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Abstract
Leading classification methods such as support vector machines (SVMs) and their counterparts
achieve strong generalization performance by maximizing the margin of separation between data
classes. While the maximum margin approach has achieved promising performance, this article
identifies its sensitivity to affine transformations of the data and to directions with large data spread.
Maximum margin solutions may be misled by the spread of data and preferentially separate classes
along large spread directions. This article corrects theseweaknesses by measuring margin not in
the absolute sense but rather only relative to the spread of data in any projection direction. Maxi-
mum relative margin corresponds to a data-dependent regularization on the classification function
while maximum absolute margin corresponds to anℓ2 norm constraint on the classification func-
tion. Interestingly, the proposed improvements only require simple extensions to existing maximum
margin formulations and preserve the computational efficiency of SVMs. Through the maximiza-
tion of relative margin, surprising performance gains are achieved on real-world problems such
as digit, text classification and on several other benchmarkdata sets. In addition, risk bounds are
derived for the new formulation based on Rademacher averages.
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1. Introduction

In classification problems, the aim is to learn a classifier that generalizes wellon future data from
a limited number of training examples. Support vector machines (SVMs) and maximum margin
classifiers (Vapnik, 1995; Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004) have
been a particularly successful approach both in theory and in practice.Given a labeled training
set, these return a predictor that accurately labels previously unseen test examples. For simple bi-
nary classification in Euclidean spaces, this predictor is a functionf : R

m → {±1} estimated from
observed training data(xi ,yi)

n
i=1 consisting of inputsxi ∈ R

m and outputsyi ∈ {±1}. A linear func-
tion1 f (x) := sign(w⊤x+b) wherew∈R

m,b∈R serves as the decision rule throughout this article.
The parameters of the hyperplane(w,b) are estimated by maximizing the margin (e.g., the distance
between the hyperplanes defined byw⊤x+b = 1 andw⊤x+b = −1) while minimizing a weighted
upper bound on the misclassification rate on training data (via so-called slackvariables). In practice,
the margin is maximized by minimizing12w⊤w plus an upper bound on the misclassification rate.

1. In this article the dot productw⊤x is used with the understanding that it can be replaced with a generalized inner
product or by using a kernel for generic objects.
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While maximum margin classification works well in practice, its solution can easily beperturbed
by an (invertible) affine or scaling transformation of the input space. Forinstance, by transforming
all training and testing inputs by an invertible linear transformation, the SVM solution and its re-
sulting classification performance can be significantly varied. This is worrisome since an adversary
could directly exploit this shortcoming and transform the data to drive performance down; a syn-
thetic example showing this effect will be presented in Section 5. Moreover,this phenomenon is
not limited to an explicit adversarial setting; it can naturally occur in many realworld classification
problems, especially in high dimensions. This article will explore such shortcomings in maximum
margin solutions (or equivalently, SVMs in the context of this article) which exclusively measure
margin by the points near the classification boundary regardless of how spread the remaining data is
away from the separating hyperplane. An alternative approach will be followed based on controlling
the spread while maximizing the margin. This helps overcome this bias and produces a formulation
that is affine invariant. The key is to recover a large margin solution while normalizing the margin
by the spread of the data. Thus, margin is measured in arelative sense rather than in the absolute
sense. In addition, theoretical results using Rademacher averages support this intuition. The re-
sulting classifier will be referred to as the relative margin machine (RMM) andwas first introduced
by Shivaswamy and Jebara (2009a) with this longer article serving to provide more details, more
thorough empirical evaluation and more theoretical support.

Traditionally, controlling spread has been an important theme in classification problems. For in-
stance, classical linear discriminant analysis (LDA) (Duda et al., 2000) finds projections of the data
so that the inter-class separation is large while within-class scatter is small. However, the spread (or
scatter in this context) is estimated by LDA using only simple first and the second order statistics of
the data. While this is appropriate if class-conditional densities are Gaussian, second-order statis-
tics are inappropriate for many real-world data sets and thus, the classification performance of LDA
is typically weaker than that of SVMs. The estimation of spread should not make second-order
assumptions about the data and should be tied to the margin criterion (Vapnik, 1995). A similar
line of reasoning has been proposed to perform feature selection. Weston et al. (2000) showed that
second order tests and filtering methods on features perform poorly compared to wrapper methods
on SVMs which more reliably remove features that have low discriminative value. In this prior
work, a feature’s contribution to margin is compared to its effect on the radius of the data by com-
puting bounding hyper-spheres rather than simple second-order statistics. Unfortunately, there, only
axis-aligned feature selection was considered. Similarly, ellipsoidal kernel machines (Shivaswamy
and Jebara, 2007) were proposed to normalize data in feature space byestimating bounding hyper-
ellipsoids while avoiding second-order assumptions. Similarly, the radius-margin bound has been
used as a criterion to tune the hyper-parameters of the SVM (Keerthi, 2002). Another criterion based
jointly on ideas from the SVM method as well as Linear Discriminant Analysis hasbeen studied
by Zhang et al. (2005). This technique involves first solving the SVM andthen solving an LDA
problem based on the support vectors that were obtained. While these previous methods showed
performance improvements, they relied on multiple-step locally optimal algorithms for interleaving
spread information with margin estimation.

To overcome the limitations of local non-convex optimization schemes, the formulations derived
here will remain convex, will be efficiently solvable and will admit helpful generalization bounds.
A similar method to the RMM was described by Haffner (2001), yet that approach started from a
different overall motivation. In contrast, this article starts with a novel intuition, produces a novel
algorithm and provides novel empirical and theoretical support. Anotherinteresting contact point
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is the second order perceptron framework (Cesa-Bianchi et al., 2005) which parallels some of the
intuitions underlying the RMM. In an on-line setting, the second order perceptron maintains both
a decision rule and a covariance matrix to whiten the data. The mistake bounds itinherits were
shown to be better than those of the classical perceptron algorithm. Alternatively, one may consider
distributions over classifier solutions which provide a different estimate thanthe maximum margin
setting and have also shown empirical improvements over SVMs (Jaakkola etal., 1999; Herbrich
et al., 2001). In recent papers, Dredze et al. (2008) and Crammer etal. (2009a) consider a distribu-
tion on the perceptron hyperplane. These distribution assumptions permit update rules that resemble
whitening of the data, thus alleviating adversarial affine transformations and producing changes to
the basic maximum margin formulation that are similar in spirit to those the RMM provides. In
addition, recently, a new batch algorithm called the Gaussian margin machine (GMM) (Crammer
et al., 2009b) has been proposed. The GMM maintains a Gaussian distribution over weight vectors
for binary classification and seeks the least informative distribution that correctly classifies train-
ing data. While the GMM is well motivated from a PAC-Bayesian perspective,the optimization
problem itself is expensive involving a log-determinant optimization.

Another alternative route for improving SVM performance includes the useof additional exam-
ples. For instance, unlabeled or test examples may be available in semi-supervised or transductive
formulations of the SVM (Joachims, 1999; Belkin et al., 2005). Alternatively, additional data that
does not belong to any of the classification classes of interest may be available as in the so-called
Universum approach (Weston et al., 2006; Sinz et al., 2008). In principle, these methods also change
the way margin is measured and the way regularization is applied to the learning problem. While
additional data can be helpful in overcoming limitations for many classifiers, thisarticle will be
interested in only the simple binary classification setting. The argument is that, without any ad-
ditional assumptions beyond the simple classification problem, maximizing margin in theabsolute
sense may be suboptimal and that maximizing relative margin is a promising alternative.

Further, large margin methods have been successfully applied to a variety of tasks such as pars-
ing (Collins and Roark, 2004; Taskar et al., 2004), matrix factorization (Srebro et al., 2005), struc-
tured prediction (Tsochantaridis et al., 2005), etc.; in fact, the RMM approach could be readily
adapted to such problems. For instance, RMM has been successfully extended to structured predic-
tion problems (Shivaswamy and Jebara, 2009b).

The organization of this article is as follows. Motivation from various perspectives are given in
Section 2. The relative margin machine formulation is detailed in Section 3 and several variants and
implementations are proposed. Generalization bounds for the various function classes are studied
in Section 4. Experimental results are provided in Section 5. Finally, conclusions are presented in
Section 6. Some proofs and otherwise standard results are provided in theAppendix.

1.1 Notation

Throughout this article, boldface letters indicate vectors/matrices. For two vectorsu ∈ R
m and

v ∈ R
m, u ≤ v indicates thatui ≤ vi for all i from 1 tom. 1, 0 andI denote the vectors of all ones,

all zeros and the identity matrix respectively;0 also denotes a matrix of all zeros in some contexts.
The dimensionality of vectors and matrices should be clear from the context.
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2. Motivation

This section provides three different (an intuitive, a probabilistic and an affine transformation based)
motivations for maximizing the margin relative to the data spread.

2.1 Intuitive Motivation with a Two Dimensional Example

Consider the simple two dimensional data set in Figure 1 where the goal is to separate the two classes
of points: triangles and squares. The figure depicts three scaled versions of the two dimensional
problem to illustrate potential problems with the large margin solution.

In the topmost plot in the left column of Figure 1, two possible linear decision boundaries
separating the classes are shown. The red (or dark shade) solution is the SVM estimate while
the green (or light shade) solution is the proposed maximum relative margin alternative. Clearly,
the SVM solution achieves the largest margin possible while separating both classes, yet is this
necessarily the best solution?

Next, consider the same set of points after a scaling transformation in the second and the third
row of Figure 1. Note that all these three problems correspond to the same discrimination problem
up to a scaling factor. With progressive scaling, the SVM increasingly deviates from the maximum
relative margin solution (green), clearly indicating that the SVM decision boundary is sensitive to
affine transformations of the data. Essentially, the SVM produces a family ofdifferent solutions as a
result of the scaling. This sensitivity to scaling and affine transformations isworrisome. If the SVM
solution and its generalization accuracy vary with scaling, an adversary may exploit such scaling to
ensure that the SVM performs poorly. Meanwhile, an algorithm producingthe maximum relative
margin (green) decision boundary could remain resilient to adversarial scaling.

In the previous example, a direction with a small spread in the data produced agood and affine-
invariant discriminator which maximized relative margin. Unlike the maximum margin solution,
this solution accounts for the spread of the data in various directions. This permits it to recover a
solution which has a large margin relative to the spread in that direction. Sucha solution would
otherwise be overlooked by a maximum margin criterion. A small margin in a correspondingly
smaller spread of the data might be better than a large absolute margin with correspondingly larger
data spread. This particular weakness in large margin estimation has only received limited attention
in previous work.

It is helpful to consider the generative model for the above motivating example. Therein, each
class was generated from a one dimensional line distribution with the two classes on two parallel
lines. In this case, the maximum relative margin (green) decision boundary should obtain zero test
error even if it is estimated from a finite number of examples. However, for finite training data,
the SVM solution will make errors and will do so increasingly as the data is scaled further. While
it is possible to anticipate these problems and choose kernels or nonlinear mappings to correct for
them in advance, this is not necessarily practical. The right mapping or kernel is never provided in
advance in realistic settings. Instead, one has to estimate kernels and nonlinear mappings, a difficult
endeavor which can often exacerbate the learning problem. Similarly, simple data preprocessing
(affine whitening to make the data set zero-mean and unit-covariance or scaling to place the data
into a zero-one box) can also fail, possibly because of estimation problems inrecovering the correct
transformation (this will be shown in real-world experiments).

The above arguments show that large margin on its own is not enough; it is also necessary to
control the spread of the data after projection. Therefore, maximum marginshould be traded-off or
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balanced with the goal of simultaneously minimizing the spread of the projected data, for instance,
by bounding the spread|w⊤x + b|. This will allow the linear classifier to recover large margin
solutions not in the absolute sense but ratherrelative to the spread of the data in that projection
direction.

In the case of a kernel such as the RBF kernel, the points are first mapped to a space so that
all the input examples are unit vectors (i.e.,〈φ(x),φ(x)〉 = 1). Note that the intuitive motivation
proposed here still applies in such cases. No matter how they are mapped initially, a large margin
solution still projects these points to the real line where the margin of separationis maximized.
However, the spread of the projection can still vary significantly among the different projection
directions. Given the above motivation, it is important to achieve a large marginrelative to the spread
of the projections even in such situations. Furthermore, experiments will support this intuition with
dramatic improvements on many real problems and with a variety of kernels (including radial basis
function and polynomial kernels).

2.2 Probabilistic Motivation

In this subsection, an informal motivation is provided to illustrate why maximizing relative margin
may be helpful. Suppose(xi ,yi)

n
i=1 are drawn independently and identically (iid) from a distribution

D. A classifierw∈R
m is sought which will produce low error on future unseen examples according

to the decision rule ˆy = sign(w⊤x). An alternative criterion is that the classifier should produce a
large value ofη according to the following expression:

Pr
(x,y)∼D

[

yw⊤x ≥ 0
]

≥ η,

wherew ∈ R
m is the classifier. One way to ensure the above constraint is by requiring that the

following inequality hold:

ED [yw⊤x] ≥
√

η
1−η

√

VD [yw⊤x]. (1)

A proof of the above claim for a general distribution can be found in Shivaswamy et al. (2006). In
fact, Gaussian margin machines (Crammer et al., 2009b) start with a similar motivation but assume
a Gaussian distribution on the classifier.

According to (1), achieving a low probability of error requires the projections to have a large
mean and a small variance. The mean and variance for the true distributionD may be unavailable,
however, the empirical counterparts of these quantities are available and known to be concentrated.
The above inequality is used as a loose motivation. Instead of precisely finding low variance and
high mean projections, this paper implements this intuition by trading off between large margin and
small projections of the data while correctly classifying most of the examples witha hinge loss.

2.3 Motivation From an Affine Invariance Perspective

Another motivation for maximum relative margin can be made by reformulating the classification
problem altogether. Instead of learning a classifier from data, considerlearning an affine transfor-
mation on data such that an a priorifixedclassifier performs well. The data will be mapped by an
affine transformation such that it is separated with large margin while it also produces a small ra-
dius. Recall that maximum margin classification and SVMs are motivated by generalization bounds
based on Vapnik-Chervonenkis complexity arguments. These generalization bounds depend on the
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Figure 1: Left: As the data is scaled, the maximum margin SVM solution (red or dark shade) de-
viates from the maximum relative margin solution (green or light shade). Threedifferent
scaling scenarios are shown. Right: The projections of the examples (thatis w⊤x+b) on
the real line for the SVM solution (red or dark shade) and the proposed classifier (green or
light shade) under each scaling scenario. These projections have been drawn on separated
axes for clarity. The absolute margins for the maximum margin solution (red) are 1.24,
1.51 and 2.08 from top to bottom. For the maximum relative margin solution (green)
the absolute margin is merely 0.71. However, the relative margin (the ratio of absolute
margin to the spread of the projections) is 41%, 28%, and 21% for the maximum margin
solution (red) and 100% for the relative margin solution (green). The scale of all axes is
kept locked to permit direct visual comparison.
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ratio of the margin to the radius of the data (Vapnik, 1995). Similarly, Rademacher generalization
bounds (Shawe-Taylor and Cristianini, 2004) also consider the ratio of the trace of the kernel matrix
to the margin. Here the radius of the data refers to anR such that||x|| ≤ R for all x drawn from a
distribution.

Instead of learning a classification rule, the optimization problem consideredin this section will
recover an affine transformation which achieves a large margin from afixeddecision rule while
also achieving small radius. Assume the classification hyperplane is given apriori via the decision
boundaryw⊤

0 x+b0 = 0 with the two supporting margin hyperplanesw⊤
0 x+b0 =±ρ. Here,w0 ∈R

m

can be an arbitrary unit vector andb0 is an arbitrary scalar. Consider the problem of mapping all
the training points (by an affine transformationx → Ax +b,A ∈ R

m×m,b ∈ R
m) so that the mapped

points (i.e.,Ax i + b) satisfy the classification constraintsw⊤
0 x + b0 = ±ρ while producing small

radius,
√

R. The choice ofw0 andb0 is arbitrary since the affine transformation can completely
compensate for it. For brevity, denote byÃ = [A b] andx̃ = [x⊤ 1]⊤. With this notation, the affine
transformation learning problem is formalized by the following optimization:

min
Ã,R,ρ

−ρ+ER (2)

yi(w⊤
0 Ãx̃i +b0) ≥ ρ, ∀1≤ i ≤ n

1
2
(Ãx̃i)

⊤(Ãx̃i) ≤ R ∀1≤ i ≤ n.

The parameterE trades off between the radius of the affine transformed data and the margin2 that
will be obtained. The following Lemma shows that this affine transformation learning problem is
basically equivalent to learning a large margin solution with a small spread.

Lemma 1 The solutionÃ∗ to (2) is a rank one matrix.

Proof Consider the Lagrangian of the above problem with Lagrange multipliersα,λ,≥ 0:

L(Ã,ρ,R,α,λ) = −ρ+ER−
n

∑
i=1

αi(yi(w⊤
0 Ãx̃i +b0)−ρ)

+
n

∑
i=1

λi(
1
2
(Ãx̃i)

⊤(Ãx̃i)−R).

Differentiating the above Lagrangian with respect toA gives the following expression:

∂L(Ã,ρ,R,α,λ)

∂Ã
= −

n

∑
i=1

αiyiw0x̃⊤i + Ã
n

∑
i=1

λi x̃i x̃⊤i . (3)

From (3), at optimum,

Ã∗
n

∑
i=1

λi x̃i x̃⊤i = −
n

∑
i=1

αiyiw0x̃⊤i .

It is therefore clear that̃A∗ can always be chosen to have rank one since the right hand side of the
expression is just an outer product of two vectors.

2. For brevity, the so-called slack variables have been intentionally omitted since the proof holds in any case.
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Lemma 1 gives further intuition on why one should limit the spread of the recovered classifier.
Learning a transformation matrix̃A so as to maximize the margin while minimizing the radius given
an a priori hyperplane(w0,b0) is no different from learning a classification hyperplane(w,b) with
a large margin as well as a small spread. This is because the rank of the affine transformatioñA∗

is one; thus,̃A∗ merely maps all the points̃xi onto a line achieving a certain marginρ but also lim-
iting the output or spread. This means that finding an affine transformation which achieves a large
margin and small radius is equivalent to finding aw andb with a large margin and with projections
constrained to remain close to the origin. Thus, the affine transformation learning problem comple-
ments the intuitive arguments in Section 2.1 and also suggests that the learning algorithm should
bound the spread of the data.

3. From Absolute Margin to Relative Margin

This section will provide an upgrade path from the maximum margin classifier (or SVM) to a max-
imum relative margin formulation. Given independent identically distributed examples(xi ,yi)

n
i=1

wherexi ∈ R
m andyi ∈ {±1} are drawn from Pr(x,y), the support vector machine primal formula-

tion is as follows:

min
w,b,ξ

1
2
‖w‖2 +C

n

∑
i=1

ξi (4)

s.t.yi(w⊤xi +b) ≥ 1−ξi , ξi ≥ 0 ∀1≤ i ≤ n.

The above is an easily solvable quadratic program (QP) and maximizes the margin by minimizing
‖w‖2. Since real data is seldom separable, slack variables (ξi) are used to relax the hard classifi-
cation constraints. Thus, the above formulation maximizes the margin while minimizing an upper
bound on the number of classification errors. The trade-off between thetwo quantities is controlled
by the parameterC. Equivalently, the following dual of the formulation (4) can be solved:

max
α

n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jx⊤i x j (5)

s.t.
n

∑
i=1

αiyi = 0

0≤ αi ≤C ∀1≤ i ≤ n.

Lemma 2 The formulation in(5) is invariant to a rotation of the inputs.

Proof Replace eachxi with Ax i whereA is a rotation matrix such thatA ∈ R
m×m andA⊤A = I . It

is clear that the dual remains the same.

However, the dual is not the same ifA is more general than a rotation matrix, for instance, if it is an
arbitrary affine transformation.

The above classification framework can also handle non-linear classification readily by making
use of Mercer kernels. A kernel functionk : R

m×R
m → R replaces the dot productsx⊤i x j in (5).

The kernel functionk is such thatk(xi ,x j) =
〈

φ(xi),φ(x j)
〉

, whereφ : R
m → H is a mapping to

a Hilbert space. Thus, solving the SVM dual formulation (5) with a kernel function can give a
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non-linear solution in the input space. In the rest of this article,K ∈ R
n×n denotes the Gram matrix

whose individual entries are given byKi j = k(xi ,x j). When applying Lemma 2 on a kernel defined
feature space, the affine transformation is onφ(xi) and not onxi .

3.1 The Whitened SVM

One way of limiting sensitivity to affine transformations while recovering a largemargin solution is
to whiten the data with the covariance matrix prior to estimating the SVM solution. This may also
reduce the bias towards regions of large data spread as discussed in Section 2. Denote by

Σ =
1
n

n

∑
i=1

xix⊤i − 1
n2

n

∑
i=1

xi

n

∑
j=1

x⊤j , and µ =
1
n

n

∑
i=1

xi ,

the sample covariance and sample mean, respectively. Now, consider the following formulation
calledΣ-SVM:

min
w,b,ξ

1−D
2

‖w‖2 +
D
2
‖Σ 1

2 w‖2 +C
n

∑
i=1

ξi (6)

s.t.yi(w⊤(xi −µ)+b) ≥ 1−ξi , ξi ≥ 0 ∀1≤ i ≤ n

where 0≤ D ≤ 1 is an additional parameter that trades off between the two regularization terms.
WhenD = 0, (6) gives back the usual SVM primal (although on translated data). The dual of (6)
can be shown to be:

max
α

n

∑
i=1

αi −
1
2

n

∑
i=1

αiyi(xi −µ)⊤((1−D)I +DΣ)−1
n

∑
j=1

α jy j(x j −µ) (7)

s.t.
n

∑
i=1

αiyi = 0

0≤ αi ≤C ∀1≤ i ≤ n.

It is easy to see that the above formulation (7) is translation invariant and tends to an affine invariant
solution whenD tends to one. However, there are some problems with this formulation. First, the
whitening process only considers second order statistics of the input datawhich may be inappro-
priate for non-Gaussian data sets. Furthermore, there are computationaldifficulties associated with
whitening. Consider the following term:

(xi −µ)⊤((1−D)I +DΣ)−1(x j −µ).

When 0< D < 1, it can be shown, by using the Woodbury matrix inversion formula, that theabove
term can be kernelized as

k̂(xi ,x j) =
1

1−D

(

k(xi ,x j)−
K⊤

i 1
n

−
K⊤

j 1

n
+

1⊤K1
n2

)

− 1
1−D

(

(

K i −
K1
n

)⊤( I
n
− 11⊤

n2

)[

1−D
D

I +K
(

I
n
− 11⊤

n2

)]−1(

K j −
K1
n

)

)

,
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whereK i is theith column ofK . This implies that theΣ-SVM can be solved merely by solving (5)
after replacing the kernel witĥk(xi ,x j) as defined above. Note that the above formula involves a
matrix inversion of sizen, making the kernel computation aloneO(n3). Even performing whitening
as a preprocessing step in the feature space would involve this matrix inversion which is often
computationally prohibitive.

3.2 Relative Margin Machines

While the aboveΣ-SVM does address some of the issues of data spread, it made second order
assumptions to recoverΣ and involved a cumbersome matrix inversion. A more direct and efficient
approach to control the spread is possible and will be proposed next.

The SVM will be modified such that the projections on the training examples remainbounded.
A parameter will also be introduced that helps trade off between large marginand small spread of
the projection of the data. This formulation will initially be solved by a quadraticallyconstrained
quadratic program (QCQP) in this section. The dual of this formulation will also be of interest and
yield further geometric intuitions.

Consider the following formulation called the relative margin machine (RMM):

min
w,b

1
2
‖w‖2 +C

n

∑
i=1

ξi (8)

s.t.yi(w⊤xi +b) ≥ 1−ξi , ξi ≥ 0 ∀1≤ i ≤ n

1
2
(w⊤xi +b)2 ≤ B2

2
∀1≤ i ≤ n.

This formulation is similar to the SVM primal (4) except for the additional constraints 1
2(w⊤xi +

b)2 ≤ B2

2 . The formulation has one extra parameterB in addition to the SVM parameterC. WhenB
is large enough, the above QCQP gives the same solution as the SVM. Also note that only settings
of B > 1 are meaningful since a value ofB less than one would prevent any training examples from
clearing the margin, that is, none of the examples could satisfyyi(w⊤xi +b) ≥ 1 otherwise. LetwC

andbC be the solutions obtained by solving the SVM (4) for a particular value ofC. It is clear, then,
thatB > maxi |w⊤

C xi + bC|, makes the constraint on the second line in the formulation (8) inactive
for eachi and the solution obtained is the same as the SVM estimate. This gives an upper threshold
for the parameterB so that the RMM solution is not trivially identical to the SVM solution.

As B is decreased, the RMM solution increasingly differs from the SVM solution.Specifically,
with a smallerB, the RMM still finds a large margin solution but with a smaller projection of the
training examples. By trying differentB values (within the aforementioned thresholds), different
large relative margin solutions are explored. It is helpful to next consider the dual of the RMM
problem.

The Lagrangian of (8) is given by:

L(w,b,α,λ,β) =
1
2
‖w‖2 +C

n

∑
i=1

ξi −
n

∑
i=1

αi

(

yi(w⊤xi +b)−1+ξi

)

−
n

∑
i=1

βiξi

+
n

∑
i=1

λi

(

1
2
(w⊤xi +b)2− 1

2
B2
)

,
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whereα,β,λ ≥ 0 are the Lagrange multipliers corresponding to the constraints. Differentiating
with respect to the primal variables and equating to zero produces:

(I +
n

∑
i=1

λixix⊤i )w+b
n

∑
i=1

λixi =
n

∑
i=1

αiyixi ,

1
λ⊤1

(
n

∑
i=1

αiyi −
n

∑
i=1

λiw⊤xi) = b,

αi +βi = C ∀1≤ i ≤ n.

Denoting by

Σλ =
n

∑
i=1

λixix⊤i − 1
λ⊤1

n

∑
i=1

λixi

n

∑
j=1

λ jx⊤j , and µλ =
1

λ⊤1

n

∑
i=1

λixi ,

the dual of (8) can be shown to be:

max
α,λ

n

∑
i=1

αi −
1
2

n

∑
i=1

αiyi(xi −µλ)⊤(I +Σλ)−1
n

∑
j=1

α jy j(x j −µλ)+
1
2

B2
n

∑
i=1

λi (9)

s.t. 0≤ αi ≤C λi ≥ 0 ∀1≤ i ≤ n.

Moreover, the optimalw can be shown to be:

w = (I +Σλ)−1
n

∑
i=1

αiyi(xi −µλ).

Note that the above formulation is translation invariant sinceµλ is subtracted from eachxi . Σλ

corresponds to a shape matrix (which is potentially low rank) determined byxi ’s that have non-zero
λi . From the Karush-Kuhn-Tucker (KKT) conditions of (8) it is clear thatλi(

1
2(w⊤xi +b)2− B2

2 ) =

0. Consequentlyλi > 0 implies (1
2(w⊤xi + b)2 − B2

2 ) = 0. Notice the similarity in the two dual
formulations in (7) and (9); both formulations look similar except for the choice ofµ andΣ which
transform the inputs. The RMM in (9) whitens data with the matrix(I +Σλ) while simultaneously
solving an SVM-like classification problem. While this is similar in spirit to theΣ-SVM, the matrix
(I +Σλ) is being estimated directly to optimize the margin with a small data spread. TheΣ-SVM
only whitens data as a preprocessing independently of the margin and the labels. TheΣ-SVM is
equivalent to the RMM only in the rare situation when allλi = t for somet which makes theµλ and
Σλ in the RMM andΣ-SVM identical up to a scaling factor.

In practice, the above formulation will not be solved since it is computationally impractical.
Solving (9) requires semi-definite programming (SDP) which prevents the method from scaling
beyond a few hundred data points. Instead, an equivalent optimization willbe used which gives
the same solution but only requires quadratic programming. This is achieved by simply replacing
the constraint12(w⊤xi +b)2 ≤ 1

2B2 with the two equivalent linear constraints:(w⊤xi +b) ≤ B and
−(w⊤xi + b) ≤ B. With these linear constraints replacing the quadratic constraint, the problemis
now merely a QP. In the primal, the QP has 4n constraints (includingξ ≥ 0 ) instead of the 2n
constraints in the SVM. Thus, the RMM’s quadratic program has the same order of complexity as
the SVM. In the next section, an efficient implementation of the RMM problem is presented.
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3.3 Fast Implementation

Once the quadratic constraints have been replaced with linear constraints,the RMM is merely a
quadratic program which admits many fast implementation schemes. It is now possible to adapt
previous fast SVM algorithms in the literature to the RMM. In this section, theSVMlight (Joachims,
1998) approach will be adapted to the following RMM optimization problem

min
w,b

1
2
‖w‖2 +C

n

∑
i=1

ξi (10)

s.t.yi(w⊤xi +b) ≥ 1−ξi , ξi ≥ 0 ∀1≤ i ≤ n

w⊤xi +b≤ B ∀1≤ i ≤ n

−w⊤xi −b≤ B ∀1≤ i ≤ n.

The dual of (10) can be shown to be the following:

max
α,λ,λ∗

− 1
2

(α•y−λ+λ∗)⊤K (α•y−λ+λ∗)+α⊤1−Bλ⊤1−Bλ∗⊤1 (11)

s.t.α⊤y−λ⊤1+λ∗⊤1 = 0

0≤ α ≤C1

λ,λ∗ ≥ 0,

where the operator• denotes the element-wise product of two vectors.
The QP in (11) is solved in an iterative way. In each step, only a subset ofthe dual variables are

optimized. For instance, in a particular iteration, takeq, r ands (q̃, r̃ ands̃) to be indices of the free
(fixed) variables inα, λ andλ∗ respectively (ensuring thatq∪ q̃ = {1,2, . . .n} andq∩ q̃ = /0 and
proceeding similarly for the other two indices). The optimization over the free variables in that step
can then be expressed as:

max
αq,λr ,λ∗

s

− 1
2





αq•yq

λr

λ∗
s





⊤



Kqq −Kqr Kqs

−K rq K rr −K rs

K sq −K sr K ss









αq•yq

λr

λ∗
s



 (12)

− 1
2





αq•yq

λr

λ∗
s





⊤



Kqq̃ −Kqr̃ Kqs̃

−K rq̃ K r r̃ −K rs̃

K sq̃ −K sr̃ K ss̃









αq̃•yq̃

λr̃

λ∗
s̃





+α⊤
q 1−Bλ⊤

r 1−Bλ∗⊤
s 1

s.t.α⊤
q yq−λ⊤

r 1+λ∗⊤
s 1 = −α⊤

q̃ yq̃ +λ⊤
r̃ 1−λ∗⊤

s̃ 1,

0≤ αq ≤C1,

λr , λ∗
s ≥ 0.

While the first term in the above objective is quadratic in the free variables (over which it is op-
timized), the second term is merely linear. Essentially, the above is a working-set scheme which
iteratively solves the QP over subsets of variables until some termination criteria are achieved. The
following enumerates the termination criteria that will be used in this article. Ifα,λ,λ∗ andb are
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the current solution (b is determined by the KKT conditions just as with SVMs), then:

∀i s.t. 0< αi < C : b− ε ≤ yi − (
n

∑
j=1

(α jy j −λ j +λ∗
j )k(xi ,x j)) ≤ b+ ε

∀i s.t.αi = 0 : yi(
n

∑
j=1

(α jy j −λ j +λ∗
j )k(xi ,x j)+b) ≥ 1− ε

∀i s.t.αi = C : yi(
n

∑
j=1

(α jy j −λ j +λ∗
j )k(xi ,x j)+b) ≤ 1+ ε

∀i s.t.λi > 0 : B− ε ≤ (
n

∑
j=1

(α jy j −λ j +λ∗
j )k(xi ,x j)+b) ≤ B+ ε

∀i s.t.λi = 0 : (
n

∑
j=1

(α jy j −λ j +λ∗
j )k(xi ,x j)+b) ≤ B− ε

∀i s.t.λ∗
i > 0 : B− ε ≤−(

n

∑
j=1

(α jy j −λ j +λ∗
j )k(xi ,x j)+b) ≤ B+ ε

∀i s.t.λ∗
i = 0 : − (

n

∑
j=1

(α jy j −λ j +λ∗
j )k(xi ,x j)+b) ≤ B− ε.

In each step of the algorithm, a small sub-problem of the structure of (12) issolved. To select
the free variables, these conditions are checked to find the worst violatingvariables both from the
top of the violation list and from the bottom. The selected variables are optimized by solving (12)
while keeping the other variables fixed. Since only a small QP is solved in eachstep, the cubic time
scaling behavior is circumvented for improved efficiency. A few other book-keeping tricks have
also been adapted fromSVMlight to yield other minor improvements.

Denote byp the number of elements chosen in each step of the optimization (i.e.,p = |q|+
|r|+ |s|). The QP in each step takesO(p3) and updating the prediction values to compute the KKT
violations takesO(nq) time. Sorting the output values to choose the most violated constraints takes
O(nlog(n)) time. Thus, the total time taken in each iteration of the algorithm isO(p3 +nlog(n)+
nq). Empirical running times are provided in Section 5 for a digit classification problem.

Many other fast SVM solvers could also be adapted to the RMM. Recent advances such as the
cutting plane SVM algorithm (Joachims, 2006), Pegasos (Shalev-Shwartzet al., 2007) and so forth
are also applicable and are deferred for future work.

3.4 Variants of the RMM

It is not always desirable to have a parameter in a formulation that would depend explicitly on the
output from a previous computation as in (10). It is possible to overcome thisissue via the following
optimization problem:
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min
w,b,ξ,t≥1

1
2
‖w‖2 +C

n

∑
i=1

ξi +Dt (13)

s.t.yi(w⊤xi +b) ≥ 1−ξi , ξi ≥ 0 ∀1≤ i ≤ n,

+(w⊤xi +b) ≤ t ∀1≤ i ≤ n,

− (w⊤xi +b) ≤ t ∀1≤ i ≤ n.

Note that (13) has a parameterD instead of the parameterB in (10). The two optimization
problems are equivalent in the sense that for every value ofB in (10), it is possible to have a corre-
spondingD such that both optimization problems give the same solution.

Further, in some situations, a hard constraint bounding the outputs as in (13) can be detrimental
due to outliers. Thus, it might be required to have a relaxation on the bounding constraints as well.
This motivates the following relaxed version of (13):

min
w,b,ξ,t≥1

1
2
‖w‖2 +C

n

∑
i=1

ξi +D(t +
ν
n

n

∑
i=1

(τi + τ∗i )) (14)

s.t.yi(w⊤xi +b) ≥ 1−ξi , ξi ≥ 0 ∀1≤ i ≤ n,

+(w⊤xi +b) ≤ t + τi ∀1≤ i ≤ n,

− (w⊤xi +b) ≤ t + τ∗i ∀1≤ i ≤ n.

In the above formulation,ν controls the fraction of outliers. It is not hard to derive the dual of the
above to express it in kernelized form.

4. Risk Bounds

This section provides generalization guarantees for the classifiers of interest (the SVM,Σ-SVM
and RMM) which all produce decision3 boundaries of the formw⊤x = 0 from a limited number of
examples. In the SVM, the decision boundary is found by minimizing a combinationof w⊤w and
an upper bound on the number of errors. This minimization is equivalent to choosing a function
g(x) = w⊤x from a set of linear functions with boundedℓ2 norm. Therefore, with a suitable choice
of E, the SVM solution chooses the functiong(·) from the set{x → w⊤x|1

2w⊤w ≤ E}.
By measuring the complexity of the function class being explored, it is possibleto derive gen-

eralization guarantees and risk bounds. A natural measure of how complex a function class is the
Rademacher complexity which has been fruitful in the derivation of generalization bounds. For
SVMs, such results can be found in Shawe-Taylor and Cristianini (2004). This section continues
in the same spirit and defines the function classes and their correspondingRademacher complexi-
ties for slightly modified versions of the RMM as well as theΣ-SVM. Furthermore, these will be
used to provide generalization guarantees for both classifiers. The styleand content of this section
closely follows that of Shawe-Taylor and Cristianini (2004).

The function classes for the RMM andΣ-SVM will depend on the data. Thus, these both entail
so-called data-dependent regularization which is not quite as straightforward as the function classes
explored by SVMs. In particular, the data involved in defining data-dependent function classes will

3. The bias term is suppressed in this section for brevity.
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be treated differently and referred to as landmarks to distinguish them fromthe training data. Land-
mark data is used to define the function class while training data is used to selecta specific function
from the class. This distinction is important for the following theoretical derivations. However, in
practical implementations, both theΣ-SVM and the RMM may use the training data to both define
the function class and to choose the best function within it. Thus, the distinctionbetween landmark
data and training data is merely a formality for deriving generalization boundswhich require inde-
pendent sets of examples for both stages. Ultimately, however, it will be possible to still provide
generalization guarantees that are independent of the particular landmark examples. Details of this
argument are provided in Section 4.6. For this section, however, it is assumed that, in parallel with
the training data, a separate data set of landmarks is provided to define the function class for the
RMM and theΣ-SVM.

4.1 Function Class Definitions

Consider the training data set(xi ,yi)
n
i=1 with xi ∈R

m andyi ∈ {±1} which are drawn independently
and identically distributed (iid) from an unknown underlying distributionP[(x,y)] denoted asD.
The features of the training examples above are denoted by the setS= {x1, . . . ,xn}.

Given a choice of the parameterE in the SVM (whereE plays the role of the regularization
parameter), the set of linear functions the SVM considers is:

Definition 3 FE := {x → w⊤x|1
2w⊤w ≤ E}.

The RMM maximizes the margin while also limiting the spread of projections on the training data.
It effectively considers the following function class:

Definition 4 H S
E,D := {x → w⊤x| D̄

2 w⊤w+ D
2 (w⊤xi)

2 ≤ E ∀1≤ i ≤ n}.
Above, takeD̄ := 1−D and 0< D < 1 trades off between large margin and small spread on the
projections.4 Since the above function class depends on the training examples, standardRademacher
analysis, which is straightforward for the SVM, is no longer applicable. Instead, define another
function class for the RMM using a distinct set of landmark examples.

A set V = {v1, . . . ,vnv} drawn iid from the same distributionP[x], denoted asDx, is used as
the landmark examples. With these landmark examples, the modified RMM function class can be
written as:

Definition 5 H V
E,D := {x → w⊤x| D̄

2 w⊤w+ D
2 (w⊤vi)

2 ≤ E ∀1≤ i ≤ nv}.
Finally, function classes that are relevant for theΣ-SVM are considered. These limit the average
projection rather than the maximum projection. The data-dependent functionclass is defined as
below:

Definition 6 GS
E,D := {x → w⊤x| D̄

2 w⊤w+ D
2n ∑n

i=1(w
⊤xi)

2 ≤ E}.
A different landmark setU = {u1, . . . ,un}, again drawniid from Dx, is used in defining the

corresponding landmark function class:

Definition 7 GU
B,D := {x → w⊤x| D̄

2 w⊤w+ D
2n ∑n

i=1(w
⊤ui)

2 ≤ B}.
Note that the parameterE is fixed inH V

E,D but nv may be different fromn. In the case ofGU
B,D,

the number of landmarks is the same(n) as the number of training examples but the parameterB is
used instead ofE. These distinctions are intentional and will be clarified in subsequent sections.

4. Zero and one are excluded from the range ofD to avoid degenerate cases.
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4.2 Rademacher Complexity

In this section the Rademacher complexity of the aforementioned function classes are quantified by
bounding the empirical Rademacher complexity. Rademacher complexity measures the richness of
a class of real-valued functions with respect to a probability distribution (Bartlett and Mendelson,
2002; Shawe-Taylor and Cristianini, 2004; Bousquet et al., 2004).

Definition 8 For a sampleS= {x1,x2, . . . ,xn} generated by a distribution onx and a real-valued
function classF with domainx, the empirical Rademacher complexity5 ofF is

R̂(F ) := Eσ

[

sup
f∈F

∣

∣

∣

∣

∣

2
n

n

∑
i=1

σi f (xi)

∣

∣

∣

∣

∣

]

whereσ = {σ1, . . .σn} are independent random variables that take values+1 or −1 with equal
probability. Moreover, the Rademacher complexity ofF is: R(F ) := ES

[

R̂(F )
]

.

A stepping stone for quantifying the true Rademacher complexity is obtained byconsidering its
empirical counterpart.

4.3 Empirical Rademacher Complexity

In this subsection, upper bounds on the empirical Rademacher complexities are derived for the
previously defined function classes. These bounds provide insights onthe regularization properties
of the function classes for the sampleS= {x1,x2, . . .xn}.

Theorem 9 R̂(FE) ≤ T0 := 2
√

2E
n

√

tr(K), where tr(K) is the trace of the Gram matrix of the ele-
ments inS.

Proof

R̂(FE) = Eσ

[

sup
f∈FE

∣

∣

∣

∣

∣

2
n

n

∑
i=1

σi f (xi)

∣

∣

∣

∣

∣

]

=
2
n

Eσ

[

max
||w||≤

√
2E

∣

∣

∣

∣

∣

w⊤
n

∑
i=1

σixi

∣

∣

∣

∣

∣

]

≤ 2
√

2E
n

Eσ

[∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n

∑
i=1

σixi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

]

=
2
√

2E
n

Eσ





(

n

∑
i=1

σix⊤i
n

∑
j=1

σ jx j

) 1
2





≤ 2
√

2E
n

(

Eσ

[

n

∑
i, j=1

σiσ jx⊤i x j

]) 1
2

=
2
√

2E
n

√

tr(K).

The proof uses Jensen’s inequality on the function
√· and the fact thatσi andσ j are random vari-

ables taking values+1 or −1 with equal probability. Thus, wheni 6= j, Eσ[σiσ jx⊤i xi ] = 0 and,
otherwise,Eσ[σiσix⊤i xi ] = Eσ[x⊤i xi ] = x⊤i xi . The result follows from the linearity of the expecta-
tion operator.

5. The dependence of the empirical Rademacher complexity onn andS is suppressed by writinĝR(F ) for brevity.
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Roughly speaking, by keepingE small, the classifier’s ability to fit arbitrary labels is reduced.
This is one way to motivate a maximum margin strategy. Note that

√

tr(K) is a coarse measure of
the spread of the data. However, most SVM formulations do not directly optimize this term. This
motivates to next consider two new function classes.

Theorem 10 R̂(H V
E,D) ≤ T2(V,S), where for any training setB and landmark6 setA , T2(A ,B) :=

minλ≥0
1
|B| ∑x∈B x⊤

(

D̄I ∑u∈A λu +D∑u∈A λuuu⊤)−1
x+ 2E

|B| ∑u∈A λu.

Proof Start with the definition of the empirical Rademacher complexity:

R̂(H V
E,D) = Eσ

[

sup
w: 1

2(D̄w⊤w+D(w⊤vi)2)≤E

∣

∣

∣

∣

∣

2
n

n

∑
i=1

σi(w⊤xi)

∣

∣

∣

∣

∣

]

.

Consider the supremum inside the expectation. Depending on the sign of the term inside| · |, the
above corresponds to either a maximization or a minimization. Without loss of generality, consider
the case of maximization. When a minimization is involved, the value of the objective still remains
the same. The supremum is recovered by solving the following optimization problem:

max
w

w⊤
n

∑
i=1

σixi s.t.
1
2
(D̄w⊤w+D(w⊤vi)

2) ≤ E ∀1≤ i ≤ nv. (15)

Using Lagrange multipliersλ1≥0, . . .λnv ≥0, the Lagrangian of (15) is:L(w,λ)=−w⊤∑n
i=1 σixi +

∑nv
i=1 λi

(

1
2

(

D̄w⊤w+D(w⊤vi)
2
)

−E
)

. Differentiating this with respect to the primal variablew and
equating it to zero gives:w = Σ

−1
λ,D ∑n

i=1 σixi , whereΣλ,D := D̄∑nv
i=1 λi I +D∑nv

i=1 λiviv⊤i . Substitut-
ing thisw in L(w,λ) gives the dual of (15):

min
λ≥0

1
2

n

∑
i=1

σix⊤i Σ
−1
λ,D

n

∑
j=1

σ jx j +E
nv

∑
i=1

λi .

This permits the following upper bound on the empirical Rademacher complexity since the primal
and the dual objectives are equal at the optimum:

R̂(H V
E,D) =

2
n

Eσ

[

min
λ≥0

1
2

n

∑
i=1

σix⊤i Σ
−1
λ,D

n

∑
j=1

σ jx j +E
nv

∑
i=1

λi

]

≤ min
λ≥0

2
n

Eσ

[

1
2

n

∑
i=1

σix⊤i Σ
−1
λ,D

n

∑
j=1

σ jx j +E
nv

∑
i=1

λi

]

≤ min
λ≥0

1
n

n

∑
i=1

x⊤i Σ
−1
λ,Dxi +

2
n

E
nv

∑
i=1

λi = T2(V,S).

On line one, the expectation is over the minimizers overλ; this is less than first taking the expecta-
tion and then minimizing overλ in line two. Then, simply recycle the arguments used in Theorem
9 to handle the expectation overσ.

6. T2(A ,B) has been defined on generic sets. When an already defined set, such as V (with a known numbernv of
elements) is an argument toT2, λ will be subscripted withi or j.
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Theorem 11 R̂(GU
B,D) ≤ T1(U,S), where for any training setB and landmark setA , T1(A ,B) :=

2
√

2B
|B|

(

∑x∈B x⊤
(

D̄I + D
|A | ∑u∈A uu⊤

)−1
x
) 1

2

.

Proof The proof is similar to the one for Theorem 10.

Thus, the empirical Rademacher complexities of the function classes of interest are bounded
using the functionsT0, T1(U,S) andT2(V,S). For bothFE andGU

E,D, the empirical Rademacher
complexity is bounded by a closed-form expression. ForH V

E,D, optimizing over the Lagrange multi-
pliers (i.e., theλ’s) can further reduce the upper bound on empirical Rademacher complexity. This
can yield advantages over bothFE andGU

E,D in many situations and the overall shape ofΣλ,D plays
a key role in determining the overall bound; this will be discussed in Section 4.7. Note that the
upper boundT2(V,S) is not a closed-form expression in general but can be evaluated in polynomial
time using semi-definite programming by invoking Schur’s complement lemma as shown by Boyd
and Vandenberghe (2003).

4.4 From Empirical to True Rademacher Complexity

By definition 8, the empirical Rademacher complexity of a function class is dependent on the data
sample,S. In many cases, it is not possible to give exact expressions for the Rademacher com-
plexity since the underlying distribution over the data is unknown. However,it is possible to give
probabilistic upper bounds on the Rademacher complexity. Since the Rademacher complexity is the
expectation of its empirical estimate over the data, by a straightforward application of McDiarmid’s
inequality (Appendix A), it is possible to show the following:

Lemma 12 Fix δ ∈ (0,1). With probability at least1−δ over draws of the samplesS the following
holds for any function classF :

R(F ) ≤ R̂(F )+2

√

ln(2/δ)

2n
(16)

and,

R̂(F ) ≤ R(F )+2

√

ln(2/δ)

2n
. (17)

At this point, the motivation for introducing the landmark setsU andV becomes clear. The in-
equalities (16) and (17) do not hold when the function classF is dependent on the setS. Specifically,
using the sampleS instead of the landmarks breaks the requirediid assumptions in the derivation
of (16) and (17). Thus neither Lemma 12, nor any of the results in Section 4.5 are sound for the
function classesGS

B,D andH S
E,D.

4.5 Generalization Bounds

This section presents generalization bounds for the three different function classes. The derivation
largely follows the approach of Shawe-Taylor and Cristianini (2004) and, therefore, several details
will be omitted in this article. Recall the theorem from Shawe-Taylor and Cristianini (2004) that
leverages the empirical Rademacher complexity to provide a generalization bound.
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Theorem 13 LetF be a class of functions mapping Z to[0,1]; let {z1, . . . ,zn} be drawn from the
domain Z independently and identically distributed (iid) according to a probability distributionD.
Then, for any fixedδ ∈ (0,1), the following bound holds for any f∈ F with probability at least
1−δ over random draws of a set of examples of size n:

ED [ f (z)] ≤ Ê[ f (z)]+ R̂(F )+3

√

ln(2/δ)

2n
. (18)

Similarly, under the same conditions as above, with probability at least1−δ,

Ê[ f (z)] ≤ ED [ f (z)]+ R̂(F )+3

√

ln(2/δ)

2n
. (19)

Inequality (18) can be found in Shawe-Taylor and Cristianini (2004) and inequality (19) is obtained
by a simple modification of the proof in Shawe-Taylor and Cristianini (2004).The following theo-
rem, found in Shawe-Taylor and Cristianini (2004), gives a probabilisticupper bound on the future
error rate based on the empirical error and the function class complexity.

Theorem 14 Fix γ > 0. LetF be the class of functions fromRm×{±1} → R given by f(x,y) =
−yg(x). Let {(x1,y1), . . . ,(xn,yn)} be drawniid from a probability distributionD. Then, with
probability at least1−δ over the samples of size n, the following bound holds:

Pr
D

[y 6= sign(g(x))] ≤ 1
nγ

n

∑
i=1

ξi +
2
γ

R̂(F )+3

√

ln(2/δ)

2n
, (20)

whereξi = max(0,1−yig(xi)) are the so-called slack variables.

The upper bounds that were derived in Section 4.2, namely:T0, T1(U,S) andT2(V,S) can now
be inserted into (20) to give generalization bounds for each class of interest. However, a caveat
remains since a separate set of landmark data was necessary to provide such generalization bounds.
The next section provides steps to eliminate the landmark data set from the bound.

4.6 Stating Bounds Independently of Landmarks

Note that the original function classes were defined using landmark examples. However, it is pos-
sible to eliminate these and state the generalization bounds independent of the landmark examples
on function classes defined on the training data. Landmarks are eliminated from the generalization
bounds in two steps. First, the empirical Rademacher complexities are shown tobe concentrated
and, second, the function classes defined using landmarks are shown tobe supersets of the original
function classes. One mild and standard assumption will be necessary, namely, that all examples
from the distribution Pr([x]) have a norm bounded above byR with probability one.

4.6.1 CONCENTRATION OFEMPIRICAL RADEMACHER COMPLEXITY

Recall the upper boundT1(U,S) that was derived in Theorem 11. The following bounds show that
these quantities are concentrated.
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Theorem 15
i) With probability at least1−δ,

T1(U,S) ≤ EU[T1(U,S)]+O

(

1
√

n
√

tr(K)

)

.

ii) With probability at least1−δ,

T2(V,S) ≤ EV [T1(V,S)]+O

(

1
√

nv

√

tr(K)

)

.

Proof McDiarmid’s inequality from Appendix A can be applied toT1(U,S) since it is possible to
compute Lipschitz constantsc1,c2, . . . ,cn that correspond to each input of the function. These Lips-
chitz constants all share the same valuec which is derived in Appendix B. With this Lipschitz con-
stant, McDiarmid’s inequality (32) is directly applicable and yields: Pr[T1(U,S)−EU[T1(U,S)] ≥
ε] ≤ exp

(

−2ε2/(nc2)
)

Setting the upper bound on probability toδ, the following inequality holds
with probability at least 1−δ:

T1(U,S) ≤ EU[T1(U,S)]+
2
√

ln(1/δ)E

D̄
√

n

(√

n

∑
i=1

x⊤i xi −
√

n

∑
i=1

x⊤i xi −
DR2µmax

nD̄+DR2

)

. (21)

The second term above is:

2
√

ln(1/δ)E

D̄
√

n

(√

n

∑
i=1

x⊤i xi −
√

n

∑
i=1

x⊤i xi −
DR2µmax

nD̄+DR2

)

=
2
√

ln(1/δ)E

D̄
√

n
DR2µmax/(nD̄+DR2)

√

∑n
i=1x⊤i xi +

√

∑n
i=1x⊤i xi − DR2µmax

nD̄+DR2

≤ 2
√

ln(1/δ)E

D̄
√

n
DR2µmax/(nD̄+DR2)

√

∑n
i=1x⊤i xi

≤ 2
√

ln(1/δ)E

D̄
√

n
DR4n

(nD̄+DR2)
√

∑n
i=1x⊤i xi

≤ 2
√

ln(1/δ)E

D̄
√

n
DR4n

(nD̄)
√

∑n
i=1x⊤i xi

= O

(

1
√

n
√

tr(K)

)

.

Here,µmax≤ nR2 is the largest eigenvalue of the Gram matrixK . The big oh notation refers to the
asymptotic behavior inn. Note that tr(K) also grows withn. Thus, asymptotically, the above term
is better thanO(1/

√
n) which is the behavior of (20). So, from (21), with probability at least 1−δ:

T1(U,S) ≤ EU[T1(U,S)]+O
(

1/
√

n tr(K)
)

.

The proof for the second claim is similar sinceT2(V,S) has the same Lipschitz constants (Ap-
pendix B). The only difference is in the number of elements inV which is reflected in the bound.

766



MAXIMUM RELATIVE MARGIN AND DATA -DEPENDENTREGULARIZATION

4.6.2 FUNCTION CLASS INCLUSION

At this point, using Equation 20 and Theorem 15, it is possible to state boundsthat hold for func-
tions inGU

B,D andH U
B,D but that are independent ofU andV otherwise. However, the aim is to state

uniform convergence bounds for functions inGS
B,D andH S

B,D. This is achieved by showing the latter
two sets are subsets of the former two with high probability. It is not enough toshow that each
element of one set is inside the other. Since uniform bounds are requiredfor the initial function
classes, one has to prove set-inclusion results.7

Theorem 16 For B = E + ε whereε = O
(

1√
n

)

, with probability at least1−2δ GS
E,D ⊆ GU

B,D.

Proof First, note thatGS
E,D ⊆ FE/D̄. Thus,FE/D̄ is a bigger class of functions thanGS

E,D. More-

over, FE/D̄ is not dependent on data. Now, considerD̄
2 w⊤w + D

2 (w⊤x)2 wherew ∈ FE/D̄. For

||x|| ≤ R2, the Cauchy-Schwarz inequality yields supw∈FE/D̄

D̄
2 w⊤w + D

2 (w⊤x)2 ≤ κ where κ =

E/2+DER2/(2D̄). Now, define the functionhw :R m→ [0,1], as :hw(x) = ( D̄
2 w⊤w+ D

2 (w⊤x)2)/κ.
Since the setsS andU are drawniid from the distributionDx, it is now possible to apply (18) and
(19) for anyw ∈ FE/D̄. Applying (19) tohw(·) onS, ∀w ∈ FE/D̄, with probability at least 1−δ, the
following inequality holds:

EDx[h
w(x)] ≤ 1

n

n

∑
i=1

hw(xi)+2

√

2E
nD̄

√

1
n

tr(K)+3

√

ln(2/δ)

2n
, (22)

where the value of̂R(FE/D̄) has been obtained from Theorem 9. The expectation is over the draw of
S. Similarly, applying (18) tohw(·) on U, with probability at least 1−δ, ∀w ∈ FE/D̄, the following
inequality holds:

1
n

n

∑
i=1

hw(ui) ≤ EDx[h
w(u)]+2

√

2E
nD̄

√

1
n

tr(Ku)+3

√

ln(2/δ)

2n
(23)

whereKu is the Gram matrix of the landmark examples inU. Using the fact that expectations
in (22) and (23) are the same, tr(Ku) ≤ nR2, and the union bound, the following inequality holds
∀w ∈ FE/D̄ with probability at least 1−2δ:

1
n

n

∑
i=1

hw(ui) ≤
1
n

n

∑
i=1

hw(xi)+4R

√

2E
nD̄

+6

√

ln(2/δ)

2n
.

Using the definition ofhw(·), with probability at least 1−2δ, ∀w ∈ FE/D̄,

D̄
2

w⊤w+
D
2n

n

∑
i=1

(w⊤ui)
2 ≤ D̄

2
w⊤w+

D
2n

n

∑
i=1

(w⊤xi)
2 +O

(

1√
n

)

.

Now, suppose,D̄2 w⊤w + D
2n ∑n

i=1(w
⊤xi)

2 ≤ E, which describes the function classGS
E,D. If B is

chosen to beE + ε whereε = O( 1√
n), then,∀w ∈ FE/D̄, with probability at least 1−2δ, w⊤w +

D
2n ∑n

i=1(w
⊤ui)

2 ≤B. SinceFE/D̄ is a superset ofGS
E,D, with probability at least 1−2δ,GS

E,D ⊆GU
E,D.

7. The function classes will also be treated as sets of parametersw without introducing additional notation.
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Theorem 17 For nv = O(
√

n), with probability at least1−2δ, H S
E,D ⊆H V

E,D.

Proof First define the function,gw : R
m → R, asgw(v) = D̄

2 w⊤w+ D
2 (w⊤v)2. Define the indicator

random variableI [gw(v)>E] which has a value 1 ifgw(v) > E and a value 0 otherwise. By definition,
∀w ∈ H S

E,D, ∀xi ∈ S, I [gw(xi)>E] = 0. Similarly, ∀w ∈ H V
E,D, ∀vi ∈ V, I [gw(vi)>E] = 0. As before,

consider a larger class of functions that is independent ofS, namely,FE/D̄. For aniid sampleS
from the distributionDx, applying (18) to the indicator random variablesI [gw(x)>E] on the setS,
with probability at least 1−δ,

EDx[I [gw(x)>E]] ≤
1
n

n

∑
i=1

I [gw(xi)>E] +2

√

2E
nD̄

√

1
n

tr(K)+3

√

ln(2/δ)

2n
. (24)

Similarly, applying (19) on the setV, with probability at least 1−δ,

1
nv

nv

∑
i=1

I [gw(vi)>E] ≤ EDx[I [gw(x)>E]]+2

√

2E
nD̄

√

1
nv

tr(K v)+3

√

ln(2/δ)

2nv
. (25)

Performing a union bound on (24) and (25), using the fact that tr(K) ≤ nR2 and tr(K v) ≤ nvR2 with
probability at least 1−2δ, ∀w ∈ FE/D̄,

1
nv

nv

∑
i=1

I [gw(vi)>E]−
1
n

n

∑
i=1

I [gw(xi)>E] ≤ 4R

√

2E
nD̄

+3

√

ln(2/δ)

2

(

1√
n

+
1√
nv

)

. (26)

Equating the right hand side of the above inequality to1
nv

, the above inequality can be written more
succinctly as:

P

[

∃w ∈ FE/D̄
1
nv

nv

∑
i=1

I [gw(vi)>E]−
1
n

n

∑
i=1

I [gw(xi)>E]) ≥
1
nv

]

≤2exp



−2
9

(

1
nv

−4R

√

2E
nD̄

)2

/

(

1√
n

+
1√
nv

)2




The left hand side of the equation above is the probability that there exists aw such that the dif-
ference in the fraction of the number of examples that fall outsideD̄

2 w⊤w+ D
2 (w⊤x)2 ≤ E over the

random draw of the setsSandV is at least1
nv

. Thus, it gives an upper bound on the probability that

H S
E,D is contained inH V

E,D. This is because, if there is aw ∈ H S
E,D that is not inH V

E,D, for such a

w, 1
nv

∑nv
i=1 I [gw(vi)>E] > 1

nv
and 1

n ∑n
i=1 I [gw(xi)>E] = 0. Thus, equating the right hand side of (26) to

1
nv

and solving fornv, the result follows. Both an exact value and the asymptotic behavior ofnv are
derived in Appendix C.

It is straightforward to write the generalization bounds of Section 4.5 only in terms ofS, com-
pletely eliminating the landmark setU from the results in this section. However, the resulting
bounds now have additional factors which further loosen them. In spite ofthis, in principle, using
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a landmark set and compensating with McDiarmid’s inequality can overcome the difficulties asso-
ciated with a data-dependent hypothesis class and provide important generalization guarantees. In
summary, the following overall bounds can now be provided for the function classesFE, H S

E,D and
GS

E,D. This result is obtained from a union bound of Theorem 14, Theorem 15, Theorem 16 and
Theorem 17.

Theorem 18 Fix γ > 0 and let{(x1,y1), . . . ,(xn,yn)} be drawniid from a probability distribution
D where‖x‖ ≤ R .

i) For any g from the function classFE, the following holds with probability at least1−δ,

Pr
D

[y 6= sign(g(x))] ≤ 1
γn

n

∑
i=1

ξi +3

√

ln(2/δ)

2n
+

4
√

2E
nγ

√

tr(K). (27)

ii) For any g from the function classH S
E,D, the following inequality (a solution of a semi-definite

program) holds for nv = O(
√

n) with probability at least1−δ,

Pr
D

[y 6= sign(g(x))] ≤ 1
nγ

n

∑
i=1

ξi +3

√

ln(8/δ)

2n
+O

(

1
√

nv

√

tr(K)

)

+
2
γ

EV



min
λ≥0

1
n

n

∑
i=1

x⊤i

(

D̄
nv

∑
j=1

λ j I +D
nv

∑
j=1

λ jv jv⊤j

)−1

xi +
2E
n

nv

∑
i=1

λi



 . (28)

iii) Similarly, for any g from the function classGS
E,D, the following bound holds for B= E +

O( 1√
n) with probability at least1−δ,

Pr
D

[y 6= sign(g(x))] ≤ 1
nγ

n

∑
i=1

ξi +3

√

ln(8/δ)

2n
+O

(

1
√

n
√

tr(K)

)

+
4
√

2B
nγ

EU





n

∑
i=1

x⊤i

(

D̄I +
D
n

n

∑
j=1

u ju⊤
j

)−1

xi





1
2

, (29)

whereξi = max(0,γ−yig(xi)) are the so-called slack variables.

4.7 Discussion of the Bounds

Clearly, all the three bounds, namely (27), (28) and (29) in Theorem (18) have similar asymptotic
behavior inn, so how do they differ? Simple, separable scenarios are considered in this section
to examine these bounds (which will be referred to as the SVM bound, RMM bound andΣ-SVM
bound respectively). For the SVM bound, the quantity of interest is 4

√
2E

nγ

√

tr(K) and, for theΣ-

SVM bound, the quantity of interest is4
√

2E
nγ̂

√

(

∑n
i=1x⊤i

(

D̄I + D
n ∑n

j=1u ju⊤
j

)−1
xi

)

. Similarly, for

the RMM bound, the quantity of interest is:

2
γ̂



min
λ≥0

1
n

n

∑
i=1

x⊤i

(

D̄
nv

∑
j=1

λ j I +D
nv

∑
j=1

λ jv jv⊤j

)−1

xi +
2E
n

nv

∑
i=1

λi



 .
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Here the expectations overU andV have been dropped for brevity; in fact, this is how these terms
would have appeared without the concentration result (Theorem 15). Moreover, in the latter two
cases,γ has been replaced byγ̂ intentionally.

−5 0 5
−1

0

1

γ

−5 0 5
−1

0

1

γ

Figure 2: Two labellings of the same examples. Circles and squares denote the two classes (posi-
tive and negative). The top case is referred to astoy example 1and the bottom case is
referred to astoy example 2in the sequel. The bound for the function classFE does not
distinguish between these two cases.

The differences between the three bounds will be illustrated with a toy example. In Figure 2,
two different labellings of the same data set are shown. The two differentlabellings of the data
produce completely different classification boundaries. However, in both the cases, the absolute
margin of separationγ remains the same. A similar synthetic setting was explored in the context of
second order perceptron bounds (Cesa-Bianchi et al., 2005).

The marginγ corresponding to the function classF is found by solving the following optimiza-
tion problem:

max
γ,w

γ, s.t.yi(w⊤xi) ≥ γ,
1
2

w⊤w ≤ E.

This merely recovers the absolute marginγ which is shown in the figure. Similarly, for the function
classG , a marginγ̂ is obtained by solving:

max
γ,w

γ,s.t.yi(w⊤xi) ≥ γ,
1
2

w⊤
(

D̄I +
D
n

n

∑
j=1

x jx⊤j

)

w ≤ E.

Through a change of variable,u = Σ
1
2 w whereΣ =

(

D̄I + D
n ∑n

j=1x jx⊤j
)

it is easy to see that the

above optimization problem is equivalent to

max
γ,u

γ, s.t.yiu⊤
Σ

− 1
2 xi ≥ γ,

1
2

u⊤u ≤ E.
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toy example 1 toy example 2

SVM bound 0.643 0.643
Σ-SVM bound, D=0 0.643 0.643
Σ-SVM bound, D=0.999 0.859 0.281
RMM bound, D=0 0.643 0.643
RMM bound, D=0.999 1.355 0.315

Table 1: The bound values for the two toy examples. The SVM bound does not distinguish between
the two cases. By exploringD values, it is possible to obtain smaller bound values in both
cases forΣ-SVM and RMM (D = 0 in toy example 1andD close to one intoy example
2).

Thus, when a linear function is selected from the function classGS
D,E, the margin̂γ is estimated from

a whitened version of the data. Similarly, for function classH S
E,D, the margin is estimated from a

whitened version of the data where the whitening matrix is modified by Lagrangemultipliers.
Thus, in the finite sample case, the bounds differ as demonstrated in the above synthetic prob-

lem. The bound for the function classGS
E,D explores a whitening of the data. SupposeD = 0.999,

the result is a whitening which evens out the spread of the data in all directions. On this whitened
data set, the margin̂γ appears much larger intoy example 2since it is large compared to the spread.
This leads to an improvement in theΣ-SVM bound over the usual SVM bound. While such differ-
ences could be compensated for by appropriate a priori normalization of features, this is not always
an easy preprocessing.

Similarly, the RMM bound also considers a whitening of the data however, it shapes the whiten-
ing matrix adaptively by estimatingλ. This gives further flexibility and rescales data not only along
principal eigen-directions but in any direction where the margin is large relative to the spread of the
data. By exploringD values, margin can be measured relative to the spread of the data rather than in
the absolute sense. SinceΣ-SVM and RMM are strict generalizations of the SVM, through the use
of a proper validation set, it is almost always possible to obtain improvements. The various bounds
for the toy examples are shown in Table 1.

5. Experiments

In this section, a detailed investigation of the performance of the RMM8 on several synthetic and
real world data sets is provided.

5.1 Synthetic Data Set

First consider a simple two dimensional data set that illustrates the performance differences between
the SVM and the RMM. Since this is a synthetic data set, the best classifier can be constructed
and Bayes optimal results can be reported. Consider sampling data from twodifferent Gaussian
distributions9 corresponding to two different classes. Samples are drawn from the twofollowing

8. Code available athttp://www1.cs.columbia.edu/ ˜ pks2103/RMM.
9. Due to such Gaussian assumptions, LDA or generative modeling wouldbe appropriate contenders but are omitted to

focus the discussion on margin-based approaches.
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Figure 3: Two typical synthetic data sets (rescaled inside a 0-1 box) with corresponding SVM and
RMM solutions are shown along with the Bayes optimal solution. The SVM (the RMM)
solution uses the C (C andB) setting that minimized validation error. The RMM produces
an estimate that is significantly closer to the Bayes optimal solution.

Gaussian distributions with equal prior probability:

µ+ =

[

1
1

]

, µ− =

[

19
13

]

, Σ =

[

17 15
15 17

]

.

The Gaussian distributions have different means, yet identical covariance. A total of 100,000 ex-
amples were drawn from each of the Gaussian distributions to create validation and test sets. Large
validation and test sets were used to get accurate estimates of validation and test error.

Due to the synthetic nature of the problem, the Bayes optimal classifier is easily recovered (Duda
et al., 2000) and is given by the following decision boundary

(µ+−µ−)⊤Σ
−1x−0.5(µ+−µ−)⊤Σ

−1(µ+ +µ−) = 0. (30)

The above formula uses the true means and covariances of the Gaussian distributions (not empirical
estimates). It is clear that the Bayes optimal solution is a linear decision boundary which is in
the hypothesis class explored by both the RMM and the SVM. Note that the synthetic data was
subsequently normalized to lie withing the zero-one box. This rescaling was taken into account
while constructing the Bayes optimal classifier (30).

VariousC values (andB values) were explored during SVM (RMM) training. The settings with
minimum error rate on the validation set were used to compute test error rates.Furthermore, the test
error rate for the Bayes optimal classifier was computed. Each experimentwas repeated fifty times
over random draws of train, test and validation sets. Figure 3 shows an example data set from this
synthetic experiment along with the (cross-validated) SVM, RMM and Bayesoptimal classification
boundaries. The SVM decision boundary is biased to separate the data in adirection where it has
large spread. The RMM is less biased by the spread and is visibly closer to the Bayes optimal
solution.

Figure 4 shows the test error rates achieved for the SVM, the RMM and theBayes optimal
classifier. The SVM performs significantly worse than the RMM, particularlywhen training data
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Figure 4: Percent test error rates for the SVM, RMM and Bayes optimal classifier as training data
size is increased. The RMM has a statistically significant (at 5% level) advantage over
the SVM until 6400 training examples. Subsequently, the advantage remains though with
less statistical significance.

is scarce. The RMM maintains a statistically significant advantage over the SVMuntil the number
of training examples grows beyond 6400. With larger training sample sizen, regularization plays
a smaller role in the future probability of error. This is clear, for instance, from the bound (27).
The last term goes to zero atO(1/

√
n), the second term (which is the outcome of regularization)

is O(
√

tr(K)/n
√

1/n). Both have anO(1/
√

n) rate. However, the first term in the bound is the
average slack variables divided by the margin which does not go to zero asymptotically with in-
creasingn and eventually dominates the bound. Thus, the SVM and RMM have asymptotically
similar performance but have significant differences in the small sample case.

The effect of scaling, which is a particular affine transformation, was explored next. To explore
the effect of scaling in a controlled manner, first, the projectionw recovered by the Bayes optimal
classifier was obtained. An orthogonal vectorv (such thatw⊤v = 0) was then obtained. The ex-
amples (training, test and validation) were then projected onto the axes defined byw andv. Each
projection alongw was preserved while the projection alongv was scaled by a factors> 1. This
merely elongates the data further along directions orthogonal tow (i.e., along the Bayes optimal
classification boundary). More concisely, given an examplex, the following scaling transformation
was applied:

[

w v
]

[

1 0
0 s

]

[

w v
]−1

x. (31)

Figure 5 shows the SVM and RMM test error rate across a range of scaling valuess. Here, 100
examples were used to construct the training data. Ass grows, the SVM further deviates from the
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Figure 5: Percent test error rates for the SVM, RMM and Bayes optimal classifier as data is scaled
according to (31). The RMM solution remains resilient to scaling while the SVM solu-
tion deteriorates significantly. The advantage of the RMM over the SVM is statistically
significant (at the 1% level).

Bayes optimal classifier and attempts to separate the data along directions of large spread. Mean-
while, the RMM remains resilient to scaling and maintains a low error rate throughout.

To explore the effect of theB parameter, the average validation and test error rate were computed
across many settings ofC andB. The settingC = 100 was chosen since it obtained the minimum
error rate on the validation set. The average test error rate of the RMM is shown in Figure 6 at
C = 100 for multiple settings of theB parameter. Starting from the SVM solution on the right (i.e.,
largeB) the error rate begins to fall until it attains a minimum and then starts to go increase. A
similar behavior is seen in many real world data sets. Surprisingly, some data sets even exhibit
monotonic reduction in test error as the value ofB is decreased. The following section investigates
such real world experiments in more detail.

5.2 Experiments on Digits

Experiments were carried out on three data sets of digits—optical digits fromthe UCI machine
learning repository (Asuncion and Newman, 2007), USPS digits (LeCun et al., 1989) and MNIST
digits (LeCun et al., 1998). These data sets vary considerably in terms of their number of features
(64 in optical digits, 256 in USPS and 784 in MNIST) and their number of training examples (3823
in optical digits, 7291 in USPS and 60000 in MNIST). In all the multi-class experiments, the one
versus one classification strategy was used. The one versus one strategy trains a classifier for every
combination of two classes. The final prediction for an example is simply the class that is predicted
most often. These results are directly comparable with various methods that have been applied on
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Figure 6: Behavior on the toy data set withC = 100. As theB value is decreased, the error rate
decreases to a reasonably wide minimum before starting to increase.

1 2 3 4 5 6 7 RBF

OPT

SVM 71 57 54 47 40 46 46 51
Σ-SVM 61 48 41 36 35 31 29 47
KLDA 71 57 54 47 40 46 46 45
RMM 71 36 32 31 33 30 29 51

USPS

SVM 145 109 109 103 100 95 93 104
Σ-SVM 132 108 99 94 89 87 90 97
KLDA 132 119 121 117 114 118 117 101
RMM 153 109 94 91 91 90 90 98

1000-MNIST

SVM 696 511 422 380 362 338 332 670
Σ-SVM 671 470 373 341 322 309 303 673
KLDA 1663 848 591 481 430 419 405 1597
RMM 689 342 319 301 298 290 296 613

2/3-MNIST
SVM 552 237 200 183 178 177 164 166
RMM 534 164 148 140 123 129 129 144

Full MNIST
SVM 536 198 170 156 157 141 136 146
RMM 521 146 140 130 119 116 115 129

Table 2: The number of misclassification in three different digit data sets. Various kernels are
explored using the SVM,Σ-SVM, KLDA and RMM methods.

this data set. For a fair comparison, results from contender methods that use special preprocessing
or domain knowledge are not explored in this article.10

10. Additional results are reported inhttp://yann.lecun.com/exdb/mnist/.
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In all experiments, the digits were first normalized to have unit norm. This eliminates numerical
problems that may arise in kernel functions such as the polynomial kernelk(u,v) = (1+ u⊤v)d.
Classification results were then examined for various degrees of the polynomial kernel. In addition,
kernel values were further normalized so that the trace of the training Gram matrix was equal to the
number of training examples.

All parameters were tuned by splitting the training data according to an 80:20 ratio with the
larger split being used for training and the smaller split for validation. The process was repeated five
times over random splits to select hyper-parameters (C for the SVM,C andD for theΣ-SVM and
C andB for the RMM). A final classifier was trained for each of the 45 classification problems with
the best parameters found by cross validation using all the training examplesin its corresponding
pair of classes.

For the MNIST digits experiment, theΣ-SVM and kernel LDA (KLDA) methods were too
computationally demanding due to their use of matrix inversion. To cater to these methods, a smaller
experiment was conducted with 1000 examples per training. For the larger experiments, theΣ-
SVM and KLDA were excluded. The larger experiment on MNIST involvedtraining on two thirds
of the digits (i.e., training with an average of 8000 examples for each pair of digits) for each binary
classification task. In both these experiments, the remaining training data was used as a validation
set. The classifier that performed best on the validation set was used fortesting.

After forming all 45 classifiers (corresponding to each pair of digits), testing was done on the
standard separate test sets available for each of these three benchmarkproblems (1797 examples
in the case of optical digits, 2007 examples in USPS and 10000 examples in MNIST). The final
prediction for each test example was recovered based on the majority of predictions made by the 45
classifiers on the test example with ties broken uniformly at random.

It is important to note that, on the MNIST test set, an error rate improvement of0.1% has been
established as statistically significant (Bengio et al., 2007; Decoste and Schölkopf, 2002). This
corresponds to 10 or more test examples being correctly classified by onemethod over an other.

Table 2 shows results on all three digits data sets for polynomial kernels under varying degrees
as well as for RBF kernels. For each data set, the number of misclassified examples using the
majority voting scheme above is reported. TheΣ-SVM typically outperforms the SVM yet the
RMM outperforms both. Interestingly, with higher degree kernels, theΣ-SVM seems to match the
performance of the RMM while in most lower-degree kernels, the RMM outperforms both the SVM
and theΣ-SVM convincingly. Since theΣ-SVM is prohibitive to run on large scale data sets due
to the computationally cumbersome matrix inversion, the RMM was clearly the most competitive
method in these experiments in terms of both accuracy and computational efficiency.

The best parameters found by validation in the previous experiments were used in a full-scale
MNIST experiment which does not have a validation set of its own. All 45 pair-wise classifiers
(both SVMs and RMMs) were trained with the previously cross-validated parameters usingall the
training examples for each class in MNIST for various kernels. The test results are reported in
Table 2; the RMM advantages persist in this full-scale MNIST experiment.

5.3 Classifying MNIST Digits 3 vs 5

This section presents more detailed results on one particular binary classification problem in the
MNIST digits data set: the classification of digit 3 versus 5. Therein, the RMMhas a dramatically
stronger performance than the SVM. The results reported in this section are with polynomial kernels
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Figure 7: Performance on MNIST test set with digits 3 and 5. The number oferrors decreases from
15 to 6 asB decreases from the right.

of degree 5. The parameterC was selected as mentioned above. With the selectedC value, an SVM
was first trained over the entire MNIST training set containing the digits 3 and5. After noting the
maximum absolute value of the output given on all the training examples,B value was reduced in
steps. The number of test errors on the MNIST test set (3 versus 5) was noted. As theB value
is reduced, the number of errors starts to diminish as shown in Figure 7. Thenumber of errors
produced by the SVM was 15. With the RMM, the number of errors droppedto 6 as theB value
approached one. Clearly, asB decreases, the absolute margin is decreased however the test error
rate drops drastically. This empirically suggests that maximizing the relative margin can have a
beneficial effect on the performance of a classifier. Admittedly, this is onlyone example and is
provided only for illustrative purposes. However, similar behavior was observed in most of the
binary digit classification problems though in some cases the error rate did not go down significantly
with decreasingB values. The generalization behavior on all 45 individual problems is explored in
more detail in Section 5.4.

5.4 All 45 Binary MNIST Problems

This section explores RMM performance on the 45 pairwise digit classification problems in isola-
tion. In these experiments, bothC andB values were fixed using validation as in previous sections.
A total of 45 binary classifiers were constructed using all MNIST training digits. The resulting error
rates are shown in Figure 8. On most problems, the RMM obtains a significantlylower error rate
than the SVM and, at times obtains half the error rate.
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Figure 8: Total test errors on all 45 MNIST classification problems. Various classifiers were trained
on the entire MNIST training data set and evaluated on a standardized separate test set.

Method RMM U-SVM
# Universum - 1000 3000 all
Error rate 1.081 1.059 1.037 1.020
Error Std Dev 0.138 0.142 0.149 0.159
p-value 0.402 0.148 0.031

Table 3: Percentage error rates for the RMM and theU-SVM. The rate for the SVM was 1.274 with
a standard deviation of 0.179; this is significantly larger than all other results in the table
(with a p-value of 0.000). The final row reports the p-value of a paired t-test between the
RMM error rate and theU-SVM error rate (corresponding to the Universum size being
considered in that column).

5.4.1 A COMPARISONWITH THE UNIVERSUM METHOD

A new framework known as the Universum (Weston et al., 2006; Sinz et al., 2008) was recently
introduced which maximizes the margin while keeping classifier outputs low on an additional col-
lection of non-examples that do not belong to either class of interest. Theseadditional examples
are known as Universum examples. Like landmarks, these are examples where a classifier’s scalar
predictions are forced to remain small. However, these Universum examples are obtained from any
other distribution other than the one generating the training data. In the RMM, classification outputs
on training examples are bounded; in the Universum, classification outputs on Universum examples
are bounded (albeit with a different loss). The following experiments compare the Universum based
framework with the RMM.
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Figure 9: Percentage improvement of the RMM over the SVM on all 190 binary problems. Signif-
icance tests were performed using a paired t-test at the indicated levels of significance.
On most problems, the RMM shows significant improvement over SVM.

An MNIST experiment was explored for classifying digits 5 vs 8 using 1000labeled training
examples under the RBF kernel. This setup is identical to the experimental conditions described
in Weston et al. (2006). Examples of the digit 3 served as Universum examples since these were
reported to be thebestperforming Universum examples in previous work (Weston et al., 2006).The
experiments used the standard implementation of the Universum provided by the authors Weston
et al. (2006) under the default parameter settings (for variables such as ε). The Universum was
compared with the RMM which had access to the same 1000 training examples. Furthermore, 3500
examples were used as a test set and another 3500 examples as a validationset to perform model
selection. All parameter settings for the RMM and the Universum SVM (orU-SVM) as well as the
variance parameter of the RBF kernel were explored over a wide rangeof values. The parameter
settings that achieved the smallest error on a validation set were then used toevaluate performance
on the test set (and vice-versa). This entire experiment was repeated ten-fold over different random
draws of the various sets. The average test error rates were compiled for both algorithms.
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While the RMM only had access to the 1000 training examples, theU-SVM was also given
a Universum of images of the digit 3. The Universum spanned three different sizes—1000, 3000
and 6131 examples (i.e., all available images of the digit 3 in the MNIST training set). The results
are reported in Table 3. First, observe that both the RMM and theU-SVM improved the baseline
SVM performance significantly (as measured by a paired t-test). With 1000 and 3000 Universum
examples, even though the error rate of theU-SVM was slightly lower, a paired t-test revealed
that it did not achieve statistically significant improvement over the RMM. Statistically significant
advantages for theU-SVM only emerged whenall the available images of the digit 3 were used in
the Universum.

Note that there is a slight discrepancy between the errors reported hereand those in Weston
et al. (2006) even though both methods used the digit 3 to generate Universum examples. This may
be because the previous authors (Weston et al., 2006) reported thebest test erroron 1865 examples.
In this article, a more conservative approach is taken where a good model isfirst selected using
the validation set and then errors are reported on an unseen test set without further tuning. Clearly,
picking the minimum error rate on a test set will give more optimistic results but tuning to the test set
can be potentially misleading. This makes it difficult to directly compare test error rates with those
reported in the previous paper. While the error rate (using all digits 3 as theUniversum examples) in
our experiments varied from 0.74% to 1.35%, the authors in Weston et al. (2006) reported an error
rate of 0.62%.

With 1000 training examples, the RMM (as in Equation (8)) has 1000 classification constraints
and 1000 bounding constraints. With 1000 Universum examples, theU-SVM also has 1000 bound-
ing constraints in addition to the classification constraints. It is interesting to notethat the RMM,
with no extra data, is not significantly worse than aU-SVM endowed with an additional 1000 or
3000best-possibleUniversum examples.

The authors of Weston et al. (2006) observed that Universum examples help most when they
are correlated with the training examples. This, coupled with the results in Table3 and the fact that
training examples are correlated most with themselves (or with examples from thesame distribution
as the training examples), raises the following question: How much of the performance gain with
the U-SVM is due to the extra examples and how much of it is due to its implicit control of the
spread (as with an RMM)? This is left as an open question in this article and asmotivation for
further theoretical work.

5.5 Text Classification

In this section, results are reported on the 20 Newsgroups11 data set. This data set has posts from
20 different Usenet newsgroups. Each post was represented by avector which counts the number of
words that occurred in the document. In the text classification literature, thisis commonly known
as the bag of words representation. Each feature vector was divided by the total number of words in
the document to normalize it.

All 190 binary pairwise classification problems were considered in this experiment. For each
problem, 500 examples were used for training. The remaining examples weredivided into a valida-
tion and test set of the same size. Both SVMs and RMMs were trained for various values of their
parameters. After finding the parameter settings that achieved the lowest error on a validation set,

11. This data set is available online athttp://people.csail.mit.edu/jrennie/20Newsgroups/ .
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the test error was evaluated (and vice-versa). This experiment was repeated ten times for random
draws of the train, validation and test sets.

Figure 9 summarizes the results. For each binary classification problem, a paired t-test was
performed and p-values were obtained. As can be seen from the plot, theRMM outperforms the
SVM significantly in almost 30% of the problems. This experiment once again demonstrates that
an absolute margin does not always result in a small test error.
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Figure 10: Log run time versus log number of examples. The figure shows that the SVM and the
RMM have similar computational requirements overall.
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Data Set SVM KLDA Σ-SVM RMM (C=D) RMM
banana 10.5± 0.4 10.8± 0.5 10.5± 0.4 10.4± 0.4 10.4± 0.4*
b.cancer 25.3± 4.6* 26.6± 4.8 28.8± 4.6 25.9± 4.5 25.4± 4.6
diabetes 23.1± 1.7 23.2± 1.8 24.2± 1.9 23.1± 1.7 23.0± 1.7*
f.solar 32.3± 1.8 33.1± 1.6 34.6± 2.0 32.3± 1.8* 32.3± 1.8*
German 23.4± 2.2 24.1± 2.4 25.9± 2.4 23.4± 2.1 23.2± 2.2*
heart 15.5± 3.3 15.7± 3.2 19.9± 3.6 15.4± 3.3 15.2± 3.1*
image 3.0± 0.6 3.1± 0.6 3.3± 0.7 3.0± 0.6 2.9± 0.7
ringnorm 1.5± 0.1 1.5± 0.1 1.5± 0.1 1.5± 0.1 1.5± 0.1*
splice 10.9± 0.7 10.6± 0.7 10.8± 0.6 10.8± 0.6 10.8± 0.6
thyroid 4.7± 2.1 4.2± 2.1 4.5± 2.1 4.2± 1.8* 4.2± 2.2
titanic 22.3± 1.1 22.0± 1.3* 23.1± 2.2 22.3± 1.1 22.3± 1.0
twonorm 2.4± 0.1* 2.4± 0.2 2.5± 0.2 2.4± 0.1 2.4± 0.1
waveform 9.9± 0.4 9.9± 0.4 10.5± 0.5 10.0± 0.4 9.7± 0.4*

Data Set RBF AB LPAB QPAB ABR
banana 10.8± 0.4 12.3± 0.7 10.7± 0.4 10.9± 0.5 10.9± 0.4
b.cancer 27.6± 4.7 30.4± 4.7 26.8± 6.1 25.9± 4.6 26.5± 4.5
diabetes 24.3± 1.9 26.5± 2.3 24.1± 1.9 25.4± 2.2 23.8± 1.8
f.solar 34.4± 1.9 35.7± 1.8 34.7± 2.0 36.2± 1.8 34.2± 2.2
German 24.7± 2.4 27.5± 2.5 24.8± 2.2 25.3± 2.1 24.3± 2.1
heart 17.1± 3.3 20.3± 3.4 17.5± 3.5 17.2± 3.4 16.5± 3.5
image 3.3± 0.7 2.7± 0.7 2.8± 0.6 2.7± 0.6* 2.7± 0.6*
ringnorm 1.7± 0.2 1.9± 0.2 2.2± 0.5 1.9± 0.2 1.6± 0.1
splice 9.9± 0.8 10.1± 0.5 10.2± 1.6 10.1± 0.5 9.5± 0.6*
thyroid 4.5± 2.1 4.4± 2.2 4.6± 2.2 4.3± 2.2 4.5± 2.2
titanic 23.3± 1.3 22.6± 1.2 24.0± 4.4 22.7± 1.0 22.6± 1.2
twonorm 2.8± 0.3 3.0± 0.3 3.2± 0.4 3.0± 0.3 2.7± 0.2
waveform 10.7± 1.1 10.8± 0.6 10.5± 1.0 10.1± 0.5 9.8± 0.8

Table 4: UCI results for a number of classification methods. Results are shown for the SVM, reg-
ularized kernel Linear Discriminant Analysis, theΣ-SVM, the RMM, an RBF network,
Adaboost, LP-regularized Adaboost, QP-regularized Adaboost andRegularized Adaboost.
The results have been split into two parts due to lack of space. For each data set, all meth-
ods could be placed on the same row in a larger table. For each data set, the algorithm
which gave the minimum error rate is starred. All other algorithms that were notsignifi-
cantly different from (at the 5% significance level based on a paired t-test) the minimum
error rate are in boldface.
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5.6 Benchmark Data Sets

To compare the performance of the RMM with a number of other methods, experiments were per-
formed on several benchmark data sets. In particular, 100 training and test splits of 13 of these
data sets have been previously used in Raetsch et al. (2001); Mika et al.(1999); Cawley and Talbot
(2003).12 The RBF kernel was used in these experiments for all kernel-based methods. To han-
dle the noisy nature of these data sets, the kernelized and relaxed versionof the RMM (14) was
used. All the parameters were tuned using cross-validation using a similar setup as in Raetsch et al.
(2001).13 With the chosen values of these parameters, the error rates were first obtained for all 100
test splits using the corresponding training splits. The results are reportedin Table 4. Once again,
the RMM exhibits clear performance advantages over other methods.

5.7 Scalability and Run-time

While the asymptotic run time behavior was analyzed in Section 3.3, the run time of theRMM is
also studied empirically in this section. In particular, the classification of MNISTdigits 0-4 versus
5-9 with a polynomial kernel of degree five was used to benchmark the algorithms. For both the
RMM and the SVM, the tolerance parameter (ε mentioned in Section 3.3) was set to 0.001. The size
of the sub-problem (12) solved was 800 in all the cases. To evaluate howthe algorithms scale, the
number of training examples was increased in steps and the training time was noted. Throughout
all the experiments, theC value was set to 1. The SVM was first run on the training examples. The
value of maximum absolute predictionθ was noted. Three different values ofB were then tried for
the RMM:B1 = 1+(θ−1)/2, B2 = 1+(θ−1)/4 andB3 = 1+(θ−1)/10. In all experiments, the
run time was noted. The experiment was repeated ten times to get an average run time for eachB
value. A log-log plot comparing the number of examples to the average run time isshown in Figure
10. Both the SVM and the RMM run time exhibit similar asymptotic behavior.

6. Conclusions

The article showed that support vector machines and maximum margin classifiers can be sensitive
to affine transformations of the input data and are biased in favor of separating data along directions
with large spread. The relative margin machine was proposed to overcome such problems and op-
timizes the projection direction such that the margin is large onlyrelative tothe spread of the data.
By deriving the dual with quadratic constraints, a geometric interpretation was also formulated for
RMMs and led to risk bounds via Rademacher complexity arguments. In practice, the RMM imple-
mentation requires only additional linear constraints that complement the SVM quadratic program
and maintain its efficient run time. Empirically, the RMM and maximum relative margin approach
showed significant improvements in classification accuracy. In addition, anintermediate method
known asΣ-SVM was shown that lies between the SVM and the RMM both conceptually andin
terms of classification performance.

Generalization bounds with Rademacher averages were derived. The SVM’s bound which in-
volves the trace of the kernel matrix was replaced with a more general whitened version of the trace
of the kernel matrix. A proof technique using landmark examples led to Rademacher bounds on an

12. These data sets are available athttp://theoval.cmp.uea.ac.uk/ ˜ gcc/matlab/default.html\#benchmarks .
13. The values of the selected parameters and the code for the RMM are available for download athttp://www.cs.

columbia.edu/ ˜ pks2103/ucirmm/ .
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empirical data-dependent hypothesis space. Furthermore, the boundswere stated independently of
the particular sample of landmarks.

Directions of future work include exploring the connections between maximumrelative margin
and generalization bounds based on margin distributions (Schapire et al., 1998; Koltchinskii and
Panchenko, 2002). By bounding outputs, the RMM is potentially finding a better margin distribution
on the training examples. Previous arguments for such an approach wereobtained in the context of
voting methods (such as boosting) and may also be relevant here.

Furthermore, the maximization of relative margin is a fairly promising and general concept
which may be compatible with other popular problems that have recently been tackled by the max-
imum margin paradigm. These include regression, ordinal regression, ranking and so forth. These
are valuable and natural extensions for the RMM. Finally, since the constraints that bound the pro-
jections are unsupervised, RMMs can readily apply in semi-supervised and transductive settings.
These are all promising directions for future work.
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Appendix A. McDiarmid’s Inequality

AssumeX1,X2, . . . ,Xn are independent random variables from a setX and g : X n → R. If the
functiong satisfies supX1,...,Xn,X̂k

|g(X1, . . . ,Xn)−g(X1, . . . , X̂k, . . . ,Xn)| ≤ ck, for all 1≤ k ≤ n then,
for anyε > 0:

Pr[g(X1, . . . ,Xn)−E[g(X1, . . . ,Xn)] ≥ ε] ≤ exp

(

− 2ε2

∑n
i=1c2

i

)

, (32)

Pr[E[g(X1, . . . ,Xn)]−g(X1, . . . ,Xn) ≥ ε] ≤ exp

(

− 2ε2

∑n
i=1c2

i

)

,

where the expectations are over the random draws ofX1, . . . ,Xn. Here the constantsc1,c2, · · · ,cn are
called Lipschitz constants.

Appendix B. Lipschitz Constants for Section 4.6

Lemma 19 The upper bound on̂R(GU
B,D), namely T1(U,S), admits the Lipschitz constant:

2
√

2B
D̄n

(√

n

∑
i=1

x⊤i xi −
√

n

∑
i=1

x⊤i xi −
DR2µmax

nD̄+DR2

)

.

Proof The quantity of interest is the worst change in

2
√

2B
n

√

n

∑
i=1

xi(D̄I +
D
n

n

∑
j=1

u ju⊤
j )−1x⊤i
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whenuk is varied for any setting ofu1, . . . ,uk−1,uk+1, . . . ,un. Since∑n
j=1, j 6=k u ju⊤

j is positive semi-
definite and inside the inverse operator,uk will have the most extreme effect on the expression when
∑n

j=1, j 6=k u ju⊤
j = 0. Thus, consider:

2
√

2B
n

√

n

∑
i=1

x⊤i

(

D̄I +
D
n

uku⊤
k

)−1

xi .

Apply the Woodbury matrix inversion identity to the term inside the square root:

n

∑
i=1

x⊤i

(

D̄I +
D
n

uku⊤
k

)−1

xi =
1
D̄

n

∑
i=1

x⊤i

(

I − uku⊤
k

nD̄
D +u⊤

k uk

)

xi

=
1
D̄

(

n

∑
i=1

x⊤i xi −
∑n

i=1(x
⊤
i uk)

2

nD̄
D +u⊤

k uk

)

.

The maximum value of this expression occurs whenuk = 0. To find the minimum, write the second
term inside the brackets in the above expression as below:

(

u⊤
k

‖uk‖
n

∑
i=1

xix⊤i
uk

‖uk‖

)

/

(

nD̄

Du⊤
k uk

+1

)

.

Clearly, in the numerator, the magnitude ofuk does not matter. To maximize this expression,uk

should be set to a vector of maximal length and in the same direction as the maximum eigenvector
of ∑n

i=1xix⊤i . Since all examples are assumed to have bounded norm no larger thanR, the largestuk

vector has normR. Denoting the maximum eigenvalue of∑n
i=1xix⊤i by µmax, it is easy to show the

claimed value of Lipschitz constant for anyk.

Lemma 20 The upper bound on̂R(H V
E,D), namely T2(V,S), admits the Lipschitz constant:

2
√

2E
D̄n

(√

n

∑
i=1

x⊤i xi −
√

n

∑
i=1

x⊤i xi −
DR2µmax

nD̄+DR2

)

.

Proof The quantity of interest is the maximum change in the following optimization problem over
uk for any setting ofu1,u2, . . . ,uk−1,uk+1, . . . ,unv :

min
λ≥0

1
n

n

∑
i=1

x⊤i

(

D̄
nv

∑
j=1

λ j I +D
nv

∑
j=1

λ ju ju⊤
j

)−1

xi +
2
n

E
nv

∑
i=1

λi .

As before, this happens when allu’s exceptuk are0. In such a scenario, the expression is minimized
for the settingλ j = 0 for all j 6= k. The minimization only needs to consider variable settings ofλk.
Since this minimization is over a single scalar, it is possible to obtain a closed-formexpression for
λk. The optimalλk is merely: 1√

2E
∑n

i=1x⊤i
(

D̄I +Duku⊤
k

)−1
xi . Substituting this into the objective

gives an expression which is independent ofλ’s:

2
√

2E
n

√

n

∑
i=1

x⊤i

(

D̄I +
D
n

uku⊤
k

)−1

xi .

This expression is identical to the one obtained in Theorem 19 and the prooffollows.
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Appendix C. Solving for nv

Letx= 1√
nv

,c= 4R
√

2E
D̄ andb= 3

2

√

ln(2/δ)
2 . Consider solving forx in the expressionx2−2bx=(c+

2b)/
√

n. Equivalently, solve(x−b)2 = b2+(c+2b)/
√

n. Taking the square root of both sides gives
x = b±

√

b2 +(c+2b)/
√

n. Sincex > 0, only the positive root is considered. Thus,
√

nv = 1/(b+
√

b2 +(c+2b)/
√

n) which gives an exact expression fornv. Dropping terms from the denominator

produces the simpler expression:
√

nv ≤ 1/
√

(c+2b)/
√

n. Hence,nv ≤
√

n

4R
√

2E
D̄ +3

√

ln(2/δ)
2

.
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