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Abstract
A computationally efficient approach to local learning withkernel methods is presented. TheFast
LocalKernelSupportVectorMachine (FaLK-SVM) trains a set of local SVMs on redundant neigh-
bourhoods in the training set and an appropriate model for each query point is selected at testing
time according to a proximity strategy. Supported by a recent result by Zakai and Ritov (2009) relat-
ing consistency and localizability, our approach achieveshigh classification accuracies by dividing
the separation function in local optimisation problems that can be handled very efficiently from the
computational viewpoint. The introduction of a fast local model selection further speeds-up the
learning process. Learning and complexity bounds are derived for FaLK-SVM, and the empirical
evaluation of the approach (with data sets up to 3 million points) showed that it is much faster and
more accurate and scalable than state-of-the-art accurateand approximated SVM solvers at least
for non high-dimensional data sets. More generally, we showthat locality can be an important
factor to sensibly speed-up learning approaches and kernelmethods, differently from other recent
techniques that tend to dismiss local information in order to improve scalability.

Keywords: locality, kernel methods, local learning algorithms, support vector machines, instance-
based learning

1. Introduction

Efficiently processing large amount of data is one of the challenges of current research in kernel
methods. Although most of the recently proposed techniques are based ondifferent approaches,
their common assumption is that scalability can be obtained by limiting or reducing the complex-
ity of the decision function. In fact, very fast training algorithms have beendeveloped for linear
SVM (Keerthi and DeCoste, 2005; Collins et al., 2008; Chang et al., 2008;Bordes et al., 2009; Fan
et al., 2008), and indeed they are effective when the linear separation isa good choice such as in
high-dimensionality problems. Other approaches permit the non-linear feature space setting, but
they limit the complexity by working with a reduced number of examples or a small set of sup-
port vectors (Lee and Mangasarian, 2001), using active and online example selection (Bordes et al.,
2005; Bordes and Bottou, 2005) or bounding the number of basis functions (Keerthi et al., 2006;
Joachims and Yu, 2009).

In the works referenced above, computational efficiency is sought bounding some aspects of the
optimisation problem. The result is anapproximationof the optimal separation and asmoothingof
the decision function which is more influenced by the global distribution of the examples than by the
local behaviour of the unknown target function in each specific sub-region. The emerging approach
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is thus to trade locality for scalability permitting, with a potentially high level of under-fitting, to
achieve a fast convergence to an approximated solution of the optimisation problem.

We show here that locality is not necessary related to computational inefficiency, but, instead,
it can be the key factor to obtain very fast kernel methods without the needto smooth locally the
global decision function. In our proposed approach, the model is formed by a set of accurate lo-
cal models trained on fixed-cardinality sub-regions of the training set andthe prediction module
uses for each query point the more appropriate local model. In this setting, we are not approximat-
ing with some level of inaccuracy the original SVM optimisation problem, but we are separately
considering different parts of the decision function with the potential advantage of better capturing
the local separation. So, instead of locally under-fit the decision functionby globally smoothing
it like approximated SVM solvers do, we search for decision functions thatare locally-calculated
and they are very similar (or even better) in terms of accuracy to the global decision function in the
proximity of each testing point. This approach is theoretically supported also by the recent result
obtained by Zakai and Ritov (2009) that showed how, roughly speaking, “consistency implies local
behaviour”.

In this work we presentFast Local Kernel Support Vector Machine (FaLK-SVM), that pre-
computes a set of local SVMs covering with adjustable redundancy the whole training set and uses
for prediction a model which is the nearest (in terms of neighbourhood rank in feature space) to each
testing point.FaLK-SVM is obtained introducing various strategies, detailed below, to speed-up the
Local SVM approach (see Blanzieri and Melgani, 2006 and Section 3.3). Scalability is obtained
approximating the Local SVM approach softening the assumption that the query point must be the
central example of the neighbourhood on which the local SVM is trained; in this way we use the
same local SVM model for more than one testing point and we can also pre-compute the local
models during training. The locality of the approach is regulated by the neighbourhood sizek and
the method uses all the training points. Starting from the theory of local learning algorithms (Bottou
and Vapnik, 1992; Vapnik and Bottou, 1993) we derive generalisation bounds forFaLK-SVM, and
we analyse the computational complexity stating that, under reasonable assumptions, the training
of our technique scales asN logN and the testing as logN whereN is the training set size. We also
introduce a procedure for local model selection in order to speed-up theselection of the parameters
and better capturing local properties of the data. The empirical evaluation (with data sets with up
to 3 million examples) shows thatFaLK-SVM outperforms accurate and approximated SVM solvers
both in term of generalisation accuracy and computational performances.

The effectiveness and efficiency of our approach is directly related tothe role that locality plays
in the learning problem. It is well known, for example, that for very high-dimensional problems
such as text and document classification, the linear kernel performs better than non-linear kernels
which are hard to tune and can be subject to the “curse of dimensionality” (Bengio et al., 2005).
On the other hand, there are problems (Blackard and Dean, 1999; Uzilovet al., 2006) which in-
herently require non-linear approaches to be tackled. This is due to the combination of an intrinsic
dimensionality which is low with respect to the training set size and of a decision function which is
not simple to learn. In general, locality plays a more important role as the numberof training ex-
amples increases because the ratio between training set cardinality and the dimensionality is more
favourable and the local characteristics are more evident. Other signals for the need of a non-linear
kernel are the detection of uneven distributions in the data sets (typical of real-world problems), the
monotonic increasing of accuracy with respect to training size also for already large amount of data
and the inclusion of a high fraction of training examples in the support vectorset. A representative
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of this class of problems is the Forest CoverType data set (Blackard andDean, 1999) which is a
large real data set (more than half a million examples) with bounded dimensionality(54 features)
that needs as many examples as possible to increase accuracy. We already showed in a very prelim-
inary study (Segata and Blanzieri, 2009c) that our approach on this dataset is more accurate than
SVM and much faster than both accurate and approximated SVM solvers.

The present contribution can be seen from multiple viewpoints. (i)FaLK-SVM modifies the
Local SVM approach (Blanzieri and Melgani, 2006; Zhang et al., 2006) that showed excellent clas-
sification performances but had dramatic computational problems, leading to ascalable Local SVM
classifier asymptotically much faster than SVM. (ii) The approach is also an enhancement of the
local learning algorithms because the learning process is not delayed untilthe prediction phase
(lazy learning) but the construction of the local models occurs during training (eager learning).
(iii) From a practical viewpoint,FaLK-SVM is a novel kernel method which outperforms accurate
and approximated SVM solvers for non high-dimensional data sets. (iv) For complex classification
problems that require an high fraction of support vectors (SVs), we exploit locality to avoid the need
of bounding the number of total SVs as existing approximated SVM solvers dofor computational
reasons. (v) More generally, our approach can also be seen as a framework for localising and make
scalable any kernel method, classifier and regressor and in general every data analysis that can be
applied on sub-regions of the entire data set. The proposedFaLK-SVM classifier and related tools are
freely available with source code as part of the Fast Local Kernel Machine Library (Segata, 2009,
FaLKM-lib).

In the next Section we analyse the work on local learning algorithms, LocalSVM and fast
large margin classifiers that are all related with our work. Section 3 formally introduces some
machine learning tools that we need in order to introduceFaLK-SVM in Section 4 and analyse its
learning bounds, complexity bounds, implementation, local model selection procedure and intuitive
interpretation. Section 5 details the empirical evaluation with respect to accurate and approximated
approaches.

2. Related Work

Locality is often a crucial component of machine learning systems, although weare not aware of
approaches exploiting locality for improving the computational performances. We review in this
section those areas that are more related with our approach: local learning algorithms, local support
vector machines, approximated and scalable SVM solvers.

2.1 Local Learning Algorithms

Local learning algorithms (LLAs) are a class of learning approaches introduced by Bottou and
Vapnik (1992). Instead of estimating a decision function which is optimal (with respect to some
criteria) for all possible unseen testing examples, the idea underlying LLAsconsists in estimating
the optimal decision function for each single testing point. The value of the function is estimated
in a small sub-region of the input space around the query point. For a local learning algorithm,
the points in the proximity of the query point have an higher influence in the training of the local
model. The approach is particularly effective for uneven distributed datasets, that is, data sets
presenting regions in which the examples have different spatial resolutions. In fact, with LLAs,
the characteristics of the learning process can be locally adjusted. A proper choice of the locality
parameter can reduce the generalisation error with respect to a global classifier as formalised by the
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Local Risk Minimization principle (Vapnik and Bottou, 1993; Vapnik, 2000).Notice that there are
various ways of specifying the degree of locality for LLAs as discussedfor instance by Atkeson et al.
(1997). Examples of LLAs are the well-known k-Nearest Neighbours (kNN) classifier, the Radial
Basis Function networks (Broomhead and Lowe, 1988), and the Local SVM classifier (Blanzieri
and Melgani, 2006; Zhang et al., 2006) described in Section 2.2.

Despite their theoretical and practical appeal, LLAs seem not to have been studied in depth in
the last few years. This is probably due to the fact that LLAs, as formulated by Bottou and Vapnik
(1992), fall in the class oflazy learning(or memory-based learning) that have great overhead on the
testing phase, as opposed toeager learningin which the function estimation is performed during
training increasing the computational performances of the testing phase.

2.2 Local Support Vector Machines

The main idea of Local SVM, described in details in Section 3.3, is to build at prediction time an
example-specific maximal marginal hyperplane based on the set ofk-neighbours.

Local SVM is a LLA and was independently proposed by Blanzieri and Melgani (2006, 2008)
and by Zhang et al. (2006) and applied respectively to remote sensing and visual recognition tasks.
Other successful applications of the approach are detailed by Segata and Blanzieri (2009a) for gen-
eral real data sets, by Blanzieri and Bryl (2007) for spam filtering and by Segata, Blanzieri, Delany,
and Cunningham (2009b) for noise reduction. Similar approaches havebeen presented by Yang
and Kecman (2008) and applied in the medical domain (Yang and Kecman, 2009) and for face
recognition problems (Yang and Kecman, 2010).

However, Local SVM suffers from the high computational cost of the testing phase that com-
prises, for each example, (i) the selection of thek nearest neighbours and (ii) the computation of
the maximal separating hyperplane on thek examples. An attempt to computationally improve
the Local SVM approach of Zhang et al. (2006) has been proposed by Cheng et al. (2007) where
the idea is to train multiple SVMs on clusters found by a variant ofk-means, called MagKmeans,
that introduces in the clustering criterion the requirement that the clusters cannot have unbalanced
class cardinalities. However the method does not follow directly the idea of Local SVM, the main
difference being that it can build only local linear models and the size of the clusters is not fixed
(MagKmeans does not have constraints on the cardinalities and the balancing requirement can cause
the detection of clusters with high cardinalities). The achieved computational performances are bet-
ter than their formulation of Local SVM, but worse than global SVM.

2.3 Fast Large Margin Classifiers

The need for fast and scalable kernel-based classifiers led to the development of several methods
in the last few years, although considerable attention seems to have been focused especially on
linear SVM classifiers. Below, we initially consider the works applicable also tonon-linear kernels,
successively we review the works on the linear case.

One of the first large-scale maximal margin learning that can use non-linearkernel functions is
represented by Core Vector Machines (Tsang et al., 2005,CVM); reformulating the SVM approach
as a minimum enclosing ball problem, the authors proved that it is possible to obtain approxi-
mated optimal solution in competitive training times by using the core sets. Good results have been
achieved using non-linear kernels although it has been pointed out that the choice of the stopping
criteria is crucial for the trade-off between computational efficiency andgeneralisation accuracy.
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Ball Vector Machines (Tsang et al., 2007,BVM) are a modification ofCVM in which the minimality
of the enclosing balls is not required, because the radius of the ball is fixed. The resulting clas-
sifier improves the computational performances. Another approach based on an online setting of
the SVM optimisation problem has been proposed by Bordes et al. (2005,LASVM) and by Bordes
and Bottou (2005) and it is an algorithm that converges to the SVM solution. It has been shown
that competitive accuracies can be achieved also after a single pass overthe training set. The ap-
proach can be seen as a SVM solver that includes a support vector removal step. In addition, several
strategies for active training-points selection can further improve computational and generalisation
performances. Formulating the optimisation problem in the primal, Keerthi et al. (2006,SpSVM)
proposed a method that bounds the number of basis functions consideredand thus the computa-
tional complexity. Increasing the cardinality of the basis function set allows the method to converge
to the SVM solution. A greedy strategy guides the choice of the basis functions to be included in
the working set. Collobert et al. (2006,USVM) showed that softening the convex setting of maximal
margin classifiers using a non-convex loss function can bring computational advantage over the cor-
responding standard convex problem. The non-convex problem is solved using theconcave-convex
procedure(Yuille and Rangarajan, 2003). Recently, the Cutting-Plane Subspace Pursuit (Joachims
and Yu, 2009,CPSP) based on cutting-plane training (Joachims et al., 2009) has been proposed; it
permits to learn maximal-margin decision functions in the feature space using arbitrary basis vectors
instead of the support vectors only. This can results in sparser solutionsincreasing the testing and
training computational performances especially for high-dimensional data sets. Although not al-
ways considered a method for large-scale learning,LibSVM (Chang and Lin, 2001) demonstrated to
be competitive with approximated approaches from the computational viewpoint. LibSVM is a SVM
solver implementing a SMO-type decomposition method proposed by Fan et al. (2005) integrating
it with caching and shrinking (Joachims, 1999).

Large margin classifiers can also achieve scalability using subsampling-based approaches that
train the model on a relatively small subset of the whole training set. However, the accuracy of
SVM with subsampling can decrease due to the loss of information contained in the discarded
training points. The decreasing of accuracy with respect to SVM without subsampling is more
dramatic when a complex decision function is needed. In these cases the accuracy problems can
be mitigated or reduced by developing an ensemble of classifiers. Bootstrapaggregating (bagging)
by Breiman (1996) is an effective strategy to perform accurate classification using an ensemble of
classifiers trained on subsets of the training set (using uniform sampling withreplacement) that can
also overcome the accuracies of SVM. Bagging with SVM can thus be used for obtaining scalability
as long as the advantage of training smaller SVM models on subsets of the training set (that can scale
cubically) overcome the disadvantage of training multiple SVMs.

Recently a lot of work has been performed in order to develop very fastand scalable solvers
applicable tolinear SVM only. Keerthi and DeCoste (2005) modified the Finite Newton method of
Mangasarian (2002) introducing robust conjugate gradient techniques and other heuristics. Joachims
(2006) developed an alternative formulation of the SVM optimisation problem exploiting a differ-
ent form of sparsity. Lin et al. (2007) used logistic regression with Trust Region Newton Methods.
Variants of coordinate descent methods for linear SVM are developed byChang et al. (2008) in
the primal and by Hsieh et al. (2008) in the dual. A different gradient approach was developed
by Smola et al. (2008). Other approaches are based on Stochastic Gradient Descent (SGD) like those
developed by Shalev-Shwartz et al. (2007) and by Bordes et al. (2009) which work in the primal,
whereas Collins et al. (2008) apply SGD in the dual. Although SGD methods can be theoretically
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used for non-linear SVM the performances are analysed for the linear case only. LIBLINEAR (Fan
et al., 2008) is a fast software package implementing some of the cited works.The common idea
of all the proposed methods is that the advantage of having a method that uses a huge number of
training points overcomes the disadvantage of approximating the decision function with a linear
model. This is effective, as explicitly noticed in almost all the cited works, whenthe dimensionality
is very large and thus the problem is very sparse. This is, for example, thetypical situation of text
document classification. However, when the needed decision function is highly non-linear and the
intrinsic dimensionality of the space is relatively small, the linear SVM approach cannot compete
with SVM using non-linear kernels in terms of generalisation accuracy. Apart from the generalisa-
tion ability also the computational performances can be compromised in these cases, because the
algorithm cannot find a good decision function and so convergence problems can occur.

3. Preliminaries

In order to introduce our approach, we need to analyse the formulation ofkNN, SVM, kNNSVM
and cover trees.

Here and in the following of the paper, we consider a binary class classification with examples
(xi ,yi)∈H ×{−1,+1} for i = 1, . . . ,N andX = {xi | i = 1, . . . ,N}, whereH is an Hilbert space with
inner product〈·, ·〉 and norm‖ · ‖. Extensions to multi-class problems will be explicitly discussed.

3.1 Thek Nearest Neighbour Algorithm

Given an examplex′ ∈ H , it is possible to order an entire set of pointsX with respect tox′. This
corresponds to define a functionrx′ : {1, . . . ,N} → {1, . . . ,N} that recursively reorders the indexes
of theN points inX :











rx′(1) = argmin
i=1,...,N

‖xi −x′‖

rx′( j) = argmin
i=1,...,N

‖xi −x′‖ i 6= rx′(1), . . . , rx′( j −1) for j = 2, . . . ,N.

In this way,xrx′ ( j) is the example in thej-th position in terms of distance fromx′, namely the
j-th nearest neighbour,‖xrx′ ( j)−x′‖ is its distance fromx′ andyrx′ ( j) is its class. In other terms:

j < k⇒‖xrx′ ( j)−x′‖ ≤ ‖xrx′ (k)−x′‖.

Given the above definition, the majority decision rule of kNN for binary classification problems
is defined by

kNN(x) = sign

(

k

∑
i=1

yrx(i)

)

.

For problems with more than two classes, the decision rule of kNN is the usual majority rule, namely
the method selects the class with the highest number of representatives in thek-neighbourhood
instead of taking the sign of the summation.
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3.2 Support Vector Machines

SVMs (Cortes and Vapnik, 1995) are classifiers with sound foundationsin statistical learning the-
ory (Vapnik, 2000). The decision rule is

SVM(x) = sign(〈w,Φ(x)〉F +b)

whereΦ(x) : H → F is a mapping in a transformed Hilbert feature space, calledF , with inner
product〈·, ·〉F . The parametersw∈ F andb∈ R are such that they minimise an upper bound on
the expected risk while minimising the empirical risk. The minimisation of the complexity term is
achieved by the minimisation of the quantity1

2 ·‖w‖2, which is equivalent to the maximisation of the
margin between the classes. In the optimisation problem, the violation of the margin isprevented
by the following set of constraints:

yi (〈w,Φ(xi)〉F +b)≥ 1. (1)

If a linear separation cannot be found in the input or feature space, thesoft-margin variant of
SVM permits the violation of the margin and the presence of misclassified training examples. This
is possible introducing slack variablesξi (the empirical risk):

yi (〈w,Φ(xi)〉F +b)≥ 1−ξi ξi ≥ 0, i = 1, . . . ,N. (2)

For soft-margin SVM the optimisation problem with linear penalisation ofξi (L1-norm), becomes
the minimisation of12 · ‖w‖2+C∑i ξi subject to (2). Reformulating such an optimisation problem
with Lagrange multipliersαi (i = 1, . . . ,N), and introducing a positive definite kernel (PD) function1

K(·, ·) that substitutes the scalar product in the feature space〈Φ(xi),Φ(x)〉F the decision rule can
be expressed as:

SVM(x) = sign

(

N

∑
i=1

αiyiK(xi ,x)+b

)

.

Throughout this work, SVM denotes the soft-margin SVM.
The kernel trick avoids the explicit definition of the feature spaceF and of the mapping function

Φ (Scḧolkopf and Smola, 2002). Popular kernels are the linear kernel, the radial basis function
kernel, and the homogeneous and inhomogeneous polynomial kernels. Their definitions are:

K lin(x,x′) = 〈x,x′〉 Krb f (x,x′) = exp
(

− ‖x−x′‖2

σ

)

,

Khpol(x,x′) = 〈x,x′〉d K ipol(x,x′) = (〈x,x′〉+1)d.

The maximal separating hyperplane defined by SVM has been shown to have important gener-
alisation properties and nice bounds on the VC dimension (Vapnik, 2000).

Multiple methods has been proposed in order to apply the maximal margin principleof SVM
on multiple class problems. The more popular are the one-against-all method (Bottou et al., 1994)
which builds a number of binary decision functions equal to the number of classesNcl, the one-
against-one method (Knerr et al., 1990; Kressel, 1999) which buildsNcl ·(Ncl −1)/2 binary decision
functions using voting in the prediction phase, and the Directed Acyclic Graph SVM (Platt et al.,

1. For convention we refer to kernel functions with the capital letterK and to the number of nearest neighbours with the
lower-case letterk.

1889



SEGATA AND BLANZIERI

2000, DAGSVM) which is a modification of the one-against-all method. Other general strategies for
reducing the multi-class classification setting to a binary classification problem have been analysed
and developed by Allwein et al. (2000). The study carried on by Hsu and Lin (2002) shows that, for
SVM, the more effective strategies are the one-against-one and DAGSVMapproaches.

3.3 Local SVM: The kNNSVM Classifier

We already introduced the idea of Local SVM in Section 2.2, here we detailkNNSVM which is the
formulation of Local SVM proposed by Blanzieri and Melgani (2006, 2008). kNNSVM can be seen
as a modification of the SVM approach in order to obtain a LLA able to locally adjust the capacity
of the training systems.

In order to classify a given examplex′ ∈H , we need first to retrieve itsk-neighbourhood in the
transformed feature spaceF and, then, to search for an optimal separating hyperplane only over
this k-neighbourhood. In practice, this means that an SVM is built over the neighbourhood inF of
each test examplex′. Accordingly, the constraints in (1) become:

yrx′ (i)

(

w·Φ(xrx′ (i))+b
)

≥ 1−ξrx′ (i), with i = 1, . . . ,k

whererx′ : {1, . . . ,N} → {1, . . . ,N} is a function that reorders the indexes of the training examples
defined as:











rx′(1) = argmin
i=1,...,N

‖Φ(xi)−Φ(x′)‖2
F

rx′( j) = argmin
i=1,...,N

‖Φ(xi)−Φ(x′)‖2
F i 6= rx′(1), . . . , rx′( j −1) for j = 2, . . . ,N.

(3)

In this way, xrx′ ( j) is the example in thej-th position in terms of distance fromx′ and thus
j < k⇒‖Φ(xrx′ ( j))−Φ(x′)‖F ≤‖Φ(xrx′ (k))−Φ(x′)‖F because of the monotonicity of the quadratic
operator. The computation is expressed in terms of kernels as:

||Φ(x)−Φ(x′)||2F = 〈Φ(x),Φ(x)〉F + 〈Φ(x′),Φ(x′)〉F −2· 〈Φ(x),Φ(x′)〉F =

= K(x,x)+K(x′,x′)−2·K(x,x′).

If the kernel is the RBF kernel or any polynomial kernels with degree 1, the ordering function
is equivalent to the one defined by the Euclidean metric. In general, for some non-linear kernels
(other than the RBF kernel) the ordering function can be quite different tothat produced using the
Euclidean metric.

The decision rule associated with the method for an examplex is:

kNNSVM(x) = sign

(

k

∑
i=1

αrx(i)yrx(i)K(xrx(i),x)+b

)

.

For k = N, thekNNSVM method is the usual SVM whereas, fork = 2, the method implemented
with the linear or Gaussian radial basis function kernel corresponds to the standard 1-NN classifier.
Notice that in situations where the neighbourhood contains only one class thelocal SVM does
not find any separation and so considers all the neighbourhood to belong to the predominant class
similarly to the behaviour of the majority rule. ConsideringkNNSVM as a local SVM classifier
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built in the feature space, the method has been shown to have a potentially favourable bound on the
expectation of the probability of test error with respect to SVM (Blanzieri and Melgani, 2008).

The generalisation ofkNNSVM for multi-class classification can occur locally, that is solving
the local multi-class SVM problem, or globally, that is applying the binarykNNSVM classifier on
multiple global binary problems. In Segata and Blanzieri (2009a) the adopted strategy for multi-
class classification withkNNSVM is the one-against-one strategy applied on the local problems.
The choice of the one-against-one approach gave good results in comparison with the same strategy
on SVM, but no specific empirical studies have been performed yet to identify the most appropriate
strategy for multi-class classification with Local SVM.

3.4 Cover Trees

A cover tree is a data structure introduced by Beygelzimer et al. (2006) for performing exact nearest-
neighbour operations in a fast and efficient way. Cover trees can be applied in general metric
spaces without any other assumption on their structure and thus also in Hilbert spaces calculating
the distances by means of kernel functions using the kernel trick.

In more detail, a cover tree can be viewed as a sub-graph of a navigating net (Krauthgamer and
Lee, 2004) and it is a levelled tree in which each level (indexed by a decreasing integeri) is a cover
(i.e., is representative) for the level beneath it. Every node of a cover treeT is associated with a point
of a data setS. Denoting withCi the set of points associated with nodes inT at leveli, with b> 1 a
constant, and withdist(·, ·) the distance function defining the metric of the space, the invariants of
a cover tree are:

Nesting Ci ⊂Ci−1

Covering tree For everyp ∈ Ci−1 there exists aq ∈ Ci such thatdist(p,q) < bi and the node in
level i associated withq is a parent of the node in leveli−1 associated withp.

Separation For all distinctp,q ∈Ci , dist(p,q)> bi .

Intuitively, the nesting invariant means that once a point appears in a level,it is present for every
lower level. The covering tree invariant implies that every node has a parent in a higher level such
that the distance between the respective points is less thanbi , while separation invariant assures that
the distance between every pair of points associated to the nodes of a leveli is higher thanbi . In
addition, the root of the tree (calledC∞ and containing only one example) is a randomly chosen
example.

Cover trees have state-of-the-art performance for exact nearestneighbour operations for general
metrics in low-dimensional spaces both in terms of computational complexity and space require-
ments. As theoretically proved by Beygelzimer et al. (2006), the space required by the cover tree
data-structure is linear in the data set size (O(n)), the computational time of single point insertions,
deletions and exact nearest neighbour queries is logarithmic (O(logn)) while the cover tree can be
built in O(nlogn).

4. FaLK-SVM: A Fast and Scalable Local Kernel Machine

In this section we introduce our novel technique. Initially we detail the way to pre-compute the
local models during training (Section 4.1) and the strategies to reduce the number of local models
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(Section 4.2). We then describe the prediction mechanism in Section 4.2.2 and our approach for fast
local model selection in Section 4.3. Successively, we derive learning bounds for the approach in
Section 4.4 before discussing the computational complexity in Section 4.5 and some details about
the implementation (Section 4.6).

4.1 Pre-computing the Local Models during Training Phase

For the local approach we are proposing here, we need to generalise the decision rule ofkNNSVM
to the case in which the local model is trained on thek-neighbourhood of a point distinct, in the
general case, from the query point. A modified decision function for a query point q ∈ H and
another (possibly different) pointt ∈H is:

kNNSVMt(q) = sign

(

k

∑
i=1

αrt(i)yrt(i)K(xrt(i),q)+b

)

(4)

wherert(i) is thekNNSVM ordering function (see above Section 3.3) andαrt(i) andb come from
the training of an SVM on thek-neighbourhood oft in the feature space. In the following we will
refer tokNNSVMt(q) as being centred ont, to t as the centre of the model, and, ift ∈ X , to Vt as
the Voronoi cell induced byt in X , formally:

Vt = {p ∈H s.t.‖p− t‖ ≤ ‖p−x‖, ∀x ∈ X with t 6= x}.

The original decision function ofkNNSVM corresponds to the case in whicht = q, and thus
kNNSVMq(q) = kNNSVM(q).

kNNSVM requires that the training of an SVM on thek-neighbourhood of the query point must
be performed in the prediction step. This approach is computationally feasibleonly for problems
with few points to test which is a condition that rarely holds in real-world classification problems.
In general, we need to speed-up the prediction phase. The first modification of kNNSVM consists
in predicting the label of a test pointq using the local SVM model built on thek-neighbourhood of
its nearest neighbour inX . Formally, this can be written as:

kNNSVMt(q) with t = xrq(1). (5)

Notice that in situations where thek-neighbourhood contains only one class the local model does
not find any separation and so it can adopt the majority rule for improving thecomputational per-
formances.

With this formulation the local learning can switch from thelazy learning(Aha, 1997) setting of
the original formulation ofkNNSVM to theeager learningsetting with clear advantages in terms of
prediction step complexity. This is possible computing a local SVM model for each x∈X during the
training phase obtaining the sets{(t,kNNSVMt)

∣

∣ t ∈ X } and applying the precomputedkNNSVMt

model such thatt = xrq(1) for each query pointq during the testing phase.
This approximation slightly modifies the approach ofkNNSVM as a local learning algorithm.

Instead of estimating the decision function for agiventest exampleq and thus for a specific point
in the input metric space, we estimate a decision function foreachVoronoi cellVx induced by the
training set in the input metric space. In this way, the construction of the modelsin the training
phase requires the estimation ofN local decision functions. The prediction of a test pointq is done
using the model built for the Voronoi region in whichq lies (Vh with h= xrq(1)) that can be retrieved
by searching for the nearest neighbour ofq in X .
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4.2 Reducing the Number of Local Models that Need to Be Trained

The pre-computation of the local models during the training phase introducedabove, increases the
computational efficiency of the prediction step. However, a considerableoverhead is added to the
training phase. In fact, the training of an SVM for each training point can be slower than the training
of a unique global SVM (especially for non smallk values), so we introduce another modification of
the method which aims to dramatically reduce the number of SVMs that need to be pre-computed.
The idea is that we can relax the constraint that a query pointx′ is always evaluated using the model
trained around its nearest training point. The decision function of this approach is

FastLSVM(x) = kNNSVM f (x)(x) (6)

where f : H 7→ C ⊆ X is a function mapping each unseen examplex to a unique training example
f (x) which is, accordingly to Equation 4, the centre of the local model that is usedto evaluatex.
The setC is the image off (·), soC = f (H ).

Notice that if f (·) = xr·(1), we have thatC = X and thatFastLSVM(x) is equivalent to the

kNNSVM formulation of Equation 5, and this can happen if we useall the examples in the training
set as centres for local SVM models. In the general case, however, we select only a proper subset
C ⊂ X of points to be used as centres ofkNNSVM models. In this case, ifxrx(1) ∈ C then f (x)

can be defined asf (x) = xrx(1), but if xrx(1) /∈ C then f (x) must be defined in a way such that the

principle of locality is preserved and the retrieval of the model is fast at prediction time.
Two aspects need to be addressed now: the strategy to select the subsetC of X , and the formu-

lation of the functionf associating each query example with an example inC .

4.2.1 SELECTING THE CENTRES OF THELOCAL MODELS

The approach we developed for selecting the setC of the centres of the local models is based on
the idea that each training point must be in thek′-neighbourhood of at least one centre withk′

being a fixed parameter andk′ ≤ k. From a slightly different viewpoint, we need to cover the entire
training set with a set of hyper-spheres whose centres will be the examples in C and each hyper-
sphere contains exactlyk′ points. We can formalise this idea with the concept ofk′-neighbourhood
covering set:

Definition 1 Given k′ ∈ N, a k′-neighbourhood covering set of centresC ⊆ X is a subset of the
training set such that the following holds:

⋃
c∈C

{

xrc(i) | i = 1, . . . ,k′
}

= X .

Definition 1 means that the union of the sets of thek′-nearest neighbours ofC corresponds to the
whole training set. Theoretically, for a fixedk′, the minimisation of the number of local SVMs
that we need to train can be obtained computing the SVMs centred on the points contained in the
minimal k′-neighbourhood covering set of centres.

Definition 2 TheMinimal k′-neighbourhood covering set of centresis a k′-neighbourhood covering
setC ⊆ X which have the minimal cardinality.
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This problem is related to theSet Cover Problem(SC) (Garey and Johnson, 1979; Kearns and
Vazirani, 1994; Marchand and Shawe-Taylor, 2003) and to theMinimum Sphere Set Covering Prob-
lem(MSSC) (Chen, 2005). However, in the SC and MSSC problems one specifies the radius of the
spheres rather than their cardinality in terms of points they contain and it is notrequired that the
centres of the hyperspheres correspond to points in the set. It is easy toshow that MSSC is NP-hard
but some efficient approximated results are available based on greedy approaches (Chvatal, 1979;
Wang et al., 2006), integer and linear programming (Wei and Li, 2008).

In our case, however, we do not need the minimality of the constraints of thek′-neighbourhood
covering set of centres to be strictly satisfied, because training some more local SVMs is acceptable
instead of solving an NP-hard problem.

The heuristic procedure we developed can be seen as a modification of thegreedy approach for
the MSSC problem (Chvatal, 1979; Wang et al., 2006). The firstk′-neighbourhood is selected ran-
domly choosing its centre inX , the followingk′-neighbourhoods are retrieved selecting the centres
that are still not members of otherk′-neighbourhoods and are as far as possible from the already
selected centres. The selection of the farthest example, still not included inthek′-neighbourhoods,
as the centre of the nextk′-neighbourhood, is the counterpart of the selection of the set of points
having the minimum overlapping with the already covered set of points used bythe greedy approach
to the MSSC and SC problems.

For detailing the greedy approach we adopt, we need the concepts of minimumand maximum
distance between the elements of a set of pointsA defined respectively as:

d(A) = min‖x−x′‖ with x,x′ ∈ A andx 6= x′

and
D(A) = max‖x−x′‖ with x,x′ ∈ A.

In particular, the minimum distance between points inX is m= d(X ) and the maximum isM =
D(X ). Our intention is to identify a system of subsetsSi ⊆ X with decreasing minimum distances
d(Si); we can in this way define an ordering on the sets. . . ⊂ Si+1 ⊂ Si ⊂ Si−1 ⊂ . . . such that
. . . > d(Si+1) > d(Si) > d(Si−1) > .. .. With this strategy we can choose the centres of the local
models first in the setSi+1, then in the setSi and so on, thus selecting first the centres that are
assured to be distant at leastd(Si+1), then at leastd(Si) < d(Si+1) and so on. More in detail, we
require that in theith setSi ⊆ X the two nearest points are farther thanbi with b> 1, that is, they
are subject to the constraintd(Si)> bi with b> 1. The bound on the minimum distanced(Si) thus
varies as powers ofb depending on the setSi .

Let us define precisely the system of sets{Si}. The maximumi index ofSi is namedtopand the
minimum is namedbot, and they are univocally defined as those indexes satisfyingbtop−1 ≤ M <
btop andbbot < m≤ bbot+1. TheSi are recursively defined as:







Stop = {choose(X )}

Si = Si+1∪ argmax
S∈X \Si+1

(|S| s.t. d(Si+1∪S)> bi) for i = top−1, . . . ,bot , (7)

where choose(A) is a function that selects only one element of the non-empty setA. An example
of choose() for our case can be the following definition that selects the example with the minimum
index:

choose(A) = xi with i = min(z∈N|xz ∈ A).
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Notice that, sinceSi containsSi+1 we have that

Stop = {choose(X )} ⊆ Stop−1 ⊆ . . .⊆ Sbot+1 ⊆ Sbot = X (8)

and, forcing for definition thatd(A) = ∞ if |A|= 1,

d(Stop) = ∞ > d(Stop−1) = M > d(Stop−2)> .. . > d(Sbot+1)> d(Sbot) = m.

We can now formalise the selection of the centres fromX using theSi sets. The first centrec1

is simply the (only) example inStop. The next centrec2 is chosen among the non-emptySl sets
obtained removing fromSi the first centrec1 and the points in itsk′-neighbourhood; in particular
c2 is chosen from the non-emptySl with highestl . The general case for thec j centre is similar,
with the only difference being that we remove from theSi sets all the centresct with t < j and their
k′-neighbourhood. More formally:

{

c1 = choose(Stop)

c j = choose(Sl ) with l = max(m∈N|Sm\Xc j−1 6= /0)
, (9)

where

Xc j−1 =
j⋃

l=1

{

xrcl (h)
∣

∣h= 1, . . . ,k′
}

.

is the union of all thek′-neighbourhoods of the centres already included inC .
We can briefly show that theC set found with Equation 9 is ak′-neighbourhood covering set of

centres. In fact, the iterative procedure for selecting the centres inC terminates when the choose()
function cannot select a point fromSl because allSj with j = bot, . . . , top are empty. Since for the
setSbot we always have thatSbot = X , this happens only whenXci−1 = X . Noticing thatXci in this
situation is equivalent to the constraint of Definition 1, we can conclude thatC is ak′-neighbourhood
covering set of centres.

Computationally, the selection of the centres from theSj sets with Equation 9 can be performed
efficiently once theSj are identified. More problematic is the construction of the nested set ofSj

sets. We can however notice that theSj sets share some characteristics with the levels of cover trees.
First, from Equation 7 we can easily see that for eachSj set with j < top all the points in it are at
least distant asb j becaused(Sj) > b j ; this is equivalent to the separation invariant of cover trees
reported in Section 3.4. Second, always from Equation 7 we can conclude that eachSj is contained
in everySt set witht < j as also explicated in Equation 8; this is equivalent to the nesting invariant
of cover trees. The only constraint of our strategy to identify theSj sets that is not respected by
cover trees is the maximality of the set added to eachSj set to obtainSj+1. However, the procedure
to insert a new point in a cover tree is based on adding it to the highest possible level, and this is an
efficient approximation of the maximality constraint we have in Equation 7. Taking all these facts
into consideration, we chose to use the levels of cover tree as theSj sets from which we select the
centres as reported in Equation 9.

Consequently with the goal of reducing the number of local models, this approach no longer
requires that a local SVM is trained for each training example, but we needto train only|C | SVMs
centred on eachc∈ C obtaining the following models:

kNNSVMc(x), ∀c∈ C .
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Figure 1: Graphical representation of the proposed approach using local models withk′ = 4,
k = 15, and local SVM with RBF kernel. The bold dotted circles highlights thek′-
neighbourhoods covering all the training set (with some unavoidable redundancy), the
thin dotted circles denotes thek-neighbourhoods on which the local models are trained.
Somek-neighbourhoods do not produce an explicit decision function because entirely
composed by points of the same class. The local SVM (with RBF kernel) decision func-
tions are drawn in blue. Notice that, due both to the adoption of thek′-neighbourhood
cover set and to the fact that only a fraction of the neighbourhoods needto be trained, we
have only 17 local decision functions for 185 points.

Moreover if a neighbourhood contains only points belonging to one class the local model is the
majority rule (specifically, unanimity) and the training of the SVM is avoided.

Figure 1 graphically shows the result of adopting the approach described above on a simple
artificial data set withk andk′ chosen for illustrative purposes. In fact, the example just aims to
show the intuition behind the approach that is instead developed for large data sets and for non-
extreme values of the neighbourhood parameters.

From Figure 1 we can also notice that the level of overlapping betweenk′-neighbourhoods
and thus betweenk-neighbourhoods depends on the value ofk′. If k′ is low, a large number of
k′-neighbourhoods are required to cover the entire training set, whereasif k′ is large fewerk′-
neighbourhoods are needed. Thek′ parameter thus tune the level of redundancy of the local models.

4.2.2 SELECTING THE LOCAL MODELS FORTESTING POINTS

Once the set of centresC is defined and the corresponding local models are trained, we need to
select the proper model to use for predicting the label of a test point. A simplestrategy we can
adopt consists in selecting the model whose centrec ∈ C is the nearest centre with respect to the
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testing example. Using the general definition ofFastLSVM of Equation 6 withf (x) = rCx (1) where
rC corresponds to the reordering function defined in Equation 3 performedon theC set instead of
X , the method, calledFaLK-SVMc, is defined as:

FaLK-SVMc(x) = kNNSVMc(x) wherec= xrCx (1)
. (10)

FaLK-SVMc is satisfactory from the computational viewpoint, for it performs the nearest neighbour
search onC only. However, it does not assure that the testing point is evaluated with themodel
centred on the point for which the testing point itself is the nearest in terms of neighbour ranking.
For example, a testing pointq can be closer toc1 thanc2 using the Euclidean distance, but at the
same time we can have thatq is thei-th nearest neighbour ofc1 in X and thej-th nearest neighbour
of c2 with i > j. This is a problem because using the model centred onc2 is better in terms of
proximity. In order to overcome this issue ofFaLK-SVMc we propose to use, for a testing pointq,
the model centred on the training point which is the nearest in terms of the neighbourhood ranking
to its training nearest neighbour. We can do this defining a functioncnt : X 7→ C in the following
way:

cnt(xi) = choose(
{

cz ∈ C |xi = xrcz(h)

}

)

whereh= min
(

t ∈ {1, . . . ,k′}
∣

∣xrc j (t)
= xi andc j ∈ C

)

.
(11)

Thecnt function finds, for each examplex, the minimum valuehsuch thatx is in theh-neighbourhood
of at least one centrec∈ C ; then, among the centres havingx in their h-neighbourhoods, it selects
the centre with the minimum index. The existence ofh is guaranteed by thek′-neighbourhood
covering strategy. In this way each training point is univocally assigned toa centre and so the de-
cision function of this approximation of Local SVM derivable fromFastLSVM of Equation 6 with
f (x) = cnt(x), and calledFaLK-SVM, is simply:

FaLK-SVM(x) = kNNSVMcnt(t)(x) wheret = xrx(1). (12)

The association between training points and centres defined by Equation 11can be efficiently
precomputed during the training phase, delaying to the testing phase only the retrieval of the nearest
neighbour of the testing point and the evaluation of the local SVM model.

Figure 2 graphically shows the application of theFaLK-SVM(x) prediction strategy on a toy data
set; the training phase for the same data set is illustrated in Figure 1.

FaLK-SVM can be generalised for multi-class problems in the same way ofkNNSVM, but in
this paper we focus on binary problems in order to better evaluate the approach.

4.3 FaLK-SVM with Internal Model Selection: FaLK-SVMl

For training a kernel machine, once a proper kernel is chosen, it is crucial to carefully tune the
kernel parameters and, for SVM, to set the soft margin regularisation constantC. Model selection
is very often performed estimating the empirical error with different parameter values and a popular
method is theκ-fold cross-validation2 with a grid search on parameter space. Given the following
loss function for the two-class classification case

L(y,SVM(x)) =
{

0 if y= SVM(x)
1, if y 6= SVM(x)

,

2. Althoughκ can be confused with the neighbourhood sizek or with the kernel functionK, κ is always used for
denotingκ-fold CV, so the context should be sufficient to avoid ambiguity.
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Figure 2: Graphical representation of the global decision function (black dotted line) obtained with
the local decision functions (the same of Figure 1) using the described approach that uses
for each query point the local decision function of the Voronoi region inwhich it lies.

and partitioning the training setX in κ subsets each with the same cardinality3 (called folds), the
κ-fold cross validation (CV) procedure consists in searching for the parameters that minimise the
average of the losses onX f of the classifier trained onX \X f for f = 1, . . . ,κ. The effectiveness in
terms of testing accuracies ofκ-fold CV is high, but it adds a computational overhead to the training
phase. In fact, the computational complexity of aκ-fold CV run on a single parameter choice is in
the order ofκ times the training time; if we havep parameters to set andc possible choices for each
parameter, theκ-fold cross-validation with grid selection isκ ·cp times slower than a single training
of the classifier.

The model selection forFaLK-SVM andFaLK-SVMc can be performed usingκ-fold CV. The
only difference with SVM is that our local kernel machines need to estimate anadditional parameter
which is the neighbourhood sizek (which is however usually chosen in a small set of possible
values). However, with the local setting of the classification problem we arediscussing in this paper,
it is also possible to efficiently tackle the complexity of the model selection phase.Basically, since
FaLK-SVM trains a set of local models, we can perform the model selection in a grid-search setting
on a subset of the neighbourhoods. In this way we can efficiently estimate the global parameters
of FaLK-SVM without considering all the training points during model selection. The classifier
implementing this approach to model selection is calledFaLK-SVMl.

As a first step for defining the model selection approach ofFaLK-SVMl, we define a different
setting of model selection forkNNSVM.

3. Without loss of generality, we assume|X | modκ = 0.
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Definition 3 (Localisedκ-fold CV model selection forkNNSVM) The procedure applies theκ-
fold CV model selection on the k-neighbourhood of the query point.

However, since the local model is used bykNNSVM only for the central point, the model selec-
tion should be performed in order to make the local models predictive especially for the very internal
points. The idea thus consists in selecting theκ validation sets exclusively from thek′ most inter-
nal points, taking as each corresponding training fold the union of the remaining k′-neighbourhood
points and of thek−k′ most external points of thek-neighbourhood.

Definition 4 (k′-internal κ-fold CV model selection forkNNSVM)
The procedure applies the localisedκ-fold CV model selection on the k′-neighbourhood of the query
point in the training set adding to each training fold the points in the k-neighbourhood that are not
in the k′-neighbourhood with k> k′.

For FaLK-SVM we can apply thek′-internal κ-fold CV for kNNSVM model selection on a
randomly chosen training example and use the resulting parameters for all thelocal models. In order
to be robust the procedure is repeated on more than onek-neighbourhood choosing the parameters
that minimise the averagek′-internalκ-fold CV error among thek-neighbourhoods.

Definition 5 (k′-internal κ-fold CV model selection forFaLK-SVM)
The procedure applies the k′-internal κ-fold CV for kNNSVM model selection on the k-neighbour-
hoods of1≤ m≤ |C | randomly chosen centres selecting the parameters that minimise the average
error rate among the m applications.

The variant ofFaLK-SVM that adopts thek′-internal κ-fold CV described in Definition 5 is
namedFaLK-SVMl. SinceFaLK-SVMl selects the local model parameters using a small subset of the
training set, the variance of the error may be higher than the standard cross-validation strategies.
However, for huge data sets the standard model selection can be too slow tobe applied and, in any
case, one may use large values ofm to decrease the risk of selecting non-optimal parameters.

4.3.1 A SPECIFICSTRATEGY FORSETTING THE RBF KERNEL WIDTH

As already proposed by Tsang et al. (2005) and by Segata and Blanzieri (2009b), good choices for
the RBF kernel widthσ of SVM are based on the median (or other percentiles) of the distribution of
distances. InFaLK-SVMl we can thus efficiently estimateσ for each local model simply calculating
the median of the distances in the neighbourhood. This approach has some analogies with standard
SVM using a variable RBF kernel width that have good potentialities for classification (Chang et al.,
2005). Since other percentiles different from the median can give betteraccuracy performances, in
FaLK-SVMl the percentile can be a value to set using thek′-internalκ-fold CV approach.

4.4 Generalisation Bounds forkNNSVM and FaLK-SVM

The class of LLAs introduced by Bottou and Vapnik (1992) includeskNNSVM, and can be theo-
retically analysed using the framework based on the local risk minimisation (Vapnik and Bottou,
1993; Vapnik, 2000). On the other hand,FaLK-SVM is not a LLA as intended by Bottou and Vapnik
(1992). In fact, LLAs compute the local function for each specific testing point thus delaying the
neighbourhood retrieval and model training until the testing point is available. However, we show
here that generalisation bounds forFaLK-SVM can be derived starting from the LLA ones.
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We need to recall the bound for the local risk minimisation, which is a generalisation of the
global risk minimisation theory.

Theorem 6 (Vapnik (2000)) For a testing pointx′ and with probability1−η simultaneously for
all bounded functions A≤ L(y, f (x,α))≤ B, α ∈ Λ (whereΛ is a set of parameters), and all locality
functions0≤ T(x,x0,β)≤ 1, β ∈ (0,∞), the following inequality holds true:

RLLA(α,β,x′)≤
1
N ∑N

i=1L(yi , f (xi ,α))T(xi ,x′,β)+(B−A)γ(N,hΣ)

| 1
N ∑N

i=1T(xi ,x′,β)− γ(N,hβ)|
,

where

γ(N,h) =

√

hln(2N/h+1)− lnη/2
N

,

and hΣ is the VC dimension of the set of functions L(yi , f (xi ,α))T(xi ,x′,β),α ∈ Λ,β ∈ (0,∞) and
hβ is the VC dimension of T(xi ,x′,β)

ForkNNSVM, the loss function is simply

L(yi , f (xi ,α)) =
{

0 if yi = f (xi ,α)
1 if yi 6= f (xi ,α)

and the locality function is

T(xi ,x′,k) =
{

1 if ∃ j ≤ k s.t. i = rx′( j)
0 otherwise

.

It is straightforward to show that∑N
i=1T(xi ,x′,k) = k. MoreoverT(xi ,x′,k) has VC dimension equal

to 2; it is, in fact, the class of functions corresponding to hyperspherescentred onx′ with diameters
equal to the distances of the points fromx′ and can thus shatter any set of two points with different
classes, but cannot shatter three points with the nearest and furthest points having a class different
from the third point.

We observe that, in our case,

N

∑
i=1

L(yi , f (xi ,α))T(xi ,x′,β) =
k

∑
i=1

L(yi , f (xi ,α))

and so we can obtain:

RkNNSVM(α,k,x′)≤
1
Nk ·νx′ + γ(N,hΣ)

| 1
Nk− γ(N,2)|

(13)

whereνx′ is the ratio of misclassified training points in thek-neighbourhood ofx′.
The possibility of local approaches to obtain a lower bound on test misclassification probabil-

ity acting with the locality parameter, as stated in Vapnik and Bottou (1993); Vapnik (2000) for
LLA, it is even more evident forkNNSVM considering Equation 13. In fact, although choosing
a k < N is not sufficient to lower the bound, as the model training becomes more and more local
k decreases and (very likely) the misclassification training rateνx′ decreases as well. Moreover,
also the complexity of the classifier (and thushΣ) can decrease when the neighbourhood decreases,
because simpler decision functions can be used when fewer points are considered. Taking this into
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consideration, it is necessary to consider the trade-off between the degree of localityk, the function
of the empirical error with respect tok and the complexity of the local classifier needed with respect
to k, in order to find a minimum of the expected risk which is lower than thek = N case. Multiple
strategies can be used to tune this trade-off, especially if prior or high-level information are available
for a specific problem; since in this work we aim to be as general as possible, the expected risk is
estimated for the computational experiments using cross-validation based approaches.

FaLK-SVM pre-computes local models to be used for testing points lying in sub-regions (k-NN
Voronoi cells) of the training set. The risk associated toFaLK-SVM considering a specific query
pointx′ can be defined using the risk ofkNNSVM, supposing thatx′ ∈ Vxi and soxrx′ (1) = xi :

RFaLK-SVM(α,k,x′) = RkNNSVM(α,k,x′)+λ(x′,xrx′ (1))≤ RkNNSVM(α,k,x′)+λrx′ (1) (14)

whereλ(x′,xrx′ (1)) is due to the approximation introduced, for the prediction of the label of the
query pointx’, by the use of thek-neighbourhood ofrx′(1) instead of thek-neighbourhood ofx′

itself and
λrx′ (1) = max

x′′∈Vxi

λ(x′′,xrx′ (1)).

If we considerk′ = 1, the approximation is due to the fact that{rc(i)| i = 1, . . . ,k} and{rx′(i)| i =
1, . . . ,k} can be slightly different; however, considering a non very low value fork, the differences
between the two sets are possible only for the very peripheral points of theneighbourhoods which
are those that influence less the shape of the decision function in the central region. We will empiri-
cally show thatλrx′ (1) is, on average, a small penalising term that still permits to achieve lower risks
than SVM usingk′ values higher than 1.

The risk ofFaLK-SVM in its eager learning setting (i.e., without the explicit dependency on the
query point) can thus be defined as:

RFaLK-SVM(α,k) =
∫

x′
RFaLK-SVM(α,k,x′)g(x′)dx′ (15)

≤
∫

x′

(

RkNNSVM(α,k,xi)+λrx′ (1)

)

g(x′)dx′

=
∫

x′
RkNNSVM(α,k,xi)g(x′)dx′+

∫
x′

λrx′ (1)g(x
′)dx′

=
∫

x′
RkNNSVM(α,k,xi)g(x′)dx′+E[λ].

whereE[λ] is the expectation of the term due to the use of thekNNSVM risk for FaLK-SVM as
discussed above.

4.5 Computational Complexity Analysis

We analyse here the computational performances ofFaLK-SVM from the theoretical complexity
viewpoint. The training phase ofFaLK-SVM can be subdivided in four steps:

• the building of the cover tree that scales asO(N logN);

• the retrieval of the local models that scales asO(|C | ·k logN);

• the assignment of each point to ak′-neighbourhood that scales asO(N);
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• the training of the local SVM models that scales asO(|C | ·k3).

The overall training time, considering the worst case in whichk′ = 1 so|C |= N, scales as:

O(N logN+C ·k logN+N+C ·k3) = O(kN ·max(logN,k2))

which is, considering a reasonably low and fixed value fork as happens in practice for large data
sets, sub-quadratic, and in particularO(N logN), in the number of training points.

For the testing phase ofFaLK-SVM we can distinguish two steps (for each testing point):

• the retrieval of the nearest training point that scales asO(logN);

• the prediction of the testing label using the selected local model that scales asO(k).

The testing can thus be performed inO(max(logN,k)), so it is logarithmic inN. FaLK-SVMc is
even faster because it scales asO(max(log|C |,k))≤ O(max(logN,k)).

FaLK-SVM is thus asymptotically faster than SVM (also considering the worst case in which
SVM scales quadratically andk′ = 1) and all the classifiers taking more thanO(N logN) for training
andO(logN) for testing. Moreover,FaLK-SVM can be very easily parallelised differently from
SVM whose parallelisation, although possible (Zanni et al., 2006; Dong, 2005), is rather critical;
for FaLK-SVM is sufficient that, every time the points for a model are retrieved, the training of the
local SVM is performed on a different processor. In this way the time complexity of FaLK-SVM can
be further lowered toO(N ·max(k logN,k3/Nproc)) whereNproc is the number of processors.

Another advantage ofFaLK-SVM over SVM is space complexity. SinceFaLK-SVM performs
SVM training on small subregions (assuming a reasonable lowk), there are no problems of fitting
the kernel matrix into main memory. The overall required space is, in fact,O(N+k2), that is, linear
in N, which is much lower than SVM space complexity ofO(N2). For large data sets,FaLK-SVM
can still maintain in memory the entire local kernel matrix (ifk is not too large), whereas SVM must
discard some kernel values thus increasing SVM time complexity due to the needof recomputing
them. Analysing the space required to store the trained model in secondary storage devices (e.g.,
hard disks), we can notice thatFaLK-SVM needs to save in the model file the entire set of local
models; although we store the models with pointers to the training set points, we need to maintain
the whole training set in the model file (or give as input for the testing module both the model file
and the original training set).FaLK-SVM, in other words, needs to store the training set also in
the model file, differently from SVM that needs to store only the support vectors (whose number
however grows linearly withN).

4.5.1 CURSE OFDIMENSIONALITY

Although not explicitly considered here, cover trees have a constant in the complexity bounds de-
pending on the so-called doubling constant (Clarkson, 1997; Krauthgamer and Lee, 2004) which is a
robust estimation of the intrinsic dimensionality of the data. Notice that the intrinsic dimensionality
of a data set can be much lower than the dimensionality intended simply as the numberof fea-
tures. Regardless of the doubling constant,FaLK-SVM maintains the derived complexity bounds4

with respect toN, but the overhead introduced for building the cover tree and retrieving the k-
neighbourhoods can be very high. This drawback, due to the well-known problem of thecurse of

4. The high intrinsic dimensionality can cause the need for an high value of|C |, but in the bound we already considered
the worst case in whichk′ = 1 and thus|C |= N.
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Algorithm 1 FaLK-SVM-train (training setx[] , training sizen, neighbourhood sizek, assignment
neighbourhood sizek’ )

1: models[]⇐ null // the set of models
2: modelPtrs[]⇐ null // the set of pointers to the models
3: c⇐ 0 // the counter for the centres of the models
4: indexes[]⇐ {1, . . . ,N} // the indexes for centres selection
5: Randomiseindexes // randomise the indexes
6: for i ⇐ 1 to N do
7: index⇐ indexes[i] // get the i-th index
8: if modelPtrs[index] = null then // if the point has not been assigned to a model. . .
9: localPoints[]⇐ get orderedkNN of x[i] // . . . retrieve itsk-neighbourhood . . .

10: models[c]⇐ SVMtrain onlocalPoints[] // . . . train a local SVM. . .
11: modelPtrs[index]⇐ models[c] // . . . assign the centre to the trained model.
12: for j = 1 to k′ do // Assign the model to the k’<k nearest neighbours of the centre
13: ind ⇐ get index oflocalPoints[ j]
14: if modelPtrs[ind] = null then // assign the points in thek′-neighbourhood . . .
15: modelPtrs[ind]⇐ models[c] // . . . to thec-th model
16: end if
17: end for
18: c⇐ c+1
19: end if
20: end for
21: return models, modelPtrs

Algorithm 2 FaLK-SVM-predict (training setx[] , points-to-model pointersmodelPtrs, Local SVM
modelsmodels, query pointq )

1: Setp = get NN ofq in x // retrieve the nearest training point with respect toq. . .
2: SetnnIndex= get index ofp // . . . retrieve its index . . .
3: return label = SVMpredictq with modelPtrs[nnIndex] // . . . and use the corresponding model

for predict the label of the query point.

dimensionalitythat affects also SVM with local kernels (Bengio et al., 2005), is not however crucial
here, as we are considering non-linear classification problems that are not high-dimensional. In fact,
apart from computational problems, high-dimensional problems are typicallytackled by approaches
not related with the concept of locality (e.g., linear SVM instead of SVM with a RBF kernel).

4.6 Implementation and Availability

FaLK-SVM (and alsoFkNN andFkNNSVM that are the implementations of kNN andkNNSVM
using cover trees) is available as part of the Fast Local Kernel Machine Library (Segata, 2009,
FaLKM-lib). FaLK-SVM is written inC/C++ and it uses LibSVM v. 2.88 (Chang and Lin, 2001)
for local SVM training and testing whereas we use our own implementation of thecover trees data-
structure. The pseudo-code for the training phase is reported in Algorithm 1 and for the testing phase
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method brief description
FkNN implementation of kNN (Section 3.1) with cover trees

FkNNSVM implementation ofkNNSVM (Section 3.3) with cover trees
FaLK-SVM implementation of fast and scalable local kernel machines (see Equation 12)

FaLK-SVM-train module for the training ofFaLK-SVM (see Algorithm 1)
FaLK-SVM-predict module for the testing ofFaLK-SVM (see Algorithm 2)

FaLK-SVMc faster prediction variant ofFaLK-SVM (see Equation 10)
FaLK-SVMl implementation ofFaLK-SVM with local model selection (Section 4.3)

FkNNSVM-nr implementation ofkNNSVM for noise reduction (Segata et al., 2009b)
FaLKNR impl. of noise reduction withFaLK-SVM (Segata et al., 2009a)

Table 1: Summary for the classifiers developed in the local kernel machine framework and imple-
mented inFaLKM-lib.

in Algorithm 2 (use of cover trees and minimisation oft in Equation 11 are omitted for clearness).
Table 1 summarizes the classifiers discussed in this paper and the modules ofFaLKM-lib.

5. Empirical Analysis

The empirical analysis is organised into three experiments performed with different objectives and
using different data sets. Experiment 1 (Section 5.1) has the objective ofassessing the generali-
sation performances ofFaLK-SVM with respect to SVM (usingLibSVM) and tokNNSVM (using
FkNNSVM) and thus assessing ifFaLK-SVM is more accurate than SVM and if it is a good approxi-
mation ofkNNSVM. For this experiment we use 25 non-large data sets. Experiment 2 (Section 5.2)
focuses on comparing the classification accuracies and the computational performances ofFaLK-
SVM (and its variantsFaLK-SVMc andFaLK-SVMl) with respect to SVM (usingLibSVM) on large
data sets. For this experiment we use 8 data sets with training set cardinalities ranging from about
50k examples to more than 1 million. Experiment 3 (Section 5.3) aims to understand (i) whether
FaLK-SVM has better scalability and accuracy performances thanLibSVM, a number of approxi-
mated SVM solvers (CVM, BVM, LASVM, CPSP andUSVM) and SVM-bagging and (ii) which are
the computational and accuracy differences betweenFaLK-SVM, FaLK-SVMc andFaLK-SVMl. For
this last experiment we use 4 data sets with increasing training set size up to 3 million examples.
The experiments, unless otherwise specified, are carried out on an AMDAthlon 64 X2 Dual Core
Processor 5000+, 2600MHz, with 3.56Gb of RAM with Linux operating system.

5.1 Experiment 1: Comparison ofFaLK-SVM with LibSVM and FkNNSVM

In this evaluation we compare SVM (usingLibSVM), kNNSVM (using FkNNSVM) and FaLK-
SVM on 25 non-large data sets, with the objective of studying the generalisation performances of
kNNSVM with respect to SVM and the level of approximation introduced byFaLK-SVM to the
FkNNSVM algorithm.
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data set # of # of class data set # of # of class
name features points balancing name features points balancing

sonar 60 208 53%/47% fourclass 2 862 64%/36%
heart 13 270 56%/44% tic-tac-toe 9 958 65%/35%

mushrooms 112 300 53%/47% mam 5 961 54%/46%
haberman 3 306 74%/26% numer 24 1000 70%/30%

liver 6 345 58%/42% splice 60 1000 52%/48%
ionosphere 34 351 64%/36% spambase 57 1000 57%/43%

vote 15 435 61%/39% vehicle 21 1243 76%/24%
musk1 166 476 57%/43% cmc 7 1473 57%/43%

hill-valley 100 606 51%/49% ijcnn1 22 1500 68%/32%
breast 10 683 65%/35% a1a 123 1605 76%/24%

australian 14 690 56%/44% chess 35 2130 52%/48%
transfusion 4 748 76%/24% astro 4 3089 65%/35%

diabetes 8 768 65%/35%

Table 2: The 25 binary-class data sets of Experiment 1.

5.1.1 EXPERIMENTAL PROTOCOL

The data sets are listed in Table 2; they are retrieved from the UCI (Asuncion and Newman, 2007)
and STATLOG (Michie et al., 1994) repositories, with cardinality between 200 and 3100 points
(some data sets have been randomly sub-sampled), dimensionality lower than 200, not very unbal-
anced, and they are all scaled in the[0,1] interval. The comparison is carried out using three different
kernel functions (linear, RBF and homogeneous polynomial), in a 10-foldCV experimental setting.
Internal to each training fold the model selection is performed with a nested 10-fold CV choosing
the parameters in the following ranges. The regularisation parameterC is chosen for all methods in
the set{2−2,2−1, . . . ,29,210}, the width parameterσ of the RBF kernel in{2−5,2−4, . . . ,22,23}, the
degree of the polynomial kernels in{1,2,3}. The neighbourhood parameterk for FkNNSVM and
FaLK-SVM is selected by the cross-validation procedure in the set{21,22, . . . , 29,210, |X |} where
|X | is the cardinality of the training set,5 while thek′ parameter ofFaLK-SVM is fixed tok/2 which
is a value that privileges scalability over accuracy because we want to test a value that can permit
good computational results for large and very large data sets.

5.1.2 RESULTS AND DISCUSSION

Table 3 reports the accuracy results of all tested methods and kernels. Inaddition to the mean ranks
reported in the figure, we assessed the statistical significance of the differences between pairs of
methods using the Wilcoxon Signed Rank Test (Wilcoxon, 1945; Demšar, 2006) withα = 0.05.
The test highlights thatFkNNSVM is significantly better thanLibSVM for the linear and polynomial
kernels, whereas for the RBF kernel no significant differences aredetected, although the mean rank
of FkNNSVM with RBF kernel is lower thanLibSVM with RBF kernel. Applied toFaLK-SVM, the
Wilcoxon Signed Rank Test detects a significant difference with respectto LibSVM only for the
linear kernel. If we perform the Friedman test (Friedman, 1940) (α = 0.05), the null hypothesis is

5. For data set with less than 1024 points somek values are of course not tested.
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data set
LibSVM FkNNSVM FaLK-SVM

K lin Krb f Khpol K lin Krb f Khpol K lin Krb f Khpol

sonar 74.52 87.83 83.16 89.36 86.90 87.40 84.55 87.88 84.05
heart 84.81 82.22 84.81 84.81 81.11 84.81 83.70 81.85 83.70

mushrooms 97.99 98.33 98.32 98.67 98.33 98.6 99.00 99.00 99.00
haberman 73.20 73.20 72.89 75.82 75.16 74.18 73.25 73.20 73.87

liver 68.71 74.24 71.90 73.64 73.96 73.94 70.73 71.92 71.92
ionosphere 88.04 93.72 88.88 93.75 94.59 93.75 86.91 94.01 89.18

vote 94.95 96.32 94.95 96.32 96.33 96.32 94.94 96.32 94.94
musk1 86.55 94.54 93.07 89.44 94.96 91.17 87.18 93.90 92.43

hill-valley 63.70 66.00 63.70 64.86 65.18 64.86 65.17 64.03 65.00
breast 96.78 96.78 96.78 96.49 96.49 96.35 96.19 96.49 96.19

australian 85.50 84.78 84.20 84.78 85.50 84.92 85.07 85.07 84.78
transfusion 76.21 77.40 76.47 79.81 78.74 79.81 79.67 78.8779.94

diabetes 76.54 76.54 76.68 76.81 78.24 77.07 75.90 76.68 75.12
fourclass 77.39 100.00 78.66 100.00 100.00 100.00 100.00 100.00 100.00

tic-tac-toe 98.33 99.68 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mam 82.10 82.63 81.27 82.95 82.73 82.85 81.80 82.63 80.97

numer 77.00 75.90 76.50 76.30 75.70 76.00 76.70 74.70 75.90
splice 80.41 86.70 86.60 80.41 86.30 86.60 78.30 86.20 86.60

spambase 89.80 90.60 89.80 90.60 90.50 90.60 90.70 90.60 90.70
vehicle 82.71 84.16 84.80 82.78 84.64 84.71 83.27 84.7285.04

cmc 59.26 65.45 64.16 62.46 67.72 63.61 63.61 65.31 64.36
ijcnn1 85.53 93.94 92.73 93.93 93.47 93.60 92.8094.47 93.20

a1a 83.43 81.94 83.43 82.87 82.06 82.87 82.87 82.06 82.87
chess 96.57 98.45 98.03 97.84 98.50 98.08 97.32 98.45 98.08
astro 95.34 96.73 96.89 96.96 96.92 97.05 96.96 96.67 96.86

mean rank 7.04 4.60 5.80 4.38 3.86 4.02 5.72 4.56 5.02

Table 3: 10-fold CV accuracy results for the 25 data set of Experiment 1. The best results for each
data set are highlighted in bold (taking into account all decimal values).

violated, but, according to the Nemenyi post-hoc test (Nemenyi, 1963) (α = 0.05) the only method
that is statistically significantly different from the others is SVM with linear kernel.

The observation thatFkNNSVM is significantly better than SVM if a non-local kernel is used,
is a confirmation of what we already noticed (Segata and Blanzieri, 2009a). Using the RBF kernel,
instead, no significant differences are detected, although the mean rankof FkNNSVM with RBF
kernel is lower thanLibSVM with RBF kernel. This is mainly due to the fact that SVM with RBF
kernel is already very accurate and significant improvements over it arevery difficult. We may
also say that locality is already included in the RBF kernel and thus, at leastfor non-large data
sets, the adoption of a local method is somehow equivalent. RegardingFaLK-SVM, significant
differences with respect toLibSVM are detected only for the linear kernel. AlthoughFaLK-SVM does
not achieve the accuracy results ofFkNNSVM, if we look to the mean ranks, we can conclude that the
approximation on thekNNSVM approach introduced inFaLK-SVM still permits to achieve slightly
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data set # of train. testing class original
name feat. points points balancing source

ijcnn1 22 49990 91701 90%/10% LibSVM rep. (Chang and Lin, 2001)
cov-type * 54 100000 481010 51%/49% LibSVM rep. (Chang and Lin, 2001)
census-inc 41 199523 99762 94%/6% UCI rep. (Asuncion and Newman, 2007)

cod-rna 8 364651 121549 67%/33% (Uzilov et al., 2006)
intr-det 40 1026588 311029 79%/21% UCI KDD rep. (Hettich and Bay, 1999)

2-spirals * 2 100000 100000 50%/50% Synthetic (Segata and Blanzieri, 2009c)
ndcc * 5 100000 100000 61%/39% Synthetic (Thompson, 2006)

checker-b * 2 300000 100000 50%/50% Synthetic (e.g., see Tsang et al., 2005)

Table 4: The 8 large data sets of the second empirical experiment. The data sets whose extensions
are used also in Experiment 3 are denoted with *.

better results than SVM also on non-large data sets, confirming our preliminary analysis (Segata and
Blanzieri, 2009c). These results also indicates that theE[λ] term introduced in the risk ofFaLK-SVM
(Section 4.4), due to the approximations introduced to thekNNSVM approach, is small enough to
assure higher generalisation accuracies with respect to SVM.

The overall outcome of this experiment is thatFaLK-SVM is a good approximation ofFkNNSVM
that maintains a little advantage over SVM and it is particularly effective with the RBF kernel with
respect to linear and polynomial kernels. Notice that the experiment is carried out using small data
sets in which locality is very likely to play a marginal role differently from large data sets in which
it can be crucial.

5.2 Experiment 2: FaLK-SVM, FaLK-SVMc and FaLK-SVMl vs. LibSVM and FkNN on Large
Data Sets

In this experiment we applyFaLK-SVM, FaLK-SVMc, FaLK-SVMl, LibSVM on 8 large data sets
comparing the computational and generalisation performances using the RBFkernel, because pre-
liminary experiments showed that the linear or polynomial kernels have very low accuracy results
on the considered problems. We also add to the comparison the kNN classifier(implemented with
cover trees and calledFkNN) using the Euclidean distance.

5.2.1 EXPERIMENTAL PROTOCOL

The data sets considered in this experiment are listed in Table 4 with the corresponding sources and
are all scaled in the[0,1] interval. They range from a training set cardinality of about 50k points
to more than one million, whereas the dimensionality is not high (always under 60) with separated
test sets. In order to select the parameters a 10-fold CV procedure is performed in the training
set (apart fromFaLK-SVMl) choosing the values in the following sets:C ∈ {2−2,2−1, . . . ,29,210},
σ ∈ {2−15,2−14, . . . ,24,25}, k for FaLK-SVM in {250,500,1000,2000,4000,8000} with k′ = k/2,
andk for FkNNSVM in {1,3,5,9,15,21,31,51,71,101,151}. FaLK-SVM does not necessarily test
all values fork because if the maximum empirical accuracy is found for a specific value ofk,
for examplek = 500, and for the following value, in this casek = 1000, the maximum is lower,
the remaining higher values ofk are not tested. Due to the computational resources necessary
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data set
FkNN LibSVM FaLK-SVM FaLK-SVMc FaLK-SVMl

10f-CV test 10f-CV test 10f-CV test 10f-CV test test

ijcnn1 97.37 96.64 98.99 97.98 99.04 98.04 98.96 97.98 98.03
cov-type 91.73 91.99 92.60 92.83 92.68 92.89 92.44 92.60 92.84

census-inc 94.53 94.52 95.14 95.13 95.07 95.07 95.00 94.99 94.99
cod-rna 95.88 96.25 97.18 97.17 97.19 97.23 97.06 97.09 97.29
intr-det 99.74 92.04 99.89 91.77 99.74 91.97 99.69 92.01 91.91

2-spirals 88.43 88.43 85.18 85.29 88.42 88.47 88.29 88.45 88.30
ndcc 85.47 84.99 86.66 86.21 86.63 86.29 86.33 85.93 86.24

checker-b 94.31 94.08 94.46 94.21 94.46 94.21 94.45 94.19 94.23
test acc.

4.25 3.25 1.63 3.38 2.50mean rank

Table 5: Empirical (using 10-fold CV) and generalisation accuracies ofFkNN, LibSVM, FaLK-SVM,
FaLK-SVMc andFaLK-SVMl on the 8 large data sets of Experiment 2. The best generalisa-
tion accuracy for each data set is highlighted in bold. The last line reports the mean rank
of each method among the 8 data sets.

for performing model selection, especially forLibSVM, we performed the cross-validation runs
on a Linux-based TORQUE cluster with 20 nodes. ForFaLK-SVMl the local model selection is
performed on 10 local models,C∈ {20,22,24,26}, k∈ {500,1000,2000,4000}, σ locally estimated
with the 1st, 10th, 50th or 90th percentile of the distribution of the distances.

5.2.2 RESULTS AND DISCUSSION

Table 5 reports the generalisation accuracies of the analysed classifiers. Looking at the mean ranks,
we can see thatFaLK-SVM is the most accurate (it achieves the best results in half of the data sets),
followed by FaLK-SVMl. LibSVM andFaLK-SVMc seem to perform very similar but little worse
thanFaLK-SVM andFaLK-SVMl. Not surprisingly,FkNN performs poorly in almost all the data sets,
except for theintr-det data set in which it achieves the best result. According to the Wilcoxon Signed
Rank Test (Wilcoxon, 1945; Dem̌sar, 2006)FaLK-SVM is significantly more accurate thanLibSVM,
whereas, excludingFkNN, no other significant differences are detected. Apart for theintr-det data
set that has slightly different distribution in the training and testing sets (some types of network
attacks are present in the test set only), the best empirical accuracies are always very similar to the
generalisation accuracies meaning that all techniques avoid over-fitting.

Table 6 reports the training times together with the speed-ups ofFaLK-SVM, FaLK-SVMc and
FaLK-SVMl with respect toLibSVM. We can notice that the speed-ups achieved byFaLK-SVM and
FaLK-SVMc are always greater than 4.7, and in the majority of the cases they are at least one order
of magnitude bigger thanLibSVM. Generally,FaLK-SVMc turns out to be faster thanFaLK-SVM
although the two classifiers implement the same training algorithm. This happens because the model
selection chooses forFaLK-SVMc a lower value ofk with respect toFaLK-SVM. In fact,FaLK-SVMc
is less accurate thanFaLK-SVM in choosing the nearest model for a testing point, and this causes an
higher value of theE[λ] constant that increases the risk ofFaLK-SVMc with respect toFaLK-SVM
(see Equation 14 and Equation 15). So using a lowerk (and thus a lowerk′) tends to have more
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data set
LibSVM FaLK-SVM FaLK-SVMc FaLK-SVMl

training training speed-up training speed-up train. time speed-up
time (s) time (s) onLibSVM time (s) onLibSVM with l.m.s. onLibSVM

ijcnn1 102 15 6.8 15 6.8 1850 0.1
cov-type 8362 88 95.0 38 220.1 1214 6.9

census-inc 13541 6047 4.7 2391 5.7 10271 1.3
cod-rna 9777 395 24.8 225 43.5 579 16.9
intr-det 5262 286 18.4 284 18.5 450 11.7

2-spirals 4043 188 21.5 81 49.9 3442 1.2
ndcc 1487 302 4.9 92 16.2 4609 0.3

checker-b 6047 334 18.1 366 16.5 1374 4.4

Table 6: Training times for Experiment 2 ofLibSVM, FaLK-SVM, FaLK-SVMc andFaLK-SVMl and
the speed-ups of the three local methods with respect toLibSVM. The best training time
for each data set is highlighted in bold.

data set
LibSVM FaLK-SVM FaLK-SVMc FaLK-SVMl

testing testing speed-up testing speed-up testing speed-up
time (s) time (s) onLibSVM time (s) onLibSVM time (s) onLibSVM

ijcnn1 43 32 1.3 5 8.6 36 1.2
cov-type 2795 202 13.8 73 38.3 191 14.6

census-inc 597 1347 0.4 58 10.3 1328 0.4
cod-rna 396 261 1.5 58 6.8 259 1.5
intr-det 192 146 1.3 76 2.5 149 1.3

2-spirals 957 10 95.7 5 191.4 18 53.2
ndcc 148 61 2.4 7 21.1 61 2.4

checker-b 167 10 16.7 7 23.9 7 23.9

Table 7: Testing times for Experiment 2 ofLibSVM, FaLK-SVM, FaLK-SVMc andFaLK-SVMl and
the speed-ups of the three local methods with respect toLibSVM. The best testing time for
each data set is highlighted in bold.

models in the proximity of the testing point making the choice less problematic.FaLK-SVMl is
sometimes slower thanLibSVM, but we have to consider thatFaLK-SVMl includes model selection,
whereas for the other methods the time needed by model selection is not considered in the training
time, so, practically speaking,FaLK-SVMl is the fastest method if the optimal parameters are nota
priori known.

The testing times required by the analysed methods are reported in Table 7. AsexpectedFaLK-
SVMc is the fastest among all methods with speed-up overLibSVM ranging from more than 2 to
almost 200.FaLK-SVM andFaLK-SVMl are also generally faster thanLibSVM with only one case in
which the testing time is about two times slower.

This experiment shows that for 8 non high-dimensional data sets, our approach outperforms a
state-of-the-art accurate SVM solver both in terms of generalisation accuracies and computational
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performances. Although we have an additional parameter to tune (k), FaLK-SVM andFaLK-SVMc
are faster enough to maintain the performance advantages overLibSVM also for model selection
(we choosek in a small set of values). Moreover, withFaLK-SVMl we addressed the problem of
model selection with a specific approach to set the parameters;FaLK-SVMl outperformsLibSVM in
generalisation accuracy, and the time it needs for both internal model selection and training is at
least comparable (faster in 7 cases on a total of 8) with the timeLibSVM needs for the training only.

5.3 Experiment 3: Comparison of Scalability Performances ofFaLK-SVM, FaLK-SVMc,
FaLK-SVMl, LibSVM and Approximated SVM Solvers

In this experiment we test the scalability performances of our techniques (FaLK-SVM, FaLK-SVMc,
FaLK-SVMl) on training sets with increasing sizes using the RBF kernel against several other tech-
niques. The techniques taken into account areLibSVM, the approximated SVM solvers calledCVM,
LASVM, USVM, BVM, CPSP (Section 2.3), SVM-bagging with fixed dimension of the sub-sampled
training sets (SVM-B) and SVM-bagging with fixed proportion of the sub-sampled training sets with
respect to the whole training set (SVM-Bs). Although we apply all the classifiers with the same pro-
tocol on the same data sets, we report, for clearness, the results in two parts: the comparison of
FaLK-SVM with LibSVM and the approximated SVM solvers in Section 5.3.2, the comparison of
FaLK-SVM with its variantsFaLK-SVMc andFaLK-SVMl in Section 5.3.3.

5.3.1 EXPERIMENTAL PROTOCOL

We consider here the data sets of Table 4 for which we can further enlarge the training set size.
The data sets for which we can add sets of new training examples are thecov-type data set (full
training set of 500k points) and the three artificial data sets named2-spirals, ndcc andchecker-b (up
to 3 million points). Forcov-type the testing set is reduced to 50k examples (the other examples
are added to the training set) so the accuracy results are not directly comparable to the previous
experiment.

The model selection for all the classifiers (with the exception ofFaLK-SVMl that performs in-
ternally a local model selection) is performed on the smallest training set only,using the chosen
parameter for all the higher training set sizes. This is necessary, especially for LibSVM and approx-
imated SVM solvers, for computational reasons. ForLibSVM, BVM, CVM, USVM (with the convex
concave procedure) andCPSP, we performed cross validation forC andσ using the same setting of
the previous experiment. The default threshold valueε for the stopping criteria are maintained: 10−3

for LibSVM, FaLK-SVM, LASVM and 10−1 for CPSP while CVM andBVM automatically choose the
value ofε based on the data at each application. We set the same size of the kernel cache (100M)
for all the methods. The maximum number of core vectors forCVM andBVM is 50000 (the default
value), the maximum number of basis vectors forCPSP is set to 1000. ForSVM-B andSVM-Bs we
need to set respectively the size and the proportion of the sub-sampled training sets and the param-
eters of the SVMs. ForSVM-B the size of the sub-sampled training sets is equal to the 5% of the
original training sets of each data set (namely 100000 forcov-type, 2-spirals andndcc and 300000
for checker-b), whereasSVM-Bs maintains the same sampling rate (5%) for all the applications
and so the cardinality of the sub-sampled training sets increases with the cardinality of the training
set. BothSVM-B andSVM-Bs train 101 SVMs and the prediction is performed using the majority
voting. The value of 101 is chosen because it is a sufficient high number for allowing good accura-
cies and it is an odd number preventing possible ties in the majority voting. The parameters of the
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SVM for SVM-B andSVM-Bs (usingLibSVM) are chosen using model selection with the same grids
of parameters used forLibSVM. We also testedFaLK-SVMl using the same setting of the previous
experiment. Each algorithm is tested for training set sizes requiring no more than 100000 seconds
(more than 27 hours) for training.

Since the authors ofBVM (Tsang et al., 2005) andCVM (Tsang et al., 2007) declared the Linux
implementation of their techniques deprecated (see the authors reply to Loosliand Canu (2007)
available onBVM webpage), we use the Windows executables on a Intel Pentium D Dual Core
CPU 3.40GHz with 2Gb of RAM running Windows XP instead of the AMD Athlon 64X2 Dual
Core Processor 5000+, 2600MHz, with 3.56Gb of RAM with Linux operating system used for all
the other classifiers. Because of the use of different operating systemsand hardware forBVM and
CVM, their running times should not be directly compared to the others. However,the comparison
is justified by preliminary tests that showed that the Linux version ofBVM on the AMD Athlon
machine and the Windows version ofBVM on the Intel Pentium machine have similar running
times.

5.3.2 RESULTS AND DISCUSSION: FALK-SVM VS LIBSVM AND APPROXIMATED SVM
SOLVERS

Figure 3 shows the generalisation accuracies of the methods at increasingtraining set sizes. Some
methods do not appear in the figures due to low generalisation results or computational difficulties
that cause abnormal terminations of the algorithms, and some accuracy results for large training
set sizes are not present due to the excessive computational time required for training (more than
100000 seconds). We can observe that it is very important to use as manypoints as possible in
order to increase the accuracies for thecov-type andndcc data sets. The same consideration can
be done for the2-spirals data, althoughFaLK-SVM already starts from very high accuracies and the
increment is limited, while for thechecker-b data set the increment of the accuracies is negligible for
almost all the methods. For thechecker-b data set, the enlarging of the training set is not motivated
from the accuracy viewpoint, but we still use it as a benchmark for the computational performances.

Comparing the generalisation accuracies of Figure 3 among the tested methods, we can see
that FaLK-SVM is almost always on top for each of the four data sets. In this experiment aswell
as in the previous ones, we setk′ = k/2; lower values fork′ would probably allowFaLK-SVM
to achieve higher accuracy results (although with worse computational performances). However,
even if the choice of thek′ parameter can be non-optimal, we decided to avoid the model selection
for k′ since the results are already satisfactory. The methods that seem to give results comparable
with FaLK-SVM (apart from the2-spirals data set) areLibSVM andUSVM and they are able, in few
cases, to slightly improve theFaLK-SVM results (LibSVM for 2 training set sizes forcov-type and
checker-b, USVM for 2 training set sizes forcov-type andchecker-b and 1 forndcc). The bagging
techniques give high accuracies only for thechecker-b data set; this is not surprising because we
already noticed that for thechecker-b problem the use of large data sets is not required and thus
subsampling-based methods likeSVM-B andSVM-Bs are competitive. The results of the online and
active learning approach ofLASVM are slightly lower thanFaLK-SVM, LibSVM andUSVM. CPSP
gives acceptable results in only one case, and for the2-spirals andchecker-b data sets it suffers from
numerical problems possibly due to the scaling of the features in the[0,1] interval. Enlarging the
maximum number of basis functions forCPSP gives higher accuracies but the computational time
needed to build the models is too high. The results we achieve here forLibSVM andLASVM on the
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Figure 3: Generalisation accuracies ofFaLK-SVM, LibSVM, BVM, CVM, LASVM, USVM, CPSP,
SVM-B andSVM-Bs on thecov-type, 2-spirals, ndcc andchecker-b data sets with increas-
ing training set sizes (Experiment 3). Some accuracies are missing due to theexcessive
computational requirements (more than 100000 seconds for training) of thecorrespond-
ing method for large training set sizes.
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cov-type data sets are a little higher than the results in Bordes et al. (2005) (about 1%better both for
100k and 500k training set sizes), and we believe that this is due to the model selection approach we
used here that is performed with an exhaustive cross-validation grid search forC andσ. As we can
notice in Figure 3, we observed stability problems forCVM andBVM, even if we used the Windows
binaries as suggested by the authors.

The training computational performances shown in Figure 4 highlight thatFaLK-SVM is always
much faster than the alternative techniques that are competitive from the accuracy viewpoint. In
fact, althoughCVM, BVM andSVM-B show good scalability performances and in few cases they
overcome the performances ofFaLK-SVM, we noticed from Figure 3 that their generalisation abil-
ities are poor. The scaling behaviours ofLibSVM, LASVM andUSVM are very similar (among the
three methodsLibSVM is the fastest forndcc, LASVM is the fastest for2-spirals andUSVM is the
fastest forchecker-b) but substantially worse thanFaLK-SVM one (FaLK-SVM is always at least one
order of magnitude faster with speed-ups increasing with the training set sizes).SVM-Bs is slightly
faster thanLibSVM but the scalability behaviour is very similar. The methods that achieve acceptable
accuracy results on the smallest training set size (i.e.,LibSVM, LASVM, USVM) are not applicable
when the number of training examples increases sensibly because of poorcomputational scalability
performance; this is evident for the2-spirals, ndcc andchecker-b data sets in which the training
times ofLibSVM, LASVM, USVM exceed 100000 seconds as soon as the training set cardinality ap-
proaches one million (the only exception isUSVM that is applicable on 1.5 training examples of the
checker-b data set). On the contrary,FaLK-SVM processes data sets of 3 millions examples in the
order of minutes or few hours. An experiment comparingLibSVM andLASVM on thecov-type data
set with conclusions similar to ours is reported by Bordes et al. (2005) in which howeverLASVM is
about a third faster thanLibSVM whereas hereLibSVM slightly overcomesLASVM; this is probably
due to the fact that forLASVM the only available implementation is the original one by Bordes et al.
(2005) whereasLibSVM is frequently updated and improved. Finally,CPSP performs slightly better
thanLibSVM, LASVM andUSVM.

The computational performances of the prediction phase are reported in Figure 5. Also in this
case the performance ofFaLK-SVM is excellent: onlyCPSP andCVM are faster in 2 data sets than
FaLK-SVM, but their corresponding generalisation accuracies are low. As expected,CPSP achieves
very fast predictions because it limits the number of basis function to 1000 and thus for each testing
points no more than 1000 kernel functions are computed.LibSVM, LASVM and USVM achieve
similar results also in testing performances and, apart from small training setsfor thendcc data set,
they are at least one order of magnitude slower thanFaLK-SVM and the difference grows for large
training set sizes. The slowest approach isSVM-Bs and this is due to the high number of models
that need to be evaluated for each testing point and to the fact that the size of the models increases
with the training set size. AlsoSVM-B has rather high prediction times but, since the size of the
models is almost constant, also the performances at increasing training sizesare constant. It can be
argued that the number of models used for bagging can be lowered to obtainfaster prediction times;
however, if we want to achieve the computational performances ofFaLK-SVM we need to use no
more than 20 models (in the worst case) and this seriously affects the prediction accuracies that are
already much lower thanFaLK-SVM ones.

The overall conclusion we can draw about the scalability of the proposedtechniques is that, at
least for these 4 non high-dimensional data sets,FaLK-SVM is substantially better than the state-
of-the-art kernel methods for classification, and this is achieved withoutaffecting the accuracy
performances that showed to be always at least as good as the best alternative technique. Apart
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Figure 4: Training times ofFaLK-SVM, LibSVM, BVM, CVM, LASVM, USVM, CPSP, SVM-B and
SVM-Bs on thecov-type, 2-spirals, ndcc andchecker-b data sets with increasing training
set sizes (Experiment 3). The times (in seconds) are reported in logarithmicscale.
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(b) 2-spirals data set
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(c) ndcc data set
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Figure 5: Testing times ofFaLK-SVM, LibSVM, BVM, CVM, LASVM, USVM, CPSP, SVM-B and
SVM-Bs on the data sets of Experiment 3 with increasing training set sizes. The times
(in seconds) are reported in logarithmic scale. Some testing times are missing dueto
the excessive computational requirements (more than 100000 seconds for training) of the
corresponding method for large training set sizes.
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for LibSVM (and consequently forSVM-B andSVM-Bs), we have to say that the available code of
the other tested techniques has not been recently updated and for this reason it is possible to argue
that higher performances with more optimised implementations of the tested approaches could be
reached. It is also necessary to underline that in literatureLASVM, USVM, CPSP, BVM andCVM
have been prevalently tested on data sets with high dimensionality or, apart for cov-type, on data
sets not requiring highly non-linear decision functions. The approximatednon-linear SVM solvers
and bagging approaches we tested could be indicated for data in which the linear kernel is not the
optimal choice, but, at the same time, the decision function can be accurately reconstructed with a
reduced amount of information (number of examples, support vectors orbasis functions).

5.3.3 RESULTS AND DISCUSSION: COMPARISON BETWEENFALK-SVM, FALK-SVMC AND

FALK-SVML

Figure 6 reports the comparison of the generalisation accuracies ofFaLK-SVM, FaLK-SVMc and
FaLK-SVMl at increasing training set size. The computational performances for the training phase
are reported in Figure 7, and for the testing phase in Figure 8.

From the accuracy viewpoint, we can notice that, as expected,FaLK-SVM is almost always
slightly more accurate thanFaLK-SVMc. FaLK-SVMl, apart fromchecker-b, is less accurate than
FaLK-SVM for the smaller training set sizes, and this is due to the fact thatFaLK-SVM performs a
full grid search for model selection whereasFaLK-SVMl adopts the very fast local model selection
approach. However,FaLK-SVMl rivals FaLK-SVM as the training set sizes increases. This is rea-
sonable becauseFaLK-SVM uses for all the training set sizes the parameters found for the smaller
training sets, and the best cross-validated parameters can differ for sub-sampled sets with differ-
ent cardinality. For example, as the number of training points increases, theradius of the local
neighbourhoods decreases if we maintain the samek andk′ values, and the original value for the
width parameter of the RBF kernel can no longer be the optimal one. For this reason, in the case of
cov-type andndcc data sets,FaLK-SVMl achieves higher accuracies thanFaLK-SVM for the largest
training sets.FaLK-SVMl shows a slightly higher accuracy variability thenFaLK-SVM andFaLK-
SVMc at different training set sizes; this is an empirical confirmation that the parameters selected
by FaLK-SVMl can be less stable than the parameters selected with standard cross validation, but the
phenomenon seems to be acceptable if not negligible.

The training computational performances of Figure 7 confirm (as alreadydiscussed in Sec-
tion 5.2.2) that, althoughFaLK-SVM andFaLK-SVMc make use of the same training algorithm, the
model selection procedure selects lower values ofk for FaLK-SVMc, thus assuring faster training
times thanFaLK-SVM. The speed-ups ofFaLK-SVMc with respect toFaLK-SVM are however never
higher than one order of magnitude. ForFaLK-SVMl we can notice a somehow irregular behaviour
for increasing dimensions of the training set and this is due to the different values of the neighbour-
hood, kernel and regularisation parameters it chooses during the internal fast local model selection
phase. In some casesFaLK-SVMl is significantly slower thanFaLK-SVM. However, the training
times forFaLK-SVMl include the model selection procedure whereas forFaLK-SVM we consider
only the training with the optimal parameters, so we can conclude thatFaLK-SVMl is a good choice
for huge training sets on which traditional model selection becomes intractable.

The testing times reported in Figure 8 confirm thatFaLK-SVMc is always faster thanFaLK-SVM
andFaLK-SVMl. In particular, we can notice thatFaLK-SVMc at least halves the testing time ofFaLK-
SVM. FaLK-SVMl is computationally very similar toFaLK-SVM. This is not surprising because the
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Figure 6: Generalisation accuracies ofFaLK-SVM, FaLK-SVMc and FaLK-SVMl on thecov-type,
2-spirals, ndcc andchecker-b data sets with increasing training set sizes (Experiment 3).
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Figure 7: Training times ofFaLK-SVM, FaLK-SVMc, andFaLK-SVMl on thecov-type, 2-spirals,
ndcc andchecker-b data sets with increasing training set sizes (Experiment 3). The times
(in seconds) are reported in logarithmic scale.
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Figure 8: Testing times ofFaLK-SVM, FaLK-SVMc, andFaLK-SVMl on thecov-type, 2-spirals, ndcc
andchecker-b data sets with increasing training set sizes (Experiment 3). The times (in
seconds) are reported in logarithmic scale.
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only difference betweenFaLK-SVM andFaLK-SVMl regards the model selection but both classifiers
need, during testing, to perform a nearest neighbour search of the query points among all training
examples, differently fromFaLK-SVMc that performs the nearest neighbour search only among the
centres of the local models.

The FaLK-SVMl results permit us to discuss the sensitivity of the local kernel machine ap-
proaches with respect to the neighbourhood parameterk. The local model selection ofFaLK-SVMl
selects different values ofk at each application and thek selected byFaLK-SVMl is very often dif-
ferent from the value selected byFaLK-SVM with standard model selection. However, the accuracy
results are not very dependent on this as we notice in Figure 6 in which the accuracy variations
of FaLK-SVMl as the training sets increase are rather smooth and the accuracies are very similar to
FaLK-SVM. So the sensitivity of the accuracies with respect tok for local kernel machines seems to
be low at least for large data sets. From the computational viewpoint, instead, we know from the
complexity analysis that the advantages of local kernel machines are effective as long ask is sub-
stantially lower thenN. In our experiments the value ofk selected by model selection is bounded to
8000; higher values, although not tested, may decrease the computationalperformances.

We can conclude thatFaLK-SVM, FaLK-SVMc and FaLK-SVMl achieve similar accuracy and
computational results. When the model selection forFaLK-SVM andFaLK-SVMc become computa-
tionally intractable,FaLK-SVMl is an option to efficiently perform model selection and thus obtain
a lower overall training time. When very low testing times are required,FaLK-SVMc is preferable
to FaLK-SVM at the price of a slightly lower generalisation accuracy.

6. Conclusions

In this work, we have introduced a new local kernel-based classifier, calledFaLK-SVM, that is scal-
able for large non high-dimensional data. The approach is developed starting from the theory of
local learning algorithms and in particular from the Local SVM classifier, called kNNSVM. Various
strategies are introduced to overcome the computational problems ofkNNSVM and to switch from
a completely lazy-learning setting to a eager learning setting with efficient predictions. Learning
and complexity bounds forFaLK-SVM are favourable if compared with the SVM ones.FaLK-SVM
has, in fact, a training time complexity which is sub-quadratic in the training set size, and a predic-
tion time complexity which is logarithmic. A novel approach for model selection, again based on
locality, is introduced obtaining theFaLK-SVMl classifier which substantially unburdens the model
selection strategies based on cross-validation. Another variant of the algorithm, calledFaLK-SVMc,
permits to simplify the prediction phase. We thus showed that locality can be usedto develop
computationally efficient classifiers.

We carried out an extensive empirical evaluation of the introduced approaches showing that,
for large classification problems requiring non linear decision functions our FaLK-SVM algorithm
is much faster and accurate than traditional and approximated SVM solvers.In fact, (i) FaLK-SVM
achieves very good accuracy results because it considers all the points without locally under-fitting
the data and (ii)FaLK-SVM is very fast and scalable because the cardinality of the local problems
can be maintained low. The variant calledFaLK-SVMc further enhances testing speed at the price of
a little accuracy loss, and the other variant, calledFaLK-SVMl, decreases the overall training time.

In general, we have showed that locality can be the key not only for obtaining accurate classi-
fiers, but also for effectively speeding-up kernel-based algorithms.
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Further developments of the approach include a dimensionality reduction preprocessing step in
order to attack also high-dimensional problems, the application of local classifiers different from
SVM, and a distributed parallel version. Also the determination of the critical value of the intrin-
sic dimensionality (rather than the number of features) above which the localapproaches are not
effective is still an open question and the answer should be very data-dependent.
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