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Abstract

The problem of characterizing learnability is the most basic question oftitatikarning theory. A fun-
damental and long-standing answer, at least for the case of siggbplassification and regression, is that
learnability is equivalent to uniform convergence of the empirical risk &épbpulation risk, and that if a
problem is learnable, it is learnable via empirical risk minimization. In thisspape consider the General
Learning Setting (introduced by Vapnik), which includes most statisticahieg problems as special cases.
We show that in this setting, there are non-trivial learning problems wieiferm convergence does not
hold, empirical risk minimization fails, and yet they are learnable usingreitie mechanisms. Instead of
uniform convergence, we identify stability as the key necessary afidisof condition for learnability. More-
over, we show that the conditions for learnability in the general settinggméisantly more complex than in
supervised classification and regression.

Keywords: statistical learning theory, learnability, uniform convergence, stabilitghststic convex opti-
mization

1. Introduction

We consider the General Setting of Learning introduced tpnika(1995) where we would like to minimize
a population risk functional (stochastic objective)

F(h) =Ez.p[f(h;Z)] 1)

over some hypothesis clags, where the distributiorD of Z is unknown, based on i.i.d. samg@g ..., zn
drawn fromD (and full knowledge off and#). This General Setting subsumes supervised classification
and regression, certain unsupervised learning probleemsity estimation and more. For example, in super-
vised learningz = (X,y) is an instance-label pain, is a predictor, and (h; (x,y)) = losgh(x),y) is the loss
functional. See Section 2 for formal definitions and furtbeamples.

In the context of this general setting, we are concernedtivétyuestion of statistical “learnability”. That
is, when can Equation (1) be minimized to within arbitrarggsion based only on a finite sample. . ., zy,
asm — o? We are not concerned here with computational aspects ©ptbblem, that is, whether this
approximate minimization can be carried out efficientlyt @aly whether it is statistically possible to do so
based only on the sampg, ..., zy.

(©2010 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro and Karthik Sridharan.



SHALEV-SHWARTZ, SHAMIR, SREBRO AND SRIDHARAN

For supervised classification and regression problemsweill known that a problem is learnable if and
only if the empirical risks

%(h)éif(h,m

for all h € # converge uniformly to the population risk (Blumer et al.329Alon et al., 1997). If uniform
convergence holds, then the empirical risk minimizer (ERdjonsistentthat is, the population risk of the
ERM converges to the optimal population risk, and the probie learnable using the ERM. We therefore
have:

e A necessary and sufficient condition for learnability, nmeniform convergence of the empirical
risks. Furthermore, this can be shown to be equivalent tonabamatorial condition: having finite
VC-dimension in the case of classification, and having fifateshattering dimensions in the case of
regression.

e A complete understanding dbwto learn: since learnability is equivalent to learnabibity ERM, we
can focus our attention solely on empirical risk minimizers

The situation, for supervised classification and regressian be depicted as follows:

# : Convergence with ERM *

Other than uniform convergence, certain notions of stgbilave also been suggested as an explicit
condition for learnability. Intuitively, stability notizs focus on particular algorithms, or learning rules, and
measure their sensitivity to perturbations in the trairset, In particular, it is known that stability of the
ERM is sufficientfor learnability. In Mukherjee et al. (2006), it is arguedtltstability is also anecessary
for learnability. However, that argument relied on the aggtion that uniform convergence is equivalent
to learnability. Therefore, stability was shown to chaeaize learnability only in situations where uniform
convergence characterizes learnability anyway.

The equivalence of uniform convergence and learnability fwemally established only in the supervised
classification and regression setting. In the more genettihg, the “rightward” implications in the diagram
above still hold: finite fat-shattering dimensions, unifoconvergence, as well as ERM stability, are indeed
sufficient conditions for learnability using the ERM. As fibre reverse implication, Vapnik showed that a
notion of “non-trivial” or “strict” learnability with the RM is indeed equivalent to uniform convergence of
the empirical risks. This notion was meant to exclude certtivial” learning problems, which are learn-
able without uniform convergence (see Section 3.1). Evesuah problems, learnability is still possible by
empirical risk minimization. Thus, it would seem that in tBeneral Learning Setting, as in supervised clas-
sification and regression, a problem is learnable if and tilys learnable by empirical risk minimization.

In this paper we show that the situation in the General LearSietting is actually much more complex.
In particular, in Section 4.1 we show an example of a learmraplem in the General Learning Setting,
which is learnable (using an online algorithm and an ontowatch conversion), but which ot learnable
using empirical risk minimization. To the best of our knodge this is the first example shown of this type.

Furthermore, in Section 4.2 we show a modified example wisiddarnable using empirical risk mini-
mization, but for which the empirical risks of the hypothegenot converge uniformly to their expectations,
not even locally for hypotheses very close to the true hygsith We argue that unlike the examples discussed
in Section 3.1, this example is far from being “trivial”. Weauthis example to discuss how Vapnik’s notion
of “strict” learnability with the ERM is too strict, and pricles cases which are far from trivial and in which
learnability with empirical risk minimization isot equivalent to uniform convergence.

Having shown that learnability does not imply learnabilitith the ERM, and learnability with the ERM
does not imply uniform convergence (unlike supervisedsifasition and regression), we proceed in Sec-
tion 5 to characterize learnability in the General Learriigdting, unveiling stability as a key notion.
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In particular, we show that for learnable problems, evenmthey are not learnable with ERM, they are
always learnable with some learning rule which is “asynipédty ERM” and (AERM - see precise definition
in Section 2). Moreover, such an AERM must be stable (undeiitalde notion of stability). Namely, we
have the following characterization of learnability in #Beneral Learning Setting:

Exists Stable Learnable
D | e [<n(Leanatie )

Note that this characterization holds even for learnald®lems with no uniform convergence. In this sense,
stability emerges as a strictly more powerful notion thaifiarm convergence for characterizing learnability.

Other than this, we also discuss several related resultghveibove all imply that the conditions for
learnability in the General Learning Setting are subsadlgtdifferent and more complex than in supervised
classification and regression.

Our results point not to a specific learning rule (such as aMERut rather to a class of learning rules
(AERM learning rules) as possible candidates for learningsection 6, we explore how our results can be
strengthened if we allow randomized learning rules. Inipaldr, randomization allows us to pinpoint not a
general class of learning rules, but rather a specific (thdughly impractical) learning rule, which learns if
and only if the problem is learnable.

Throughout most of the paper we discuss learning rates (@sctidn of the sample size), but do not pay
much attention to the confidence at which the learning ruteseds (i.e., the dependence of the sample size
on the allowed probability of failure). This issue is adde$ Section 7, and again we show that in the General
Learning Setting, things can behave rather differentlyptinasupervised classification and regression.

In summary, this paper opens a door to the complexity of kdality in the General Learning Setting,
and provides some understanding of the situation, inctublighlighting the important role of stability. Many
gaps in our understanding remain, and we hope that futuigrgss will close some of these gaps, as well as
connect the theoretical insights gained to machine legrasnused in practice.

This paper is partially based on the results obtained inésh@hwartz et al. (2009a) and Shalev-Shwartz
et al. (2009b).

2. The General Learning Setting: Formal Definition and Notatian

In this paper we focus on the General Learning Setting, wivighiintroduced by Vapnik (1995) as a unifying
framework for the problem of statistical learning from engal data.

The General Learning Setting deals wigtarning problems Formally, a learning problem is specified
by a hypothesis clas#/, an instance sef (with a sigma-algebra), and an objective function (e.gqss!' or
“cost”) f : H x Z — R. Throughout this paper we assume the function is boundedime £onstanB, that
is|f(h;z)| <Bforallhe H andze Z.

Given a distributionD on Z, the quality of each hypothedisc # is measured by itssk F(h), which is
defined a£,.p [f (h;2)]. While #, Z and f (h;z) are known to the learner, we assume tiikis unknown.
Ideally, we would like to pickh € H whose risk is as close as possible tg,inf F (h). Since the underlying
distribution D is unknown, we cannot do this directly, but instead need lfoawr a finite empiricatraining
sample S={zi,...,zm}. On this sample, we applylaarning ruleto pick a hypothesis . Formally, a learning
rule is a mappind\: Uy,_, Z™ — A from sequences of instancesinto hypotheses. We refer to sequences
S={z,...,zn} as “sample sets”, but it is important to remember that theoadd multiplicity of instances
may be significant. A learning rule that does not depend omtter of the instances in the training sample
is said to besymmetric We will generally consider sampl&-~ D™ of mi.i.d. draws fromD.

This framework is sufficiently general to include a largetjwor of the statistical learning and optimization
problems we are aware of, such as:
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e Binary Classification: Let Z = X x {0,1}, let # be a set of function$ : X — {0,1}, and let
f(h;(X,¥)) = Lnx)»yy- Here, f(-) is simply the 0-1 loss function, measuring whether the binary
hypothesid(-) misclassified the exampl&, y).

e Regression:Let Z = X x 9 whereX and? are bounded subsets Bf' andR respectively, letH
be a set of bounded functiohs X" — R, and letf (h; (x,y)) = (h(x) —y)?. Here,f(-) is simply the
squared loss function.

e Large Margin Classification in a Reproducing Kernel Hilbert Space (RKHS): Let Z = X x {0, 1},
where X is a bounded subset of an RKHS, &t be another bounded subset of the RKHS, and let
f(h; (x,y)) = max{0,1—y(x,h)}. Here,f(-) is the well known hinge loss function, and our goal is to
perform margin-based linear classification in the RKHS.

e K-Means Clustering in Euclidean Space:Let Z =R", let # be all subsets dR" of sizek, and let
f (h;z) = mingen ||c— Z||%. Here, eacth represents a set &fcentroids, and (-) measures the Euclidean
distance squared between an instanaed its nearest centroid, according to the hypothesis

e Density Estimation: Let Z be a subset dR", let # be a set of bounded probability densities@rand
let f(h;z) = —log(h(z)). Here,f(-) is simply the negative log-likelihood of an instareaccording
to the hypothesis density. Note that to ensure boundednessf ¢f), we need to assume thia{z) is
lower bounded by a positive constant foralf Z.

e Stochastic Convex Optimization in Hilbert Spaces:Let Z be an arbitrary measurable set, Kt
be a closed, convex and bounded subset of a Hilbert spacdetafth; z) be Lipschitz-continuous
and convex w.r.t. its first argument. Here, we want to appnately minimize the objective function
E,.p [f(h;2)], where the distribution oveL is unknown, based on an empirical sample ..., zy.

Our overall goal in this setting is to pick a hypothesis # with approximately minimal possible risk,
based on a finite sample. Generally, we expect the approximiatget better with the sample size. Learning
rules which allow us to choose such hypotheses are said tmhsistent Formally, we say a rulé is
consistent with ratecongd m) under distributior if for all m,

Es.pm[F(A(S) —F"] < gcondm), )

where we denot&* = inf,., F(h) (here and whenever talking about a “ratin), we require it to be

monotone decreasing withong m) e 0).

However, sinceD is unknown, we cannot choose a learning rule base@oinstead, we will ask for a
stronger requirement, namely that the rule is consistettit rites.ong{m) underall distributions? over Z.
This leads to the following central definition:

Definition 1 A learning problem isearnableif there exist a learning rulé and a monotonically decreasing
sequenceconsm), such thakcongd m) ™20, and

VD, Es.pm[F(A(S)) —F*] < &condM).
A learning ruleA for which this holds is denoted asuaiversally consisteriearning rule.

This definition of learnability, requiring a uniform raterfall distributions, is the relevant notion for
studying learnability of a hypothesis class. It is a diresteralization of agnostic PAC-learnability (Kearns
et al., 1992) to Vapnik”s General Setting of Learning asigtithy Haussler (1992) and others.

A possible approach to learning is to minimize #rapirical risk Fs(h) over a sampl&, defined as

Fg(h):;Zf(h;z).
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Z,2 Instance domain and a specific instance.
H,h Hypothesis class and a specific hypothesis.
f(h,z) Loss of hypothesis on instancer

B sup,, [f(;2)]

D Underlying distribution on instance domain

S Empirical samples, .. ., zy,, sampled i.i.d. fronD
m Size of empirical sampl&

A(S Learning ruleA applied on empirical samplg
€cond M) Rate of consistency for a learning rule
F(h) Risk of hypothesi$, E,.p [f(h;Z)]

F* infpcq F (D)

Fs(h) Empirical risk of hypothesif on samples, %Zzes f(h;z)
hs An ERM hypothesisFs(hs) = inf,. 4 Fs(h)
€erm(M) Rate of AERM for a learning rule

Establd M) Rate of stability for a learning rule
E€gen(M) Rate of generalization for a learning rule

Table 1: Table of Notation

We say that a rulé is anERM (Empirical Risk Minimizerif it minimizes the empirical risk

Fs(A(S)) = Fs(hs) = h'g:[ Fs(h).

where we usé&s(hs) = infy,., Fs(h) to refer to the minimal empirical risk. But since there migktseveral
hypotheses minimizing the empirical ridks does not refer to a specific hypotheses and there might be many
rules which are all ERM.

We say that a rulé is anAERM (Asymptotic Empirical Risk Minimizesjth rategem(m) under distri-
bution D if:

Es.pm [Fs(A(S)) — Fs(hs)] < €erm(m)

A learning rule isuniversally an AERMwith rate €e;m(m), if it is an AERM with rategqym(m) under all
distributions? over Z. A learning rule is aralways AERMwith rategerm(m), if for any sampleS of sizem,
it holds thatFs(A(S)) — Fg(ﬁg) < €erm(mM).

We say a rule generalizesvith rateggen(m) under distributionD if for all m,

Es.om[[F(A(S)) = Fs(A(9))]] < ggen(m).

A rule universally generalizewith rateggen(m) if it generalizes with rategen(m) under all distributiongD
over Z.

We note that other authors sometimes define “consistenti’{taus also “learnable” as a combination of
our notions of “consistent” and “generalizing”.

In the above definitions, we choose to use convergence irctatm, and defined the rates as rates on
the expectation. Since the objecti’és bounded, convergence in expectation is equivalent teargence in
probability. Furthermore, using Markov’s inequality wendeanslate a rate of the forfd[|X|] < g(m) to a
“low confidence” guarante®[|X| > g(m) /9] < &. See Section 7 for a further discussion on this issue.

3. Background: Characterization of Learnability
Before presenting our results, we begin with a review of th@¥n connections between learnability, stability,

and uniform convergence, highlighting the issues whichlvélof importance later on.
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3.1 Learnability and Uniform Convergence

As discussed in the introduction, a central notion for cbimézing learnability is uniform convergence.
Formally, we say that uniform convergence holds for a leayproblem, if the empirical risks of hypotheses
in the hypothesis class converges to their population nistormly, with a distribution-independent rate:

supEs_gm | sup|F(h) —Fs(h)|| =5 0.
D heH

It is straightforward to show that if uniform convergencddsy then a problem can be learned with the ERM
learning rule.

For binary classification problems (wheZe= X x {0, 1}, each hypothesis is a mapping frofito {0, 1},
and f(h; (x,y)) = Lnx)4y), Vapnik and Chervonenkis (1971) showed that the finitenésssimple com-
binatorial measure known as the VC-dimension implies unifoonvergence. Furthermore, it can be shown
that binary classification problems with infinite VC-dimarsare not learnable in a distribution-independent
sense. This establishes the condition of having finite i@edlision, and thus also uniform convergence, as a
necessary and sufficient condition for learnability.

Such a characterization can also be extended to regressicim,as regression with squared loss, where
h is now a real-valued function, anidh; (x,y)) = (h(x) —y)?. The property of having finite fat-shattering
dimension at all finite scales now replaces the property wihigefinite VC-dimension, but the basic equiva-
lence still holds: a problem is learnable if and only if umifoconvergence holds (Alon et al., 1997, see also
Anthony and Bartlet, 1999, Chapter 19). These results arallysbased on clever reductions to binary clas-
sification. However, the General Learning Setting that wes@ter is much more general than classification
and regression, and includes setting where a reductiomsobclassification is impossible.

To justify the necessity of uniform convergence even in tiea&al Learning Setting, Vapnik attempted
to show that in this setting, learnability with the ERM leign rule is equivalent to uniform convergence
(Vapnik, 1998). Vapnik noted that this result does not hdleg to “trivial” situations. In particular, consider
the case where we take an arbitrary learning problem (withothesis clas#/), and add to# a single
hypothesish such thatf (h,z) < infoeq T(h,2) for all z e Z (see figure 1 below). This learning problem
is now trivially learnable, with the ERM learning rule whietiways picksh. Note that no assumptions
whatsoever are made di - in particular, it can be arbitrarily complex, with no unifo convergence or any
other particular property. Note also that such a phenomanoot possible in the binary classification setting,
where f(h; (X,y)) = L4y, Since on any(x,y) we will have hypotheses wittfi(h; (x,y)) = f(h;(x,y))
and thus if# is very complex (has infinite VC dimension) then on everyrireg set there will be many
hypotheses with zero empirical error.

To exclude such “trivial” cases, Vapnik introduced a stmngotion of consistency, termed as “strict
consistency”, which in our notation is defined as

nf Fs(h) ™% inf F(h),

Ve e R, i
h:F(h)>c h:F(h)>c

where the convergence is in probability. The intuition iatttve require the empirical risk of the ERM to
converge to the lowest possible risk, even after discardlhthe “good” hypotheses whose risk is smaller
than some threshold. Vapnik then showed that such strictistemcy of the ERM is in fact equivalent to
(one-sided) uniform convergence, of the form

sup(F (h) - Fs(h)) ™% 0
heH
in probability. Note that this equivalence holds for eveistiibution separately, and does not rely on universal
consistency of the ERM.
These results seem to imply that up to “trivial” situatioagyniform convergence property indeed char-
acterizes learnability, at least using the ERM learning.rtdowever, as we will see later on, the situation is
in fact not that simple.
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f(h;z)

Figure 1: An example of a “trivial” learning situation. Ealiie represents sontec #, and shows the value
of f(h,z) for all ze z. The hypothesi§ dominates any other hypothesis (ef(h;z) < f(h;2)
uniformly for all z), and thus the problem is learnable without uniform coneaag or any other
property of# .

3.2 Learnability and Stability

Instead of focusing on the hypothesis class, and ensuriifgronconvergence of the empirical risks of
hypothesis in this class, an alternative approach is tetjreontrol the variance of the learning rule. Here, it
is not the complexity of the hypothesis class which mattausrather the way that the learning rule explores
this hypothesis class. This alternative approach leadsetastion of stability in learning. It is important to
note that stability is a property of a learning rule, not af tiypothesis class.

In the context of modern learning thedrghe use of stability can be traced back at least to the work
of Rogers and Wagner (1978), which noted that the sengifitn learning algorithm with regard to small
changes in the sample controls the variance of the leavesonestimate. The authors used this observation
to obtain generalization bounds (w.r.t. the leave-oneestimate) for thek-nearest neighbor algorithm. It
is interesting to note that a uniform convergence approachrialyzing this algorithm simply cannot work,
because the “hypothesis class” in this case has unboundeglexty. These results were later extended
to other “local” learning algorithms (see Devroye et al.98%nd references therein). In addition, practi-
cal methods have been developed to introduce stabilityl@gming algorithms, in particular the Bagging
technique introduced by Breiman (1996).

Over the last decade, stability was studied as a generidtammébr learnability. Kearns and Ron (1999)
showed that an algorithm operating on a hypothesis clagsfimite VC dimension is also stable (under a
certain definition of stability). Bousquet and Elisseefd@2) introduced a strong notion of stability (denoted
asuniform stability and showed that it is a sufficient condition for learnagilgatisfied by popular learning
algorithms such as regularized linear classifiers and segrs in Hilbert spaces (including several variants
of SVM). Kutin and Niyogi (2002) introduced several weakarignts of stability, and showed how they are
sufficient to obtain generalization bounds for algorithitabke in their sense.

The papers above mainly considered stability asufficientcondition for learnability. A more recent
line of work (Rakhlin et al., 2005; Mukherjee et al., 2006)died stability as anecessarycondition for
learnability. However, the line of argument is specific tttings where uniform convergence holds and is

1. In a more general mathematical context, stability has bemmadrfor much longer. The necessity of stability for so-chlleverse
problems to be well posed was first recognized by Hadamard {1902 idea of regularization (that is, introducing stabilnto
ill-posed inverse problems) became widely known through tbeksvof Tikhonov (1943) and Phillips (1962). We return to the
notion of regularization later on.
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necessary for learning. With this assumption, it is posgibishow that the ERM algorithm is stable, and thus
stability is also a necessary condition for learning. Hosveas we will see later on in our paper, uniform
convergence is in fact not necessary for learning in the ¢hearning Setting, and stability plays there a
key role which has nothing to do with uniform convergence.

Finally, it is important to note that the results cited abowake use of many different definitions of
stability, which unfortunately are not always comparab¥l. of them measure stability as the amount of
change in the algorithm’s output as a function of small clesntp the sample on which the algorithm is
run. However, “amount of change to the output” and “smallnges to the sample” can be defined in many
different ways. “Amount of change to the output” can meanngeain risk, change in loss with respect
to particular examples, or supremum of change in loss ovaxamples. “Small changes to the sample”
usually mean either deleting one example or replacing t aitother one (and even here, one can talk about
removing/replacing one instance at random, or in somerargitnanner). Finally, this measure of change
can be measured with respect to any arbitrary sample, irceedpen over samples drawn from the underlying
distribution; or in high probability over samples. For fugt discussion of this issue, see Appendix A.

4. Gaps Between Learnability, Uniform Convergence and ERM

In this section, we study a special case of the General Legu®etting, where there is a real gap between
learnability and uniform convergence, in the sense thatketlage non-trivial problems where no uniform
convergence holds (not even in a local sense), but theyilileatnable. Moreover, some of these problems
are learnable with an ERM (again, without any uniform cogeece), and some are not learnable with an
ERM, but rather with a different mechanism. We also discusg thiis peculiar behavior does not formally
contradict Vapnik’s results on the equivalence of strictsistency of the ERM and uniform convergence,
as well as the important role that regularization seemsdg pere, but in a different way than in standard
theory.

4.1 Learnability without Uniform Convergence : StochasticConvex Optimization

A stochastic convex optimization problem is a special cdiskeoGeneral Learning Setting discussed above,
with the added constraints that the objective functfdh;z) is Lipschitz-continuous and convex mfor
everyz, and that# is closed, convex and bounded. We will focus here on problehese# is a subset of

a Hilbert space. A special case is the familiar linear ptéaficsetting, where = (x,y) is an instance-label
pair, each hypothesis belongs to a subset/ of a Hilbert space, and(h;x,y) = £({(h,@(x)),y) for some
feature mapping and a loss functioi: R x 9 — R, which is convex w.r.t. its first argument.

The situation in which the stochastic dependencéd am linear, as in the preceding example, is fairly
well understood. When the domat and the mapping are bounded, we have uniform convergence, in the
sense thatF (h) — Fs(h)| is uniformly bounded over alh € # (see Sridharan et al., 2008). This uniform
convergence ofs(h) to F (h) justifies choosing the empirical minimizig = argmin, Fs(h), and guarantees
that the expected value Bf(hs) converges to the optimal vallie’ = inf, F (h).

Even if the dependence dnis not linear, it is still possible to establish uniform cengence (using
covering number arguments) provided tiatis finite dimensional. Unfortunately, when we turn to infinit
dimensional hypothesis spaces, uniform convergence migttold and the problem might not be learnable
with empirical minimization. Surprisingly, it turns outdhthis does not imply that the problem is unlearnable.
We will show that using a regularization mechanism, it isgilole to devise a learning algorithm for any
stochastic convex optimization problem, even when unifoomvergence does not hold. This mechanism is
fundamentally related to the idea of stability, and will bgoed starting point for our more general treatment
of stability and learnability in the next section of the pape

We now turn to discuss our first concrete example. Consigecdinvex stochastic optimization problem
given by

fE (i (x,) = [lax(h—x)| = \/Zaz[i](h[i]—x[i})z, @)
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where for now we letf to be thed-dimensional unit spher® = {h € RY: |h|| < 1}, we letz = (x,a) with

a € [0,1]9 andx € #, and we defineix v to be an element-wise product. We will first consider a seqe@f
problems, wherd = 2™ for any sample sizen, and establish that we cannot expect a convergence raté whic
is independent of the dimensionalily We then formalize this example in infinite dimensions.

One can think of the problem in Equation (3) as that of findimg ‘tcenter” of an unknown distribution
overx € RY, where we also have stochastic per-coordinate “confidenisuresi[i]. We will actually
focus on the case where some coordinates are missing, némagdyi] = O.

Consider the following distribution ovék, a): x = 0 with probability one, and is uniform over{0,1}¢.
That is,a[i] are i.i.d. uniform Bernoulli. For a random samyjia, 01),..., (Xm,0m) if d > 2™ then we have
that with probability greater than4e! > 0.63, there exists a coordinajes 1...d such that all confidence
vectorsa; in the sample are zero on the coordintehat isa;[j] = 0 for alli = 1.m. Lete; € # be the
standard basis vector corresponding to this coordinatenTh

R = 3 (e -0l = 3 ailill = 0

whereF{? (-) denotes the empirical risk w.r.t. the functiéf?)(-). On the other hand, letting(® () denote
the actual risk w.r.tf®)(.), we have

FO(e) = Exa [[|ax(ej—0)|]] = Exallali]]] = 1/2.

Therefore, for anyn, we can construct a convex Lipschitz-continuous objedtivee high enough dimension
such that with probability at least&B over the sample, SH[#IFB)(h) - FS(3)(h)‘ > 1/2. Furthermore, since

f(-;-) is non-negative, we have thgtis an empirical minimizer, but its expected vale€) (ej) = 1/2 is far
from the optimal expected value mif ® (h) = F(3(0) = 0.

To formalize the example in a sample-size independent \aig. A to be the unit sphere of an infinite-
dimensional Hilbert space with orthonormal basisey, ..., where forv € #, we refer to its coordinates
v[j] = <v, ej> w.r.t this basis. The confidencesare now a mapping of each coordinatd@gl]. That is, an
infinite sequence of reals ii0,1]. The element-wise product operatiar v is defined with respect to this
basis and the objective functidit® (-) of Equation (3) is well defined in this infinite-dimensionpbse.

We again take a distribution over= (x,a) wherex = 0 anda is an infinite i.i.d. sequence of uniform
Bernoulli random variables (that is, a Bernoulli procesgweiacha; uniform over{0,1} and independent of
all otheraj). Now, for any finite sample there is almost surely a cooriavith o;[j] = O for alli, and so
we a.s. have an empirical minimize¢” (e) = 0 with F 3 (gj) = 1/2 > 0= F3(0).

As aresult, we see that the empirical valﬁé@(h) do not converge uniformly to their expectations, and
empirical minimization is not guaranteed to solve the peahl Moreover, it is possible to construct a sharper
counterexample, in which theniqueempirical minimizerhs is far from having optimal expected value. To
do so, we augmerit®(-) by a small term which ensures its empirical minimizer is ueigand far from the
origin. Consider:

@ (h; (x,0)) = f@(h; (x,) +& 5 27 (hfi]-1)? (4)
I

wheree = 0.01. The objective is still convex ar{d + €)-Lipschitz. Furthermore, since the additional term is
strictly convex, we have th&t® (h; z) is strictly convex w.r.th and so the empirical minimizer is unique.
Consider the same distribution over x = 0 while a|i] are i.i.d. uniform zero or one. The empirical

minimizer is the minimizer oFS(f‘)(h) subject to the constraintth|| < 1. Identifying the solution to this
constrained optimization problem is tricky, but fortungtaot necessary. It is enough to show that the
optimum of theunconstrainedptimization problenh,. = arg minFS(f‘)(h) (without constrainindy € #) has
norm ||h{c|| > 1. Notice that in the unconstrained problem, whenexéj] = O for all i = 1..n, only the
second term of () depends om[j] and we havér.[j] = 1. Since this happens a.s. for some coordifjate
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we can conclude that the solution to the constrained opditio problem lies on the boundary #f, that is
||hs|| = 1. But for such a solution we have

\/W > Eq [Zamﬁ%m] = ¥ RglilE fofi]) = 5 [fs]* = 5
whileF* <F(0)=¢

I
In conclusion, no matter how big the sample size is, the wn&mpirical minimizehs of the stochastic
convex optimization problem in Equation (4) is a.s. muchsedahan the population optimura(hg) > % >
€ > F*, and certainly does not converge to it.

F® hs > Eq

4.2 Learnability via Stability

At this point, we have seen an example in the stochastic oogémization framework where uniform
convergence does not hold, and the ERM algorithm fails. i&ingly, we will now show that such problems
are in fact learnable using an alternative mechanism whashnlothing to do with uniform convergence.

Given a stochastic convex optimization problem with an ofdje functionf (h; z), consider aegularized
version of it: instead of minimizing the expected riBK|f (h;z)] overh € #, we will try to minimize

LGOS

for someA > 0. Notice that this is simply a stochastic convex optimmatproblem w.r.t. the objective
function f (h; z) + % ||h||2. We will show that this regularized probleislearnable using the ERM algorithm
(namely, by attempting to minimiz# yif(hz)+ % ||h||2), by showing that the ERM algorithm sable By
takingA — 0 at an appropriate rate as the sample size increases, wklar® solve the original stochastic
problem optimization problem, w.r.f.(h; z).

The key characteristic of the regularized objective fuorttive need is that it ia-strongly convex For-
mally, we say that a real functiag(-) over a domair?{ in a Hilbert space i&-strongly convex (wherg > 0),
if the functiong(-) — %|| -||? is convex. In this case, it is easy to verify thahifminimizesg then

wh', g(h') —g(h) > 3[I" —h|?.

WhenA = 0, strong convexity corresponds to standard convexity. driqular, it is immediate from the
definition thatf (h; z) + % |[h||? is A-strongly convex w.r.th (assumingf (h;z) is convex).
The arguments above are formalized in the following two taets:

Theorem 2 Consider a stochastic convex optimization problem such tfla; z) is A-strongly convex and
L-Lipschitz with respect th € #. Letz;,...,zy be an i.i.d. sample and léts be the empirical minimizer.
Then, with probability at least — & over the sample we have

. 412
_F* < — .
Fhs) —F" < 3Am

Theorem 3 Let f: H x Z — R be such thatH is bounded by B and(h, z) is convex and L-Lipschitz with
respect th. Letz,...,zym be ani.i.d. sample and lét, be the minimizer of

m
hy=min{ 1S f(h,z)+2(n|? 5
A he{}[<mizl(7z.)+2|| II> (5)

Then, with probability at least — & we have
R /L2B2 8
F(hy)—F* < 4 1+ —
() - om ( +6m)
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Proof [Proof of Theorem 2] To prove the theorem, we use a stabitijyment. Denote

F(')(h):1<f(h,2|/)+ f(h,Z))
== PRAE

the empirical average with replaced by an independently and identically drayrand consider its mini-
mizer: 0 0
he) = argminFs’ (h).
s Qhe s (h)
We first use strong convexity and Lipschitz-continuity ttaddish that empirical minimization is stable in the
following sense:

Vzez, ‘f(ﬁs,z)—f(ﬁg,z)‘g“—'-z. (6)

Am

We have that

()

where the firstinequality follows from the fact ttﬁg) is the minimizer oFS(i) (h) and for the second inequal-
ity we use Lipschitz continuity. But from strong convexityfs(h) and the fact thalhs minimizesks(h) we
also have that

Fs(hY) > Fs(hs) +3 HF@ - ﬁsH2~ (8)

Combining Equation (8) with Equation (7) we g#ﬁ(s') — ﬁSH < 4L/(Am) and combining this with Lipschitz
continuity of f we obtain that Equation (6) holds. Later on in this paper, hv@asthat a stable ERM is
sufficient for learnability. More formally, Equation (6) pties that the ERM is uniform-RO stability (Defini-
tion 4) with rategsiapid M) = 4L2/()\m) and therefore Theorem 8 implies that the ERM is consistetht rate
< Estapid M), Nnamely

Eg.pm [F(hs) — F*] < % .

Since the random variable in the expectation is non-negiatie theorem follows by Markov’s inequalii

We now turn to the proof of Theorem 3.
Proof [Proof of Theorem 3] Let (h;z) = 4||h||2+ f(h;2) and letR(h) = E;[r(h,2)]. Note thath, is the
empirical minimizer for the stochastic optimization pretvl defined by (h; z).

We apply Theorem 2 to(h; z), to this end note that sinckis L-Lipschitz andvh € #, ||h|| < B we see
thatr is in factL + AB-Lipschitz. Applying Theorem 2, we see that

4(L+AB)?

3[R ][*+F (a) = Rf) <infR(h) + == —
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Now note that infR(h) < inf, F (h) + 3B2 = F* + 4B2, and so we get that

~ . A, AL+AB)?
< — - 7
FmU_F+QB+— m
A 8L2 8AB?

<F*4+ B+ _—
=E St eam T am

Plugging in the value ok given in the theorem statement we see that

A L2B2 32 /L2B?
SF 44— + oo —
F(hy) <F*+4 5m +6m 5m

This gives us the required bound. |

From the above theorem, we see that regularization is éalkémnt convex stochastic optimization. It
is important to note that even for the strongly convex optation problem in Theorem 2, where the ERM
algorithm does work, it is not due to uniform convergence.s&e this, consider augmenting the objective
function f®)(.) from Equation (3) with a strongly convex term:

f@MKWZﬂ%mnm+%mW. €)

The modified objectivef %) (-;-) is A-strongly convex and1+ A)-Lipschitz over# = {h:|h| < 1} and
thus satisfies the conditions of Theorem 2. Now, consides#nee distribution ovez= (x,a) used earlier:
x =0 anda is an i.i.d. sequence of uniform zero/one Bernoulli vagablRecall that almost surely we have
a coordinatej that is never “observed”, namely such thédii[j] = 0. Consider a vectdre; of magnitude

0 <t < 1in the direction of this coordinate. We have tlﬁé?) (te) = %tz (wherer(g)(-) is the empirical
risk w.r.t. £9(.)) but FO(tej) = 3t + 3t Hence, lettingm(¥(-) denote the risk w.r.t.f(-), we have

thatF (9 (tej) — F{” (te;) = t/2. In particular, we can set= 1 and establish syp,,(F(© (h) —F{% (h)) > 1
regardless of the sample size.

We see then that the empirical avera&é@(h) do not converge uniformly to their expectations. More-
over, the example above shows that there is no uniform cgamee even in a local sense, namely over all
hypotheses whose risk is close enougk toor those close enough to the minimizerfé?>(h;x, a).

Finally, we note that the learning algorithm we have diseddsere is mainly for pedagogical reasons. A
different generic algorithm for stochastic convex optiatian is already known in the literature, by combining
Zinkevich’s algorithm (Zinkevich, 2003) for online conveptimization, with an online-to-batch conversion
(e.g., Cesa-Bianchi et al., 2004). While different than dgodathm, Shalev-Shwartz (2007) showed that
Zinkevich’s online learning algorithm can be viewed as agpnate coordinate ascent optimization of the
dual of the regularized problem Equation (5). Thus, thisathm still uses the same mechanisms of regular-
ization and stability. Also, we note that the algorithm asgjoys bounds which depend only logarithmically
on 1/9, while the bounds we have obtained above depend linearly/dn However, we suspect that the
dependence od in Theorem 2 can be improved to Igdg'd). For instance, such bounds has been obtained
whenever the objective function is a generalized lineaction of h (Sridharan et al., 2008).

4.3 How to Interpret Regularization: Uniform Convergence \s Stability

The technique of regularizing the objective function by iagda “bias” term is old and well known. In
particular, adding|h||? is the so-called Tikhonov Regularization technique, wtiak been known for more
than half a century (see Tikhonov, 1943). However, the roleegularization in our case is very different
than in familiar settings such ds regularization in SVMs ané; regularization in LASSO. In those settings
regularization serves to constrain our domain to a low-derity domain (e.g., low-norm predictors), where
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we rely on uniform convergence. In fact, almost all learrgngrantees that we are aware of can be expressed
in terms of some sort of uniform convergence.

In our case, constraining the norm lofdoesnot ensure uniform convergence. Consider the example
(3 (.) we have seen earlier. Even over a restricted dortigin= {h: ||h|| <r}, for arbitrarily smallr >
0, the empirical averagdss(h) do not uniformly converge td=(h). Furthermore, consider replacing the
regularization term ||h||* with a constraint on the norm d¢h||, namely, solving the problem

h, argumlgr: Fs(h)
We cannot solve the stochastic optimization problem byirgett in a distribution-independent way (i.e.,
without knowing the solution...). To see this, note that wie= 0 a.s. we must have — 0 to ensure
F(h;) — F*. However, ifx = e a.s., we must set— 1. No constraint will work for all distributions over
Z = (X,a)! This sharply contrasts with traditional uses of regulatian, where learning guarantees are
typically stated in terms of a constraint on the norm rathantin terms of a parameter such\asnd adding
a regularization term of the fOI’r%] ||h||? is viewed as a proxy for bounding the nofiin]|.

4.4 Contradiction to Vapnik?

In Section 3.1, we discussed how Vapnik showed that unifemnvergence is in fact necessary for learnability
with the ERM. At first glance, this might seem confusing irhligf the examples presented above, where we
have problems learnable with the ERM without uniform cogeeice whatsoever.

The solution for this apparent paradox is that our examplkesat “strictly consistent” in Vapnik’s sense.
Recall that in order to exclude “trivial” cases, Vapnik defirstrict consistency of empirical minimization as
(in our notation):

YceR, inf h)— inf F(h), 10

h:F(h)chS( ) h:F(h)>c ( ) ( )
where the convergence is in probability. This conditioneied ensures thzﬁ(ﬁs) Ry Vapnik’s Key
Theorem on Learning Theory (Vapnik, 1998, Theorem 3.1) #tates thastrict consistency of empirical
minimization is equivalent to one-sidedniform convergence. In the example presented above, boeglh
Theorem 2 establishds® (hs) 2 F*, the consistency isn’t “strict” by the definition above. Teeshis, for
anyc > 0, consider the vectde; (whereVa;[j] = 0) with t = 2c. We haveF ) (tej) = 1t + 3t2 > ¢ but
Fi% (tej) = 3t2 = 2\c2 Focusing o = 1 we get:

inf  F¥(h) <
can s (W<

almost surely for any sample siee violating the strict consistency requirement Equatid®)(1

We emphasize that stochastic convex optimization is famfftivial” in that there is no dominating
hypothesis that will always be selected. Although for coneece of analysis we took= 0, one should think
of situations in whickx is stochastic with an unknown distribution. This shows thdform convergence is a
sufficient, but not at all necessary, condition for consisyeof empirical minimization in non-trivial settings.

5. Learnability in the General Learning Setting: the role of Stability

In the previous section, we have shown that in the Generainireg Setting, it is possible for problems
to be learnable without uniform convergence, in sharp esttio previously considered settings. The key
underlying mechanism which allowed us to learn is stabilitythis section, we study the connection between
learnability and stability in greater depth, and show thab#ity can in factcharacterizdearnability. Also,
we will see how various “common knowledge facts”, which weally take for granted and are based on a

2. “One-sided” meaning requiring only siip(h) — Fs(h)) — 0, rather then sujf (h) — Fs(h)| — 0.
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“uniform convergence equivalent to learnability” assuimpt do not hold in the General Learning Setting,
and things can be much more delicate.

We will refer to settings where learnability is equivalemtiniform convergence as “supervised classifica-
tion” settings. While supervised classification does nobemgass all settings where this equivalence holds,
most equivalence results refer to it either explicitly opimitly (by reduction to a classification problem).

5.1 Stability : Definitions

We start by giving the exact definition of the stability notsathat we will use. As discussed earlier, there are
many possible stability measures, some of which can be wselotain results of a similar flavor to the ones
below. The definition we use seems to be the most convenietitd@oal of characterizing learnability in the
General Learning Setting. In Appendix A, we provide a fewstrating examples to the subtle differences
that can arise from slight variations in the stability measu

Our two stability notions are based on replacing one of thmitng sample instances. For a samplef
sizem, letS") = {z;,...,2 1,7,z 1, ...,zm} be a sample obtained by replacing tkl observation oS with
some different instancg. When not discussed explicitly, the nature of hzjvis obtained should be obvious
from context.

Definition 4 A rule A is uniform-RO stable3 with rate stapid M), if for all possible 4) and anyZ € z,
1m ;
m 2 |FAS"):2) ~ F(AS:2)] < esianidm)

Definition 5 A rule A is average-RO stablewith rate €siapid M) under distributiongD if

< Establd M).

rln-iESN”’""<ziv-~-vZ’rn>~@m [fAE)z) - (A7)

Note that this definition corresponds to assuming that tipeebed empirical risk of the learning rule con-
verges to the expected risk - see Lemma 11.

We say that a rule isniversallystable with rat&siapi M), if the stability property holds with rag&apid m)
for all distributions.

Claim 6 Uniform-RO stability with rat&siapid m) implies average-RO stability with raggiapid m).

5.2 Characterizing Learnability : Main Results

Our overall goal is to characterize learnable problems @lgmroblems for which there exists a universally
consistent learning rule, as in Equation (2)). That meamnkrfqnsome condition which is botiecessarand
sufficientfor learnability. In the uniform convergence setting, siacbondition is the stability of the ERM
(under any of several possible stability measures, inotbth variants of RO-stability defined above). This
is still sufficient for learnability in the General Learnitggtting, but far from being necessary, as we have
seen in Section 4.

The most important result in this section is a condition whinecessary and sufficient for learnability
in the General Learning Setting:

Theorem 7 A learning problem is learnable if and only if there exists mifarm-RO stable, universally
AERM learning rule.
In particular, if there exists @cong m)-universally consistent rule, then there exists a rule thagapid m)-
uniform-RO stable and universaltyg,m(m)-AERM where:
€erm(M) = 35c0ns(m1/4) + 87% )

Establd M) = % .

3. RO is short for “replace-one”.
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In the opposite direction, if a learning rule &apid M)-uniform-RO stable and universalbgym(m)-
AERM, then it is universally consistent with rate

€cond M) < Estabid M) + Eerm(M)

Thus, while we have seen in Section 4 that the ERM rule mighfdalearning problems which are in
fact learnable, there is always an AERM rule which will worka other words, when designing learning
rules, we might need to look beyond empirical risk minimiaat but not beyond AERM learning rules. On
the downside, we must choose our AERM carefully, since ngtABERM will work. This contrasts with
supervised classification, where any AERM will work if theplem is learnable at all.

How do we go about proving this assertion? The easier panoiwisg sufficiency. Namely, that a stable
AERM must be consistent (and generalizing). In fact, thislhboth separately for any particular distribution
Ds, and uniformly over all distributions:

Theorem 8 If a rule is an AERM with rateem(m) and average-RO stable (or uniform-RO stable) with rate
€stabldM) under D, then it is consistent and generalizes undewith rates

€condM) < Estabid M) + Eerm(M)
€gen(M) < Establd M) + 2€erm(M) + %

The second part of Theorem 7 follows as a direct corollary. ndke that close variants of Theorem 8 has
already appeared in previous literature (e.g., Mukherjed €2006 and Rakhlin et al., 2005).

The harder part is showing that a uniform-RO stable AERMesessaryor learnability. This is done in
several steps.

First, we show that consistent AERMs have to be average-Bifdest

Theorem 9 For an AERM, the following are equivalent:
¢ Universal average-RO stability.
¢ Universal consistency.
¢ Universal generalization.

The exact conversion rate of Theorem 9 is specified in theespanding proof (Section 5.3), and are all
polynomial. In particular, aggonsuniversal consistert,,-AERM is average-RO stable with rate

Establd M) < Eerm(M) + 38c0ns(m1/4) + 47%

Next, we show that if we seek universally consistent and ggizéng learning rules, then we must con-
sider only AERMs:

Theorem 10 If a rule A is universally consistent with raongm) and generalizing with rategen(m), then
it is universally an AERM with rate

€erm(M) < €gen(M) + 33cons(m1/4) + %
Now, recall that learnability is defined as the existenceoais universally consistent learning rule. Such
a rule might not be generalizing, stable or even an AERM (samele 2 below). However, it turns out that if
a universally consistent learning rule exist, then theenistherlearning rule for the same problem, which is
generalizing (Lemma 20). Thus, by Theorems 9-10, this rulstralso be average-RO stable AERM. In fact,
by another application of Lemma 20, such an AERM must alsaifienm-RO stable, leading to Theorem 7.

5.3 Detailed Results and Proofs

We first establish that for AERMs, average-RO stability aedeagalization are equivalent.
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5.3.1 EQUIVALENCE OF STABILITY AND GENERALIZATION

It will be convenient to work with a weaker version of generatiion as an intermediate step: We say a rule
A on-average generalizesvith rategoag(m) under distribution? if for all m,

[Es.om [F(A(S) — Fs(A(9))]] < €oag(m). (11)
It is straightforward to see that generalization impliesasserage generalization with the same rate. We show

that for AERMs, the converse is also true, and also that @na@e generalization is equivalent to average-RO
stability. This establishes the equivalence between gdination and average-RO stability (for AERMS).

Lemma 11 (on-average generalizatiors average-RO stability) If A is on-average generalizing with rate
€o0ag(M) then it is average-RO stable with raggag(m). If A is average-RO stable with raggndm) then it
is on-average generalizing with raggiapid m).

Proof For anyi, z; andz are both drawn i.i.d. fronD, we have that

Es.on[f(A(S):2)] = Es.om o | F(A(S");2)].
Hence,
Esom [FS(A(S))] = Es..on [; 3 1(A(S; z»]

= . Eson[f(A(9:2)]

= D Eseam g [1AS"):A)|
Also note thaf (A(S)) = E,..p [f(A(S);Z)] = %ZﬂlEngD [f(A(S);Z)]. Hence we can conclude that

Esom [F(A(S) — Fs(A(S)] = ;;Ewm,<z&,...,zm~@m [F(AS:Z)— F(ASY):Z)

Hence we have the required result. |

For the next result, we will need the following two short ityilemmas.

Utility Lemma 12 For i.i.d. X, [X| < B and X= 5™, X we haveE X —E [X][] < B/,/m.

Proof E[[X —E[X]] < /E {|x —E[XHZ] < \/Var[X] = \/Var[X]/m < B/,/m. n

Utility Lemma 13 Let X,Y be random variables s.t. XY almost surely. Thel [|X|] < |E[X]| +2E[|Y]].

Proof
E[X[|=E[(Y=X)=Y[] <E[Y =X]+E[Y|] < [E[X][+ 2[E[Y]].
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Lemma 14 (AERM + on-average generalization=- generalization) If A is an AERM with rateerm(m)
and on-average generalizes with ratgg(m) under?, thenA generalizes with rateyag(m) 4 2€erm(m) + 27%

underD.

Proof Recall thatF* = inf,,., F(h). For an arbitrarily smalb > 0, leth, be a fixed hypothesis such that
F(hy) < F*+v. Using respective optimalities ok andF* we can bound:
Fs(A(S) —F(A(9)
A(9)) — Fs(hs) + Fs(hs) — Fs(hv) + Fs(hy) = F (hy) +F (hy) — F(A(S))
Fs(hs) + Fs(hy) = F () +v =Y,

Where the final equality defines a new random variabldBy Lemma 12 and the AERM guarantee we have
E[|Y|] < €erm(m) +B/+/m+v. From Lemma 13 we can conclude that

E[IFs(A(S)) ~F(A(9)]] < [E[Fs(A(S)) — F(A(S))]] + 2E % [] < €oag(m) + 2eerm(m) + & +v.

Notice that the I.h.s. is a fixed quantity which does not ddpmmv. Therefore, we can takein the r.h.s. to
zero, and the result follows. |

Combining Lemma 11 and Lemma 14, we have restablished the stability»generalization parts
of Theorem 8 and Theorem 9(in fact, even a slightly stronger converse than in Theoresdt does not
require universality).

5.3.2 A SUFFICIENT CONDITION FOR CONSISTENCY

It is fairly straightforward to see that generalization §pen on-average generalization) of an AERM implies
its consistency:

Lemma 15 (AERM+generalization=-consistency) If A is AERM with rateee,m(m) and it on-average gen-
eralizes with rateeqag(m) underD then it is consistent with rateag(m) + €erm(M) underD.

Proof For anyv > 0, leth, be a hypothesis such thath,) < F* +v. We have
E[F(A(S) —F]=E[F(A(S) —Fs(hy) +V]
A(S)) —Fs(A(9)
(

A(9) - Fs(A(9)
g(M) + Eerm(mM) 4-v.

E[F(
<E[F(
< €o0a

Since this upper bound holds for amywe can take to zero, and the result follows. |

Combined with the results of Lemma 11, this completespiteaf of Theorem 8 and the stability —
consistency and generalization— consistency parts of Theorem 9

5.3.3 GONVERSEDIRECTION

Lemma 11 already provides a converse result, establishatgtability is necessary for generalization. How-
ever, as it will turn out, in order to establish that stapilit also necessary famiversal consistengyve must
prove that universal consistency of an AERM impligsversalgeneralization. The assumptionwfiversal
consistency for the AERM is crucial here: mere consisterfggnocAERM with respect to a specific distri-
bution doesot imply generalization nor stability with respect to thattdisution. The following example
briefly illustrates this point.
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Example 1 There exists a learning problem and a distribution on thdanse space, such that the ERM
(or any AERM) is consistent with raong{m) = O, but does not generalize and is not average-RO stable
(namelyggen(M), EstaniedM) = Q(1)).

Proof Let the instance space i@ 1], the hypothesis space consist of all finite subsef®,df, and define
the objective function ag(h, z) = 1,4, ). Consider any continuous distribution on the instanceespamce
the underlying distributior® is continuous, we havié(h) = 1 for any hypothesih. Therefore, any learning
rule (including any AERM) will be consistent with(A(S)) = 1. On the other hand, the ERM here always
achieveng(ﬁs) =0, so any AERM cannot generalize, or even on-average-gareetay Lemma 14), hence
cannot be average-RO stable (by Lemma 11). |

The main tool we use to prove our desired converse resuleifottowing lemma. It is here that we cru-
cially use the universal consistency assumption (i.e sisbency with respect anydistribution). Intuitively,
it states that if a problem is learnable at all, then althotighERM rule might fail, its empirical risk is a
consistent estimator of the minimal achievable risk.

Lemma 16 (Main Converse Lemma) If a problem is learnable, namely there exists a universadiysistent
rule A with rategcond M), then under any distribution,

E[|Fs(hs) —F*|] <€emp(m)  where (12)

2
gemp(M) = 2econd M) + 22 + 2Bmi”

for any m such tha < m’ <m/2.
Proof Letl ={ly,...,ly} be arandom sample af indexes in the range Inwhere eacly is independently
uniformly distributed, and is independent o§. LetS = {z.i}i”ll, that is, a sample of size& drawn from

the uniform distribution over samples $(with replacements). We first bound the probability thags no
repeated indexes (“duplicates”):

m i 2
P[l has duplicatgs< w < m

<2 (13)

Conditioned on not having duplicateslinthe sampleS is actually distributed according O™, that is,
can be viewed as a sample from the original distribution. Néeefore have by universal consistency:

E[|F(A(S))—F*| | no dup$ < gcond M) (14)
But viewed as a sample drawn from the uniform distributioaraastances %, we also have:
Eg [|Fs(A(S)) — Fs(hs)|] < gcondm) (15)

Conditioned on having no duplications inthe set of those samples $not chosen by (i.e., S\ S) is
independent 08, and|S\ S| = m—n, and so by Lemma 12:

Es[[F(AS)) ~Fas(AS)|] < ~—— (16)

Finally, if there are no duplicates, then for any hypothesisl in particular foA(S) we have:

FS(A(S)) — Fsg(A(S))] < 2 @7

m

Combining Equation (14),Equation (15),Equation (16) agdd&ion (17), accounting for a maximal dis-
crepancy oB when we do have duplicates, and assumingr® < m/2, we get the desired bound. |
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Equipped with Lemma 16, we are now ready to show that uniVemasistency of an AERM implies
universal generalization and that any universally coasisand generalizing rule must be an AERM. What
we show is actually a bit stronger: that if a problem is ledteaand so Lemma 16 holds, then for any
distribution D separately, consistency of an AERM undBrimplies generalization undeb and also any
consistent and generalizing rule unde@must be an AERM.

Lemma 17 (learnable+AERM+consistent-generalizing) If Equation (12) in Lemma 16 holds with rate
€emp(M), and A is an germ-AERM andeconsconsistent unde, then it is generalizing undeD with rate
€emp(M) + Eerm(M) + Econd M).

Proof

E[|Fs(A(S)) — F(A(S))]] < E[|Fs(A(S)) — Fs(hs)|] + E[|F* = F(A(S))[] + E [|Fs(hs) — F*]
< €erm(M) + EcondM) + €emp(m) .

Lemma 18 (learnable+consistent+generalizingg AERM) If Equation (12) in Lemma 16 holds with rate
€emp(M), and A is gconscONsistent anctgergeneralizing underD, then it is AERM underD with rate

€emp(M) + Egen(M) + EcongM).
Proof
E [|Fs(A(S)) - Fs(hs)|] <E[|Fs(A(S)) — F(A(S)| + E[[F(A(S) - F*[| + E [|F* — Fs(hs)|]
< £gen(M) + Econd M) + Eemp(M) .

Lemma 17 establishes that universal consistency of an AERMiés universal generalization, and thus
completes the proof of Theorem 9Lemma 18 stablishes Theorem 10To get the rates in Section 5.2, we
usem’ = m/4in Lemma 16.

Lemma 15, Lemma 17 and Lemma 18 together establish an ititgreslationship:

Corollary 19 For a (universally) learnable problem, for any distributid> and learning ruleA, any two of
the following imply the third :

e A is an AERM undem.

e A is consistent undeD.

e A generalizes undeb.

Note, however, that any one property by itself is possiblenauniversally:

e In Section 4.1, we have discussed an example where the ERNIrlgaule is neither consistent nor
generalizing, despite the problem being learnable.

e In the next subsection (Example 2) we demonstrate a uniersansistent learning rule which is
neither generalizing nor an AERM.

e A rule returning a fixed hypothesis always generalizes, hutoarse need not be consistent nor an
AERM.
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In contrast, for learnable supervised classification gid, it is not possible for a learning rule to be just
universally consistent, without being an AERM and withoehgralization. Nor is it possible for a learning
rule to be a universal AERM for a learnable problem, withaeihlg generalizing and consistent.

Corollary 19 can also providecgertificateof non-learnability. In other words, for the problem in Exalm
1 we show a specific distribution for which there is a consisteERM that does not generalize. We can
conclude that there iso universally consistent learning rule for the problem, otfise the corollary is
violated.

5.3.4 EXISTENCE OF ASTABLE RULE

Theorem 9 and Theorem 10, which we just completed provimgady establish that for AERMs, universal
consistency is equivalent to universal average-RO stabikxistence of a universally average-RO stable
AERM is thus sufficient for learnability. In order to proveathit is also necessary, it is enough to show that
existence of a universally consistent learning rule ingpégistence of a universally consistent AERM. This
AERM must then be average-RO stable by Theorem 9.

We actually show how to transform a consistent rule to a cbeist and generalizing rule (Lemma 20
below). If this rule is universally consistent, then by Lem@8 we can then conclude it must be an AERM,
and by Lemma 11 it must be average-RO stable.

Lemma 20 For any ruleA there exists a rulé\’, such that:
e A’ universally generalizes with raté%.

e For any D, if A is gconsconsistent unde® thenA' is gcond | /M|) consistent unded.
e A’ is uniformly-RO-stable with rat%.

Proof For a sampl&of sizem, letS be a sub-sample consisting of solygm| observation ir. To simplify
the presentation, assume thgtm| is an integer. Defind’(S) = A(S). That is,A’ appliesA to only \/m of
the observation i

A’ generalizesWe can decompose:

FS(A(S)~F(A(S)) = Zr(Fs(A(S)) —=F(A(S))) + (1~ ) (Fs g (A(S)) — F(A(S)))
The first term can be bounded bB2,/m. As for the second terng\ S is statistically independent & and

SO we can use Lemma 12 to bound its expected magnitude taobtai

B

E[|FAS) -FAE)]] < B+ (1- F)72m< 2

- vm

A’ is consistentif A is consistent, then:

B [FA(S) - inf F(h)| =B [FAS) - inf F(8)] < scond )

A is uniformly-RO-stableSinceA’ only uses the firs{/m samples of, for anyi > /mwe haveA’(S)) =
A’(S) and so:

Proof of Converse in Theoremlffthere exists a universally consistent rule with raen{m), by Lemma 20

there existsA’ which is gcong/M)- universally consistentZ2.-generalizing andj%-uniformly—RO-stable.
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Further by Lemma 18 and Lemma 16 (witi = m/#), we can conclude tha' is gg;m-universally AERM

where,
8B

€erm(M) < 33con5(ml/4) + 7”
Hence we get the specified rate for the converse directiose&dhat if there exists a rule that is a universal
AERM and stable it is consistent, we simply use Lemma 15.

As a final note, the following example shows that while ledilitg is equivalent to the existence of stable
and consistent AERM'’s (Theorem 7 and Theorem 9), there nsilhexist other learning rules, which are
neither stable, nor generalize, nor AERM’s. In this sense,results characterize learnability, but do not
characterize all learning rules which “work”.

Example 2 There exists a learning problem with a universally consiskearning rule, which is not average-
RO stable, generalizing nor an AERM.

Proof Let the instance space @ 1]. Let the hypothesis space consist of all finite subsef6,df, and the
objective function be the indicator functidith,z) = L,.n,. Consider the following learning rule: given a
sampleS C [0,1], the learning rule checks if there are any two identicalanses in the sample. If so, the
learning rule returns the empty $ktOtherwise, it returns the sample.

Consider any continuous distribution ¢®1]. In that case, the probability of having two identical in-
stances is 0. Therefore, the learning rule always returmsiatable non-empty sét(S), with Fs(A(S)) = 1,
while Fs(0) = 0 (so it is not an AERM) andF (A(S)) = 0 (so it does not generalize). Alsb(A(S),z) =1
while f(A(SV),z) = 0 with probability 1, so it is not average-RO stable either.

However, the learning rule is universally consistent. & tmderlying distribution is continuous ¢ 1],
then the returned hypothesis3swhich is countable hencé(S) = 0= inf, F (h). For discrete distributions,
let M; denote the proportion of instances in the sample which appestly once, and lé¥ly be the proba-
bility mass of instances which did not appear in the sampsndJ(McAllester and Schapire, 2000, Theorem
3), we have that for any, it holds with probability at least 4  over a sample of size that

[Mo—My| < O (192)),

uniformly for any discrete distribution. If this occurs eth eitherM; < 1, or Mg > 1 — O(log(m/d)//m).
But in the first event, we get duplicate instances in the sanga the returned hypothesis is the optifal
and in the second case, the returned hypothesis is the saniptd has a total probability mass of at most
O(log(m/d)//m), and thereford=(A(S)) < O(log(m/d)/,/m). As a result, regardless of the underlying
distribution, with probability of at least4 & over the sample,

F(A(S) <O uma).

Since the r.h.s. converges to 0 wittfor anyd, it is easy to see that the learning rule is universally csinst.
|

6. Randomization, Convexification, and a Generic Learning Agorithm

The strongest result we were able to obtain for characteyildarnability so far is Theorem 7, which stated
that a problem is learnable if and only if there exists a uisially uniform-RO stable AERM. In fact, this
result was obtained under the assumption that the learoled\ris deterministic: given a fixed sampBA
returns a single specific hypothekisHowever, we might relax this assumption and also consatetomized
learning rules: given any fixe§ A(S) returns a distribution over the hypothesis clats

With this relaxation, we will see that we can obtain a stranggsion of Theorem 7, and even provide a
generic learning algorithm (at least for computationalypaunded learners) which successfully learns any
learnable problem.
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6.1 Stronger Results with Randomized Learning Rules

For simplicity, we will override the notation§(A(S),z), F(A(S)) andFs(A(S)) to meank, . a(s) [f(h,2)],
En-a(g [F(h)] andE (s [Fs(h)]. In other wordsA returns a distribution ovet/ and f (A(S),z) for some
fixed S z is the expected loss of a random hypothesis picked accotditiipt distribution, with respect to
z. Similarly, F(A(S)) for some fixedSis the expected generalization error, drgA(S)) is the expected
empirical risk on the fixed sampl& With this slight abuse of notation, all our previous deforis hold.
For instance, we still define a learning rilleto be consistent with rat&ongm) if Es.pm [F(A(S)) —F*] <
€condM), only now we actually mean

Es.pm [En-a(s [F(h) —F*]] < condm).

The definitions for AERM, generalization etc. also hold witiis subtle change in meaning.

An alternative way to view randomization is as a methdihearizethe learning problem. In other words,
randomization implicitly replaces the arbitrary hypotlsedass# by the space of probability distributions
over A,

M:{aﬂﬁ»ﬁﬂsm/mm:%,

and replaces the arbitrary functidith; z) by alinear function in its first argument
fM@:MWHMM:/mumW.

Linearity of the loss and convexity o¥{ are the key mechanism which allows us to obtain our stronger
results. Moreover, if the learning problem is already canfiee., f is convex and# is covex), we can
achieve the same results using a deterministic learnirg aslthe following claim demonstrates:

Claim 21 Assume that the hypothesis claésis convex subset of a vector space, such hata g [h]
is a well-defined element of for any S. Moreover, assume thathfz) is convex inh. Then from any
(possibly randomized) learning rul, it is possible to construct a deterministic learning rél§ such that
f(A(S),z) < f(A(S),z) for any Sz. As a result, it also holds thatsFA’(S)) < Fs(A(S)) and F(A/(9)) <
F(A(S).

Proof Given a sampleS, defineA’(S;z) as the single hypothesi&, (s [h]. The proof of the theorem is
immediate by Jensen’s inequality: sint@ is convex in its first argument,

f(A'(S);2) = f(Enas [N].2) <En.ag [f(h,2)],

where the r.h.s. is in fadt(A(S), z) by the abuse of notation we have defined previously. |

Although linearization is the real mechanism at play herefind it more convenient to display our results
and proofs in the language of randomized learning rules.

Allowing randomization allows us to obtain results with pest to the following very strong notion of
stability?

Definition 22 A rule A is strongly-uniform-RO stable with rate esiapidm) if for all samples S of m points,
for alli, and anyZ',Z € Z, it holds that

f(A(SY);Z) — F(A(S);Z)| < Estabid M.

The strengthening of Theorem 7 that we will prove here is tilewiing:

4. This definition of stability is very similar to the so-calléuniform stability”, discussed in Bousquet and Eliss¢2802), although
Bousquet and Elisseeff (2002) consider deterministic legrrules. See Appendix A for more details.
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Theorem 23 A learning problem is learnable if and only if there existgagsibly randomized) learning rule
which is an always AERM and strongly-uniform-RO stable.

Compared to Theorem 7, we have replaced universal AERM bgttbager notion of an always AERM,
and uniform-RO stability by strongly-uniform-RO stabjlifThis makes the result strong enough to formulate
a generic learning algorithm, as we will see later on.

The theorem is an immediate consequence of Theorem 7 andllihweihg lemma:

Lemma 24 For any deterministic learning ruld, there exists a randomized learning rié such that:
e Forany D, if A is gconsconsistent unde® thenA’ is €cong( | v/M|) consistent undeD.
e A’ universally generalizes with ra#B//m.

e If A is uniform-RO stable with rat&siapidm), then A’ is strongly-uniform-RO stable with rate

Establd [ v/M]).

e If A is universallyeconsconsistent, the’ is an always AERM with ratBecond | /M|).

MoreoverA'’ is a symmetric learning rule (it does not depend on the ordetements in the sample on which
it is applied).

Proof Consider the learning rul& which given a sampl§, returns a uniform distribution ovéx(S), where
S ranges over all subsets 8bf size|,/m|.

The fact thatd is symmetric is trivial. We now prove the other assertionthmlemma.
A is consistentfFirst note that (A'(S)) = Eg [F(A(S))], and so:

Es[|F(A'(S) —F*|] < Esg[|F(A(S)) ~F*[] = Egj [Egs [|[F(A(S)) —F"|]]

where[S] designates a choice of indices 8r This decomposition of the random choice®f(e.g., first
deciding on the indices and only then samplB)allows us think of[S] andS as statistically independent.
Given a fixed choice of indicdS], S is simply an i.i.d. sample of size/m|. Therefore, ifA is consistent,
[F(A(S)) — F*| < &cond [v/M]), this holds for any possible fixg&], and therefore

IE] [Eﬂ[g] HF(A(S,))_F*H] = Eg [SconS(\_\/E]J)] < &cond [VM]).

A’ generalizesfor convenience, lé1(S S) = |Fs(A(S)) — F(A(S))|. Using similar arguments and notation
as above:

Es[|Fs(A'(S) —F(A'(9)]]
<Eq [Eg(g [b(SS)]]
<Eg [Ea[m [L@b(sas)} + Eg[g) [(1— Lﬁ?”) b(S\ S,S)H

Lvm| Lvm] B
SE[g] [m25+ (1— m ) — Lmj+1

where the last line follows from Lemma 12 and the fact (& S) < 2B for anyS S. It is not hard to show
that the expression above is at moB{4/m, assumingn > 1.

A is strongly-uniform-RO stableFor any samplé, anyi and replacement instaneg and any instancg,
we have that }

)

[FA(87):2) - F(A'(9):2)

< Eg [|[{(ASY):2) - 1(A(S):2)
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where we takeS() in the expectation to mead if i ¢ [S]. Notice that ifi ¢ [S], then f(A(S1));z) —
f(A(S);z) is trivially 0. Thus, we can upper bound the expression albgve

Eg []f(A(si);z')— f(A(S);2)] ] i [S]].

SinceS is chosen uniformly over all,/m|-subsets oS, all permutations ofS] are equally happen to occur,
and therefore the above is equal to

f(A(SW);Z) ~ f(A(S);2)

< Eg [stanid [vVM])] = Estanid [vM]).

1
Eg | —
[ v &
A’ is an always AERMFor any fixed sampl&, we note that

Fs(A'(S)) - Fs(hs)| = Eg [Fs(A(S)) - Fs(hs)]
= EsNu(s)lﬁJ [FS(A(S)) —Fs(hs) [ no dupé‘f,
where 11(S).V™ signifies the distribution of i.i.d. samples of sizg¢/m|, picked uniformly at random (with

replacement) fronh,/m|, and 'no dups’ signifies the event that no elemer8was picked twice. By the law
of total expectation, this is at most

Eg g v [Fs(A(S)) —Fs(hs)]
P[no dup$ '

Since the learning rulA is universally consistent, it is in particular consisteifittmvespect to the distribution
U(9), and therefore the expectation in the expression abovenmatecond [/M|). As toP[no dup$, an
analysis identical to the one performed in the proof of Lendfigsee Equation (13)) implies that it is at least
1—([v/m])2/m>1/2. Overall, we get thaEs(A’(S)) — Fs(hs) < 2econd | v/M|), SO in particular

Eswfu(s)wﬁj [FS(A(S)) - Fs(ﬁs)]

IP’[no dup$ < 2€cong \_\/ﬁj)a

from which the claim follows.

6.2 A Generic Learning Algorithm

Recall that a symmetric learning rukeis such thatA(S) = A(S) wheneverS S are identical samples up
to permutation. When we deal with randomized learning rulesassume that the distribution AfS) is
identical to the distribution oA(S). Also, let# denote the set of all distributions @i. An elementh € H
will be thought of as a possible outcome of a randomized Iegnrule.

Consider the following learning rule: given a sample sizdind a minimizer over all symmetridunc-
tionsA : ZM — H of

sup (Fs(A(S)) —Fs(hs)) + sup
Sezm Sezmz

f(A(S);Z) - f(A(S);Z)], (18)

with i being an arbitrary fixed element {4, ..., m}. Once such a functioA is found, returmm(S).

5. The algorithm would still work, with slight modification§we minimize over all functions - symmetric or not. However, fsarch
space would be larger.
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Theorem 25 If a learning problem is learnable (namely, there exist avensally consistent learning rule
with rateecongdM)), the learning algorithm described above is universallpsistent with rate
8B
4€conS(L\FnJ)+ﬁ-

Proof By Lemma 24, if a learning problem is learnable, there exas{possibly randomized) symmetric
learning ruleA’, which is an always AERM and strongly-uniform-RO stable.r®lepecifically, we have that

sup (Fs(A'(S)) — Fs(Rs)) < 2econd [ /M),

Sczm

as well as

i 4B
sup |f(A(S):Z)— f(A(SV);2)| < —=.
ngm,z/(()) (A(SV);Z) T
In particular, there exists some symmettic Z™ — 7/, for which the expression in Equation (18) is at most
4B
2€cond [ v/M]) + m
Therefore, by definition, thA found satisfies
- 4B
sup (Fs(Am(S)) —Fs(hs)) < 2econd[VIM]) + —=, (19)
sezm vm
as well as 4B
sup | f(Am(S);Z) — f(Am(SV);Z)| < 2scons(wrﬂ)+ﬁ. (20)

Sezm
In Theorem 9, we have seen that a universally average-RGA&RM learning rule has to be universally
consistent. The inequalities above essentially sayAhiatin fact both strongly-uniform-RO stable (and in
particular, universally average-RO stable) and an AERM, thiis is a universally consistent learning rule.
Formally speaking, this is not entirely accurate, becalise defined only with respect to samples of size
m, and hence is not formally a learning rule which can be agpiiesamples of any size. However, the
analysis we have done earlier in fact carries through als¢efrning rulesA which are defined just on a
specific sample sizm. In particular, the analysis of Lemma 11 and Lemma 15 holtbatm for A (with
trivial modifications due to the fact that is randomized), and together imply that since Equation étf2)
Equation (20) hold, then

. 8B
E[F(A(S)) —F"] < 4econd [VM]) + I
Therefore, our learning algorithm is consistent with regg4(|/m|) + 8—\/‘%. |

The main drawback of the algorithm we described is that ibiagletely infeasible: in practice, we cannot
hope to efficiently perform minimization of Equation (18)emwall functions fromz™ to #. Nevertheless,
we believe it is conceptually important for three reasonsstFit hints that generic methods to develop
learning algorithms might be possible in the General LegySetting (similar to the more specific supervised
classification setting); Second, it shows that stabilitgimiplay a crucial role in the way such methods will
work; And third, that stability might act in a similar manrterregularization. Indeed, Equation (18) can be
seen as a “regularized ERM” in the space of learning rules unctions from samples to hypotheses): if we
take just the first term in Equation (18), supm (Fs(A(S)) — Fs(ﬁs)), then its minimizer is trivially the ERM

learning rule. If we take just the second term in Equatior) (88ps. zm , | f(A(S);Z) — f(A(SV);Z)|, then

its minimizers are trivial learning rules which return ttaree hypothesis irrespective of the training sample.
Minimizing a sum of both terms forces us to choose a learnifgwhich is an “almost”™-ERM but also stable
- a learning rule which must exist if the problem is learnailall, as Theorem 23 proves.

In any case, using these results and intuitions to designerigepracticalmethod to learn in the General
Learning Setting - remains a very interesting open problem.
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7. High Confidence Learnability

So far, we have presented all our results in terms of expentatamely, the rate at which the expected risk
converges to the lowest possible risk. By Markov's inedyalve can always convert these bounds to bounds
which hold with probability 1- 6 over the sample, and the bounds depend linearly M However, in
supervised classification, if we have learnability at &krt we have learnability at rates which are logarithmic
in 1/8. Can such results be attained in the General Learning §@ttin

Fortunately, there is a generic method already known initeeature (“Boosting the Confidence”, see
Schapire, 1989) which allows us to convert any learning ritlym with linear dependence amto an al-
gorithm with logarithmic dependence orfd, at a certain price in terms of the sample complexity. This
technique is reviewed below.

Moreover, we show that such conversions can in fact be nagesse give a learning problem which is
learnable with an ERM algorithm, and the ERM is stable, batdbpendence on the confidence parandeter
cannot be better than linear. This shows that both leaiihahiid stability (under our definitions) of the ERM
learning rule are not sufficient to ensure logarithmic defeeice on 1. Also, this gives a nice illustration
to the fundamental differences between the General Legftting and supervised classification, where in
the latter case learnability implies logarithmic deperweon /4.

Theorem 26 LetA be a universally consistent learning rule with ragns{m), namely that
Esopm [F(A(S)) —F*] < €congm). (21)

Then there exists another universally consistent learnigA’ such that with probability at least— & over
a sample S of size m,

m >+ - \/Iog(2/6)+log(log(2/6))
)+1

F(A'(S)—F* Sﬁcons(log(Z/é om

Proof Applying Markov’s inequality on Equation (21), we have wiihobability at least - 1/e over a
sampleS of sizemthat
F(A(S) —F* < egcondm). (22)

Now, define the learning ruld’ as follows: given a sample of sizs, split it randomly intoa+ 1 parts
Si,..., Sy Of sizem/(a+ 1) each (wherea is a constant to be determined later). Applyseparately
onS,...,S, to createa hypothese#\(S),...,A(Sy). Now, return the hypothesi&(S) which minimizes
Fs..1(A(S)) (namely, the hypothesis with lowest empirical risk &n1), where ties are broken arbitrarily.
By Equation (22), we have for arfy separately that with probability at least-11 /e,

FAS)—F" < e€<aT1) |

SinceF (A(S1)),...,F(A(Sy)) are independent random variables, we have that with priityadi least 1—
(1/e)?, there exists at least org such that

FIAS)—F" < ee( m ) |

a+1

Assume w.l.0.g. that this holds f&@;. Using Hoeffding’s inequality and a union bound, it alsodsWwith
probability at least - 8, overSthat

oo (A(S) ~ F(A(S) < By 2922/01)
F(A(S) ~ P (A(S) < By 292200
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simultaneously for every= 2, ... a. If this happens, it means that we will pick a hypothesis vehiask is
at most B,/log(2a/d1)/2m larger thanF (A(S;)). Overall, we have that with probability at least-D; —
(1/e)2,
. m log(2a/3y)
1 _E* < e bt e YA
FA'(9)-F* < ee°0”5<a+l) +2B >
Pickinga = log(2/8) andd; = &/2, we get that with probability at least19,

/ . m log(4/3) +log(log(4/3))
F(A'(9)-F* < e%ons(log(z/é)_~_1> +ZB\/ om

as required. |

After we have seen how to convert a low-confidence learnitg (linear ind) to a high-confidence
learning rule (logarithmic i), we show that such conversions might actually be necessasfyarp contrast
to supervised classification.

Example 3 There exists a learning problem where any ERM algorithm igansally consistent and average-
RO stable with rate®(1/,/m), but for any ERM algorithm,

P [F(hs) —F* =1] :@(}n) (23)

The®(-) notation hides only absolute constants.

This example implies that no high-confidence bound is ptesséit least without foregoing polynomial
dependence om. To see this, note that a high-confidence result corresptoritipz(ﬁs) —F*] > ¢) decreas-
ing exponentially inm for any fixede > 0, while in the case above we only have convergence at thefate
1//m.
Proof Consider the instance spagex 9 x Z = [0,1] x {—1,+1} x {—1,+1}, with any joint distribution
such thafp(y, z|x) for anyx is uniform on{—1,+1}2, and the marginal distribution oki is continuous.
Consider the hypothesis clagé= G U B, whereg consists of the constant function 1 and the constant
function —1 over|0, 1], andB consists of all functionk : [0,1] — {—1,0,+1}, such that each(-) equals 0
on all but a non-empty finite subset | 1], and is uniformly either-1 or —1 on this finite subset.
Finally, define the objective function as

f(h, (xy.2)) = (1<h Gyt “"fhf)z) h(x) + 1(h(x) = 0),

where|h| = |{x € [0,1] : h(x) # 0}| (namely, the number of points {@, 1] on which the functiorh(.) is not
zero). Forh € G, where the number of such points is infinite, we téike= co.

First, notice that for any € G, F(h) =0, and for anyh € B, F(h) = 1. Thus, we can think of; as the
set of “good” hypotheses, arl as the set of ‘bad” hypotheses. Our goal is to show that any BRINbick
a hypothesis fronB with probability®(1/+/m).

We need to do a bit of case-by-case analysis.(kgy1,z),.. ., (Xm,Ym, Zn) be the sample. I§{",yi # 0,
then using hypotheses @, it is possible to achieve an empirical risk of

m
- i;Yi <

while using hypotheses B, it is only possible to achieve an empirical risk of

Z| 1Z|h - 1
1(h ) >
olh| +Zl >
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Figure 2: Implications of various properties of learninglpgems. Consistency refers to univeral consistency
and stability refers to universal uniform-RO stability.

Thus, with probability - ©(1/./m) (the probability thag ™, y; # 0 in the sample), any ERM algorithm will
pick hs € G.

If ™,y =0, then anyh € G achieves an empirical objective value of 0. On the other hantess
",z =0, we can choose sontec B, which is non-zero on all points in the sample, and achieves a
empirical risk smaller than 0. The probability tHgt' ; yi = 0 andy ", z # 0 is ©(1//m)(1— ©(1/y/m)),
or©(1/4/m).

So we have that any ERM picks; € G with probability 1— ©(1/+/m), and somés € B with probability
©(1//m), from which the consistency rate and Equation (23) in therm statement follows. Finally,
note that replacing a single instance in the training setledd to the ERM picking a different hypothe-
sis, only if " ; yi = O before or after the replacement. The probability for gett training set where this
happens i©(1/,/m), and from this it is easy to see that the ERM is average-RQestath rateO(1/,/m). &

8. Discussion and Conclusions

In the familiar setting of supervised classification prolde the question of learnability is reduced to that
of uniform convergence of empirical risks to their expeotad. Therefore, for the purposes of establishing
learnability, there is no need to look beyond the ERM.

In this paper, we showed that in the General Learning Settihgch includes more general problems, this
equivalence does not hold, and the situation is substhntiadre complex. ERM might work without any
uniform convergence, and learnability might be possiblg with a non-ERM algorithm. We are therefore in
need of a new understanding of the question of learnaltitiyt, applies more broadly than just to supervised
classification.

In studying learnability in the General Setting, Vapnik 59 focuses solely on empirical risk minimiza-
tion, which we have seen to be insufficient for understandagnability. Furthermore, for empirical risk
minimization, Vapnik establishes uniform convergence as@ssary and sufficient condition not for ERM
consistency, but rather faitrict consistency of the ERM. We have seen that even in rathermoalprob-
lems, where the ERM is consistent and generalizes, strigistency does not hold. This perhaps gives an
indication that strict consistency might be too strict.

On the other hand, we have seen that stability is both a sifieéind necessary condition for learning,
even in the General Learning Setting where uniform convergéails to characterize learnability. A previous
stability-based characterization (Mukherjee et al., 306ked on uniform convergence and thus applied only
to restricted setting. Extending the characterizationobeythese settings is particularly interesting, since
for supervised classification the question of learnabititglready essentially solved. This also allows us to
frame stability as the core condition guaranteeing ledlitglwith uniform convergence only a sufficient,
but not necessary, condition for stability (see Figure 2).

In studying the question of learnability and its relatiorstability, we encountered several differences be-
tween this more general setting, and settings such as sspeésiassification where learnability is equivalent
to uniform convergence. We summarize some of these digtirect
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e Perhaps the most important distinction is that in the Gérigetting learnability might be possible
only with a non-ERM. In this paper we establish that if a pesblis learnable, although it might not
be learnable with an ERM, it must be learnable with some AERNY so, in the General Setting we
must look beyond empirical risk minimization, but not begl@symptotic empirical risk minimization.

e In supervised classification, if one AERM is universally sistent then all AERMs are universally
consistent. In the General Setting we must choose the AER®fudby.

e In supervised classification, a universally consister¢ ralst also generalize and be AERM. In the
General Setting, a universally consistent rule need noemgdize nor be an AERM, as example 2
demonstrates. However, Theorem 10 establishes that, etem General Setting, if a rule is universally
consistenandgeneralizing then it must be an AERM. This gives us anothesaor to not look beyond
asymptotic empirical risk minimization, even in the Geh&etting.

The above distinctions can also be seen through Corollgrwhih is concerned with the relationship
between AERM, consistency and generalization in learnpliddlems. In the General Setting, any
two conditions imply the other, but it is possible for any auadition to exist without the others. In
supervised classification, if a problem is learnable theregdization always holds (for any rule), and
so universal consistency and AERM imply each other.

e In supervised classification, ERM inconsistency for sorsrifbution is enough to establish non-
learnability. Establishing non-learnability in the GegleBetting is trickier, since one must consider
all AERMs. We show how Corollary 19 can provideertificatefor non-learnability, in the form of a
rule that is consistent and an AERM for some specific distigioy but does not generalize (Example
1).

¢ In supervised classification, any learnable problem iskdale with an ERMand the ERM “works”
with high-confidence (namely?(ﬁs) — F* can be bounded with probability-1 by an expression
with logarithmic dependence orfd). In Section 7 we have seen that in the General Learningn§etti
even if the ERM is universally consistent, high-confidenoars for the ERM might be impossible
to obtain.

We have begun exploring the issue of learnability in the @G&n®etting, and uncovered important re-
lationships between learnability and stability. But mamglgjems are left open, some of which are listed
below.

First, is it possible to come up with well-known machine téag applications, where learnability is
achievable despite uniform convergence failing to hold?

In Section 6.2, we have managed to obtain a completely geleznining algorithm: an algorithm which
in principle allows us to learn any learnable problem. Hosvethe algorithm suffers from the severe draw-
back that in general, it requires unbounded computatiooaiep Can we derive an efficient algorithm, or
characterize classes of learning problems where our #gorior some other generic learning algorithm us-
ing the notion of stability, can be executed efficiently? Fstance, can we always learn using a regularized
ERM learning rule?

On a related vein, it would be interesting to develop leagrafgorithms (perhaps for specific settings
rather than generic learning problems) which directly uabibty in order to learn. Convex regularization is
one such mechanism, as discussed in Section 4. Are themrenogichanisms, which use the notion of stability
in a different way?

Another issue is that even the existence of uniform-RO set&iilRM (or strongly-uniform-RO stable,
always-AERM allowing for convexity/randomization) is raxt elegant and simple as having finite VC dimen-
sion or fat-shattering dimension. It would be very interegto derive equivalent but more “combinatorial”
conditions for learnability.

Yet another open question: We showed that existence of dormmRO stable AERM is necessary and
sufficient for learnability (Theorem 7). However, it is pide that learnability is an equivalent to the ex-
istence of an AERM with a stronger notion of stability, withi@esorting to convexity/randomization as we
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have done in Section 6.2. This might perhaps lead to gereaining algorithms which perform minimization
over a search space more feasible than the one our algoiitl®e¢tion 6.2) uses.

Finally, we do not know whether it is enough to consider syitniméearning rules: that is, learning rules
which do not depend on the order of the instances in the bgisample. Intuitively, this should be true, since
the instances were sampled i.i.d. Can our characterizafitgarnability (e.g., existence of a uniform-RO
stable AERM learning rule) be strengthened to existenceymingetric uniform-RO stable AERM learning
rule, without allowing convexity/randomization?
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Appendix A. Alternative Notions of Stability

In this appendix, we discuss how our definition of stabilibyrpares to previous definitions in the literature,
as well as demonstrate how subtleties involved in the peettiwice of the definition can have a significant
effect on the results which can be obtained.

A.1 Previous Definitions in the Literature

The existing literature on stability in learning, brieflyrgeyed in Section 3.2, uses many different stability
measures. All of them measure the amount of change in thethigds output as a function of small changes
to the sample on which the algorithm is run. However, thefedifh how “output”, “amount of change to
the output”, and “small changes to the sample” are definecektion 5, we used three stability measures.
Roughly speaking, one measure (average-RO stability)es#pected change in the objective value on a
particular instance, after that instance is replaced witliffarent instance. The second measure and third
measure (uniform-RO stability and strongly-uniform-R@tslity respectively) basically deal with the maxi-
mal possible change in the objective value with respect trtiqular instance, by replacing a single instance
in the training set. However, instead of measuring the dbealue on a specific instance, we could have
measured the change in the risk of the returned hypothasisiyoother distance measure between hypothe-
ses. Instead of replacing an instance, we could have talk®at adding or removing one instance from the
sample, either in expectation or in some arbitrary mannech$ariations are common in the literature.

To relate our stability definitions to the ones in the literat we note that our definitions of uniform-RO
stability and strongly-uniform-RO stability are somewkahilar to uniform stability (Bousquet and Elisse-
eff, 2002), which in our notation is defined as gymax | f (A(S z)) — f(A(SV);z)|, whereS\ is the training
sampleS with instancez; removed. Compared to uniform-RO stability, here we measmagimal change
over any particular instance, rather than average changealdvinstances in the training sample. Also,
we deal with removing an instance rather than replacing ttor§ly-uniform-RO stability is more simi-
lar, with the only formal difference being removal vs. re@ment of an instance. However, the results
for uniform stability mostly assume deterministic leagnimles, while in this paper we have used strongly-
uniform-RO stability solely in the context of randomize@iring rules. For deterministic learning rules,
the differences outlined above are sufficient to make umifetability a strictly stronger requirement than
uniform-RO stability, since it is easy to come up with leagproblems and (hon-symmetric) learning rules
which are uniform-RO stable but not uniformly stable. More we show in this paper that uniform-RO
stable AERM’s characterize learnability, while it is wetidwn that uniformly stable AERM’s are not neces-
sary for learnability (see Kutin and Niyogi, 2002). For ttzare reason, our notion of strongly-uniform-RO
stability is apparently too strong to characterize leailitglwvhen we deal with deterministic learning rules,
as opposed to randomized learning rules.
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Our definition of average-RO stable is similar to “averagdity” defined in Rakhlin et al. (2005), which
in our notation is defined dgsv@mli [f(A(S(”);Zl) - f(A(S);zl)]. Compared to average-RO stability, the
main difference is that the change in the objective valuegasuared with respect t rather than an average
overz for all i, and stems from the assumption there that the learningidigors symmetric. Notice that in
this paper we do not make such an assumption.

For an elaborate study on other stability notions and tked@ttionships, see Kutin and Niyogi (2002).

Unfortunately, many of the stability notions in the litareg are incomparable, and even slight changes in
the definition radically affect their behavior. We go int@stin much more detail in the following subsections.

A.2 LOO Stability vs. RO Stability

The stability definitions we have used in this paper are akdeaon the idea of replacing one instance in the
training sample by another instance (e.g., “RO” or “replane” stability). An alternative set of definitions
can be obtained based eamovingone instance in the training sample (e.g., “LOO” or “leaveeaut”
stability). In fact, these were the definitions used in owliptinary paper (Shalev-Shwartz et al., 2009b).
Despite seeming like a small change, it turns out there isiaiderable discrepancy in terms of the obtainable
results, compared to RO stability. In this subsection, wewd discuss these discrepancies, as well as show
how small changes to the stability definition can materiaffect its strength.

Specifically, we consider the following four LOO stabilityeasures, each slightly weaker than the pre-
vious one. The first and last are similar to our notion of umfdRO stability and average-RO stability
respectively. However, we emphasize that RO stability aB®Lstability are in general incomparable no-
tions, as we shall see later on. Also, we note that some oé ttlefnitions appeared in previous literature.
For instance, the notion of “all-i-LOO” below has been sadiby several authors under different names
(Bousquet and Elisseeff, 2002; Mukherjee et al., 2006; Rald al., 2005). The notatio8\' below refer to
a training sampl&with instancez; removed.

Definition 27 A rule A is uniform-LOO stable with rate esiapid M) if for all samples S of m points and for
all i:
1(ASY);2) - F(A(S):2)| < estandm).

Definition 28 A rule A is all-i-LOO stable with rate €stapid M) under distribution? if for all i

Egpm [ f(A(SV);z) — f(A(S);Zi)H < EstabidM).

Definition 29 A rule A is LOO stable with rate €gtanidm) under distribution? if

g

Definition 30 A rule A is on-average-LOO stablewith rate €sianid(m) under distribution? if

f(AS"):2) — f(A(S):2)]] < esandm).

< Establd M).

While some of the definitions above might look rather simileg, show below that each one is strictly
stronger than the other. Example 6 is interesting in its oghty since it presents a learning problem and
an AERM that is universally consistent, but not LOO stable.ilé/this is possible in the General Learning
Setting, in supervised classification every such AERM hasetd. OO stable (this is essentially proven in
Mukherjee et al., 2006).

Example 4 There exists a learning problem with a universally consiséad all-i-LOO stable learning rule,
but there is no universally consistent and uniform LOO sabarning rule.
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Proof This example is taken from Kutin and Niyogi (2002). Consitlez hypothesis spacf9, 1}, the
instance spacg0, 1}, and the objective functiofi(h,z) = |h— 2.

It is straightforward to verify that an ERM is a universallgnsistent learning rule. It is also universally
all-i-LOO stable, because removing an instance can chdmegeytpothesis only if the original sample had an
equal number of 0’s and 1's (plus or minus one), which happetisprobability at mosO(1/,/m) wherem
is the sample size. However, it is not hard to see that the amifprm LOO stable learning rule, at least for
large enough sample sizes, is a constant rule which alwaymeethe same hypothedigegardless of the
sample. Such a learning rule is obviously not universallysistent. |

Example 5 There exists a learning problem with a universally consisend LOO-stable AERM, which is
not symmetric and is not all-i-LOO stable.

Proof Let the instance space i@ 1], the hypothesis spad®,1] U2, and the objective functiofi(h,z) =
Ln_z . Consider the following learning rule: given a sample, check if the valagappears more than once
in the sample. If no, returm, otherwise return 2.

SinceFs(2) = 0, andz returns only if this value constitutes/rh of the sample, the rule above is an
AERM with rategem(m) = 1/m. To see universal consistency, Rz;] = p. With probability (1 — p)™ 2,
71 ¢ {z,...,zm}, and the returned hypothesiszis with F(z;) = p. Otherwise, the returned hypothesis is 2,
with F(2) = 0. HenceEs[F(A(S))] < p(1— p)™ 2, which can be easily verified to be at mogtth— 1),
so the learning rule is consistent with ratgn{m) < 1/(m—1). To see LOO-stability, notice that our learn-
ing hypothesis can change by deletingi > 1, only if z is the only instance i, ...,zy, equal toz;. So
E€stabld(M) < 2/m (in fact, LOO-stability holds even without the expectajiohlowever, this learning rule is
not all-i-LOO-stable. For instance, for any continuoustriisition, | f(A(S\1),z) — f(A(S),z1)| = 1 with
probability 1, so it obviously cannot be all-i-LOO-stabl@mwespect ta = 1. |

Example 6 There exists a learning problem with a universally consist@nd on-average-LOO stable)
AERM, which is not LOO stable.

Proof Let the instance space, hypothesis space and objectivédarme as in Example 4. Consider the
following learning rule, based on a sam@e= (zy,...,2Zm): if 3 L,_1y3/m>1/2+ \/log(4)/2m, return 1.
If 3 L;—1,/m<1/2—/log(4)/2m, return 0. Otherwise, return Par(§) = (z +...zy) mod 2.

This learning rule is an AERM, witlgerm(m) = /2log(4)/m. Since we have only two hypotheses,
we have uniform convergence B§(-) to F(-) for any hypothesis. Therefore, our learning rule univéysal
generalizes (with rategen(m) = 1/log(4/d)/2m), and by Theorem 9, this implies that the learning rule is
also universally consistent and on-average-LOO stable.

However, the learning rule is not LOO stable. Consider théum distribution on the instance space.
By Hoeffding’s inequality| 3; ;1) /m—1/2| < /log(4) /2mwith probability at least 12 for any sample
sizem. In that case, the returned hypothesis is the parity funqgwen when we remove an instance from
the sample, assuming > 3). When this happens, it is not hard to see that foriany

f(A(S)7Zi) - f(A(S\i)7zi) — ]{zi:j_}(—l)Parity(S),
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This implies that

Zl( A(SY);z) - (A <S>;zi))w (24)
> 5F Hi’{a:u \/W>’Z]{L . l”
(-2 - 5

which does not converge to zero with the sample siz& herefore, the learning rule is not LOO stablell

V

Note that the proof implies that on-average-LOO stabilégpmot be replaced even by something between
on-average-LOO stability and LOO stability. For instare@atural candidate would be

ri.:i(f(A(S\‘);zi) - f(A(S)iZi))

where the absolute value is now over the entire sum, butenbie expectation. In the example used in the
proof, Equation (25) is still lower bounded by Equation (2«fhich does not converge to zero with the sample
size.

After showing that the hierarchy of definitions above is iedestrict, we turn to the question of what
can be characterized in terms of LOO stability. In Shalew&tz et al. (2009b), we show a version of
Theorem 7, which asserts that a problem is learnable if alydfdhere is an on-average-LOO stable AERM.
However, on-average-LOO stability is qualitatively muckaker than the notion of uniform-RO stability
used in Theorem 7 (see Definition 4). Rather, we would exgeptdve a version of the theorem with the
notion of uniform-LOO stability or at least LOO stabilityhich are more analogous to uniform-RO stability.
However, the proof of Theorem 7 does not work for these stalifinitions (technically, this is because the
proof relies on the sample size remaining constant, whittuesfor replacement stability, but not when we
remove an instance as in LOO stability). We do not know if oae prove a version of Theorem 7 with an
LOO stability notion stronger than on-average-LOO stapili

On the plus side, LOO stability allows us to prove the follogiiinteresting result, specific to ERM
learning rules.

ES,\,Q)m

1 : (25)

Theorem 31 For an ERM the following are equivalent:
e Universal LOO stability.
¢ Universal consistency.
e Universal generalization.

In particular, the theorem implies that LOO stability is &egsary property for consistent ERM learning
rules. This parallels Theorem 9, which dealt with AERM’s #ngral, and used RO stability. As before, we
do not know how to obtain something akin to Theorem 9 with Ribidity.

Proof Lemma 15 and Lemma 17 from Section 5.3.3 already tell us traERM'’s, universal consistency

is equivalent to universal generalization. Moreover, Leantd implies that for ERM’s, generalization is
equivalent to on-average generalization (see Equatiopf@tthe exact definition). Thus, is left to prove

that for ERM’s, generalization implies LOO stability, an@O stability implies on-average generalization.
stability.
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First, suppose the ERM learning rule is generalizing witk £gen(m). Note thatf(ﬁs\i;zi) — f(hs;z) is
always nonnegative. Therefore the LOO stability of the ERi be upper bounded as follows:

;.Z [f(hgi;z) — f(hsiz)|]
:;imE[f(hs\., ) - f(hsz)]

_lSg[F (hg f(h

“mEl na, s

< n%in E [Fsi(ﬁs\i) + €gen(mM— 1)] -k [FS(F]S)]
—8gen(m 1 +E ZFS\I S\I hs)]
< €gen(M—1).

For the opposite direction, suppose the ERM learning rul€® stable with rat&siapid m). Notice that
we can get any sample of sime— 1 by picking a sampl&of sizemand discarding any instanceTherefore,
the on-average generalization rate of the ERM for samplegzem— 1 is equal to the following:

|IE [F(F‘s\i) - Fs\i(ﬁ i)”

ZE hgi) — Fgi(hgi)] ‘
ZE hgi2)] - X iE [Fi(hgi)] ‘

Now, note that for the ERM’s dbandS\ we have| Fg; (ﬁs\i) - Fs(ﬁs)\ < Z—n?. Therefore, we can upper bound
the above by

ZB
ZE hei;z)] —E[Fs(hs)] | +
ZE S\I! - f(h371 )] ‘
< Establd M)
using the assumption that the learning rulesigni{m)-stable. |

References

N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Hausslerlé&sansitive dimensions, uniform convergence,
and learnabilityJournal of the ACM44(4):615-631, 1997.

M. Anthony and P. BartletNeural Network Learning: Theoretical Foundatiordambridge University Press,
1999.

2668



LEARNABILITY, STABILITY AND UNIFORM CONVERGENCE

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Ibadility and the Vapnik-Chervonenkis di-
mension.Journal of the Association for Computing Machingdg$(4):929-965, October 1989.

O. Bousquet and A. Elisseeff. Stability and generalizatidmurnal of Machine Learning Researckt499—
526, 2002. ISSN 1533-7928.

L. Breiman. Bias, variance, and arcing classifiers. TediriReport 460, Statistics Department, University
of California at Berkeley, 1996.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the germatiin ability of on-line learning algorithms.
IEEE Transactions on Information Thei$0(9):2050-2057, September 2004.

L. Devroye, L. Gyrfi, and G. LugosiA Probabilistic Theory of Pattern Recognitio8pringer, 1996.

J. Hadamard. Sur les pravhes aux @rivees partielles et leur signification physiqurinceton University
Bulletin, 13:49-52, 1902.

D. Haussler. Decision theoretic generalizations of the BAdtlel for neural net and other learning applica-
tions. Information and Computatiqri00(1):78-150, 1992.

M. Kearns and D. Ron. Algorithmic stability and sanity-ckdmmunds for leave-one-out cross-validation.
Neural Computation11(6):1427-1453, 1999.

M. Kearns, R. Schapire, and L. Sellie. Toward efficient agindsarning. InProceedings of the Fifth Annual
ACM Workshop on Computational Learning Thegrgiges 341-352, 1992.

S. Kutin and P. Niyogi. Almost-everywhere algorithmic sti&pand generalization error. IRroceedings of
the 18th Conference in Uncertainty in Artificial Intelliges pages 275-282, 2002.

D. McAllester and R. Schapire. On the convergence rate ofdgaging estimators. IfProceedings of the
Thirteenth Annual Conference on Computational Learningorf} pages 1-6, 2000.

S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Learnihgary: stability is sufficient for generalization
and necessary and sufficient for consistency of empiris&l minimization. Advances in Computational
Mathematics25(1-3):161-193, 2006.

D. L. Phillips. A technique for the numerical solution of tan integral equations of the first kindournal
of the ACM 9(1):84-97, 1962.

S. Rakhlin, S. Mukherjee, and T. Poggio. Stability resuitseiarning theory.Analysis and Applications3
(4):397-419, 2005.

W. Rogers and T. Wagner. A finite sample distribution-fredggrenance bound for local discrimination rules.
Annals of Statistics6(3):506-514, 1978.

R.E. Schapire. The strength of weak learnability.30th Annual Symposium on Foundations of Computer
Sciencepages 28-33, October 1989.

S. Shalev-ShwartzOnline Learning: Theory, Algorithms, and ApplicatiorBhD thesis, The Hebrew Uni-
versity, 2007.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridhartoth@stic convex optimization. roceedings
of the 22nd Annual Conference on Computational Learningpmh@009a.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharaarnability and stability in the general learning
setting. InProceedings of the 22nd Annual Conference on Computaticeeining Theory2009b.

2669



SHALEV-SHWARTZ, SHAMIR, SREBRO AND SRIDHARAN

K. Sridharan, N. Srebro, and S. Shalev-Shwartz. Fast rateedularized objectives. lAdvances in Neural
Information Processing Systems, pages 1545-1552, 2008.

A. N. Tikhonov. On the stability of inverse problem3olk. Akad. Nauk SSSR9(5):195-198, 1943.
V. N. Vapnik. The Nature of Statistical Learning Theor$pringer, 1995.
V. N. Vapnik. Statistical Learning TheoryWiley, 1998.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convercgeof relative frequencies of events to their
probabilities. Theory of Probability and its applicationXVI(2):264-280, 1971.

M. Zinkevich. Online convex programming and generalizdahitesimal gradient ascent. FProceedings of
the Twentieth International Conference on Machine Leagnpages 928-936, 2003.

2670



