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Abstract

{1-regularized logistic regression, also known as sparsistiogegression, is widely used in ma-
chine learning, computer vision, data mining, bioinforiteaind neural signal processing. The use
of £1 regularization attributes attractive properties to tlessifier, such as feature selection, robust-
ness to noise, and as a result, classifier generality in theexpof supervised learning. When a
sparse logistic regression problem has large-scale datghrdimensions, it is computationally ex-
pensive to minimize the non-differentiablg-norm in the objective function. Motivated by recent
work (Koh et al., 2007; Hale et al., 2008), we propose a noybtild algorithm based on combin-
ing two types of optimization iterations: one being verytfasd memory friendly while the other
being slower but more accurate. Called hybrid iterativénédage (HIS), the resulting algorithm is
comprised of a fixed point continuation phase and an intgddmt phase. The first phase is based
completely on memory efficient operations such as matroteremultiplications, while the second
phase is based on a truncated Newton’s method. Furthermershow that various optimization
techniques, including line search and continuation, cgnifitantly accelerate convergence. The
algorithm has global convergence at a geometric rate (a€adirate in optimization terminology).
We present a humerical comparison with several existingrithgns, including an analysis using
benchmark data from the UCI machine learning repositorg, strow our algorithm is the most
computationally efficient without loss of accuracy.

Keywords: logistic regression¢, regularization, fixed point continuation, supervised héag,
large scale
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1. Introduction

Logistic regression is an important linear classifier in machine learning antdden widely used
in computer vision (Bishop, 2007), bioinformatics (Tsuruoka et al., 20§8h)e classification (Liao
and Chin, 2007), and neural signal processing (Parra et al., Z¥)YSpn et al., 2005; Philiastides
and Sajda, 2006)/1-regularized logistic regression or so-called sparse logistic regre@Blshi-
rani, 1996), where the weight vector of the classifier has a small nurhbhenaero values, has been
shown to have attractive properties such as feature selection andre¢si® noise. For supervised
learning with many features but limited training samples, overfitting to the trainityada be a
problem in the absence of proper regularization (Vapnik, 1982, 1988)educe overfitting and
obtain a robust classifier, one must find a sparse solution.

Minimizing or limiting the ¢£1-norm of an unknown variable (the weight vector in logistic re-
gression) has long been recognized as a practical avenue for oftaigparse solution. The use of
£1 minimization is based on the assumption that the classifier parametersahaveri, a Laplace
distribution, and can be implemented using maximum-a-posteriori (MAP) /Fnerm is a result
of penalizing the mean of a Gaussian prior, whilé-aiorm models a Laplace prior, a distribution
with heavier tails, and penalizes on its median. Such an assumption attributetimpooperties
to ¢;-regularized logistic regression in that it tolerates outliers and, thefe®rebust to irrele-
vant features and noise in the data. Since the solution is sparse, theaoogsgonents in the
solution correspond to useful features for classification; theref@raminimization also performs
feature selection (Littlestone, 1988; Ng, 1998), an important task forrdatimg and biomedical
data analysis.

1.1 Logistic Regression

The basic form of logistic regression seeks a hyperplane that sepdatsebelonging to two classes.
The inputs are a set of training daXa= [xy,--- ,Xm] | € R™", where each row oX is a sample
and samples of either class are assumed to be independently identically tidtrdnd class labels
b € RMare of—1/4+1 elements. A linear classifier is a hyperpldme w'x+v = 0}, wherew € R"

is a set of weights ande R the intercept. The conditional probability for the classifier ldbehsed
on the data, according to the logistic model, takes the following form,

exp((wW'x +Vv)b;)

P(bib) = 1+exp((w'x +v)b;)’

=1..m

The average logistic loss function can be derived from the empirical lodists; computed
from the negative log-likelihood of the logistic model associated with all the Emngdivided by
number of samples,

o) = 1 3 B((WT-+V)0).

wheref is the logistic transfer functiorfi(z) := log(1+ exp(—2z)). The classifier parametensand
v can be determined by minimizing the average logistic loss function,

arg rvv\lln lavg(W, V).

Such an optimization can also be interpreted as a MAP estimate for classifiétsveand intercept
V.
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1.2 /1-Regularized Logistic Regression

The so-calledsparse logistic regressiohas emerged as a popular linear decoder in the field of
machine learning, adding tifg-penalty on the weights:

arg W\I/n Ian(Wv V) +)\||W||17 (1)

whereA is a regularization parameter. It is well-known tifatminimization tends to give sparse
solutions. The/; regularization results in logarithmic sample complexity bounds (number of train-
ing samples required to learn a function), making it an effective learresr emder an exponential
number of irrelevant features (Ng, 1998, 2004). Furtherm@reggularization also has appealing
asymptotic sample-consistency for feature selection (Zhao and Yu,.2007)

Signals arising in the natural world tend to be sparse (Parra et al., 28p&)sity also arises
in signals represented in a certain basis, such as the wavelet transferkrytbv subspace, etc.
Exploiting sparsity in a signal is therefore a natural constraint to employ origigh development.
An exact form of sparsity can be sought using theegularization, which explicitly penalizes the
number of nonzero components,

arg r\mn lavg(W, V) + A || wl|o. 2

Although theoretically attractive, problem (2) is in general NP-hard (fdga, 1995), requiring
an exhaustive search. Due to this computational complekitsegularization has become a pop-
ular alternative, and is subtly different thég regularization, in that thé;-norm penalizes large
coefficients/parameters more than small ones.

The idea of adopting thé regularization for seeking sparse solutions to optimization problems
has a long history. As early as the 1970’s, Claerbout and Muir firgigeed to usé; to decon-
volve seismic traces (Claerbout and Muir, 1973), where a sparseti@fidunction was sought
from bandlimited data (Taylor et al., 1979). In the 1980’s, Donoho et @hntified the ability of
/1 to recover sparse reflectivity functions (Donoho and Stark, 1988pbo and Logan, 1992). Af-
ter the 1990s’, there was a dramatic rise of applications using the spamitying property of
the ¢1-norm. Sparse model selection was proposed in statistics using LASSQi(aitis 1996),
wherein the proposed soft thresholding is related to wavelet threshgllorpho et al., 1995). Ba-
sis pursuit, which aims to extract sparse signal representation froroamplete dictionaries, also
underwent great development during this time (Donoho and Stark, Dé#8tsho and Logan, 1992;
Chen et al., 1998; Donoho and Huo, 2001; Donoho and Elad, 2008igp 2006). In recent years,
minimization of the/1-norm has appeared as a key element in the emerging field of compressive
sensing (Cangk et al., 2006; Cagd and Tao, 2006; Figueiredo et al., 2007; Hale et al., 2008).
£1 minimization also has far reaching impact on various applications such aslgodptimiza-
tion (Lobo et al., 2007), sparse principle component analysis (d’'Aspin¢ et al., 2005; Zou et al.,
2006), sparse interconnect wiring design (Vandenberghe et al7, 1998), sparse control system
design (Hassibi et al., 1999), and optimization of well-connected spaaphg (Ghosh and Boyd,
2006). Research on total variation based image processing also stawsnimizing thel;-norm
of the intensity gradient can effectively remove random noise (Rudih,et32). In the realm of
machine learning{; regularization exists in various forms of classifiers, includipgegularized
logistic regression (Tibshirani, 1996@),-regularized probit regression (Figueiredo and Jain, 2001,
Figueiredo, 2003)¢1-regularized support vector machines (Zhu et al., 2004), fafrégularized
multinomial logistic regression (Krishnapuram et al., 2005).
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1.3 Existing Algorithmsfor ¢1-Regularized L ogistic Regression

The /1-regularized logistic regression problem (1) is a convex and nonréiff@ble problem. A
solution always exists but can be non-unique. These characteristtdgie some difficulties in
solving the problem. Generic methods for nondifferentiable convex optimigagiech as the el-
lipsoid method and various sub-gradient methods (Shor, 1985; Pol98K),lare not designed to
handle instances of (1) with data of very large scale. There has beeact&e development on nu-
merical algorithms for solving thé-regularized logistic regression, including LASSO (Tibshirani,
1996), Gllce (Lokhorst, 1999), Grafting (Perkins and Theiler, 20G&nLASSO (Roth, 2004),
and SCGIS (Goodman, 2004). The IRLS-LARS (iteratively reweightedtlequares least angle
regression) algorithm uses a quadratic approximation for the averaigéddgss function, which
is consequently solved by the LARS (least angle regression) methazh(&ffial., 2004; Lee et al.,
2006). The BBR (Bayesian logistic regression) algorithm, describedhei&mendy et al. (2003),
Madigan et al. (2005), and Genkin et al. (2007), uses a cyclic ccatelitescent method for the
Bayesian logistic regression. Glmpath, a solverferegularized generalized linear models using
path following methods, can also handle the logistic regression problerk &RdrHastie, 2007).
MOSEK is a general purpose primal-dual interior point solver, whichsmve the/;-regularized
logistic regression by formulating the dual problem, or treating it as a geonpetrgram (Boyd
et al., 2007). SMLR, algorithms for various sparse linear classifiersals® solve sparse logistic
regression (Krishnapuram et al., 2005). Recently, Koh, Kim, and Bogdosed an interior-point
method (Koh et al., 2007) for solving (1). Their algorithm takes truncatedthin steps and uses
preconditioned conjugated gradient iterations. This interior-point s@wedficient and provides a
highly accurate solution. The truncated Newton method has fast comeergaut forming and solv-
ing the underlying Newton systems require excessive amounts of memdayderscale problems,
making solving such large-scale problems prohibitive. A comparison @rakuf these different
algorithms can be found in Schmidt et al. (2007).

1.4 Our Hybrid Algorithm

In this paper, we propose a hybrid algorithm that is comprised of two ph#sefirst phase is based
on a new algorithm called iterative shrinkage, inspired by a fixed pointiracation (FPC) (Hale
et al., 2008), which is computationally fast and memory friendly; the sechadgpis a customized
interior point method, devised by Koh et al. (2007).

Figure 1 shows a diagram of our hybrid algorithm, termed Hybrid Iterativengage (HIS)
algorithm. Our algorithm requires less memory and, on mid/large-scale probienssfaster than
the interior point method. The iterative shrinkage phase only performs mva&tcbor multiplications
in size of X, as well as a very simplehrinkageoperation (see (6) below), and therefore requires
minimal memory consumption. By extending the results in Hale et al. (2008), owe [@-linear
convergence and show that the signsvgf; (hence, the indices of nonzero elements) are obtained
in a finite number of steps, typically much earlier than convergence. Basttdatter result, we
propose a hybrid algorithm that is even faster and results in highly gecswhutions. Specifically,
our algorithm predicts the sign changes in future shrinkage iterationsyla@ the signs of¥ are
likely to be stable, switches to the interior point method and operates on aeckdumblem that is
much smaller than the original. The interior point method achieves high agcaréite solution,
making our hybrid algorithm equally accurate, as will be shown in the Section 4
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Hybrid Iterative Shrinkage (HIS)
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fast at removing false dimensions
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true dimensions in solution

Figure 1: Adiagram of our proposed hybrid iterative shrinkage (ldI§yrithm. The HIS algorithm
is comprised of two phases: the iterative shrinkage phase and the int@ribppase. The
iterative shrinkage is inspired by a fixed point continuation method (Halé,e2Q08),
which is computationally fast and memory friendly. The interior point method sedha
on a second-order truncated Newton method, devised by Koh et alz)(20ur hybrid
approach takes advantage of different computational strengths of theméthods and
uses them for optimal algorithm acceleration while attaining high accuracgk Blats
indicate the nonzero dimensions, gray dots indicate dimensions that are elumizade
the size of the dots show the error that each dimension contributes to thedingbn.
Note that the final solution is sparse with an overall small error.
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There are several novel aspects of our hybrid approach. Thaakgiof the hybrid approach
is based on the observation that the iterative shrinkage phase redecalgdhithm to gradient
projection after a finite number of iterations, which will be described in Se@&itn We build on
this observation a hybrid approach to take advantage of the two phatfes admputation using
two types of numerical methods. In the first phase, inspired by the FPCalgy ¢4 al. (2008),
we customize the iterative shrinkage algorithm for the sparse logistic stgnesvhose objective
function is not quadratic. In particular, the step length in the iterative shgalalgorithm is not
constant, unlike the compressive sensing problem. Therefore, we t@sdine search strategy to
avoid computing the Hessian matrix (required for finding the step length floilista In addition,
the/; regularization is only applied to thecomponent and natin sparse logistic regression. This
change in the model requires a different shrinkage step, as well agfaldacatment in the line
search strategy.

The remainder of the paper is organized as follows. In Section 2, wendrie iterative shrink-
age algorithm for sparse logistic regression, and prove its global mpavee and Q-linear conver-
gence. In Section 3, we provide the rationale for the hybrid approagkther with a description
of the hybrid algorithm. Numerical results are presented in Section 4. Wduntenthe paper in
Section 5.

2. Sparse Logistic Regression using Iterative Shrinkage

The iterative shrinkage algorithm used in the first phase is inspired byed figint continuation
algorithm by Hale et al. (2008).

2.1 Notation

For simplicity, we defing| - || := || - ||2, as the Euclidean norm. Thipportof x € R" is denoted
by supgx) := {i : x; # 0}. We useg to denote the gradient df, that is,g(x) = Of(x), ¥x. For any
index setl C {1,...,n} (later, we will use index sets andL), || is the cardinality ofl andx; is
defined as the sub-vector pfof length|l|, consisting only of componenss, i € I. Similarly, for
any vector-value mappirlg h; (x) denotes the sub-vector bfx) consisting ofh;(x), i € 1.

To express the subdifferential §f |1 we will use the signum function and multi-function (i.e.,
set-valued mapping). The signum function @ R is

+1 t>0,
sgnt):=4<¢0 t=0,
-1 t<O;
while the signum multi-function af€ R is
{+1} t>0,
SGN(t) :=0Jt| =< [-1,1] t=0,
{-1} t<0,

which is also the subdifferential 4.
Forx € R", we define sgfx) € R" and SGNx) C R" component-wise agsgn(X)); := sgnX;)
and(SGN(x)); :== SGN(x), i = 1,2,---,n, respectively. Furthermore, vector operators sucfxjas
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and maxx,y} are defined to operate component-wise, analogous with the definitions @nsg
SGN above. Fok,y € R", let x®y € R" denote the component-wise productxadndy, that is,
(x®Y)i =xy;. Finally, we letX* denote the set of all optimal solutions of problem (3).

2.2 Review of Fixed Point Continuation for £1-minimization

A fixed-point continuation algorithm was proposed in Hale et al. (2008} &sst algorithm for
large-scalels-regularized convex optimization problems. The authors considered libeviftg
large-scale/;-regularized minimization problem,

min f(x) + A[|x]|1, 3)
XeRN

wheref : R" — R is differentiable and convex, but not necessarily strictly convex)and. They
devised a fixed-point iterative algorithm and proved its global convergeincluding finite con-
vergence for some quantities, and a Q-linear (Quotient-linear) comeggate without assuming
strict convexity off or solution uniqueness. Numerically they demonstrated Q-linear convargen
in the quadratic casé(x) = ||Ax— b3, whereA is completely dense, and applied their algorithm
to /;-regularized compressed sensing problems. As we will adopt this algofitheolving our
problem (1), we review some important and useful results here andbges@me new insights in
the context o¥;-regularized logistic regression.

The rationale for FPC is based on the idea of operator splitting. It is weilltkrin convex
analysis that minimizing a function in the form @x) = @1(X) + @2(x), where bothg; and ¢,
are convex, is equivalent to finding a zero of the subdifferedtpgk), that is, seeking satisfying
0 € Ti(X) + To(x) for Ty := d@r and T, := 0. We say(l +1T) is invertible ify = X+ 1T1(x) has a
unique solutiorx for any giveny. Fort > 0, if (I +1Ty) is invertible andT; is single-valued, then

0€eTi(X)+Ta(Xx) <= 0€ (X+TTo(X)) — (X—T1T2(X))
— (I-1tT)xe (I +1T1)x
— x=(+1T) Y -1T)x. (4)

This gives rise to the forward-backward splitting algorithm in the form okedipoint iteration,
XKL= (1 4+1Ty) 721 —TT)XK. (5)

Applying (4) to problem (1), wherey (x) := A[|x||1 and@(x) := f(x), the authors of Hale et al.
(2008) obtained the following optimality condition xf:

X' EX* <= 0€g(X') +ASGNX') <= x* = (I +1Ty) (I —1T)X",

whereT,(-) = g(-), the gradient off (), and(l +1T;)~1(-) is the shrinkage operator. Therefore, the
fixed-point iteration (5) for solving (3) becomes

Xt = so h(xX),

which is a composition of two mappingsandh from R" to R".
The gradient descent operator is defined as

h(-):=1(-) —TOf ().

719



SHI, YIN, OSHER AND SAJDA

The shrinkage operator, on the other hand, can be written as

S(-) =sgn(-) ©max{] - | - v, 0}, (6)

wherev = A1. Shrinkage is also referred to soft-thresholding in the language ofl@tavaalysis:

Yi—V, Yi>V,
(S(y))l = 07 Yi € [_V7V]7
Vi+V, Vyi<-—V.

In each iteration, the gradient descent dtepducesf (x) by moving along the negative gradient
direction of f (x) and the shrinkage steypeduces thé;-norm by “shrinking” the magnitude of each
nonzero component in the input vector.

2.3 lterative Shrinkage for Sparse L ogistic Regression

Recall that in the sparse logistic regression problem (1), thegularization is only applied tw, not
tov. Therefore, we propose a slightly different fixed point iteration. koipsicity of notation, we
define column vectors = (w;v) € R™?! andg = (a;bj) € R"?, wherea, = bx, fori =1,2,....m.
This reduces (1) to

muin lavg(U) +Af|uznl|1,

wherelayg = n% s, 8(cu), and® denotes the logistic transfer functiériz) = log(1+ exp(—2)).
The gradient and Hessian lafg with respect tau is given by

glu) = Dla\,g(u)—;ief(cfu)ci,

10

where®'(z) = —(1+ €)1 and®’(z) = (2+e 2+ ¢€?) L. To guarantee convergence, we require the
step length be bounded byrax, AmaxH (u)) L.
The iterative shrinkage algorithm for sparse logistic regression is

Ut = sohypn(U¥), for w component

Ut = hpq(UX), for vcomponent (7)

which is a composition of two mappingsands from R" to R", where the gradient operator is
() =-—1g() =~ Wlaug(").
While the authors in Hale et al. (2008) use a constant step length satisfying
0<T<2/Amax{Hee(u) :ue Q},

we employ line search to avoid the expensive calculation of maximum eigesv&lgewill present
the convergence of the iterative shrinkage algorithm in Section 2.4. Tthdsdef the line search
algorithm will be discussed in Section 2.5.
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Algorithm 1 Fixed-Point Continuation Algorithm
Require: A = [¢/;c;---;ch] € R™MD 1y = (wv) € R™L, f(u) = mig(Au), task:
miny lavg(u) +AJ|ul1
Initialize u°
while “not converge”do
Armijo-like line search algorithm (Algorithm 2)
k=k+1
end while

2.4 Convergence

Global convergence and finite convergence on certain quantities warerpin Hale et al. (2008)
when the following conditions are met: (i) the optimal solution)ets non-empty, (ii)f € C2 and
its HessiarH = 02 is positive semi-definite i = {x: |x—x*|| < p} C R" for p > 0, and (iii) the
maximum eigenvalue dfi is bounded o2 by a constanhmax and the step lengthis uniformly
less than 2Amax. These conditions are sufficient for the forward operaterto be non-expansive.

Assumption 1 Assume problerfl) has an optimal solution set%~ 0, and there exists a set
Q={x:[x=x"|| <p}CR"
for some x € X* andp > 0 such that fe C?(Q), H(x) := 0?f(x) = 0for x€ Q and

3\max ‘= SUPAmax(H (X)) < .

XeQ

For simplicity for the analysis, we choose a constant step lengitthe fixed-point iteration§7):
XL = g(xK — 1g(x)), wherev = TA, and

Te (o, 2/Amax)
which guarantees that(h) = I (-) — tg(+) is non-expansive if.
Theorem 1 Under Assumption, the sequena&} generated by the fixed-point iteratiofig) ap-

plied to problem(1) from any starting pointke Q converges to some & U* N Q. In addition, for
all but finitely many iterations, we have

=u=0  VieL={i:|g/|<A1<i<n}, (8)
1 , : :
sgrthy (U)) = sgniti(u) = =30/, VieE={i:|gf| =A1<i<n}, ©)
where as long as
w:=min{v(1— |(‘;’i |) sielL}>0.

The numbers of iterations not satisfyi(® and(9) do not exceetu® — u*||?/w? and||u® — u* || /v?,
respectively.
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Proof We sketch the proof here. First, the iteration (7) is shown to be non-siaim /», that
is, ||uk — u*|| does not increase ik with the assumption on the step length Specifically, in
Assumption, the step lengttis chosen small enough to guarantee fhgtX) — h(u*)|| < ||u* — u¥||
(in practicet is determined, for example, by line search.) On the other hand, through@ooent-
wise analysis, one can show that no matter wha, the shrinkage operatsf-) is always non-
expansive, that ig|s(hyn(U¥)) — s(hyn(U*)) || < ||hen(U€) — hyn(u®)||. Therefore, from the definition
of Ut1in (7), we have

Ut — || < k=l (10)

using the fact that* is optimal if and only ifu* is a fixed point with respect to (7). However, this
non-expansiveness of (7) does not directly give convergence.

Next, {uX} is shown to have a limit point, That is, a subsequence convergingitale to the
compactness d® and (10). (7) can be proven to converge globally.tdo show this, we first get

I8 ha:n(U); by 1 (U)] =[S0y (U7); g (U] = f|u— ],

from the fact that is a limit point, and then use this equation to show that[so hy(u); hn1(U)],
that is,u is a fixed point with respect to (7), and thus an optimal solution. Repeatinfirshstep
above we havgu*"* — ]| < ||uk — ]|, which extendsi from being the limit of a subsequence to
one of the entire sequence.

Finally, to obtain the finite convergence result, we need to take a closer idbk ahrinkage
operators(-). When (8) does not hold for some iteratikmt component, we havelut — uf|? <
Juk — uf|? — «?, and for (9), we havéu™ — uf|2 < |uk — u#|2 — v2. Obviously, there can be only
a finite number of iterationk in which either (8) or (9) does not hold, and such numbers do not
exceed|u® — u*||?/w? and||u® — u* |2 /v?, respectively. [ |

A linear convergence result with a certain convergence rate can algbtai@ed. As long as
Hee(X*) := [Hij(x")]i.jce has full rankor f(x) is convex quadratic ir, the sequencex®} converges
to x* R-linearly, and{||x¥||1 + uf(x)} converges td|x*||1 + uf(x*) Q-linearly. Furthermore, if
Hee(x*) has the full rank, theR-linear convergence can be strengthene@-mear convergence
by using the fact that the minimal eigenvalueHfe atx* is strictly greater than 0.

25 LineSearch

An important element of the iterative shrinkage algorithm is the step langtleach iteration. To
ensure the stability of the algorithm, we require that the step length satisfy

0<T<2/Amax{Hee(u) :ue Q}.

In compressive sensing, where the smooth part of the objective funstipradratic, the step length
is constant. In sparse logistic regression, however, the Hessian matrigehat each iteration. If
one has to dynamically compute the step length at each iteration, this requiegpearsive com-
putation for the Hessian matrix. Therefore, we resort to an “Armijo-like” Bearch algorithm to
avoid such a computational burden. For large-scale problems, a lirshseathod, if used appro-
priately, can save tremendous CPU time and memory. Convergence of the Aikailime search
is not proven in our paper, however heuristic results are obtainedgihmmumerical experiments.
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Algorithm 2 Armijo-like Line Search Algorithm
Compute heuristic step lengthy
Gradient stept*~ = uX — ag0l ayg(UX)
Shrinkage stepu" = s1.n(UX™, Adig)
Obtain search directiorp* = ukt — uk
while“j < max line search attemptslb
if Armijo-like condition is methen
Accept line search step, update? = u* +a; pX
else
Keep backtracking(j = pa;j_1
end if
j=j+1
end while

Let’'s denote the objective function for thig-regularized logistic regression @gu) for conve-
nience:
@(U) = lavg(u) + Af|upnlf1,
wherelayg(u) = %z{ile(cfu) and@ is the logistic transfer function. A line search method, at each
iteration, computes the step lengthand the search directigpf:

k

Uk = Uk apt.

The search direction will be described in Eqn. (12). For our sparssgtiogegression, a sequence of
step length candidates are identified, and a decision is made to accept@meevtain conditions
are satisfied. We compute a heuristic step length and gradually decreasiaitsufficient decrease
condition is met.

Let's define the heuristic step length @g. Ideally the choice of step lengtiy, would be a
global minimizer of the smooth part of the objective function,

0(a) = lag(U +ap¥), a>0,

which is too expensive to evaluate, unlike the quadratic case in commassiging. Therefore, an
inexact line search strategy is usually performed in practice to identify destgth that achieves
sufficient decrease if(a) at minimal cost. Motivated by a similar approach in GPSR (Figueiredo
et al., 2007), we compute the heuristic step length through a minimizer of theatjgaapproxima-
tion for ¢ (a),

lavg(US — 0 0layg(UX)) & layg(U®) — a0l ayg(UK) T Dl avg(UX) + 050201 ayg(U€) TH (UK) Ol ayg(UX).
Differentiating the right-hand side with respectit@nd setting the derivative to zero, we obtain

o Dlavg(0€) T Dlavg(UX)
7 Dlawg(0F) TH (0F) Dl ag(TF)”

(11)

whereuf = 0, if i = 0 or |gi| < A andu® = uX, otherwise. From (11) and the strict positiveness of
0”, we can see that the denominator is strictly positive as long as the gradi@mtzisrn. Compu-
tationally a very useful trick is not to compute the Hessian matrix directly, sircenly use the
vector-matrix product between the gradient vetigy(U¥) and the Hessian matrid ().
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Based on the heuristic step length, we can obtain the search directipfy which is a combi-
nation of the gradient descent step and the shrinkage step:
UK = U — agOlayg(uX),
Ut = sp0(UF, Aag),
pl = Ut — Uk, (12)

It is easy to verify thats,(y) is the solution to the non-smooth unconstrained minimization
problem ming ||x —y||2 +A|[x||1. This minimization problem is equivalent to the following smooth
constrained optimization problem,

1 ,
minZ x—y|3+vz subject to(x.2) € Q= {(x2) | x|, < 2},
whose optimality condition is
((x,v) = %) " (y = S(x,v) +-V(z— [|s(x,v)[|1) = O,

for all x e R", (y,z) € Q andv > 0. Once we substitute — tg for x, u for y, ||uin|/1 for zand set
v = AT, the optimality condition becomes

(s1n(Uu—T1g,AT) — (u—rg))T(u—sl;n(u—rg,)\T)) +AT(||urnll1— [|Stn(u—T10,AT)||1) > O.
Using the facu™ = s;.,(u—1g,AT), p=u" —u, we get
9" P+ A(lufplls— luall1) < —p"p/1,
which means .
Dlavg(U) P+ Al [ — AfJufpll2 < O,

We then geometrically backtrack the step lengths, letting= oo, Moo, K20o,..., until the

following Armijo-like condition is satisfied:
QU+ 0 ) < G+

Notice that the Armijo-like condition for line search stipulates that the step lemgith the search
direction p* should produce a sufficient decrease of the objective fungifah Cy is a reference
value with respect to the previous objective values, while the decrease abjéctive function is
described as

A= Olayg(U) P+ AU 11— AUl < O
There are two types of Armijo-like conditions depending on the choic&ofOne can choose
Ck = @(U¥), which makes the line search monotone. One can also derive a non-menii@n
search, wher€y is a convex combination of the previous valDie ; and the function value(uX).
We refer interested readers to Wen et al. (2009) for more details.

Figure 2 illustrates the computational speedup using the line search. Thartepghows the
evolution of the objective function as a function of iterations. Tested onéhetmark data from
the UCI repository, we see that our algorithm results in a speedup ofC8D (Berations without
line search vs. 150 iterations with line search). The bottom panel showseiiéength used in the
algorithm. In the absence of the line search, we require that the step letigfly 8 < 2/Amax. For
the Armijo-like line search, we illustrate both the heuristic step lemngtlisolid black curve) and
the actual step length after backtracking (dashed red curve). Redkdbels the transition points
on the continuation path, a concept we will discuss in the next section. Nait¢ghthstep lengths
can be on the order of 100 times larger for line search vs. no line search.
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Figure 2: lllustration of the Armijo-like line search, comparing the iterativénslage algorithm

with (right column) and without (left column) line search. (a) The objectivection of
the iterative shrinkage algorithm without line search, attaining conveegafier 6000
iterations. (b) The objective of the iterative shrinkage algorithm with lineckgeaon-
verging at around 150 iterations. The gray bars under the “iteratioes highlight the
difference between the number of iterations—the gray bar in (a) repssbe same num-
ber of iterations as the gray bar in (b). (c) The step length without linekésabounded
by 2/Amaxto ensure convergence. (d) The step length used in the Armijo-like linetsear
(solid black curve) heuristic step lengtty (Eqn. 11), (dashed red curve) actual time
step after backtracking. The transition point on the continuation path is tedioa (red
asterisk). Data used in this numerical experiment are the ionosphereaatthe UCI
machine learning data repository (http://archive.ics.uci.edu/ml/datasets/lare}pPa-
rameters used argol = 0.001,gtol = 0.01,A\g = 0.1, A = 0.001.
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2.6 Continuation Path

A continuation strategy is adopted in our algorithm, by designing a regularzptith similar to
that is used in Hale et al. (2008),

AN>A> .. >A_1=A.

This idea is closely related to the homotopy algorithm in statistics, and has besssiully
applied to the’;-regularized quadratic case, where the fidelity tery(ig = ||Ax— b||3. The ratio-
nale of using such a continuation strategy is due to a fast rate of comeerfm large\. Therefore,
by taking advantage of different convergence rate for a family ofleegation parametek, if
stopped appropriately, we can speed up the convergence rate ofl iatfiu An intriguing discus-
sion regarding the convergence rate of fixed-point algorithm dwahdcw, the spectral properties of
Hessian, was presented in Hale et al. (2008). In the case of the logiptisséon, we have decided
to use the geometric progression for the continuation path. We define

N =Mp L fori=0,..,L—1,

wherelg can be calculated based on the ultimatere are interested in and the continuation path
lengthL, that is, Ao = A /B2,

As mentioned earlier, the goal of a continuation strategy is to construct anithifferent
rate of convergence, with which we can speed up the whole algorithm. dlingos obtained from
a previous subpath associated with; is used as the initial condition for the next subpathXor
Note that we design the path lendttand the geometric progression rgtén such a way that the
initial regularization\ is fairly large, leading to a sparse solution for the initial path. Therefoee, th
initial condition for the whole path, considering the sparsity in solution, is @ zector.

Another design issue regarding such a continuation strategy is we stogw@agath according
to some criteria, in an endeavor to approximate the solution in thexnagtfast as possible. This
means that a strong convergence is not required in subpath’s egcép final one, and we can vary
the stopping criteria to “tighten” such a convergence as we proceedfollbeing two stopping
criteria are used:

JU -

max(||u¥|[, 1) ;
(1Dl avg(U) [|eo
Havg\Ulle 3 _ 101,

A <9

The first stopping criterion requires that relative changebe small, while the second one is related
to the optimality condition, defined in Eqn. (13). Theoretically, we would like 1y whol; to attain
a seamless Q-linear convergence path. Such a choice seems to be ptepérdent, and probably
even data dependent in practice. It remains an important, yet difficelares topic to study the
properties of different continuation strategies. We have chosen to geeraetric progression for
the tolerance valuaytol; = utolp + Y1, with utoly = utol/y-~1. In our numerical simulation, we
useutol = 10~ andgtol = 0.2.

Figure 3 shows the continuation path using fixedl and a varyingutol following geometric
progression. When we use a fixetbl to ensure strong convergence eachXalong the path, the
solver spends a lot of time evolving slowly. One can see in (a) that the olgjdatiction shows a
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fairly flat reduction at earlier stages of the path. Clearly by relaxing theergence at earlier stages
of the path, we can accelerate the computation, shown in (b). The chaitel @ndgtol seems to
be data dependent in our experience, and the result we show in (b) beighiboptimal. Further
optimization of the continuation path can potentially accelerate the computatiommrenwhich

remains an open question for future research.

(a) Fix utol (b) Vary utol

0.8 0.8

o

[e2]
o
[e2]

Objective
o
N
Objective
o
iy

o
o

0 100 200 300 400 500 0 50 100 150 200
Iteration Iteration

Figure 3: lllustration of the continuation strategy (a) using a fiweal = 0.0001 is used for the
stopping criterion, (b) using a varyingtol according to geometric progression. Note
that a stronger convergence is not necessary in earlier stages oontiveuiation path.
By using a varyingutol, especially tighteningitol as we move along the path, we can
accelerate the fixed point continuation algorithm. Shown is the objective alaek
curve) as a function of iteration, where the transition point on the regataiz path is
labeled in (red asterisk). Data used in this experiment has 10000 dimemsiob0Oa
samples. A continuation path of length 8, starting frort28 and ending at.001.

3. Hybrid Iterative Shrinkage (HIS) Algorithm

In this section we describe a hybrid approach called HIS, which uses thévigeshrinkage algo-
rithm described previously to enforce sparsity and identify the suppdheirdata, followed by a
subspace optimization via an interior point method.

3.1 Why A Hybrid Approach?

The hybrid approach is based on an interesting observation for thevieeshiinkage algorithm,
regarding some finite convergence properties. The optimality condition fof (jA- A ||x||1 is the

following
9(x) + ASGN(x) € 0, (13)
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which requires thalfigi| <A, fori = 1,...,n. We define two index sets
L:={i:|g| <A} andE:={i:|g| =A},

whereg* = g(u*) is constant for all* € X* and|g| <A for all i. HenceLNE =0 andLUE =
{1,...,n}. The following holds true for all but a finite number kaf

w=u=0 Viel,
1 .
sgrihy (U) = sgnihi(u) = -3gf,  VieE.
Assume that the underlying problem is nondegenerate, thend E equal the sets of zero and
nonzero components kf. According to the above finite convergence result, the iterative shrinkag
algorithm obtaind. andE, and thus the optimal support and signs of the optimal nonzero compo-
nents, in a finite number of steps.

Corollary 2 Under Assumption 1, after a finite number of iterations, the fixed-pointtiterd7)
reduces to gradient projection iterations for minimizip@ig ) over a constraint set € where

®(ug) = —(9g) "ue + f((Ug; 0)), and

Ot = {ue e RE!: —sgn(gs) © ug > 0}.

Specifically, we havektit = (u€+?;0) in which
k+1 — P kK 0 Kk
Ug' ™ = Pog (Ug — TOQ(Ug) ) ,
where R, is the orthogonal projection onto andJ@(ug) = —gg + e ((Ug; 0)).

This corollary, see Corollary 4.6 in Hale et al. (2008), can be directlyieghpo sparse logistic
regression. The fixed point continuation reduces to the gradient fimjedter a finite number of
iterations. The proof of this corollary is in general true for the, that is, thew component in our
problem.

Corollary 2 implies an important fact: there are two phases in the fixed poiminc@ation
algorithm. In the first phase, the number of nonzero elements ir &welve rapidly, until after a
finite number of iterations, when the support (non-zero elements in a yéstmund. Precisely,
it means that for alk > K, the nonzero entries ioX include all true nonzero entries i with
the matched signs. However, unldsis large,u* typically also has extra nonzeros. At this point,
the fixed point continuation reduces to the gradient projection, startingettend phase of the
algorithm. In the second phase, the zero elements in the vector stay unaitkiledhe magnitude
of the nonzero elements (support) keeps evolving.

The above observation is a general statement forfahgt is convex. Recall the quadratic case,
where f = ||y — Ax||3, the second phase is very fast in terms of convergence rate. This i® due
the quadratic function, and in an application to compressive sensing, dtedoint continuation
algorithm alone has resulted in super-fast performance for larde{sczlems (Hale et al., 2008).
In the case of sparse logistic regression, we have a non-strictly cdntlesx average logistic regres-
sion. This results in a fairly slow convergence rate when the algorithnhesabe second phase. In
view of the continuation strategy we have, this greatly affects the speed lashsubpath, with the
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regularization parameteérof interest. In some sense, we have designed a continuation path that is
super-fast until it reaches the second phase of the final subpathisTiot surprising given that the
fixed point continuation algorithm is based on gradient descent ankaljgroperator. We envision
that by switching to a Newton’s method, we can accelerate the second phase

Based on this intuition, we are now in a position to describe a hybrid algorithmed fioint
continuation plus an interior point truncated Newton method. For the lattemgarésort to the
customized interior point in Koh et al. (2007). We modified the source cbttetillogregsoftware
(written in C), and built an interface to our MATLAB code. This hybrid apgech, based on our
observation of the two phases, enables us to attain a good balance @hspkes&ccuracy.

3.2 Interior Point Phase

The second phase of our HIS algorithm used an interior point methodogexkby Koh et al.
(2007). We directly used a well-developed software packalpgreg' and modified the source
code to build an interface to MATLAB. We review some key points for the intgsmnt method
here.

In Koh et al. (2007), the authors overcome the difficulty of non-difiéiebility of the objec-
tive function by transforming the original problem into an equivalent oité Vinear inequality
constraints,

. L
min ﬁzila"g(WTa" +vb)+A1"u
=
S.t. —u<wi<u, i=1,...n

A logarithmic barrier function, smooth and convex, is further construaedhfe bound con-
straints,

Pl = = 3 log(u-+w) — 3 log(us —w).

defined on the domaifiw,u) € R" x R"||wi| < ui,i = 1,...,n}. The following optimization problem
can be obtained by augmenting the logarithmic barrier,

th(V7W7 U) = tlavg(VaW) +t)\1TLI+ p(VV, U),

wheret > 0. The resulting objective function is smooth, strictly convex and bouneémivb and
therefore has a unique minimizer (t),w*(t),u*(t)). This defines a curve iR x R" x R", param-
eterized by, called the central path. The optimal solution is also shown to be dual feasible
addition, (v*(t),w*(t)) is 2n/t-suboptimal.

As a primal interior-point method, the authors computed a sequence of poitite central path,
for an increasing sequence of valuest pnd minimizedyx (v,w,u) for eacht using a truncated
Newton’s method. The interior point method was customized by the authorsenatevays: 1)
the dual feasible point and the associated duality gap was computed in & felse&on, 2) the
central path parametérwas updated to achieve a robust convergence when combined with the
preconditioned conjugate gradient (PCG) algorithm, 3) an option for gpthi@ Newton’s system
was given for problems of different scales, where small and mediusedaoblems were solved by
direct methods (Cholesky factorization), while large problems were saisied iterative methods
(conjugate gradients). Interested readers are referred to Koh(20@r) for more details.

1. Software can be downloadedhétp://www.stanford.edu/ ~boyd/papers/I1_logistic_reg.html
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3.3 TheHybrid Algorithm

The hybrid algorithm leverages the computational strengths of both thevteskitrinkage solver
and the interior point solver.

Algorithm 3 Hybrid Iterative ShrinkageH1S) Algorithm
Require: A=([c];c);---;ch] € R™ML u= (w;v) € R™1, f(u) = m1g(Au)
task: min layg(u) +A|lul|1
Initialize u°
PHASE 1: ITERATIVE SHRINKAGE
Select\g andutolg
while “not converge”do
if “the last continuation pathi,== (L — 1) and “transition conditionthen
“transit into PHASE 2"
else
UpdateA; = A\j_13, utol; = utol_1y
Compute heuristic step lengthy
Gradient descent step~ = uX — agDlayg(U¥)
Shrinkage stepu*" = s1.0(UX~, Adtg)
Obtain line search directiorp® = Ukt —u
while“] < max line search attemptslb
if Armijo-like condition is metthen
Accept line search step, update? = u* + a; p*
else
Keep backtrackingtj = paj_1
end if
j=i+1
end while
end if
end while
PHASE 2: INTERIOR POINT
Initialize W = Wnonzeroget subproblem mi (v, W, u)
while “not converged’h) > € do
Solve the Newton systerm32Qk(v, W, u) [Av, AW, Au] = —OQK(v, W, u)
Backtracking line search : find the smallest integer O that satisfies
WE(V+ O AV, W+ o AW, U+ o jAU) < WV, W, u) + o Ok (v, W, u) T [Av, A, Au]
Update (v, W, u) = Wk(v, W, u) + o j (Av, AW, Au)
Check dual feasibility
Evaluate duality gap
k=k+1
end while

k

In the first phase, we use the iterative shrinkage solver, due to its catopateefficiency and
memory friendliness. It is especially beneficial to have a memory friendlyesdbr the initial
phase when one is dealing with large-scale data sets. Recall that we arstinai@tion strategy for
the iterative shrinkage phase, where a sequendésas used along a regularization path. In the
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last subpath whergk is the desired one, we transit to the interior point when the true suppont of th
vector is found. The corollary in Section 3.1 states that iterative shrinkeageers the true support
in a finite number of steps. In addition, iterative shrinkage obtains all troeero components long
before the true support is obtained. Therefore, as long as the itesativikage seems to stagnate,
which can be observed when the objective function evolves very slavigyhighly likely that all
true nonzero components are obtained. This indicates that the algorithedisfog switching to
the interior point.

In practice, we require the following transition condition,

U — u| < utok

max(||uk||, 1) ’
and extract the nonzero componentsvi@s the input to the interior point solver. By doing so, we
reduce the problem to a subproblem where the dimension is much smalleo)aanthe subproblem
using the interior point method.

The resulting hybrid algorithm achieves high computational speed while atainensame

numerical accuracy as the interior point method, as demonstrated with er@siaks in the next
section.

4. Numerical Results

In this section we present numerical results, on a variety of data setantund@ate the benefits of
our hybrid framework in terms of computational efficiency and accuracy.

4.1 Benchmark

We carried out a numerical comparison of the HIS algorithm with seveistiry algorithms in liter-
ature for/1-regularized logistic regression. Inspired by a comparison study on fhiskig Schmidt

et al. (2007% we compared our algorithm with 10 algorithms, including a generalized veogion
Gauss-Seidel, Shooting, Grafting, Sub-Gradient, epsL1, Log-Bakog-Norm, SmoothL1, EM,
ProjectionL1 and Interior-Point method. In the numerical study, we regdldlce interior point
solver by the one written by Koh et al. (2007). Benchmark data were tfaenthe publicly avail-
able UCI machine learning repositotywe used 10 data sets of small to median size (internetad1,
arrhythmia, glass, horsecolic, indiandiabetes, internetad2, ionosphadelon, pageblock, spam-
base, spectheart, wine).

All of the methods were run until the same convergence criteria was metevaipgropriate,
for instance the step length, change in function value, negative directiensgative, optimality
condition, convergence tolerance is less than®10We treated each algorithm solver as a black
box and evaluated both the computation time and the sparsity (measured ibgaligrdf solution).
We set an upper limit of 250 iterations, meaning we stop the solver when theenwhlteration
exceeds 250. Since different algorithm has different speed foriearate (usually a Newton step is
more expensive than a gradient descent step), we think the computation timei® appropriate
evaluation criterion than number of iterations. The ability of the algorithm to fisybase solution,
measured by the cardinality, was also evaluated in this process.

2. Source code is available ftp://iwww.cs.wisc.edu/ ~gfung/GeneralL1
3. UCI machine learning repository istatp://www.ics.uci.edu/ ~ mlearn/MLRepository.html
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Figure 4 shows the benchmark result using data from the UCI machinéngaepository. All
numerical results shown are averaged over a regularization path.af&meters for the regulariza-
tion path are calculated according to each data set, where the maximal imgidarparameter is
calculated as follows:

1, m m,
Amax:auﬁbiglai‘f‘ﬁbi;lai”ma (14)

wherem_ is the number of training samples with label andm,_ is the number of training samples
with label +-1 (Koh et al., 2007).Amax is an upper bound for the useful range of regularization
parameter. Wheni > Anax the cardinality of the solution will be zero. In this case, we test a
regularization path of length 10, that Mnax 0.9Amax 0.8Amax... 0.1Amax. Among all the numerical
solvers, our HIS algorithm is the most efficient. HIS achieves comparabiénality in the solution,
compared to the interior point solver.

We also evaluated the accuracy of the solution by looking at the classifigaiformance using
Kfold cross-validation. Table 1 summaries the accuracy of the solution tisngllS algorithm,
compared to the interior point (IP) algorithm. Clearly, HIS algorithm achievesparable accuracy
compared to IP, an algorithm that is recognized for its high accuracy.
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Figure 4: Comparison of our hybrid iterative shrinkage (HIS) method vetleral other existing
methods in literature. Benchmark data were taken from the UCI machine lgaepasi-
tory, including 10 publicly available data sets. (a) Distribution of computation toresa
10 data sets, (b) Distribution of cardinality for the solution across 10 dé&taaseeraged
over a regularization path.

4.2 Scaling Result

Numerical experiments were carried out to study how our algorithm scalbeghve problem size.
For the sake of generality, we used simulated data whose dimension remged4fto 131072. The

732



HYBRID ITERATIVE SHRINKAGE - HIS

Accuracy Comparison

(Aze [0.5,1.0))

dataname|| accuracy(HIS)| accuarcy(IP)
arrhythmia 0.7363 0.7363
glass 0.6102 0.6102
horsecolic 0.5252 0.5252
ionosphere 0.5756 0.5756
madelon 0.6254 0.6254
spectheart 0.5350 0.5350
wine 0.6102 0.6102
internetad 0.8486 0.8486

Table 1: Comparison of solution accuracy for our hybrid iterative skgek(HIS) algorithm and
the interior point (IP) algorithm. Accuracy of the solution was measured byaiue,
resulted from Kfold cross-validation, where Kfold is 10. A regularizapath of varying
A were computed to determine the maximum generalized Az value. The data sets wer
taken from the UCI machine learning repository.

data is drawn from a Normal distribution, where the mean of the distributiorifiedly a small
amount for each class .(Dfor samples with label 1, and0.1 for samples with label-1). The
number of samples is the same for both classes and chosen to be smaller wharetisgon of the
data. Experiments for each dimension were carried out on 100 diffee¢miof random data. We
compared the mean and variances of the computation time, and comparedsalgétithm to the
IP algorithm.

Table 2 summarizes the computational speed for the HIS algorithm and thedftraty It
is noteworthy that the HIS algorithm improves the efficiency of computation, whdataining
comparable accuracy to the IP algorithm. Figure 5 plots the computation resalfumction of
dimension for better illustration. In (a) one can clearly see the speedupminegrgm the HIS
algorithm (red), compared to the IP algorithm (blue). We also show the solqgtiality in (b),
where the weights we get from both solvers, is comparable.

4.3 Regularization Parameter

In general, the regularization parameteaffects the number of iterations to converge for any solver.
As A becomes smaller, the cardinality of the solution increases, and the computatiometiahed
for convergence also increases. Therefore when one seekdiars@lith less sparsity (smal), it

is more computationally expensive.

In practice, when one carries out classification on a set of data, the bpdgudarization pa-
rameter is often unknown. Speaking of optimality, we refer to a regularizpicemeter that results
in the best classification result evaluated using Kfold cross-validatioa v@uild run the algorithm
along a regularization patmax, ..., Amin, WhereAmax is computed by Eqn. (14) and whexgin is
supplied by the user.

Figure 6 shows the evolution of solution along the regularization path, usamgadl data set
(ionosphere) from the UCI machine learning repository. This explgrassgy of different degrees
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Speed Comparison

(in second
dimension| mean(HIS)| std(HIS) | mean(IP)| std(IP)
64 0.0026 | 0.00069| 0.0043 | 0.00057
128 0.0025 | 0.00058| 0.0049 | 0.00037
256 0.0026 | 0.00075| 0.0078 | 0.00052
512 0.0024 | 0.00059| 0.018 | 0.0017
1024 0.0023 | 0.00056| 0.029 | 0.0023
2048 0.0026 | 0.00064| 0.054 | 0.0026
4096 0.0028 | 0.00057| 0.098 | 0.0050
8192 0.0030 | 0.00059 0.19 0.0076
16384 0.0033 | 0.00055 0.40 0.018
32768 0.0038 | 0.00055 0.89 0.037
65536 0.0049 | 0.00054 2.01 0.096
131072 0.0077 | 0.00056 4.49 0.24

Table 2: Speed comparison of the HIS algorithm with the IP algorithm, bassdnutated random
benchmark data. Shown here is the computation speed as a function of idimebData
used here are generated by sampling from two Gaussian distributions.tHdota the
simulation, the continuation path used in the iterative shrinkage may or may aptibral,

which means that the speed profile for the HIS algorithm can be essentieéiesated
even more.

(a) Speed
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Figure 5: Comparison for the random benchmark data, between the HiSttahg and the IP algo-
rithm. (a) Speed profile for these two approaches: (blue curve) stimrspeed profile
for the IP algorithm, and (red curve) shows the speed profile for thealdj&ithm as a
function of the data dimension. (b) An example of the solutions using the IRithigo
(blue) and the HIS algorithm (red).
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Figure 6: Solutionv evolves along a regularization path, following a geometric progressiom fro
107! to 107*. Data is ionosphere from UCI machine learning repository. Ashthe-
comes smaller, the cardinality of the solution goes up.
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in the solution, and one can determine the optimal sparsity for the data. Thisigactive prop-
erty of this model, where one can search in the feature space the mostatifa features about
discrimination.

We illustrate the effect of the regularization parameter using real datagef $amale. The data
concerns a two alternative force choice task for face versus caindisation. We used a spik-
ing neuron model of primary visual cortex to map the input into cortical spate decoded the
resulting spike trains using sparse logistic regression (Shi et al., 20B8)data has 40960 dimen-
sions and 360 samples for each of the two classes. Kfold cross-validea®nsed to evaluate the
classification performance, where the number of Kfolds is 10 in our simulation

The speedup of the HIS algorithm compared to the IP algorithm is shown ing~fda), where
blue indicates the computation time of the IP algorithm, and red shows the HIStlatgorThe
HIS algorithm results in a significant speedup over the IP algorithm, withestdbaccuracy. Note
that there is an issue of model selection when we apply sparse logistissiegrenodel to the data,
in a sense there exists an optimal level of sparsity that achieves the ksssticddion result. We
ran the model with a sequence of regularization parameters, which resBultigsification result
(evaluated by Az value from Kfold cross-validation). Figure 7(b) illustsehe classification result
as a function of the cardinality of the solution. One can see the bell shape tutkie, which
provides a route to select the optimal sparsity for the solution.
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Figure 7: An example using real data of large scale; 40960,m = 360. (a) Computation time
along such a regularization path, where the smalleequires more computation time.
Note that the simulation is carried out for eaklseparately. (b) Classification perfor-
mance derived from ROC analysis based on Kfold cross-validation. d in this
simulation are neural data for a visual discrimination task (Shi et al., 2009).

4.4 Data Setswith Large Dimensions and Samples

We applied the HIS algorithm to some examples of real-world data that havéalbgédimensions
n and samples. In this case, we considered text classification using the binary rcvi daais
et al., 2004), and real-sim data.

We ran the simulation on an Apple Mac Pro with two 3 GHz Quad-Core Intelgssars, and
8 GB of memory. The timing of the simulation was calculated within the Matlab interfAde.
the operations were optimized for sparse matrix computation. Table 3 sumnthezesmerical
results. For both examples of text classification, we observed a spesthgpthe HIS algorithm
while attaining the same numerical accuracy, compared with the IP algorithmre@hkarization
parameter does affect the computational efficiency, as we have elsarthe previous section.

5. Conclusion

We have presented in this paper a computationally efficient algorithm fdy thegyularized logistic

regression, also called the sparse logistic regression. The sparsie lagjeession is a widely used
model for binary classification in supervised learning. Theegularization leads to sparsity in
the solution, making it a robust classifier for data whose dimensions aer lan the number of

4. Binary rcv1 data is available bitp://www.csie.ntu.edu.tw/ ~ cjlinflibsvmtools/datasets/binary.html#
rcvl.binary
5. Real-sim data is available latp://www.cs.umass.edu/ ~ mccallum/code-data.html
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Text Classification Application

(in second
rcvl real-sim
n=20242 n=72309
m= 47236 m= 20958
nonzero = 1498952 nonzero = 3709083
A Time(HIS) Time(IP) Time(HIS) Time(IP)

101 0.11 1.93 0.62 6.61
102 0.27 1.93 0.62 6.61
103 2.08 8.20 5.50 18.45
104 5.80 8.66 13.12 19.36

Table 3: lllustration of performance on text classification, where bothithersionsyand samples
mare large-scale. We compare the computational efficiency of the HISPaalddrithms.
In both cases, the solution accuracy is the same.

samples. Sparsity also provides an attractive avenue for feature selectaful for various data
mining tasks.

Solving the large-scale sparse logistic regression usually requireasx@e&omputational re-
sources, depending on the specific solver, memory and/or CPU time. Theripteint method is so
far the most efficient solver in the literature, but requires expensive meroosumption. We have
presented the HIS algorithm, which couples a fast shrinkage method &wieat but more accurate
interior point method. The iterative shrinkage algorithm has global cgevee with a Q-linear
rate. Various techniques such as line search and continuation strateggeat to accelerate the
computation. The shrinkage solver only involves the gradient descdrtharshrinkage operator,
both of which are first-order. Based solely on efficient memory opemtioich as matrix-vector
multiplication, the shrinkage solver serves as the first phase for the algorittinis reduces the
problem to a subspace whose dimension is smaller than the original problenHIShalgorithm
then transits into the second phase, using a more accurate interior point Séeerumerically
compare the HIS algorithm with other popular algorithms in the literature, usinghipeark data
from the UCI machine learning repository. We show that the HIS algorithmeigrnibst computa-
tionally efficient, while maintaining high accuracy. The HIS algorithm also scaéey well with
dimension of the problem, making it attractive for solving large-scale problems

There are several ways to extend the HIS algorithm. One is to extend mdhdyoary classifi-
cation, allowing for multiple classes (Krishnapuram and Hartemink, 2005).ofter is to further
improve the regularization path. When applying the HIS algorithm, one willllyserplore a range
of sparsity by constructing a regularization palh{x A1, ..., Amin). Usually the smaller tha,
the more expensive it is to employ the shrinkage algorithm. One can acceteatemputation
using the Bregman regularization, inspired by Yin et al. (2008). TheBaggiterative algorithm
essentially boosts the solution by solving a sequence of optimizations, resalérdjfferent regu-
larization path. Bregman has also been shown to improve solution quality indeerme of noise
(Burger et al., 2006; Shi and Osher, 2008; Osher et al., 2010). MMdiscuss such a regularization
path in a future paper.
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