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Abstract

Leading classification methods such as support vector meshiSVMs) and their counterparts
achieve strong generalization performance by maximiziregrhargin of separation between data
classes. While the maximum margin approach has achievediginghperformance, this article
identifies its sensitivity to affine transformations of ttealand to directions with large data spread.
Maximum margin solutions may be misled by the spread of dadgaeferentially separate classes
along large spread directions. This article corrects thesaknesses by measuring margin not in
the absolute sense but rather only relative to the spreadtafid any projection direction. Maxi-
mum relative margin corresponds to a data-dependent mizatian on the classification function
while maximum absolute margin corresponds to/anorm constraint on the classification func-
tion. Interestingly, the proposed improvements only regjsimple extensions to existing maximum
margin formulations and preserve the computational eff@yieof SVMs. Through the maximiza-
tion of relative margin, surprising performance gains arkieved on real-world problems such
as digit, text classification and on several other benchrdaté sets. In addition, risk bounds are
derived for the new formulation based on Rademacher average

Keywords: support vector machines, kernel methods, large margineiRadher complexity

1. Introduction

In classification problems, the aim is to learn a classifier that generalizesnvéliture data from

a limited number of training examples. Support vector machines (SVMs) angmaxmargin
classifiers (Vapnik, 1995; Sétkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004) have
been a particularly successful approach both in theory and in pradaen a labeled training
set, these return a predictor that accurately labels previously uns¢exdesples. For simple bi-
nary classification in Euclidean spaces, this predictor is a fundtidR™ — {+1} estimated from
observed training datg;, y; )i, consisting of inputs; € R™ and outputs; € {£1}. A linear func-
tion! f(x) := sign(w " x+b) wherew € R™ b € R serves as the decision rule throughout this article.
The parameters of the hyperplafve b) are estimated by maximizing the margin (e.g., the distance
between the hyperplanes definedvbyx 4+ b = 1 andw " x4 b = —1) while minimizing a weighted
upper bound on the misclassification rate on training data (via so-calledvslaakles). In practice,
the margin is maximized by minimizin§wTw plus an upper bound on the misclassification rate.

1. In this article the dot produet " x is used with the understanding that it can be replaced with a generalizad inne
product or by using a kernel for generic objects.
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While maximum margin classification works well in practice, its solution can easihgtarbed
by an (invertible) affine or scaling transformation of the input spaceiri&ance, by transforming
all training and testing inputs by an invertible linear transformation, the SVMisaland its re-
sulting classification performance can be significantly varied. This is veonessince an adversary
could directly exploit this shortcoming and transform the data to drive pegnce down; a syn-
thetic example showing this effect will be presented in Section 5. Morethisrphenomenon is
not limited to an explicit adversarial setting; it can naturally occur in manywedd classification
problems, especially in high dimensions. This article will explore such shaitgys in maximum
margin solutions (or equivalently, SVMs in the context of this article) whiatlestvely measure
margin by the points near the classification boundary regardless of ieadsghe remaining data is
away from the separating hyperplane. An alternative approach widlitmevied based on controlling
the spread while maximizing the margin. This helps overcome this bias and psoddcrmulation
that is affine invariant. The key is to recover a large margin solution whilmalizing the margin
by the spread of the data. Thus, margin is measuredafative sense rather than in the absolute
sense. In addition, theoretical results using Rademacher averagestsilnis intuition. The re-
sulting classifier will be referred to as the relative margin machine (RMMyveaxlfirst introduced
by Shivaswamy and Jebara (2009a) with this longer article serving toderovore details, more
thorough empirical evaluation and more theoretical support.

Traditionally, controlling spread has been an important theme in classificatbiems. For in-
stance, classical linear discriminant analysis (LDA) (Duda et al., 20003 forojections of the data
so that the inter-class separation is large while within-class scatter is smalévidguhe spread (or
scatter in this context) is estimated by LDA using only simple first and the secded statistics of
the data. While this is appropriate if class-conditional densities are Gaussi@ond-order statis-
tics are inappropriate for many real-world data sets and thus, the classifiparformance of LDA
is typically weaker than that of SVMs. The estimation of spread should noé ree&ond-order
assumptions about the data and should be tied to the margin criterion (Vapai). 1A similar
line of reasoning has been proposed to perform feature selectionomésal. (2000) showed that
second order tests and filtering methods on features perform poorlyatecthfp wrapper methods
on SVMs which more reliably remove features that have low discriminative vdiug¢his prior
work, a feature’s contribution to margin is compared to its effect on the saufithe data by com-
puting bounding hyper-spheres rather than simple second-order stafistifortunately, there, only
axis-aligned feature selection was considered. Similarly, ellipsoidal keraehines (Shivaswamy
and Jebara, 2007) were proposed to normalize data in feature spasgrbgting bounding hyper-
ellipsoids while avoiding second-order assumptions. Similarly, the radiugimiaound has been
used as a criterion to tune the hyper-parameters of the SVM (Keerthi,.280@%her criterion based
jointly on ideas from the SVM method as well as Linear Discriminant Analysisbieas studied
by Zhang et al. (2005). This technique involves first solving the SVMthed solving an LDA
problem based on the support vectors that were obtained. While thedeys methods showed
performance improvements, they relied on multiple-step locally optimal algorithnistéoleaving
spread information with margin estimation.

To overcome the limitations of local non-convex optimization schemes, the faiondalerived
here will remain convex, will be efficiently solvable and will admit helpful gealization bounds.
A similar method to the RMM was described by Haffner (2001), yet thatagutr started from a
different overall motivation. In contrast, this article starts with a novel intmjtiroduces a novel
algorithm and provides novel empirical and theoretical support. Anatiteresting contact point
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is the second order perceptron framework (Cesa-Bianchi et al.) 2@i6h parallels some of the
intuitions underlying the RMM. In an on-line setting, the second order pé&@e maintains both
a decision rule and a covariance matrix to whiten the data. The mistake bounHerits were
shown to be better than those of the classical perceptron algorithm. Akelgatine may consider
distributions over classifier solutions which provide a different estimatettftamaximum margin
setting and have also shown empirical improvements over SVMs (Jaakkala £099; Herbrich
et al., 2001). In recent papers, Dredze et al. (2008) and Crammér2009a) consider a distribu-
tion on the perceptron hyperplane. These distribution assumptions pedateuples that resemble
whitening of the data, thus alleviating adversarial affine transformatiothgoducing changes to
the basic maximum margin formulation that are similar in spirit to those the RMM prsvitte
addition, recently, a new batch algorithm called the Gaussian margin machitiY @ rammer
et al., 2009b) has been proposed. The GMM maintains a Gaussian distribudoweight vectors
for binary classification and seeks the least informative distribution tha¢aty classifies train-
ing data. While the GMM is well motivated from a PAC-Bayesian perspectiwe optimization
problem itself is expensive involving a log-determinant optimization.

Another alternative route for improving SVM performance includes theofiadditional exam-
ples. For instance, unlabeled or test examples may be available in semiiseganr transductive
formulations of the SVM (Joachims, 1999; Belkin et al., 2005). Alternatjvadigitional data that
does not belong to any of the classification classes of interest may bebtvaitain the so-called
Universum approach (Weston et al., 2006; Sinz et al., 2008). Inipf&these methods also change
the way margin is measured and the way regularization is applied to the learoisigmp. While
additional data can be helpful in overcoming limitations for many classifiers attide will be
interested in only the simple binary classification setting. The argument is that,uvihyg ad-
ditional assumptions beyond the simple classification problem, maximizing margin @ sodute
sense may be suboptimal and that maximizing relative margin is a promising alternati

Further, large margin methods have been successfully applied to a vdriagk® such as pars-
ing (Collins and Roark, 2004; Taskar et al., 2004), matrix factorizatioal® et al., 2005), struc-
tured prediction (Tsochantaridis et al., 2005), etc.; in fact, the RMM amira@ould be readily
adapted to such problems. For instance, RMM has been successfulidedt® structured predic-
tion problems (Shivaswamy and Jebara, 2009b).

The organization of this article is as follows. Motivation from various pecsiges are given in
Section 2. The relative margin machine formulation is detailed in Section 3 aathseariants and
implementations are proposed. Generalization bounds for the variousofurtasses are studied
in Section 4. Experimental results are provided in Section 5. Finally, canokigre presented in
Section 6. Some proofs and otherwise standard results are providedApgbadix.

1.1 Notation

Throughout this article, boldface letters indicate vectors/matrices. For éstorsu € R™ and

v € RM u < vindicates that; <v; for all i from 1 tom. 1, 0 andl denote the vectors of all ones,
all zeros and the identity matrix respectivelyalso denotes a matrix of all zeros in some contexts.
The dimensionality of vectors and matrices should be clear from the context.
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2. Motivation

This section provides three different (an intuitive, a probabilistic andfarearansformation based)
motivations for maximizing the margin relative to the data spread.

2.1 Intuitive Motivation with a Two Dimensional Example

Consider the simple two dimensional data set in Figure 1 where the goal isst@sefhe two classes
of points: triangles and squares. The figure depicts three scaledngdithe two dimensional
problem to illustrate potential problems with the large margin solution.

In the topmost plot in the left column of Figure 1, two possible linear decisiam&aries
separating the classes are shown. The red (or dark shade) solutian $/M estimate while
the green (or light shade) solution is the proposed maximum relative marginagite. Clearly,
the SVM solution achieves the largest margin possible while separating bstes]ayet is this
necessarily the best solution?

Next, consider the same set of points after a scaling transformation in thedsand the third
row of Figure 1. Note that all these three problems correspond to the dacnienihation problem
up to a scaling factor. With progressive scaling, the SVM increasingliatis/from the maximum
relative margin solution (green), clearly indicating that the SVM decisiombary is sensitive to
affine transformations of the data. Essentially, the SVM produces a fandiffefent solutions as a
result of the scaling. This sensitivity to scaling and affine transformationsrissome. If the SVM
solution and its generalization accuracy vary with scaling, an adversargxpdoit such scaling to
ensure that the SVM performs poorly. Meanwhile, an algorithm produtiagnaximum relative
margin (green) decision boundary could remain resilient to adversaatihg.

In the previous example, a direction with a small spread in the data prodygsExtizand affine-
invariant discriminator which maximized relative margin. Unlike the maximum mardirtieq,
this solution accounts for the spread of the data in various directions. €hisitg it to recover a
solution which has a large margin relative to the spread in that direction. &solution would
otherwise be overlooked by a maximum margin criterion. A small margin in a sorelingly
smaller spread of the data might be better than a large absolute margin witbpoordangly larger
data spread. This particular weakness in large margin estimation has agilyecblimited attention
in previous work.

It is helpful to consider the generative model for the above motivatingipl&a Therein, each
class was generated from a one dimensional line distribution with the two slassgvo parallel
lines. In this case, the maximum relative margin (green) decision boundawdsobtain zero test
error even if it is estimated from a finite number of examples. However, ffideftraining data,
the SVM solution will make errors and will do so increasingly as the data is¢tatther. While
it is possible to anticipate these problems and choose kernels or nonlinggingsfo correct for
them in advance, this is not necessarily practical. The right mapping oelkernever provided in
advance in realistic settings. Instead, one has to estimate kernels and aomlappings, a difficult
endeavor which can often exacerbate the learning problem. Similarly, sirafdepteprocessing
(affine whitening to make the data set zero-mean and unit-covariancalorgsto place the data
into a zero-one box) can also fail, possibly because of estimation probleemovering the correct
transformation (this will be shown in real-world experiments).

The above arguments show that large margin on its own is not enough; ibisedgssary to
control the spread of the data after projection. Therefore, maximum metrigind be traded-off or
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balanced with the goal of simultaneously minimizing the spread of the projectadfdainstance,
by bounding the spreafiv’x + b|. This will allow the linear classifier to recover large margin
solutions not in the absolute sense but ratiedative tothe spread of the data in that projection
direction.

In the case of a kernel such as the RBF kernel, the points are first thappespace so that
all the input examples are unit vectors (i.8p(x),®(x)) = 1). Note that the intuitive motivation
proposed here still applies in such cases. No matter how they are mappdly,iitiarge margin
solution still projects these points to the real line where the margin of sepaiatioaximized.
However, the spread of the projection can still vary significantly among iffereht projection
directions. Given the above motivation, itis important to achieve a large maigtive to the spread
of the projections even in such situations. Furthermore, experiments wilbsiiis intuition with
dramatic improvements on many real problems and with a variety of kernelsdingltadial basis
function and polynomial kernels).

2.2 Probabilistic Motivation

In this subsection, an informal motivation is provided to illustrate why maximizitajive margin
may be helpful. Suppode;,y;)i. ; are drawn independently and identicalig} from a distribution

D. A classifiew € R™is sought which will produce low error on future unseen examples dotpr

to the decision rulg = sign(w " x). An alternative criterion is that the classifier should produce a
large value of according to the following expression:

(xi)ti) [yWTX = O} =

wherew € R™ is the classifier. One way to ensure the above constraint is by requiringhtha

following inequality hold:
T N T
Epyw ' X] z,ll_n\/vg[yw X]. (1)

A proof of the above claim for a general distribution can be found in&viiamy et al. (2006). In
fact, Gaussian margin machines (Crammer et al., 2009b) start with a similar tieotibat assume
a Gaussian distribution on the classifier.

According to (1), achieving a low probability of error requires the pridgers to have a large
mean and a small variance. The mean and variance for the true distridutioay be unavailable,
however, the empirical counterparts of these quantities are availablenanah ko be concentrated.
The above inequality is used as a loose motivation. Instead of preciselydiluiv variance and
high mean projections, this paper implements this intuition by trading off betwagsnnaargin and
small projections of the data while correctly classifying most of the examplesawithge loss.

2.3 Motivation From an Affine Invariance Perspective

Another motivation for maximum relative margin can be made by reformulatingléssification
problem altogether. Instead of learning a classifier from data, conlsi@ering an affine transfor-
mation on data such that an a pritikedclassifier performs well. The data will be mapped by an
affine transformation such that it is separated with large margin while it atstupes a small ra-
dius. Recall that maximum margin classification and SVMs are motivated byajation bounds
based on Vapnik-Chervonenkis complexity arguments. These gengoalibaunds depend on the
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Figure 1: Left: As the data is scaled, the maximum margin SVM solution (redrérstteade) de-
viates from the maximum relative margin solution (green or light shade). Tiffeeent
scaling scenarios are shown. Right: The projections of the exampless(thax -+ b) on
the real line for the SVM solution (red or dark shade) and the propdassifier (green or
light shade) under each scaling scenario. These projections havdiaee on separated
axes for clarity. The absolute margins for the maximum margin solution (red).24,
1.51 and 2.08 from top to bottom. For the maximum relative margin solution (green)
the absolute margin is merely 0.71. However, the relative margin (the ratiosofub
margin to the spread of the projections) is 41%, 28%, and 21% for the maximuginma
solution (red) and 100% for the relative margin solution (green). Thie sfall axes is
kept locked to permit direct visual comparison.

752



MAXIMUM RELATIVE MARGIN AND DATA-DEPENDENTREGULARIZATION

ratio of the margin to the radius of the data (Vapnik, 1995). Similarly, Radeenagmneralization
bounds (Shawe-Taylor and Cristianini, 2004) also consider the rati@ @fabe of the kernel matrix
to the margin. Here the radius of the data refers t®Rauch thaf|x|| < R for all x drawn from a

distribution.

Instead of learning a classification rule, the optimization problem considetki section will
recover an affine transformation which achieves a large margin fréimeddecision rule while
also achieving small radius. Assume the classification hyperplane is gwéoravia the decision
boundarywg x +bg = 0 with the two supporting margin hyperplanegx +bo = +p. Here wp € R™
can be an arbitrary unit vector aifisg is an arbitrary scalar. Consider the problem of mapping all
the training points (by an affine transformatior- Ax +b, A € R™™ b € R™) so that the mapped
points (i.e.,Ax; + b) satisfy the classification constraintg) x + bp = £p while producing small
radius,v/R. The choice ofwg andby is arbitrary since the affine transformation can completely
compensate for it. For brevity, denote By= [A b] and% = [x" 1]. With this notation, the affine
transformation learning problem is formalized by the following optimization:

min —p+ER 2)
ARp

yi(wg A% +bg) > p, vi<i<n

1 A A .

5(A>~<i)T(A>~<i)§R vi<i<n

The parameteE trades off between the radius of the affine transformed data and the ftrgin
will be obtained. The following Lemma shows that this affine transformatiomiegmproblem is
basically equivalent to learning a large margin solution with a small spread.

Lemma 1 The solutionA* to (2) is a rank one matrix.

Proof Consider the Lagrangian of the above problem with Lagrange multiplieks > 0:

L(A,p,R a,A) = —p+ER- 21 i(yi (wg A% + bo) — p)

+z§ A%)—R).

Differentiating the above Lagrangian with respecAtgives the following expression:

G(Ap,Ra)\ d d

__Zl iyiwoXi + A i;?\iiif(iT- 3)

From (3), at optimum,

A*iZlA X ~T =- Zl |)/|W0X

It is therefore clear thah* can always be chosen to have rank one since the right hand side of the
expression is just an outer product of two vectors. |

2. For brevity, the so-called slack variables have been intentionally omittee the proof holds in any case.
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Lemma 1 gives further intuition on why one should limit the spread of the reedweassifier.
Learning a transformation matri so as to maximize the margin while minimizing the radius given
an a priori hyperplanéwpg, bp) is no different from learning a classification hyperplaneb) with
a large margin as well as a small spread. This is because the rank of treetedfisformatior*
is one; thusA* merely maps all the pointg onto a line achieving a certain margprbut also lim-
iting the output or spread. This means that finding an affine transformatiahwachieves a large
margin and small radius is equivalent to findingrandb with a large margin and with projections
constrained to remain close to the origin. Thus, the affine transformatianriggroblem comple-
ments the intuitive arguments in Section 2.1 and also suggests that the learminthedghould
bound the spread of the data.

3. From Absolute Margin to Relative Margin

This section will provide an upgrade path from the maximum margin classifi&\(M) to a max-
imum relative margin formulation. Given independent identically distributedngias (x;,y;)i,
wherex; € R™ andy; € {£1} are drawn from Rk, y), the support vector machine primal formula-
tion is as follows:

. 1 2 n
min —||w C i 4
min Swi*+C 3 & @
styiw'xi+b)>1-§, &>0 v1i<i<n.
The above is an easily solvable quadratic program (QP) and maximizes tgm taminimizing
lw||2. Since real data is seldom separable, slack variaB|¢sue used to relax the hard classifi-
cation constraints. Thus, the above formulation maximizes the margin while minimiziogpser

bound on the number of classification errors. The trade-off betwedwthquantities is controlled
by the paramete. Equivalently, the following dual of the formulation (4) can be solved:

n 1 n n T
max ) o — = a0 YiYiXi Xj (5)
a i; 2£ ,Zl !
n
sty ay=0
2
0<agi<C vi<i<n.

Lemma 2 The formulation in(5) is invariant to a rotation of the inputs.

Proof Replace eack; with Ax; whereA is a rotation matrix such th#& ¢ R™™andATA =1. It
is clear that the dual remains the same. |

However, the dual is not the sameAifis more general than a rotation matrix, for instance, if it is an
arbitrary affine transformation.

The above classification framework can also handle non-linear classificaadily by making
use of Mercer kernels. A kernel functid R™ x R™ — R replaces the dot products x; in (5).
The kernel functiork is such thak(xi, ;) = (@(xi),®(x;)), where@: R™ — # is a mapping to
a Hilbert space. Thus, solving the SVM dual formulation (5) with a keroattion can give a
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non-linear solution in the input space. In the rest of this artkle, R™" denotes the Gram matrix
whose individual entries are given By, = k(xi, ;). When applying Lemma 2 on a kernel defined
feature space, the affine transformation igpox ) and not orx;.

3.1 The Whitened SVM

One way of limiting sensitivity to affine transformations while recovering a langegin solution is
to whiten the data with the covariance matrix prior to estimating the SVM solution. Thisatea
reduce the bias towards regions of large data spread as discussetiom 3e Denote by

n

12 12 n 1
Ez—inxT——in X, andp,:—zlxi,
ng ' m& 121 : ni<

the sample covariance and sample mean, respectively. Now, consideditigrfy formulation
calledX-SVM:

min w —||X2w C i 6
min = Wl 2w 4 C 5 & (6)
styi(w' (xi—p)+b)>1-&, & >0 vi<i<n

where 0< D < 1 is an additional parameter that trades off between the two regularizatios.ter
WhenD = 0, (6) gives back the usual SVM primal (although on translated datag.duial of (6)
can be shown to be:

n 1 n T 1 n
max i;on - éi;aly. (xi —p) ((1-D)I +DX) J:lonyj (Xj—m) (7
n
sty ay =0
i; 1)1
0<a;<C vi<i<n

Itis easy to see that the above formulation (7) is translation invariant add temn affine invariant
solution wherD tends to one. However, there are some problems with this formulation. First, the
whitening process only considers second order statistics of the inputvtiath may be inappro-
priate for non-Gaussian data sets. Furthermore, there are computdiftioalties associated with
whitening. Consider the following term:

(% — ) (1~ D)l +DX)"1(x; — p).

When 0< D < 1, it can be shown, by using the Woodbury matrix inversion formula, thalbloge
term can be kernelized as

. 1 KMt K/l 1Tk1
k(xi,xj):l_D<k(xi,xj)— 'n - r’} += )

ko (o ) ) o 5)] (19
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whereK; is thei" column ofK. This implies that th&-SVM can be solved merely by solving (5)
after replacing the kernel witﬁ(xi,xj) as defined above. Note that the above formula involves a
matrix inversion of size&, making the kernel computation alogn?). Even performing whitening

as a preprocessing step in the feature space would involve this matrixiamvevkich is often
computationally prohibitive.

3.2 Relative Margin Machines

While the aboveX-SVM does address some of the issues of data spread, it made sedend or
assumptions to recov& and involved a cumbersome matrix inversion. A more direct and efficient
approach to control the spread is possible and will be proposed next.

The SVM will be modified such that the projections on the training examples revoaimded.
A parameter will also be introduced that helps trade off between large mandismall spread of
the projection of the data. This formulation will initially be solved by a quadraticadiystrained
guadratic program (QCQP) in this section. The dual of this formulation will bésof interest and
yield further geometric intuitions.

Consider the following formulation called the relative margin machine (RMM):

1, D
mlg] EHWH +Ci;E. (8)
styiw'xi+b)>1-§;, & >0 Vi<i<n
1, . , B2 .
é(w Xi +b) S? vi<i<n

This formulation is similar to the SVM primal (4) except for the additional corimls% (WX +

b)? < 572. The formulation has one extra paramdden addition to the SVM paramet€r. WhenB

is large enough, the above QCQP gives the same solution as the SVM. Adsthabonly settings

of B > 1 are meaningful since a value Bfiess than one would prevent any training examples from
clearing the margin, that is, none of the examples could satiéfy’ x; 4+ b) > 1 otherwise. Letvc
andbc be the solutions obtained by solving the SVM (4) for a particular valu& dff is clear, then,
thatB > max ]ngi + bc|, makes the constraint on the second line in the formulation (8) inactive
for eachi and the solution obtained is the same as the SVM estimate. This gives an upghottr

for the parameteB so that the RMM solution is not trivially identical to the SVM solution.

As B is decreased, the RMM solution increasingly differs from the SVM solutgpecifically,
with a smallerB, the RMM still finds a large margin solution but with a smaller projection of the
training examples. By trying differe® values (within the aforementioned thresholds), different
large relative margin solutions are explored. It is helpful to next conshie dual of the RMM
problem.

The Lagrangian of (8) is given by:

L(w,b,a,A,B) :;\W||2+Ciéi - iai (yi (W'x +b) — 1+Ei> — iBiEi
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wherea, 3, A > 0 are the Lagrange multipliers corresponding to the constraints. Diffetiagtia
with respect to the primal variables and equating to zero produces:

+zi}\xx W+b21}\ iXj = Zl iYiXi,
1

)‘Tl(zla.y, Zl)\w Xj) =b,

Denoting by

n l n n 1 n
N, = S XX — AiXi Ay d — A Xi

the dual of (8) can be shown to be:

n

max Zlau—fZl ii (X ) (1+325)" %Gij(Xj—uA)+;BziiAi (9)

st.0<ai<C A >0 vi<i<n.

Moreover, the optimalv can be shown to be:

n

= (I +2>\)_1‘;GM (Xi — px)-

Note that the above formulation is translation invariant sipgeis subtracted from eack. Xy
corresponds to a shape matrix (which is potentially low rank) determinegdsihat have non-zero
Ai. From the Karush-Kuhn-Tucker (KKT) conditions of (8) itis clear tha(ti(w Xi +b)2 — 2) =

0. Consequently\j > 0 implies (3(w'x; +b)2— & ) 0. Notice the similarity in the two dual
formulations in (7) and (9); both formulations look similar except for the amoig: and3 which
transform the inputs. The RMM in (9) whitens data with the matrix 3 ) while simultaneously
solving an SVM-like classification problem. While this is similar in spirit to ae&SVM, the matrix
(I +X,) is being estimated directly to optimize the margin with a small data spreadXT9¢M
only whitens data as a preprocessing independently of the margin and ¢éhe 1dbeX-SVM is
equivalent to the RMM only in the rare situation when)al=t for somet which makes the:» and
3 in the RMM andX-SVM identical up to a scaling factor.

In practice, the above formulation will not be solved since it is computationallydotjgal.
Solving (9) requires semi-definite programming (SDP) which prevents theoahdtbm scaling
beyond a few hundred data points. Instead, an equivalent optimizatiobevilsed which gives
the same solution but only requires quadratic programming. This is achigvgithply replacing
the constraing (w"x; + b)? < $B2 with the two equivalent linear constraintsy'x; + b) < B and
—(w'x; +b) < B. With these linear constraints replacing the quadratic constraint, the pradblem
now merely a QP. In the primal, the QP has ebnstraints (including > 0 ) instead of the 2
constraints in the SVM. Thus, the RMM'’s quadratic program has the sadee of complexity as
the SVM. In the next section, an efficient implementation of the RMM problemasenmted.
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3.3 Fast Implementation

Once the quadratic constraints have been replaced with linear constthem®@MM is merely a
guadratic program which admits many fast implementation schemes. It is n@ibleo® adapt
previous fast SVM algorithms in the literature to the RMM. In this section k&A'9"t (Joachims,
1998) approach will be adapted to the following RMM optimization problem

l n
min Z||w|*+C S & (10)
whb 2 iZl
styiw'x+b)>1-§, &>0 v1i<i<n
w'xi+b<B vi<i<n
—w'xi—b<B Vi<i<n
The dual of (10) can be shown to be the following:
1
max —é(aoy—)\—i—)\*)TK (ccoy—A+A")+a'1-BAT1-BA "1 (11)
sta'y—AT1+X*T1=0
0<a<Ci
AT >0,

where the operatar denotes the element-wise product of two vectors.

The QP in (11) is solved in an iterative way. In each step, only a subsies afual variables are
optimized. For instance, in a particular iteration, tgke ands (@, i andsj to be indices of the free
(fixed) variables inx, A and \* respectively (ensuring thatu§ = {1,2,...n} andgn§= 0 and
proceeding similarly for the other two indices). The optimization over the fagiables in that step
can then be expressed as:

- T - -

1| @aeYq Kgg —Ka Kgs | [ ageyq ]
m}\a& _é Ar —qu Kir —Krs Ar (12)
FaAnds As | L Ksg —Kea Kss | [ Ag
_ T - o - -
1| @a*Yq Kag —Kar  Kas Qg ®Yq
-5 Ar —Kvg Kip  —Kis Ar
Ad | Kg Ky Ks || A

+ogl-BA/1-BA{'1
StogYg— A/ 1+ 1= —agyg+Af 1- AL,
Ar, AL > 0.

While the first term in the above objective is quadratic in the free variables (@hich it is op-
timized), the second term is merely linear. Essentially, the above is a workirggiseme which
iteratively solves the QP over subsets of variables until some terminationaceterachieved. The
following enumerates the termination criteria that will be used in this article., X, \* andb are
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the current solutionlyis determined by the KKT conditions just as with SVMs), then:

=]

Vis.t.0<ai<C: b—e <y — (Y (ajy; —Aj+A)k(xi, X)) < b+e
=1
n
Vist.oi=0: Yi( Y (ajyj —Aj+ AKX, X)) +b) > 1—¢
=1
n
Vista=C: Yi('S (ajyj —Aj+A)k(xi,xj) +b) <1+e
=1
n
VistAi>0: B—e< (Y (ajyj—Aj+A)k(xi,xj) +b) <B+e
=1
n
VistA=0: (Y (a5y; —Aj+A)K(xi, X)) +b) <B—e¢
=1
n
VistA >0: B—e<—() (ajyj—Aj+A)k(xi,xj) +b) <B+e
=1
n
Vist.Af =0: —(Z(Gjyj—)\j‘i‘)\T)k(Xi,Xj)'i‘b)SB—S.

=1

In each step of the algorithm, a small sub-problem of the structure of (E®)usd. To select
the free variables, these conditions are checked to find the worst violatitaples both from the
top of the violation list and from the bottom. The selected variables are optimizediang (12)
while keeping the other variables fixed. Since only a small QP is solved instgghthe cubic time
scaling behavior is circumvented for improved efficiency. A few otherkbkeeping tricks have
also been adapted froBVMi9" to yield other minor improvements.

Denote byp the number of elements chosen in each step of the optimizationgi-e.|q| +
Ir| +1s]). The QP in each step takeX p3) and updating the prediction values to compute the KKT
violations takegO(ng) time. Sorting the output values to choose the most violated constraints takes
O(nlog(n)) time. Thus, the total time taken in each iteration of the algorith®(ig® + nlog(n) +
ng). Empirical running times are provided in Section 5 for a digit classificatioblpro.

Many other fast SVM solvers could also be adapted to the RMM. Rec&anhads such as the
cutting plane SVM algorithm (Joachims, 2006), Pegasos (Shalev-Shetatz 2007) and so forth
are also applicable and are deferred for future work.

3.4 Variants of the RMM
It is not always desirable to have a parameter in a formulation that woukehdegxplicitly on the

output from a previous computation as in (10). Itis possible to overcomisshis via the following
optimization problem:
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n

i ;kuz+c;zi +Dt (13)
styi(w'xi+b)>1-§&, & >0 vi<i<n,
+(w'x+b) <t vi<i<n,
—(W'xi+Db) <t vi<i<n.

Note that (13) has a parameterinstead of the paramet& in (10). The two optimization
problems are equivalent in the sense that for every vallBinf{10), it is possible to have a corre-
spondingD such that both optimization problems give the same solution.

Further, in some situations, a hard constraint bounding the outputs a9 icefiBe detrimental
due to outliers. Thus, it might be required to have a relaxation on the bayndistraints as well.
This motivates the following relaxed version of (13):

N N
,min ;|yw\2+cizlzi +D(tHy 3 (6+T) (14)
styi(w'xi+b)>1-§, &>0 vi<i<n,
+ (Wi +b) <t+1 vi<i<n,
—(W'x+b) <t+Tf vi<i<n.

In the above formulationy controls the fraction of outliers. It is not hard to derive the dual of the
above to express it in kernelized form.

4. Risk Bounds

This section provides generalization guarantees for the classifiers téshighe SVM,X-SVM
and RMM) which all produce decisidboundaries of the forrw " x = 0 from a limited number of
examples. In the SVM, the decision boundary is found by minimizing a combinatiar w and
an upper bound on the number of errors. This minimization is equivalentaosaig a function
g(x) = w'x from a set of linear functions with boundéginorm. Therefore, with a suitable choice
of E, the SVM solution chooses the functigft) from the sef{x — wa|%wTw <E}.

By measuring the complexity of the function class being explored, it is podsilderive gen-
eralization guarantees and risk bounds. A natural measure of how comfil@ction class is the
Rademacher complexity which has been fruitful in the derivation of génatian bounds. For
SVMs, such results can be found in Shawe-Taylor and Cristianini (20Ddis section continues
in the same spirit and defines the function classes and their correspdratiiggnacher complexi-
ties for slightly modified versions of the RMM as well as tBeSVM. Furthermore, these will be
used to provide generalization guarantees for both classifiers. Theaatyleontent of this section
closely follows that of Shawe-Taylor and Cristianini (2004).

The function classes for the RMM adtSVM will depend on the data. Thus, these both entail
so-called data-dependent regularization which is not quite as straightfibas the function classes
explored by SVMs. In particular, the data involved in defining data-dé@etrfunction classes will

3. The bias term is suppressed in this section for brevity.
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be treated differently and referred to as landmarks to distinguish themfi@training data. Land-
mark data is used to define the function class while training data is used toassfagtific function
from the class. This distinction is important for the following theoretical @iins. However, in
practical implementations, both t&2SVM and the RMM may use the training data to both define
the function class and to choose the best function within it. Thus, the distirimreen landmark
data and training data is merely a formality for deriving generalization bowhash require inde-
pendent sets of examples for both stages. Ultimately, however, it will balppedo still provide
generalization guarantees that are independent of the particular ldneraanples. Details of this
argument are provided in Section 4.6. For this section, however, it isn@sbthat, in parallel with
the training data, a separate data set of landmarks is provided to definettioifi class for the
RMM and theX-SVM.

4.1 Function Class Definitions

Consider the training data s, y; )i ; with x; € R™ andy; € {1} which are drawn independently
and identically distributediifl) from an unknown underlying distributioR[(X,y)] denoted a%D.
The features of the training examples above are denoted by tBe-séx;, ..., xn}.

Given a choice of the parametErin the SVM (whereE plays the role of the regularization
parameter), the set of linear functions the SVM considers is:

Definition 3 7 := {x — w'x|3w w < E}.

The RMM maximizes the margin while also limiting the spread of projections on the tgadfsita.
It effectively considers the following function class:
Definition 4 #25 := {x — w'x|3w w+ 3 (w'x)2 <EV1<i<n}.
Above, takeD := 1—D and 0< D < 1 trades off between large margin and small spread on the
projections’ Since the above function class depends on the training examples, stRad@macher
analysis, which is straightforward for the SVM, is no longer applicablesteld, define another
function class for the RMM using a distinct set of landmark examples.

A setV = {vy,...,v,,} drawniid from the same distributio®[x], denoted a®, is used as
the landmark examples. With these landmark examples, the modified RMM funtdssiaan be
written as:

Definition 5 Y[, 1= {x — WTX\%_WTW+ Swhvi)2<EV1<i<ng.
Finally, function classes that are relevant for ie&SVM are considered. These limit the average

projection rather than the maximum projection. The data-dependent furatéies is defined as
below:

Definition 6 G2 :={x —»w'x|Swiw+ 25", (Ww'x)? <E}.

A different landmark set = {us,...,un}, again drawnid from 2, is used in defining the
corresponding landmark function class:
Definition 7 Ggp := {x —w x| 3w w+ 2 31, (w'uj)? <B}.

Note that the parametér is fixed in ﬂ-lg{D butn, may be different frorm. In the case OGE{D,

the number of landmarks is the saifm} as the number of training examples but the parantter
used instead dE. These distinctions are intentional and will be clarified in subsequent ssctio

4. Zero and one are excluded from the rang® @b avoid degenerate cases.
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4.2 Rademacher Complexity

In this section the Rademacher complexity of the aforementioned functiorslass quantified by
bounding the empirical Rademacher complexity. Rademacher complexity ragéiserichness of
a class of real-valued functions with respect to a probability distributiontl®aand Mendelson,
2002; Shawe-Taylor and Cristianini, 2004; Bousquet et al., 2004).

Definition 8 For a sampleS = {x1,X2,...,Xn} generated by a distribution oxand a real-valued
function class¥ with domainx, the empirical Rademacher complexitf F is
n

% f<xi>]

whereo = {01,...0,} are independent random variables that take valgdsor —1 with equal
probability. Moreover, the Rademacher complexityfois: R(F) := Es [R(F)] .

R(¥) :=Eg [sup
feF

A stepping stone for quantifying the true Rademacher complexity is obtainedrsidering its
empirical counterpart.

4.3 Empirical Rademacher Complexity

In this subsection, upper bounds on the empirical Rademacher complexéieterdved for the
previously defined function classes. These bounds provide insighteargularization properties
of the function classes for the sam@e= {X1,X2,...Xn}.

Theorem 9 R(7e) < To = @\/tr(K), where t(K) is the trace of the Gram matrix of the ele-
Proof
n

ments inS.
2 T
=—-Eg| max |w Zloixi
n llw||<v2E i=

_n oixi'“ Z\ﬁ (iox ZGJXJ>2
Z\nﬁ (ECy [l Y 0igjX; x,])z = ZF\/U(K).

n

iZlO'i f(Xi)

2V 2E
o |

R(%e) = Eg [sup
feFe

=1

The proof uses Jensen'’s inequality on the functjérand the fact that; andoj are random vari-
ables taking values-1 or —1 with equal probability. Thus, when# j, Eg[oiojX xi] = 0 and,
otherwise E;[0i0iX Xi| = Eg[X/ Xi] = X{' ;. The result follows from the linearity of the expecta-
tion operator. |

5. The dependence of the empirical Rademacher complexityamulS is suppressed by Writiné(f) for brevity.
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Roughly speaking, by keepirtg small, the classifier’s ability to fit arbitrary labels is reduced.
This is one way to motivate a maximum margin strategy. Note@ﬁm is a coarse measure of
the spread of the data. However, most SVM formulations do not directly oithig term. This
motivates to next consider two new function classes.

Theorem 10 fi(?@fD) < T»(V,S), where for any training seB and landmarR set4, T,(4, B) :=

- S 1
M=o 13 SxesX ' (Dl Tucalu+D Fucatuut’) "X+ & Sucadu.

Proof Start with the definition of the empirical Rademacher complexity:
n

iizlci (w'x) ] )

Consider the supremum inside the expectation. Depending on the sign ofrthensiéde| - |, the
above corresponds to either a maximization or a minimization. Without loss ofajiyeconsider
the case of maximization. When a minimization is involved, the value of the objetitiveains
the same. The supremum is recovered by solving the following optimizatiomhepnob

R(#Hp) = Eo [ sup

w: 1 (DwTw+D(wTv;)2)<E

n
1 — .
max w' E oiX; S.t. é(DWTW+ D(w'vi)?) <E v1<i<n,. (15)
i=

Using Lagrange multipliers; > 0,...A,, > 0, the Lagrangian of (15) ist(w,\) = —w' s, oixi+

™ Ai (3 (Dw'w+D(w'v;)?) — E) . Differentiating this with respect to the primal variabieand
equating it to zero givesy = E;E ST 10iXi, whereX, p 1= 52{‘;1)\il +D3¥ Aivivi'. Substitut-
ing thisw in £(w,\) gives the dual of (15):

L Tl w <
min = Y ox. X, oxi+EYN A
A=0 Zi; o A’DJ; i i; |

This permits the following upper bound on the empirical Rademacher compléxity the primal
and the dual objectives are equal at the optimum:

A>

A 2 10 a nv
R(}e/,D) = HEG [mlg Ei;UiXiTE)\71D JZlojxj + Ei;Ai]

< min 2E L -Tzfln iXi Env)\-
_r)ggﬁ o é_zlolxi )\’DJZlGJXH_ iZ\ [

<min 1S TSty 4 2B 3 Ai =T(V,9)
_A>oni;' AD™ T i;'_ 2T

On line one, the expectation is over the minimizers dyehis is less than first taking the expecta-
tion and then minimizing ovex in line two. Then, simply recycle the arguments used in Theorem
9 to handle the expectation over |

6. T»(4,B) has been defined on generic sets. When an already defined setss¢dwith a known numbeny, of
elements) is an argument g, A will be subscripted with or j.
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Theorem 11 fz(gg{D) < T1(U,S), where for any training seB and landmark se#, T1(4,B) :=
1
— -1 2
2‘—‘@2‘75 <zx€q;xT <DI + (3] Zuea uuT> x) :
Proof The proof is similar to the one for Theorem 10. |

Thus, the empirical Rademacher complexities of the function classes ofsintgszbounded
using the functiondp, T1(U,S) andT»(V,S). For both 7z and gg{D, the empirical Rademacher
complexity is bounded by a closed-form expression.ﬂ@b, optimizing over the Lagrange multi-
pliers (i.e., the\'s) can further reduce the upper bound on empirical Rademacher cxitygplEhis
can yield advantages over bafe and G , in many situations and the overall shapefp plays
a key role in determining the overall bvound; this will be discussed in SectianMote that the
upper bound(V,S) is not a closed-form expression in general but can be evaluated inguoigl
time using semi-definite programming by invoking Schur's complement lemma andhoRoyd
and Vandenberghe (2003).

4.4 From Empirical to True Rademacher Complexity

By definition 8, the empirical Rademacher complexity of a function class ismdiepe on the data
sample,S. In many cases, it is not possible to give exact expressions for thenkedher com-
plexity since the underlying distribution over the data is unknown. How@visrpossible to give
probabilistic upper bounds on the Rademacher complexity. Since the Rau&maamplexity is the
expectation of its empirical estimate over the data, by a straightforward apgicd McDiarmid’s
inequality (Appendix A), it is possible to show the following:

Lemma 12 Fix 6 € (0,1). With probability at leasi — 6 over draws of the sampl&sthe following
holds for any function clasg:

RUF) < R(F) + 21/ MO (16)
and,
R(F) < R(F)+2 '”(2245). (17)

At this point, the motivation for introducing the landmark setandV becomes clear. The in-
equalities (16) and (17) do not hold when the function class dependent on the s&t Specifically,
using the sampl& instead of the landmarks breaks the requitddassumptions in the derivation
of (16) and (17). Thus neither Lemma 12, nor any of the results in Secttoard sound for the
function classeg;g, and 2.

4.5 Generalization Bounds

This section presents generalization bounds for the three differectidarclasses. The derivation
largely follows the approach of Shawe-Taylor and Cristianini (2004)) #rerefore, several details
will be omitted in this article. Recall the theorem from Shawe-Taylor and Crigfi§2004) that
leverages the empirical Rademacher complexity to provide a generalizatiod.bo
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Theorem 13 Let F be a class of functions mapping Z[@1]; let {z1,...,z,} be drawn from the
domain Z independently and identically distributéd) according to a probability distributiorD.
Then, for any fixed € (0,1), the following bound holds for any ¢ # with probability at least
1—dover random draws of a set of examples of size n:

(1 (2)] < E[1(2)) + R(F) + 3 M) (18)

Similarly, under the same conditions as above, with probability at [&asb,

In(2/9)

E[f(2)] < Enlf(2)] +R(F) +3y/ 5

(19)
Inequality (18) can be found in Shawe-Taylor and Cristianini (200d)iaequality (19) is obtained
by a simple modification of the proof in Shawe-Taylor and Cristianini (2004 following theo-
rem, found in Shawe-Taylor and Cristianini (2004), gives a probabiligtfper bound on the future
error rate based on the empirical error and the function class complexity.

Theorem 14 Fix y > 0. Let ¥ be the class of functions frol™ x {+1} — R given by {x,y) =
—yg(x). Let{(X1,¥1),...,(Xn,Yn)} be drawniid from a probability distribution?. Then, with
probability at leastl — 6 over the samples of size n, the following bound holds:

In(2/3)
2n

Py # Signiglc)] < 5 &+ JR(F) +3 (20)

whereg; = max0,1—yig(x;)) are the so-called slack variables.

The upper bounds that were derived in Section 4.2, naniglyf1 (U, S) andT,(V,S) can now
be inserted into (20) to give generalization bounds for each class oéstteHowever, a caveat
remains since a separate set of landmark data was necessary to puavidgseralization bounds.
The next section provides steps to eliminate the landmark data set from the. bou

4.6 Stating Bounds Independently of Landmarks

Note that the original function classes were defined using landmark exantidsvever, it is pos-

sible to eliminate these and state the generalization bounds independent oichimadl examples

on function classes defined on the training data. Landmarks are eliminatedHe generalization
bounds in two steps. First, the empirical Rademacher complexities are shdwenctmcentrated
and, second, the function classes defined using landmarks are shbe/supersets of the original
function classes. One mild and standard assumption will be necessaryjyntiraeall examples

from the distribution Ri{x]) have a norm bounded above Byvith probability one.

4.6.1 GONCENTRATION OFEMPIRICAL RADEMACHER COMPLEXITY

Recall the upper bount; (U, S) that was derived in Theorem 11. The following bounds show that
these quantities are concentrated.
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Theorem 15
i) With probability at leastl — d,

1
T1(U,S) < Ey[T1(U,S)]+ O <\ﬁtr(K)> )

i) With probability at leastl — 9,

Tz(V,S) < Ey [Tl(V,S)] +0 (

1
m\/trm) |

Proof McDiarmid’s inequality from Appendix A can be applied T9(U, S) since it is possible to
compute Lipschitz constants, cy, ..., C, that correspond to each input of the function. These Lips-
chitz constants all share the same vatwehich is derived in Appendix B. With this Lipschitz con-
stant, McDiarmid’s inequality (32) is directly applicable and yields[TRU,S) — Ey[T1(U,S)] >

g] < exp(—2¢?/(nc?)) Setting the upper bound on probabilitydpthe following inequality holds
with probability at least 1 &:

Ti(U,S) < Ey[T(U,9)] + 4 2vIn(1/0)E 'n 1/5 <\/ZxTx. \/ZxTx. DR “max> (21)

nD + DR?

The second term above is:

o (& & )

ZW DR2max/ (ND + DR?)

- DA \/Zi X Xi+ \/Zi X Xi = r?;%ngg
ZW DR2Limay/ (ND + DR2)

- Dbvn \ St X Xi

_ 2,/In(1/8)E DR*n

- DV (wDiDRY), /S X
_2/InA/YE__ DRn o( 1 )

T DV D) /s X VaVir(K) )

Here,umax < NRZ is the largest eigenvalue of the Gram matfix The big oh notation refers to the
asymptotic behavior in. Note that tf{K) also grows witm. Thus, asymptotically, the above term
is better tharO(1/+/n) which is the behavior of (20). So, from (21), with probability at leastd

Ty(U,S) < Ey[Ty(U,S)] + 0 (1/\ /n tr(K)) .
The proof for the second claim is similar sin€gV, S) has the same Lipschitz constants (Ap-
pendix B). The only difference is in the number of elementg mwhich is reflected in the boun
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4.6.2 RUNCTION CLASS INCLUSION
At this point, using Equation 20 and Theorem 15, it is possible to state babatkold for func-
tions in Gg', and 445’ but that are independent bfandV otherwise. However, the aim is to state

uniform convergence bounds for functionsGg and}[BfD. This is achieved by showing the latter
two sets are subsets of the former two with high probability. It is not enougihdor that each
element of one set is inside the other. Since uniform bounds are redairéte initial function
classes, one has to prove set-inclusion redults.

Theorem 16 For B = E + ¢ whereg = O (%) , with probability at leastL — 25 G&p, € Ggp.

Proof First, note tha‘rglgD C Fe/5- Thus, 7e 5 is a bigger class of functions thaf;‘ED. More-
over, ¥ p is not dependent on data. Now, consi(%anw+ D( Tx)? wherew € Jep- For
||| < R, the Cauchy-Schwarz inequality yields S4B 5 Swlw + 2 (w™x)? < k wherek =
E/2+DER/(2D). Now, define the functioh® : ™ — [0, ], as:h"(x)=(3 DwTw+2 D(wTx)?)/k.
Since the setS andU are drawnid from the distribution?, it is now possmle to apply (18) and
(19) for anyw € g 5. Applying (19) toh"(-) on'S, vw € g 5, with probability at least * 3, the
following inequality holds:

Ep [h"(x)] < ii;h""(xi) —1—2\/%\/#“@ +3\/In(22r<6)’ (22)

where the value df?(fE/g) has been obtained from Theorem 9. The expectation is over the draw of
S. Similarly, applying (18) t"(-) on U, with probability at least -, Yw € ¢ 5, the following

inequality holds:
Zlh‘” i) <Egp[h"(u \/ \/ \/ (2246) (23)

whereK, is the Gram matrix of the landmark examplesUn Using the fact that expectations
in (22) and (23) are the same(Kr,) < nR?, and the union bound, the following inequality holds
Vw € Fe 5 with probability at least + 20

,fiihwwi) < iith<xi>+4R\/%+e\/'”(§r{ )

Using the definition of"(-), with probability at least + 29, vw € J¢ p,

7W W—I——le ui) g W+2?"i(WTXi)2+O<%>'

Now, suppose@w w+ 25" (w'x)2 < E, which describes the function claggp. If Bis

chosen to bé= 4 € wheree = O(%), then,vYw ¢ Je/b with probability at least 125, w'w +

=31 (whu)2 < B. Sincefg 5 is a superset afig 5, with probability at least + 25, G2, € G¢p.
|

7. The function classes will also be treated as sets of parametgithout introducing additional notation.
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Theorem 17 For n, = O(,/n), with probability at leastl — 23, }[Est C JQ{D.

Proof First define the functiorg” : R™ — R, asg"(v) = %WTW+%(WTV)2. Define the indicator
random vanable[gw (v)>E] Which has a value 1 §"(v) > E and a value 0 otherwise. By definition,
YW € HEp, VXi € S, ligux)>g) = 0. Similarly, Yw € #/p, Wi € V, ligny)-g) = 0. As before,

consider a larger class of functions that is independerg, afamely, Fe/5- For aniid sampleS
from the distribution?, applying (18) to the indicator random variableg:(x)-g; on the setS,
with probability at least 1- 9,

l
Exn,[lignx>g)] < ﬁ lgn(x)>E] + \/>\/ —tr( \/ (24)

Similarly, applying (19) on the s&f, with probability at least 19,

1 /2E /1 [In 2 6
- ZI [gw >E] < E@X gW >E +2 *tr KV / (25)

Performing a union bound on (24) and (25), using the fact tiit)t< nR2 and t(K,) < n,R? with
probability at least + 25, Vw € g p,

EN ! <ary/ 2 13 ( )
nv, [g¥(vi)>E] — Zl [9¥(xi)>E] f \/7

Equating the right hand side of the above inequality’%tdhe above inequality can be written more
succinctly as:

(26)

[E|WE TE/D ZI gV (vi)>E] — le g (xi) >E ]
My
2(1 2E 1 1)?

The left hand side of the equation above is the probability that there exigtsueh that the dif-
ference in the fraction of the number of examples that fall out%idéw+ %(WTX)Z < E over the
random draw of the se@andV is at Ieastn—lv. Thus, it gives an upper bound on the probability that
}[ESD is contained in%@’D This is because, if there isvae 72, that is not in#', for such a

W, & Z g v)>g > & L andi Sy 1ligv(x)>g) = 0. Thus, equating the right hand side of (26) to
n—v and solving fom,, the result follows. Both an exact value and the asymptotic behavigr arfe
derived in Appendix C. [ ]

It is straightforward to write the generalization bounds of Section 4.5 onlymg®fS, com-
pletely eliminating the landmark sét from the results in this section. However, the resulting
bounds now have additional factors which further loosen them. In spitafin principle, using
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a landmark set and compensating with McDiarmid’s inequality can overcomeéfticeltes asso-
ciated with a data-dependent hypothesis class and provide importamélggateon guarantees. In
summary, the following overall bounds can now be provided for the funci@sseye, HED and

ggD. This result is obtained from a union bound of Theorem 14, TheorenT®&orem 16 and
Theorem 17.

Theorem 18 Fix y > 0 and let{(x1,y1), ..., (Xn,Yn)} be drawniid from a probability distribution
D where||x|| <R .
i) For any g from the function clas$g, the following holds with probability at leagt— d,

Py # signg(x <—§lz. 13/ M2 4F\/ (27)

i) For any g from the function cIasﬂES:D, the following inequality (a solution of a semi-definite
program) holds for p= O(y/n) with probability at leastL — ,

_ 10 [in(gd) 1
1 n
+ \2/EV (&n;g iizlxr ( g g ) Xi + E ZL)\) (28)

i) Similarly, for any g from the function clasggD, the following bound holds for B E +
O(\%) with probability at leastl — 3,

| Log o /N@R)  f 1
Priy # sign(g(x))] < F\/i;E' +3\/7+ ¢ <ﬁ\/@)
n - %
+ 4‘£§Eu (Z <DI += Z ujy; > X') ’ )

whereg; = max(0,y—Yig(x;)) are the so-called slack variables.

4.7 Discussion of the Bounds

Clearly, all the three bounds, namely (27), (28) and (29) in Theor&nhdve similar asymptotic
behavior inn, so how do they differ? Simple, separable scenarios are considereid settion
to examine these bounds (which will be referred to as the SVM bound, Rbividband>-SVM
bound respectively). For the SVM bound, the quantity of interes(‘—{%l{/tr(K) and, for theX-

_ 1
SVM bound, the quantity of interest fg%i\/<z{‘_le (DI +D Z?:]_UjU}r)

the RMM bound, the quantity of interest is:

2 minlnxT 5%)\I+D%)\vvT _x+ Env)\
o | min =% % j vivi | X+
Y \ =0 nizll =1 =1 J Zl
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Here the expectations overandV have been dropped for brevity; in fact, this is how these terms
would have appeared without the concentration result (Theorem 16jedver, in the latter two
casesy has been replaced kpintentionally.

Figure 2: Two labellings of the same examples. Circles and squares deadtetklasses (posi-
tive and negative). The top case is referred tdogsexample 1and the bottom case is
referred to asoy example 2in the sequel. The bound for the function clggsdoes not
distinguish between these two cases.

The differences between the three bounds will be illustrated with a toy exanmpkigure 2,
two different labellings of the same data set are shown. The two diffémbetlings of the data
produce completely different classification boundaries. However, ih the cases, the absolute
margin of separatiog remains the same. A similar synthetic setting was explored in the context of
second order perceptron bounds (Cesa-Bianchi et al., 2005).

The marginy corresponding to the function clagsis found by solving the following optimiza-
tion problem:

1
tyiw'x) >y, w'w<E.
maxy. s.tyiw )2y, sw w<E

This merely recovers the absolute marginhich is shown in the figure. Similarly, for the function
classG, a marginy is obtained by solving:

1 - D2
(W T x 2w’ T
my’%xy,s.t.y.(w Xi) >, oW <DI + Jle,xj>wg E.

Through a change of variable,= 3w whereX = <5I + % z’j‘zlxjij) it is easy to see that the
above optimization problem is equivalent to

1
maxy, s.t.yiu S2x >, éuTu <E.
y7u
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] | toy example 1| toy example 2|

SVM bound 0.643 0.643
3-SVM bound, D=0 0.643 0.643
3-SVM bound, D=0.999 0.859 0.281
RMM bound, D=0 0.643 0.643
RMM bound, D=0.999 1.355 0.315

Table 1: The bound values for the two toy examples. The SVM bound aaelsstinguish between
the two cases. By exploring values, it is possible to obtain smaller bound values in both
cases fo-SVM and RMM @ = 0 in toy example 1andD close to one inoy example
2).

Thus, when a linear function is selected from the function c@;,g, the margiryis estimated from
a whitened version of the data. Similarly, for function cl&48y, the margin is estimated from a
whitened version of the data where the whitening matrix is modified by Lagrand@liers.

Thus, in the finite sample case, the bounds differ as demonstrated in thee @alietic prob-
lem. The bound for the function claﬁ7D explores a whitening of the data. Supp@se- 0.999,
the result is a whitening which evens out the spread of the data in all direct@m this whitened
data set, the margipappears much larger toy example 2since it is large compared to the spread.
This leads to an improvement in t&& SVM bound over the usual SVM bound. While such differ-
ences could be compensated for by appropriate a priori normalizati@atfrés, this is not always
an easy preprocessing.

Similarly, the RMM bound also considers a whitening of the data howevejiedithe whiten-
ing matrix adaptively by estimatimg This gives further flexibility and rescales data not only along
principal eigen-directions but in any direction where the margin is largével@ the spread of the
data. By explorindd values, margin can be measured relative to the spread of the data rathier tha
the absolute sense. SinEESVM and RMM are strict generalizations of the SVM, through the use
of a proper validation set, it is almost always possible to obtain improvememsvarious bounds
for the toy examples are shown in Table 1.

5. Experiments

In this section, a detailed investigation of the performance of the RMMseveral synthetic and
real world data sets is provided.

5.1 Synthetic Data Set

First consider a simple two dimensional data set that illustrates the perfoerddiecences between
the SVM and the RMM. Since this is a synthetic data set, the best classifierecaonbtructed
and Bayes optimal results can be reported. Consider sampling data frodiffarent Gaussian
distribution§ corresponding to two different classes. Samples are drawn from théotwaing

8. Code available dtitp://www1.cs.columbia.edu/ ~ pks2103/RMM.
9. Due to such Gaussian assumptions, LDA or generative modeling Wwewdgpropriate contenders but are omitted to
focus the discussion on margin-based approaches.
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Figure 3: Two typical synthetic data sets (rescaled inside a 0-1 box) witbsponding SVM and
RMM solutions are shown along with the Bayes optimal solution. The SVM (théRM
solution uses the CYandB) setting that minimized validation error. The RMM produces
an estimate that is significantly closer to the Bayes optimal solution.

Gaussian distributions with equal prior probability:
|1 |19 > 17 15
Pe=la | 713 =7 | 15 17]"
The Gaussian distributions have different means, yet identical coeariah total of 100,000 ex-
amples were drawn from each of the Gaussian distributions to create validatidest sets. Large
validation and test sets were used to get accurate estimates of validatiostzemide

Due to the synthetic nature of the problem, the Bayes optimal classifier is eailyared (Duda
et al., 2000) and is given by the following decision boundary

By —p ) B X=05(py —p ) T (s +p) =0.

The above formula uses the true means and covariances of the Gaussibattbns (not empirical
estimates). It is clear that the Bayes optimal solution is a linear decision bguwtiech is in
the hypothesis class explored by both the RMM and the SVM. Note that tlikesyndata was
subsequently normalized to lie withing the zero-one box. This rescaling Wes tato account
while constructing the Bayes optimal classifier (30).

VariousC values (and values) were explored during SVM (RMM) training. The settings with
minimum error rate on the validation set were used to compute test errorFatésermore, the test
error rate for the Bayes optimal classifier was computed. Each expenwasirepeated fifty times
over random draws of train, test and validation sets. Figure 3 showsaampée data set from this
synthetic experiment along with the (cross-validated) SVM, RMM and Bagémal classification
boundaries. The SVM decision boundary is biased to separate the dathir@cion where it has
large spread. The RMM is less biased by the spread and is visibly closee ®ayes optimal
solution.

Figure 4 shows the test error rates achieved for the SVM, the RMM an&dkes optimal
classifier. The SVM performs significantly worse than the RMM, particulattgn training data

(30)
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Figure 4: Percent test error rates for the SVM, RMM and Bayes optilassifier as training data
size is increased. The RMM has a statistically significant (at 5% level) salyarover
the SVM until 6400 training examples. Subsequently, the advantage remairghttvith
less statistical significance.

is scarce. The RMM maintains a statistically significant advantage over the 8¥Mhe number
of training examples grows beyond 6400. With larger training samplensiggularization plays
a smaller role in the future probability of error. This is clear, for instanaanfthe bound (27).
The last term goes to zero e&{1/,/n), the second term (which is the outcome of regularization)
is O(y/tr(K)/ny/1/n). Both have arO(1/,/n) rate. However, the first term in the bound is the
average slack variables divided by the margin which does not go to sgnopaotically with in-
creasingn and eventually dominates the bound. Thus, the SVM and RMM have asymf{ijotica
similar performance but have significant differences in the small sampe cas

The effect of scaling, which is a particular affine transformation, watoesd next. To explore
the effect of scaling in a controlled manner, first, the projectiorecovered by the Bayes optimal
classifier was obtained. An orthogonal vectofsuch thatw v = 0) was then obtained. The ex-
amples (training, test and validation) were then projected onto the axesdléffnv andv. Each
projection alongv was preserved while the projection alongvas scaled by a fact@> 1. This
merely elongates the data further along directions orthogonal (ice., along the Bayes optimal
classification boundary). More concisely, given an examptae following scaling transformation
was applied:

[w v]{lo}[w v]flx. (31)
0 s

Figure 5 shows the SVM and RMM test error rate across a range of goallness. Here, 100
examples were used to construct the training datas grews, the SVM further deviates from the
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Figure 5: Percent test error rates for the SVM, RMM and Bayes optitassifier as data is scaled
according to (31). The RMM solution remains resilient to scaling while the SYM-s
tion deteriorates significantly. The advantage of the RMM over the SVM is titatlg
significant (at the 1% level).

Bayes optimal classifier and attempts to separate the data along directiorgecfpaead. Mean-
while, the RMM remains resilient to scaling and maintains a low error rate thouigh

To explore the effect of thB parameter, the average validation and test error rate were computed
across many settings @fandB. The settingC = 100 was chosen since it obtained the minimum
error rate on the validation set. The average test error rate of the RM~bsnsin Figure 6 at
C =100 for multiple settings of thB parameter. Starting from the SVM solution on the right (i.e.,
large B) the error rate begins to fall until it attains a minimum and then starts to go ircréas
similar behavior is seen in many real world data sets. Surprisingly, some etatawen exhibit
monotonic reduction in test error as the valudBa$ decreased. The following section investigates
such real world experiments in more detail.

5.2 Experiments on Digits

Experiments were carried out on three data sets of digits—optical digits therdCl machine

learning repository (Asuncion and Newman, 2007), USPS digits (Le€ah,d.989) and MNIST

digits (LeCun et al., 1998). These data sets vary considerably in termsiohtimber of features
(64 in optical digits, 256 in USPS and 784 in MNIST) and their number of trgieiamples (3823
in optical digits, 7291 in USPS and 60000 in MNIST). In all the multi-class grpents, the one
versus one classification strategy was used. The one versus ong)ystraiies a classifier for every
combination of two classes. The final prediction for an example is simply the ttlasis predicted
most often. These results are directly comparable with various methodsatreablen applied on
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Figure 6: Behavior on the toy data set with= 100. As theB value is decreased, the error rate
decreases to a reasonably wide minimum before starting to increase.

| |

|

1 [ 2] 3] 4]5] 6] 7]RBF]

SVM 71 | 57| 54 | 47 | 40 | 46 | 46 | 51

opT $-SVM| 61 | 48| 41 | 36 | 35| 31 | 29 | 47
KLDA | 71 | 57 | 54 | 47 | 40 | 46 | 46 | 45

RMM 71 | 36| 32 |31 (33| 30| 29| 51

SVM 145 | 109] 109 | 103] 100| 95 | 93 | 104

Usps | =-SVM | 132 | 108| 99 | 94 | 89 | 87 | 90 | 97
KLDA | 132 | 119 121 | 117|114 | 118 | 117 101

RMM | 153 [109| 94 | 91 | 91 | 90 | 90 | 98

SVM 696 | 511] 422 | 380 | 362 | 338 | 332] 670

$-SVM | 671 | 470| 373 | 341 | 322 309 | 303| 673
1000-MNIST| | bA | 1663 | 848 | 591 | 481 | 430 | 419 | 405 | 1597
RMM | 689 | 342|319 | 301|298 | 290 | 296 | 613

SVM 552 | 237] 200 | 183 178 177 | 164 | 166

2/3-MNIST | RMM | 534 | 164 | 148 | 140 | 123 | 129 | 129 | 144
SVM 536 | 198] 170 | 156 | 157 | 141 | 136 | 146

Full MNIST | RMM | 521 | 146 | 140 | 130| 119 | 116 | 115| 129

Table 2: The number of misclassification in three different digit data setsiougkernels are
explored using the SVM2-SVM, KLDA and RMM methods.

this data set. For a fair comparison, results from contender methods ¢hspesial preprocessing
or domain knowledge are not explored in this artide.

10. Additional results are reportedHitip://yann.lecun.com/exdb/mnist/.
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In all experiments, the digits were first normalized to have unit norm. This eltesmaumerical
problems that may arise in kernel functions such as the polynomial kiefnal) = (1+u'v)d.
Classification results were then examined for various degrees of thegpoilgikernel. In addition,
kernel values were further normalized so that the trace of the training &watrix was equal to the
number of training examples.

All parameters were tuned by splitting the training data according to an 80ti20wih the
larger split being used for training and the smaller split for validation. Theqss was repeated five
times over random splits to select hyper-parametef®( the SVM,C andD for the 3-SVM and
C andB for the RMM). A final classifier was trained for each of the 45 classificapimblems with
the best parameters found by cross validation using all the training examptssorresponding
pair of classes.

For the MNIST digits experiment, thE-SVM and kernel LDA (KLDA) methods were too
computationally demanding due to their use of matrix inversion. To cater to thekedasea smaller
experiment was conducted with 1000 examples per training. For the latgeriments, the:-
SVM and KLDA were excluded. The larger experiment on MNIST involtraihing on two thirds
of the digits (i.e., training with an average of 8000 examples for each paigit$)for each binary
classification task. In both these experiments, the remaining training datese@dss a validation
set. The classifier that performed best on the validation set was usegtiog.

After forming all 45 classifiers (corresponding to each pair of digits}jirtgsvas done on the
standard separate test sets available for each of these three bengnofédekns (1797 examples
in the case of optical digits, 2007 examples in USPS and 10000 examples i8TNIhe final
prediction for each test example was recovered based on the majorigddffions made by the 45
classifiers on the test example with ties broken uniformly at random.

It is important to note that, on the MNIST test set, an error rate improvemeéni @ has been
established as statistically significant (Bengio et al., 2007; Decoste aridk8ph 2002). This
corresponds to 10 or more test examples being correctly classified byeathed over an other.

Table 2 shows results on all three digits data sets for polynomial kerneds uad/ing degrees
as well as for RBF kernels. For each data set, the number of misclassifiethles using the
majority voting scheme above is reported. TBeSVM typically outperforms the SVM yet the
RMM outperforms both. Interestingly, with higher degree kernels3H8VM seems to match the
performance of the RMM while in most lower-degree kernels, the RMM atdapas both the SVM
and theX-SVM convincingly. Since th&-SVM is prohibitive to run on large scale data sets due
to the computationally cumbersome matrix inversion, the RMM was clearly the mogietiive
method in these experiments in terms of both accuracy and computationahefficie

The best parameters found by validation in the previous experiments wedemua full-scale
MNIST experiment which does not have a validation set of its own. All 45 \pwese classifiers
(both SVMs and RMMs) were trained with the previously cross-validatedmeters usingll the
training examples for each class in MNIST for various kernels. The &sstits are reported in
Table 2; the RMM advantages persist in this full-scale MNIST experiment.

5.3 Classifying MNIST Digits 3vs 5

This section presents more detailed results on one particular binary cltssifiproblem in the
MNIST digits data set: the classification of digit 3 versus 5. Therein, the RMba dramatically
stronger performance than the SVM. The results reported in this secivitArpolynomial kernels
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Figure 7: Performance on MNIST test set with digits 3 and 5. The numbaErafs decreases from
15 to 6 asB decreases from the right.

of degree 5. The paramet@mwas selected as mentioned above. With the seléttedue, an SVM
was first trained over the entire MNIST training set containing the digits JHamfter noting the
maximum absolute value of the output given on all the training examplgalue was reduced in
steps. The number of test errors on the MNIST test set (3 versusShotad. As theB value
is reduced, the number of errors starts to diminish as shown in Figure 7.nudrhber of errors
produced by the SVM was 15. With the RMM, the number of errors droppdédas theB value
approached one. Clearly, 8sdecreases, the absolute margin is decreased however the test error
rate drops drastically. This empirically suggests that maximizing the relativeinmeaig have a
beneficial effect on the performance of a classifier. Admittedly, this is only example and is
provided only for illustrative purposes. However, similar behavior waseosed in most of the
binary digit classification problems though in some cases the error ratetdid down significantly
with decreasin@ values. The generalization behavior on all 45 individual problems is eegin
more detail in Section 5.4.

5.4 All 45 Binary MNIST Problems

This section explores RMM performance on the 45 pairwise digit classificatioblems in isola-
tion. In these experiments, bathandB values were fixed using validation as in previous sections.
A total of 45 binary classifiers were constructed using all MNIST trainiggsl The resulting error
rates are shown in Figure 8. On most problems, the RMM obtains a signifidawy error rate
than the SVM and, at times obtains half the error rate.

77



SHIVASWAMY AND JEBARA

18
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0 5 10 15

Figure 8: Total test errors on all 45 MNIST classification problems. Verassifiers were trained
on the entire MNIST training data set and evaluated on a standardizadtscigst set.

20

25
45 Individual Problems

30

35 40 45

Method RMM H-SVM

# Universum - 1000 | 3000 | all
Error rate 1.081| 1.059| 1.037| 1.020
Error Std Dev| 0.138 | 0.142| 0.149| 0.159
p-value 0.402| 0.148| 0.031

Table 3: Percentage error rates for the RMM and.ti&VM. The rate for the SVM was.274 with
a standard deviation of.079; this is significantly larger than all other results in the table
(with a p-value of Q00). The final row reports the p-value of a paired t-test between the
RMM error rate and thel-SVM error rate (corresponding to the Universum size being

considered in that column).

5.4.1 A COMPARISONWITH THE UNIVERSUM METHOD

A new framework known as the Universum (Weston et al., 2006; Sint,e2@08) was recently
introduced which maximizes the margin while keeping classifier outputs low odditicamal col-
lection of non-examples that do not belong to either class of interest. Hueigonal examples
are known as Universum examples. Like landmarks, these are exantptes avclassifier's scalar
predictions are forced to remain small. However, these Universum exam@®btained from any
other distribution other than the one generating the training data. In the RMs4jfication outputs
on training examples are bounded; in the Universum, classification outpuisigersum examples
are bounded (albeit with a different loss). The following experiments emathe Universum based

framework with the RMM.

778



MAXIMUM RELATIVE MARGIN AND DATA-DEPENDENTREGULARIZATION

0.4 ‘ ‘ ‘
Significant 1%
- 0
0.35 Significant 5% |
-+ Others
-~ Baseline
0.31- -~ 109% improvement i
—20% imrpovement
—— 0257 7
c
Q
IS
2
3 0.2
a
=
< 0.15f 2
©
i
O e e 4
0.05f. . o SR
(0] % ' " A
_0.05 1 1 1

20 40 60 80 100 120 140 160 180
190 binary problems

Figure 9: Percentage improvement of the RMM over the SVM on all 190 pimanblems. Signif-
icance tests were performed using a paired t-test at the indicated levédmifitance.
On most problems, the RMM shows significant improvement over SVM.

An MNIST experiment was explored for classifying digits 5 vs 8 using 1@®@led training
examples under the RBF kernel. This setup is identical to the experimentitiona described
in Weston et al. (2006). Examples of the digit 3 served as Universumpges since these were
reported to be thbestperforming Universum examples in previous work (Weston et al., 2006).
experiments used the standard implementation of the Universum providee layttmors Weston
et al. (2006) under the default parameter settings (for variables sugh ahe Universum was
compared with the RMM which had access to the same 1000 training exampitserimore, 3500
examples were used as a test set and another 3500 examples as a valitatioperform model
selection. All parameter settings for the RMM and the Universum SVMI({&VM) as well as the
variance parameter of the RBF kernel were explored over a wide @ngdues. The parameter
settings that achieved the smallest error on a validation set were then useduate performance
on the test set (and vice-versa). This entire experiment was repeattadd®ver different random
draws of the various sets. The average test error rates were congilectti algorithms.
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While the RMM only had access to the 1000 training examplesH$/M was also given
a Universum of images of the digit 3. The Universum spanned threereliff sizes—1000, 3000
and 6131 examples (i.e., all available images of the digit 3 in the MNIST trainifgHee results
are reported in Table 3. First, observe that both the RMM and/(t8%M improved the baseline
SVM performance significantly (as measured by a paired t-test). With 109@@00 Universum
examples, even though the error rate of th&VM was slightly lower, a paired t-test revealed
that it did not achieve statistically significant improvement over the RMM. Statlitisignificant
advantages for thg#-SVM only emerged wheall the available images of the digit 3 were used in
the Universum.

Note that there is a slight discrepancy between the errors reportechérdose in Weston
et al. (2006) even though both methods used the digit 3 to generate &lnmvexamples. This may
be because the previous authors (Weston et al., 2006) reporteddhiest erroon 1865 examples.
In this article, a more conservative approach is taken where a good mditst iselected using
the validation set and then errors are reported on an unseen test seitvdtither tuning. Clearly,
picking the minimum error rate on a test set will give more optimistic results butduaitie test set
can be potentially misleading. This makes it difficult to directly compare test extes with those
reported in the previous paper. While the error rate (using all digits 3 dsrtiversum examples) in
our experiments varied from ™% to 135%, the authors in Weston et al. (2006) reported an error
rate of 062%.

With 1000 training examples, the RMM (as in Equation (8)) has 1000 clagsficeonstraints
and 1000 bounding constraints. With 1000 Universum examples/(-®¥M also has 1000 bound-
ing constraints in addition to the classification constraints. It is interesting totimat¢he RMM,
with no extra data, is not significantly worse thanl£&6VM endowed with an additional 1000 or
3000best-possibl&niversum examples.

The authors of Weston et al. (2006) observed that Universum exarmplp most when they
are correlated with the training examples. This, coupled with the results in Jaivid the fact that
training examples are correlated most with themselves (or with examples fraartteedistribution
as the training examples), raises the following question: How much of therpeafice gain with
the 4-SVM is due to the extra examples and how much of it is due to its implicit controleof th
spread (as with an RMM)? This is left as an open question in this article antb&gation for
further theoretical work.

5.5 Text Classification

In this section, results are reported on the 20 Newsgrétigata set. This data set has posts from
20 different Usenet newsgroups. Each post was representeddoya which counts the number of
words that occurred in the document. In the text classification literatureistbcanmonly known
as the bag of words representation. Each feature vector was diwdbed botal number of words in
the document to normalize it.

All 190 binary pairwise classification problems were considered in thisrerpat. For each
problem, 500 examples were used for training. The remaining exampleslivigled into a valida-
tion and test set of the same size. Both SVMs and RMMs were trained fiougaralues of their
parameters. After finding the parameter settings that achieved the low@sbera validation set,

11. This data set is available onlinehétp://people.csail.mit.edu/jrennie/20Newsgroups/
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the test error was evaluated (and vice-versa). This experiment weaateel ten times for random
draws of the train, validation and test sets.

Figure 9 summarizes the results. For each binary classification problenired p#est was
performed and p-values were obtained. As can be seen from the pl® MM outperforms the
SVM significantly in almost 30% of the problems. This experiment once agairodstrates that
an absolute margin does not always result in a small test error.

4.5

——SVM

—--RMM, B_1
—~—RMM, B_2
4 ---RMM, B_3

3.5

Log runtime
=

1' | | | | |
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Figure 10: Log run time versus log number of examples. The figure shawvshta SVM and the
RMM have similar computational requirements overall.

781



SHIVASWAMY AND JEBARA

Data Set SVM KLDA >2-SVM | RMM (C=D) RMM
banana 10.5+ 04| 10.84+0.5| 10.5+04 10.4+ 0.4 | 10.4+ 0.4*
b.cancer | 25.3+4.6* | 26.6+4.8| 28.8+ 4.6 259+45| 2544+ 4.6
diabetes 23.1+1.7| 23.2+18|242+19 23.1+1.7| 23.0+£ 1.7
f.solar 32.3+1.8| 33.1+1.6| 346+£20| 32.3+1.8*| 32.3£1.8*
German 234+22| 241+24|259+24 23.4+2.1| 23.2+ 2.2
heart 1554+ 3.3| 15.7£3.2| 19.9+ 3.6 1544+ 3.3 | 15.2+ 3.1*
image 3.0+ 0.6 3.1+£06| 3.3+0.7 3.0+ 0.6 29+ 0.7
ringnorm 15+0.1 15+£01| 15+0.1 15+£0.1| 1.5+0.1%
splice 10.9+0.7| 10.6+0.7| 10.8+ 0.6 10.8+ 0.6 | 10.84+0.6
thyroid 47+21 42+21| 45+£21 42+ 1.8* 42422
titanic 223+£11| 220+ 1.3* | 2311+ 2.2 223+11| 223+1.0
twonorm 24+0.1* 244+£02| 25+£0.2 24+0.1 24+0.1
waveform 99+ 04 9.9+ 0.4| 10.5+ 0.5 10.0+0.4| 9.7£0.4*
Data Set RBF AB LPAB QPAB ABR
banana 10.8+ 04| 12.3+£0.7| 10.7+0.4 109+ 0.5| 10.9+04
b.cancer | 27.6+4.7| 30.4+4.7| 26.8+6.1 259+ 46| 26.5+45
diabetes 243+19| 265+23|24.1+19 254+22| 23.84+1.8
f.solar 344+19| 357+18|34.7£20 36.2+1.8| 34.2+22
German 247+24| 275+25|248+22 253+21| 243+21
heart 171+ 33| 20.3+3.4|17.5+3.5 172+ 34| 16.5+3.5
image 3.3+0.7 27+0.7| 28+0.6 27+0.6*| 2.7+0.6*
ringnorm 1.7+0.2 19+0.2| 22+05 19+0.2 16+0.1
splice 99+0.8| 10.1+0.5]| 10.2+1.6 10.1+ 05| 9.5+0.6*
thyroid 45+ 21 44+22| 46+22 43+ 2.2 454 2.2
titanic 233+£13| 226+1.2|24.0+44 227+£10| 226+1.2
twonorm 28+0.3 3.0+£03| 3.2+04 3.0£0.3 2.7+0.2
waveform| 10.74+1.1| 10.8£0.6| 10.5+1.0 10.1+ 0.5 9.8+0.8

Table 4: UCI results for a number of classification methods. Results avensloo the SVM, reg-
ularized kernel Linear Discriminant Analysis, theSVM, the RMM, an RBF network,
Adaboost, LP-regularized Adaboost, QP-regularized AdaboodRegdlarized Adaboost.
The results have been split into two parts due to lack of space. For etchadgall meth-
ods could be placed on the same row in a larger table. For each data sdgattithra
which gave the minimum error rate is starred. All other algorithms that wersigiifi-
cantly different from (at the 5% significance level based on a pairestt#ge minimum
error rate are in boldface.
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5.6 Benchmark Data Sets

To compare the performance of the RMM with a number of other methodstimqrds were per-
formed on several benchmark data sets. In particular, 100 training andpiés of 13 of these
data sets have been previously used in Raetsch et al. (2001); Mikg¥328); Cawley and Talbot
(2003)1?2 The RBF kernel was used in these experiments for all kernel-based asetfio han-
dle the noisy nature of these data sets, the kernelized and relaxed vafrsienRMM (14) was
used. All the parameters were tuned using cross-validation using a sintilarasein Raetsch et al.
(2001)13 With the chosen values of these parameters, the error rates were fiistenbfor all 100
test splits using the corresponding training splits. The results are reporfedle 4. Once again,
the RMM exhibits clear performance advantages over other methods.

5.7 Scalability and Run-time

While the asymptotic run time behavior was analyzed in Section 3.3, the run time BMMis
also studied empirically in this section. In particular, the classification of MNigjiits 0-4 versus
5-9 with a polynomial kernel of degree five was used to benchmark theithlgs. For both the
RMM and the SVM, the tolerance parametenientioned in Section 3.3) was set t001. The size
of the sub-problem (12) solved was 800 in all the cases. To evaluat¢heomigorithms scale, the
number of training examples was increased in steps and the training time wes fbteughout
all the experiments, th€ value was set to 1. The SVM was first run on the training examples. The
value of maximum absolute predicti®was noted. Three different valuesB®ivere then tried for
the RMM:B; =1+ (6—-1)/2,B, =1+ (6—1)/4 andB3 =1+ (6—1)/10. In all experiments, the
run time was noted. The experiment was repeated ten times to get an averdyee for eactB
value. A log-log plot comparing the number of examples to the average run tshevs in Figure
10. Both the SVM and the RMM run time exhibit similar asymptotic behavior.

6. Conclusions

The article showed that support vector machines and maximum margin class#fiebe sensitive
to affine transformations of the input data and are biased in favor ofat@padata along directions
with large spread. The relative margin machine was proposed to overcmingoblems and op-
timizes the projection direction such that the margin is large a#ltive tothe spread of the data.
By deriving the dual with quadratic constraints, a geometric interpretatisraiga formulated for
RMMs and led to risk bounds via Rademacher complexity arguments. In grattecRMM imple-
mentation requires only additional linear constraints that complement the Sélftafic program
and maintain its efficient run time. Empirically, the RMM and maximum relative margincgeh
showed significant improvements in classification accuracy. In additiomtarmediate method
known as3-SVM was shown that lies between the SVM and the RMM both conceptuallyrand
terms of classification performance.

Generalization bounds with Rademacher averages were derived.VIWe Bound which in-
volves the trace of the kernel matrix was replaced with a more general wHitemsion of the trace
of the kernel matrix. A proof technique using landmark examples led to Radesnbounds on an

12. These data sets are availablétggt//theoval.cmp.uea.ac.uk/ ~ gcc/matlab/default. html\#benchmarks
13. The values of the selected parameters and the code for the RMMailabie for download ahttp://www.cs.
columbia.edu/  ~ pks2103/ucirmm/
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empirical data-dependent hypothesis space. Furthermore, the bearestated independently of
the particular sample of landmarks.

Directions of future work include exploring the connections between maxinelative margin
and generalization bounds based on margin distributions (Schapire e92%8;, Koltchinskii and
Panchenko, 2002). By bounding outputs, the RMM is potentially findindgtatm@argin distribution
on the training examples. Previous arguments for such an approaclobtanmeed in the context of
voting methods (such as boosting) and may also be relevant here.

Furthermore, the maximization of relative margin is a fairly promising and gknerecept
which may be compatible with other popular problems that have recently bddeddxy the max-
imum margin paradigm. These include regression, ordinal regressitkingaand so forth. These
are valuable and natural extensions for the RMM. Finally, since the eomistthat bound the pro-
jections are unsupervised, RMMs can readily apply in semi-supervistdramsductive settings.
These are all promising directions for future work.
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Appendix A. McDiarmid’s Inequality

AssumeXi, Xp, ..., X, are independent random variab!es from a¥eandg: X" — R. If the
functiong satisfies sup ¢ 19(X1,...,Xn) —9(X1,..., X, .-, %) <, for all 1 <k < nthen,
for anye > 0:

2
Pr[g(Xq,...,%Xn) —E[g(X1,...,Xn)] > €] < eXF’(—anelC_z) , (32)

PrEQ(X, ..., %n)] — 9(X1,..., %) > €] < exp<_382(:2> |

i=1G
where the expectations are over the random drawg of ., X,,. Here the constantg,cp,---,C, are
called Lipschitz constants.

Appendix B. Lipschitz Constants for Section 4.6

Lemma 19 The upper bound oR gB o), hamely T(U, S), admits the Lipschitz constant:

G (J& oo em)

Proof The quantity of interest is the worst change in
2vy2B |& - D2
—— xi(DIJr—ZujuT)—lx-T
n & n& ) !
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whenuy is varied for any setting af, ...,Ux_1, Uki1,---,Un. Sincez?:1 j#kujujT is positive semi-
definite and inside the inverse operatgrwill have the most extreme effect on the expression when
Y7 1j2cUjuj = 0. Thus, consider:

2y/2B |Dn - D -1
\/le,T <DI + ukukT) X;.
n £ n

Apply the Woodbury matrix inversion identity to the term inside the square root:

n

- Uy
ZXiT <DI +DukukT> X = 21 K e | X
1S T — Zi:_l(XiTUk) '
52" ™+ uy

The maximum value of this expression occurs whgg- 0. To find the minimum, write the second
term inside the brackets in the above expression as below:

u/ D u nD
izxixﬁ k /( = +1>.
[Jukl| £ [l Duy uk

Clearly, in the numerator, the magnitudewgfdoes not matter. To maximize this expressiog,
should be set to a vector of maximal length and in the same direction as the maxiganveetor
of 11 xiX;" . Since all examples are assumed to have bounded norm no larg&, tifenargestix
vector has nornR. Denoting the maximum eigenvalue Bf_, xix;" by pmax it is easy to show the
claimed value of Lipschitz constant for aky [ |

Lemma 20 The upper bound oR }@/D namely %(V,S), admits the Lipschitz constant:

(o e E)

Proof The quantity of interest is the maximum change in the following optimization probiemn o
uk for any setting ofuy, Uy, ..., Ux_1,Uks1,...,Un, :

Vv

1 n T _ Ny T 2 ny
min — X; D )\j|—|—D )\jUjU- Xi—f-fE )\i-
A>0 ni; I ,Zl ,Zl ’ n i;

As before, this happens when alé exceptuy are0. In such a scenario, the expression is minimized
for the setting\; = O for all j # k. The minimization only needs to consider variable settings,of
Since this minimization is over a single scalar, it is possible to obtain a closedefgrassion for

Ak. The optimal\, is merely: -+ z, X (DI + DukukT)flxi. Substituting this into the objective
gives an expression which is mdependen?a’ef

2V2E |2 - D -1
\/fo (DI + uku[> X;.
n \l& n

This expression is identical to the one obtained in Theorem 19 and thefphoofs. |
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Appendix C. Solving for ny,

Letx= T’C 4R, /3DE andb= g\/ '”(é/&. Consider solving fox in the expressior’ — 2bx= (c+
2b)/,/n. Equivalently, solvéx— b)? = b?+ (c+ 2b)/./n. Taking the square root of both sides gives
X=b+ \/b2+ (c+2b)//n. Sincex > 0, only the positive root is considered. Thygy, = 1/(b+

\/b2 + (c+ 2b)/+/n) which gives an exact expression fgr Dropping terms from the denominator
produces the simpler expressigpn, < 1/4/(c+ 2b)/y/n. Hencen, <

2E +3 In( 2/6
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