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Abstract

The problem is sequence prediction in the following settingequencey, ..., X,, ... of discrete-
valued observations is generated according to some unkpovirabilistic law (measure). After
observing each outcome, it is required to give the condafipnobabilities of the next observation.
The measur@ belongs to an arbitrary but known clagsof stochastic process measures. We are
interested in predictorg whose conditional probabilities converge (in some sersé)d “true”
p-conditional probabilities, if any € C is chosen to generate the sequence. The contribution of
this work is in characterizing the familigs for which such predictors exist, and in providing a
specific and simple form in which to look for a solution. We whihat if any predictor works,
then there exists a Bayesian predictor, whose prior is eliscand which works too. We also find
several sufficient and necessary conditions for the existefa predictor, in terms of topological
characterizations of the familg, as well as in terms of local behaviour of the measures iwhich
in some cases lead to procedures for constructing suchcpoesli

It should be emphasized that the framework is completel\eggn the stochastic processes
considered are not required to be i.i.d., stationary, oreimrg to any parametric or countable
family.
Keywords: sequence prediction, time series, online prediction, Biayeprediction

1. Introduction

Given a sequencey,..., X, of observationsg € X, where X is a finite set, we want to predict
what are the probabilities of observing, 1 = x for eachx € X, or, more generally, probabilities
of observing differeni..1,...,Xnn, beforex,,1 is revealed, after which the process continues.
It is assumed that the sequence is generated by some unknown stocrastgs a probability
measure on the space of one-way infinite sequeses The goal is to have a predictor whose
predicted probabilities converge (in a certain sense) to the correct(thrads, top-conditional
probabilities). In general this goal is impossible to achieve if nothing is kredvaut the measune
generating the sequence. In other words, one cannot have a predictse error goes to zero for
any measur@. The problem becomes tractable if we assume that the megagereerating the data
belongs to some known clags The questions addressed in this work are a part of the following
general problem: given an arbitrary seiof measures, how can we find a predictor that performs
well when the data is generated by gng C, and whether it is possible to find such a predictor at
all. An example of a generic property of a cladshat allows for construction of a predictor, is that
C is countable. Clearly, this condition is very strong. An example, important fre applications
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point of view, of a clasg” of measures for which predictors are known, is the class of all stationary
measures. The general question, however, is very far from besvwgeaiad.

The contribution of this work to solving this question is, first, in that we prowadgpecific
form in which to look for a predictor. More precisely, we show that if adictor that predicts
everyu € C exists, then such a predictor can also be obtained as a weighted sumntdildgu
many elements of”. This result can also be viewed as a justification of the Bayesian approach
to sequence prediction: if there exists a predictor which predicts wely eaeasure in the class,
then there exists a Bayesian predictor (with a rather simple prior) that hgedpisrty too. In this
respect it is important to note that the result obtained about such a Baysidictor is pointwise
(holds for everyuin (), and stretches far beyond the set its prior is concentrated on. Nedenive
some characterizations of familigsfor which a predictor exist. We first analyze what is furnished
by the notion of separability, when a suitable topology can be found: welHatdt is a sufficient
but not always a necessary condition. We then derive some suffomaditions for the existence of
a predictor which are based on local (truncated to therictiservation) behaviour of measures in
the clas”. Necessary conditions cannot be obtained in this way (as we demonditats)fficient
conditions, along with rates of convergence and construction of preslican be found.

The motivationfor studying predictors for arbitrary classesof processes is two-fold. First
of all, prediction is a basic ingredient for constructing intelligent systemdedd, in order to be
able to find optimal behaviour in an unknown environment, an intelligent agast be able, at the
very least, to predict how the environment is going to behave (or, to be pnecese, how relevant
parts of the environment are going to behave). Since the responsesoiMinenment may in general
depend on the actions of the agent, this response is necessarily nonastatio explorative agents.
Therefore, one cannot readily use prediction methods developetht@rsry environments, but
rather has to find predictors for the classes of processes that caaragsa possible response of the
environment.

Apart from this, the problem of prediction itself has numerous applicatiorsial diverse
fields as data compression, market analysis, bioinformatics, and mang.otheeems clear that
prediction methods constructed for one application cannot be expectedtimal when applied
to another. Therefore, an important question is how to develop speditcpion algorithms for
each of the domains.

1.1 Prior Work

As it was mentioned, if the clasS of measures is countable (that is,difcan be represented as
C = {l : k € N}), then there exists a predictor which performs well for grey C. Such a predic-
tor can be obtained as a Bayesian mixtpge= 3 .y Wk, Wherew are summable positive real
weights, and it has very strong predictive properties; in particplapredicts everyu € C in total
variation distance, as follows from the result of Blackwell and Dubin$2)9Total variation dis-
tance measures the difference in (predicted and true) conditionalkpliiba of all future events,
that is, not only the probabilities of the next observations, but also afreasons that are arbitrary
far off in the future (see formal definitions below). In the context ofusgre prediction the mea-
sureps was first studied by Solomonoff (1978). Since then, the idea of takingxegaombination
of a finite or countable class of measures (or predictors) to obtain a fmepermeates most of
the research on sequential prediction (see, for example, Cesa-Béamthugosi, 2006) and more
general learning problems (Hutter, 2005; Ryabko and Hutter, 2008aJyactice it is clear that, on
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the one hand, countable models are not sufficient, since already theiglass [0, 1] of Bernoulli

i.i.d. processes, whenis the probability of 0, is not countable. On the other hand, prediction in
total variation can be too strong to require; predicting probabilities of theoteservation may be
sufficient, maybe even not on every step but in the Cesaro sense. ébkeyvation here is that a
predictorps = Y Wkl may be a good predictor not only when the data is generated by one of the
processepy, k € N, but when it comes from a much larger class. Let us consider this pointi@ mo
detail. Fix for simplicityX = {0,1}. The Laplace predictor

C#Hi<nix=0}+1
N n+ | X|

A(Xn+1 = 0[X1,. .., Xn) 1)
predicts any Bernoulli i.i.d. process: although convergence in totaltiaridistance of conditional
probabilities does not hold, predicted probabilities of the next outcomescgevo the correct ones.
Moreover, generalizing the Laplace predictor, a predidtoran be constructed for the cldglg of

all k-order Markov measures, for any givkn As was found by Ryabko (1988), the combination
Pr = 5 WAk is a good predictor not only for the sekenM of all finite-memory processes, but
also for any measurg coming from a much larger class: that of all stationary measurek“bn
Here prediction is possible only in the Cesaro sense (more preggehredicts every stationary
process in expected time-average Kullback-Leibler divergence efstidns below). The Laplace
predictor itself can be obtained as a Bayes mixture over all Bernoulli i.i.d. messith uniform
prior on the parametep (the probability of 0). However, as was observed in Hutter (2007) (and
as is easy to see), the same (asymptotic) predictive properties aregausbgsa Bayes mixture
with a countably supported prior which is denséQri] (e.g., takingp := S W& wheredy, k € N
ranges over all Bernoulli i.i.d. measures with rational probability of 0). &givenk, the set of
k-order Markov processes is parametrized by finitely m@nij-valued parameters. Taking a dense
subset of the values of these parameters, and a mixture of the comegpareasures, results in a
predictor for the class df-order Markov processes. Mixing over these (forkadl N) yields, as in
Ryabko (1988), a predictor for the class of all stationary proce3sess, for the mentioned classes
of processes, a predictor can be obtained as a Bayes mixture of dgumiaily measures in the
class. An additional reason why this kind of analysis is interesting is beaafuthe difficulties
arising in trying to construct Bayesian predictors for classes of psesethat can not be easily
parametrized. Indeed, a natural way to obtain a predictor for a cladstochastic processes is to
take a Bayesian mixture of the class. To do this, one needs to define thergtroica probability
space onC. If the classC is well parametrized, as is the case with the set of all Bernoulli i.i.d.
process, then one can integrate with respect to the parametrization. dragevhen the problem
lacks a natural parametrization, although one can define the structueebibability space on the
set of (all) stochastic process measures in many different ways, thlésrese can obtain will then
be with probability 1 with respect to the prior distribution (see, for examplekstm et al., 1999).
Pointwise consistency cannot be assured (see, for example, Diaconiseedman, 1986) in this
case, meaning that some (well-defined) Bayesian predictors are rsigtemt on some (large) subset
of C. Results with prior probability 1 can be hard to interpret if one is not surghleastructure of
the probability space defined on the gkis indeed a natural one for the problem at hand (whereas
if one does have a natural parametrization, then usually results for eakry of the parameter
can be obtained, as in the case with Bernoulli i.i.d. processes mentioneg)aibbe results of the
present work show that when a predictor exists it can indeed be giveBayesian predictor, which
predicts every (and not almost every) measure in the class, while itsrsugppaoly a countable set.
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A related question is formulated as a question about two individual measaiiesr than about
a class of measures and a predictor. Namely, one can ask under whititicats one stochastic
process predicts another. In Blackwell and Dubins (1962) it was sltbat if one measure is
absolutely continuous with respect to another, than the latter predicts therf¢the conditional
probabilities converge in a very strong sense). In Ryabko and Huté7(2008b) a weaker form
of convergence of probabilities (in particular, convergence of eepeaverage KL divergence) is
obtained under weaker assumptions.

1.2 The Results

First, we show that if there is a predictor that performs well for every nmeasoming from a
classC of processes, then a predictor can also be obtained as a convex ctombia y Wik
for somepk € C and someng > 0, k € N. This holds if the prediction quality is measured by
either total variation distance, or expected average KL divergence:nmasure of performance
that is very strong, the other rather weak. The analysis for the totaltieeriease relies on the
fact that if p predictsu in total variation distance, thamis absolutely continuous with respect to
P, so thatp(x1.n)/K(X1.n) cOnverges to a positive number witkprobability 1 and with a positive
p-probability. However, if we settle for a weaker measure of performagzh as expected average
KL divergence, measurgse ( are typically singular with respect to a predictor Nevertheless,
sincep predictsp we can show thap(xy. n)/H(X1.n) decreases subexponentially witl{with high
probability or in expectation); then we can use this ratio as an analogue detisity for each
time stepn, and find a convex combination of countably many measures {faimt has desired
predictive properties for eaan Combining these predictors for allresults in a predictor that
predicts eveny € C in average KL divergence. The proof techniques developed haeteatial

to be used in solving other questions concerning sequence predictioartioutar, the general
guestion of how to find a predictor for an arbitrary clgsef measures.

We then exhibit some sufficient conditions on the cl@ssinder which a predictor for all mea-
sures inC exists. It is important to note that none of these conditions relies on a paizatietr of
any kind. The conditions presented are of two types: conditions on asiimpéhaviour of mea-
sures inC, and on their local (restricted to firatobservations) behaviour. Conditions of the first
type concern separability @ with respect to the total variation distance and the expected average
KL divergence. We show that in the case of total variation separability écassary and sufficient
condition for the existence of a predictor, whereas in the case of exbaoteage KL divergence it
is sufficient but is not necessary.

The conditions of the second kind concern the “capacity” of the@éts- {U": pe C},ne N,
wherep" is the measurg restricted to the firsh observations. Intuitively, iC" is small (in some
sense), then prediction is possible. We measure the capaciy iof two ways. The first way is
to find the maximum probability given to each sequerge..,X, by some measure in the class,
and then take a sum ovgy, ..., X,. Denoting the obtained quantity, one can show that it grows
polynomially in n for some important classes of processes, such as i.i.d. or Markovsgexe
We show that, in general, if, grows subexponentially then a predictor exists that predicts any
measure irC in expected average KL divergence. On the other hand, exponentialiyrg ¢, are
not sufficient for prediction. A more refined way to measure the capatityf' s using a concept
of channel capacity from information theory, which was developed fcdosely related problem
of finding optimal codes for a class of sources. We extend corregppneisults from information
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theory to show that sublinear growth of channel capacity is sufficietibéexistence of a predictor,
in the sense of expected average divergence. Moreover, the abteoads on the divergence are
optimal up to an additive logarithmic term.

The rest of the paper is organized as follows. Section 2 introduces thgomoand definitions.
In Section 3 we show that if any predictor works than there is a Bayesiarthat works, while
in Section 4 we provide several characterizations of predictable clagpescesses. Section 4.1
is concerned with separability, while Section 4.2 analyzes conditions baskedal behaviour of
measures. Finally, Section 5 provides outlook and discussion.

As running examples that illustrate the results of each section we use cleuriteses of mea-
sures, the family of all Bernoulli i.i.d. processes, and that of all statiopaygesses.

2. Preliminaries

Let X be a finite set. The notatioxy_p is used forxy,...,x,. We consider stochastic processes
(probability measures) ofX*, F ), wheref is the sigma-field generated by the cylinder $ets,],
Xi € X,n € N, where[x;_pn] is the set of all infinite sequences that start with,. Since we are
only interested in those measures(off°, 7 ) which are probability measures (the measure(tf
equals 1), we call them simpipeasuresFor a finite seA denote|A| its cardinality. We usé&,, for
expectation with respect to a measpre

Next we introduce the criteria of the quality of prediction used in this papsriviiFo measures
1 andp we are interested in how different tine and p-conditional probabilities are, given a data
samplexy n. Introduce thgconditional) total variationdistance

V(K P,X1.n) := SUP[U(AIX1.n) — P(A[X1.n)]-
AcF

Definition 1 We say thap predicts u in total variation if

V(K P, X1.n) — O p-a.s.

This convergence is rather strong. In particular, it meangtttainditional probabilities of arbitrary
far-off events converge tp-conditional probabilities. Moreovep predictsy in total variation if
Blackwell and Dubins (1962) and only if Kalai and Lehrer (19943 absolutely continuous with
respect tg:

Theorem 2 (Blackwell and Dubins, 1962; Kalai and Lehrer, 1994)If p, u are arbitrary proba-
bility measures onfi.X*, ¥ ), thenp predicts p in total variation if and only if p is absolutely contin-
uous with respect tp.

Thus, for a clasg” of measures there is a predictpthat predicts every € (C in total variation
if and only if everyp € C has a density with respect o Although such sets of processes are
rather large, they do not include even such basic examples as the k&ahaullii.i.d. processes.
That is, there is n@ that would predict in total variation every Bernoulli i.i.d. process measure
dp, p € [0,1], wherep is the probability of 0. Therefore, perhaps for many (if not most) practica
applications this measure of the quality of prediction is too strong, and one iigsted in weaker
measures of performance.
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For two measureg andp introduce theexpected cumulative Kullback-Leibler divergence (KL
divergencepns
n
M(% = alX1.t-1)
dn(k,p) :=E =alxpt-1)log—————.
n(u p) Ht;agx u(xt ‘ 1.t 1) g p(Xt — a.|X1”t7]_)

In words, we take the expected (over data) average (over time) Klgdiee betweep- andp-
conditional (on the past data) probability distributions of the next outcome.

Definition 3 We say thap predicts | in expected average KL divergence if

n

This measure of performance is much weaker, in the sense that it regog@gredictions only one
step ahead, and not on every step but only on average; also, trergenege is not with probability 1,
but in expectation. With prediction quality so measured, predictors existfatively large classes
of measures; most notably, Ryabko (1988) provides a predictor whiedighs every stationary
process in expected average KL divergence. A simple but usefuitigdémat we will need (in the

context of sequence prediction introduced also by Ryabko, 1988) fsltbeing

dh(hp)=— 3 H(xan)log ﬁ()):l..n)

Xl”nexn ( :L.n) ’

(@)

where on the right-hand side we have simply the KL divergence betweesunegaandp restricted
to the firstn observations.

Thus, the results of this work will be established with respect to two vergrdifit measures
of prediction quality, one of which is very strong and the other rather w&hls suggests that the
facts established reflect some fundamental properties of the probleredaion, rather than those
pertinent to particular measures of performance. On the other handyatrre open to extend the
results below to different measures of performance.

3. Fully Nonparametric Bayes Predictors

In this section we show that if there is a predictor that predicts euémsome clasg’, then there
is a Bayesian mixture of countably many elements frénthat predicts everyl € C too. This

is established for the two notions of prediction quality that were introduced! variation and
expected average KL divergence. After the theorems we present escangples of families of
measures for which predictors exist.

Theorem 4 Let C be a set of probability measures @&, F). If there is a measurp such thatp
predicts every i€ C in total variation, then there is a sequenoequC, k € N such that the measure
V= Skeny Wklk predicts every |€ C in total variation, where ware any positive weights that sum
to 1.

This relatively simple fact can be proven in different ways, relying onntleationed equivalence
(Blackwell and Dubins, 1962; Kalai and Lehrer, 1994) of the statemgmtsredictsy in total

variation distance” andy'is absolutely continuous with respectdd The proof presented below
is not the shortest possible, but it uses ideas and techniques that mrgetieralized to the case
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of prediction in expected average KL-divergence, which is more indplsice in all interesting
cases all measur@sc C are singular with respect to any predictor that predicts all of them. Another
proof of Theorem 4 can be obtained from Theorem 7 in the next secteinanother way would

be to derive it from algebraic properties of the relation of absolute contjrgiitgn in Plesner and
Rokhlin (1946).

Proof We break the (relatively easy) proof of this theorem into three stepshwhilt make the
proof of the next theorem more understandable.

Step 1: densitiegzor anyp € C, sincep predictsy in total variation, by Theorem 24 has a density
(Radon-Nikodym derivativej, with respect tg. Thus, for the (measurable) Sgtof all sequences

X1,X2,... € X* on which fy(x2, ) > 0 (the limit limp_o ﬁ((ﬁ—i--’n‘g exists and is finite and positive) we
haveu(T,) = 1 andp(T,) > 0. Next we will construct a sequence of measutes C, k € N such
that the union of the sef, has probability 1 with respect to evemye C, and will show that this is
a sequence of measures whose existence is asserted in the theoremmstateme

Step 2: a countable cover and the resulting predictet g, := 2K and letm, := SURec P(Ty)-
Clearly,m; > 0. Find anyy € C such thap(Ty,) > my — €1, and lefTy = Ty,. Fork > 1 definemy :=
suqlecp(Tu\Tk_l). If me = 0 then defind := Tx_1, otherwise find anyy such thap(T,, \Tk-1) >
My — &, and letTy := Tx_1 U T, . Define the predictov asv := 3 - WiH.

Step 3:v predicts every &€ C. Since the set3;, T,\T1,..., Tk\Tk-1,... are disjoint, we must
havep(Tk\Tk-1) — 0, so thaimy — O (sincemy < p(Tk\Tk—1) + & — 0). Let

T := Uken Tk.

Fix anyp e C. Suppose thau(T,\T) > 0. Sincep is absolutely continuous with respectgpwe
must havep(T,\T) > 0. Then for everk > 1 we have

M = supp(Ty\Tk-1) > P(Tu\Tk—1) > p(T\T) > 0,
wec
which contradictsng — 0. Thus, we have shown that

WTAT) =1 3

Let us show that every € C is absolutely continuous with respectuolndeed, fix anyu e C
and suppos@(A) > 0 for someA € F. Then from (3) we hav@e(ANT) > 0, and, by absolute
continuity ofuwith respect tg, alsop(ANT) > 0. SinceT = UkenTk, we must have(ANTg) > 0
for somek € N. Since on the s€l the measurgy has non-zero densitf, with respect tg, we
must havgy (AN Tk) > 0. (Indeedp(ANTk) = [a-7, fudp > 0.) Hence,

V(ANTk) > Wi (AN T) > 0,
so thatv(A) > 0. Thus,u is absolutely continuous with respectupand so, by Theorem 2, pre-

dictspuin total variation distance. |

Thus, examples of families for which there is g that predicts every € C in total variation,
are limited to families of measures which have a density with respect to some mpasdn the
one hand, from statistical point of view, such families are rather large:assamption that the
probabilistic law in question has a density with respect to some (nice) measaustaadard one

587



DANIIL RYABKO

in statistics. It should also be mentioned that such families can easily be tabtainOn the
other hand, even such basic examples as the set of all Bernoulli i.i.d. rasa@®mes not allow for a
predictor that predicts every measure in total variation. Indeed, all lresesses are singular with
respect to one another; in particular, each of the non-overlappind sefsall sequences which
have limiting fractionp of Os has probability 1 with respect to one of the measures and 0 with
respect to all others; since there are uncountably many of these meabere is no measuge
with respect to which they all would have a density (since such a measautelstavep(T,) > O for
all p) . As it was mentioned, predicting in total variation distance means predictingawittrarily
growing horizon (Kalai and Lehrer, 1994), while prediction in expeeategtage KL divergence is
only concerned with the probabilities of the next observation, and only ondimdelata average.
For the latter measure of prediction quality, consistent predictors existmpfor the class of all
Bernoulli processes, but also for the class of all stationary pros€sseabko, 1988). The next
theorem establishes the result similar to Theorem 4 for expected avekagdjedfgence.

Theorem 5 Let C be a set of probability measures @&, F). If there is a measurp such thatp
predicts every &€ C in expected average KL divergence, then there exist a sequerc€ jk € N
and a sequencepv> 0,k € N, such thaty, .yWk = 1, and the measure := 3. Wk predicts
every pe C in expected average KL divergence.

A difference worth noting with respect to the formulation of Theorem 4 rtafpam a different
measure of divergence) is in that in the latter the weightsan be chosen arbitrarily, while in
Theorem 5 this is not the case. In general, the statenjgatywivk predictsp in expected average
KL divergence for some choice @i, k € N” does not imply ‘S -y WVi predictsp in expected
average KL divergence for every summable sequence of positivec N,” while the implication
trivially holds true if the expected average KL divergence is replacethéyotal variation. This
is illustrated in the last example of this section. An interesting related questiaoh(vehbeyond
the scope of this paper) is how to chose the weights to optimize the behaviapredictor before
asymptotic.

The idea of the proof of Theorem 5 is as follows. For evergnd everyn we consider the
setsle‘ of thosexy n, on whicht is greater thamp. These sets have to have (from somen) a
high probability with respect tp. Then sincep predictsu in expected average KL divergence, the
p-probability of these sets cannot decrease exponentially fast (thabh#s tb be quite large). (The
sequencep(X1.n)/P(X1.n), N € N will play the role of densities of the proof of Theorem 4, and the
setsT the role of setdl, on which the density is non-zero.) We then use, for each givehe
same scheme to cover the $8twith countably manﬂ'u”, as was used in the proof of Theorem 4 to
construct a countable covering of the &&t, obtaining for eacim a predicton,,. Then the predictor
v is obtained a$ .y WnVn, Where the weights decrease subexponentially. The latter fact ensures
that, although the weights dependmrthey still play no role asymptotically. The technically most
involved part of the proof is to show that the sgfsin asymptotic have sufficiently large weights
in those countable covers that we construct for @achhis is used to demonstrate the implication
“if a set has a highu probability, then itsp-probability does not decrease too fast, provided some
regularity conditions.” The proof is broken into the same steps as the (sirpptef of Theorem 4,
to make the analogy explicit and the proof more understandable.

Proof Define the weightsv, := wk—2, wherew is the normalizer 6re.
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Step 1: densitiedDefine the sets

1
= {xl..n € XM g ) > np(xl..n>}. (4)
Using Markov’s inequality, we derive
P(X1.n) > 1_p(xen) 1
XMNTM = >n| <=E =, S)
HXAT) u<u(xl..n) “nuoan) N0 ©)

so thaty(T,'") — 1. (Note that ifytis singular with respect tp, as is typically the case, th%{ﬁﬁg
converges to Qr-a.e. and one can replaﬁén (4) by 1, while still havingu(T,") — 1.)

Step 2n: a countable cover, time Rix ann € N. Definem] := max,cp(T;') (sincex" are
finite all suprema are reached). Find atysuch thapi(Tp) = mf and letTy" := Ta. Fork > 1,
let M = max,ec P(TI\TL ). If mP >0, lety be anyu € C such thap(TL?T\Tkn_l) =y, and let
T =T, UTy; otherwise lefly’ :=T,' ;. Observe that (for eaah) there is only a finite number
of positiveny, since the seX" is finite; letK, be the largest indeik such thaimy > 0. Let

Kn

. n

Vp = z Wik -
K=1

As a result of this construction, for everye N everyk < K, and everyx; » € T, using (4) we
obtain

Vn(X1.n) > Wk%p(xl..n)- (6)

Step 2: the resulting predictokinally, define
1 1
Vi=35Y+5 ) WnVp, (7)
2" 2 neZ\!

wherey is the i.i.d. measure with equal probabilities ofxalf X (that is,y(x1. n) = | X|~" for every
n e N and everyx; , € X™). We will show thatv predicts everyu € ¢, and then in the end of the
proof (Step r) we will show how to replageby a combination of a countable set of elementg of
(in fact,yis just a regularizer which ensures thaprobability of any word is never too close to 0).
Step 3:v predicts every £ C. Fix anypu € C. Introduce the paramete&ﬁ €(0,1),neN, to
be defined later, and Igf; := 1/¢]}. Observe thap(T\ T ;) > p(T} ;1\ T'), for anyk > 1 and any
ne N, by definition of these sets. Since the SEt§T," ;, k € N are disjoint, we obtaip(T"\T." ;) <
1/k. Hence p(T\T}") < g} for somej < jj;, since otherwisen] = max,cc p(TL[‘\Tj’ﬁ) > g so that
p(Tj?}H\TjE) > g =1/, which is a contradiction. Thus,

P(TI\TR) <€ ®)

589



DANIIL RYABKO

We can upper-bounﬂ(TL[‘\Tanl) as follows. First, observe that

P(X1.n)
dn(,P) = — H(x1.n)log
" x1__r.eZu‘r1TJ.'1H " M(X1.n)
X
_ z P—(Xl..n) IOg pEXl..n;
xn€TI\TH H(X1.n
X
_ z U—(Xl..n) Iog p(Xl..n)
XL n€XMT] IJ.( l.n)
=14+1+101. (9
Then, from (4) we get
| > —logn. (10)

Observe that for eveny € N and every sef C X", using Jensen’s inequality we can obtain

_ P(X1n) _ 1 p(X1.n)
lezeAU(Xl..n) log ) H(A) XMZGA LA H(x1.n)log WX n)

> —uA)Iog Pl = —Alogp(A) 3. (1)

Thus, from (11) and (8) we get
Il > —p(TN\TH logp(TN\TH) — 1/2 > —p(TN\TH) loge] — 1/2. (12)

Furthermore,

H(X™MT)
" > U(X1 n)logu(xs n) > W(X"\T) log——rt
xl..ne;”\Tp” : [XM\TL
1 ™ —n 1
2 =5~ HX"\Ty)nlog|X| > —5 —log|x|, (13)

where in the second inequality we have used the fact that entropy is maximlieadall events are
equiprobable, in the third one we uspd"\T7| < | X|", while the last inequality follows from (5).
Combining (9) with the bounds (10), (12) and (13) we obtain

dn(1,p) > —logn— K(T,\Tjn) logejl — 1 —log|.X|,
so that

W) <

< —Iogs[}(d"(u’ p) +logn+1-+log|x|). (14)

Sincedn(l, p) = o(n), we can define the parametessin such a way that-logg} = o(n) while
at the same time the bound (14) giwe(él’LP\TjE) = 0(1). Fix such a choice of]. Then, using
H(T) — 1, we can conclude

HOC\TR) < WOCTD) + W(TINTR) = o(1), (15)
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We proceed with the proof af,(p,v) = o(n). For anyx; , € TJ?J we have

1 1 1 WihW
V(X1.n) > EWnVn(Xl..n) > EWnWj{}ﬁp(Xl..n) = %(Eﬂ)zp(xlun); (16)
where the first inequality follows from (7), the second from (6), and &dfuality we have used
Win = w/(jﬂ)2 andjj = 1/€h. Next we use the decomposition

v(x1.n) V(X1.n)
n Xl"”ZGTjT'] i W(X1.n) X1,,n€;n\TjTrl " M(X1.n)
From (16) we find
WaW (eny2 p(X1.n)
| <—lo &) ) — X1.n)l0
< —log (- (e)?) Xl‘_nzgjnn o n)log oL
N

— (1 3logn - 2loge]~ 2logw) + ch(wp)+ T Hbawlogh kY
XLa€XM\Tiy H(X1..n

<o(n)— Z M(X1..n) logH(X1..n)

X1__nE.Xn\Tjrr:}

< o(n) + HOX™\ TH)nlog|X| = o(n), (18)

where in the second inequality we have usddge[, = o(n) anddn(l, p) = o(n), in the last inequal-
ity we have again used the fact that the entropy is maximized when all evergg@Eprobable, while
the last equality follows from (15). Moreover, from (7) we find

Il <log2— Z u(xl,,n)logz();l“”)

XXM Th (X1.n)

<1+ nu(X”\Tj?}) log|X| =o(n), (19)

where in the last inequality we have usgd; ) = |[X| ™" andp(x1.n) < 1, and the last equality
follows from (15).

From (17), (18) and (19) we conclude(v, u) — 0.
Step r: the regularizey. It remains to show that the i.i.d. regularizein the definition ofv (7),

can be replaced by a convex combination of a countably many elementgirdndeed, for each
n € N, denote

Ani={xe.n€X":3pE C U(x1n) # 0},

and let for eachx;, € X" the measurepy, , be any measure fromC such that
by o (X1.n) > 3 SURe H(Xa.n). Define

1
nXIn = TA XlnX/n’
Yn(X1.n) ‘An’Xl'nZEAnH o(X10)

foreachx; , € A", ne N, and lety := S y.nWkY,. For everyu e C we have

1
Y (X1.n) = Wal|An| i (Xan) > EWn|X‘_nU(X1..n)
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for everyn € N and everyx; , € Ay, which clearly suffices to establish the bouhd= o(n) as
in (19). [ ]

Example: countable classe$ measures. A very simple but rich example of a cl@gbat satisfies
the conditions of both the theorems above, is any countable famiy{y : k € N} of measures.
In this case, any mixture predictpr:= Y, .nyWk predicts allp € C both in total variation and
in expected average KL divergence. A particular instance, that haedyenuch attention in the
literature, is the family of all computable measures. Although countable, this fafgyocesses
is rather rich. The problem of predicting all computable measures was urcieddn Solomonoff
(1978), where a mixture predictor was proposed.
Example: Bernoulli i.i.d. processe€onsider the classg = {|, : p € [0,1]} of all Bernoulli i.i.d.
processespy(x = 0) = p independently for alk € N. Clearly, this family is uncountable. More-
over, each set

Tp :={x€ X*: the limiting fraction of Os irx equalsp},

has probability 1 with respect t@, and probability 0 with respect to any : p’ # p. Since the
setsTy, p € [0,1] are non-overlapping, there is no measpifer which p(T,) > 0 for all p € [0, 1].
That is, there is no measupewith respect to which alli, are absolutely continuous. Therefore,
by Theorem 2, a predictor that predicts ang (g in total variation does not exist, demonstrating
that this notion of prediction is rather strong. However, we know (e.g. he€kisky, 1993) that the
Laplace predictor (1) predicts every Bernoullii.i.d. process in expexntethge KL divergence (and
not only). Hence, Theorem 4 implies that there is a countable mixture prethctinis family too.
Let us find such a predictor. Lgg : q € Q be the family of all Bernoullii.i.d. measures with rational
probability of 0, and lep := ¥ 4cqoWqllq, Wherewg are arbitrary positive weights that sum to 1. Let
Hp be any Bernoulli i.i.d. process. Létp,q) denote the divergengelog(p/q) + (1— p)log(1—
p/1—q). For eacte we can find &g € Q such that(p,q) < €. Then

logpp(X1..n) < 1 logpp(X1..n)

1 1
ﬁdn(Upap) = A =n upl Wq|Oqu(X1..n)
_ logwy

n " " logp(xe.n) N
= . +h(p,q) <e+o(1). (20)

Since this holds for each) we conclude the\%dn(up, p) — 0 andp predicts everyi € (g in expected
average KL divergence.

Example: stationary processet Ryabko (1988) a predictgsr was constructed which predicts
every stationary procegs< (s in expected average KL divergence. (This predictor is obtained as
a mixture of predictors fok-order Markov sources, for al € N.) Therefore, Theorem 5 implies
that there is also a countable mixture predictor for this family of processe$. &predictor can be
constructed as follows (the proof in this example is based on the proof iokeyand Astola, 2006,
Appendix 1). Observe that the familgk of k-order stationary binary-valued Markov processes
is parametrized by*2]0,1]-valued parameters: probability of observing 0 after observing,

for eachxy x € XX, For eachk € N let p'é gqe sz be the (countable) family of all stationaky
order Markov processes with rational values of all the parameters. ilNghaw that any predictor
VI kN X ge wkwqpé, wherewy, k € N andwg,q € sz, k € N are any sequences of positive
real weights that sum to 1, predicts every stationagy(s in expected average KL divergence. For
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He Csandk € N define thek-order conditional Shannon entropy(p) := Ejlogp(Xiy1[X1 x). We
havehy1(l) > hg(p) for everyk € N andp € Cs, and the limit

heo () 2= lim () (21)
is called the limit Shannon entropy; see, for example, Gallager (1968).0Rieg € (s. It is easy
to see that for everg > 0 and everyk € N we can find &-order stationary Markov measupéa,

O € sz with rational values of the parameters, such that

H(Xict-1]X1. k)

Eulo
" ng'ée(XkJrl\Xluk)

<E. (22)

We have

_ logwiwg,

1 1
ﬁdn(uvv) < +ﬁdn(u7 Lliq(g)

1 1
= O(k/n) + ﬁEul‘DQH(Xl..n) — HEMOQUEE(Xl..n)

=0(1) + ho (M) — iEukzllog M, (X [X1.1-1)

1 kK n—k
=0(1) + hoo (W) — ﬁEu Zlog p‘ég(xt\xl_.t_l) — TEqugp'éE(ka\xl_k)
t=

n—k

< 0(1) +hoo (1) — e

(he(w) —¢), (23)
where the first inequality is derived analogously to (20), the first equiditgws from (2), the
second equality follows from the Shannon-McMillan-Breiman theorem (@ajlager, 1968), that
states thagl1 logu(x1.n) — ho(H) in expectation (and a.s.) for evepye (s, and (2); in the third
equality we have used the fact th,ﬁs is k-order Markov andu is stationary, whereas the last
inequality follows from (22). Finally, since the choicelofinde was arbitrary, from (23) and (21)
we obtain linh e 20 (j,v) = 0.

Example: weights may mattetinally, we provide an example that illustrates the difference between
the formulations of Theorems 4 and 5: in the latter the weights are not arbivarwill construct a
sequence of measureg k € N, a measurg, and two sequences of positive weighisandw, with

S ken Wk = Sken W = 1, for whichv := 3.y WiVk predictsp in expected average KL divergence,
butv’ := ¥ yWVk does not. Levy be a deterministic measure that first outdu@s and then only
1s,k € N. Letwy = w/k? with w = 6,12 andwj, = 2. Finally, letp be a deterministic measure
that outputs only 0s. We hawdy(p,v) = —10g(3=nWk) < —log(wn=2) = o(n), but dn(,V') =
—109(3k=nW) = —log(2-"1) = n— 1+ o(n), proving the claim.

4. Characterizing Predictable Classes

Knowing that a mixture of a countable subset gives a predictor if theresissomotion that naturally
comes to mind, when trying to characterize families of processes for whicadictor exists, is
separability. Can we say that there is a predictor for a cfasd measures if and only it” is

separable? Of course, to talk about separability we need a suitable tpmridfe space of all
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measures, or at least @nh If the formulated questions were to have a positive answer, we would
need a different topology for each of the notions of predictive qualitiwleaconsider. Sometimes
these measures of predictive quality indeed define a nice enough strattuprobability space, but
sometimes they do not. The question whether there exists a topolagyseparability with respect
to which is equivalent to the existence of a predictor, is already more vaguidess appealing.
Nonetheless, in the case of total variation distance we obviously havedalatatopology: that
of total variation distance, and indeed separability with respect to this top@agjuivalent to the
existence of a predictor, as the next theorem shows. This theorem aléesifipeorem 4, thereby
providing an alternative proof for the latter. In the case of expectethgeeKL divergence the
situation is different. While one can introduce a topology based on it, dafigravith respect to
this topology turns out to be a sufficient but not a necessary conditidhd@xistence of a predictor,
as is shown in Theorem 9.

4.1 Separability

Definition 6 (unconditional total variation distance) Introduce the (unconditional) total varia-
tion distance

V(K p) = :eug\u(A) —p(A)l

Theorem 7 Let C be a set of probability measures @&, 7). There is a measurg such thatp
predicts every |€ C in total variation if and only ifC is separable with respect to the topology of
total variation distance. In this case, any measurmef the formv = 3’ ; Wi, Where{py : k € N}

is any dense countable subset®tnd w are any positive weights that sum to 1, predicts every
M e C in total variation.

Proof Sufficiency and the mixture predictdret C be separable in total variation distance, and let
D = {vk : k € N} be its dense countable subset. We have to showthaty . WiV, wherewy
are any positive real weights that sum to 1, predicts emeryC in total variation. To do this, it is
enough to show that(A) > 0 impliesv(A) > O for everyA € # and everyu € C. Indeed, letA be
such thatu(A) = € > 0. SinceD is dense inC, there is & € N such thatv(p,vk) < €/2. Hence
Vi(A) > M(A) — V(K Vk) > €/2 andv(A) > wivk(A) > we/2 > 0.

NecessityFor anyu € C, sincep predictspin total variationu has a density (Radon-Nikodym
derivative)f, with respect t. We can defind distance with respect umastl’(u,v) = [yo |fu—
fy|dp. The set of all measures that have a density with respegt i® separable with respect to
this distance (for example, a dense countable subset can be consbasselon measures whose
densities are step-functions, that take only rational values, see, elmog@rov and Fomin, 1975);
therefore, its subsef is also separable. La&? be any dense countable subsetofThus, for every
pe C and even there is g/ € D such thaL‘l’(u, i) < €. For every measurable sétwe have

A—’A:/fd—/f,d g/f—f/d g/ fu— fldp < &.
WA W)= | [ o~ [ fup| < [ 8= taldp < [ 15 tildp

Thereforey(l, 1) = suph + [U(A) — I/ (A)| <, and the sef” is separable in total variation distance.
|

594



PREDICTORS FORARBITRARY FAMILIES OF PROCESSES

Definition 8 (asymptotic KL “distance” D) Define asymptotic expected average KL divergence
between measures 1 apdis
. 1
D(Wp) = Ilrpsupﬁdn(u, p). (24)
Theorem 9 For any setC of probability measures oX®, F), separability with respect to the

asymptotic expected average KL divergence D is a sufficient but netessary condition for the
existence of a predictor:

(i) If there exists a countable s€? := {vi : k€ N} C C, such that for every g C and every
€ > 0 there is a measure’ € D, such that By, /) < €, then every measure of the form
vV = S 1 Wk, Where w are any positive weights that sum to 1, predicts evesy @ in
expected average KL divergence.

(i) There is an uncountable setof measures, and a measwesuch thaw predicts every i€ C
in expected average KL divergence, butAip, implies D(py, Y2) = o for every Y, € C;
in particular, C is not separable with respect to D.

Proof (i) Fix pe C. For everye > 0 pickk € N such thaD(, vk) < €. We have

M(X1..n) M(X1.n)
<Eplog——————
vixen) — " ngVk(Xl..n)

dn(p,v) = Eylog = —logwi + dn(H, Vi) < ne+o(n).

Since this holds for everg, we conclude%dn(u,v) — 0.

(ii) Let C be the set of all deterministic sequences (measures concentrated argjgsguience)
such that the number of Os in the firssymbols is less thagy/n. Clearly, this set is uncountable. It
is easy to check that; # pp impliesD(py, L) = o for everypy, o € C, but the predictow, given
by v(x, = 0) := 1/n independently for different, predicts everyi € C in expected average KL
divergence. |

Examples.Basically, the examples of the preceding section carry over here. dntteeexample

of countable families is trivially also an example of separable (with respedier®f the consid-
ered topologies) family. For Bernoulli i.i.d. arkdorder Markov processes, the (countable) sets of
processes that have rational values of the parameters, considereiretious section, are dense
both in the topology of the parametrization and with respect to the asymptotiagavdivergence

D. Itis also easy to check from the arguments presented in the corrésg@xample of Section 3,
that the family of allk-order stationary Markov processes with rational values of the paresnete
where we take ak € N, is dense with respect @ in the set(s of all stationary processes, so that
Csis separable with respect . Thus, the sufficient but not necessary condition of separability is
satisfied in this case. On the other hand, neither of these latter families islsiepaith respect to
the topology of total variation distance.

4.2 Conditions Based on the Local Behaviour of Measures

Next we provide some sufficient conditions for the existence of a predieteed on local charac-
teristics of the class of measures, that is, measures truncated to tineofistrvations. First of all,
it must be noted that necessary and sufficient conditions cannot bieexbthis way. The basic
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example is that of a familyy of all deterministic sequences that are 0 from some time on. This
is a countable class of measures which is very easy to predict. Yet, theotlaeasures orx",
obtained by truncating all measuresdnto the firstn observations, coincides with what would be
obtained by truncating all deterministic measures to the rigservations, the latter class being
obviously not predictable at all (see also examples below). Neverthel@ssidering this kind of
local behaviour of measures, one can obtain not only sufficient condlifar the existence of a
predictor, but also rates of convergence of the prediction errotsdtgives some ideas of how to
construct predictors, for the cases when the sufficient conditiongeldtare met.

For a clasg” of stochastic processes and a sequengec X" introduce the coefficients

Cxyn(C) := SUPU(X1.n)-
peC

Define also the normalizer
Ch(C)i= ) Cun(0)

X1.n€X"

Definition 10 (NML estimate) The normalized maximum likelihood estimadors defined (e.g.,
Krichevsky, 1993) as
1

Ac(X1n) = m

Cxl..n(C)7
foreach x , € X",

The family A-(x1.n) (indexed byn) in general does not immediately define a stochastic process
over X* (A, are not consistent for differen); thus, in particular, using average KL divergence for
measuring prediction quality would not make sense, since

On(H(-[X1.n-1),Ac(-[X1.n-1))

can be negative, as the following example shows.
Example: negative,gfor NML estimatesLet the processags, i € {1,...,4} be defined on the steps
n=1,2 as follows.p (00) = p2(01) = pu(11) = 1, while pg(01) = p3(00) = 1/2. We have\ (1) =
Ac(0) =1/2, whileA-(00) = A-(01) = Ap(11) = 1/3. If we defineh(X|y) = Ac(yX) /Ac(y), we
obtainA(1|0) = A¢(0]0) = 2/3. Thendy(ps(-|0),As(-|0)) = log3/4 < 0.

Yet, by taking an appropriate mixture, it is still possible to construct a predjatstochastic
process) based adn that predicts all the measures in the class.
Definition 11 (predictor p;) Let w:= 6/ and let vy := k—"g Define a measureyuas follows.
On the first k steps it is defined ag, and for n> k it outputs only zeros with probability 1; so,
k(X1 k) = Ac(X1.k) and (xn = 0) = 1 for n > k. Define the measum as

P =) Wikk.
k=1

Thus, we have taken the normalized maximum likelihood estimatder eachn and continued
them arbitrarily (actually, by a deterministic sequence) to obtain a sequemzasures oX”, F)
that can be summed.
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Theorem 12 For any setC of probability measures ofiX®, ¥), the predictorp. defined above

satisfies
1 logch(C logn
“Oa(lpc) < gn”( )+O( S >; (25)

in particular, if
logen(C) = o(n), (26)

thenp. predicts every & C in expected average KL divergence.

Proof Indeed,

1 1 M(Xtn) 1 M(X1.n)
Zdn(W,pc) = =Elo < -Elog———~
n n(kPe) n gpc(xl..n) n gwnun(xl..n)
< }Iog &l(C) _ }(Iogcn(C) +2logn+logw). (27)
n Wh n

Example: i.i.d., finite-memoryTo illustrate the applicability of the theorem we first consider the
class of i.i.d. processaS over the binary alphabet = {0,1}. It is easy to see that, for each
X1,y Xn,y

supp(xe.n) = (k/m (1 —k/n)"¥,

HeCs

wherek = #{i <n:x = 0} is the number of Os imy, . ..,X,. For the constants,(C) we can derive

O = 5 supulan)= 5 (k/m*1-k/n)"*

X1.nEXMHECB X1.nEXN

>

k=0

n

n N n .
<k> (k/n)k(l—k/n) k< Zt; <k>(k/n)t(1—k/n) S

k=0

so thatc,(C) <n+1.

In general, for the clasgi of processes with memorydver a finite spac&’ we can get poly-
nomialcy(C) (see, for example, Krichevsky, 1993, and also Ryabko and Hutté7,)20hus, with
respect to finite-memaory processes, the conditions of Theorem 12 legpote apace for the growth
of cn(C), since (26) allows subexponential growthaf C). Moreover, these conditions are tight,
as the following example shows.

Example: exponential coefficients are not sufficie®bserve that the condition (26) cannot be
relaxed further, in the sense that exponential coefficignése not sufficient for prediction. Indeed,
for the class of all deterministic processes (that is, each process feooteds produces some fixed
sequence of observations with probability 1) we haye= 2", while obviously for this class a
predictor does not exist.

Example: stationary processeBor the set of all stationary processes we can olggi@) > 2"/n
(as is easy to see by considering periogiorder Markov processes, for eanle N), so that the
conditions of Theorem 12 are not satisfied. This cannot be fixed, gitif@@m rates of convergence
cannot be obtained for this family of processes, as was shown in Ry2B&8).
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4.2.1 CPTIMAL RATES OFCONVERGENCE

A natural question that arises with respect to the bound (25) is whetter ieematched by a lower
bound. This question is closely related to the optimality of the normalized maximum okelih
estimates used in the construction of the predictor. In general, since Nithagss are not optimal,
neither are the rates of convergence in (25). To obtain (close to) optitesl one has to consider a
different measure of capacity.

To do so, we make the following connection to a problem in information the@tyP.X*) be
the set of all stochastic processes (probability measures) on the(Sgacg ), and let?(.X) be the
set of probability distributions over a (finite) s&t For a clasg” of measures we are interested in a
predictor that has a small (or minimal) worst-case (with respect to the Clgzobability of error.
Thus, we are interested in the quantity

inf supD(W,p), (28)
PEP(X®) neC

where the infimum is taken over all stochastic procepsaadD is the asymptotic expected average
KL divergence (24). (In particular, we are interested in the conditionieuwhich the quantity (28)
equals zero.) This problem has been studied for the case when thédititplvaecasures are over
a finite setx, andD is replaced simply by the KL divergenckbetween the measures. Thus, the
problem was to find the probability measyd(if it exists) on which the following minimax is
attained

R(A): pe'Q&) ﬁgfd(u, P), (29)
whereA C P(X). This problem is closely related to the problem of finding the best codedai#iss
of sourcesA, which was its original motivation. The normalized maximum likelihood distribution
considered above does not in general lead to the optimum solution for ¢tikepr. The optimum
solution is obtained through the result that relates the minimax (29) to the sd-claianel capacity.

Definition 13 (Channel capacity) For a set A of measures on a finite sSéthechannel capacitpf
Ais defined as
C(A) .= Sup z P(l.,l)d(l.l, pP)a
PEPy(A) pe[P)
wherePy(A) is the set of all probability distributions on A that have a finite suppofR)Ss the
(finite) support of a distribution B Po(A), andpp = 3 cgp) P(L)1-

Itis shown in Ryabko (1979) and Gallager (1976 (revised 1979Yaf¥at = R(A), thus reducing the
problem of finding a minimax to an optimization problem. For probability measuresiofinite
spaces this resulR(A) = C(A)) was generalized by Haussler (1997), but the divergence between
probability distributions is measured by KL divergence (and not asymptaiage KL divergence),
which gives infiniteR(A), for example, already for the class of i.i.d. processes.

However, truncating measures in a classo the firstn observations, we can use the results
about channel capacity to analyze the predictive properties of the clseeover, the rates of
convergence that can be obtained along these lines are close to optimaldeinta pass from
measures minimizing the divergence for each individutala process that minimizes the divergence
for all nwe use the same idea as when constructing the prpgess
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Theorem 14 Let C be a set of measures ¢ix®, ¥), and letC" be the class of measures frath
restricted toX". There exists a measupe such that

1 c(cm) logn
ndn(uvpC) = n +O< n '
in particular, if C(C")/n — 0, thenpc predicts every € C in expected average KL divergence.

Moreover, for any measug: and everye > 0 there exists |& C such that

c(c
n

1
—dn(K Pc) > —&
n
Proof As shown in Gallager (1976 (revised 1979), for eadhere exists a sequene@, k € N of
measures oix" such that

lim supdn (W, vi) — C(C").

Kk— o0 pecn

For eachn € N find an indexk, such that

| supdh(i, Vi) —C(C™)| < 1.
pecn

Define the measurg, as follows. On the firsh symbols it coincides witlvg andpn(Xm = 0) =
1 for m> n. Finally, setpc = Y_;Wnpn, Wherewy = &, w = 6/T@. We have to show that
lIMp—o %dn(u, pc) = 0 for everyp € C. Indeed, similarly to (27), we have

1 1 M(X1.n)
=d — Eul
n n(lla pC) n H 0g pC(Xl“n>
logw, b 1 U(x1.n) _ logw+2logn 1
< —=—X* 4+ 7E,lo < + =dn(W,
< noH gpn(Xl..n) < n n n(K, Pn)
n
<o(l)+ C(rf )

The second statement follows from the fact (Ryabko, 1979; Gallagé6 (revised 1979) that
C(C™) =R(C") (cf. (29)). [ |

Thus, if the channel capacity(C") grows sublinearly, a predictor can be constructed for the
class of processes. In this case the problem of constructing the predictor is reduced to fitigéng
channel capacities for differentand finding the corresponding measures on which they are attained
or approached.

Examples.For the class of all Bernoulli i.i.d. processes, the channel cap&city) is known to
be O(logn) (Krichevsky, 1993). For the family of all stationary processes {s), so that the
conditions of Theorem 14 are satisfied for the former but not for the latter

We also remark that the requirement of a sublinear channel capacitgtdammelaxed, in the
sense that a linear channel capacity is not sufficient for predictioce dins the maximal possible
capacity for a set of measures @&fl, achieved, for example, on the set of all measures, or on the set
of all deterministic sequences.
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5. Discussion

The first possible extension of the results of the paper that comes to mind m&ltoui whether
the same holds for other measures of performance, such as predictidndivé¢gence without
time-averaging, or with probability 1 rather then in expectation, or with rédpemther measures
of prediction error, such as absolute distance. (See Ryabko and Hi@f for a discussion of
different measures of performance and relations between them.) Maglsathe results can be
obtained in more general formulations, for example, udirdivergences of Csiszar (1967).

More generally, the questions we addressed in this work are a part gfex [@roblem: given
an arbitrary clasg” of stochastic processes, find the best predictor for it. We have coeditieo
subproblems: first, in which form to look for a predictor if one exists. Heeehave shown that
if any predictor works then a Bayesian one works too. The second doeclsaracterize families
of processes for which a predictor exists. Here we have analyzettiaotion of separability
furnishes in this respect, as well as identified some simple sufficient corglitesed on the local
behaviour of measures in the class. Another approach would be to id#miyonditions which
two measure$l andp have to satisfy in order fop to predicty. For prediction in total variation
such conditions have been identified (Blackwell and Dubins, 1962; lathiehrer, 1994) and, in
particular, in the context of the present work, they turn out to be vesfulisKalai and Lehrer (1994)
also provide some characterization for the case of a weaker notiondi€foa: difference between
conditional probabilities of the next (several) outcomes (weak mergingiofans). In Ryabko and
Hutter (2008b) some sufficient conditions are found for the case digiien in expected average
KL divergence, and prediction in average KL divergence with prdiald. Of course, another
very natural approach to the general problem posed above is to tifynaingredictors (in the form
of algorithms) for some particular classes of processes which are diigadainterest. Towards
this end, we have found a rather simple form that some solution to this quesisaih d solution
exists: a Bayesian predictor whose prior is concentrated on a counéabl¥eshave also identified
some sufficient conditions under which a predictor can actually be catestre.g., using NML
estimates). However, the larger question of how to construct an optinditfefor an arbitrary
given family of processes, remains open.

Taking an even more general perspective, one can consider thierral finding the best
response to the actions of a (stochastic) environment, which itself resortie actions of a
learner. Allowing into consideration environments that change their balraviadesponse to the
action of the learner, clearly makes the problem much more difficult, but itatsoatically extends
the range of applications. For this general problem one can pose thejsasteons: given a set
of environments, how can we construct a learner that is (asymptoticatiyp@pf any environment
from C is chosen to generate the data? One can consider Bayesian leartieis flaimulation too
(Hutter, 2005); it would be interesting to find out whether one can shouwtlineen there is a learner
which is optimal in every environment froid, then there is a Bayesian learner with a countably
supported prior that has this property too.
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