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Abstract

A computationally efficient approach to local learning wketrnel methods is presented. Thast
LocalK ernelSupportVectorMachine FaLK-SVM) trains a set of local SVMs on redundant neigh-
bourhoods in the training set and an appropriate model fon gaery point is selected at testing
time according to a proximity strategy. Supported by a remsult by Zakai and Ritov (2009) relat-
ing consistency and localizability, our approach achidnigh classification accuracies by dividing
the separation function in local optimisation problemg tizan be handled very efficiently from the
computational viewpoint. The introduction of a fast locabael selection further speeds-up the
learning process. Learning and complexity bounds are el@ffior FaLK-SVM, and the empirical
evaluation of the approach (with data sets up to 3 milliomf®ishowed that it is much faster and
more accurate and scalable than state-of-the-art accamat@pproximated SVM solvers at least
for non high-dimensional data sets. More generally, we stimw locality can be an important
factor to sensibly speed-up learning approaches and keveiblods, differently from other recent
techniques that tend to dismiss local information in orddntprove scalability.

Keywords: locality, kernel methods, local learning algorithms, saippector machines, instance-
based learning

1. Introduction

Efficiently processing large amount of data is one of the challenges wérduresearch in kernel
methods. Although most of the recently proposed techniques are basi#iflevent approaches,
their common assumption is that scalability can be obtained by limiting or reducingthglex-
ity of the decision function. In fact, very fast training algorithms have basreloped for linear
SVM (Keerthi and DeCoste, 2005; Collins et al., 2008; Chang et al., 2BO&les et al., 2009; Fan
et al., 2008), and indeed they are effective when the linear separatgogaded choice such as in
high-dimensionality problems. Other approaches permit the non-lineardesppace setting, but
they limit the complexity by working with a reduced number of examples or a smadifsip-
port vectors (Lee and Mangasarian, 2001), using active and onlarepe selection (Bordes et al.,
2005; Bordes and Bottou, 2005) or bounding the number of basis fascticeerthi et al., 2006;
Joachims and Yu, 2009).

In the works referenced above, computational efficiency is soughitding some aspects of the
optimisation problem. The result is approximationof the optimal separation andsanoothingof
the decision function which is more influenced by the global distribution oftheeles than by the
local behaviour of the unknown target function in each specific sglomne The emerging approach
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is thus to trade locality for scalability permitting, with a potentially high level of uffidéng, to
achieve a fast convergence to an approximated solution of the optimisatiole pr.

We show here that locality is not necessary related to computational ineffjcieut, instead,
it can be the key factor to obtain very fast kernel methods without the teesithooth locally the
global decision function. In our proposed approach, the model is fbiligea set of accurate lo-
cal models trained on fixed-cardinality sub-regions of the training setlagrediction module
uses for each query point the more appropriate local model. In this settingreanot approximat-
ing with some level of inaccuracy the original SVM optimisation problem, but weesaparately
considering different parts of the decision function with the potential ratehgge of better capturing
the local separation. So, instead of locally under-fit the decision funbtjoglobally smoothing
it like approximated SVM solvers do, we search for decision functionsatetocally-calculated
and they are very similar (or even better) in terms of accuracy to the glebaidn function in the
proximity of each testing point. This approach is theoretically supported glsloebrecent result
obtained by Zakai and Ritov (2009) that showed how, roughly speatdngsistency implies local
behaviour”.

In this work we presenFast L ocal Kernel SupportVector Machine FaLK-SVM), that pre-
computes a set of local SVMs covering with adjustable redundancy thiewhaming set and uses
for prediction a model which is the nearest (in terms of neighbourhoddmdrature space) to each
testing point.FaLK-SVM is obtained introducing various strategies, detailed below, to speed-up the
Local SVM approach (see Blanzieri and Melgani, 2006 and Section S@&lability is obtained
approximating the Local SVM approach softening the assumption that thg poiet must be the
central example of the neighbourhood on which the local SVM is trained;isnaty we use the
same local SVM model for more than one testing point and we can also prgute the local
models during training. The locality of the approach is regulated by the neighbod sizek and
the method uses all the training points. Starting from the theory of local lepagorithms (Bottou
and Vapnik, 1992; Vapnik and Bottou, 1993) we derive generalisatomds forFaLK-SVM, and
we analyse the computational complexity stating that, under reasonable &assismine training
of our technique scales &8ogN and the testing as Idg whereN is the training set size. We also
introduce a procedure for local model selection in order to speed-getbetion of the parameters
and better capturing local properties of the data. The empirical evaluatitndqata sets with up
to 3 million examples) shows thaaLK-SVM outperforms accurate and approximated SVM solvers
both in term of generalisation accuracy and computational performances.

The effectiveness and efficiency of our approach is directly relattdtbtoole that locality plays
in the learning problem. It is well known, for example, that for very higmehsional problems
such as text and document classification, the linear kernel performs tigttenon-linear kernels
which are hard to tune and can be subject to the “curse of dimensionaligyigiB et al., 2005).
On the other hand, there are problems (Blackard and Dean, 1999; Wzikly, 2006) which in-
herently require non-linear approaches to be tackled. This is due tothigration of an intrinsic
dimensionality which is low with respect to the training set size and of a decigiaribn which is
not simple to learn. In general, locality plays a more important role as the nurhb@ining ex-
amples increases because the ratio between training set cardinality amché&msidnality is more
favourable and the local characteristics are more evident. Other signétefneed of a non-linear
kernel are the detection of uneven distributions in the data sets (typidleiorld problems), the
monotonic increasing of accuracy with respect to training size also fadidarge amount of data
and the inclusion of a high fraction of training examples in the support veetorA representative
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of this class of problems is the Forest CoverType data set (Blackar®eaad, 1999) which is a
large real data set (more than half a million examples) with bounded dimensiofaalifgatures)
that needs as many examples as possible to increase accuracy. W sth@add in a very prelim-
inary study (Segata and Blanzieri, 2009c) that our approach on thisefis more accurate than
SVM and much faster than both accurate and approximated SVM solvers.

The present contribution can be seen from multiple viewpoints Faik-SVM modifies the
Local SVM approach (Blanzieri and Melgani, 2006; Zhang et al., 2€@ showed excellent clas-
sification performances but had dramatic computational problems, leadirsgédadle Local SVM
classifier asymptotically much faster than SVM. (ii) The approach is also aaneement of the
local learning algorithms because the learning process is not delayedhanprediction phase
(lazy learning but the construction of the local models occurs during traingggér learning.
(iif) From a practical viewpointFaLK-SVM is a novel kernel method which outperforms accurate
and approximated SVM solvers for non high-dimensional data sets.qivydmplex classification
problems that require an high fraction of support vectors (SVs), wkitocality to avoid the need
of bounding the number of total SVs as existing approximated SVM solvefsrammputational
reasons. (V) More generally, our approach can also be seenameork for localising and make
scalable any kernel method, classifier and regressor and in gexergldata analysis that can be
applied on sub-regions of the entire data set. The propesedSVM classifier and related tools are
freely available with source code as part of the Fast Local Kernehiad_ibrary (Segata, 2009,
FaLKM-lib).

In the next Section we analyse the work on local learning algorithms, L9¢M and fast
large margin classifiers that are all related with our work. Section 3 formatlitpdnces some
machine learning tools that we need in order to introdemlek-SVM in Section 4 and analyse its
learning bounds, complexity bounds, implementation, local model selectioaguioe and intuitive
interpretation. Section 5 details the empirical evaluation with respect to ae@nd approximated
approaches.

2. Related Work

Locality is often a crucial component of machine learning systems, althougireweot aware of
approaches exploiting locality for improving the computational performan@és review in this
section those areas that are more related with our approach: local gpalgarithms, local support
vector machines, approximated and scalable SVM solvers.

2.1 Local Learning Algorithms

Local learning algorithms (LLAS) are a class of learning approachesdated by Bottou and
Vapnik (1992). Instead of estimating a decision function which is optimal (vésipect to some
criteria) for all possible unseen testing examples, the idea underlying thAsists in estimating
the optimal decision function for each single testing point. The value of thetifumis estimated
in a small sub-region of the input space around the query point. For hlésraing algorithm,
the points in the proximity of the query point have an higher influence in therigaof the local
model. The approach is particularly effective for uneven distributed skeifs, that is, data sets
presenting regions in which the examples have different spatial res@utionfact, with LLAS,
the characteristics of the learning process can be locally adjusted. &rrbpice of the locality
parameter can reduce the generalisation error with respect to a glasifietaas formalised by the
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Local Risk Minimization principle (Vapnik and Bottou, 1993; Vapnik, 2000ptice that there are
various ways of specifying the degree of locality for LLAs as discu$seidstance by Atkeson et al.
(1997). Examples of LLAs are the well-known k-Nearest Neighboki\) classifier, the Radial
Basis Function networks (Broomhead and Lowe, 1988), and the Laddl Gassifier (Blanzieri
and Melgani, 2006; Zhang et al., 2006) described in Section 2.2.

Despite their theoretical and practical appeal, LLAs seem not to havedtedied in depth in
the last few years. This is probably due to the fact that LLAS, as formiilateBottou and Vapnik
(1992), fall in the class dhzy learning(or memory-based learninghat have great overhead on the
testing phase, as opposeddager learningin which the function estimation is performed during
training increasing the computational performances of the testing phase.

2.2 Local Support Vector Machines

The main idea of Local SVM, described in details in Section 3.3, is to build aigiren time an
example-specific maximal marginal hyperplane based on the ket@ifjhbours.

Local SVM is a LLA and was independently proposed by Blanzieri anthiteé (2006, 2008)
and by Zhang et al. (2006) and applied respectively to remote sengingsaral recognition tasks.
Other successful applications of the approach are detailed by SegaBdeanzieri (2009a) for gen-
eral real data sets, by Blanzieri and Bryl (2007) for spam filterirjlanSegata, Blanzieri, Delany,
and Cunningham (2009b) for noise reduction. Similar approachesbeem presented by Yang
and Kecman (2008) and applied in the medical domain (Yang and Kecma®) 266 for face
recognition problems (Yang and Kecman, 2010).

However, Local SVM suffers from the high computational cost of thdértggphase that com-
prises, for each example, (i) the selection of kheearest neighbours and (ii) the computation of
the maximal separating hyperplane on thexamples. An attempt to computationally improve
the Local SVM approach of Zhang et al. (2006) has been propog€thbng et al. (2007) where
the idea is to train multiple SVMs on clusters found by a variark-ofeans, called MagKmeans,
that introduces in the clustering criterion the requirement that the clustensichave unbalanced
class cardinalities. However the method does not follow directly the ideaadlL%VM, the main
difference being that it can build only local linear models and the size ofltistecs is not fixed
(MagKmeans does not have constraints on the cardinalities and the bglesguirement can cause
the detection of clusters with high cardinalities). The achieved computatierfarmances are bet-
ter than their formulation of Local SVM, but worse than global SVM.

2.3 Fast Large Margin Classifiers

The need for fast and scalable kernel-based classifiers led to thiepleent of several methods
in the last few years, although considerable attention seems to have mesedceespecially on
linear SVM classifiers. Below, we initially consider the works applicable alswmtelinear kernels,
successively we review the works on the linear case.

One of the first large-scale maximal margin learning that can use non-keaael functions is
represented by Core Vector Machines (Tsang et al., 20081); reformulating the SVM approach
as a minimum enclosing ball problem, the authors proved that it is possible tm @paroxi-
mated optimal solution in competitive training times by using the core sets. Godtsresve been
achieved using non-linear kernels although it has been pointed out éhahdlice of the stopping
criteria is crucial for the trade-off between computational efficiency genkralisation accuracy.
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Ball Vector Machines (Tsang et al., 20@%/M) are a modification o€VM in which the minimality
of the enclosing balls is not required, because the radius of the ball & fikiee resulting clas-
sifier improves the computational performances. Another approackl lbaisen online setting of
the SVM optimisation problem has been proposed by Bordes et al. (2B8YM) and by Bordes
and Bottou (2005) and it is an algorithm that converges to the SVM solutiomasl been shown
that competitive accuracies can be achieved also after a single pagb®wining set. The ap-
proach can be seen as a SVM solver that includes a support vectoralestep. In addition, several
strategies for active training-points selection can further improve compuoghtmd generalisation
performances. Formulating the optimisation problem in the primal, Keerthi e2@06(SpSVM)
proposed a method that bounds the number of basis functions consatet@dus the computa-
tional complexity. Increasing the cardinality of the basis function set allogvgiigthod to converge
to the SVM solution. A greedy strategy guides the choice of the basis fusdtiooe included in
the working set. Collobert et al. (2008SVM) showed that softening the convex setting of maximal
margin classifiers using a non-convex loss function can bring computbsidvantage over the cor-
responding standard convex problem. The non-convex problem iscsoking the&concave-convex
procedure(Yuille and Rangarajan, 2003). Recently, the Cutting-Plane SubspaseitRipachims
and Yu, 2009CPSP) based on cutting-plane training (Joachims et al., 2009) has been pdyftos
permits to learn maximal-margin decision functions in the feature space usitrgarbasis vectors
instead of the support vectors only. This can results in sparser soliticnessing the testing and
training computational performances especially for high-dimensional é#a Although not al-
ways considered a method for large-scale learriigVM (Chang and Lin, 2001) demonstrated to
be competitive with approximated approaches from the computational vietvpbi®VM is a SVM
solver implementing a SMO-type decomposition method proposed by Fan ed@h) (Rtegrating
it with caching and shrinking (Joachims, 1999).

Large margin classifiers can also achieve scalability using subsamplieg-bpproaches that
train the model on a relatively small subset of the whole training set. Howthesraccuracy of
SVM with subsampling can decrease due to the loss of information containeeé idigbarded
training points. The decreasing of accuracy with respect to SVM withdogasupling is more
dramatic when a complex decision function is needed. In these cases tlacgcproblems can
be mitigated or reduced by developing an ensemble of classifiers. Boaggeaggating (bagging)
by Breiman (1996) is an effective strategy to perform accurate classificusing an ensemble of
classifiers trained on subsets of the training set (using uniform samplingepidcement) that can
also overcome the accuracies of SVM. Bagging with SVM can thus be asettaining scalability
as long as the advantage of training smaller SVM models on subsets of thegiseh{that can scale
cubically) overcome the disadvantage of training multiple SVMs.

Recently a lot of work has been performed in order to develop veryafadtscalable solvers
applicable tdinear SVM only. Keerthi and DeCoste (2005) modified the Finite Newton method of
Mangasarian (2002) introducing robust conjugate gradient techmaqndeother heuristics. Joachims
(2006) developed an alternative formulation of the SVM optimisation probbgtoiing a differ-
ent form of sparsity. Lin et al. (2007) used logistic regression with {TRegion Newton Methods.
Variants of coordinate descent methods for linear SVM are developéthbng et al. (2008) in
the primal and by Hsieh et al. (2008) in the dual. A different gradientagh was developed
by Smola et al. (2008). Other approaches are based on Stochastiertsaeiscent (SGD) like those
developed by Shalev-Shwartz et al. (2007) and by Bordes et al9)2@ich work in the primal,
whereas Collins et al. (2008) apply SGD in the dual. Although SGD methadbe#heoretically
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used for non-linear SVM the performances are analysed for the liasaranly. LIBLINEAR (Fan
et al., 2008) is a fast software package implementing some of the cited withkkscommon idea
of all the proposed methods is that the advantage of having a method tead isge number of
training points overcomes the disadvantage of approximating the decisiotiofunwith a linear
model. This is effective, as explicitly noticed in almost all the cited works, whemimensionality
is very large and thus the problem is very sparse. This is, for examplgpiral situation of text
document classification. However, when the needed decision functiéghly Imon-linear and the
intrinsic dimensionality of the space is relatively small, the linear SVM approanhat compete
with SVM using non-linear kernels in terms of generalisation accuracyrtAman the generalisa-
tion ability also the computational performances can be compromised in these basause the
algorithm cannot find a good decision function and so convergenédgong can occur.

3. Preliminaries

In order to introduce our approach, we need to analyse the formulatikNf SVM, KNNSVM
and cover trees.

Here and in the following of the paper, we consider a binary class clag®ificwith examples
(xi,yi) € Hx{-1,+1}fori=1,...,NandX ={x;|i=1,...,N}, where# is an Hilbert space with
inner product-,-) and norm|| - ||. Extensions to multi-class problems will be explicitly discussed.

3.1 Thek Nearest Neighbour Algorithm

Given an example’ € #, it is possible to order an entire set of poitfswith respect tok’. This
corresponds to define a functiog : {1,...,N} — {1,...,N} that recursively reorders the indexes
of theN points inX:

rv (1) = argmin|x; — X/||

i=1,...,N

rw(j)=argmin|x — x| i#rx(1),....,re(j—1) for j=2,...,N.
i=1,...N

1111

In this way, X, ,(j) is the example in thg-th position in terms of distance fromi, namely the
j-th nearest neighboujx, ,j) —X|| is its distance fronx’ andy, ,(;, is its class. In other terms:

J<k= %, ) =X N < X 00 = X |-

Given the above definition, the majority decision rule of kNN for binary dasdion problems

is defined by
k
KNN(x) = sign Yoo | -
(i; (i)

For problems with more than two classes, the decision rule of KNN is the usjaityneule, namely
the method selects the class with the highest number of representativeskimeighbourhood
instead of taking the sign of the summation.
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3.2 Support Vector Machines

SVMs (Cortes and Vapnik, 1995) are classifiers with sound foundaitiosististical learning the-
ory (Vapnik, 2000). The decision rule is

SVM(x) = sign(w, ®(x)) 5 +b)

where®(x) : H — F is a mapping in a transformed Hilbert feature space, cafledvith inner
product(-,-)¢. The parametere € F andb € R are such that they minimise an upper bound on
the expected risk while minimising the empirical risk. The minimisation of the complexity ir
achieved by the minimisation of the quant§y|\w|\2, which is equivalent to the maximisation of the
margin between the classes. In the optimisation problem, the violation of the mapygvented
by the following set of constraints:

Yi (W, @(xi)) 7 +b) > 1. 1)

If a linear separation cannot be found in the input or feature spacspthenargin variant of
SVM permits the violation of the margin and the presence of misclassified traixamgptes. This
is possible introducing slack variablgs(the empirical risk):

Vi (W, @(x))y+b) >1-& & >0,i=1,...,N. 2)

For soft-margin SVM the optimisation problem with linear penalisatio;¢t. 1-norm), becomes
the minimisation of% -|lw||2+C7;& subject to (2). Reformulating such an optimisation problem
with Lagrange multipliers:; (i =1, ...,N), and introducing a positive definite kernel (PD) function
K(-,-) that substitutes the scalar product in the feature sp@¢e ), ®(x)) + the decision rule can
be expressed as:

SVM(x) = sign (iaiyi K(xi,X) + b) .

Throughout this work, SVM denotes the soft-margin SVM.

The kernel trick avoids the explicit definition of the feature sp@cand of the mapping function
® (Schilkopf and Smola, 2002). Popular kernels are the linear kernel, the fzies function
kernel, and the homogeneous and inhomogeneous polynomial kerneilsd&finitions are:

K”n(X,X/) _ (X,X/> Krbf(X,X') _ exp(_HX*c;(/HZ),
Kheolix x') = (x,x')d KPOl(x,x') = ((x,x)+1).

The maximal separating hyperplane defined by SVM has been shownddrhpertant gener-
alisation properties and nice bounds on the VC dimension (Vapnik, 2000).

Multiple methods has been proposed in order to apply the maximal margin prio¢iSM
on multiple class problems. The more popular are the one-against-all metbaduBt al., 1994)
which builds a number of binary decision functions equal to the number sé&fdl.|, the one-
against-one method (Knerr et al., 1990; Kressel, 1999) which bNgd$N — 1) /2 binary decision
functions using voting in the prediction phase, and the Directed AcyclictG&8fM (Platt et al.,

1. For convention we refer to kernel functions with the capital l&€tand to the number of nearest neighbours with the
lower-case lettek.
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2000, DAGSVM) which is a modification of the one-against-all method. Otéeeral strategies for
reducing the multi-class classification setting to a binary classification proldgenlieen analysed
and developed by Allwein et al. (2000). The study carried on by HelL#m(2002) shows that, for
SVM, the more effective strategies are the one-against-one and DAG®)kbaches.

3.3 Local SVM: The kNNSVM Classifier

We already introduced the idea of Local SVM in Section 2.2, here we déthiSVM which is the
formulation of Local SVM proposed by Blanzieri and Melgani (2008)20kNNSVM can be seen
as a modification of the SVM approach in order to obtain a LLA able to locallysadjie capacity
of the training systems.

In order to classify a given examptéc #, we need first to retrieve itsneighbourhood in the
transformed feature spac¢k and, then, to search for an optimal separating hyperplane only over
this k-neighbourhood. In practice, this means that an SVM is built over the beighood inF of
each test exampbg. Accordingly, the constraints in (1) become:

yl'xl(i) (W @(er/(i)) +b) > 1_Erxl(i)7 withi=1,...,k

wherery : {1,...,N} — {1,...,N} is a function that reorders the indexes of the training examples
defined as:

e (1) = argmin||d(x;) — ®(x)||5

i=1,...,N
: o . . . (3)
re(j) = ar(i;m:\lanJ(xi) —qJ(x’)Hfr i #rye(1),...,re(j—1) for j=2,...,N.
i=1,..,

In this way, X; ,(j) is the example in thg-th position in terms of distance froxi and thus
j<k=[P(x,j)) —PX) |5 < [[P(X, k) —P(X) ||+ because of the monotonicity of the quadratic
operator. The computation is expressed in terms of kernels as:

[P(x) =X = (D), (X)) 5 +(PX), D(X)) 5 =2 (O(x),P(X)) 5 =
= K(Xx,x)+K(X,x)—-2-K(x,x).

If the kernel is the RBF kernel or any polynomial kernels with degree & ,aifdering function
is equivalent to the one defined by the Euclidean metric. In general, fioe smn-linear kernels
(other than the RBF kernel) the ordering function can be quite differethiatoproduced using the
Euclidean metric.

The decision rule associated with the method for an examge

k
KNNSVM(x) = sign (_Zarx(i)yrx(i)K(er(i),X) + b> .

Fork = N, the kKNNSVM method is the usual SVM whereas, foe 2, the method implemented
with the linear or Gaussian radial basis function kernel correspondse ttdhdard 1-NN classifier.
Notice that in situations where the neighbourhood contains only one clagsctleSVM does

not find any separation and so considers all the neighbourhood togoeldhe predominant class
similarly to the behaviour of the majority rule. Considerik§NSVM as a local SVM classifier
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built in the feature space, the method has been shown to have a potentiallydiale bound on the
expectation of the probability of test error with respect to SVM (Blanzied Eelgani, 2008).

The generalisation ENNSVM for multi-class classification can occur locally, that is solving
the local multi-class SVM problem, or globally, that is applying the bindM{NSVM classifier on
multiple global binary problems. In Segata and Blanzieri (2009a) the adisprategy for multi-
class classification witRNNSVM is the one-against-one strategy applied on the local problems.
The choice of the one-against-one approach gave good results initsompa&ith the same strategy
on SVM, but no specific empirical studies have been performed yet ttifiglre most appropriate
strategy for multi-class classification with Local SVM.

3.4 Cover Trees

A cover tree is a data structure introduced by Beygelzimer et al. (200pfforming exact nearest-
neighbour operations in a fast and efficient way. Cover trees carpjpeea in general metric
spaces without any other assumption on their structure and thus also intldplaees calculating
the distances by means of kernel functions using the kernel trick.

In more detail, a cover tree can be viewed as a sub-graph of a navigatifigrauthgamer and
Lee, 2004) and it is a levelled tree in which each level (indexed by a a@siaginteger) is a cover
(i.e., isrepresentative) for the level beneath it. Every node of a c@&T iis associated with a point
of a data seB. Denoting withC; the set of points associated with nodediat leveli, withb > 1 a
constant, and witldist(-, -) the distance function defining the metric of the space, the invariants of
a cover tree are:

Nesting G Cc Gi_1

Covering tree For everyp € C;_; there exists & € C; such thatdist(p,q) < b' and the node in
leveli associated witly is a parent of the node in leviel- 1 associated witp.

Separation For all distinctp,q € G, dist(p,q) > b'.

Intuitively, the nesting invariant means that once a point appears in a ieigefresent for every
lower level. The covering tree invariant implies that every node has apiara higher level such
that the distance between the respective points is lesbthahile separation invariant assures that
the distance between every pair of points associated to the nodes of aiehigher tharb'. In
addition, the root of the tree (call&gl, and containing only one example) is a randomly chosen
example.

Cover trees have state-of-the-art performance for exact nesigstbour operations for general
metrics in low-dimensional spaces both in terms of computational complexity awe spquire-
ments. As theoretically proved by Beygelzimer et al. (2006), the spacéreedoy the cover tree
data-structure is linear in the data set si@¢n()), the computational time of single point insertions,
deletions and exact nearest neighbour queries is logarith®logn)) while the cover tree can be
builtin O(nlogn).

4. FaLK-SVM: A Fast and Scalable Local Kernel Machine

In this section we introduce our novel technique. Initially we detail the wayréecpmpute the
local models during training (Section 4.1) and the strategies to reduce theenoimibcal models

1891



SEGATA AND BLANZIERI

(Section 4.2). We then describe the prediction mechanism in Section 4.2.2iaaplwoach for fast
local model selection in Section 4.3. Successively, we derive learningdsdfor the approach in
Section 4.4 before discussing the computational complexity in Section 4.5 areldetails about
the implementation (Section 4.6).

4.1 Pre-computing the Local Models during Training Phase

For the local approach we are proposing here, we need to generalidedision rule okNNSVM

to the case in which the local model is trained on kheeighbourhood of a point distinct, in the
general case, from the query point. A modified decision function forexygpointq € # and
another (possibly different) pointc % is:

k
KNNSVM;(q) = sign (_Zart(i)yﬁ(i)K(xrt(i)’q) + b) 4)
1=
wherer.(i) is thekNNSVM ordering function (see above Section 3.3) ang; andb come from
the training of an SVM on th&-neighbourhood of in the feature space. In the following we will
refer tokNNSVM;(q) as being centred on tot as the centre of the model, andt i X, to V; as
the Voronoi cell induced byin X, formally:

Vi={peHstp-t|<|p—x|, VxeXwitht#x}.

The original decision function dNNSVM corresponds to the case in whithk- q, and thus
KNNSVMq(q) = kNNSVM(q).

KNNSVM requires that the training of an SVM on tkaneighbourhood of the query point must
be performed in the prediction step. This approach is computationally feasilyldor problems
with few points to test which is a condition that rarely holds in real-world clasditin problems.
In general, we need to speed-up the prediction phase. The first mtdifichkNNSVM consists
in predicting the label of a test poigtusing the local SVM model built on theneighbourhood of
its nearest neighbour iti. Formally, this can be written as:

KNNSVMi(q) with t = Xy, (1). (5)

Notice that in situations where thieneighbourhood contains only one class the local model does
not find any separation and so it can adopt the majority rule for improvingdhgutational per-
formances.

With this formulation the local learning can switch from taey learning(Aha, 1997) setting of
the original formulation okNNSVM to theeager learningsetting with clear advantages in terms of
prediction step complexity. This is possible computing a local SVM model fdreacX during the
training phase obtaining the s€td, KNNSVM) \ t € X} and applying the precomput&INSV M
model such that = x;(1) for each query poing during the testing phase.

This approximation slightly modifies the approachkbfNSVM as a local learning algorithm.
Instead of estimating the decision function fogigentest example and thus for a specific point
in the input metric space, we estimate a decision functiom&mh\Voronoi cell V4 induced by the
training set in the input metric space. In this way, the construction of the moddige training
phase requires the estimationMiocal decision functions. The prediction of a test pajris done
using the model built for the Voronoi region in whigflies (Vy with h = x; (1)) that can be retrieved
by searching for the nearest neighbougoh X.
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4.2 Reducing the Number of Local Models that Need to Be Trained

The pre-computation of the local models during the training phase introcimmek, increases the
computational efficiency of the prediction step. However, a considemsieidhead is added to the
training phase. In fact, the training of an SVM for each training point easitwer than the training
of a unique global SVM (especially for non smiallalues), so we introduce another modification of
the method which aims to dramatically reduce the number of SVMs that need te{ocempputed.
The idea is that we can relax the constraint that a query pbistalways evaluated using the model
trained around its nearest training point. The decision function of thisoappris

FastLSVM(x) = KNNSVM ) (X) (6)

wheref : H +— C C X is a function mapping each unseen examgpte a unique training example
f(x) which is, accordingly to Equation 4, the centre of the local model that is iesedaluatex.
The setC is the image off (-), soC = f(H).

Notice that if f(-) = Xr.(1)» We have thatC = X and thatFastLSVM(x) is equivalent to the
kNNSVM formulation of Equation 5, and this can happen if we aé¢he examples in the training
set as centres for local SVM models. In the general case, howegesehect only a proper subset
C C X of points to be used as centresklNSVM models. In this case, “rx(l) € C thenf(x)

can be defined ag(x) = X, (1), but if Xr (1) ¢ C thenf(x) must be defined in a way such that the
principle of locality is preserved and the retrieval of the model is fastetiption time.

Two aspects need to be addressed now: the strategy to select the@obsetand the formu-
lation of the functionf associating each query example with an examplgé.in

4.2.1 SFLECTING THECENTRES OF THELOCAL MODELS

The approach we developed for selecting thecef the centres of the local models is based on
the idea that each training point must be in #eeighbourhood of at least one centre with
being a fixed parameter akt< k. From a slightly different viewpoint, we need to cover the entire
training set with a set of hyper-spheres whose centres will be the exaimpleand each hyper-
sphere contains exactky points. We can formalise this idea with the concepk/efeighbourhood
covering set:

Definition 1 Given K € N, a K-neighbourhood covering set of centrésC X is a subset of the
training set such that the following holds:

U {ch(i) |i:1,...,k/}:X.

ceC

Definition 1 means that the union of the sets of kh@earest neighbours a@f corresponds to the
whole training set. Theoretically, for a fixdd, the minimisation of the number of local SVMs
that we need to train can be obtained computing the SVMs centred on the pmitdned in the
minimal K-neighbourhood covering set of centres.

Definition 2 TheMinimal k’-neighbourhood covering set of centiesa K-neighbourhood covering
setC C X which have the minimal cardinality.

1893



SEGATA AND BLANZIERI

This problem is related to th&et Cover ProbleniSC) (Garey and Johnson, 1979; Kearns and
Vazirani, 1994; Marchand and Shawe-Taylor, 2003) and tdtimémum Sphere Set Covering Prob-
lem(MSSC) (Chen, 2005). However, in the SC and MSSC problems ondispébe radius of the
spheres rather than their cardinality in terms of points they contain and it ieqoired that the
centres of the hyperspheres correspond to points in the set. It is estsywidhat MSSC is NP-hard
but some efficient approximated results are available based on grepahaapes (Chvatal, 1979;
Wang et al., 2006), integer and linear programming (Wei and Li, 2008).

In our case, however, we do not need the minimality of the constraints &f-treighbourhood
covering set of centres to be strictly satisfied, because training some rnar&W\Ms is acceptable
instead of solving an NP-hard problem.

The heuristic procedure we developed can be seen as a modificationgpééuy approach for
the MSSC problem (Chvatal, 1979; Wang et al., 2006). TheKirseighbourhood is selected ran-
domly choosing its centre i, the followingk’-neighbourhoods are retrieved selecting the centres
that are still not members of oth&-neighbourhoods and are as far as possible from the already
selected centres. The selection of the farthest example, still not includieelkineighbourhoods,
as the centre of the nekt-neighbourhood, is the counterpart of the selection of the set of points
having the minimum overlapping with the already covered set of points usielgyeedy approach
to the MSSC and SC problems.

For detailing the greedy approach we adopt, we need the concepts of midntimaximum
distance between the elements of a set of pdidefined respectively as:

d(A) = min||x — x| with x,x" € Aandx # x’

and
D(A) = max||x — x'|| with x,x" € A.

In particular, the minimum distance between pointsXins m = d(.X) and the maximum i$1 =
D(X). Our intention is to identify a system of subs&s_ X with decreasing minimum distances
d(S); we can in this way define an ordering on the setsC S.1 C § C S_1 C ... such that
.. >d(S41) > d(§) > d(S-1) > .... With this strategy we can choose the centres of the local
models first in the se§ 1, then in the sef§ and so on, thus selecting first the centres that are
assured to be distant at lealS_ 1), then at leastl(S) < d(S+1) and so on. More in detail, we
require that in theth set§ C X the two nearest points are farther tHarwith b > 1, that is, they
are subject to the constraidtS) > b' with b > 1. The bound on the minimum distand€S) thus
varies as powers df depending on the s§.

Let us define precisely the system of sgs. The maximum index ofS is namedopand the
minimum is namedot, and they are univocally defined as those indexes satisfijffig! < M <
b'°P andbP® < m < b°°*1. The§ are recursively defined as:

Sop = {chooséx)}
S = S;iUargmax|Ss.t.d(S;1US) >b') fori=top—1,...,bot ° ()
SQX\SHI

where choos@\) is a function that selects only one element of the non-emptAsétn example
of choosg) for our case can be the following definition that selects the example with the minimum
index:

chooséA) = x; with i = min(ze IN|x; € A).
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Notice that, sinc& containsS, 1 we have that
Sop = {€h00s€X)} C Sop 1 C ... € Shot11 € Shot =X (8)
and, forcing for definition thadl(A) = oo if |A| =1,
d(Sop) = > d(Sop-1) =M > d(Sop-2) > ... > d(Spot+1) > d(Spot) =M.

We can now formalise the selection of the centres ftdnusing theS sets. The first centre;
is simply the (only) example igop. The next centre; is chosen among the non-emfiysets
obtained removing frong the first centrec; and the points in it&’-neighbourhood; in particular
C2 is chosen from the non-emp& with highestl. The general case for thig centre is similar,
with the only difference being that we remove from Baets all the centres with t < j and their
k'-neighbourhood. More formally:

{cl = chooséSop)

cj = choos¢S)with | =maxme N|Sp\ X, #0) ®)

where .
. /
xcj,l :ILJl{XrCI(h) ‘h:l,...,k}.

is the union of all th&’-neighbourhoods of the centres already included.in

We can briefly show that th€ set found with Equation 9 iskd-neighbourhood covering set of
centres. In fact, the iterative procedure for selecting the centr€denminates when the chodge
function cannot select a point frof because alf; with j = bot,... topare empty. Since for the
setSor we always have the,or = X, this happens only wheh; , = X. Noticing thatXg, in this
situation is equivalent to the constraint of Definition 1, we can concludetisak’-neighbourhood
covering set of centres.

Computationally, the selection of the centres from$hseets with Equation 9 can be performed
efficiently once the5; are identified. More problematic is the construction of the nested sgt of
sets. We can however notice that B)esets share some characteristics with the levels of cover trees.
First, from Equation 7 we can easily see that for e8chet with j < top all the points in it are at
least distant ab/ becausel(S;j) > bl; this is equivalent to the separation invariant of cover trees
reported in Section 3.4. Second, always from Equation 7 we can canttiatieacls; is contained
in every§ set witht < j as also explicated in Equation 8; this is equivalent to the nesting invariant
of cover trees. The only constraint of our strategy to identify $hsets that is not respected by
cover trees is the maximality of the set added to egcdet to obtair; ;. However, the procedure
to insert a new point in a cover tree is based on adding it to the highesbledsvel, and this is an
efficient approximation of the maximality constraint we have in Equation 7. fakilnthese facts
into consideration, we chose to use the levels of cover tree & #&ts from which we select the
centres as reported in Equation 9.

Consequently with the goal of reducing the number of local models, thisapipmo longer
requires that a local SVM is trained for each training example, but we teeteain only|C| SVMs
centred on each € C obtaining the following models:

KNNSVMc(X), Vce C.

1895



SEGATA AND BLANZIERI

Figure 1. Graphical representation of the proposed approach usiad heodels withk’ = 4,
k = 15, and local SVM with RBF kernel. The bold dotted circles highlights khe
neighbourhoods covering all the training set (with some unavoidablendeahay), the
thin dotted circles denotes ttkeneighbourhoods on which the local models are trained.
Somek-neighbourhoods do not produce an explicit decision function becantrely
composed by points of the same class. The local SVM (with RBF kernel)idedisc-
tions are drawn in blue. Notice that, due both to the adoption okmeighbourhood
cover set and to the fact that only a fraction of the neighbourhoodstodeitrained, we
have only 17 local decision functions for 185 points.

Moreover if a neighbourhood contains only points belonging to one clads¢hl model is the
majority rule (specifically, unanimity) and the training of the SVM is avoided.

Figure 1 graphically shows the result of adopting the approach dedcaibave on a simple
artificial data set withk andk’ chosen for illustrative purposes. In fact, the example just aims to
show the intuition behind the approach that is instead developed for latgeseks and for non-
extreme values of the neighbourhood parameters.

From Figure 1 we can also notice that the level of overlapping betwearighbourhoods
and thus betweek-neighbourhoods depends on the valu&kof If k' is low, a large number of
k'-neighbourhoods are required to cover the entire training set, whéréass large fewerk'-
neighbourhoods are needed. parameter thus tune the level of redundancy of the local models.

4.2.2 FLECTING THELOCAL MODELS FORTESTING POINTS

Once the set of centras is defined and the corresponding local models are trained, we need to
select the proper model to use for predicting the label of a test point. A sistiaitegy we can
adopt consists in selecting the model whose centreC is the nearest centre with respect to the
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testing example. Using the general definitiorFa§tLSVM of Equation 6 withf (x) = r¢ (1) where
r¢ corresponds to the reordering function defined in Equation 3 perfoomeke C set instead of
X, the method, calleBaLK-SVMc, is defined as:

FaLK-SVMc(X) = KNNSVMc(X) wherec = X;¢ (1. (10)

FaLK-SVMc is satisfactory from the computational viewpoint, for it performs the néarighbour
search onC only. However, it does not assure that the testing point is evaluated witmakie!
centred on the point for which the testing point itself is the nearest in termsigiimour ranking.
For example, a testing poigtcan be closer te; thanc, using the Euclidean distance, but at the
same time we can have thais thei-th nearest neighbour @f in X and thej-th nearest neighbour
of c; with i > j. This is a problem because using the model centred,dn better in terms of
proximity. In order to overcome this issue dLK-SVMc we propose to use, for a testing pont
the model centred on the training point which is the nearest in terms of theboeidiood ranking
to its training nearest neighbour. We can do this defining a funcnX — ¢ in the following
way:

cnt(xi) = choosé{cZ €Clxi = XrCZ(h)})

(11)
whereh = min (t € {1,. ..,k’}]xrcj t) = Xi andcj € C) )

Thecntfunction finds, for each exampkgthe minimum valuda such thak is in theh-neighbourhood
of at least one centrec C; then, among the centres havirgn their h-neighbourhoods, it selects
the centre with the minimum index. The existencehdf guaranteed by thk-neighbourhood
covering strategy. In this way each training point is univocally assignedcentre and so the de-
cision function of this approximation of Local SVM derivable fratastLSVM of Equation 6 with
f(x) = cnt(x), and called=aLK-SVM, is simply:

FaLK-SVM(X) = kNNSVMCm(t)(X) wheret = Xry(1)- (12)

The association between training points and centres defined by Equateaantie efficiently
precomputed during the training phase, delaying to the testing phase onyribeal of the nearest
neighbour of the testing point and the evaluation of the local SVM model.

Figure 2 graphically shows the application of #aK-SVM(x) prediction strategy on a toy data
set; the training phase for the same data set is illustrated in Figure 1.

FaLK-SVM can be generalised for multi-class problems in the same waNNSVM, but in
this paper we focus on binary problems in order to better evaluate theaambpro

4.3 FaLK-SVM with Internal Model Selection: FaLK-SVMI

For training a kernel machine, once a proper kernel is chosen, it atttio carefully tune the
kernel parameters and, for SVM, to set the soft margin regularisatiostaatC. Model selection
is very often performed estimating the empirical error with different pararatees and a popular
method is thex-fold cross-validatiofiwith a grid search on parameter space. Given the following
loss function for the two-class classification case

0 ify=SVM(x)
L SYM(x)) = { 1, if y£ SVM(x) °

2. Althoughk can be confused with the neighbourhood dizer with the kernel functiorK, k is always used for
denotingk-fold CV, so the context should be sufficient to avoid ambiguity.
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Figure 2: Graphical representation of the global decision functionKlulatted line) obtained with
the local decision functions (the same of Figure 1) using the describedamtpthat uses

for each query point the local decision function of the Voronoi regiowtich it lies.

and partitioning the training set in k subsets each with the same cardindlityalled folds), the
K-fold cross validation (CV) procedure consists in searching for thampeters that minimise the
average of the losses of} of the classifier trained o \ X; for f =1,...,K. The effectiveness in
terms of testing accuraciespffold CV is high, but it adds a computational overhead to the training
phase. In fact, the computational complexity af-fold CV run on a single parameter choice is in
the order ok times the training time; if we have parameters to set amgossible choices for each
parameter, the-fold cross-validation with grid selection s cP times slower than a single training
of the classifier.

The model selection foFaLK-SVM and FaLK-SVMc can be performed using-fold CV. The
only difference with SVM is that our local kernel machines need to estimagdditional parameter
which is the neighbourhood siZze(which is however usually chosen in a small set of possible
values). However, with the local setting of the classification problem wdiscessing in this paper,
it is also possible to efficiently tackle the complexity of the model selection pliesacally, since
FaLK-SVM trains a set of local models, we can perform the model selection in a grdFssetting
on a subset of the neighbourhoods. In this way we can efficiently estinmgldhal parameters

of FaLK-SVM without considering all the training points during model selection. The classifi
implementing this approach to model selection is cafl@ldk-SVMI.
As a first step for defining the model selection approachabhK-SVMI, we define a different

setting of model selection f&NNSVM.

3. Without loss of generality, we assuri® modk = 0.
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Definition 3 (Localisedk-fold CV model selection forkNNSVM) The procedure applies the
fold CV model selection on the k-neighbourhood of the query point.

However, since the local model is usedkNNSVM only for the central point, the model selec-
tion should be performed in order to make the local models predictive e8péuidhe very internal
points. The idea thus consists in selecting khealidation sets exclusively from tHé most inter-
nal points, taking as each corresponding training fold the union of theimerg&’-neighbourhood
points and of thé— k' most external points of tHeneighbourhood.

Definition 4 (K'-internal k-fold CV model selection forkNNSVM)

The procedure applies the localiseefold CV model selection on thékeighbourhood of the query
point in the training set adding to each training fold the points in the k-neightimen that are not
in the K-neighbourhood with k- K'.

For FaLK-SVM we can apply th&/-internal k-fold CV for kNNSVM model selection on a
randomly chosen training example and use the resulting parameters forlaltahmodels. In order
to be robust the procedure is repeated on more thak-m@éghbourhood choosing the parameters
that minimise the averadé-internalk-fold CV error among thé&-neighbourhoods.

Definition 5 (K'-internal k-fold CV model selection forFaLK-SVM)

The procedure applies thé-lnternal k-fold CV for KNNSVM model selection on the k-neighbour-
hoods ofl < m< |C| randomly chosen centres selecting the parameters that minimise thegavera
error rate among the m applications.

The variant ofFaLK-SVM that adopts thd(-internal k-fold CV described in Definition 5 is
namedraLK-SVMI. SinceFaLK-SVMI selects the local model parameters using a small subset of the
training set, the variance of the error may be higher than the standashaiidation strategies.
However, for huge data sets the standard model selection can be too dlevapplied and, in any
case, one may use large valuesrao decrease the risk of selecting non-optimal parameters.

4.3.1 A SPECIFICSTRATEGY FORSETTING THE RBF KERNEL WIDTH

As already proposed by Tsang et al. (2005) and by Segata and Blg22@9b), good choices for
the RBF kernel widtlo of SVM are based on the median (or other percentiles) of the distribution of
distances. IfraLK-SVMI we can thus efficiently estimatefor each local model simply calculating
the median of the distances in the neighbourhood. This approach has salogies with standard
SVM using a variable RBF kernel width that have good potentialities for ifleesson (Chang et al.,
2005). Since other percentiles different from the median can give lasiteracy performances, in
FaLK-SVMI the percentile can be a value to set usingkhiaternalk-fold CV approach.

4.4 Generalisation Bounds fokNNSVM and FaLK-SVM

The class of LLAs introduced by Bottou and Vapnik (1992) inclukesiSVM, and can be theo-
retically analysed using the framework based on the local risk minimisatiom{/amd Bottou,
1993; Vapnik, 2000). On the other hadLK-SVM is not a LLA as intended by Bottou and Vapnik
(1992). In fact, LLAs compute the local function for each specific testmigtpghus delaying the
neighbourhood retrieval and model training until the testing point is availdbdevever, we show
here that generalisation bounds faLK-SVM can be derived starting from the LLA ones.
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We need to recall the bound for the local risk minimisation, which is a generatisaf the
global risk minimisation theory.

Theorem 6 (Vapnik (2000)) For a testing pointx’ and with probabilityl — n simultaneously for
all bounded functions A L(y, f(x,a)) < B,a € A (whereA is a set of parameters), and all locality
functionsO < T(x,Xp,B) < 1, B € (0,), the following inequality holds true:

< %ZiN:lL(Yi’ f(xha))T(XbX/a B) + (B_A>V(Nv hz)

RLLA .B, / < ,
(@,B,x) T3 T (0%, B) — YN )

where

hin(2N/h+1) —Inn/2
iy — /@D /2
and It is the VC dimension of the set of functioniLf (xi,a))T (xi,x’,B),a € A,B € (0,») and
hP is the VC dimension of (k;, X', B)

ForkNNSVM, the loss function is simply

o (0 ify=f(x,0)
L(y.vf(XnG»—{ 1 ity # f(x,a)

and the locality function is

, 1 ifdj<ksti=ry(]

T04,x, k) = { 0 otherwise .
Itis straightforward to show thgt ; T (x;,x’,k) = k. MoreoverT (x;,x’,k) has VC dimension equal
to 2; itis, in fact, the class of functions corresponding to hyperspluenetsed orx’ with diameters
equal to the distances of the points frafrand can thus shatter any set of two points with different
classes, but cannot shatter three points with the nearest and furthastpaving a class different
from the third point.

We observe that, in our case,

N k
L(yv f(X'7G))T(X'7X/7B) = L<ya f(X',G))
i; i i i i; i i
and so we can obtain: L s
RANNSVM (¢ | /) < §K-Vx +Y(N,h*)
~|§k=Y(N,2)]

wherevy is the ratio of misclassified training points in tk@eighbourhood oX'.

The possibility of local approaches to obtain a lower bound on test misotagiifi probabil-
ity acting with the locality parameter, as stated in Vapnik and Bottou (1993);ikd@600) for
LLA, it is even more evident fokNNSVM considering Equation 13. In fact, although choosing
ak < N is not sufficient to lower the bound, as the model training becomes more aredlocal
k decreases and (very likely) the misclassification training vatelecreases as well. Moreover,
also the complexity of the classifier (and thdg can decrease when the neighbourhood decreases,
because simpler decision functions can be used when fewer pointsrsider@d. Taking this into

(13)
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consideration, it is necessary to consider the trade-off between thesdefgocalityk, the function
of the empirical error with respect kcand the complexity of the local classifier needed with respect
to k, in order to find a minimum of the expected risk which is lower thanktkeN case. Multiple
strategies can be used to tune this trade-off, especially if prior or highitdermation are available
for a specific problem; since in this work we aim to be as general as pas$iblexpected risk is
estimated for the computational experiments using cross-validation basedelpgs.

FaLK-SVM pre-computes local models to be used for testing points lying in sub-rediexiil (
Voronoi cells) of the training set. The risk associatedr#bK-SVM considering a specific query
pointx’ can be defined using the risk INNSVM, supposing that’ € Vy, and SO, (1) = Xi:

RFaLK—SVM(cx7 k, X/) — RkNNSVM (G, k, Xl) +)\(X,7er/(l)) < RkNNSVM (CX, k, Xl) +)\rx,(1) (14)

where)\(x’,xrx,(l)) is due to the approximation introduced, for the prediction of the label of the
query pointx’, by the use of thek-neighbourhood of (1) instead of thek-neighbourhood ok’
itself and

A 1) = max)\(x”,xrx,(l)).

U
X N EVXi

If we considerk’ = 1, the approximation is due to the fact tHat(i)|i = 1,...,k} and{ry(i)|i =
1,...,k} can be slightly different; however, considering a non very low valud fdine differences
between the two sets are possible only for the very peripheral points aktgebourhoods which
are those that influence less the shape of the decision function in thel cegima. \We will empiri-
cally show that, , 1) is, on average, a small penalising term that still permits to achieve lower risks
than SVM usind( values higher than 1.

The risk of FaLK-SVM in its eager learning setting (i.e., without the explicit dependency on the
guery point) can thus be defined as:

RELSM(a k) = [ RS (a kX )gx )dX (15)
< /X (RONSM@,k xi) 4 Ar 1)) 9K )X
— /X/ RNNSYM (o K xi)g(x)dx’ + /X/)\rx,(l)g(x’)dx’
- /X RN (g xi)g(x )+ EN.

whereE[A] is the expectation of the term due to the use of KNENSVM risk for FaLK-SVM as
discussed above.

4.5 Computational Complexity Analysis

We analyse here the computational performancesabK-SVM from the theoretical complexity
viewpoint. The training phase 6ALK-SVM can be subdivided in four steps:

e the building of the cover tree that scales@$NlogN);
e the retrieval of the local models that scales®#$&C| - klogN);

e the assignment of each point t&‘aneighbourhood that scales @§N);
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e the training of the local SVM models that scales$C| - k).

The overall training time, considering the worst case in which 1 so|C| = N, scales as:
O(NlogN + C-klogN +N+ C- k) = O(kN- max(logN, k?))

which is, considering a reasonably low and fixed valuekfas happens in practice for large data
sets, sub-quadratic, and in particu@iNlogN), in the number of training points.
For the testing phase 6aLK-SVM we can distinguish two steps (for each testing point):

e the retrieval of the nearest training point that scale©dsgN);
e the prediction of the testing label using the selected local model that scal¥&)as

The testing can thus be performeddimax(logN,Kk)), so it is logarithmic inN. FaLK-SVMc is
even faster because it scalesdsnax(log|C|,k)) < O(max(logN,k)).

FaLK-SVM is thus asymptotically faster than SVM (also considering the worst case irhwhic
SVM scales quadratically and= 1) and all the classifiers taking more thaN logN) for training
and O(logN) for testing. MoreoverFaLK-SVM can be very easily parallelised differently from
SVM whose parallelisation, although possible (Zanni et al., 2006; DoD@5)X. is rather critical;
for FaLK-SVM is sufficient that, every time the points for a model are retrieved, the trairitigeo
local SVM is performed on a different processor. In this way the time caxitplef FaLK-SVM can
be further lowered t@(N - max(klogN, k3/Nproc)) whereNpq is the number of processors.

Another advantage dfaLK-SVM over SVM is space complexity. Sin¢aLK-SVM performs
SVM training on small subregions (assuming a reasonable&jpthere are no problems of fitting
the kernel matrix into main memory. The overall required space is, in@4dt,+ k?), that is, linear
in N, which is much lower than SVM space complexity@fN?). For large data set§aLK-SVM
can still maintain in memory the entire local kernel matrix(i§ not too large), whereas SVM must
discard some kernel values thus increasing SVM time complexity due to theoheecbmputing
them. Analysing the space required to store the trained model in secondeagesdevices (e.g.,
hard disks), we can notice theaLK-SVM needs to save in the model file the entire set of local
models; although we store the models with pointers to the training set points,edemeaintain
the whole training set in the model file (or give as input for the testing modutethe model file
and the original training set)FaLK-SVM, in other words, needs to store the training set also in
the model file, differently from SVM that needs to store only the suppartors (whose number
however grows linearly witN).

4.5.1 QJRSE OFDIMENSIONALITY

Although not explicitly considered here, cover trees have a constang ioamplexity bounds de-
pending on the so-called doubling constant (Clarkson, 1997; Kranméigand Lee, 2004) which is a
robust estimation of the intrinsic dimensionality of the data. Notice that the intrimsiergsionality
of a data set can be much lower than the dimensionality intended simply as the noiniear
tures. Regardless of the doubling const&at,K-SVM maintains the derived complexity boufids
with respect toN, but the overhead introduced for building the cover tree and retrieviad-th
neighbourhoods can be very high. This drawback, due to the wellikpoablem of thecurse of

4. The high intrinsic dimensionality can cause the need for an high valy#&,djut in the bound we already considered
the worst case in whick' = 1 and thugC| = N.
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Algorithm 1 FaLK-SVM-train (training setx[], training sizen, neighbourhood sizk, assignment
neighbourhood sizk’ )
1: modelg| <= null // the set of models

2: modelPtrg] < null // the set of pointers to the models

3: ¢« 0 /I the counter for the centres of the models

4: indexe§ < {1,...,N} //the indexes for centres selection

5: Randomisendexes // randomise the indexes

6: for i <=1toNdo

7 index< indexe§| // get the i-th index

8: if modelPtrgindeX = null then //if the point has not been assigned to a model. ..
9: localPointg] <= get orderedNN of x]i] //...retrieve itk-neighbourhood ...

10: models$c] < SVMtrain onlocalPointg] //...train alocal SVM...

11: modelPtréindeX < models$c] //...assign the centre to the trained model.

12: for j =1to k' do // Assign the model to the Kk nearest neighbours of the centre
13: ind < get index oflocalPoint§j]

14: if modelPtrgind] = null then // assign the points in thié-neighbourhood ...
15: modelPtr$ind] <= models$c] //...to thec-th model

16: end if

17: end for

18: c<ctl

19: end if

20: end for

21: return models modelPtrs

Algorithm 2 FaLK-SVM-predict (training setx[], points-to-model pointenniodelPtrs, Local SVM
modelsmodels query pointq )
1: Setp=get NN ofgin x // retrieve the nearest training point with respeato.
2: Setnnindex= getindex ofp //...retrieve its index ...
3: return label = SVMpredictg with modelPtrgnnindex // ...and use the corresponding model
for predict the label of the query point.

dimensionalitythat affects also SVM with local kernels (Bengio et al., 2005), is not kewerucial
here, as we are considering non-linear classification problems thattdrgh-dimensional. In fact,
apart from computational problems, high-dimensional problems are typtaakied by approaches
not related with the concept of locality (e.g., linear SVM instead of SVM with & R&rnel).

4.6 Implementation and Availability

FaLK-SVM (and alsaFkNN andFkNNSVM that are the implementations of KNN akiNSVM
using cover trees) is available as part of the Fast Local Kernel Madhilrary (Segata, 2009,
FaLKM-lib). FaLK-SVM is written inC/C++ and it uses LibSVM v. 2.88 (Chang and Lin, 2001)
for local SVM training and testing whereas we use our own implementation obtier trees data-
structure. The pseudo-code for the training phase is reported in Algoti#nd for the testing phase
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method  brief description
FKNN  implementation of KNN (Section 3.1) with cover trees
FKNNSVM  implementation okNNSVM (Section 3.3) with cover trees
FaLK-SVM  implementation of fast and scalable local kernel machines (see Equation 12)
FaLK-SVM-train ~ module for the training ofaLK-SVM (see Algorithm 1)
FaLK-SVM-predict module for the testing dfaLK-SVM (see Algorithm 2)

FaLK-SVMc  faster prediction variant ¢faLK-SVM (see Equation 10)

FaLK-SVMI  implementation ofalLK-SVM with local model selection (Section 4.3)

FKNNSVM-nr  implementation okNNSVM for noise reduction (Segata et al., 2009b)
FaLKNR  impl. of noise reduction witlFaLK-SVM (Segata et al., 2009a)

Table 1. Summary for the classifiers developed in the local kernel maatsimefvork and imple-
mented inFaLKM-lib.

in Algorithm 2 (use of cover trees and minimisationtaf Equation 11 are omitted for clearness).
Table 1 summarizes the classifiers discussed in this paper and the modtdegidlib.

5. Empirical Analysis

The empirical analysis is organised into three experiments performed wignafiffobjectives and
using different data sets. Experiment 1 (Section 5.1) has the objectassetsing the generali-
sation performances ¢faLK-SVM with respect to SVM (usin@ibSVM) and tokNNSVM (using
FKNNSVM) and thus assessingraLK-SVM is more accurate than SVM and if it is a good approxi-
mation ofkNNSVM. For this experiment we use 25 non-large data sets. Experim&atc®idn 5.2)
focuses on comparing the classification accuracies and the computatofahpances ofalk-
SVM (and its variant$aLK-SVMc and FaLK-SVMI) with respect to SVM (usingibSVM) on large
data sets. For this experiment we use 8 data sets with training set cardinalitigsg from about
50k examples to more than 1 million. Experiment 3 (Section 5.3) aims to understavite(her
FaLK-SVM has better scalability and accuracy performances thizgvM, a number of approxi-
mated SVM solversGvM, BVM, LASVM, CPSP andUSVM) and SVM-bagging and (ii) which are
the computational and accuracy differences betweeK-SVM, FaLK-SVMc andFaLK-SVMI. For
this last experiment we use 4 data sets with increasing training set size up to 3 mdamples.
The experiments, unless otherwise specified, are carried out on anAXMBn 64 X2 Dual Core
Processor 5000+, 2600MHz, with 3.56Gb of RAM with Linux operatingesys

5.1 Experiment 1: Comparison ofFaLK-SVM with LibSVM and FkNNSVM

In this evaluation we compare SVM (usingbSvM), KNNSVM (using FkNNSVM) and FaLK-
SVM on 25 non-large data sets, with the objective of studying the generalisai@rpances of
kNNSVM with respect to SVM and the level of approximation introducedFhyK-SvM to the
FKNNSVM algorithm.
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data set # of # of class data set # of # of class
name features points balancing name features points balancing
sonar 60 208 53%/47% fourclass 2 862 64%/36%
heart 13 270 56%/44% tic-tac-toe 9 958 65%/35%
mushrooms 112 300 53%/47% mam 5 961 54%/46%
haberman 3 306 74%/26% numer 24 1000 70%/30%
liver 6 345 58%/42% splice 60 1000 52%/48%
ionosphere 34 351 64%/36% spambase 57 1000 57%/43%
vote 15 435 61%/39% vehicle 21 1243 76%/24%
musk1 166 476 57%/43% cmc 7 1473 57%/43%
hill-valley 100 606 51%/49% ijcnnl 22 1500 68%/32%
breast 10 683 65%/35% ala 123 1605 76%/24%
australian 14 690 56%/44% chess 35 2130 52%/48%
transfusion 4 748 76%/24% astro 4 3089 65%/35%
diabetes 8 768 65%)/35%

Table 2: The 25 binary-class data sets of Experiment 1.

5.1.1 EXPERIMENTAL PROTOCOL

The data sets are listed in Table 2; they are retrieved from the UCI (Asuaoid Newman, 2007)
and STATLOG (Michie et al., 1994) repositories, with cardinality betweet &0d 3100 points
(some data sets have been randomly sub-sampled), dimensionality loweftharoRvery unbal-
anced, and they are all scaled in {fBgl] interval. The comparison is carried out using three different
kernel functions (linear, RBF and homogeneous polynomial), in a 10af¥léxperimental setting.
Internal to each training fold the model selection is performed with a nestéold €V choosing
the parameters in the following ranges. The regularisation para@étarhosen for all methods in
the se{2=2,271,...,2° 210}, the width parametes of the RBF kernel if2-5,274,...,22 2%}, the
degree of the polynomial kernels {i,2,3}. The neighbourhood parametefor FkNNSVM and
FaLK-SVM is selected by the cross-validation procedure in thg2&2?, ..., 2% 210 | x|} where
|.X| is the cardinality of the training sétwhile thek’ parameter ofalLK-SVM is fixed tok/2 which
is a value that privileges scalability over accuracy because we wanttta vatue that can permit
good computational results for large and very large data sets.

5.1.2 RESULTS ANDDISCUSSION

Table 3 reports the accuracy results of all tested methods and kernatiition to the mean ranks
reported in the figure, we assessed the statistical significance of theeddés between pairs of
methods using the Wilcoxon Signed Rank Test (Wilcoxon, 1945; $£&n2006) witha = 0.05.
The test highlights tha#@kNNSVM is significantly better thabibSVM for the linear and polynomial
kernels, whereas for the RBF kernel no significant differencedeterted, although the mean rank
of FKNNSVM with RBF kernel is lower thanibSVM with RBF kernel. Applied tdraLK-SVM, the
Wilcoxon Signed Rank Test detects a significant difference with redpadbSVM only for the
linear kernel. If we perform the Friedman test (Friedman, 19463 0.05), the null hypothesis is

5. For data set with less than 1024 points sdmalues are of course not tested.
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LibSVM FKNNSVM FaLK-SVM
Klin Krbf thol Klin Krbf thol Klin Krbf thol
sonar 74.52 87.83 83.16 89.36 86.90 87.40 8455 87.88 84.05
heart 84.81 82.22 84.81 84.81 8111 84.81 83.70 81.85 83.70
mushrooms 97.99 98.33 98.32 98.67 98.33 98.6 99.00 99.00 99.00
haberman 73.20 73.20 72.89 75.82 75.16 74.18 73.25 7320 73.87
liver 68.71 74.24 71.90 73.64 7396 73.94 70.73 71.92 71.92
ionosphere 88.04 93.72 88.88 93.75 94.59 93.75 86.91 94.01 89.18
vote 9495 96.32 94.95 96.32 96.33 96.32 9494 96.32 94.94
muskl 86.55 94.54 93.07 89.44 9496 91.17 87.18 93,90 92.43
hill-valley 63.70 66.00 63.70 64.86 65.18 64.86 65.17 64.03 65.00
breast 96.78 96.78 96.78 96.49 96.49 96.35 96.19 96.49 96.19
australian 85.50 84.78 84.20 84.78 85.50 84.92 85.07 85.07 84.78
transfusion 76.21 77.40 76.47 79.81 78.74 79.81 79.67 78.879.94
diabetes 76.54 76.54 76.68 76.81 78.24 77.07 7590 76.68 75.12
fourclass 77.39 100.00 78.66 100.00 100.00 100.00 100.00 100.00 100.00
tic-tac-toe 98.33 99.68 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mam 82.10 82.63 81.27 8295 82.73 82.85 81.80 82.63 80.97
numer 77.00 75.90 76.50 76.30 75.70 76.00 76.70 7470 75.90
splice 80.41 86.70 86.60 80.41 86.30 86.60 78.30 86.20 86.60
spambase 89.80 90.60 89.80 90.60 90.50 90.60 90.70 90.60 90.70
vehicle 82.71 84.16 84.80 82.78 84.64 84.71 83.27 84.785.04
cmc 59.26 6545 64.16 62.46 67.72 63.61 63.61 65.31 64.36
ijjicnnl 8553 93.94 92.73 93.93 9347 93.60 92.8®4.47 93.20
ala 83.43 8194 83.43 82.87 82.06 82.87 82.87 82.06 82.87
chess 96.57 98.45 98.03 97.84 98.50 98.08 97.32 98.45 98.08
astro 95.34 96.73 96.89 96.96 96.9297.05 96.96 96.67 96.86
mean rank  7.04 4.60 5.80 4.38 3.86 4.02 5.72 4.56 5.02

data set

Table 3: 10-fold CV accuracy results for the 25 data set of Experimenhhé best results for each
data set are highlighted in bold (taking into account all decimal values).

violated, but, according to the Nemenyi post-hoc test (Nemenyi, 1963){.05) the only method
that is statistically significantly different from the others is SVM with linear kekrn

The observation tha@kNNSVM is significantly better than SVM if a non-local kernel is used,
is a confirmation of what we already noticed (Segata and Blanzieri, 2008a)g the RBF kernel,
instead, no significant differences are detected, although the meamfr@kINSVM with RBF
kernel is lower thamibSVM with RBF kernel. This is mainly due to the fact that SVM with RBF
kernel is already very accurate and significant improvements over ieayedifficult. We may
also say that locality is already included in the RBF kernel and thus, atfleasbn-large data
sets, the adoption of a local method is somehow equivalent. RegafdingSVM, significant
differences with respect tdbSVM are detected only for the linear kernel. AlthougiiLK-SVM does
not achieve the accuracy resultssaNNSVM, if we look to the mean ranks, we can conclude that the
approximation on theNNSVM approach introduced iRaLK-SVM still permits to achieve slightly
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data set # of train.  testing class original
name feat. points points balancing source

icnnl 22 49990 91701 90%/10% LibSVM rep. (Chang and Lin, 2001)
cov-type * 54 100000 481010 51%/49% LibSVM rep. (Chang and Lin, 2001)
census-inc 41 199523 99762 94%/6%  UCI rep. (Asuncion and Newman, 2007)

cod-rna 8 364651 121549 67%/33% (Uzilov et al., 2006)
intr-det 40 1026588 311029 79%/21% UCI KDD rep. (Hettich and Bay, 1999)

2-spirals * 2 100000 100000 50%/50% Synthetic (Segata and Blanzieri, 2009c)
ndcc * 5 100000 100000 61%/39% Synthetic (Thompson, 2006)
checker-b * 2 300000 100000 50%/50% Synthetic (e.g., see Tsang et al., 2005)

Table 4. The 8 large data sets of the second empirical experiment. Thestlateh®se extensions
are used also in Experiment 3 are denoted with *.

better results than SVM also on non-large data sets, confirming our prelinainalysis (Segata and
Blanzieri, 2009c). These results also indicates thaEfaéterm introduced in the risk dfaLK-SVM
(Section 4.4), due to the approximations introduced taktSVM approach, is small enough to
assure higher generalisation accuracies with respect to SVM.

The overall outcome of this experiment is tat. K-SVM is a good approximation ¢tkNNSVM
that maintains a little advantage over SVM and it is particularly effective with BE kernel with
respect to linear and polynomial kernels. Notice that the experiment isdaut using small data
sets in which locality is very likely to play a marginal role differently from larggadsets in which
it can be crucial.

5.2 Experiment 2: FaLK-SVM, FaLK-SVMc and FaLK-SVMI vs. LibSVM and FkNN on Large
Data Sets

In this experiment we applfaLK-SVM, FaLK-SVMc, FaLK-SVMI, LibSVM on 8 large data sets
comparing the computational and generalisation performances using thkdRi4#, because pre-
liminary experiments showed that the linear or polynomial kernels have waradouracy results
on the considered problems. We also add to the comparison the KNN cla@sifiegmented with
cover trees and callgekNN) using the Euclidean distance.

5.2.1 EXPERIMENTAL PROTOCOL

The data sets considered in this experiment are listed in Table 4 with thepmrdisg sources and

are all scaled in thé0, 1] interval. They range from a training set cardinality of about 50k points
to more than one million, whereas the dimensionality is not high (always undleviOseparated

test sets. In order to select the parameters a 10-fold CV procedurefasnped in the training

set (apart fronFaLK-SVMI) choosing the values in the following se:c {272,271, 29 210}

oc {2715 2714 24 251 kfor FaLK-SVM in {250 500,100Q 200Q 400Q 8000} with k' = k/2,

andk for FkKNNSVM in {1,3,5,9,15,21,31,51,71,101 151}. FaLK-SVM does not necessarily test

all values fork because if the maximum empirical accuracy is found for a specific valde of
for examplek = 500, and for the following value, in this cake= 1000, the maximum is lower,

the remaining higher values & are not tested. Due to the computational resources necessary
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FKNN LibSVM FaLK-SVM FaLK-SVMc FaLK-SVMI
10f-CV  test 10f-CV  test 10f-CVv  test 10f-CV  test test

ijcnnl  97.37 96.64 98.99 97.98 99.0498.04 098.96 97.98 98.03
cov-type 91.73 9199 92.60 92.83 92.6892.89 92.44 92.60 92.84
census-inc  94.53 9452 95.14 95.13 95.07 95.07 95.00 94.99 94.99
cod-rna  95.88 96.25 97.18 97.17 97.19 97.23 97.06 97.0997.29
intr-det  99.74 92.04 99.89 91.77 99.74 9197 99.69 92.01 91.91
2-spirals 88.43 88.43 85.18 85.29 88.4288.47 88.29 88.45 88.30

ndcc 8547 8499 86.66 86.21 86.6386.29 86.33 85.93 86.24
checker-b  94.31 94.08 9446 9421 9446 9421 94.45 94.1994.23

megst acc. 4.25 3.25 1.63 3.38 2.50

data set

Table 5: Empirical (using 10-fold CV) and generalisation accuraci€&mi, LibSVM, FaLK-SVM,
FaLK-SVMc andFaLK-SVMI on the 8 large data sets of Experiment 2. The best generalisa-
tion accuracy for each data set is highlighted in bold. The last line rep@tai¢an rank
of each method among the 8 data sets.

for performing model selection, especially foibSVM, we performed the cross-validation runs
on a Linux-based TORQUE cluster with 20 nodes. FaltK-SVMI the local model selection is
performed on 10 local model§,c {2°,22 24 261 k € {500 100Q 2000 4000}, o locally estimated
with the 1st, 1ath, 5ah or 9th percentile of the distribution of the distances.

5.2.2 RESULTS ANDDISCUSSION

Table 5 reports the generalisation accuracies of the analysed classifieking at the mean ranks,

we can see tha&talLK-SVM is the most accurate (it achieves the best results in half of the data sets),
followed by FaLK-SVMI. LibSVM andFaLK-SVMc seem to perform very similar but little worse
thanFaLK-SVM andFaLK-SVMI. Not surprisinglyFkNN performs poorly in almost all the data sets,
except for theéntr-det data set in which it achieves the best result. According to the Wilcoxon &igne
Rank Test (Wilcoxon, 1945; Defar, 2006FaLK-SVM is significantly more accurate thaibSVM,
whereas, excludingkNN, no other significant differences are detected. Apart folirthalet data

set that has slightly different distribution in the training and testing sets (sopes tyf network
attacks are present in the test set only), the best empirical accureeiaisvays very similar to the
generalisation accuracies meaning that all techniques avoid over-fitting.

Table 6 reports the training times together with the speed-upalaf-SvVM, FaLK-SVMc and
FaLK-SVMI with respect tdLibSVM. We can notice that the speed-ups achieve#dnk-SvM and
FaLK-SVMc are always greater than# and in the majority of the cases they are at least one order
of magnitude bigger thahibSVM. Generally,FaLK-SVMc turns out to be faster thafalLK-SVM
although the two classifiers implement the same training algorithm. This happnskdhe model
selection chooses félaLK-SVMc a lower value ok with respect tdraLK-SVM. In fact, FaLK-SVMc
is less accurate tharaLK-SVM in choosing the nearest model for a testing point, and this causes an
higher value of thé=[A] constant that increases the riskrai_K-SVMc with respect tdraLK-SVM
(see Equation 14 and Equation 15). So using a ldwgand thus a lowek’) tends to have more
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LibSVM FaLK-SVM FaLK-SVMc FaLK-SVMI
data set training training speed-up training speed-up train. time peesl-up
time(s) time(s) onibSYM time(s) onLibSVM withlm.s. onLibSVM
ijcnnl 102 15 6.8 15 6.8 1850 0.1
cov-type 8362 88 95.0 38 220.1 1214 6.9
census-inc 13541 6047 4.7 2391 5.7 10271 1.3
cod-rna 9777 395 24.8 225 43.5 579 16.9
intr-det 5262 286 184 284 18.5 450 11.7
2-spirals 4043 188 21.5 81 49.9 3442 1.2
ndcc 1487 302 4.9 92 16.2 4609 0.3
checker-b 6047 334 18.1 366 16.5 1374 4.4

Table 6: Training times for Experiment 2 bibbSVM, FaLK-SVM, FaLK-SVMc andFaLK-SVMI and
the speed-ups of the three local methods with respecb®&vM. The best training time
for each data set is highlighted in bold.

LibSVM FaLK-SVM FaLK-SVMc FaLK-SVMI
dataset  testing testing speed-up testing speed-up testing speed-u
time (s) time(s) orLibSVM time(s) onLibSVM time(s)  onLibSVM
jjcnnl 43 32 1.3 5 8.6 36 1.2
cov-type 2795 202 13.8 73 38.3 191 14.6
census-inc 597 1347 0.4 58 10.3 1328 0.4
cod-rna 396 261 1.5 58 6.8 259 15
intr-det 192 146 1.3 76 2.5 149 1.3
2-spirals 957 10 95.7 5 1914 18 53.2
ndcc 148 61 2.4 7 21.1 61 2.4
checker-b 167 10 16.7 7 23.9 7 23.9

Table 7: Testing times for Experiment 2 bibSVM, FaLK-SVM, FaLK-SVMc andFaLK-SVMI and
the speed-ups of the three local methods with respadgb8vM. The best testing time for
each data set is highlighted in bold.

models in the proximity of the testing point making the choice less problematcK-SVMI is
sometimes slower tharbSVM, but we have to consider thBaLK-SVMI includes model selection,
whereas for the other methods the time needed by model selection is notszedsidthe training
time, so, practically speakinGalLK-SVMI is the fastest method if the optimal parameters areanot
priori known.

The testing times required by the analysed methods are reported in TableXpéded-alLK-
SVMc is the fastest among all methods with speed-up @ie$VM ranging from more than 2 to
almost 200FaLK-SVM andFaLK-SVMI are also generally faster thaibSVM with only one case in
which the testing time is about two times slower.

This experiment shows that for 8 non high-dimensional data sets, ouwaghpoutperforms a
state-of-the-art accurate SVM solver both in terms of generalisatiorraaies and computational
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performances. Although we have an additional parameter to {QnEal K-SVM andFaLK-SVMc
are faster enough to maintain the performance advantages.io®fM also for model selection
(we choosek in a small set of values). Moreover, wittaLK-SVMI we addressed the problem of
model selection with a specific approach to set the parameék; SVMI outperformd.ibSVM in
generalisation accuracy, and the time it needs for both internal modetiselaad training is at
least comparable (faster in 7 cases on a total of 8) with theltib8/M needs for the training only.

5.3 Experiment 3: Comparison of Scalability Performances ofalLK-SVM, FaLK-SVMc,
FaLK-SVMI, LibSVM and Approximated SVM Solvers

In this experiment we test the scalability performances of our technigaek-EVM, FaLK-SVMc,
FaLK-SVMI) on training sets with increasing sizes using the RBF kernel againsisetieer tech-
niques. The techniques taken into accountL#s®VM, the approximated SVM solvers calleym,
LASVM, USVM, BVM, CPSP (Section 2.3), SVM-bagging with fixed dimension of the sub-sampled
training sets$VM-B) and SVM-bagging with fixed proportion of the sub-sampled training sets with
respect to the whole training s&\(M-Bs). Although we apply all the classifiers with the same pro-
tocol on the same data sets, we report, for clearness, the results in tip thar comparison of
FaLK-SVM with LibSVM and the approximated SVM solvers in Section 5.3.2, the comparison of
FaLK-SVM with its variantsFaLK-SVMc andFaLK-SVMI in Section 5.3.3.

5.3.1 EXPERIMENTAL PROTOCOL

We consider here the data sets of Table 4 for which we can further erftaggtraining set size.
The data sets for which we can add sets of new training examples acewge data set (full
training set of 500k points) and the three artificial data sets nanspalals, ndcc andchecker-b (up

to 3 million points). Forcov-type the testing set is reduced to 50k examples (the other examples
are added to the training set) so the accuracy results are not directly idigpto the previous
experiment.

The model selection for all the classifiers (with the exceptioRadK-SVMI that performs in-
ternally a local model selection) is performed on the smallest training setusityg the chosen
parameter for all the higher training set sizes. This is necessary,i@ypéar LibSVM and approx-
imated SVM solvers, for computational reasons. Eb8VM, BVM, CVM, USVM (with the convex
concave procedure) al@PSP, we performed cross validation fGrando using the same setting of
the previous experiment. The default threshold valfee the stopping criteria are maintained: £0
for LibSVM, FaLK-SVM, LASVM and 10! for CPSP while CVM andBVM automatically choose the
value ofe based on the data at each application. We set the same size of the kehee(1a0M)
for all the methods. The maximum number of core vector<iem andBVM is 50000 (the default
value), the maximum number of basis vectors@esP is set to 1000. FosVM-B andSVM-Bs we
need to set respectively the size and the proportion of the sub-sampiédgrsets and the param-
eters of the SVMs. FosVM-B the size of the sub-sampled training sets is equal to the 5% of the
original training sets of each data set (hamely 10000@dweitype, 2-spirals andndcc and 300000
for checker-b), whereassSVM-Bs maintains the same sampling rate (5%) for all the applications
and so the cardinality of the sub-sampled training sets increases with tlieadigydf the training
set. BothSVM-B andSVM-Bs train 101 SVMs and the prediction is performed using the majority
voting. The value of 101 is chosen because it is a sufficient high nuraballéwing good accura-
cies and it is an odd number preventing possible ties in the majority voting. Theptars of the
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SVM for SVM-B andSVM-Bs (usingLibSVM) are chosen using model selection with the same grids
of parameters used faibSVM. We also teste@alLK-SVMI using the same setting of the previous
experiment. Each algorithm is tested for training set sizes requiring no memel 80000 seconds
(more than 27 hours) for training.

Since the authors @&VvM (Tsang et al., 2005) angvM (Tsang et al., 2007) declared the Linux
implementation of their techniques deprecated (see the authors reply to hodsCanu (2007)
available onBVM webpage), we use the Windows executables on a Intel Pentium D Dual Cor
CPU 3.40GHz with 2Gb of RAM running Windows XP instead of the AMD Athlon>2 Dual
Core Processor 5000+, 2600MHz, with 3.56Gb of RAM with Linux opegatipstem used for all
the other classifiers. Because of the use of different operating systesrisardware foBVM and
CVM, their running times should not be directly compared to the others. Howtbeecpomparison
is justified by preliminary tests that showed that the Linux versioB\wfl on the AMD Athlon
machine and the Windows version B¥M on the Intel Pentium machine have similar running
times.

5.3.2 RESULTS ANDDISCUSSION FALK-SVM VS LIBSVM AND APPROXIMATED SVM
SOLVERS

Figure 3 shows the generalisation accuracies of the methods at incraasiig set sizes. Some
methods do not appear in the figures due to low generalisation results outadiopal difficulties
that cause abnormal terminations of the algorithms, and some accuraltg feslarge training
set sizes are not present due to the excessive computational time defguiteaining (more than
100000 seconds). We can observe that it is very important to use aspuoaryg as possible in
order to increase the accuracies for the-type andndcc data sets. The same consideration can
be done for the-spirals data, althouglraLK-SVM already starts from very high accuracies and the
increment is limited, while for thehecker-b data set the increment of the accuracies is negligible for
almost all the methods. For tlseecker-b data set, the enlarging of the training set is not motivated
from the accuracy viewpoint, but we still use it as a benchmark for the atatipnal performances.

Comparing the generalisation accuracies of Figure 3 among the tested metieodan see
that FaLK-SVM is almost always on top for each of the four data sets. In this experimentlas
as in the previous ones, we dét= k/2; lower values fork’ would probably allowFaLK-SVM
to achieve higher accuracy results (although with worse computatiorfarpences). However,
even if the choice of th& parameter can be non-optimal, we decided to avoid the model selection
for k' since the results are already satisfactory. The methods that seem tegils comparable
with FaLK-SVM (apart from the2-spirals data set) areibSVM andUSVM and they are able, in few
cases, to slightly improve theaLK-SVM results LibSVM for 2 training set sizes forov-type and
checker-b, USVM for 2 training set sizes farov-type andchecker-b and 1 forndcc). The bagging
techniques give high accuracies only for tecker-b data set; this is not surprising because we
already noticed that for thehecker-b problem the use of large data sets is not required and thus
subsampling-based methods I&&M-B andSVM-Bs are competitive. The results of the online and
active learning approach aASVM are slightly lower tharFaLK-SVM, LibSVM andUSVM. CPSP
gives acceptable results in only one case, and foztpgrals andchecker-b data sets it suffers from
numerical problems possibly due to the scaling of the features ifOtfieinterval. Enlarging the
maximum number of basis functions f6PSP gives higher accuracies but the computational time
needed to build the models is too high. The results we achieve herib8wM andLASVM on the
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Figure 3: Generalisation accuraciesfafLK-SVM, LibSVM, BVM, CVM, LASVM, USVM, CPSP,
SVM-B andSVM-Bs on thecov-type, 2-spirals, ndcc andchecker-b data sets with increas-
ing training set sizes (Experiment 3). Some accuracies are missing dueexctssive
computational requirements (more than 100000 seconds for training) obthespond-
ing method for large training set sizes.
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cov-type data sets are a little higher than the results in Bordes et al. (2005) (abdwetidbboth for
100k and 50Rtraining set sizes), and we believe that this is due to the model selection elpprea
used here that is performed with an exhaustive cross-validation grichsteaiC ando. As we can
notice in Figure 3, we observed stability problemsdstv andBVM, even if we used the Windows
binaries as suggested by the authors.

The training computational performances shown in Figure 4 highlighFha¢-SVM is always
much faster than the alternative techniques that are competitive from thenagwiewpoint. In
fact, althoughcvM, BVM and SVM-B show good scalability performances and in few cases they
overcome the performances dLK-SVM, we noticed from Figure 3 that their generalisation abil-
ities are poor. The scaling behavioursLifSVM, LASVM andUSVM are very similar (among the
three method&ibSVM is the fastest fondcc, LASVM is the fastest foR-spirals andUSVM is the
fastest forchecker-b) but substantially worse th&faLK-SVM one FaLK-SVM is always at least one
order of magnitude faster with speed-ups increasing with the training ss) s$¥M-Bs is slightly
faster thanLibSVM but the scalability behaviour is very similar. The methods that achieve acteptab
accuracy results on the smallest training set size (iilesSVM, LASVM, USVM) are not applicable
when the number of training examples increases sensibly because @iopaputational scalability
performance; this is evident for tt#espirals, ndcc andchecker-b data sets in which the training
times ofLibSVM, LASVM, USVM exceed 100000 seconds as soon as the training set cardinality ap-
proaches one million (the only exceptioniSVM that is applicable on.5b training examples of the
checker-b data set). On the contraryaLK-SVM processes data sets of 3 millions examples in the
order of minutes or few hours. An experiment compatiitgsVM andLASVM on thecov-type data
set with conclusions similar to ours is reported by Bordes et al. (2005) ichwiowevelLASVM is
about a third faster thaibSVM whereas hereibSVM slightly overcomesASVM,; this is probably
due to the fact that fatASVM the only available implementation is the original one by Bordes et al.
(2005) whereakibSVM is frequently updated and improved. FinathpSP performs slightly better
thanLibSVM, LASVM andUSVM.

The computational performances of the prediction phase are reportéglire 5. Also in this
case the performance BALK-SVM is excellent: onlyCPSP andCVM are faster in 2 data sets than
FaLK-SVM, but their corresponding generalisation accuracies are low. As &€ SP achieves
very fast predictions because it limits the number of basis function to 10Dthas for each testing
points no more than 1000 kernel functions are computedSvM, LASVM and USVM achieve
similar results also in testing performances and, apart from small traininépséte ndcc data set,
they are at least one order of magnitude slower #&K-SVM and the difference grows for large
training set sizes. The slowest approacls¥¥-Bs and this is due to the high number of models
that need to be evaluated for each testing point and to the fact that thd giwennodels increases
with the training set size. Als8VM-B has rather high prediction times but, since the size of the
models is almost constant, also the performances at increasing trainingrgzemstant. It can be
argued that the number of models used for bagging can be lowered to fasteinprediction times;
however, if we want to achieve the computational performancé&aldf-SVM we need to use no
more than 20 models (in the worst case) and this seriously affects thetpediccuracies that are
already much lower thaRaLK-SVM ones.

The overall conclusion we can draw about the scalability of the propesdiques is that, at
least for these 4 non high-dimensional data sed&K-SVM is substantially better than the state-
of-the-art kernel methods for classification, and this is achieved withffecting the accuracy
performances that showed to be always at least as good as the besitaketechnique. Apart
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Figure 4: Training times ofalLK-SVM, LibSVM, BVM, CVM, LASVM, USVM, CPSP, SVM-B and
SVM-Bs on thecov-type, 2-spirals, ndcc andchecker-b data sets with increasing training
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(¢) ndcc data set

Number of training pointsc 1000
(d) checker-b data set

set sizes (Experiment 3). The times (in seconds) are reported in logarghaiée
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for LibSVM (and consequently foBVM-B and SVM-Bs), we have to say that the available code of
the other tested techniques has not been recently updated and for $lois iteia possible to argue
that higher performances with more optimised implementations of the tested elpgsazould be
reached. Itis also necessary to underline that in literatag/m, USVM, CPSP, BVM andCVM
have been prevalently tested on data sets with high dimensionality or, apaci/fiype, on data
sets not requiring highly non-linear decision functions. The approximaiedinear SVM solvers
and bagging approaches we tested could be indicated for data in whichdghelernel is not the
optimal choice, but, at the same time, the decision function can be accuratehsteicted with a
reduced amount of information (number of examples, support vectdrasis functions).

5.3.3 RESuULTS ANDDIscUSSION COMPARISON BETWEENFALK-SVM, FALK-SVMc AND
FALK-SVML

Figure 6 reports the comparison of the generalisation accuraciesL&fSVM, FaLK-SVMc and
FaLK-SVMI at increasing training set size. The computational performances for thmgy@hase
are reported in Figure 7, and for the testing phase in Figure 8.

From the accuracy viewpoint, we can notice that, as expe€dk-SVM is almost always
slightly more accurate tharaLK-SVMc. FaLK-SVMI, apart fromchecker-b, is less accurate than
FaLK-SVM for the smaller training set sizes, and this is due to the factRileK-SVM performs a
full grid search for model selection wheree K-SVMI adopts the very fast local model selection
approach. HoweveFalLK-SVMI rivals FaLK-SVM as the training set sizes increases. This is rea-
sonable becaugealLK-SVM uses for all the training set sizes the parameters found for the smaller
training sets, and the best cross-validated parameters can differtferasupled sets with differ-
ent cardinality. For example, as the number of training points increasesadhes of the local
neighbourhoods decreases if we maintain the se@edk’ values, and the original value for the
width parameter of the RBF kernel can no longer be the optimal one. Foetssm, in the case of
cov-type andndcc data setsFaLK-SVMI achieves higher accuracies theaiLK-SVM for the largest
training sets.FaLK-SVMI shows a slightly higher accuracy variability thEaLK-SVM and FaLK-
SVMc at different training set sizes; this is an empirical confirmation that thenpeteas selected
by FaLK-SVMI can be less stable than the parameters selected with standard cross valdiation
phenomenon seems to be acceptable if not negligible.

The training computational performances of Figure 7 confirm (as alrdatyssed in Sec-
tion 5.2.2) that, althougRaLK-SVM andFaLK-SVMc make use of the same training algorithm, the
model selection procedure selects lower valuek fufr FaLK-SVMc, thus assuring faster training
times tharFaLK-SVM. The speed-ups ¢faLK-SVMc with respect tdraLK-SVM are however never
higher than one order of magnitude. FaLK-SVMI we can notice a somehow irregular behaviour
for increasing dimensions of the training set and this is due to the diffeaduds of the neighbour-
hood, kernel and regularisation parameters it chooses during theahf@shlocal model selection
phase. In some cas€aLK-SVMI is significantly slower tharFraLK-SVM. However, the training
times forFaLK-SVMI include the model selection procedure whereasFfiK-SVM we consider
only the training with the optimal parameters, so we can conclude#natSVMI is a good choice
for huge training sets on which traditional model selection becomes intractable

The testing times reported in Figure 8 confirm thaltK-SVMc is always faster thaRaLK-SVM
andrFaLK-SVMI. In particular, we can notice theaLK-SVMc at least halves the testing timeraiLK-
SVM. FaLK-SVMI is computationally very similar téaLK-SVM. This is not surprising because the
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Figure 6: Generalisation accuraciesraflLK-SVM, FaLK-SVMc and FaLK-SVMI on the cov-type,
2-spirals, ndcc andchecker-b data sets with increasing training set sizes (Experiment 3).
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Figure 7: Training times ofalLK-SVM, FaLK-SVMc, and FaLK-SVMI on thecov-type, 2-spirals,
ndcc andchecker-b data sets with increasing training set sizes (Experiment 3). The times
(in seconds) are reported in logarithmic scale.
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andchecker-b data sets with increasing training set sizes (Experiment 3). The times (in
seconds) are reported in logarithmic scale.

1919



SEGATA AND BLANZIERI

only difference betweeRaLK-SVM andFaLK-SVMI regards the model selection but both classifiers
need, during testing, to perform a nearest neighbour search of émg points among all training
examples, differently fronfaLK-SVMc that performs the nearest neighbour search only among the
centres of the local models.

The FaLK-SVMI results permit us to discuss the sensitivity of the local kernel machine ap-
proaches with respect to the neighbourhood paranket€he local model selection ¢aLK-SVMI
selects different values éfat each application and theselected byraLK-SVMI is very often dif-
ferent from the value selected BgLK-SVM with standard model selection. However, the accuracy
results are not very dependent on this as we notice in Figure 6 in whiclctheagy variations
of FaLK-SVMI as the training sets increase are rather smooth and the accuraciesyaieniar to
FaLK-SVM. So the sensitivity of the accuracies with respedt tor local kernel machines seems to
be low at least for large data sets. From the computational viewpoint, insteakhow from the
complexity analysis that the advantages of local kernel machines aotiedfas long a is sub-
stantially lower therN. In our experiments the value kfselected by model selection is bounded to
8000; higher values, although not tested, may decrease the computptdicainances.

We can conclude thetaLK-SVM, FaLK-SVMc and FaLK-SVMI achieve similar accuracy and
computational results. When the model selectiorFiarK-SVM andFaLK-SVMc become computa-
tionally intractable FaLK-SVMI is an option to efficiently perform model selection and thus obtain
a lower overall training time. When very low testing times are requifadk-SVMc is preferable
to FaLK-SVM at the price of a slightly lower generalisation accuracy.

6. Conclusions

In this work, we have introduced a new local kernel-based classifibeddalLK-SVM, that is scal-
able for large non high-dimensional data. The approach is developgidgtiom the theory of
local learning algorithms and in particular from the Local SVM classifidled&kNNSVM. Various
strategies are introduced to overcome the computational problekMN8VM and to switch from
a completely lazy-learning setting to a eager learning setting with efficienicpicet. Learning
and complexity bounds fdfaLK-SVM are favourable if compared with the SVM oné&aLK-SVM
has, in fact, a training time complexity which is sub-quadratic in the training sstasmw a predic-
tion time complexity which is logarithmic. A novel approach for model selectioniralgased on
locality, is introduced obtaining theaLK-SVMI classifier which substantially unburdens the model
selection strategies based on cross-validation. Another variant of thetlhg, calledraLK-SvMc,
permits to simplify the prediction phase. We thus showed that locality can betosielelop
computationally efficient classifiers.

We carried out an extensive empirical evaluation of the introduced appes showing that,
for large classification problems requiring non linear decision functiongalLk-SVM algorithm
is much faster and accurate than traditional and approximated SVM solvdext, (i) FaLK-SVM
achieves very good accuracy results because it considers all ths witimout locally under-fitting
the data and (iiFaLK-SVM is very fast and scalable because the cardinality of the local problems
can be maintained low. The variant callealLK-SVMc further enhances testing speed at the price of
a little accuracy loss, and the other variant, cakedk-SVMI, decreases the overall training time.

In general, we have showed that locality can be the key not only for ébgpétcurate classi-
fiers, but also for effectively speeding-up kernel-based algorithms.
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Further developments of the approach include a dimensionality reductipropessing step in
order to attack also high-dimensional problems, the application of localif@asglifferent from
SVM, and a distributed parallel version. Also the determination of the critiglalevof the intrin-
sic dimensionality (rather than the number of features) above which thedppabaches are not
effective is still an open question and the answer should be very dptaxdent.

References
David W. Aha.Lazy Learning Kluwer Academic Publishers Norwell, MA, USA, 1997.

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing mufigcta binary : A unifying
approach for margin classifierdournal of Machine Learning Researchi113-141, 2000.

Arthur Asuncion and David Newman. UCI machine learning repository7 2QIRL http://www.
ics.uci.edu/  ~mlearn/MLRepository.html

Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Loa@lighted learningAvrtificial
Intelligence Reviewl1(1-5):11-73, 1997.

Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. The curse dfiyigariable functions for
local kernel machines. l1Advances in Neural Information Processing Systemkime 18, 2005.

Alina Beygelzimer, Sham Kakade, and John Langford. Cover treesfimest neighbor. Ifwenty-
third International Conference on Machine Learning (ICML 0pages 97-104, New York, NY,
USA, 2006. ACM.

Jock A Blackard and Denis J. Dean. Comparative accuracies of aftifieiaal networks and
discriminant analysis in predicting forest cover types from cartograpdniales. Computers
and Electronics in Agriculture24:131-151, 1999.

Enrico Blanzieri and Anton Bryl. Evaluation of the highest probability SVarest neighbor
classifier with variable relative error cost. GEAS 2007Mountain View, California, 2007.

Enrico Blanzieri and Farid Melgani. An adaptive SVM nearest neighkassdier for remotely
sensed imagery. IlEEE International Conference on Geoscience and Remote SensiqmpSym
sium (IGARSS 0O6pages 3931-3934, 2006.

Enrico Blanzieri and Farid Melgani. Nearest neighbor classificatioemibte sensing images with
the maximal margin principlelEEE Transactions on Geoscience and Remote Sendt(§):
1804-1811, 2008.

Antoine Bordes and &on Bottou. The Huller: A simple and efficient online SVM. Machine
Learning: ECML 2005 Lecture Notes in Artificial Intelligence, LNAI 3720, pages 505-512.
Springer Verlag, 2005.

Antoine Bordes, Seyda Ertekin, Jason Weston, amahlBottou. Fast kernel classifiers with online
and active learningJournal of Machine Learning Researdh1579-1619, 2005.

Antoine Bordes, Eon Bottou, and Patrick Gallinari. SGD-QN: Careful quasi-Newton ss&taha
gradient descentlournal of Machine Learning Researct0:1737-1754, July 2009.

1921



SEGATA AND BLANZIERI

Léon Bottou and Vladimir N. Vapnik. Local learning algorithni¢eural Computation4(6):888—
900, 1992.

Léon Bottou, Corinna Cortes, John S. Denker, Harris Drucker, llsaBayon, Lawrence D. Jackel,
Yann Le Cun, Urs A. Muller, Eduard&skinger, Patrice Simard, and Vladimir Vapnik. Com-
parison of classifier methods: A case study in handwritten digit recognitioiiwelveth IAPR
International Conference on Pattern Recognition, Conference B: Ctenpfision & Image Pro-
cessingvolume 2, pages 77-82. IEEE, 1994.

Leo Breiman. Bagging predictordlachine Learning24(2):123-140, August 1996.

David Broomhead and David Lowe. Multivariable functional interpolatiod adaptive networks.
Complex System:321-355, 1988.

Chih-Chung Chang and Chih-Jen Lil.IBSVM: A Library for Support Vector Maching2001.
Software available dtttp://www.csie.ntu.edu.tw/ ~ cjlin/libsvm

Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate désunethod for large-scale 12-
loss linear support vector machindsurnal of Machine Learning Research1369-1398, 2008.

Qun Chang, Qingcai Chen, and Xiaolong Wang. Scaling Gaussian RBE|keidth to improve
SVM classification.International Conference on Neural Networks and Brain, 2005. (&S
05), 1:19-22, 2005.

Long Chen. New analysis of the sphere covering problems and optimabpelgpproximation of
convex bodiesJournal of Approximation Theoyy133(1):134, 2005.

Haibin Cheng, Pang-Ning Tan, and Rong Jin. Localized support vetachine and its efficient
algorithm. SIAM International Conference on Data Minin2007.

Vasek Chvatal. A greedy heuristic for the set-covering probl&fathematics of Operations Re-
search pages 233-235, 1979.

Kenneth L. Clarkson. Nearest neighbor queries in metric space3weénty-ninth Annual ACM
Symposium on Theory of computing (STOC, @ages 609-617, New York, NY, USA, 1997.
ACM.

Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and PetBartlett. Exponentiated
gradient algorithms for conditional random fields and max-margin marktwanks. Journal of
Machine Learning Research:1775-1822, 2008.

Ronan Collobert, Fabian Sinz, Jason Weston, adonLBottou. Trading convexity for scalability.
In Twenty-third International Conference on Machine Learning (ICML, @apges 201-208, New
York, NY, USA, 2006. ACM.

Corinna Cortes and Vladimir Vapnik. Support-vector netwoMachine Learning20(3):273-297,
1995.

Janez Dersar. Statistical comparisons of classifiers over multiple data Setsinal of Machine
Learning Researclv:1-30, 2006.

1922



FAST AND SCALABLE LocAL KERNEL MACHINES

Jian-xiong Dong. Fast SVM training algorithm with decomposition on veryelalgta setslIEEE
Transaction Pattern Analysis and Machine Intelligen2@é(4):603—618, 2005. Senior Member-
Krzyzak, Adam and Fellow-Suen, Ching Y.

Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selagtiog second order in-
formation for training support vector machinebhe Journal of Machine Learning Researéh
1889-1918, 2005.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang,Ginii-Jen Lin. LIBLINEAR: A
library for large linear classificatioriThe Journal of Machine Learning Researénl871-1874,
2008.

Milton Friedman. A comparison of alternative tests of significance for thblpno of m rankings.
The Annals of Mathematical Statistjdsl(1):86—-92, 1940.

Michael R. Garey and David S. Johnsddomputers and Intractability: A Guide to the Theory of
NP-CompletenessVH Freeman & Co. New York, NY, USA, 1979.

Seth Hettich and Stephen D. Bay. The UCI KDD archive, 1999. Wfi:/kdd.ics.uci.edu

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, an8u8dararajan. A dual
coordinate descent method for large-scale linear SVMIwenty-fifth International Conference
on Machine Learning (ICML 08pages 408-415, New York, NY, USA, 2008. ACM.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass@tppctor machines.
IEEE Transactions on Neural Networkk3(2):415-425, 2002.

Thorsten Joachims. Making large-scale support vector machine legrantjcal. Advances in
kernel methods: support vector learningages 169-184, 1999.

Thorsten Joachims. Training linear SVMs in linear time Twelveth ACM SIGKDD International
Conference on Knowledge Discovery and Data Minipgges 217-226. ACM New York, NY,
USA, 2006.

Thorsten Joachims and Chun-Nam Yu. Sparse kernel SVMs via cutting-praining. Machine
Learning 2009.

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-pkinang of structural
SVMs. Machine Learning77(1):27-59, 2009.

Michael J. Kearns and Umesh V. VazirarAn Introduction to Computational Learning Theory
MIT Press Cambridge, MA, USA, 1994.

Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method foistdstion of large
scale linear SVMsJournal of Machine Learning Researd1341-361, 2005.

Sathiya Keerthi, Olivier Chapelle, and Dennis DeCoste. Building supmmtov machines with
reduced classifier complexityournal of Machine Learning Researchi1493-1515, 2006.

1923



SEGATA AND BLANZIERI

Stefan Knerr, Leon Personnaz, and Gerard Dreyfus. Single-laganing revisited: A stepwise
procedure for building and training a neural netwokptimization Methods and Softwarg:
23-34, 1990.

Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithmofamity search.
In Fifteenth Annual ACM-SIAM Symposium on Discrete algorithms (SOD/p@des 798-807,
Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathermgatic

Ulrich H.-G. Kressel. Pairwise classification and support vector machiAglvances in Kernel
Methods: Support Vector Learningages 255-268, 1999.

Yuh-jye Lee and Olvi L. Mangasarian. RSVM: Reduced support veo@chines. IrFirst SIAM
International Conference on Data Mining001.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Nemtethods for large-scale
logistic regression. ITwenty-fourth International Conference on Machine learning (ICML, 07)
pages 561-568, New York, NY, USA, 2007. ACM.

Getlle Loosli and Sphane Canu. Comments on the “Core vector machines: Fast SVM training on
very large data setsJournal of Machine Learning Researd1291-301, 2007.

Olvi L. Mangasarian. A finite Newton method for classificatidDptimization Methods and Soft-
ware 17(5):913-929, 2002.

Mario Marchand and John Shawe-Taylor. The set covering machiiee Journal of Machine
Learning ResearcB:723-746, 2003.

Donald Michie, David J. Spiegelhalter, Charles C. Taylor, and John Calinghlitors. Machine
Learning, Neural and Statistical ClassificatiofEllis Horwood, Upper Saddle River, NJ, USA,
1994. ISBN 0-13-106360-X.

Paul NemenyiDistribution-Free Multiple Comparisong?hD thesis, Princeton, 1963.

John C. Platt, Nello Cristianini, and John Shawe-Taylor. Large margin OaGsulticlass classi-
fication. Advances in Neural Information Processing Systelfi§3):547-553, 2000.

Bernard Schlkopf and Alexander J. SmolalLearning with Kernels: Support Vector Machines,
Regularization, Optimization, and BeyordIT Press Cambridge, MA, USA, 2002.

Nicola Segata. FaLKM-lib v1.0: A library for fast local kernel machin&eschnical Report DISI-
09-025, id 1613, DISI, University of Trento, Italy, 2009. Softwaritable athttp:/disi.
unitn.it/ -~ segata/FaLKM-lib

Nicola Segata and Enrico Blanzieri. Empirical assessment of classificationezy of Local SVM.
In Eighteenth Annual Belgian-Dutch Conference on Machine LearningelBam 2009) pages
47-55, 2009a.

Nicola Segata and Enrico Blanzieri. Operators for transforming kerntelgjirasi-local kernels that
improve SVM accuracy. Technical Report DISI-09-042, id 165ZhTeep., DISI, University of
Trento, 2009b.

1924



FAST AND SCALABLE LocAL KERNEL MACHINES

Nicola Segata and Enrico Blanzieri. Fast local support vector machinearfje datasets. In
International Conference on Machine Learning and Data Mining (MLDM@0volume 5632
of Lecture Notes in Computer Scien&pringer, 2009c.

Nicola Segata, Enrico Blanzieri, anédfaig Cunningham. A scalable noise reduction technique
for large case-based systems. In L Ginty and D.C Wilson, edi@ase-Based Reasoning Re-
search and Development: 8th International Conference on CasedBasasoning (ICCBRO09)
volume 09 ofLecture Notes in Artificial Intelligencgages 755—-758. Springer, 2009a.

Nicola Segata, Enrico Blanzieri, Sarah Jane Delany, @uhid?y Cunningham. Noise reduction for
instance-based learning with a local maximal margin appraimirnal of Intelligent Information
Systems2009b. In Press.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasosal estimated sub-gradient
solver for SVM. InTwenty-fourth International Conference on Machine learning (ICML, 07)
pages 807-814, New York, NY, USA, 2007. ACM.

Alexander J. Smola, SVN Vishwanathan, and Quoc V. Le. Bundle methods&ohine learning.
Advances in Neural Information Processing Syste2fisl377-1384, 2008.

Michael E. Thompson. NDCC: Normally distributed clustered datasets omscuB006.
www.cs.wisc.edu/dmi/svm/ndcc/.

Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vectohmes: Fast SVM training
on very large data set3he Journal of Machine Learning Researéh363—392, 2005.

Ivor W. Tsang, Andras Kocsor, and James T. Kwok. Simpler core vecaehines with enclosing
balls. InTwenty-fourth International Conference on Machine Learning (ICM), péges 911—
918, New York, NY, USA, 2007. ACM.

Andrew V. Uzilov, Joshua M. Keegan, and David H. Mathews. Detectfaron-coding rnas on the
basis of predicted secondary structure formation free energy chBhWE Bioinformatics 7(1):
173, 2006.

Vladimir N. Vapnik. The Nature of Statistical Learning Theor$pringer, 2000.

Vladimir N. Vapnik and léon Bottou. Local algorithms for pattern recognition and dependencies
estimation.Neural Computation5(6):893-909, 1993.

Jigang Wang, Predrag Neskovic, and N. Leon Cooper. A minimum smloeexing approach to
pattern classificationinternational Conference on Pattern Recogniti@m33-436, 2006.

Xun-Kai Wei and Ying-Hong Li. Linear programming minimum sphere setecing for extreme
learning machinesNeurocomputing71(4—6):570-575, 2008.

Frank Wilcoxon. Individual comparisons by ranking method&ometrics Bulletin 1(6):80—-83,
1945.

Tao Yang and Vojislav Kecman. Adaptive local hyperplane classificatidaurocomputing71
(13-15):3001-3004, 2008.

1925



SEGATA AND BLANZIERI

Tao Yang and Vojislav Kecman. Adaptive local hyperplane algorithm famlieg small medical
data setsExpert System26(4):355-359, 2009.

Tao Yang and Vojislav Kecman. Face recognition with adaptive local Wqee algorithmPattern
Analysis & Applications13(1):79-83, 2010. ISSN 1433-7541.

Alan L. Yuille and Anand Rangarajan. The concave-convex proeetleural Computation15(4):
915-936, 2003.

Alon Zakai and Ya’'acov Ritov. Consistency and localizabilifpurnal of Machine Learning Re-
search 10:827-856, 2009.

Luca Zanni, Thomas Serafini, and Gaetano Zanghirati. Parallel soffaateining large scale
support vector machines on multiprocessor systejnarnal of Machine Learning Research
1467-1492, 2006.

Hao Zhang, Alexander C. Berg, Michael Maire, and Jitendra Malik. SKINN: Discriminative
nearest neighbor classification for visual category recogniiBEE Computer Society Confer-
ence on Computer Vision and Pattern Recogniti2126—2136, 2006.

1926



