two examples, regularizers often corresponddotarial prior.

Mixed norm regularizers naturally correspond.ignested symmetric distributions. Proposition
9 shows that there is no factorial prior that corresponds to such &reggu. In particular, it implies
that the prior cannot be factorial between groups and coefficiente aaime time. This means
that those regularizers implicitly assume statistical dependencies betwearefficient variables.
Interestingly, forg = 1 andp = 2 the intuition behind these regularizers is exactly that whole groups
Ik get switched on at once, but the groups are sparse. The Propokitwa ghat this might not only
be due to sparseness but also due to statistical dependencies betweeefficeEnts within one
group. Thelp-nested symmetric distribution which implements independence between gritups w
be further discussed below as a generalization ofpgeneralized Normal (see Section 8). Note
that the marginals can be independent if the regularizer is of the $dtm||x,, ||h. However, in
this casep = q and theL p-nested function collapses to a simplg-norm which means that the
regularizer is not mixed norm.

5. Maximum Likelihood Estimation of Lp-Nested Symmetric Distributions

In this section, we describe procedures for maximum likelihood fittingyefested symmetric dis-
tributions on data. We provide a toolbox online for fittihg-spherically symmetric and,-nested
symmetric distributions to data. The toolbox can be downloadettat / / www. kyb. t uebi ngen.
mpg. de/ bet hge/ code/ .

Depending on which parameters are to be estimated, the complexity of fittihg-nasted
symmetric distribution varies. We start with the simplest case and later continusmaighcomplex
ones. Throughout this subsection, we assume that the model has the(igrea p(Wx) - | detW| =
% -| detW| whereW € R™" is a complete whitening matrix. This means that given any
whitening matrixWp, the freedom in fitting/V is to estimate an orthonormal mat@ € SQ(n)
such thaWw = QW4. This is analogous to the case of elliptically contoured distributions where the
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distributions can be endowed with 2nd-order correlationsWVialn the following, we ignore the
determinant ofV since data points can always be rescaled such thef gel.

The simplest case is to fit the parameters of the radial distribution when thettueture, the
values of thep;, andW are fixed. Due to the special form bf-nested symmetric distributions (4),
it then suffices to carry out maximum likelihood estimation on the radial compardy, which
renders maximum likelihood estimation efficient and robust. This is becausanipeemaining
parameters are the paramet@rsf the radial distribution and, therefore,

argmavg logp(Wx|9) = argmavy (—logSt (f(Wx)) +log@( f (WX)[9))
= argmayg log@( f (Wx)|9).
In a slightly more complex case, when only the tree structuréMrade fixed, the values of the

pi, | € I and® can be jointly estimated via gradient ascent on the log-likelihood. The gtedien
a single data point with respect to the vectgp that holds allp, for all | € I is given by

Oplogp(Wx) = %Iog(p(f(Wx)) Opf (Wx) — (fer_vi; Opf (Wx) — Oplogst (1).

For i.i.d. data point¥; the joint gradient is given by the sum over the gradients for the single data
points. Each of them involves the gradientfols well as the gradient of the log-surface areb of
with respect tgp, which can be computed via the recursive equations

if I is not a prefix of]

aivl _ vll v 'apJVI K if | is a prefix ofJ
PJ ,
o (vJ Pl Vi Iongk—Iong) if J=1
and
0 I(H”Jk gk
—logss (1) = u
_ z W SE 1”Jk s 1”Jk JZ_ [mkﬂ] NIks+1
pJ K=1 PJ p\% ,

whereW[t] = & d Jogr[t] denotes the digamma function. When performing the gradient ascent, one
needs to sed @s a lower bound fop. Note that, in general, this optimization might be a highly
non-convex problem.

On the next level of complexity, only the tree structure is fixed, \@hdan be estimated along
with the other parameters by joint optimization of the log-likelihood with respeg & andW.
Certainly, this optimization problem is also not convex in general. Usually, tiisarically more
robust to whiten the data first with some whitening matkixand perform a gradient ascent on the
special orthogonal grouQ(n) with respect toQ for optimizingW = QW,. Given the gradient
Ow logp(Wx) of the log-likelihood, the optimization can be carried out by performing linecbes
along geodesics as proposed by Edelman et al. (1999) (see alsotAds{®07)) or by projecting
Cwlogp(Wx) on the tangent spackySQ(n)) and performing a line search aloi®(n) in that
direction as proposed by Manton (2002).
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The general form of the gradient to be used in such an optimization sclenedefined as

Ow logp(Wx)
=0Ow (—(n—1)-log f (Wx) +log( f (Wx)))
(n—1) dlogq(r)

foW Oy f (Wx)-xT+T(f(Wx))-Dyf (Wx)-x",

where the derivatives df with respect tgy are defined by recursive equations

0 ifi ¢
a—yw =< sgny, if Vi k= |yi
' VP .vﬁ'k’l'aiwv| x forielk

Note, thatf might not be differentiable at= 0. However, we can always define a sub-derivative at
zero, which is zero fop; # 1 and[—1,1] for p; = 1. Again, the gradient for i.i.d. data pointsis
given by the sum over the single gradients.

Finally, the question arises whether it is possible to estimate the tree structurddia as well.
A simple heuristic would be to start with a very large tree, for example, a fullrgitree, and to
prune out inner nodes for which the parents and the children haveisnoffy similar values for their
pi. The intuition behind this is that if they were exactly equal, they would candéleih,-nested
function. This heuristic is certainly sub-optimal. Firstly, the optimization will be timesconing
since there can be about as mamas there are leaves in thg-nested tree (a full binary tree on
dimensions will haven— 1 inner nodes) and due to the repeated optimization after the pruning steps.
Secondly, the heuristic does not cover all possible treasleaves. For example, if two leaves are
separated by the root node in the original full binary tree, there is notevpyune out inner nodes
such that the path between those two nodes will not contain the root ngam e

The computational complexity for the estimation of all other parameters despiteeéhstruc-
ture is difficult to assess in general because they depend, for examnptlee particular radial dis-
tribution used. While the maximum likelihood estimation of a simple log-Normal distribwtidy
involves the computation of a mean and a variance which agnm for mdata points, a mixture of
log-Normal distributions already requires an EM algorithm which is computalfiypmore expen-
sive. Additionally, the time it takes to optimize the likelihood depends on the starimg gs well
as the convergence rate, and we neither have results about thegeomeeerate nor is it possible to
make problem independent statements about a good initialization of the pararketethis reason
we state only the computational complexity of single steps involved in the optimization.

Computation of the gradiefitplogp(Wx) involves the derivative of the radial distribution, the
computation of the gradients, f(Wx) andpSt(1). Assuming that the derivative of the radial
distribution can be computed (1) for each single data point, the costly steps are the other two
gradients. Computinglp f (WX) basically involves visiting each node of the tree once and perform-
ing a constant number of operations for the local derivatives. Sirergy @iner node in ahp-nested
tree must have at least two children, the worst case would be a full bireeywvhich has 2— 1
nodes and leaves. Therefore, the gradient can be comput&ehin) for m data points. For similar
reasonsf (Wx), OplogSt (1), and the evaluation of the likelihood can also be compute(imm).
This means that each step in the optimizatiopagn be done(nm) plus the computational costs
for the line search in the gradient ascent. When optimizing\fer QW as well, the computational
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costs per step increase @(n® + n’m) sincem data points have to be multiplied with' at each
iteration (requiringd(n?m) steps), and the line search involves projectihigack ontaSQ(n) which
requires an inverse matrix square root or a similar computatia(3).

For comparison, each step of fast ICA (Hyinen and O., 1997) for a complete demixing matrix
takesO(n?m) when using hierarchical orthogonalization anth?m+-n?) for symmetric orthogo-
nalization. The same applies to fitting an ISA model (Bymen and Hoyer, 2000; Hgvinen
and Koster, 2006, 2007). A Gaussian Scale Mixture (GSM) model does mat toeestimate an-
other orthogonal rotatio® because it belongs to the class of spherically symmetric distributions
and is, therefore, invariant under transformations fi®@in) (Wainwright and Simoncelli, 2000).
Therefore, fitting a GSM corresponds to estimating the parameters of fleadsstaibution which is
O(nm) in the best case but might be costlier depending on the choice of the sdalautizn.

6. Sampling from L,-Nested Symmetric Distributions

In this section, we derive a sampling scheme for arbittgrnested symmetric distributions which
can for example be used for solving integrals when usipgested symmetric distributions for
Bayesian learning. Exact sampling from an arbitrapynested symmetric distribution is in fact
straightforward due to the following observation: Since the radial andrifieron component are in-
dependent, normalizing a sample from dnpynested symmetric distribution tiolength one yields
samples from the uniform distribution on theg-nested unit sphere. By multiplying those uni-
form samples with new samples from another radial distribution, one ob&mgles from another
Lp-nested symmetric distribution. Therefore, for eagested functiorf, a singlel p-nested sym-
metric distribution which can be easily sampled from is enough. Sampling frosthalL ,-nested
symmetric distributions with respect tbis then straightforward due to the method we just de-
scribed. Gupta and Song (1997) sample frompfgeneralized Normal distribution since it has in-
dependent marginals which makes sampling straightforward. Due to Riop@&s no such factorial
Lp-nested symmetric distribution exists. Therefore, a sampling scheme like tha-fpherically
symmetric distributions is not applicable. Instead we choose to sample fronmifioenu distribu-
tion inside the_,-nested unit ball for which we already computed the radial distribution imfka

1

5. The distribution has the forp(x) = T In order to sample from that distribution, we will first

only consider the uniform distribution in the positive quadrant of the lugihested ball which has
the formp(x) = % Samples from the uniform distributions inside the whole ball can be obtained
by multiplying each coordinate of a sample with independent samples from ifioedistribution
over{—1,1}.

The idea of the sampling scheme for the uniform distribution inside.gaeested unit ball is
based on the computation of the volume of thenested unit ball in Proposition 4. The basic
mechanism underlying the sampling scheme below is to apply the steps of tHebopobavards,
which is based on the following idea: The volume of theunit ball can be computed by computing
its volume on the positive quadrant only and multiplying the result witafferwards. The key is
now to not transform the whole integral into radial and uniform coordsatence, but successively
upwards in the tree. We will demonstrate this through a brief example whiclslatadd make the

sampling scheme below more intuitive. Considerlthenested function
N
F) = (pxaf™ -+ (gl + el ) ™
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To solve the integral

/ dx,
{xf(x)<1&xelR" }

we first transformx, andxz into radial and uniform coordinates only. According to Proposition 3 the

determinant of the mappin(@r, x3) — (v1,0) = (||X2:3]| p,, X2:3/[|X2:3]| py ) IS given byvy (1 —GPr)
Therefore the integral transforms into

1-p
/ dx— / / / vi(1— ") P dxqdvad
{xf(x)<1&xeIR" } {vaxa:f(x,v1)<1&xq,vi€lRy }

Now we can separate the integrals oxgandv;, and the integral ovar, Since the boundary of the
outer integral does only depend wnand not oru®

1-pg
P1

1-pg

dx— /(1—apl)era. /vldxldvl.

/{x: f(x)<1&x<IRT } /{vl,xl: f(x1,v1)<1&x1,v1€IRL}

The value of the first integral is known explicitly since the integrand equalaniform distribution
on the|| - || p,-unit sphere. Therefore, the value of the integral must be its normalizediostant
which we can get using Proposition 4:

2
oy T [é] “P1
/(1—upl) = P
[

An alternative way to arrive at this result is to use the transformatierii®* and to notice that the
integrand is a Dirichlet distribution with parameters= % The normalization constant of the
Dirichlet distribution and the constants from the determinant of the Jacobttie transformation
yield the same result.

To compute the remaining integral, the same method can be applied again yieldiadutine
of the Lp-nested unit ball. The important part for the sampling scheme, howevert teeavolume
itself but the fact that the intermediate results in this integration process egtain distributions.
As shown in Example 5 the radial distribution of the uniform distribution on thehatl is B [n, 1],
and as just indicated by the example above, the intermediate results cambasseansformed
variables from a Dirichlet distribution. This fact holds true even for man@pglexL ,-nested unit
balls although the parameters of the Dirichlet distribution can be slightly diffefi@eversing the
steps leads us to the following sampling scheme. First, we sample frofidistribution which
gives us the radiugy on the root node. Then we sample from the appropriate Dirichlet distribution
and exponentiate the samples &ywhich transforms them into the analogs of the variabfeom
above. Scaling the result with the sampigyields the values of the root node’s children, that
is, the analogs ok; andvy. Those are the new radii for the levels below them where we simply
repeat this procedure with the appropriate Dirichlet distributions andnexgis. The single steps
are summarized in Algorithm 1.

The computational complexity of the sampling schem@(is). Since the sampling procedure
is like expanding the tree node by node starting with the root, the number ofriodes and leaves
is the total number of samples that have to be drawn from Dirichlet distributiresy node in an
Lp-nested tree must at least have two children. Therefore, the maximal nofibaer nodes and
leaves is & — 1 for a full binary tree. Since sampling from a Dirichlet distribution is als@im),
the total computational complexity for one sample i£ifm).
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Algorithm 1 Exact sampling algorithm fdrp-nested symmetric distributions

Input: The radial distributiorp of anL ,-nested symmetric distributigmfor theL ,-nested function
f.

Output: Samplex from p.

Algorithm

1. Samplevy from a beta distributiof [n, 1].

2. For each inner node of the tree associated with, sample the auxiliary variablg from

a Dirichlet distribution Dir[%,...,n;%} wheren, x are the number of leaves in the subtree

under nodd k. Obtain coordinates on tHe,-nested sphere within the positive orthant by

1
s — §” =10 (the exponentiation is taken component-wise).

3. Transform these samples to Cartesian coordinates By =V, 1, for each inner node, start-
ing from the root node and descending to lower layers. The componewits.@fconstitute
the radii for the layer direct below them. llf= 0, the radius had been sampled in step 1.

4. Once the two previous steps have been repeated until no inner nofipvielbave a sample
X from the uniform distribution in the positive quadrant. Normabk#e get a uniform sample
from the spheret = %X)

5. Sample a new radiug Tfrom the radial distribution of the target radial distributigrand
obtain the sample vi& = V- u.

6. Multiply each entryx; of X by an independent sampefrom the uniform distribution over

(~1,1).

7. Robust Bayesian Inference of the Location

For Lp-spherically symmetric distributions with a location and a scale parameter

P(XIT) = Tp(f[T(X— W) lp),

Osiewalski and Steel (1993) derived the posterior in closed form asimigr p(l, 1) = p(W)-c- 14,
and showed thap(x, ) does not depend on the radial distributigrthat is, the particular type of
Lp-spherically symmetric distributions used for a fixedThe prior ort corresponds to an improper
Jeffrey’s prior which is used to represent lack of prior knowledgéherscale. The main implication
of their result is that Bayesian inference of the locatjpander that prior on the scale does not
depend on the particular type bf-spherically symmetric distribution used for inference. This
means that under the assumption olLlgrspherically symmetric distributed variable, for a fixed
one has to know the exact form of the distribution in order to compute the |ogagi@ameter.

It is straightforward to generalize their resultltg-nested symmetric distributions and, hence,
making it applicable to a larger class of distributions. Note that when usingangsted symmetric
distribution, introducing a scale and a location via the transformatient(x — M) introduces a
factor oft" in front of the distribution.
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Proposition 10 For fixed values @ p1, ... and two independent priors(p, 1) = p(W) - ct—* of the
location u and the scale where the prior ort is an improper Jeffrey’s prior, the joint distribution

p(X, W) is given by

_ 1
POX M) = f(x—1) "¢ - p(W),
where Z denotes the normalization constant of thaésted uniform distribution.

Proof Given anyL,-nested symmetric distributiop( f (X)), the transformation into the polar-like
coordinates yields the following relation

l:/p(f(x))dx://LHLGL(UE)r”‘lp(r)drdu:/ M GL(uE)du-/r”‘lp(r)dr.

LeL

Since[ ¢, GL(up) is the unnormalized uniform distribution on thg-nested unit sphere, the inte-
gral must equal the normalization constant which we denote Zvithr brevity (see Proposition 6
for an explicit expression). This implies thahas to fulfill

;:/rnlp(r)dr.

Writing down the joint distribution ok, p andt, and using the substitutia= 1f (X — H) we obtain

PO = [ Tp(F(x(x—p))-or - p(er
B / $"'p(s)-c- p(W) f(x— W) "ds

L P(K).

—_— —_ 7n, PR—
=f(x—p) c 5

Note that this result could easily be extended-spherical distributions. However, in this case
the normalization consta@tcannot be computed for most cases and, therefore, the posterior would
not be known explicitly.

8. Relations to ICA, ISA and Over-Complete Linear Models

In this section, we explain the relations amdngspherically symmetricl,-nested symmetric,
ICA and ISA models. For a general overview see Figure 4.

The density model underlying ICA models the joint distribution of the signak a linear
superposition of statistically independent hidden soukgs- x or y = Wx. If the marginals
of the hidden sources belong to the exponential power family, we obtaip-teneralized Nor-
mal which is a subset of thiep-spherically symmetric class. Thegeneralized Normal distri-
bution p(y) O exp(—T1|ly||p) is a density model that is often used in ICA algorithms for kurtotic
natural signals like images and sound by optimizing a demixing mslriw.r.t. to the model
p(y) O exp(—T|Wx]|p) (Lee and Lewicki, 2000; Zhang et al., 2004; Lewicki, 2002). It can be
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ISA Lp—nesteq
symmetric

Lp—nested ISA

Y Y
L,-spherically
symmetric

p-generalized Y
Normal L,-spherically
symmetric

Figure 4: Relations between the different classes of distributions: Arindicate that the child
class is a specialization (subset) of the parent class. Polygon-shiagedscare inter-
sections of those parent classes which are connected via edges withaiwaw-heads.
For one-dimensional subspaces ISA is a superclass of ICA. All ddsdenging to ISA
are colored white or light gray.,-nested symmetric distributions are a superclags,of
spherically symmetric distributions. Alll,-nested symmetric models are colored dark or
light gray. Lp-nested ISA models live in the intersectionlgf-nested symmetric distri-
butions and ISA models. Thosg-nested ISA models that atg-spherically symmetric
are also ICA models: This is the classmfieneralized Normal distributions. fifis fixed
to two, one obtains thke,-spherically symmetric distributions. The only class of distri-
butions in the intersection between spherically symmetric distributions and ICA&Isod
is the Gaussian.

shown that thep-generalized Normal is the only factorial model in the clask@$§pherically sym-
metric models (Sinz et al., 2009a), and, by Proposition 9, also the onlyifdtgmested symmetric
distribution.

An important generalization of ICA is the independent subspace analgA$ proposed by
Hyvarinen and Hoyer (2000) and by Hyiimen and Kster (2007) who uséd,-spherically symmet-
ric distributions to model the single subspaces, that is, pabelow wad_,-spherically symmetric.
Like in ICA, ISA models the hidden sources of the signal as a product tifvarate distributions:

K

p(Y) =[] Px(¥1,)-

k=1

Here,y = Wxandly are index sets selecting the different subspaces from the respdnde® .
The collection of index setlk forms a partition of 1...,n. ICA is a special case of ISA in which
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Ik = {k} such that all subspaces are one-dimensional. For the ISA models usd/éynen et al.
the distribution on the subspaces was chosen to be either sphericalyspherically symmetric.

In its general form, ISA is not a generalizationlgf-spherically symmetric distributions. The
most general ISA model for the transformed dyta Wx does not assume a certain type of distri-
bution on the single subspace like in Hyinen and Kster (2007). While one could say for any
non-factorial distribution that a factorial product over subspacegé&naralization, this is certainly
a trivial step. Only in this particular sense is the particular ISA model byarpen and Kster
(2007) a generalization af,-spherically symmetric distributions.

In contrast to ISAL ,-nested symmetric distributions generally do not make an independence
assumption on the “subspaces”. In fact, for most of the models the stdsspéll be dependent
(see also our diagram in Figure 4). Therefore, not every ISA modaliismaticallyL ,-nested
symmetric and vice versa. In fact, in Sinz et al. (2009b) we have demtetsiicr natural images
that the dependencidgetweensubspaces is stronger than the dependenithén subspaces on
natural image patches. This is in stark contrast to the assumptions undégping

Note also that the product df,-spherically symmetric distributions used by Hyinen and
Koster (2007) is not ahp-nested function (Equation (6) in Hivinen and Kster, 2007) since
the singlea; can be different and, therefore, the overall function is not positiielyjogeneous in
general.

ICA and ISA have been used to infer features from natural signalsarticplar from natu-
ral images. However, as mentioned by several authors (Zetzsche ¥998,, Simoncelli, 1997;
Wainwright and Simoncelli, 2000) and demonstrated quantitatively by Bet2@@6] and Eich-
horn et al. (2009), the assumptions underlying linear ICA are not well hedt®y the statistics
of the pixel intensities of natural images. A reliable parametric way to assessvill the inde-
pendence assumption is met by a signal at hand is to fit a more generabfctissibutions that
contains factorial as well as non-factorial distributions which both camlggwell reproduce the
marginals. By comparing the likelihood on held out test data between the ttiest fion-factorial
and the best-fitting factorial case, one can assess how well the scarcbs described by a facto-
rial distribution. For natural images, for example, one can use an aghlitsespherically symmetric
distributionp(||WX|p), fit it to the whitened data and compare its likelihood on held out test data
to the one of thep-generalized Normal distribution (Sinz and Bethge, 2009). Since angelod
radial distributionp determines a particuldr,-spherically symmetric distribution, the idea is to ex-
plore the space between factorial and non-factorial models by usiny 8exble densityp on the
radius. Note that having an explicit expression of the normalization cdredtaws for particularly
reliable model comparisons via the likelihood. For many graphical models, $tarioe, such an
explicit and computable expression is often not available.

The same type of dependency-analysis can be carried out for IS4 usinested symmetric
distributions (Sinz et al., 2009b). Figure 5 shows lthenested tree corresponding to an ISA with
four subspaces. In general, for such trees, each inner nodepteke root node—corresponds to
a single subspace. When using the radial distribution

—1 VPO
Go(vo) = 00 exp(g) : (11)
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Figure 5: Tree corresponding to ap-nested ISA model.

the subspaces, ..., v, become independent and one obtains an ISA model of the form

ply) = ;exr)(— ) p@>

S

Lo
_ Lo - DMl
—Zexp< .

) —1 N
Pe Zko—lHMK\pk) o Py F{DJ

e 1]
which had_p-spherically symmetric distributions on each subspace. Note that this resdiddation
is equivalent to a Gamma distribution whose variables have been raised mmhetpfé. In the
following we will denote distributions of this type wity}, (u,s), whereu ands are the shape and
scale parameter of the Gamma distribution, respectively. The partigudiEstribution that results in
independent subspaces has arbitrary scale but shape paramegoerWhen using any other radial
distribution, the different subspaces do not factorize, and the distnibistialso not an ISA model.
In that sensé p-nested symmetric distributions are a generalization of ISA. Note, howteatnot
every ISA model is alsh ,-nested symmetric since not every product of arbitrary distributions on
the subspaces, even if they argspherically symmetric, must also bg-nested.

It is natural to ask, whethdr,-nested symmetric distributions can serve as a prior distribution
p(y|®) over hidden factors in over-complete linear models of the form

POXW,0.9) = [ p(XWy.0)p(yi)dy.

where p(x|WYy) represents the likelihood of the observed data prigiven the hidden factorg
and the over-complete matN¥. For examplep(x|Wy, o) = A (Wy,o - 1) could be a Gaussian like
in Olshausen and Field (1996). Unfortunately, such a model wouldrdufie the same problems
as all over-complete linear models: While sampling from the prior is straightiahsampling
from the posteriop(y|x,W,8,0) is difficult because a whole subspaceydiads to the same.
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Since parameter estimation either involves solving the high-dimensional integdeV,c,9) =

J p(x|Wy,o)p(y|9)dy or sampling from the posterior, learning is computationally demanding in
such models. Various methods have been proposed toWéaranging from sampling the posterior
only at its maximum (Olshausen and Field, 1996), approximating the postetlrawsaussian
via the Laplace approximation (Lewicki and Olshausen, 1999) or usimgdation Propagation
(Seeger, 2008). In particular, all of the above studies either do nogfdigr-parameter8 for the
prior (Olshausen and Field, 1996; Lewicki and Olshausen, 1999%Iyon the factorial structure
of it (Seeger, 2008). Sindey-nested symmetric distributions do not provide such a factorial prior,
Expectation Propagation is not directly applicable. An approximation like iridléand Olshausen
(1999) might be possible, but additionally estimating the paramétefthe L ,-nested symmetric
distribution adds another level of complexity in the estimation procedure. Emglsuch over-
complete linear models with a non-factorial prior may be an interesting directiomdstigate, but

it will need a significant amount of additional numerical and algorithmicakvwoifind an efficient
and robust estimation procedure.

9. Nested Radial Factorization withL,-Nested Symmetric Distributions

Lp-nested symmetric distribution also give rise to a non-linear ICA algorithm featiy mixed
non-factoriallL p-nested hidden sourcgs The idea is similar to the radial factorization algorithms
proposed by Lyu and Simoncelli (2009) and Sinz and Bethge (2009)thireason, we call it
nested radial factorization (NRFJor a one layet ,-nested tree, NRF is equivalent to radial fac-
torization as described in Sinz and Bethge (2009). If additionally set top = 2, one obtains
the radial Gaussianization by Lyu and Simoncelli (2009). Thereford; Ra generalization of
radial Factorization. It has been demonstrated that radial factorizdgjoritams outperform linear
ICA on natural image patches (Lyu and Simoncelli, 2009; Sinz and Betldg8) 2Since.,-nested
symmetric distributions are slightly better in likelihood on natural image patches éSat., 2009b)
and since the difference in the average log-likelihood directly correfspimrthe reduction in depen-
dencies between the single variables (Sinz and Bethge, 2009), NRF willlglautperform radial
factorization on natural images. For other types of data the performatickepend on how well
the hidden sources can be modeled by a linear superposition of—possiblpdependent-i,-
nested symmetrically distributed sources. Here we state the algorithm asildgapglication of
Lp-nested symmetric distributions for unsupervised learning.

The idea is based on the observation that the choice of the radial distrilpitibeady deter-
mines the type off p-nested symmetric distribution. This also means that by changing the radial dis-
tribution by remapping the data, the distribution could possibly be turned inarif@one. Radial
factorization algorithms fit ahp-spherically symmetric distribution with a very flexible radial dis-
tribution to the data and map this radial distributigy(s for source) into the one of p-generalized
Normal distribution by the mapping

(Fiito F9)(llyllp)

y, 12
vl Y (12

Y

where¥ |, and¥s are the cumulative distribution functions of the two radial distributions involved
The mapping basically normalizes the demixed soyraad rescales it with a new radius that has
the correct distribution.
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Exactly the same method cannot work fgy-nested symmetric distributions since Proposition

9 states that there is no factorial distribution into which we could map the datai®yncbanging
the radial distribution. Instead we have to remap the data in an iterative fialsb@nning with
changing the radial distribution at the root node into the radial distributiatheE ,-nested ISA
shown in Equation (11). Once the nodes are independent, we repeatdbedure for each of
the child nodes independently, then for their child nodes and so on, ulttileaves are left. The
rescaling of the radii is a non-linear mapping since the transform in Equélt®)nis non-linear.
Therefore, NRF is a non-linear ICA algorithm.

(FL'oFp)(vi:a)

Y14 TRy Y

(F1'oFp2)(y2:4)
Y24 Lfm,z()’zzzz) Y24 J

Paa P22

(F ' oF2,2)(ys:4) @
@ Yo = T ey Y34
— — [

H 6
w
W =
@ ’ E
%
s
S ©

Figure 6: Lp-nested non-linear ICA for the tree of Example 6: For an arbittarpested symmetric
distribution, using Equation (12), the radial distribution can be remapped that the
children of the root node become independent. This is indicated in the plaoiotiad
lines. Once the data have been rescaled with that mapping, the childrest abie can
be separated. The remaining subtrees are dganested symmetric and have a particular
radial distribution that can be remapped into the same one that makes thenooss
children independent. This procedure is repeated until only leavesfare le

We demonstrate this with a simple example.

Example 6 Consider the function

P02\ g7\ 0
1) = (Il (vl -yl 4y =2 )

for y = Wx where W has been estimated by fitting gpankested symmetric distribution with a
flexible radial distribution to Woas described in Section 5. Assume that the data has already been
transformed once with the mapping of Equat{@2). This means that the current radial distribution
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is given by (11) where we chose-dl for convenience. This yields a distribution of the form

Po LN
o= frree{ (1l™-+ el a2y 22 )

Po
n
Xil—lpﬁ*l r[p'}
I .
2 el Msl [%}
Now we can separate the distribution affyom the distribution overy,...,y4. The distribution of
y1 is a p-generalized Normal

P exp(—|yal™).

p(y1) =
2r

| —
Sl
| I

Thus the distribution ofy...,y4 is given by

Po

P02\ py
p(YZ,~~,Y4) = - [pw exp(— <|y2|pm‘2+(‘y3|P2.2+y4|P2.2)P2‘2> 2)

Np.2
)
n
x 1 |—| p&*l r {HI':|
— | .
24 pogr [%}
By using Equation (9) we can identify the new radial distribution to be
_ p‘DVB-,_Zz Po
®(Vo2) = - {nm} exp(—vM).

Po

Replacing this distribution by the one for the p-generalized Normal (for datavauld use the
mapping in Equation (12)), we obtain

Po,2 Po,2 P2,2 P2,2 y
P(VZ’---7V4)—r[n¢2}eXp —[y2]™2 = (lya[ P2 +[ya]2) P22

Po.2

n
% 1 pfl—l r[p'} )
2 I ]

Now, we can separate out the distribution gfwhich is again p-generalized Normal. This leaves

us with the distribution for yand y
Po,2 I o
0 Tos - p
P(Y3,Ya) = pn;zz exp(— (1y3| P22 + |ya|P22) p272> o2 !_l pl 1&[&,“-
r [W} len\{0,(0,2)} Mgl [W}
For this distribution we can repeat the same procedure which will also yiedéneralized Normal
distributions for y and .
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Algorithm 2 Recursion NRHR, f, @)

Input: Data pointy, Ly-nested functiorf, current radial distributionps,
Output: Non-linearly transformed data poiyt

Algorithm

1172
1. Set the target radial distribution to e <y, [ 2 Mv

-1
2. Sety«+ %x(y))) -ywhere# denotes the cumulative distribution function of the respective
Q.
3. For all children of the root node that are not leaves:
Po
o ] ”
(a) Setgs ¢ yp [ ", 2Ly
'r[8)?
P
(b) Setyp; <+ NRF(yy;, foi,®s). Note that in the recursiodyi will become the nevd.

4. Returny

This non-linear procedure naturally carries over to arbitigpnested trees and distributions,
thus yielding a general non-linear ICA algorithm for linearly mixed norteeal L,-nested sym-
metric sources. For generalizing Example 6, note the particular form ofatfiial distributions
involved. As already noted above, the distribution (11) on the root soddues that makes its
children statistically independent is that of a Gamma distributed variable Witfesﬂmamete%
and scale parametewhich has been raised to the powerbjgf In Section 8 we denoted this class
of distributions withyy [u,s|, whereu ands are the shape and the scale parameter, respectively.
Interestingly, the radial distributions of the root node’s children areg/sxcept that the shape pa-

rameter is”%. The goal of the radial remapping of the children’s values is hence ljastging the

shape parameter fro%i to % Of course, it is also possible to change the scale parameter of the

single distributions during th"e radial remappings. This will not affect thissitzal independence
of the resulting variables. In the general algorithm, that we describewewhooses such that the
transformed data is white.

The algorithm starts with fitting a generaj-nested model of the formp(Wx) as described in
Section 5. Once this is done, the linear demixing matyixs fixed and the hidden non-factorial
sources are recovered wa= Wx. Afterwards, the sourcgsare non-linearly made independent by
calling the recursion specified in Algorithm 2 with the parametéxs f andg, wheregis the radial
distribution of the estimated model.

The computational complexity for transforming a single data poia(is’) because of the ma-
trix multiplicationWx. In the non-linear transformation, each single data dimension is not rdscale
more thain times which means that the rescaling is certainly also(in?).

An important aspect of NRF is that it yields a probabilistic model for the taanséd data.
This model is simply a product af independent exponential power marginals. Since the radial
remappings do not change the likelihood, the likelihood of the non-lineapgrated data is the
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same as the likelihood of the data undgrnested symmetric distribution that was fitted to it in
the first place. However, in some cases, one might like to fit a differetntimlison to the outcome
of Algorithm 2. In that case the determinant of the transformation is negessaetermine the
likelihood of the input data—and not the transformed one—under the modelfollbwing lemma
provides the determinant of the Jacobian for the non-linear rescaling.

Lemma 11 (Determinant of the Jacobian) Let z= NRRWX, f,@;) as described above. Lé&ft
denote the values of ¥Whelow the inner node | which have been transformed with Algorithm 2
up to node I. Let gr) = (%, o % )(r) denote the radial transform at node | in Algorithm 2.
Furthermore, letl denote the set of all inner nodes, excluding the leaves. Then, the detatrof

the Jacobiar(é’—)f‘j)__ is given by
J

g(fit)"*  efit)
i)™t ou(a(fi(t)))

Proof The proof can be found in the Appendix E. |

07
detaxj‘ = \det\N|-|‘|

ler

10. Conclusion

In this article we presented a formal treatment of the first tractable sulwflasspherical distribu-
tions which generalizes the important familylgf-spherically symmetric distributions. We derived
an analytical expression for the normalization constant, introduced dinate system particularly
tailored toL p-nested functions, and computed the determinant of the Jacobian forrteepmnd-
ing coordinate transformation. Using these results, we introduced themnifistribution on the
Lp-nested unit sphere and the general form ofLamested symmetric distribution for arbitrary
Lp-nested functions and radial distributions. We also derived an expnefss the joint distribu-
tion of inner nodes of ah,-nested tree and derived a sampling scheme for an arbltganested
symmetric distribution.

Lp-nested symmetric distributions naturally provide the class of probability difitiisicorre-
sponding to mixed norm priors, allowing full Bayesian inference in theesponding probabilistic
models. We showed that a robustness result for Bayesian inferetieelotation parameter known
for Lp-spherically symmetric distributions carries over to thenested symmetric class. We dis-
cussed the relationship &f,-nested symmetric distributions to indepedent component (ICA) and
independent subspace Analysis (ISA), as well as its applicability as adisibution in over-
complete linear models. Finally, we showed hioyvnested symmetric distributions can be used to
construct a non-linear ICA algorithm called nested radial factorizatid®H)N

The application of ,-nested symmetric distribution has been presented in a previous corgferenc
paper (Sinz et al., 2009b). Code for training this class of distribution igiged online under
http:// ww. kyb. t uebi ngen. npg. de/ bet hge/ code/ .

Acknowledgments

We would like to thank Eero Simoncelli for bringing up the problem whether thescofL -
spherical distributions can be generalized_fpnested symmetric distributions. Furthermore, we

3438



Lp-NESTEDSYMMETRIC DISTRIBUTIONS

want to thank Sebastian Gerwinn, Suvrit Sra, Reshad Hosseini, Lues, Holly Gerhard, and
Sina Tootoonian for fruitful discussions and feedback on the manusEiimally, we would like to
thank the anonymous reviewers for their comments that helped to improve thescniph

This work is supported by the German Ministry of Education, Science, &Resend Tech-
nology through the Bernstein prize to MB (BMBF; FKZ: 01GQO0601), actatship to FS by the
German National Academic Foundation, and the Max Planck Society.

Appendix A. Determinant of the Jacobian

Proof [Lemma 2] The proof is very similar to the one in Song and Gupta (1997). fesdgquation
(2) one needs to expand the Jacobian of the inverse coordinate traagtm with respect to the
last column using the Laplace’s expansion of the determinant. TheAgigan be factored out of
the determinant and cancels due to the absolute value around it. Thetbéodeterminant of the
coordinate transformation does not depend\gn

The partial derivatives of the inverse coordinate transformation e dpy:

ixi =0krforl<i,k<n-1

Ouk

(fw(xn:Anrngforlg k<n-1
:rxi =yfori<i<n-1
&xn:Anun.

Therefore, the structure of the Jacobian is given by

r 0 Uz
7= : : :
0 - r Un_1
ou, ou,
Anrﬁ AN ¢ aunjl Anun

Since we are only interested in the absolute value of the determinant and\gigcg—1,1}, we
can factor oufd, and drop it. Furthermore, we can factor eutom the firstn — 1 columns which
yields

1 0 Uy
|dety| =r"1|det ' :
1 Unfl
dun oun u
ouy e OUn_1 n

Now we can use the Laplace’s expansion of the determinant with respti tast column. For
that purpose, lefi denote the matrix which is obtained by deleting the last column andhthrew
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from 7. This matrix has the following structure

1 0
0
1 0
Ji= 1
0 .
0 1
Oun Oun dUn
ouy ouj OUn_1

We can transforny; into a lower triangular matrix by moving the column with all zeros
bottom entry to the rightmost column gf Each swapping of two columns introduces a factor of

—1. In the end, we can compute the value of fldty simply taking the product of the diagonal

entries and obtain dgt= (—1)”‘1—‘%?. This yields

n
|detg| =r""1 ( > (= 1)”+kukdetjk>

k=1
1

(71)”+kuk det% + (1)2naxn>
& or
n—1

auk

_ rnl( - (_l)n+kuk(_1)nlk‘3w1+un>

Before proving Proposition 3 stating that the determinant only dependseotetimsG; (u;)
produced by the chain rule when used upwards in the tree, let us quitkiyeothe essential mech-
anism when taking the chain rule f@ﬁ: Consider the tree correspondingftoBy definitionuy, is
the rightmost leaf of the tree. L&t/ be the multi-index ofi,. As in the example, the chain rule
starts at the leafi, and ascends in the tree until it reaches the lowest node whose subitamso
both,u, andug. At this point, it starts descending the tree until it reaches theugabDepending
on whether the chain rule ascends or descends, two different foraderightives occur: while as-
cending, the chain rule produc&s(up)-terms like the one in the example above. At descending,
it producesH (u;)-terms. The general definitions of tk& (up)- andF (U )-terms are given by the
recursive formulae

Pl

Gra (Urg) = 91 ()PP <9 up)P }E fi i j)P
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and

P =Py, PI—PLir

O iy Pl ir
R (uri) = fii ()PP = (Z fl,ir,k(UI,ir,k)pl'ir>
&

The next two lemmata are required for the proof of Proposition 3. We ussthewhat sloppy
notationk € 1, i, if the variableuy is a leaf in the subtree belolwi,. The same notation is used for

Lemma 12 Letl=iy,...,ir—1 and i, be any node of the tree associated with grriested function
f. Then the following recursions hold for the derivatives gf @~ ) and fl?i'r(uur) W.It Ug: If
Ug is not in the subtree under the nodé | that is, k& I ,ir, then

0
dug Ug
and

fI |r(ul |r) =0

5 o aiqu' (Ur)p' if qgel
a gl |r( r)p| Jdr g T}”Gllr(ulj\r) .
— a0 ()P ifgel,]

forqel,jand q¢ |,k for k# j. Otherwise

0 0 0 _
a g| |r( )pl =0 anda f' |r(u| |r) - ppI_F|:ir<u|7|r)a f| Jir,S ( Lir,s )p“r

JIr

forqel,i;,sand g¢|,i;,k for k£ s.

Proof Both of the first equations are obvious, since only those nodes have zeno derivative for
which the subtree actually dependsugn The second equations can be seen by direct computation

0 _ 0
o 0 (Y, )p| =i i, (Y, |r)pl"rilaiqul,ir(u|Tir)

= Mg (s, )Pt (u)t n 9 <9|(UA)p'—€IZ_1f'J(UIj)p')
p r r Jr a q | 5 ) )

P i,
- plI G ()

—a ()P ifael,]
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Similarly
9 9
T%f"if(ul,ir)p' =p fl,ir(Ul,ir)p'_laThfl,ir(Ul,ir)
O i ﬁ
=pfi (U )p|—1i Z fii k(U k)pur
sir sir auq & sy Sy
Pi 1 1. O _
= f (U P f . p|7lr f ) u Prir
p|7ir |7|r( |.,|r) I-,'r( |,Ir) auq |7|r’s( |.,|r,S)
N T AN
= " R (W) o fiis(Wjs)
forkel,ir,s. =

The next lemma states the form of the whole derivagﬁge'n terms of theG (uy)- andF, (u;)-terms.

.....

by

aiqun = =Gy tg(U ) o Gty i (U == )
X FfL»-lmJl(ufly-.-,fm,il) ’ Fflw-wgm:ilw-:it—l(uél:-'n[myilwwit—l) 'AQ‘UQ‘pil""[m’ilmitflil
with Aq = sgnug and|ug|P = (Aquq)P. In particular
uqiun: —GyytgU— ) .-Gy (U, —= )
uq b Sy s A S
X Fopo i (UL) “Fon tminoie 2 (Uty, iy ) | Ug P2 tmisitea,
Proof Successive application of Lemma (12). |

Proof [Proposition 3] Before we begin with the proof, note thafu, ) andG, (u;) fulfill following
equalities

Glin(UT) 'in(UT)P™ = i (Up)P
0—1
= a(up)? — 5 R ) fi(une) P (13)
&
and
El.im
Flin(Win) P =S R k(Ui ) frim k(Ui ) Pk, (14)
=

Now letL = /4,...,/4_1 be the multi-index of the parent af,. We computer,,%l|detj| and
obtain the result by solving fdidet7|. As shown in Lemma (Z}nl,—l|detj\ has the form

1 1 9u,
det = — Y — -Ux+Upn
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By definitionu, = théd(uE—Z\d) = gngd(uﬁd)de. Now, assume thaiy, ..., un_1 are children ofL,
that is,ux = v j, for somel iy =iy, ...,ir andm < k < n. Remember, that by Lemma (13) the terms
uqaiuqun for m< q < n have the form

0 o
Ug 3~ tn = = Gra () - Fuia (Uein) - i (U ) - gl P faattos
q

Using Equation (13), we can expand the determinant as follows

_ Z 7k.uk+g|-t({d(ul_/,£\d)pl_jd
- _ b LT IR
> - Uk Z Uk+gLfd(U )
Z auk K

ou
+ G (U ( Z Giy(u 16 o U+ G gy (U )lgL.,zd(Um)p”d>

n—1 ou lg—1
GLy(u—) =S GLyu—)"1="-u u )P — UL k) fk(ug) P |
+ Gry( Lm)< ég Lta(Upg) ™ gy, Ukt o) Q;tix(Lx>Lx(u0 )
Note that all term&, ¢, (U7 )~ 13‘&” ux for m< k < nnow have the form

_ 0
Q@M%)mq@%z—ﬁdwmwwﬁMWﬂlw%‘“““1 """ """

since we constructed them to be neighborsugf However, with Equation (14), we can fur-
ther expand the surg F|_ k(U k) fLk(ug k) P-x down to the leavesy, ...,un—1. When doing so

we end up with the same factog,, (UL j,) - ...- FL(uLy) - |uq|'°f1 ~~~~~ fa-1i1--1 gs in the derivatives

GL7gd(u%)‘luqai%un. This means exactly that

n-1 LU (-1
- Y GLpu—7) " o= U= Fk(uk) fi(ug k) Px
kzm “blel ouy kzl
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and, therefore,

n—1 au, lg—1
+GL (U7 <— > GL,/zd(Ug[d)_lau U+ o (up) P z FL k(U k) fi(ug ) P
K

l4—1 lyq—

+ Gy (U7, < z FL (UL k) (UL ) P 4 g (up) ™ z FL(u k) fuk(ug, k)p"k>

m—14uy,
== Z Tk uk+GLfd( L.lq 7,9 (Up )

By factoring outG_ gd( ) from the equation, the terrr% ux loose theG, 4, in front and
we get basically the same equatlon as before, only that the new leaf (tHeugigys g (u-)™ and
we got rid of all the children of. By repeating that procedure up to the root node, we successively
factor out allGL/ (up;) for L’ € £ until all terms of the sum vanish and we are only left wigh= 1.
Therefore, the determinant is

1
rn71|detj| = |_| GL(UE)
LeL

which completes the proof. |

Appendix B. Volume and Surface of thel p-Nested Unit Sphere

Proof [Proposition 4] We obtain the volume by computing the integ"q@!)ngx. Differentiation
with respect tdR yields the surface area. For symmetry reasons we can compute the vollyma on
the positive quadrarniR’ and multiply the result with 2later to obtain the full volume and surface
area. The strategy for computing the volume is as follows. We start with iroabesh that are
parents of leaves only. The valueof such a node is simply tHg, norm of its children. Therefore,
we can convert the integral over the childrer @fith the transformation of Gupta and Song (1997).
This maps the leaves 1., intov; and “angular” variabledi. Since integral borders of the original
integral depend only on the valuewfand not oril, we can separate the variablégom the radial
variablesv; and integrate the variablésseparately. The integration ov@tyields a certain factor,
while the variabley, effectively becomes a new leaf.
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Now suppost is the parent of leaves only. Without loss of generality letiHeaves correspond
to the last, coefficients ok. Letx € R'}. Carrying out the first transformation and integration yields

p
4H—-1

3]
dx:/ / V1o S P ) dvidiidxy,
/f<x)gR f(xen o W) <RJaer1 i; ' | e

Mg —PI
0 — P
:/ Vr'_ld\/ldXLn—g, X/ , (1— Zl ~p|> di.
f(Xen—g V)<R gev! Tt &

where?/; denotes the intersection of the positive quadrant and. gh@orm unit ball. For solving
the second integral we make the pointwise transformaii@nﬁip' and obtain

Ly Pl "Ly

L 4H—1 . ] di 1 1 fH—1 n p| d

/ﬁefl/f'l - i; 4 4 pf'fl /Zs<1 - i;S |_|S1 et
Z. n, k Ny k+1

é| 1 I!j [ . p|+ ]

B
1 471 k 1
afielaa
by using the fact that the transformed integral has the form of an unfised®irichlet distribution

and, therefore, the value of the integral must equal its normalization ecdnsta
Now, we solve the integral

/ VPI_ldVI dXyn—g, - (15)
f(Xln 0 V|)<R

We carry this out in exactly the same manner as we solved the previous intégaheed only
to make sure that we only contract nodes that have only leaves as cl{iledne@mber that radii of
contracted nodes become leaves) and we need to find a formula destdinte factorsq”"l
propagate through the tree.

For the latter, we first state the formula and then prove it via induction. Ratiopal conve-
nience letJ denote the set of multi-indices corresponding to the contracted Ie@vﬂsﬁa remaining
coefficients oix andv; the vector of leaves resulting from contraction. The integral which is left to
solve after integrating over dll is given by (remember thay denotes real leaves, that is, the ones
corresponding to coefficients &j:

VAR dx;.
/ X’\ V] <RJ_| J

We already proved the first induction step by computing Equation (15)cémputing the general
induction step supposdeis an inner node whose children are leaves or contracted leaves!’ Let
be the set of contracted leaves untdend X = 7\ J’. Transforming the children df into radial
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coordinates by Gupta and Song (1997) yields
AR\ dxA—/ vkt v”;" ) dv,dx;
/xAv] <RJ_| g f(x5.v7)<R J]K « J ’ s
4 -1 b 1plplv€ 1 Vn 1
= 1-y a” I &
/x V) <R/|-;i| 1= ( iZl | ) | (J;lﬂc ‘ )

n(I -1

4—1 b Pill 4—1 1
vi|1l-— a- (V| l]k) K dx.. dVy(dV| diy, _1
2" 1 vt
Srwoek (2
f(Xi,Vg(,W)SR ﬁ[l,le’Vfil J]K K

Ny —Pl

0—1 Pl —
v RAPIFIGRRY (1_ zlgipl) ﬂaﬂk ! | dxzdvacdvidiy, o
i= k=

= Vil RA 1olx dvgd
/;(X V](V| <R(J_| ) X VI

gy P DI

X

X

0—-1

3]
1-5 o Gy, -
X/ﬂglle‘l/f'l< i; i > |_| -1

Again, by transforming it into a Dirichlet distribution, the latter integral has tieten

ng P
ot o6l - K mxn
/ = 1_Zlf‘ip' [ G d - 1—|‘|B Tk M
Oy -9 = ) b P

while the remaining former integral has the form

VL) VT vy = / VP Ldvydx;
/f(x Ve V) <R (J_l ) AR X;.Vy) <RJ_| !

as claimed.
By carrying out the integration up to the root node, the remaining integcairbes

X’

vi—id Rvn 1d R
“dvp = dvwp = —.
/VQ)<R 0 0 /0 0 0 n

Collecting the factors from integration over tigroves the Equations (5) and (7). UsiBéa, b| =

r[[aLr[b}] yields Equations (6) and (8). .
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Appendix C. Layer Marginals
Proof [Proposition 7]

p(X) =

O (Xen—e,Vi, Uy —1,40)) i1 (1_[421‘01“,') Pl
= | A !

St(f(x))

whereA, = sign(x,). Note thatf is invariant to the actual value &f,. However, when integrating
it out, it yields a factor of 2. Integrating o, 1 andA, now yields

@O nw) 1 2T |3
Sty ger[g)

_ W (Xan-a, V1)) 1
St(fF(Xen—g,1)) !

p(xln 4 1V|)

Now, we can go on and integrate out more subtrees. For that purp’ox;,denote the remaining
coefficients ok, v, the vector of leaves resulting from the kind of contraction just showm f@and
7 the set of multi-indices corresponding to the “new leaves”, that is, mpeéer contraction. We
obtain the following equation

O (X5,Vy)) 1
PG5 V9) = a ey [ |V
V) = S (v 1
wheren; denotes the number of leaves in the subtree under the hodibe calculations for the
proof are basically the same as the one for proposition (4). |

Appendix D. Factorial Lp-Nested Distributions

Proof [Proposition 9] Since the singleare independenty (X1), ..., T, (X, ) and, thereforeyy, ..., vy,
must be independent as wek @re the elements of in the subtree below thigh child of the root
node). Using Corollary 8 we can write the densityef...,v,, as (the function nameis unrelated
to the usage of the functiampabove)

Vlfo rlhl VI ||V1£0Hp@ rlvnl

(p—1 n
P T [%}
Vg6 227 12

with

9([IVato [ po) =

]l
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Since the integral ovayis finite, it follows from Sinz et al. (2009a) thghas the forng(||V1.¢, || p,) =
exp(ag|| V1, || B + bg) for appropriate constangg andby. Therefore, the marginals have the form

hi (Vi) = exp(agvP 4 o)V . (16)

On the other hand, the particular formgiimplies that the radial density has the fogff (x)) O
f(x)("Y exp(ap f (X)P 4 bg)Pe. In particular, this implies that the root node’s childrgx;) (i =
1,...,4p) are independent arld,-nested symmetric again. With the same argument as above, it fol-

lows that their childrew, 1., follow the distributionp(V; 1, ..., Vi ;) :exp(a;Hle:giH '+ by) |‘|J 1 ,n'J‘ !
Transforming that distribution th,-spherically symmetric polar coordinates_ Vi1 ]| p @nd

U=Vi14-1/||Vi14| p @sin Gupta and Song (1997), we obtain the form

1-p

¢ ¢ 1y Mt
i1 P i—1 P 1
p(vi, T) = explaivf” +b)v;'~ 1<1— 2 Iﬁj\"i> vi (l— > !ujlp‘> |‘L<a,-w)”‘ﬁj*l
j=1 =1 |=
Mg —Pi
li—1

i
= exp(aVvP +b)v"~ |G | P TR
(+-50r) "

where the second equation follows the same calculations as in the proafpufdition 4. After in-
tegrating oufll, assuming that thg are statistically independent, we obtain the density; @fhich

is equal to (16) if and only if; = pp. However, if pp and p; are equal, the hierarchy of the-
nested function shrinks by one layer simgeand pp cancel themselves. Repeated application of the
above argument collapses the complstenested tree until one effectively obtainslagspherical
function. Since the only factorialy-spherically symmetric distribution is tiiegeneralized Normal
(Sinz et al., 2009a) the claim follows. |

Appendix E. Determinant of the Jacobian for NRF

Proof [Lemma 11] The proof is a generalization of the proof of Lyu and Simonc2llD9). Due
to the chain rule the Jacobian of the entire transformation is the multiplication ofttudidns
for each single step, that is, the rescaling of a subset of the dimensiosdaingle inner node.
The Jacobian for the other dimensions is simply the identity matrix. Therefeeeterminant of
the Jacobian for each single step is the determinant for the radial traradfon on the respective
dimensions. We show how to compute the determinant for a single step.

Assume that we reached a particular ndde Algorithm 2. The leaves, which have been
rescaled by the preceding steps, are calletlet§, = ¢ f(' (t)'))) -ty with g (r) = (F 1o %)(r). The
general form of a single Jacobian is

98, 0 (a(ht)) , a(fi(t))
ot f’tl< fi(tr) )+ fi(ty) I

where

0 (o)) _ [g(fitt) a(ht))) o
6t|< fi(t)) )(I ) '
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Lety; be a leave in the subtree undeand letl, Jy, ..., Jk be the path of inner nodes frohto y;,
then

a"y_ﬁ () =vE PR P Py et gy,
I

If we denoter = f(t;) and{; = le P -vEkal_ka|yi|ka‘l-sgryi for the respectivel, we
obtain

det<t| a(zl (gl(ﬁfl(t(r;))) +g'(flf'(t(lt;))ln,> :det<<g{( )— g|r( ))r d + ar )In,>.

Now we can use Sylvester's determinant formula(igdet bt ') = det(1+ bt Z) = 1+ bt
or equivalently

del(aln+bt|ZT) = det(a- <In+2t|ZT>>
n b, .t
=a det<|n+at|z >
= a”fl(a+ btrl),

as well ag, = fi(t;)P =rP to see that
n-1
det((g{() g|fr)> ()I >:gur(r:)l det((g{() glfr))r TR (r)>
n-1
:g'r(rr])l det(g{(r)—g'ir)Jrg'(r)>

r
g(n™*d

Lg(r) is readily computed vighgi (r) = & (F 1o Fo)(r) = %.
Multiplying the single determinants along with &étfor the final step of the chain rule com-
pletes the proof. |
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