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Abstract

We derive PAC-Bayesian generalization bounds for supedvésid unsupervised learning models
based on clustering, such as co-clustering, matrix ttiefémation, graphical models, graph cluster-
ing, and pairwise clusteringWe begin with the analysis of co-clustering, which is a wydesed
approach to the analysis of data matrices. We distinguisingrtwo tasks in matrix data analysis:
discriminative prediction of the missing entries in datameas and estimation of the joint proba-
bility distribution of row and column variables in co-ocoeince matrices. We derive PAC-Bayesian
generalization bounds for the expected out-of-samplepadnce of co-clustering-based solutions
for these two tasks. The analysis yields regularizatiomsethat were absent in the previous for-
mulations of co-clustering. The bounds suggest that theargd performance of co-clustering is
governed by a trade-off between its empirical performamckthe mutual information preserved by
the cluster variables on row and column IDs. We derive aatitex projection algorithm for finding

a local optimum of this trade-off for discriminative pretilin tasks. This algorithm achieved state-
of-the-art performance in the MovieLens collaborativeefilhig task. Our co-clustering model can
also be seen as matrix tri-factorization and the resultgigeageneralization bounds, regularization
terms, and new algorithms for this form of matrix factoriaat

The analysis of co-clustering is extended to tree-shapaphgral models, which can be used
to analyze high dimensional tensors. According to the beptite generalization abilities of tree-
shaped graphical models depend on a trade-off betweendhmiirical data fit and the mutual
information that is propagated up the tree levels.

We also formulate weighted graph clustering as a predigifoblem: given a subset of edge
weights we analyze the ability of graph clustering to prethe remaining edge weights. The
analysis of co-clustering easily extends to this probleish suggests that graph clustering should
optimize the trade-off between empirical data fit and theualihformation that clusters preserve
on graph nodes.

Keywords: matrix tri-factorization, graphical models, graph clustg, pairwise clustering, com-
binatorial priors, density estimation
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1. Introduction

Structure learning and, in particular, clustering is an important and longistaproblem in sci-
ence. In many situations it has to be performed based on a limited data sampli¢hamal or limited
supervision. A natural question that arises in this context is to what ekteimferred structure is
a reflection of a “true” structure underlying the data or a mere artifacteofetrning model and/or
statistical fluctuation of the finite sample. But is there a “true structure” in thediace? Consider
the following example: assume we have a bag of blocks which we can clysteultiple parame-
ters, such as shape, color, material they are made of, and so on. Allgbssibilities are equally
plausible and asking whether a clustering of blocks by shape is betterse Wmn a clustering of
blocks by color makes no sense. But the absence of an objective dsarperiterion for outputs of
two structure learning algorithms poses a serious obstacle for their evalaaticthe advancement
of unsupervised learning in general.

We argue that one does not learn structure for its own sake, but tatfamilitate solving some
higher level task. By evaluating the contribution of structure learning todghgisn of the higher
level task it is possible to derive an objective comparison of the utility of @ffestructures in
the context of this specific task. Returning to the bag of blocks example, Know that after
clustering the blocks we will have to pack them into a box, then the clusteribtpoks by shape
is much more useful than the clustering of blocks by color, since packingifésrent to color. We
can further measure the amount of time that different clusterings saviedhss packing task and
thereby obtain an objective numerical evaluation of the utility of clusterindaxfids by different
parameters in this context. Moreover, by repeating the experiment kguega (or by some more
intelligent analysis) it is possible to provide generalization guaranteeswmiuzh time this or
other clustering algorithm is expected to save us in the packing task in the.futur

Since in any non-trivial data many structures coexist simultaneously, “blindupervised
learning without specification of its potential application is doomed to failure irgtmeral case.
This is because the potential application (or range of applications) can angkeroperty or ele-
ment of the structure either decisive or completely irrelevant for the taskhance render it useful
or useless for identification by unsupervised learning. The need tadesnssupervised learning
within the context of its subsequent application has been pointed out bynesegrchers, especially
those concerned with practical applications of these methods (Guyon 20@9). In the present
paper we reformulate traditional unsupervised learning problems agfwadoroblems and then
adapt well-developed tools from supervised learning to provide giersgian bounds on their ex-
pected out-of-sample performance. We start with the problem of co-chgstdut then show that
our approach to problem formulation is applicable to and can be analyzeduclabroader range
of applications.

Co-clustering is a widely used method for analysis of data in matrix form by simadtss
clustering of rows and columns of the matrix (Banerjee et al., 2007). Herfgus solely on co-
clustering solutions that result in a grid form partition of the data matrix. This faf co-clustering
is also known as partitional co-clustering (Banerjee et al., 2007), enleclird bi-clustering (Cheng
and Church, 2000; Kluger et al., 2003), grid clustering (Devroyd.efl@96; Seldin and Tishby,
2008, 2009), and box clustering. Note that some authors use the terolgstering and bi-
clustering to refer to a simultaneous grouping of rows and columns thatadessult in a grid-
form partition of the whole data matrix (Hartigan, 1972; Madeira and Oliy&ie®4), but these
forms of partitions are not discussed in this work. Note as well that thisrgagesiders soft as-
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signments of rows and columns to their clusters, while using two-level gareeraodels such as
those discussed in Dhillon et al. (2003) and Banerjee et al. (2007 agfdrassignments. Recently,
Bayesian approaches to co-clustering have been suggested, foplexsee Shan and Banerjee
(2008), Salakhutdinov and Mnih (2008), Shafiei and Milios (2006)hg\&t al. (2009) and Lashkari
and Golland (2009), which consider mixed memberships by introducing @iticahl level to the
generative process. However, three-level generative modelgegepproximate inference meth-
ods such as variational inference or Markov Chain Monte Carlo, valsetee two-level model for
discriminative prediction discussed here can be learned by iterativecposje. The analysis pre-
sented here is not limited to two-dimensional data matrices, but holds for ldighensional tensors
as well. A three-level Bayesian approach to clustered tensor factorizasie recently presented by
Sutskever et al. (2009).

In the past decade co-clustering has successfully been applied in multipkrdg including
clustering of documents and words in text mining (Slonim and Tishby, 200@aiiv and Sourou-
jon, 2001; Dhillon et al., 2003; Takamura and Matsumoto, 2003), geree&xperimental condi-
tions in bioinformatics (Cheng and Church, 2000; Cho et al., 2004; Klagat., 2003; Cho and
Dhillon, 2008), tokens and contexts in natural language processiagdgr2004; Rohwer and Fre-
itag, 2004; Li and Abe, 1998), viewers and movies in recommender sy$@ewsge and Merugu,
2005; Seldin et al., 2007; Salakhutdinov and Mnih, 2008; Seldin, 2@8))n Seldin et al. (2007)
and Seldin and Tishby (2009) it was pointed out that there are actuallyiti@cett classes of prob-
lems that are solved with co-clustering that correspond to two differehtlbigel tasks and should
be analyzed separately. The first class of problems are discriminaddepon tasks, one typical
representative of which is collaborative filtering (Herlocker et al., 2004 collaborative filtering,
the analyst is given a matrix of viewers by movies with ratings, for example, fore-star scale,
attributed by the viewers to the movies. The matrix is usually sparse, as mostsieave not seen
all the movies. In this problem the task is usually to predict the missing entriesasgéene that
there is some unknown probability distributig(,,z2,y) over the triplets of viewer;, movie
x2, and ratingy. The goal is to build a discriminative predictgty|xi,z2) that given a pair of
viewer z; and moviexy will predict the expected rating. A natural form of evaluation of such
predictors, no matter whether they are based on co-clustering or notyaltae the expected loss
Ep(z1,20,9) Bqy/|e1,22) (Y5 YY), wherel(y,y’) is an externally provided loss function for predicting
y’ instead ofy. In Section 3 we provide this analysis for co-clustering-based predicidre anal-
ysis can be used not only to construct co-clustering solutions to this pnpblg also to conduct
a theoretical comparison of the co-clustering-based approach to thikepravith other possible
approaches.

The second class of problems, which are solved using co-clusterngrarlems of estimation
of a joint probability distribution in co-occurrence data analysis. A typicaingple of this kind
of problem is the analysis of word-document co-occurrence matricestiomiaing (Slonim and
Tishby, 2000; El-Yaniv and Souroujon, 2001; Dhillon et al., 2003).réMdocument co-occurrence
matrices are matrices of words by documents where the number of times eabbosorred in each
document is counted in the corresponding entries. If normalized, suctria oz be regarded as an
empirical joint probability distribution of words and documents. To illustrate tfierdnce between
co-occurrence data and the data considered in discriminative predictis) v@e point out that the
ratings in the collaborative filtering example are functions of viewer and mbvpairs and they do
not depend on other viewers or movies. By contrast, in co-occuridategthe joint probability (or
the number of co-occurrence events) is normalized by the size of thasarl thus depends on
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the whole subset of words and documents considered (or the size arfheséf no normalization
is applied).

Although many researchers have analyzed co-occurrence datadbgritig similar words and
similar documents (Slonim and Tishby, 2000; El-Yaniv and Souroujon]2Dillon et al., 2003;
Takamura and Matsumoto, 2003), or by using topic models (Steyvers affith&r2006; Blei and
Lafferty, 2009) and other approaches, no clear learning task in thidgm has been defined and it
remains difficult to compare different approaches or perform modidragelection. In Seldin and
Tishby (2009) one possible way of defining a high-level task for thidlera was suggested. It
was assumed that the observed co-occurrence matrix was drawnrfronkaown joint probability
distributionp(x1,z2) of wordsz; and documents,. The suggested task was an estimation of this
joint probability distribution based on the observed sample. In such a fotioul¢ghe quality of an
estimatorg(z1,z2) for p(z1,z2) can be measured byE,,,,, ..y Inq(X1, X2), where the choice of
the logarithmic loss is natural in the context of density estimation. In particulewyiesponds to
the expected code length of an encoder that y&es =) to encode samples generatediy; , z2)
(Cover and Thomas, 1991). In Section 3 we provide an analysis of thistityifor co-clustering-
based density estimators. Similar to the case with co-clustering-based distisienpradictors, the
analysis serves to perform model order selection in this problem. It fueth@bles a theoretical
comparison of the co-clustering-based approach to this problem withaksible approaches.

For the purpose of analysis and derivation of generalization boundsd@bove two problems
we found it convenient to apply the PAC-Bayesian framework (McAllestep8, 1999), which
is reviewed in Section 2. Similar to the Probably Approximately Correct (PA@nlag model
(Valiant, 1984), PAC-Bayesian bounds pose no assumptions or restsictiothe distribution that
generates the data (apart from the usual assumption that the data grenidelet and identically
distributed (i.i.d.) and that the train and test distributions are the same). Howelike the usual
PAC bounds, where the whole hypothesis space is characterized byitgk\Mahervonenkis (VC)
dimension (Vapnik and Chervonenkis, 1968, 1971), PAC-Bayesiandsapply a non-uniform
treatment of the hypotheses by introducing a prior distribution over thethgpis space. For ex-
ample, within the class of decision trees a preference for shallow tredseqggiven by assigning a
higher prior. If a good prior over the hypothesis space can be dekigmetightness of the bounds
can be improved considerably. As shown in the literature, PAC-Bayes&lysis is able to provide
practically useful bounds that in some cases are only 10%-20% awaytttest error (Langford,
2005; Seldin and Tishby, 2008; Seldin, 2009; Germain et al., 2009).

Originally, PAC-Bayesian bounds were derived for classification taBfey have been applied
in the analysis of decision trees (Mansour and McAllester, 2000), Stigpctor Machines (SVMs)
(Langford and Shawe-Taylor, 2002; McAllester, 2003; Langf@@)5; Ambroladze et al., 2007;
Crammer et al., 2009; Germain et al., 2009), transductive learning (Kerteal., 2004), struc-
tured prediction (Bartlett et al., 2005; McAllester, 2007), and other rsiged learning models.
In Seldin and Tishby (2009) we introduced PAC-Bayesian analysis toetiésdensity estimation.
Recently, Higgs and Shawe-Taylor (2010) applied PAC-Bayesian siaaly continuous density
estimation. In Section 3 we present the PAC-Bayesian analysis of discriveir@agdiction and
density estimation with co-clustering. According to the derived bounds,dherglization perfor-
mance of co-clustering-based models depends on a trade-off betveseartipirical performance
and the mutual information that the clusters preserve on the observedgiara (row and column
IDs). The mutual information term introduces model regularization that Wwasrd in the previ-
ous formulations of co-clustering (Dhillon et al., 2003; Banerjee et al.7200/e further suggest
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algorithms for optimization of the trade-off in Section 4. In Section 5, we aehstate-of-the-art
performance in the prediction of missing ratings in the MovieLens collaberfiligring data set by
optimization of the trade-off.

The co-clustering models analyzed here are tightly related to matrix tri-faatiomz—a 3-factor
decomposition of a matrix of the form ~ Q7 FQ, (Banerjee et al., 2007; Ding et al., 2006; Yoo
and Choi, 2009a,b) and to Tucker decomposition of higher dimensionalrgeftsim and Choi,
2007). This relation is discussed in Section 6. We point out that similar tdusbecing itself there
are at least two different forms of matrix tri-factorization; one that gpoads to discriminative
prediction tasks, such as collaborative filtering, and the other which is appeopriate for co-
occurrence data analysis. In the first casean be arbitrary, whereas in the second case the input
matrix A is a joint probability distribution matrix (its entries are non-negative and suio ope).
At the technical level, in discriminative prediction tasis and Q. are right stochastic matrices
(their rows sum up to one) ankl is arbitrary, whereas in co-occurrence data analgsiand (-
are left stochastic matrices (their columns sum up to one)ramia joint probability distribution
matrix (in the cluster product space). Our analysis provides generatizationds, regularization
terms, and new algorithms for both forms of matrix tri-factorization.

Co-clustering can also be regarded as a simple graphical model. In Séatiersuggest how
to extend our analysis to more general tree-shaped graphical models.g&yhical models can
be useful to treat the curse of dimensionality in the analysis of high dimensensars. This also
provides a new perspective on learning graphical models: insteadroiriga graphical model that
fits the training data, the approach suggests optimizing the model’s ability to pnesicobserva-
tions. In Sections 3 and 7 it is demonstrated that PAC-Bayesian boundblar® take advantage
of the factor form of graphical models and provide bounds that depeitlde sizes of the cliques of
graphical models and the amount of mutual information that is propagatee agéhlevels.

In Section 8 we extend our approach to the formulation of unsupervisadriggproblems as
prediction problems to graph clustering and pairwise clustering (the lattenigadent to clustering
of a weighted graph, where edge weights correspond to pairwise distange formulate weighted
graph clustering as a prediction problem: given a sample of edge weighanalgze the ability
of graph clustering to predict the remaining edge weights. We adapt theBa&€sian analysis
of co-clustering to derive a PAC-Bayesian generalization bound fphgclustering. The bound
shows that graph clustering should optimize a trade-off between empidtalfitland the mutual
information that clusters preserve on the graph nodes. A similar tragke@éed from information-
theoretic considerations has been shown to produce state-of-tleswatsin practice (Slonim et al.,
2005; Yom-Tov and Slonim, 2009). This paper supports the empirical esedey providing a better
theoretical foundation, suggesting formal generalization guaranteeéxféering a more accurate
way to deal with finite sample issues.

2. PAC-Bayesian Generalization Bounds

This section is devoted to PAC-Bayesian generalization bounds, whigdhereain tool used for
the analysis of our learning models in the subsequent sections. We redemethknown PAC-
Bayesian bound for classification and present a slight variation of aviels&nown PAC-Bayesian
bound for discrete density estimation. The PAC-Bayesian generalizatiomdbgoioneered by
McAllester (1998, 1999) provide guarantees on generalization abilitieanafomized predictors
(formally defined below in Section 2.1) within the classical PAC learning modaignt, 1984)
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and build upon preceding works on PAC analysis of Bayesian learningley@&teawe-Taylor et al.,
1998; Shawe-Taylor and Williamson, 1997). The classical PAC learnindeirevaluates learning
algorithms by their ability to predict new events generated by the same probalslityoution as
the one that was used to train the algorithm. No restrictions on the data gegeratiability distri-
bution are imposed except the assumption that the samples are i.i.d. The KASleéBaramework
should be distinguished from Bayesian learning, which assumes that thhevdee generated by
hypotheses from the hypothesis class and applies Bayes’ rule foemaf=rBayesian learning does
not provide guarantees on the expected error of the Bayes' inferalecand in some situations can
lead to overfitting (Kearns et al., 1997).

The classical PAC bounds are derived by covering the error sgagdnypothesis class. For
example, the most familiar PAC bounds are based on the VC-dimension obthkgfs class, which
is a logarithm of the maximal number of points that can be jointly classified in assilde way by
functions from the hypothesis class (Vapnik and Chervonenkis, 1968,; Vapnik, 1998; Devroye
et al., 1996). More recent bounds involve Rademacher and Gaussignaxities (Koltchinskii,
2001; Bartlett et al., 2001; Bartlett and Mendelson, 2001; Boucherah,e2005). However, in
all the above approaches the whole hypothesis class is characterizesifigle number: its VC-
dimension or Rademacher complexity, which means that all the incorporatagheses are treated
identically and there is no way to differentiate them and give preferencsingpter” ones. For
example, if the hypothesis class consists of straight lines and paraboM€-dsnension is equal
to the VC-dimension of a hypothesis class consisting of parabolas only arelithno direct way
to give preference to straight lines within the combined hypothesis clagsBagesian bounds are
derived by covering the hypothesis space and they enable non+artiesitment of the hypotheses.
In the PAC-Bayesian approach each hypothesis is characterized hynitsamplexity defined by
its prior. This refined approach provides several important benetiishwnclude: (1) the ability
to give explicit preference to certain hypotheses (e.g, in the example aean assign a higher
prior to straight lines); (2) a gradient within the hypothesis space, wianhe used in algorithms
for bound minimization; (3) considerably tighter bounds, which are meauliimgé practical sense:
in some applications the discrepancy between the bound value and thedest enly 10%-20%
(Langford, 2005; Seldin and Tishby, 2008; Seldin, 2009; Germaih,&2@09). There is one more
distinction between the usual PAC analysis and the PAC-Bayesian bouridsxtbad the scope
of applicability of the latter. Classical PAC analysis aims at bounding the ghaooy between the
expected performance of the hypothesis with the best empirical perfoeraaddhe best hypothesis
within the hypothesis class. Such types of bounds require a uniformdbomunthe discrepancies
between empirical and expected performances for all the hypotheses aviilipothesis class. The
uniform bound exists if and only if the hypothesis class has a finite VC-diimenBAC-Bayesian
bounds bound the expected performance of a given hypothesisj Imatt dittempt to bound its gap
to the performance of the best hypothesis within the hypothesis class. athimékes it possible
to apply PAC-Bayesian bounds even in situations where the VC-dimensiarhgpothesis class
is infinite, for example, decision trees of unlimited depth or separating higoexp in infinite-
dimensional spaces. This does not disprove the fundamental theoR&E déarning theory, which
states that learning is possible if and only if the VC-dimension of a hypothkesis is finite, but
rather extends the notion of learnability. Instead of a regret-basedtiefiof learnability, by
which the ability to learn is the ability to achieve, up to a small epsilon, the besibfmsslution
within a hypothesis class, the PAC-Bayesian approach defines learnasilitg ability to bound the
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expected performance of the obtained solution. Then it is a question fasér¢o decide whether
the guaranteed expected performance is sufficient for his or hes.need

Since the strength of PAC-Bayesian analysis lies in its ability to provide a niforon treatment
of the hypotheses within a hypothesis class, its advantage over traditioGabPalysis is best
seen in the analysis of heterogeneous hypothesis classes (or, in otigs; when the hypotheses
constituting a hypothesis class are not symmetric). Some hypothesis clabgat & “natural
heterogeneity”; for example, we can partition the class of decision treesubtmasses according
to tree depth. A higher prior can then be assigned to shallow trees to ptbeisewith preference
over deep trees. For example, a prift) = 2~ (O+1)2-2"" 'whered(t) is the depth of a tree
would be a legal prior over the space of full binary decision trees of unkhaepth ¢~ (¢®)+1) js
a prior over tree depth are2"" is a prior over trees of a given depth). Note that it is possible
to assign a higher prior tall shallow trees simultaneously because there are fewer shallow trees
than deep trees. Hence, the above prior exploits knowledge about Wictustrof the hypothesis
space, but makes no assumptions about the data. As we will see belovguhesbdepend on
—InP(t) = In(2)[(d(t) + 1) + 2%®)]; thus the value of the logarithm of the first part of the prior
(d(t) +1), which accounts for the tree depth, is negligible compared to the value ofghgtlom
of the second half of the prige®®)), which counts the number of symmetric trees given the depth.
Given a strong prior knowledge on the problem domain, which breaks/thmstry between trees
of a given depth, it is possible to give preference (a higher prior) timicedeep trees; however it
is impossible to give a higher prior to all deep trees simultaneously, becatrseaiie too many of
them. Thus, a choice of a different prior over tree depth and evelsprpdor knowledge of the
tree depth can only negligibly improve the bound.

For some hypothesis spaces which seem homogeneous at a first glavagesitill be possible
to identify non-trivial asymmetries and define a corresponding strugi@l The best example
comes from the analysis of SVMs, where the class of all possible segphgiierplanes iR? is
partitioned into subclasses according to the size of the margin and a higheispgiven to the
hyperplanes with large margins (Langford and Shawe-Taylor, 20@&lesster, 2003; Langford,
2005). In structure learning the hypothesis class usually exhibits a haatestogeneity since the
hypotheses (structures) can be differentiated by their complexity. H&#¢e-Bayesian analysis
has great potential in the analysis of structure learning which is only partigtipred in this work.
PAC-Bayesian bounds are further distinguished by their explicit deparedon model parameters,
which makes their optimization easy.

Following the pioneering work of McAllester (1998, 1999), the PAC-Bage bounds were
tightened and simplified by Seeger (2002, 2003). Some further improvemvengéssuggested in
Maurer (2004), Audibert and Bousquet (2007) and BlanchardFedret (2007). This section
draws on the easier-to-read expositions by Maurer (2004) and j@an@006). In order to present
the bounds for classification and density estimation, we need to define the nbtiandomized
predictors, which is done next. We then present the PAC-Bayesiareths@nd their proofs.

2.1 Randomized Predictors

Let H be a hypothesis class and @{h) be a distribution ove# (if H is infinite thenQ(h) is a
probability density). Aandomized predictoassociated witl®, and with a small abuse of notation
denoted byQ, is defined in the following way: For each sample hypothesis: € H is drawn
according toQ(h), and then applied to make a prediction on In the classification context)
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is termed arandomized classifie(Langford, 2005). However, since this work extends the PAC-
Bayesian framework beyond the classification scenario by using the sash@nization technique,
we use the term “randomized predictor”. In this more general contextis a general function of

x, not necessarily a classifier.

In the context of classification, l&t = {(z1,v1), .., (z~,yn)} be an i.i.d. sample of siz& of
instances and their labels drawn according to unknown distribptiery) and let/(y,y’) be a given
loss function for predicting’ instead ofy. Leth(x) be the label of: predicted by hypothesis For
eachh € 7 we denote by (h) = + 32 U(yi, h(z;)) the empirical loss of the hypothedison S and
by L(h) = E,,) (Y, k(X)) the expected loss df with respect to the true, unknown distribution
that generates the data. We further extend the definitions of the empiritaixaected losses for
randomized predictors in the following way:

A

L(Q) =EguyL(h) and  L(Q)=EguL(h).

For two distributionsy andp over domainX’ we define

KL(qp) = Egn ;ﬁwi

to be the Kullback-Leibler (KL) divergence betwegmandp (Cover and Thomas, 1991). As well,
we define

- L(Q) - 1-L(Q)
L(Q) lnm +(1 —L(Q))lnﬁ(g)

as the KL-divergence between two Bernoulli distributions with bidse) andL(Q). Now we are
ready to state the PAC-Bayesian theorems.

KI(L(Q)IIL(Q))

2.2 PAC-Bayesian Theorems

Theorem 1 (PAC-Bayesian bound for classification)For a hypothesis classl, a prior distribu-
tion P over’H and a zero-one loss functidnwith probability greater thanl — § over drawing a
sample of sizeéV, for all randomized classifier® simultaneously

KL(Q|P)+In(N+1)—1no

KI(L(Q)IIL(Q)) < ~

1)
Theorem 2 (PAC-Bayesian bound for discrete density estimation).et X be the sample space
(possibly infinite) and lep(x) be an unknown distribution over € X. Let# be a hypothesis
class, such that each membee # is a function from¥ to a finite setZ with cardinality | Z|. Let
Pr(2) = Pxp)1h(X) = 2} be the distribution oveg induced by () andh. LetP be a prior dis-
tribution over#. LetQ be an arbitrary distribution ove? andpo(z) =E, pn(2) a distribution
over Z induced by (x) and Q. LetS be an i.i.d. sample of sizZ&¥ generated according tp(z) and
let p(=) be the empirical distribution ovet’ corresponding t&. Letpy,(z) = Px~p(x) {M(X) = 2}
be the empirical distribution ovef corresponding td: andS. Letpg(z) = E, , pr(z). Then with
probability greater thanl — § for all possible@ simultaneously

KL(Q|P)+ (|Z|-1)In(N+1) —lné.

KL(po(2)llpa(2)) < N

(@)
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Remarks:

1. This form of Theorem 1 first appeared in Seeger (2002). A slightferdifit version of
Theorem 2 first appeared in Seeger (2003) and independently in Sgldifiishby (2009),
where it found the first non-trivial application.

2. The PAC-Bayesian bound for classification (1) is a direct conseguef the PAC-Bayesian
bound for density estimation (2). To see this Adbe the error variable. Then each hypothesis
h € H is a function from the sample space (in this case the samples arg ak's) to the
error variableZ and| 2| = 2. Furthermore[(h) = p»(Z = 1) andL(h) = ps(Z = 1), hence
kI(L(Q)||L(Q)) = KL(po(2)||po(z)). Substituting this into (2) yields (1).

3. Maurer (2004) showed that due to convexity of the KL-divergeimeguality (1) is valid for
all loss functions bounded in the [0,1] interval, and not only for the zev@doss. He also
proved that due to tighter concentration of empirical means of binary Vesiator N > 8
bound (1) can be further tightened:

KL(Q|P)+ :In(4N)—1né
Qll )+]2V( ) (3)

and that this is the tightest result that can be proved using the techniqidsam also used
in this paper.

KI(L(Q)|IL(Q)) <

4. Although there is no analytical expression for the inverse okthdivergence L(Q) can be
bounded numerically:

N

KL(Q||P)+;1n(4N)—1n5}
< .

L(Q) <kl (ﬁ(Q% KL(Q|P)+ 5 In(4N) — ln5>

(4)

= max{v KI(L(Q)|Jv) <

A

Sincekl(L(Q)||v) is convex inv, (4) is easy to compute.

5. The proof of Theorem 2 presented below reveals a close relatiorbetive PAC-Bayesian
theorems and the method of types in information theory (Cover and Thom@s). 19he
trade-off betweeri(Q) and K L(Q||P) in the PAC-Bayesian bounds also has a tight relation
to the maximum entropy principle in learning and statistical mechanics (Jaygts, Dudk
et al., 2007; Catoni, 2007; Shawe-Taylor and Hardoon, 2009). &laians between the
PAC-Bayesian bounds, information theory, and statistical mechanicarénerf discussed in
Catoni (2007).

The proof of Theorem 2 presented below is based on two auxiliary regbith have value
in their own right and therefore are presented in dedicated subseciibesfirst auxiliary result
applies the method of types to bound the expectation of the exponent ofviitgeatice between
empirical and expected distributions ov&rfor a single hypothesisEge™N KL#n(2)lpn(2) - The
second auxiliary result relates the divergefieg ) K L(px(2)||lpn(z)) for all Q to a single (prior)
reference measurB. This relation is actually the cornerstone of the PAC-Bayesian analysis. Fi-
nally, in Section 2.5 a quantity depending on the prior meaguisetreated using the first auxiliary
result to obtain the final bound in Equation (2).
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2.3 The Law of Large Numbers

In this subsection we analyze the rate of convergence of empirical digtniswover finite domains
to their true values. The following result is based on the method of types immatmn theory
(Cover and Thomas, 1991).

Theorem 3 LetS = {X1,.., Xy} be i.i.d. distributed by(x). Denote byp(z) the empirical dis-
tribution over X’ corresponding ta5 and by|X'| the cardinality ofX. Then

ESeN‘KL(ﬁ(w)llp(w)) < (N +1)*=1, (5)

Proof Enumerate the possible values®fby 1,..,|X| and letn; count the number of occurrences
of valuei. Let p; denote the probability of valueandp; = ¢ be its empirical counterpart. Let
H(p) = —>, pilnp; be the empirical entropy. Then:

¥

E e NKLOID = 3 ( N ).prvﬁi.eNKL(ﬁllp)

o \ e X)) iy
Zini:N
< ¥ e NH(P) N> bilnpi  [NKL(p|lp) (6)

N1, N x|

Ei”i:N
= > 1= (N@'i‘f 1) < (N 1)L (7)

nl,.‘,n|X|:

Zini:N

In (6) we used th(énh_f’nm) < eNH(P) pound on the multinomial coefficient, which counts the num-
ber of sequences with a fixed cardinality profile (unnormalized type), n x| (Cover and Thomas,
1991). In the second equality in (7) the number of ways to chagseequals the number of ways
we can placeX|—1 ones in a sequence of + |X'| — 1 ones and zeros, where ones symbolize a

partition of zeros (“balls”) intdX| bins. [ |

2.4 Change of Measure Inequality

The simultaneous treatment of all possible distributions (meas@esjer  is done by relating
them all to a single reference (prior) meas&eWe call this relation @hange of measure inequal-
ity. This inequality was formulated as a standalone result in Banerjee (200®),gh it originates
much earlier. Banerjee (2006) terms itampression lemmaowever we find the term “change
of measure inequality” more appropriate to its nature and usage. The litgdgia simple conse-
guence of Jensen’s inequality.

Lemma 4 (Change of Measure Inequality) For any measurable functiop(h) on’H and any dis-
tributions? and Q onH, we have:

Eg(nyp(h) < KL(Q||P) +InEpe?™. 8)
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Proof For any measurable functiet{/), we have:

Egm¢(h) =Egp)ln <7%EZ§ Leb(h) ZEZD
= KL(Q||P) +Eg(In (ewo . g%)
< KL(Q|P) +InEq( <e¢(h> , ZEZD o
= KL(Q|[P) + InEp(s)e”™,
where (9) is by Jensen’s inequality. .

2.5 Proof of the PAC-Bayesian Generalization Bound for Density Estiration

We apply the results of the previous two subsections to prove the PACsBaygeneralization
bound for density estimation.
Proof of Theorem 2Let ¢(h,S,p) = NK L(pn(2)||pn(2)). Then:

NKL(po(2)[pe(2)) = NKL(EgmpPn(2) [Eqmpn(2))
<EounyNKL(pn(2)|lpn(2)) (10)
< KL(QH’]))_|_lnEp(h)eNKL(ﬁh(z)”Ph(Z))’ (11)

where (10) is by the convexity of the KL-divergence (Cover and Trgrh91) and (11) is by the
change of measure inequality. To obtain (2) it is left to bolid,) eV K E@rZ)lrn(2)) - This is

a random quantity depending on the samglsincep,(z) for eachh depends on the sample. By
Markov's inequality we know that with probability at least — § over the sample

Ep(pyeNELEnGF)lPn(=) < 1R [Ep(h)eNKL(ﬁh(z)”ph(z))}. In order to obtain a bound on

Eg [Ep(h)BNKL(ﬁh(z)”ph(z))i| we note that it is possible to exchanig with Ep(;, sinceS and
h are independent:

Eg [Ep(h)eNKL(ﬁh(z)||ph(z)):| =Ep( []ESeNKL(ﬁh(Z)HPh(Z))] < (N+1)IEHT (12)

The last inequality in (12) is justified by the fact tHage N EL0n(Z)lIPn(2) < (N +1)I21-1 for each
h individually according to (5). By Markov’s inequality we conclude that witbbability of at least
1—46 overS: 2

Ep e Lo Clne) < VT ?
Substituting this into (11) and normalizing By yields (2). |

2.6 Addendum to the Law of Large Numbers

Note in passing that it is straightforward to recover theorem 12.2.1 in GowkThomas (1991)
from Theorem 3 (even with a slight improvement). This theorem is used lateeiastimation of
marginal distributions.
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Theorem 5 (12.2.1 in Cover and Thomas, 1991Under the notations of Theorem 3 with proba-
bility greater thanl — ¢:

(¥ —1)In(N+1)—Ind

KL(G() () < -

Proof Immediate from application of Markov's inequality to (5). |

2.7 Construction of a Density Estimator

Although we have boundell L(po(z)||po(z)) in Theorem 2po(2) still cannot be used as a den-
sity estimator forpg(z), because it is not bounded from zero. In order to bound the logarithmic
loss—E, . Inpg(z), which corresponds, for example, to the expected code length of enged
when samples are generatediy, we have to smootfiy. We denote a smoothed versiongef by

Po and define it as:

_ . Pu(z)+y
- - 7 +
Pol) = Eqqi(z) = 2.

In the following theorem we show that K L(po(2)||po(z)) < e(Q) andv(Q) = 7”'(5')/2 then
—E,,(-)Inpo(2) is roughly within +,/¢(Q)/2In|Z| range aroundH (pg(z)). The bound on
KL(po(2)|lpo(z)) is naturally obtained by Theorem 2. Thus, the performance of the density
estimatorpg is optimized by distributior© that minimizes the trade-off betwed#(po(z)) and
N EKL(Q|P).

Note that for a uniform distributiom(z) = % the value of-E,,)Inu(z) = In|Z|. Thus,
the theorem below is interesting whepis(Q)/2 is significantly smaller than 1. For technical
reasons in the proofs of the following section, the upper bound in thethegtem is stated for
—E,,(-yInpo(2) and for—Eg)E,, () Inpr(2). We also denote = £(Q) for brevity.

Theorem 6 Let Z be a random variable distributed according fp(z) and assume that

KL(pg(2)|pa(2)) < e. Then—E,,.)Inpo(z) is minimized byy = ;/f. For this value ofy
the following inequalities hold:

—EomEy,z)npr(z) < H(po(2)) +1/e/2In[Z]+ ¢(e), (14)
“Epy (s Inpo(2) < H(po(2)) +\/2/2In| 2] + é(e), (15)
~Ep( Inpo(2) = H(po(2) —\/=/2In| 2] — (e), (16)

where:

b(e) = \/%m%? and ¢(c) = (e) +In(1+1/=/2).
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The proof is provided in appendix A. Note that betfx) and(e) converge to zero approximately
as—+/e/2In/e/2 and for\/s /2 < ﬁ they are in fact dominant over thgs /21n | Z| term. Never-
theless, the main message is still that in order to minimiZs (., Inpo(z) the trade-off between
H(po(z)) andK L(po(z)|lpo(z)) should be minimized. This message is explored in more details
in Section 3.4.

Remark:As an aside we consider the case of direct density estimation. Assume gigaara
set of N i.i.d. observations,..,xy generated according to an unknown distributigm) over a
finite domainX’. We want to construct an estimater) for p(z) based on the empirical frequencies
p(z), such that the expectation,,,,) Inp(x) is minimized. This problem, known as “histogram
smoothing”, has received significant attention in statistics and informatiomytti€ilbert, 1971,
Cover, 1972; Krichevskiy, 1998; Paninski, 2004). Uniform smoothuhtihe form

3(2) plx) +v

S 14ylx)

such as the one applied in (13) is known as the Dirichlet-Bayes or “adstaot” estimator. Theo-
rem 6 provides the optimal value of

1 1 [(x]- D)V +1)—Ind
= = g

for which with probability greater thah— § over the sample

H(p(x)) —/2/21n|X] = () < ~Epp) Inpla) < Hp(x) +\/=/2In ] X| + 6(e),

(|¥]=1)In(N+1)—Ind
N

wheres = is obtained from Theorem 5. By Theorem 6 the optimal smoothking
decreases as the sample sizéncreases. A more detailed comparison of this result with preceding
work is beyond the scope of this paper and will be presented elsewhire that in the more
general case considered in Theorem 6, where the distribpti¢n) depends orQ the smoothing
parametery also depends 0.

3. PAC-Bayesian Analysis of Co-clustering

In the introduction we defined two high-level goals, which can be solved®dalustering. The
first is discriminative prediction of the matrix entries, as in the collaborativeifijeexample. The
second is estimation of the joint probability distribution in co-occurrence detlysis. We further
defined the notion of generalization for each of the two problems. In thimsese derive PAC-
Bayesian generalization bounds for the two settings. We begin with the stexhg approach to
discriminative prediction, which is slightly easier in terms of presentation. Téegonsider the
discrete density estimation problem.

3.1 PAC-Bayesian Analysis of Discriminative Prediction with Grid Clusteiing

Let X; x .. x Xy x Y be a(d+ 1)-dimensional product space. We assume that éaéh categorical
and its cardinality, denoted Qy;| = n;, is fixed and known. We also assume tpais finite with
cardinality|)| and that a bounded loss functiéfy,y’) for predictingy’ instead ofy is given. As
an example, consider collaborative filtering. In collaborative filtering 2, X is the space of the
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Y
C, C, C, C,
X] XZ XI X2
(a) Graphical Model for Dis- (b) Graphical Model for Den-
criminative Prediction sity Estimation

Figure 1: lllustration of graphical models corresponding to discriminatiediption (17) and den-
sity estimation (26). The illustrations are férE= 2.

viewers,n; is the number of viewersY, is the space of the movies, is the number of movies,
and) is the space of the ratings (e.g., on a five-star scale). Thé(lpag) can be, for example, the
absolute los$(y,y’) = |y —y'| or the quadratic losKy,') = (y —’)?. There is no natural metric
either on the space of viewers or on the space of movies; thustyathd X, are categorical.

We assume an existence of an unknown probability distribytien, .., z4,y) over thex x .. x
Xy x Y product space. We further assume that we are given an i.i.d. sampleed¥ gjenerated
according top(z1,..,x4,y). We usep(z1,..,z4,y) to denote the empirical frequencies(af+ 1)-
tuples(z1,..,x24,y) in the sample. We consider the following form of discriminative predictors:

d
q(ylz1,..,za) = Z Q<y|clv”7cd)HQ(Ci|xi)' (17)
C1,--,Cd =1
The hidden variable¢’,..,Cy represent a clustering of the observed variabigs.., X;. The
hidden variableC; accepts values if1,..,m;}, wherem; = |C;| denotes the number of clusters
used along dimension The conditional probability distributioq(c;|z;) represents the probability
of mapping (assigning}; to clusterc;. The conditional probability;(y|ci,..,cq) represents the
probability of assigning labej to cell (ci, .., cq) in the cluster product space. The prediction model
(17) corresponds to the graphical model in Figure 1.a. Note that this is-teWebrandomized
prediction model. The free parameters of the model are the conditional di&iris{q(c;|z;)},
andq(y|c1,..,cq). We denote these collectively iy = {{q(ci\xi)}le,q(ylch ..,cd)}. In the next
subsection we show that (17) corresponds to a randomized predictbegstrWe further denote:

L(Q) = Ep(:vl,..,xd,y)Eq(y’\:pl,..,xd)l(Yv Y/)
and
L(Q) = Epter,.. o0 Baw' o1, o) /(Y5 Y ),
whereq(y|x1,..,24) is defined by (17). We define
= 1 i
I(Xi;Ci) = — Y qleilai) In aleilz)

i g q(ci)
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wherez; € X; are the possible values &f;, ¢; € {1,..,m;} are the possible values 6f, and

ale) = — 3 aleile)
n; T
is the marginal distribution ove; corresponding tq(c;|z;) and auniformdistributionu(z;) = ni
overX;. Thus,I(X;;C;) is the mutual information corresponding to the joint distribugémn;, ;) =
niiq(cmci) defined byg(c;|x;) and the uniform distribution ovet;.
With the above definitions we can state the following generalization bounddoriminative
prediction with co-clustering.

Theorem 7 For any probability measure(z,..,x4,y) over X; x .. x Xy x J and for any loss
function/ bounded by 1, with probability of at least- § over a selection of an i.i.d. sampfeof

sizeN according top, for all randomized classifier® = {{q(ci|xi)}§l:1,q(y|cl, ..,cd)}i

Sy (i (X3:C) +milnng ) + Mn Y]+ S In(4N) ~ Ing

K(L(Q)IL(Q)) < N ,  (18)

whereM is the number of partition cells:

d
M= 1_[777,z
i=1

Remarks:Of course, any bounded loss can be normalized to the [0,1] interval. Nattgitlen a
prediction strategy) = {{q(cﬂxi)}le,q(yycl,..,cd)} both L(Q) and I(X;;C;) are computable
exactly. L(Q) can be bounded by numerical inversiontdfas shown in Equation (4). To minimize
L(Q) both L(Q) andI(X;; C;) should be minimized.

Discussion:There are two extreme solutions to the collaborative filtering task that prgoiole
intuitions on the co-clustering approach to this problem. If we assign all afdteeto a single large
cluster, we can evaluate the empirical mean/median/most frequent rating ofusster fairly well.
In this situation the empirical Iosé(Q) is expected to be large, because we approximate all the
entries with the global average, but its distance to the true 1g€¥) is expected to be small. If
we take the other extreme and assign each row and each column to a sepatatel(Q) can be
zero given that we can approximate every entry with its own value, but izndis to the true loss
L(Q) is expected to be large because each cluster has too little data to make a statistiahlly
estimation. Thus, the goal is to optimize the trade-off between the locality of guctions and
their statistical reliability.

This trade-off is explicitly exhibited in bound (18): if we assign:gHes to a single cluster, then
I(X;;C;) = 0 and thereford,(Q) is close toL(Q). And if we assign each; to a separate cluster,
thenI(X;;C;) is large, specifically in this casl X;; C;) = Inn;, andL(Q) is far from L(Q). But
there are even finer observations we can draw from the bound. Beainththatn,;I(X;;C;) is
linear inn;, whereasn;Inn; is logarithmic inn;. Thus, at least whem; is small compared to
n; (which is a reasonable assumption when we cluster the valu&g tiie leading term in (18) is
n;1(X;;C;). This term penalizes theffectivecomplexity of a partition, rather than the raw number
of clusters used. For example, the unbalanced partitiontof 4matrix into2 x 2 clusters in Figure
2.ais simpler than the balanced partition into the same number of clusters in Filgufé@ reason,
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(a) Unbalanced Partition (b) Balanced Partition

Figure 2: lllustration of (a) an unbalanced and (b) a balanced partiti@andef4 matrix into 2<2
clusters. Note that there are 4 possible ways to group 4 objects into 2 nobdleusters
and(;*) = 6 possible ways to group 4 objects into 2 balanced clusters. Thus, theasebsp
of the unbalanced partitions is smaller than the subspace of the balantiédnsaand
the unbalanced partitions are simpler (it is easier to describe an unbafzartiidn than
a balanced one).

which will become clearer after we have defined the prior over the sgggartitions in Section
3.3, is that there are fewer unbalanced partitions than balanced onesefdrl, the subspace of
unbalanced partitions is smaller than the subspace of balanced partitioi$sagmkier to describe
an unbalanced partition than a balanced one. Intuitively, the partition ind-Ryardoes not fully
use the2 x 2 clusters that it could use, and should therefore be penalized less. @aoteal level,
the bound makes it possible to operate at the optimization step with more clustees¢hectually
required and to penalize the final solution according to a de facto meaksuhester use. This
claim is supported by our experiments. To summarize this point, the bounduydggsts a trade-off
between the empirical performance and the effective complexity of a partition

Finally, consider theM In|Y| term in the bound. M is the number of partition cells (in a
hard partition) and\/ In | )| corresponds to the size of tki€';,..,Cy,Y") clique in the moral graph
corresponding to the graph in Figure 1.a. The number of sample p@istsould be comparable to
the number of partition cells, so it is natural for this term to appear in the bolimd term grows
exponentially with the number of dimensiodsthus we can apply the bound for low-dimensional
problems like collaborative filtering, but when the number of dimensionsgeosiifferent approach
is required. We suggest one possible way to handle high dimensioném®mn Section 7.

Proof of Theorem 7The proof is a direct application of the PAC-Bayesian bound for claatiific
in Theorem 1 (or, more precisely, its refinement in (3)). In order to ap@ytheorem, we have to
define a hypothesis spag& a prior over hypothesis spag® a posterior over hypothesis spa@e
and calculate the KL-divergendeéL(Q||P). We define the hypothesis space in the next subsection
and design a prior over it in Section 3.3. Substitution of the calculatidd bfQ||P) in Lemma 9
into Theorem 1 completes the proof. |
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3.2 Grid Clustering Hypothesis Space

We define the hypothesis spagéto be the space of hard grid partitions of the product space
X1 x .. x Xy (as illustrated in Figure 2) augmented with label assignments to the partition ¢ells. (
Section 3.4 we use grid partitions without labels on the partition cells; thus thesdisa in this
and the following subsection is kept general enough to hold in both cdeeshard grid partition
each valuer; € X; is mapped deterministically to a single clustee {1,..,m;}. To operate orH

we use the following notations:

e Letm = (my,..,my) be a vector counting the number of clusters along each dimension.

e We usel{|; to denote the space of partitions &f. In other words;}|; is a projection ofH
onto dimension.

e Let H,; denote the subspace of partitionsf x .. x X in which the number of clusters
used along each dimension matchesObviously, for distinctn-s, H.-s are disjoint.

o We useH|, ) or simply#|, 5 to denote the space of possible assignments of labéls;to
Then we can writé{ = 5, (”Hm X 7—[|y|m).

e Foreachh € H we writeh = h|y x .. X h|q X h|,5, Whereh|; denotes the partition induced by
h along dimension andh|,; denotes the assignment of labels to partition cells.dh the
discussion of density estimation with grid clustering in Section/3id justh = h|; X .. X h|q,
without the labels assignment.

We show thaiQ = {{q(ci|xi)}§l:1, q(yle, ..,cd)} is a distribution ovef{ and (17) corresponds
to a randomized prediction strategy. More precis€lyis a distribution ovef;; x H|, 5, where

m matches the cardinalities @f;-s in the definitions Of{{q(ci\mi)}le,q(y]cl,..,cd)}. In order
to draw a hypothesié € H according toQ we draw a cluster; for eachx; € X; according to
q(cilz;) and then draw a label for each partition cell according(tgc,..,c;). For example, we
map each viewer to a cluster of viewers, map each movie to a cluster of mawlesssign ratings to
the product space of viewer clusters by movie clusters. Then, in ordestgn a label to a sample
(x1,..,24) we simply check which partition cell it has fallen into and return the corredipgriabel.
Recall that in order to assign a label to another sample point, we have t@aramwhypothesis from
H.

Note that in (17) we actually skip the step of assigning a cluster for eaeh¥; and a label for
each partition cell (in fact, the whole step of drawing a hypothesis) aigies$abel to a given point
(x1,..,z4) directly. Nevertheless, (17) corresponds to the randomized predictioess described
above. This makes it possible to apply the PAC-Bayesian analysis.

3.3 Combinatorial Priors in PAC-Bayesian Bounds

In this section we design a combinatorial prior over the grid clustering hgg@tspace and calcu-
late the KL-divergenc& L(Q||P) between the posterior defined earlier and the prior. An interesting
point about this result is that combinatorial priors result in mutual informaéons in the calcula-
tions of the KL-divergence. This can be contrasted withthenorm andL;-norm terms resulting
from Gaussian and Laplacian priors respectively in the analysis of Jidgyford, 2005). Another
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important point to mention is that the poster@returns a named partition df;-s (the conditional
distributiong(c;|z;) specifies the “name¢; of the cluster that; is mapped to). However, the hy-
pothesis spac# and the priorfP defined below operate with unnamed partitions: they only depend
on the structure of a partition (the sizes of the clusters), but do not degethe names assigned
to the clusters. In this manner we account for all possible permutationsstéchimes, which are
irrelevant for the solution.

The statements in the next two lemmas are given in two versions, orf¢ fargmented with
labels, which is used in the proofs of Theorem 7, and the othel fpmithout the labels, which is
used later for the proofs on density estimation with grid clustering.

Lemma 8 It is possible to define a prigP overH that satisfies

P(h) > !

> , (19)
exp [0 (msH (hist(h];)) + (m; — 1)lnn,)|

wherehist(hl|;) = {|ci1], .-, |cim;|} denotes the cardinality profile (histogram) of cluster sizes along
dimension of a partition corresponding tb and H (hist(h|;)) = — Z}":il '%‘ ln“:;—j| is the entropy
of the (normalized) cardinality profilgnote thaty "7, |c;;| = ;).

It is further possible to define a prid? overH =, <’Hm X H|y|m> that satisfies

P(h) > 1 .
exp{}:gzl(ndf{(hist(hh))—%Tnihlnj)%—ﬂlln|Jﬂ}

(20)

Remark:The priorP overH that is defined explicitly in the proof of the lemma exploits struc-
tural asymmetries between more and less balanced grid partitions, as shBigara 2, without
making assumptions on the data generating process. Note that the leadingnténemprior are
n;H (hist(h|;)) that count the number of possible ways to assigs to ¢;-s, which are invariant
under permutation of;-s within each¥; (see the proof for details). Thus, it is impossible to design
a significantly better prior without “strong” prior knowledge on the dataegating process that can
break the permutation symmetry of-s. “Weak” prior knowledge on the number of clustens
along each dimension and even on their sizes can only introduce an improviraieis logarith-
mic in n;-s to the bounds. The PAC-Bayesian analysis enables us to operate widssible grid
partitions, while paying a very low (logarithmic) price for this generality.

We note that recently Lever et al. (2010) suggested an elegant teehiigdefining priors
based on the true data distribution, which is, of course, a “strong” priowledge. For example,
using the true marginal distributiongz;) over X;-s in the definition of the prior would break the
permutation symmetry of;-s. Since the true data distribution is independent of the sample, such
priors are perfectly valid, although uncomputable. Lever et. al. showatlagst in some situations,
the KL-divergence L(Q||P) can nevertheless be bounded, which is sufficient for application of
the PAC-Bayesian bounds. The possibility of application of distributioreddent priors in co-
clustering will be explored in future work.

Lemma 9 For the prior defined i(19) and posteriorQ = {q(c;|z;)}L ;:

d
KL(QIIP) < Y (ml (X5 Ci) + (m; — 1) Inn;) (21)

=1
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For the prior defined in(20) and posteriorQ = {{q(ci\xi)}le,q(yych ..7cd)}:

d
L(Q||P) < Z( I(X;;C)) —f—mzlnnl)—l-Mln’y‘ (22)
i=1

3.3.1 RROOFsS

Proof of Lemma 8 To define the priofP over H;; we count the hypotheses . There are
(”?_1) < nmz possibilities to choose a cluster cardinality profile along a dimensidithis is
because each of the; clusters has a size of at least one. To define a cardinality profile weeartof
distribute the “excess mass” of — m; among then; clusters. The number of possible distributions
equals the number of possibilities to plase— 1 ones in a sequence @f; —m;) + (m; —1) =n; —
1 ones and zeros.) For a fixed cardinality profilet(hl;) there are(,, | " Teim, )< e H (hist(hl:))
possibilities to assigm;-s to the clusters. Putting the combinatorial calculations together we can
define a distributiorP over?H,; that satisfies (19).

To prove (20) we further define a uniform prior ovkt,,;,. Note that there argy|" possibili-
ties to assign labels to the partition cells?iy,. Finally, we define a uniform prior over the choice
of m. There aren; possibilities to chose the value of; (we can assign alt;-s to a single cluster,
assign each; to a separate cluster, and all the possibilities in between). Combining this with the
combinatorial calculations performed for (19) yields (20). |

Proof of Lemma 9 We first handle bound (21). We use the decompositfoh(Q||P) =
—EgInP(h) — H(Q) and bound—EgInP(h) and H(Q) separately. We further decompose
P(h)=P(h|1)-..-P(h|q) andQ(h) in a similar manner. TherEgInP(h) = — >, EqInP(hl;)
andH(Q) =3, H(Q(hl|;)). Therefore, we can treat each dimension separately.

By Lemma 8:

—EolnP(h|;) < (m; —1)Ilnn; +n;EgH (hist(h|;)). (23)

Hence, in order to boundEgInP(h|;) we have to bound the expected entropy of cluster cardi-
nality profiles of the hypotheses generateddhyRecall thatQ draws a cluste€’; for eachx; € X;
according tog(c;|x;) and that this process results in marginal distributjon ) = nizx q(cilzq)
over the normalized cluster sizes (this is where the uniform distributionb;mmeé in). To bound
EoH (hist(h|;)) we use the result on negative bias of empirical entropy estimates cited Iselew,
Paninski (2003) for a proof.

Theorem 10 (Paninski, 2003)Let X,.., Xy be i.i.d. distributed by(z) and letp(x) be their
empirical distribution. Then:

E,H(p) = H(p) —E, KL(pllp) < H(p). (24)
By (24)EgH (hist(h|;)) < H(g(c;)). Substituting this into (23) yields:
—EoInP(hl;) <n;H(q(c;)) + (m; —1)Inn;. (25)

Now we turn to bound-H(Q(h|;)) = Egln Q(h|;). To do so we bounth Q(h|;) from above.
The bound follows from the fact that if we drawy values ofC; according taj(c;|z;) the probability
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of the resulting type is bounded from above by ™H(CilX) —where H(C;X;) =
—ni zi.c; d(ci|Ti)Ing(ci|z;) (see Cover and Thomas, 1991, Theorem 12.1.2). Thus,
EolnQ(hl;) < —n;H(C;|X;), which together with (25) and the identify X;; C;) = H(q(c;)) —
H(C;|X;) completes the proof of (21).

To prove (22) we recall tha@ is defined for a fixedn. Hence,~EgInP(h|, ) = M1n|Y)|
and —H(Q(hly»)) < 0. Finally, since the priof?(m) over the selection ofn is uniform we
have —EqoInP(m) = Y%, Inn; and H(Q(m)) = 0, which is added to (21) by the additivity of
K L(Q||'P) completing the proof. [ |

3.4 PAC-Bayesian Analysis of Density Estimation with Grid Clustering

In this subsection we derive a generalization bound for density estimatiogrdtblustering. This
time we have no labels and the goal is to find a good estimator for an unknovirpjolmability
distributionp(z1, .., z4) over ad-dimensional product spacg x .. x X; based on a sample of size
N from p. As an illustrative example, think of estimating a joint probability distribution ofdgor
and documentsX; and Xs) from their co-occurrence matrix. The goodness of an estimgiarp

is measured by-E, ., ., Ing(X1,..,Xq).

By Theorem 5, to obtain a meaningful bound for a direct estimatiop(of,..,x4) from
p(z1,..,24) We needN to be exponential im;-s, since the cardinality of the random variable
(X1,..,Xq) is [];ni;. To reduce this dependency to be lineardil)n; we restrict the estimator
q(X1,..,X4) to be of the factor form:

d
xlv Y Z q C1,-+,C HQ(.’I)Z|01> (26)
C1,..,Cq 1=
= 5 gferened [T 8% e (27)
C1,-,Cd b =1 CI(CZ‘) e

We emphasize that the above decomposition assumption is only on the estraatbnot on the
generating distributiop. A graphical model corresponding to Equation (26) is given in Figure 1.b
Similar to the model for discriminative prediction, this is also a two-level randainizediction
model.

We select the hypothesis spdgédo be the space of hard partitions of the product spéce.. x
X4, as before; however, this time there are no labels to the partition cells. Teeajenessage of the
following two theorems is that the empirical distribution over the coarse partpiaces’; x .. x Cy
converges to the true one faster than the empirical distributiontver.. x X; converges to its true
counterpart. We also show that (27) can be used to extrapolate the distribuer cluster space
back toX; x .. x X; space and obtain better generalization guarantees. Next we state this more
formally.

As seen in the previous subsection, a distribut®g {q(c;|z;) }¢, is a distribution ovef,;,.
To obtain a hypothesis € H,; we draw a cluster for each; € X; according toy(c;|z;). The way
we have written (27) enables us to view it as a randomized prediction grogeglraw a hypothesis

h according toQ and then predict the probability @1, ..,24) asq(ct(z1),..,c(za)) I1; q(gfbﬁ),)),

wherec(z;) = h(z;) is the partition cell that; fell within k. Although (27) skips the process of
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drawing the complete partitioh and returns the probability dfry,..,z4) directly, the described
randomized prediction process matches the predictions by (27) and thbke®its analysis with
PAC-Bayesian bounds.

Let h € H be a hard partition oft} x .. x Xz and leth(z;) denote the cluster to which; is
mapped im. We define the distribution over the partition celts, .., c;) induced byp andh:

pr(ct,nea) = Y p(x1,.,2q),
T1y.9Td"
Vi h(zi)=c;
pu(ci) = Z p(zi).

xlh(xl):cl

We further define the distribution over partition cells induced by the empirisallosltionp(z1, .., z4)
corresponding to the sample ahdby substitution of instead ofp in the above definitions:

prlct,mea) = Y P(x1,..,2q),

T1y.9Td"
Vi h(zi)=c;

pule)= > plwi).

zi:h(zi)=c;

We also define the distribution over partition cells inducedsndp and its empirical counterpart:

d
Clv - C ZQ ph C1,-+,C Z p L1,y X H (Ci‘mi)7
=1

Z1,-,%d

Cz :ZQ Ph C’L ZP xz CZ|'T
h
d
clv - C ZQ ph C1,.,Cd) = Z ﬁ(xlv“vxd)HQ(ci‘mi)7

T1,-2d =1

Cl = ZQ ph C’L ZP :L"L Cl|xl
h

We extrapolatey,, po, pr, andpg to the whole spacg’; x .. x Xy using (27):

d .
pr(x1,.xq) = pr((zy), ... cl(2q)) H _p(zi)

(
_ T
pQ('Tla"axd)_ Z pQ(Clv"vcd)H )Q(Cl|xl)v

C1,--5Cd =1 pQ(Ci

=
=
=
8
~—

ﬁh(xla"yxd> :ﬁh(cill(xl)v "702(1’(1

=1
d 9 .
po(x1,..,xq) = Z ﬁg(cl,..,cd)n p(@:) q(cilz;).

C1,--,Cd =1 ﬁQ(Cl)

Note thatpo (1, ..,z4) is a distribution overt; x .. x Xy, which has the form (27) and is the closest
to the true distribution(x1,..,24) under the constraint thdy(c;|=;)}L, are fixed. Further, note
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that since we have no accesgfa,..,xz4) we do not knowpg(z1,..,24). In the next theorem we
provide rates of convergence of the distributigRgx1,..,z4), po(ci,..,cq), andpo(z;) based on
the sample to their counterparts corresponding to the true distributian.., z4).

Theorem 11 For any probability measurg over X} x .. x Xy and an i.i.d. sampleS of size N
according top, with probability of at leastl — ¢ for all grid clusteringsQ = {q(c;|x;)}%; the
following holds simultaneously

S (X C) + Ky

KL(pg(et,-.,ca)llpoler, .. ca)) < ~ (28)
and for all4
KLty < VDTG 29)
where
:imilnni M—1)In(N+1)+In % (30)
As well, with probability greater thah — §:
KL(po(z1,...za)[po(z1,...7a)) < 2 nil_(};fi;a) 2 (31)
where
d d
k@:}jmﬂm%+Jw+§:m—d—4th+4y4nd
=1 =1

Before we discuss and prove the theorem we point out that althpgghy ,..,z4) converges
to po(w1,..,24) it still cannot be used to minimize E,,, . ., npo(X1,.., X4), because it is not
bounded from zero. Also, we cannot construct a density estimator bpteing po(z1,..,24)
directly using Theorem 6, because the cardinality of the random variahle., X ) is [], n; and
this term will enter into the bounds. To circumvent this we take advantage éd¢ter form ofpg
and use the bounds (28) and (29). We define an estimatarhich is a smoothed version 95 in
the following way:

Prlct,...ca) +7

ph(cla"7cd) = 1+’YM 5
_ () +i
i)=————, 32
p(zi) [ (32)

pnle)= Y Blwi),

zih(xs)=c;

d
_ ()
Pr(x1, . 2q) = pr(c(z1), .., chi(zq)) | [ - ( :
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And for a distribution@ overH;:

palct,...cq) +7

D .. = 33
pQ(Clv ,Cd) 1+")/M ’ ( )
Zp xz Cz’xz = pQ(Ci) +7iQ(Ci)nz” (34)
L147in;
p '1:17 - ZQ ph Z1,y.-,T )
T b
= Z polc, - Hﬁ q(cilx;). (35)

C1,--,Cd

In the following theorem we provide a bound ef,,,, . ..)Inpo(X1,..,X4). Note that we take
the expectation with respect to the true, unknown distributidhat may have an arbitrary form
(i.e.,p is not restricted to be of the factor form (26)).

Theorem 12 For the density estimatopgo(z1,..,24) defined by equationg2), (33), (34), and

(35), —Epay,..o0)Po (X1, .., Xq) attains its minimum at/(Q) = Y—,— a(QW and . \/7 where

e(Q)is deflned by the right-hand side ¢(#8) and¢;-s are defined by the rlght hand side @9).
At this optimal level of smoothing, with probability greater than ¢ for all Q = {q(c;|x;)}¢,
simultaneously

o + K3, (36)

~ N Z;'i:lni
_Ep(;m,..,xd) hpo(Xla 0 Xd) < _I(pQ(Cla 0 Cd)) —|—1H(M)

whereI(po(ci,..,cq)) = [ZleH(ﬁQ(ci))] — H(po(e1,-.,cq)) is the multi-information between
C4,..,Cq with respect tgo(cy, .., ¢q), K1 is defined by30),

K3=¢

ZH €i/21nni+¢(5i)+¢(5i)] :

and the functiong and+) are defined in Theorem 6.

Discussion: We discuss Theorem 12 first. We point out that(x1,..,x4) is directly related to
po(zr1,..,xzq4) and thatpo(x1,..,x4) is determined by the empirical frequencjgs:, .., z4) of the
sample and our choice @ = {q(c;|z;)}&,. There are only two quantities in the bound (36) that
depend on the choice @: —1(po(c1,..,cq)) andy>; % I(X;;C;) [note that the latter also appears
in ¢(¢(Q) in K3]. Thus, Theorem 12 suggests that a good estimaidt,..,z4) of p(z1,..,z4)
should optimize the trade-off betweenl (pg(c1,..,cq)) and Y, % 1(X;;C;). Similar to Theo-
rem 7, the latter term corresponds to the mutual information that the hiddeerchasiables pre-
serve on the observed variables. Larger value(af;; C;) correspond to partitions oty .., Xy,
which are more complex. The first term/(po(ci,..,cq)), corresponds to the amount of structural
information onC};-s extracted by the partition. More precisely, we need to look at the value of
S H(p(x;)) —I(polc,..,ca)), whered, H(p(z;)) is a part ofK's and roughly corresponds to the
performance we can achieve by approximatinfg,,..,z4) with a product of empirical marginals
[L;p(zi). Thus,—I(po(ci,..,cq)) is the added value of the partition in estimatp@, .., z4) and
since} ", H(p(z;)) > I(po(c,-.,cq)) the bound (36) is always positive.
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The value ofI(pg(c1,..,¢4)) increases monotonically with the increase of the partition com-
plexity Q (we can see this by the information processing inequality, Cover and Thdraas).
Thus, the trade-off in (36) is analogous to the trade-off in (18): thétjmer © should balance its
utility function —I(po(c1,..,¢q)) and the statistical reliability of the estimate of the utility function,
which is related to_, %f(xi;ci). This trade-off suggests a modification to the original objective
of co-clustering in Dhillon et al. (2003), which is maximizationid{";; C2) alone (Dhillon et al.,
2003 discuss the case of two-dimensional matrices). The trade-off JrcéBaoe applied to model
order selection.

Now we make a few comments concerning Theorem 11. An interesting painat tiis theorem
is that the cardinality of the random variab|&’, .., X;) is [[;n;. Thus, a direct application of
Theorem 2 to boundS L(po(x1,..,24)||po(z1,..,24)) would introduce this term into the bound.
However, by using the factor form (27) ¢&(z1,..,24) andpo(x1,..,x4) We are able to reduce
this dependency tOM + >, n; —d — 1). This result reveals the great potential of applying PAC-
Bayesian analysis to more complex graphical models, which we explorefuntection 7.

3.4.1 RROOFsS

We conclude this section by presenting the proofs of Theorems 11 and 12.

Proof of Theorem 11The proof is based on PAC-Bayesian theorem on density estimation (The-
orem 2). To apply the theorem we need to define a pri@mver H and then calculat& L( Q|| P).

We note that for a fixed the cardinalities of the clusters are fixed. There arg[, n, disjoint
subspace$i; in H. We handle eacli  independently and then combine the results to obtain
Theorem 11.

By Theorem 2 and Lemma 9, for the prigY over H,; defined in Lemma 8, with probability

greater than — ﬁ we obtain (28) for eact ;. In addition, by Theorem 5 with probability

greater tharl — d+1 inequality (29) holds for eack’;. By a union bound over thf[, n; subspaces
of H and thed variablesX; we obtain that (28) and (29) hold simultaneously for@lhnd X; with
probability greater thath — .

To prove (31), fix some hard partitignand letc} = h(x;). Then:

KL(pp(x1,...zq)||lpn(z1, ... 24))
= KL(pn(1, .2, (21), -, i (@a))lpn (21, ., 20, (21), ., i (2a)))
= KL(pn(c1,.,ca)llpalcr, . ca))
+ K L(pn (w1, ., zalct (21), -, i (a)) P11, - wal e} (1), .., clf (24)))

d

= KL(pn(c1, - ca)llpn(cr, -, ca)) + Y K L(pn(xilc} (x:)) |lpn (2ilc} ()
=1
d

= K L(pn(ct,-.,ca)llpn(cr,-.,c +ZKL (i) lp(2i)) = > KL(pn(ci)llpn(ei))
=1

SKL(ﬁh(Cla - C )th C1,-+,C +ZKL xl ”p xl))
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And:

d
ESeNKL(ﬁh(Il,..,xd)llph(:m,..,xd)) < (ESeNKL(ﬁh(Cl,-~7Cd)th(Cl7-~7Cd))) HESQNKL@(%)HP(%))
i=1
(N+1)M+ZL . d+1)

where the last inequality is by Theorem 3. From here we follow the lines giribef of Theorem
2. Namely:

Eg [Ep(h)eNKL(ﬁh(wl,..,xd)||ph(x1,..,2d)):| = Ep() [ESQNKL(ﬁh(zl,..,xd)||ph(xl,“,xd))}

(N+1)M+Zz L n d+1)

Thus, by Markov's inequalityfp eV K E@n (@1 za)lpn(@r2a)) < L(N 4 1)MA2m= (A1) ith
probability of at leastt — ¢ and (31) follows by the change of measure inequality (8) and convex-
ity of the KL-divergence, when the prid? over{ defined in Lemma 8 is selected (this time we
give a weight of(T],n;) ! to each#,; and obtain a prior over the whol). The calculation of

K L(Q||P) for this prior is provided in Lemma 9. [ |

Proof of Theorem 12

_Ep(l‘h--yxd) lnﬁQ(Xl, .oy Xd) = _EP(I17--,Id) lnEg(h)ﬁh(le vey Xd)
§ _EQ(h)Ep(ac1,..,acd) lnﬁh(Xl, cey Xd)

~ PX;
= —Eo(iEp(e,..c0) MB(CT (X1), -, Cg (Xa)) th(c(*h())())

= ~Eo) [Ep er,sc) m(C1. C) | = D By (X )+ 2 BBy, ) I P(C)

< —Egu {Eph(cl,..,cd)lnﬁh(cla --,Cd)} = By Inp(X +ZEpQ yInpo(Ci)
At this point we use (14) to bound the first and the second term and the bmued (16) to bound
the last term and obtain (36). [ |

4. Algorithms

In the previous section we presented generalization bounds for disctiveipeediction and density
estimation with co-clustering. The bounds presented in Theorems 7 anddLfdhany prediction
rule @ based on grid clustering of the parameter sp¥ce .. x X,;. In Seldin (2009) it is shown
that ford = 1 the global minimum of bound (18) can be found efficiently. Howeverdfor2 it can
be exponentially hard to find the global minimum of both (18) and (36). Fyrétthough we show
in the applications section that bound (18) is remarkably tight, its tightnesdittdre snsufficient
for practical purposes. In this section we suggest how to replace thedbavith parameterized
trade-offs that can be further fine-tuned, for example, via crokgaten, to improve the usability
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in practice. The substitution of the bounds with parametrized trade-offs miatecompromise on
the rigor of the analysis: first, the bounds hold simultaneously for all the¢isotuifound by min-

imization of the parameterized trade-offs and, second, the parameter tohdeeoffs can also be
tuned by substituting the result of trade-off minimization back into the correipg bound, thus
providing an estimate on a local minima of the bound.

4.1 Minimization of the PAC-Bayesian Bound for Discriminative Predicion with Grid
Clustering

We start with minimization of the PAC-Bayesian bound for discriminative predidiesed on grid
clustering (18) suggested in Theorem 7. We rewrite the bound in a slighiéyetit way in order to
separate terms which are independent of the conditional distributiads in

d T(X. (.
H(L(Q)|L(Q)) < Z= M CI TR (37

where
d

K=Y milnn;+Mn|Y|+ fln(4N) —Inod. (38)
i=1
Note thatK depends on the number of clusters used along each dimension, but not on a
specific form of a grid partition. Once the number of clusters used alorigdienension has been
selected K is constant.
The minimization problem corresponding to (37) can be stated as follows:

Zgzl nJ(XZ, Cl) + K
N .

inn L st kI(L(Q)|L)= (39)

It is generally possible to find a local minimum of the minimization problem (39) tyresing
alternating projection methods - see, for example, Germain et al. (2008uébran approach to
solving a similar minimization problem for linear classifiers. We take a slightly diffeapproach
that further enables us to compensate for the imperfection of the bouinds./Sis constant(Q)
depends on a parameterized trade-off betwked) and >, n;I(X;;C;), which can be written
as follows:

whereg is the trade-off parameter. The correspondlng minimization problem is:

d
Fmin(8) = min BNL(Q)+> ni(X;;C;). (41)
i=1

In general, every value of yields a different solution to the minimization problem (41). The
optimum of (39) (which is computationally hard to find) corresponds to soraeifgpvalue off.
Hence, by scanning the possible valueglpminimizing (41), and substituting the resultifigQ)
and I(X;;C;) back into (18) it is virtually possible to find the optimum of (39) (only virtually,
because finding the global optimum of (41) is computationally hard as wellyeker, the trade-off
(40) provides an additional degree of freedom. In cases where tnedl(d8) is not sufficiently
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tight for practical applications it is possible to tune the trade-off by determithie desired value of
(3 via cross-validation instead of back-substitution into the bound.

The minimization problem (41) is closely related to the rate distortion trade-offannration
theory (Cover and Thomas, 1991). To find a local minimumAQ, 3) we adopt an EM-like
alternating projection procedure, very similar to the Blahut-Arimoto algorithmmfmimization
of the rate distortion function (Arimoto, 1972; Blahut, 1972; Cover andnias, 1991). We note
that ford > 2 the alternating projections involve more than two convex sets and hence lougla
minimum can be achieved. (Fdr= 1 the procedure achieves the global minimum.) For the sake
of simplicity of the notations we restrict ourselves to the cas¢ 6f2, but it is straightforward to
extend the algorithm to higher dimensions.

The Lagrangian corresponding to the minimization problem (41) is:

E(Qyﬁ)ZBNL +an XuC +Z Z xz Zq Cz‘xz +Z 01702 Z y‘CI;CQ)
)

1=1lx;€X; C1,C2

wherev-s are Lagrange multipliers corresponding to normalization constrairtg(epz;) }7, and
q(y|c1,c2). In order to minimize£(Q, 5) we write L(Q) explicitly:

LQ) = Y plar,22,9) Y a1, 22)l(y,y)

1,22,y y’
= Z p(z1,72,Y) Z q(y'ler, c2)q(cr|zr)g(ealz2)l(y, ')
T1,22,Y y'sc1,c2
:Zl (.) D a(|er,e2) Y aler|zr)p(ar, xa,y)q(cala).
c1,C2 1,72

We further derivel.(Q) with respect taj(c; |z1). The derivative with respect ig{c; |2 ) is similar.

8L

l - 42
8q Cl‘l'l Z Y, y Z q Yy |CI7CQ $1,x2’y)q(02|g}2) ( )

v,y T2,C2

Recall thatf(Xi;Ci) T} S ese; 4(cil@i) In ((‘m)l) andq(ci) = ;- 3, a(cilx;). Hence the deriva-
tive of n;1(X;;C;) is

8nz [(X;;C5) n
(Cz’mz) Q(Cz) '

q(cilx;)

Derivatives of the remaining terms ii(Q, 5) provide normalization for the corresponding vari-
ables. Thus, by taking the derivative 6{Q, 3) with respect tay(¢;|x;), equating it to zero and
reorganizing the terms we obtain a set of self-consistent equations thbé ¢eerated until conver-
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whered|[-, ] is the Kronecker delta functio% is given by (42), and the subindéxdenotes

the iteration number. Equations (43) and (44) correspond to minimizatiﬁx@@j with respect to
q(y|c1,c2) and generally depend on the loss function. For the zero-oneydss, c2) is the most
frequent value ofy appearing in th€c,co) partition cell; for the absolute loss it is the median
value; for the quadratic loss it is the average value. We summarize the ahganitihe Algorithm
We note that for the quadratic loss the loss minimigdr , c2), which is the average value
in this case, can fall out of the finite space of lak@lsHowever, the algorithm can still be applied

1 box?2

SELDIN AND TISHBY

ale) = - Y aeile),

T z;
qi(c; _gN-2LQy)
qev1(cilzs) = Zti(l(i)e AN Bateilzy) |
(A

Zia () =D e (cilzi),

Yir1(c1,c2) :argnll/i/nZl(y,y/) > g (erlz)plar, w2, y) g (c2lz2),
Yy

Z1,T2

qe1(yler,c2) = 5[y,y£‘+1(cl,02)],

and a bound can be obtained by post-process quantization, see ixdpémddetails.

Algorithm 1 Algorithm for minimization ofF(Q, ) = AN L(Q) + >2_, n;I(X;; C;) by alternat-

ing projections.

Input: p(x1,x2,y), N, ni, na, my, me, l(y,y'), |V, 5.
Initialize: qo(c;|z;) andqo(y|c1,c2) randomly.

t<+0
qr(ci) < o X, gr(cilzs)
repeat

fori=1,2do

_ _pN-2L@n)
qt+1 (Cz‘xz) — qt(ci)e A dq(c;lz;)
Zii1 (i) < 2o, a1 (cilai)

e qit1(cilzs)
qi+1 Cz|a7z> — Zit1(z7)

(
Grr1(ci) < 1o Do, g (cilzi)
Yi1(c1,e2) <= argming 35 1y, ¥') Xog, o, @e1(c1|21)D(21, 22, Y) qr1 (c2|22)

qev1(yler, c2) < Oy, yf 1 (c1,c2)]
t+—t+1

end for

until

convergence

return {q:(c;|z:)}2 1, q(y|c1,co) from the last iteration.

2. Matlab implementation of the algorithm is availablét://www.kyb.mpg.de/ ~seldin .
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4.2 Minimization of the PAC-Bayesian Bound for Density Estimation

Similar to the PAC-Bayesian bound for discriminative prediction, the PACeBiay bound for den-
sity estimation (36) depends on the trade-off:

2

G(Q,B) = —BNI(palci,c2)) + D> _nil (Xi5Cy).

=1

All other terms in (36) do not depend on the specific form of grid partithn(As in the previous
subsection we restrict ourselvesde= 2.) Unfortunately,—I(po(c1,c2)) is concave ing(c;|z;)-s,
wheread (X;; C;) is convex ing(c;|«;). Therefore, alternating projection methods are hard to apply.
InsteadG(Q, ) can be minimized (with respect ) using sequential minimization (Slonim et al.,
2002; Dhillon et al., 2003). The essence of the sequential minimization mettiwat ise start with
some random assignmefc;|z;) and then iteratively take;-s out of their clusters and reassign
them to new clusters, so th@{Q, 5) is minimized. This approach leads to a hard partition of the
data (i.e., each; is deterministically assigned to a singig@. The algorithm is given in Algorithm

2 box.

Algorithm 2 Algorithm for sequential minimization ofG(Q,3) = —BNI(pgo(ci,c2)) +
Z?:l nJ(X,, Cl)

Input: p(z1,22), N, n1, na, mi, ma, 3.

Initialize: qo(c;|z;) randomly.

repeat
for all z; € X} and allzy € X5 according to some random order ovérandX’s do
for i=1,2do

Selectr; € X; according to the order selected above.
ComputeG(Q, 5) for each possible assignmentafto ¢; € {1,..,m;}
Reassign; to ¢; such thag(Q, ) is minimized.
Updatepo(ci,c2) <= >y, 2, d(c1]@1)p(z1, 22)q(c2|22).
end for
end for
until no reassignments further minimig€Q, 3).
return {q(c;|z;)}2_; from the last iteration.

5. Applications

In this section we illustrate an application of the PAC-Bayesian bound foriisative prediction
based on co-clustering (18) and Algorithm 1 for minimization of the cormediog trade-off (40)

on the problem of collaborative filtering. The problem of collaborativerfilig was discussed in
the previous sections. The goal of collaborative filtering is to complete thenmisstries in a
viewers-by-movies ratings matrix. This problem attracted a great dedllevit@n recently thanks

to the Netflix challengé. Since our goal here is mainly to illustrate our approach to co-clustering
via the PAC-Bayesian bounds rather than to solve the large-scale cleallangoncentrate on a

3. Seéehttp:/lwww.netflixprize.com/rules
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much smaller MovieLens 100K data $efThe data set consists of 100,000 ratings on a five-star
scale for 1,682 movies by 943 users. We take the five non-overlappiitg afpthe data set into
80% training and 20% test subsets provided at the MovieLens websitetr&¥s that the training
data are extremely sparse - only 5% of the training matrix entries are populdiedeas 95% of
the values are missing.

To measure the accuracy of our algorithm we use the mean absolute MA&) (neasure,
which is commonly used for evaluation on this data set (Herlocker et al.)2088)(z1, x2,y) be
the distribution ovef X, X»,Y’) in the test set. The mean absolute error is defined as:

MAE= 3" p(x1,22,9) Y a(/|z1,22)ly —y/|-

1,22,y Y

In previous work the best MAE reported for this data set was 0.73 (Eleztoet al., 2004).
It is worth recalling that the ratings are on a five-star scale, thus a MAE7& Means that, on
average, the predicted rating is 0.73 stars (less than one star) far feoobslerved rating. The
maximal possible error is 4 (which occurs if we predict one star insteadeobdfivice versa), which
determines the scale on which all the results should be judged.

In Seldin et al. (2007) we improved the MAE on this data set to 0.72 by usingnarim
Description Length (MDL, Ginwald, 2007) formulation of co-clustering. In the MDL formula-
tion the co-clustering solutions are evaluated by the total description lengibhwncludes the
length of the description of assignmentsagfs to ¢;-s together with the length of the description
of the ratings given the assignments. For fixed numbers of clusters)(used along each di-
mension, the MDL solution corresponds to optimization of the trade-off (40) lagarithmic loss
L(Q) = 1(Y;C1,C,) andB = 1 (wherel(Y;C1,Cs) is the empirical mutual information between
the clusters and the label). In the MDL formulation of co-clustering develap8eldin et al. (2007)
only hard (deterministic) assignmentsigfs toc;-s were considered. The best performance of 0.72
was achieved at; = 13 andms = 6 with below 1% sensitivity to small changesqim; andmsy
both in the description length and in the prediction accuracy. The deviatiardigtion accuracy
between the five splits of the MovielLens data set was below 0.01.

In the present work we implemented Algorithm 1 for minimization/(fQ, 3) as a function of
Q and applied it to the MovieLens data set. There are four major differdratesen Algorithm 1
and the MDL algorithm suggested in Seldin et al. (2007) that should be Hhidédg

e Algorithm 1 directly optimizes a given loss function (MAE in the case of Movigt)erather
than the description length, which is only indirectly related to the loss function.

e Algorithm 1 considers soft assignmentsugfs toc;-s.

e Algorithm 1 is an iterative projection algorithm rather than the sequential optiimizalgo-
rithm suggested in Seldin et al. (2007). Note that this point is neither positiveegative,
since sequential optimization algorithms are very powerful and especiallgréthdases can
outperform iterative projection methods. The advantage of iterativegii@jernethods is in
their mathematical elegance, faster convergence (although in the haslitasay be fast
convergence to trivial, but strong attractors), and the ability to handi@ssignments.

4. Available athttp://www.grouplens.org
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(a) Bound (18). (b) Test Loss (zoom into subfigure a.).

Figure 3: Co-clustering of the MovieLens data set into 13x6 clustersré&-ig) shows the value of
bound (18) together with the MAE on the test set as a functiofi. dfigure (b) zooms
into MAE on the test set. The values @fare on a log scale. See text for further details.

e Algorithm 1 considers arbitrary values gf (However, the algorithm in Seldin et al. (2007)
can be easily extended to handle arbitrary value§.pfAs we will show below, the value
of § =1 dictated by the MDL formulation is not always optimal and MDL solutions can
overfit the data. This observation was already made previously in a ¢arftether learning
problems by Kearns et al. (1997).

We conducted three experiments with Algorithm 1. In all three experimentsxee ihe num-
bers of clustersn; andms used along both dimensions and analyzed the MAE on the test set and
the value of bound (18) as a function 6f In each experiment, for each of the five splits of the
data set into training and test sets mentioned earlier, and for each valugeolpplied 10 random
initializations of the algorithm. The solutio@ corresponding to the best valueBfQ, 3) per each
data split and per each value®fvas then selected. We further calculated the average of the results
over the data set splits to produce the graphs of the bound values ahthtests functions of3.

In the first experiment we verified that we are able to reproduce thésesihieved previously
in Seldin et al. (2007). We set; = 13 andmsy = 6, as the best values obtained in Seldin et al.
(2007) and applied Algorithm 1. The results are presented in Figure 3m#e the following
conclusions from this experiment:

e The performance of Algorithm 1 is comparable to the performance achiev@eldin et al.
(2007) with sequential optimization.

e The optimal performance is achievedstlose to one, which corresponds to the MDL func-
tional optimized in Seldin et al. (2007).

e The values of the bound are meaningful (recall that the maximal possilsiéslds thus the
bound value of- 1.25 is informative).

e The bound is 25%-75% far from the test error.
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(a) Bound (18). (b) Test Loss (zoom into subfigure a.).

Figure 4: Co-clustering of the MovieLens data set into 50x50 clustersiré&ig) shows the value

of bound (18) together with the MAE on the test set as a function éfigure (b) zooms
into MAE on the test set. The values @fare on a log scale. See text for further details.

e The bound does not follow the shape of the test loss. According to thedbiouthis task

it is best to assign all the data to one big cluster. This is explained by the &dhth is a
hard problem and the improvement in the empirical Iﬁé@) achieved by co-clustering is
relatively small. For the best co-clustering solution fo@r(@) ~ 0.67, whereas if we assign
all the data to one big clustér(Q) ~ 0.89. Thus, the improvement ih(Q) achieved by the
clustering is only about 30% while the tightness of the bound is 25%-75%. i kisarly
insufficient to apply the bound as the main guideline for model order selectiowever,
it is possible to set the value ¢f in the trade-off7(Q, 3) via cross-validation and obtain
remarkably good results. It should be pointed out that the trad&+af, ) was derived from
the bound, thus even though the analysis is not perfectly tight it produceseéful practical
result.

Note that in the setting of this experiment the small valuespfandms provide “natural
regularization”; thus there is no significant decrease in performanes wile increase’
beyond 1. This will change in the following experiments.

The power of bound (18) and the trade-8fQ, 5) derived from the bound is that it penalizes

the effective complexity of the solution rather than the gross number of dusted. The practical
implication of this property is that we can initialize the optimization algorithm with moretetss
than are actually required to solve a problem, and the algorithm will automatichligtahe extent
to which it uses said available clusters. This property is verified in the folptwie experiments. In
the first experiment we initialized Algorithm 1 witth; = m9 = 50 clusters along each dimension.
The result of optimization ofF(Q, 3) as a function of3 is presented in Figure 4. We make the
following observations based on this experiment:

e The best performance (the 0.72 test MAE) achieved in the previous seitimg:; = 13 and

mo = 6 is achieved in the new setting with; = my = 50 as well. This supports the ability
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Figure 5: Co-clustering of the MovieLens data set into 283x283 cludtagare (a) shows the value
of bound (18) together with the MAE on the test set as a function éfigure (b) zooms
into MAE on the test set. The values @fare on a log scale. See text for further details.

of the algorithm to operate with more clusters than are actually required bydabem and
to adjust the complexity of the solution automatically.

¢ Note that the optimal value df in this setting is below 1. In particular, this implies that the
MDL formulation, which corresponds t6 = 1 would overfit in this case. The role of the
regularization parametéet is also more evidently expressed here compared to the preceding
experiment.

e The values of the bound, although less tight than in the previous casstjlaneeaningful.
The shape of the bound becomes closer to the shape of the test losgglalindight of the
preceding experiment we would not attribute importance to it, and would stitpieeset the
value of 5 via cross-validation.

In our last experiment we went to the extreme case of taking= my = 283 = v/N. Note
that the size of the cluster spagé = myms in this case i80,089 and is equal to the size of the
training set,N = 80,000. The implication is that extensive use of all available clusters can result
in a situation where each partition cell contains an order of a single oligervevhich is clearly
insufficient for statistically reliable predictions. Thus, in this experiment timaber of clusters
provides no regularization at all and the only parameter responsibledatarization of the model
is the trade-off parametét. The result of the experiment is presented in Figure 5. We highlight the
following points regarding this experiment:

e The best performance (the 0.72 test MAE) is achieved in this experimarliad his further
stresses the ability to have full control over regularization of the model vanpeters of the
trade-off 7(Q, 3).
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Figure 6: The values of(X;; C;) in the minimizedF(Q, 3) corresponding to Figures 3, 4, 5. We
show the values of (X;;C;) that were obtained after minimization & (Q, ) by Q
when clustering the MovieLens data set into 13x6, 50x50, and 2831a8&rs.

e The role of the regularization parameteis further increased in this experiment compared
to the previous two. The optimal value gfhere is clearly below 1 (the optimal~ 0.5),
suggesting that the MDL solution would be overfitting.

e The value of the bound still remains meaningful, although it is already quifedfarthe test
error. The shape of the bound does not seem to provide usefulafimn and the value ¢f
should be set via cross-validation.

In Figure 6 we show how the mutual informatiﬁth; Ch) andf(Xg; () changed in the three
experiments as we optimizedl( Q, 3) by Q for increasing values of. An important observation to
be made from these graphs (by relating them to Figures 3, 4, and 5) is tdhtliree experiments
the best prediction performance was achieved at roughly the same vathesmutual information
I(X1;C1) andI(X»;Cs). For clustering into 13x6 clusters prediction performance of MAE equal
to 0.72 and slightly lower was achieved @awalues starting from 0.7 and larger, whéfX;C1)
was in the range between 1.1 and 2.1 afl(lﬁf%(b) was in the range between 0.8 and 1.5; for
clustering into 50x50 clusters prediction performance of 0.72 and slightlgriewas achieved for
(3 values in the range between 0.5 and 1.0, whek; ; C;) was in the range between 1.1 and 2.2
andf(Xg;Cg) was in the range between 0.8 and 1.7; and for clustering into 283x283rsltiste
optimal prediction performance of slightly below 0.72 was achievedfer0.5 and at this value of
5 we hadf(Xl;Cl) =1.1 andf(Xg;C’g) = 0.8. We see that although the three experiments were
initialized with different numbers of clustera; andmo, the optimal prediction performance was
achieved at roughly the sameéfective complexitgf the solution (measured by X;; C;)-s) and that
the trade-off parametet took care of regularization of the model.

6. Probabilistic Matrix Tri-Factorization

For d = 2 the discriminative prediction and density estimation models considered in this gape
be seen as two forms of matrix tri-factorization and for higher dimensian2 as Tucker decom-
positions. In this section we discuss this relation in more detail, starting fromisherdinative
prediction problem.

3628



PAC-BAYESIAN ANALYSIS OF CO-CLUSTERING AND BEYOND

6.1 Probabilistic Matrix Tri-Factorization for Discriminative Predictio n

Ford = 2 Equation (17) accepts the form:

q(y|z1,72) = Zq c1lz1)q(yler, c2)q(ez|z2).
C1,C2

If q(y|c1,c2) is restricted to be a delta distribution then it can be replaced by a fungtiancs).
This means that instead of drawingin the cluster product space according to a distribution
q(y|c1,c2) itis predicted deterministically by(c;,c2). Note that the assignment of-s toc;-s re-
mains stochastic. The restriction of determinigftig|c;, co) does not limit the model significantly,
since for many loss functions, such as zero-one, absolute, or gigddsses the optimal prediction
rule is deterministic in the cluster product space in any case. At the same timeuwhésbderived
previously are still valid, since they are valid for any distributidp|c;, c2) and in particular for the
delta distribution. The restricted model accepts the form:

flxi,m2) = qler]an) fer, ) qlcalws),
C1,C2

which can be written as a matrix product:
A=Q{FQy, (45)

where
Qi=lq(cilz))]  (i=1,2)

arem,; x n; left stochastic matric@smappingz;-s to their clusters;-s, and

F=[f(c1,¢2)]

is anmy x mg matrix describing what happens in the cluster product space.

Given a data matrix4A (probably sparse) and a trade-off parametetlgorithm 1 provides
a locally optimal approximation ofl in the form of (45) regularized by the mutual information
preserved in); and@-. Note that Algorithm 1 naturally handles the missing entrieglinThe
productQ? FQ, can then be used to complete the missing entries.

Matrix factorization of the form (45) was already considered in Banegfes. (2007) without
regularization. However, in Banerjee et al. (2007) the matidgzeand()-, are restricted to determin-
istic assignments af;-s toc;-s (the entries of); and@- are in{0,1}), whereas in the factorization
proposed her&®, and()- are stochastic matrices amdis arbitrary. Matrix tri-factorization consid-
ered in Ding et al. (2006); Yoo and Choi (2009a) is more closely relatadhtoix tri-factorization
for density estimation discussed in the next subsection. We note that the Bagesian approaches
to matrix factorization (Shan and Banerjee, 2008; Salakhutdinov and Mad8) are three-level
stochastic models and unlike the two-level stochastic model in (45) cannetitben as a simple
product of matrices. The following list of positive properties of probatidisatrix tri-factorization
suggested here further distinguishes it from other forms of matrix faetasiz, including singular
value decomposition (SVD) (Strang, 2009; Golub and Loan, 1996}negative matrix factoriza-
tion (Lee and Seung, 1999, 2001), low-rank matrix factorization (8rebal., 2005a), and maxi-
mum margin matrix factorization (Srebro et al., 2005b; Srebro, 2004)s#iefy only parts of the
list:

5. A left stochastic matrix is a matrix of non-negative real numbers with each colummming up to 1. In aight
stochastic matrix each row sums up to 1.
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Figure 7: A graphical model for simultaneous tri-factorization of multiple matr{eguations (46)-
(48)). The mapping of; to C; is modeled by a corresponding mattjs and labelsy;
correspond to prediction tasks in the respective mattiges

e It has a clear probabilistic interpretation.

e |t naturally handles missing values.

e The factorized matrixd can be arbitrary (not necessarily positive or positive definite).

e Overfitting can be controlled via the regularization paramgter

e The generalization bound derived for co-clustering applies to this fbrmatrix factorization.
e |tis a two-level stochastic model of the data.

e The model can be optimized by iterative projections.

e The model achieves state-of-the-art results in prediction of missing matriren

We leave a wider practical comparison of the different matrix factorizatichoas as a subject for
future work.

A promising direction for future research suggested in Seldin (2009)raleghendently in Yoo
and Choi (2009b) is to apply matrix tri-factorization in tasks, where multipldedldata sets are
considered. For example, ldy be a matrix of viewers-by-viewers propertiel, be a collaborative
filtering matrix, andAs be a matrix of movies-by-movies properties. We can look for simultaneous
tri-factorizations, such that:

A~ QTFQs (46)
Ay ~ QF Q3 (47)
Az ~ Q5 F3Qu. (48)

In other words, the clustering of viewers into clusters of viewers is shagtween factorizations of
A; and A; and the clustering of movies into clusters of movies is shared between fatitmmiz of
Ao andAs. An unregularized form of simultaneous tri-factorization for collabogafiltering was
already explored in Yoo and Choi (2009b). Problems of a similar fornalsefrequent in bioinfor-
matics, when multiple experiments with partial relations are considered. FowpéxaAlter et al.
(2003) applied generalized SVD (GSVD) to compare yeast and humaoyod#i-gene expression
data sets. In their experiment it is natural to create separate systemstefsfosyeast and human
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genes, but a common system of clusters for the cell-cycle time points. Agwaeated out, prob-
abilistic matrix tri-factorization suggested here has several advantageS@b (and consequently
over GSVD). Hence, it would be interesting to apply it to this type of problem.

6.2 Probabilistic Matrix Tri-Factorization for Density Estimation

The model for discrete density estimation based on co-clustering in Equa@ipoahn also be written
as matrix tri-factorization (fod = 2):

A=RTGR,, (49)
where ()
q\z; .
Ri: Zi|Cq :|: Ciﬂfi] 22172
[q(ilcs)] o) q(cilz) ( )
arem; x n; right stochastic matrices of probabilities of generaties givenc;-s and
G =[q(c1,¢2)]

is anmy x mo matrix of joint probability distribution of; andcs. As already mentioned, this model
is appropriate for co-occurrence data analysis, such as wordvatico-occurrence matrices. An
unregularized form of such decomposition was already considered o éial. (2006) and Yoo
and Choi (2009a). Hered is assumed to be a joint probability matrix (i.e., the entriesiadre
non-negative and sum up to 1). In practidds an empirical joint probability distribution matrix
and factorization (49) regularized by the mutual informatid(X;; C;) can be used to regularize
the estimation of the joint probability distribution. Algorithm 2 can be used to finda loptimum

of such factorization given the regularization paramgtemhe generalization bound developed in
Theorem 12 holds for this factorization. We remind the reader that Algo2tbperates with deter-
ministic assignments af;-s to clusterg;-s. Although the resulting reverse conditional distribution
q(z;|c;) is not deterministic, the algorithm does not explore all possible solutions tortbtiden.
Developing an algorithm for finding a local optimum of the regularized de@oitipn with mixed
memberships af;-s is a challenging direction for future research.

7. PAC-Bayesian Analysis of Graphical Models

The analysis of co-clustering presented in Section 3 holds for any dinmedsiddowever, the
dependence of the bounds (18), (31), and (36)an exponential because of the =[], m;

term that they involve. This term is reasonably small when the number of diomsnis small

(two or three), as in the example of co-clustering. However, as the nuoflomensions grows,

this term grows exponentially. Thus, high dimensional tasks require adtiffé¢reatment. Some
improvements are also possible if we consider discriminative prediction basedingle parameter

X (i.e., in the case ofl = 1), but the one-dimensional case is beyond the scope of this paper and
we refer the interested reader to (Seldin and Tishby, 2008; Seldin) 2@0®@rther details. In this
section we suggest a hierarchical approach to handle high-dimengiatédéms. We then show
that this approach can also be applied to generalization analysis of gabaiptuidels.

7.1 Hierarchical Approach to High Dimensional Problems ¢ > 2)

One possible way to handle high dimensional problems is to use hierarchitigibps, as shown
in Figures 8 and 9. For example, the discriminative prediction rule comeksipg to the model in
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Figure 8: lllustration of (a) a graphical model for discriminative predic@ma (b) its moralized
counterpart. The illustration is faf = 4.

Figure 8.a is:

W~

q(ylry, ..,z Zq yldy,ds) Z Hq (di]cai—1,c2) H (cjl@y).- (50)

dy,d2 C1,..,c41=1 7j=1

And the corresponding randomized prediction strategy is

Q = {{q(cilzs)}o1, {a(dileai—1,c0:) }2_1,q(y|d1,d2) }. In this case the hypothesis space is the
space of all hard partitions af;-s to ¢;-s and of the pairgcs;—1,c2;) to d;-s. By repeating the
analysis in Theorem 7 we obtain that with probability greater thar:

. B+ By + | Dq||Ds|1 Lin(4aN) —1né
KI(E(QIL(Q)) < 1+ B2+ |D1]] 2!11;!37\+2n( ) n’ (51)

where

4
By = Z (nif(Xi;C’i) +my lnni> ,
i=1
2
By=) ((in—lm%)j(Di;CQi—lyCQZ') + | D ln(m%—lm%)) :
i=1

Observe that thé//In|Y| term in (18), which corresponds to the cliqu€,,Cs,C3,Cy,Y), is
replaced in (51) with terms which correspond to much smaller cliqGesCs, D), (Cs,C4, Do),
and(D1, D,Y). This factorization makes it possible to control the complexity of the partition and
the tightness of the bound. In a similar way it is possible to derive factorizaldgs to bounds (31)
and (36) that apply to density estimation hierarchies as in Figure 9.

We provide an illustration of a possible application of the models in Figure 9. ifreabat
we intend to analyze protein sequences. Protein sequences arecgsgoeer the alphabet of 20
amino acids. Subsequences of length 8 can réaéh= 256 - 108 instances. Instead of studying
this space directly, which would require an order26f - 10° samples, we can associate each
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Figure 9: lllustration of (a) a directed model for density estimation and (b) itsalmation and
application to sequence modeling. The sequence in subfigure (b) is an &anagibse-
guence of length 8 of a protein sequence. EAgltorresponds to a pair of amino acids
in the subsequence.

with a pair of amino acids - see Figure 9. The subspace of pairs of amir®iacdly20? = 400
instances and local interactions between adjacent pairs of amino acidasiprbe studied. We can
cluster the pairs of amino acids into, say, 20 clustérsdnteractions between adjacent paird 6t

in such a construction correspond to interactions between quadru@esrod acids. The subspace
of quadruples i20* = 16 - 10* instances. However, the reduced subspace of paifg-sfis only
202 = 400 instances. Thus, we have doubled the range of interactions, but refratitiee same
level of complexity. We can further cluster pairs@f-s (which correspond to quadruples of amino
acids) intoD;-s and study the space of 8-tuples of amino acids while remaining at the saheflev
complexity.

The above approach shares the same basic principle already distugisedollaborative fil-
tering task: by clustering together similar pairs (and then quadruples) obaanids we increase
the statistical reliability of the observations, but reduce the resolution abhwieqrocess the data.
Bound (51) suggests how the trade-off between model resolution atististh reliability can be
optimized.

7.2 PAC-Bayesian Analysis of Graphical Models

The result in the previous subsection suggests a new approach to ¢egrajphical models by
providing a way to evaluate the expected performance of a graphicall modeew data. Thus,
instead of constructing a graphical model that fits the observed dataéisser construct a model
with good generalization properties. The analysis used to derive b&dna#n be applied to any
directed graphical model in the form of a tree (as in Figures 8.a, 9.a) or italired counterpart
(as in Figures 8.b, 9.b). The analysis shows that the generalization pbtheise graphical models
is determined by a trade-off between empirical performance and the awfomntual information
that is propagated up the tree. It is important to note that the PAC-Bayesigtl is able to take
advantage of the factor form of distribution (50) and that bound (54¢dés on the sizes of the tree
cligues, but not on the size of the parameter spéce .. x X. Further, a prior can be added over all
possible directed graphs under consideration to obtain a PAC-Bayesiad khat will hold for all
of them simultaneously. Development of efficient algorithms for optimizationetrie structure
and extension of the results to more general graphical models are keyyatisefor future research.

3633



SELDIN AND TISHBY

8. PAC-Bayesian Analysis of Graph Clustering and Pairwise Qlstering

In this section we show that our approach to predictive formulation ofpersised learning prob-
lems and their subsequent PAC-Bayesian analysis can also be applieigibeaeraph clustering
(and, consequently, to pairwise clustering, which can be regardddsasring of a graph with edge
weights corresponding to pairwise distances). Graph clustering is antanptwol in data analysis
with a wide variety of applications including social networks analysis, biométics, image pro-
cessing, and many more. As a result, a multitude of different approaclgeapb clustering were
developed. Examples include graph cut methods (Shi and Malik, 20089trapclustering (Ng
et al., 2001), information-theoretic approaches (Slonim et al., 2005t fust a few. Comparing
the different approaches is usually a painful task, mainly because #i@each of these cluster-
ing methods is formulated in terms of the solution: most clustering methods starfibingesome
objective functional and then minimize it. But, for a given problem, how cache®se whether to
apply a graph cut method, spectral clustering, or an information-theagtimwach?

Here we formulate weighted graph clustering as a prediction probl&imen a subset of edge
weights we analyze the ability of graph clustering to predict the remaining eegghts. The
rationale behind this formulation is that if a model (not necessarily clussee)as able to predict
with high precision all edge weights of a graph given a small subset efwdhts then it is a good
model of the graph. The advantage of this formulation of graph modelingtist isadndependent
of the specific way chosen to model the graph and can be used to comrmyat@asolutions,
either by comparison of generalization bounds or by cross-validatiomg&heralization bounds or
cross-validation also address the finite-sample nature of the graph iclggissblem and provide a
clear criterion for model order selection. For very large data sets,end@nputational constraints
can prevent considering all edges of a graph, as for example in Yonaid Slonim (2009), the
generalization bounds can be used to resolve the trade-off betweentdiopal workload and
precision of graph modeling.

Below we provide a PAC-Bayesian analysis of graph clustering in the edmre independent
sampling of edge weights is possible. For example, in the analysis of flongirapch as loads
on links in traffic or communication networks, we can repeatedly sample ome@ non-adjacent
edge weights at a time (non-adjacent edges have no common vertices).amatlysis of snapshot
graphs, for example image segmentation, the dependencies betweemielreweight samples
should be taken into account, but this is again beyond the scope of this pape

8.1 PAC-Bayesian Analysis of Graph Clustering

Assume thatY is a space ofX’| nodes and denote by, ., the weight of an edge connecting
nodesz; andz,.” We assume that the weights,,,, are generated according to an unknown
probability distributionp(w|x;,x2). We further assume that the space of nadfds known and we
are given a sample of siz& of edge weights, generated accordingfe;,z2,w). The goal is to
build a regression functiof(w|x,z2) that will minimize the expected prediction error of the edge
WeIgQhtSE,, () 20 1) Eq(uw |21 ,22) (W, W) for some externally given loss functidfw,w’). Note that
this formulation does not assume any specific forng(@f|z;,x2) and enables comparison of all
possible approaches to this problem.

6. Unweighted graphs can be modeled by setting the weight of presged ed 1 and absent edges as 0.
7. All the results can be straightforwardly extended to hyper-graphs.
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Here we analyze generalization abilitiesgdfv|z1,z2) based on clustering:

q(wlz1,z2) = Y q(wler, ca)q(er]er)q(calas). (52)

C1,C2

One can immediately see the relation between (52) and the co-clustering modedriminative
prediction (17). The only difference is that in (52) the nodesr, belong to the same space of
nodest’ and the conditional distributioq(c|x) is shared for the mapping of endpoints of an edge.
Let p(z1,z2,w) be the empirical distribution over edge weights. The empirical loss of predictio
strategyQ = {q(c|x),q(w|c1,c2)} corresponding to (52) can then be written as:

ff(Q) = ]Eﬁ(zl,zg,w)Eq(w’|m1,m2)l(W W,)

The following generalization bound for graph clustering can be proyedrbinor adaptation of
the proof of Theorem 7.

Theorem 13 For any probability measure(x;,z2,w) over the space of nodes and edge weights
X x X x W and for any loss functioth bounded by 1, with probability of at lea$t— § over a
selection of an i.i.d. sampl& of sizeN according top, for all graph clustering models defined by

Q= {Q(C|x)7Q(w|clch)}:

nl(X;C)+mlnn+m?In|W|+3In(4N) —Ind

< , (53)

KI(L(Q)|IL(Q)) <

wherem = |C|, n = |X|, and|W)| is the number of distinct edge weights.

Continuous edge weights can be handled by post-process quantizatgmven in appendix B.
As in the case of co-clustering, in practice we can replace (53) with a-bfide

J(Q,B) = BNL(Q) +nI(X;C) (54)

and tunes either by substitutingﬁ(Q) andI(X;C) resulting from the solution of (54) back into
the bound or via cross-validation.

If the distributiong(w|c1, c2) is restricted to be a delta distribution Equation (52) can be rewritten
as:

fl@1,me) =) qleifar) fer, c2)qlealrs)

C1,C2
and the corresponding matrix form is:
A~Q'FQ,
where@ = [¢(c|z)], F = [f(c1,¢2)], and A is an input matrix (probably sparse) providing a sample
of graph edge weights. This form of symmetric matrix tri-factorization is briefigntioned in

Ding et al. (2006). Lei be an indicator matrix for the entries presentdn For quadratic loss the
empirical approximation errat(Q) can be written as:

£(Q) = %o (A~ QTFQ)I3 (55)

whereo denotes entrywise product of two matrices. From (55) it is easy to sed. t@tis not
convex in@ (unlike in the case of co-clustering, where the dependenc@;esm was quadratic,
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here the power of) is 4). Hence, although alternating projections similar to those in Algorithm 1
can be applied tg7 (Q, 5) they are not guaranteed to converge to a local minimum. Nevertheless,
according to some preliminary experiments they can achieve reasonalsglotions and bound
(53) provides reasonably tight guarantees on the expected approxingathity (Seldin, 2010).
Alternatively, trade-off7(Q, 3) can be optimized by sequential minimization. Unlike alternating
projections, sequential minimization (similar to the one in Algorithm 2) is guaramntesshverge to

a local minimum, but can operate with deterministic assignments of graph npdds the clusters

¢;-s only. A convergent algorithm that will be able to explore stochastic ms®gts still awaits to

be developed.

8.2 Related Work on Pairwise Clustering

The regularization of pairwise clustering by mutual informatitiX’; C') was already applied in
practice by Slonim et al. (2005). They maximized a parameterized tragd=0ff- I(X;C), where
(8) =22c4(c) X0y 2, A(z1]C) (2| C)Wwa, 2, Me@sUred average pairwise similarities within a clubter.
Their algorithm demonstrated superior results in cluster coherence cednpat8 other clustering
methods. The regularization by mutual information was motivated by inform#tieoretic consid-
erations inspired by the rate distortion theory (Cover and Thomas, 188iely, the authors drew
a parallel betweertis) and distortion and (X;C') and compression rate of a clustering algorithm.
Further, Yom-Tov and Slonim (2009) showed that the algorithm can benparallel mode, where
each parallel worker operates with a subset of pairwise relations latiteaation rather than all of
them. Such a mode of operation was motivated by inability to consider all pair@legéons in very
large data sets due to computational constraints. Yom-Tov and Slonim (&§@9}ed only minor
empirical degradation in clustering quality, but no formal analysis or guees were suggested.
The results presented here can help to analyze such problems and hdlfréesathe trade-off
between computational workload and approximation quality in analysis oflaryg graphs.

9. Related Work on Clustering

The idea of considering clustering in the context of a higher level taskinggéred by the Infor-
mation Bottleneck (IB) principle (Tishby et al., 1999; Slonim, 2002; Sloniml.e2806). The IB
principle considers the problem of extracting information from a randamabig X that is relevant
for prediction of a random variabl€. The relevance variablg defines the high-level task. For
example X might be a speech signal and the task might be identification of the speakamsurip-
tion of the signal. The extraction of relevant information frafmis done by means of clustering
of X into clustersY that preserve the information o (Tishby et al., 1999). Clearly, each rele-
vance variabl@’ corresponds to a different partition (clustering)f The IB principle was further
extended to graphical models in Slonim et al. (2006).

The idea to consider clustering as a proxy to solution of a prediction taskuwher developed
in Krupka and Tishby (2005, 2008) and Krupka (2008). Krupka aisthby analyze a scenario
wherein each object has multiple properties, but only a fraction of theeptiop is observed. Con-
sider the following illustration: assume we are presented with multiple fruits anobserve their
parameters, such as size, color, and weight. We can cluster the fruiteibpliserved parameters

8. The lossL(Q) is slightly more ggneral thafs) since it also considers edges between the clusters. Although, this
generality breaks the convexity 6f Q) in (55).
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in order to facilitate prediction of unobserved parameters, such as tastexacity. This approach
enables one to conduct a formal analysis and derive generalizatiod®ar prediction rules based
on clustering.

In recent years extensive attempts have been made to address thenquigsialel order selec-
tion in clustering through evaluation of its stability (Lange et al., 2004; vorbuuxand Ben-David,
2005; Ben-David et al., 2006; Shamir and Tishby, 2009; Ben-Davidvand_uxburg, 2008). This
perspective suggests that for two random samples generated by the@ame, clustering of the
samples should be similar (and hence stable). Otherwise the obtained ctusanmeliable. Al-
though it has been proven that in a large sample regime stability can be useddel order selec-
tion (Shamir and Tishby, 2009), no upper bounds on the minimal sample giziea@ for stability
estimates to hold can be proved. Moreover, in certain cases stability indised lon arbitrarily
large samples can be misleading (Ben-David and von Luxburg, 200&e Birany practical appli-
cation the amount of data available is limited, currently existing stability indicesotderused for
reliable model order selection and it is not clear whether the stability indicelsecased to compare
solutions based on different optimization objectives.

Gaussian ring exampleWe use the following example from Seldin (2009) to illustrate that
generalization and stability criteria for evaluation of clustering are notvatgnt. Assume points
in R? are generated according to the following process. First, we selecter geaf a Gaussian
according to a uniform distribution on a unit circlel¥. Then we generate a point~ N (p,021)
according to a Gaussian distribution centered atith a covariance matrix?I for a fixedo (I is
a 2 by 2 identity matrix). Given a sample generated according to the abosesgrave can apply a
mixture of Gaussians clustering in order to learn the generating distributide. that:

1. Due to the circular symmetry in the generating process and model redyndae solution
will always be unstable (the centers of Gaussians in the mixture of Gasss@iel can move
arbitrarily along the unit circle and their variance in the direction tangentialdcittle is
loosely constrained).

2. Byincreasing the sample size and the number of Gaussians in the mixturesgiéns model
the true density of the points can be approximated arbitrarily well.

Hence, models with good generalization properties are not necessabily. Stais point should be
kept in mind when using generalization as an evaluation criterion in clustering.

10. Discussion and Future Work

This paper underlines the importance of external evaluation of unsapdnearning, such as clus-
tering or more general structure learning, based on the context of itstbt&pplication. Such a
form of evaluation is important for delivery of better structure learning@tigms as well as for
better understanding of their outcome. We argue that structure learn@sgnad occur for its own
sake, but rather in order to facilitate a solution of some higher level goanymon-trivial data
many structures co-exist simultaneously and it is a matter of the subsecpagyet of the outcome
of the learning algorithm to determine which of the structure elements are \alaath which are
not. Therefore, unsupervised learning cannot be analyzed in isofationits potential applica-
tion. In our opinion, one of the main obstacles in theoretical advancementsopervised learning
is an absence of a good mathematical definition of the context of its applicatt@analysis of
co-clustering presented here is a first step toward context-basediaralynore complex models.
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The work presented here started with an attempt to improve our undergjarfidinstering. We
note that clustering is tightly related to the object naming process in human eglaa sense,
a cluster is an entity that can be assigned a name. By clustering objects we tigeio irrelevant
properties and concentrate on the relevant ones. And of coursejuisisil can change according
to our needs. For example, we can divide animals into birds and mammals or inip diyd
notatorial or into domestic and wild. Whereas the classification into birds and mlaromiéying
and notatorial may be considered intrinsic, the classification into domestic dohdsvdefinitely
application-oriented. In order to design successful clustering andaraation algorithms it is
important to understand the basic principles behind this process. It isprairaclear that, if we
restrict ourselves to pure prediction tasks, clustering the underlyinglsapgce helps. As shown
in Seldin and Tishby (2008); Seldin (2009), in classification by a singlarpater there is no need
to cluster the parameter space, but rather simple smoothing performs batiassification in
higher dimensional spaces, kernel-based methods can be superiosterioytbased approaches.
However, we know that as humans we communicate by using a clusteredeatation of the world
rather than by kernel matrices. Thus, there should be advantagesfofem of communication.
Identification, understanding, and analysis of these advantages is artantgdature direction for
the design of better clustering and higher structure learning algorithms.
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Appendix A. Proof of Theorem 6
Proof of Theorem 6First we prove inequality (14):

—Eomn)Ep,(x) mPr(Z) = Eqn)Ep, (2)—pn ()] PR (Z) — Eg(n)Ep, () Inpr(2)

pn(Z)+v pn(Z)+v
= EowBip)-pen T ET ~Eem B e T

1 gl
< —2llpo(z) I+ Eou H(p In(1+7|2
< —3lPe(z) =palz)lan oz +Eou H (bn(2)) + In(1+712])
A g}
<H —\/e/21 In(1+7|2]). 56
< Hpo(2)) = y&/2In 1 +In(1+912]) (56)

The last inequality is justified by the concavity of the entropy functibrand the KL-divergence
bound on thel,; norm (Cover and Thomas, 1991):

Ipo(z) —pal(2) 1 < /2K L(po(2)|po(2)) < V2e.

By differentiation (56) is minimized by = VZQ. By substitution of this value of into (56) we
obtain (14). Inequality (15) is justified by &14) and the concavity oflthéunction. Finally, we
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prove the lower bound (16):
~Epo(2) I0P0(2) = Eppg (2)-po(2)) nP0(Z) — Epg () Inpo(Z)

1,. 1++|Z| R
> 5 lh02) - po(@)lhin = E (o (2)

> Hipo(e) - e/2m I,

Appendix B. Treatment of Continuous Label Spaceg’ via Quantization

In Theorems 7 and 13 it was assumed that the label spdoethe edge weight spad®) is finite.
However, for quadratic loss the minimization 6t Q, 5) by Algorithm 1 can return a solution that
falls out of this finite space. Furthermore, the input spiidéself does not have to be finite (e.g.,
gene expression levels in bioinformatics can be given on a continude$.ddare we show that the
bound can be easily generalized to handle this case via quantizaflanldife analysis can be seen
as post-processing and does not require modifications of the trad&-@ff3) and of Algorithm 1,
since the algorithm does not assume finitenesg.of

Assume thap) is limited in [0,1] interval and apply uniform quantization fat intervalsA,
then|Ya| = % (DA is the quantized copy @F and we assume that the quantization start%‘ﬁht
and ends at — %A). By rounding the continuous values gbbtained by Algorithm 1 toward the
closest quantization both the empirical and the expected loss are inclaaseanost2A + A?
(in the case of quadratic loss). This is because quantization can shiftighg @nd the prediction
y' by at mostL A and theni(y — 3A, ¢/ + 3A) = (y—y' — A2 = (y—¢ ) —2(y— ) A+ A2 <
I(y,y") +2A+ A2, where the last inequality follows from the assumption fias limited in [0,1].
Hence, we have

d ._ . .
L(Q) S /{ZZ_I <f,(Q) +2A+A27 Zi:l nl[(])\ilycz) +K

>+2A+A2,

where K, defined previously in (38), becomes:

d
1
K= iInn; — MIn A+ —1In(4N) — InJ.
;m nn nA+ 5 n(4N)—In
As a rule of thumb one can chooge= kM /N for k = 5, so that the contribution A to the two

operands of the inverse KL-divergence is approximately equivalengeheral this correction for
guantization has no significant influence on the bound (Seldin, 2010).
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