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Abstract
The problem is sequence prediction in the following setting. A sequencex1, . . . ,xn, . . . of discrete-
valued observations is generated according to some unknownprobabilistic law (measure)µ. After
observing each outcome, it is required to give the conditional probabilities of the next observation.
The measureµ belongs to an arbitrary but known classC of stochastic process measures. We are
interested in predictorsρ whose conditional probabilities converge (in some sense) to the “true”
µ-conditional probabilities, if anyµ∈ C is chosen to generate the sequence. The contribution of
this work is in characterizing the familiesC for which such predictors exist, and in providing a
specific and simple form in which to look for a solution. We show that if any predictor works,
then there exists a Bayesian predictor, whose prior is discrete, and which works too. We also find
several sufficient and necessary conditions for the existence of a predictor, in terms of topological
characterizations of the familyC , as well as in terms of local behaviour of the measures inC , which
in some cases lead to procedures for constructing such predictors.

It should be emphasized that the framework is completely general: the stochastic processes
considered are not required to be i.i.d., stationary, or to belong to any parametric or countable
family.

Keywords: sequence prediction, time series, online prediction, Bayesian prediction

1. Introduction

Given a sequencex1, . . . ,xn of observationsxi ∈ X , whereX is a finite set, we want to predict
what are the probabilities of observingxn+1 = x for eachx ∈ X , or, more generally, probabilities
of observing differentxn+1, . . . ,xn+h, beforexn+1 is revealed, after which the process continues.
It is assumed that the sequence is generated by some unknown stochastic processµ, a probability
measure on the space of one-way infinite sequencesX∞. The goal is to have a predictor whose
predicted probabilities converge (in a certain sense) to the correct ones(that is, toµ-conditional
probabilities). In general this goal is impossible to achieve if nothing is knownabout the measureµ
generating the sequence. In other words, one cannot have a predictor whose error goes to zero for
any measureµ. The problem becomes tractable if we assume that the measureµ generating the data
belongs to some known classC . The questions addressed in this work are a part of the following
general problem: given an arbitrary setC of measures, how can we find a predictor that performs
well when the data is generated by anyµ∈ C , and whether it is possible to find such a predictor at
all. An example of a generic property of a classC that allows for construction of a predictor, is that
C is countable. Clearly, this condition is very strong. An example, important from the applications
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point of view, of a classC of measures for which predictors are known, is the class of all stationary
measures. The general question, however, is very far from being answered.

The contribution of this work to solving this question is, first, in that we providea specific
form in which to look for a predictor. More precisely, we show that if a predictor that predicts
every µ ∈ C exists, then such a predictor can also be obtained as a weighted sum of countably
many elements ofC . This result can also be viewed as a justification of the Bayesian approach
to sequence prediction: if there exists a predictor which predicts well every measure in the class,
then there exists a Bayesian predictor (with a rather simple prior) that has thisproperty too. In this
respect it is important to note that the result obtained about such a Bayesian predictor is pointwise
(holds for everyµ in C ), and stretches far beyond the set its prior is concentrated on. Next, wederive
some characterizations of familiesC for which a predictor exist. We first analyze what is furnished
by the notion of separability, when a suitable topology can be found: we findthat it is a sufficient
but not always a necessary condition. We then derive some sufficientconditions for the existence of
a predictor which are based on local (truncated to the firstn observation) behaviour of measures in
the classC . Necessary conditions cannot be obtained in this way (as we demonstrate), but sufficient
conditions, along with rates of convergence and construction of predictors, can be found.

The motivationfor studying predictors for arbitrary classesC of processes is two-fold. First
of all, prediction is a basic ingredient for constructing intelligent systems. Indeed, in order to be
able to find optimal behaviour in an unknown environment, an intelligent agentmust be able, at the
very least, to predict how the environment is going to behave (or, to be moreprecise, how relevant
parts of the environment are going to behave). Since the response of theenvironment may in general
depend on the actions of the agent, this response is necessarily non-stationary for explorative agents.
Therefore, one cannot readily use prediction methods developed for stationary environments, but
rather has to find predictors for the classes of processes that can appear as a possible response of the
environment.

Apart from this, the problem of prediction itself has numerous applications insuch diverse
fields as data compression, market analysis, bioinformatics, and many others. It seems clear that
prediction methods constructed for one application cannot be expected to be optimal when applied
to another. Therefore, an important question is how to develop specific prediction algorithms for
each of the domains.

1.1 Prior Work

As it was mentioned, if the classC of measures is countable (that is, ifC can be represented as
C := {µk : k∈ N}), then there exists a predictor which performs well for anyµ∈ C . Such a predic-
tor can be obtained as a Bayesian mixtureρS := ∑k∈N wkµk, wherewk are summable positive real
weights, and it has very strong predictive properties; in particular,ρS predicts everyµ∈ C in total
variation distance, as follows from the result of Blackwell and Dubins (1962). Total variation dis-
tance measures the difference in (predicted and true) conditional probabilities of all future events,
that is, not only the probabilities of the next observations, but also of observations that are arbitrary
far off in the future (see formal definitions below). In the context of sequence prediction the mea-
sureρS was first studied by Solomonoff (1978). Since then, the idea of taking a convex combination
of a finite or countable class of measures (or predictors) to obtain a predictor permeates most of
the research on sequential prediction (see, for example, Cesa-Bianchi and Lugosi, 2006) and more
general learning problems (Hutter, 2005; Ryabko and Hutter, 2008a).In practice it is clear that, on
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the one hand, countable models are not sufficient, since already the classµp, p∈ [0,1] of Bernoulli
i.i.d. processes, wherep is the probability of 0, is not countable. On the other hand, prediction in
total variation can be too strong to require; predicting probabilities of the next observation may be
sufficient, maybe even not on every step but in the Cesaro sense. A keyobservation here is that a
predictorρS = ∑wkµk may be a good predictor not only when the data is generated by one of the
processesµk, k∈ N, but when it comes from a much larger class. Let us consider this point in more
detail. Fix for simplicityX = {0,1}. The Laplace predictor

λ(xn+1 = 0|x1, . . . ,xn) =
#{i ≤ n : xi = 0}+1

n+ |X | (1)

predicts any Bernoulli i.i.d. process: although convergence in total variation distance of conditional
probabilities does not hold, predicted probabilities of the next outcome converge to the correct ones.
Moreover, generalizing the Laplace predictor, a predictorλk can be constructed for the classMk of
all k-order Markov measures, for any givenk. As was found by Ryabko (1988), the combination
ρR := ∑wkλk is a good predictor not only for the set∪k∈NMk of all finite-memory processes, but
also for any measureµ coming from a much larger class: that of all stationary measures onX∞.
Here prediction is possible only in the Cesaro sense (more precisely,ρR predicts every stationary
process in expected time-average Kullback-Leibler divergence, see definitions below). The Laplace
predictor itself can be obtained as a Bayes mixture over all Bernoulli i.i.d. measures with uniform
prior on the parameterp (the probability of 0). However, as was observed in Hutter (2007) (and
as is easy to see), the same (asymptotic) predictive properties are possessed by a Bayes mixture
with a countably supported prior which is dense in[0,1] (e.g., takingρ := ∑wkδk whereδk,k ∈ N

ranges over all Bernoulli i.i.d. measures with rational probability of 0). Fora givenk, the set of
k-order Markov processes is parametrized by finitely many[0,1]-valued parameters. Taking a dense
subset of the values of these parameters, and a mixture of the corresponding measures, results in a
predictor for the class ofk-order Markov processes. Mixing over these (for allk ∈ N) yields, as in
Ryabko (1988), a predictor for the class of all stationary processes.Thus, for the mentioned classes
of processes, a predictor can be obtained as a Bayes mixture of countably many measures in the
class. An additional reason why this kind of analysis is interesting is because of the difficulties
arising in trying to construct Bayesian predictors for classes of processes that can not be easily
parametrized. Indeed, a natural way to obtain a predictor for a classC of stochastic processes is to
take a Bayesian mixture of the class. To do this, one needs to define the structure of a probability
space onC . If the classC is well parametrized, as is the case with the set of all Bernoulli i.i.d.
process, then one can integrate with respect to the parametrization. In general, when the problem
lacks a natural parametrization, although one can define the structure of the probability space on the
set of (all) stochastic process measures in many different ways, the results one can obtain will then
be with probability 1 with respect to the prior distribution (see, for example, Jackson et al., 1999).
Pointwise consistency cannot be assured (see, for example, Diaconis and Freedman, 1986) in this
case, meaning that some (well-defined) Bayesian predictors are not consistent on some (large) subset
of C . Results with prior probability 1 can be hard to interpret if one is not sure that the structure of
the probability space defined on the setC is indeed a natural one for the problem at hand (whereas
if one does have a natural parametrization, then usually results for everyvalue of the parameter
can be obtained, as in the case with Bernoulli i.i.d. processes mentioned above). The results of the
present work show that when a predictor exists it can indeed be given as a Bayesian predictor, which
predicts every (and not almost every) measure in the class, while its support is only a countable set.
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A related question is formulated as a question about two individual measures, rather than about
a class of measures and a predictor. Namely, one can ask under which conditions one stochastic
process predicts another. In Blackwell and Dubins (1962) it was shown that if one measure is
absolutely continuous with respect to another, than the latter predicts the former (the conditional
probabilities converge in a very strong sense). In Ryabko and Hutter (2007, 2008b) a weaker form
of convergence of probabilities (in particular, convergence of expected average KL divergence) is
obtained under weaker assumptions.

1.2 The Results

First, we show that if there is a predictor that performs well for every measure coming from a
classC of processes, then a predictor can also be obtained as a convex combination ∑k∈N wkµk

for someµk ∈ C and somewk > 0, k ∈ N. This holds if the prediction quality is measured by
either total variation distance, or expected average KL divergence: one measure of performance
that is very strong, the other rather weak. The analysis for the total variation case relies on the
fact that if ρ predictsµ in total variation distance, thenµ is absolutely continuous with respect to
ρ, so thatρ(x1..n)/µ(x1..n) converges to a positive number withµ-probability 1 and with a positive
ρ-probability. However, if we settle for a weaker measure of performance, such as expected average
KL divergence, measuresµ∈ C are typically singular with respect to a predictorρ. Nevertheless,
sinceρ predictsµ we can show thatρ(x1..n)/µ(x1..n) decreases subexponentially withn (with high
probability or in expectation); then we can use this ratio as an analogue of thedensity for each
time stepn, and find a convex combination of countably many measures fromC that has desired
predictive properties for eachn. Combining these predictors for alln results in a predictor that
predicts everyµ∈ C in average KL divergence. The proof techniques developed have a potential
to be used in solving other questions concerning sequence prediction, in particular, the general
question of how to find a predictor for an arbitrary classC of measures.

We then exhibit some sufficient conditions on the classC , under which a predictor for all mea-
sures inC exists. It is important to note that none of these conditions relies on a parametrization of
any kind. The conditions presented are of two types: conditions on asymptotic behaviour of mea-
sures inC , and on their local (restricted to firstn observations) behaviour. Conditions of the first
type concern separability ofC with respect to the total variation distance and the expected average
KL divergence. We show that in the case of total variation separability is a necessary and sufficient
condition for the existence of a predictor, whereas in the case of expected average KL divergence it
is sufficient but is not necessary.

The conditions of the second kind concern the “capacity” of the setsC n := {µn : µ∈ C}, n∈ N,
whereµn is the measureµ restricted to the firstn observations. Intuitively, ifC n is small (in some
sense), then prediction is possible. We measure the capacity ofC n in two ways. The first way is
to find the maximum probability given to each sequencex1, . . . ,xn by some measure in the class,
and then take a sum overx1, . . . ,xn. Denoting the obtained quantitycn, one can show that it grows
polynomially in n for some important classes of processes, such as i.i.d. or Markov processes.
We show that, in general, ifcn grows subexponentially then a predictor exists that predicts any
measure inC in expected average KL divergence. On the other hand, exponentially growing cn are
not sufficient for prediction. A more refined way to measure the capacity of C n is using a concept
of channel capacity from information theory, which was developed for aclosely related problem
of finding optimal codes for a class of sources. We extend corresponding results from information
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theory to show that sublinear growth of channel capacity is sufficient for the existence of a predictor,
in the sense of expected average divergence. Moreover, the obtained bounds on the divergence are
optimal up to an additive logarithmic term.

The rest of the paper is organized as follows. Section 2 introduces the notation and definitions.
In Section 3 we show that if any predictor works than there is a Bayesian one that works, while
in Section 4 we provide several characterizations of predictable classesof processes. Section 4.1
is concerned with separability, while Section 4.2 analyzes conditions based on local behaviour of
measures. Finally, Section 5 provides outlook and discussion.

As running examples that illustrate the results of each section we use countable classes of mea-
sures, the family of all Bernoulli i.i.d. processes, and that of all stationaryprocesses.

2. Preliminaries

Let X be a finite set. The notationx1..n is used forx1, . . . ,xn. We consider stochastic processes
(probability measures) on(X∞,F ), whereF is the sigma-field generated by the cylinder sets[x1..n],
xi ∈ X ,n ∈ N, where[x1..n] is the set of all infinite sequences that start withx1..n. Since we are
only interested in those measures on(X∞,F ) which are probability measures (the measure ofX∞

equals 1), we call them simplymeasures. For a finite setA denote|A| its cardinality. We useEµ for
expectation with respect to a measureµ.

Next we introduce the criteria of the quality of prediction used in this paper. For two measures
µ andρ we are interested in how different theµ- andρ-conditional probabilities are, given a data
samplex1..n. Introduce the(conditional) total variationdistance

v(µ,ρ,x1..n) := sup
A∈F

|µ(A|x1..n)−ρ(A|x1..n)|.

Definition 1 We say thatρ predicts µ in total variation if

v(µ,ρ,x1..n) → 0 µ-a.s.

This convergence is rather strong. In particular, it means thatρ-conditional probabilities of arbitrary
far-off events converge toµ-conditional probabilities. Moreover,ρ predictsµ in total variation if
Blackwell and Dubins (1962) and only if Kalai and Lehrer (1994)µ is absolutely continuous with
respect toρ:

Theorem 2 (Blackwell and Dubins, 1962; Kalai and Lehrer, 1994)If ρ, µ are arbitrary proba-
bility measures on(X∞,F ), thenρ predicts µ in total variation if and only if µ is absolutely contin-
uous with respect toρ.

Thus, for a classC of measures there is a predictorρ that predicts everyµ∈ C in total variation
if and only if everyµ ∈ C has a density with respect toρ. Although such sets of processes are
rather large, they do not include even such basic examples as the set of all Bernoulli i.i.d. processes.
That is, there is noρ that would predict in total variation every Bernoulli i.i.d. process measure
δp, p∈ [0,1], wherep is the probability of 0. Therefore, perhaps for many (if not most) practical
applications this measure of the quality of prediction is too strong, and one is interested in weaker
measures of performance.
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For two measuresµ andρ introduce theexpected cumulative Kullback-Leibler divergence (KL
divergence)as

dn(µ,ρ) := Eµ

n

∑
t=1

∑
a∈X

µ(xt = a|x1..t−1) log
µ(xt = a|x1..t−1)

ρ(xt = a|x1..t−1)
.

In words, we take the expected (over data) average (over time) KL divergence betweenµ- andρ-
conditional (on the past data) probability distributions of the next outcome.

Definition 3 We say thatρ predicts µ in expected average KL divergence if

1
n

dn(µ,ρ) → 0.

This measure of performance is much weaker, in the sense that it requiresgood predictions only one
step ahead, and not on every step but only on average; also, the convergence is not with probability 1,
but in expectation. With prediction quality so measured, predictors exist forrelatively large classes
of measures; most notably, Ryabko (1988) provides a predictor which predicts every stationary
process in expected average KL divergence. A simple but useful identity that we will need (in the
context of sequence prediction introduced also by Ryabko, 1988) is thefollowing

dn(µ,ρ) = − ∑
x1..n∈X n

µ(x1..n) log
ρ(x1..n)

µ(x1..n)
, (2)

where on the right-hand side we have simply the KL divergence between measuresµandρ restricted
to the firstn observations.

Thus, the results of this work will be established with respect to two very different measures
of prediction quality, one of which is very strong and the other rather weak. This suggests that the
facts established reflect some fundamental properties of the problem of prediction, rather than those
pertinent to particular measures of performance. On the other hand, it remains open to extend the
results below to different measures of performance.

3. Fully Nonparametric Bayes Predictors

In this section we show that if there is a predictor that predicts everyµ in some classC , then there
is a Bayesian mixture of countably many elements fromC that predicts everyµ ∈ C too. This
is established for the two notions of prediction quality that were introduced: total variation and
expected average KL divergence. After the theorems we present someexamples of families of
measures for which predictors exist.

Theorem 4 LetC be a set of probability measures on(X∞,F ). If there is a measureρ such thatρ
predicts every µ∈ C in total variation, then there is a sequence µk ∈ C , k∈ N such that the measure
ν := ∑k∈N wkµk predicts every µ∈ C in total variation, where wk are any positive weights that sum
to 1.

This relatively simple fact can be proven in different ways, relying on thementioned equivalence
(Blackwell and Dubins, 1962; Kalai and Lehrer, 1994) of the statements“ρ predictsµ in total
variation distance” and “µ is absolutely continuous with respect toρ.” The proof presented below
is not the shortest possible, but it uses ideas and techniques that are then generalized to the case
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of prediction in expected average KL-divergence, which is more involved, since in all interesting
cases all measuresµ∈ C are singular with respect to any predictor that predicts all of them. Another
proof of Theorem 4 can be obtained from Theorem 7 in the next section.Yet another way would
be to derive it from algebraic properties of the relation of absolute continuity, given in Plesner and
Rokhlin (1946).
Proof We break the (relatively easy) proof of this theorem into three steps, which will make the
proof of the next theorem more understandable.
Step 1: densities.For anyµ∈ C , sinceρ predictsµ in total variation, by Theorem 2,µ has a density
(Radon-Nikodym derivative)fµ with respect toρ. Thus, for the (measurable) setTµ of all sequences

x1,x2, ... ∈ X∞ on which fµ(x1,2,...) > 0 (the limit limn→∞
ρ(x1..n)
µ(x1..n)

exists and is finite and positive) we
haveµ(Tµ) = 1 andρ(Tµ) > 0. Next we will construct a sequence of measuresµk ∈ C , k ∈ N such
that the union of the setsTµk has probability 1 with respect to everyµ∈ C , and will show that this is
a sequence of measures whose existence is asserted in the theorem statement.

Step 2: a countable cover and the resulting predictor.Let εk := 2−k and letm1 := supµ∈C ρ(Tµ).
Clearly,m1 > 0. Find anyµ1 ∈ C such thatρ(Tµ1)≥m1−ε1, and letT1 = Tµ1. Fork> 1 definemk :=
supµ∈C ρ(Tµ\Tk−1). If mk = 0 then defineTk := Tk−1, otherwise find anyµk such thatρ(Tµk\Tk−1) ≥
mk− εk, and letTk := Tk−1∪Tµk. Define the predictorν asν := ∑k∈N wkµk.

Step 3:ν predicts every µ∈ C . Since the setsT1, T2\T1, . . . ,Tk\Tk−1, . . . are disjoint, we must
haveρ(Tk\Tk−1) → 0, so thatmk → 0 (sincemk ≤ ρ(Tk\Tk−1)+ εk → 0). Let

T := ∪k∈NTk.

Fix anyµ∈ C . Suppose thatµ(Tµ\T) > 0. Sinceµ is absolutely continuous with respect toρ, we
must haveρ(Tµ\T) > 0. Then for everyk > 1 we have

mk = sup
µ′∈C

ρ(Tµ′\Tk−1) ≥ ρ(Tµ\Tk−1) ≥ ρ(Tµ\T) > 0,

which contradictsmk → 0. Thus, we have shown that

µ(T ∩Tµ) = 1. (3)

Let us show that everyµ∈ C is absolutely continuous with respect toν. Indeed, fix anyµ∈ C

and supposeµ(A) > 0 for someA ∈ F . Then from (3) we haveµ(A∩T) > 0, and, by absolute
continuity ofµ with respect toρ, alsoρ(A∩T) > 0. SinceT = ∪k∈NTk, we must haveρ(A∩Tk) > 0
for somek ∈ N. Since on the setTk the measureµk has non-zero densityfµk with respect toρ, we
must haveµk(A∩Tk) > 0. (Indeed,µk(A∩Tk) =

R

A∩Tk
fµkdρ > 0.) Hence,

ν(A∩Tk) ≥ wkµk(A∩Tk) > 0,

so thatν(A) > 0. Thus,µ is absolutely continuous with respect toν, and so, by Theorem 2,ν pre-
dictsµ in total variation distance.

Thus, examples of familiesC for which there is aρ that predicts everyµ∈ C in total variation,
are limited to families of measures which have a density with respect to some measure ρ. On the
one hand, from statistical point of view, such families are rather large: theassumption that the
probabilistic law in question has a density with respect to some (nice) measure isa standard one
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in statistics. It should also be mentioned that such families can easily be uncountable. On the
other hand, even such basic examples as the set of all Bernoulli i.i.d. measures does not allow for a
predictor that predicts every measure in total variation. Indeed, all theseprocesses are singular with
respect to one another; in particular, each of the non-overlapping setsTp of all sequences which
have limiting fractionp of 0s has probability 1 with respect to one of the measures and 0 with
respect to all others; since there are uncountably many of these measures, there is no measureρ
with respect to which they all would have a density (since such a measure should haveρ(Tp) > 0 for
all p) . As it was mentioned, predicting in total variation distance means predicting witharbitrarily
growing horizon (Kalai and Lehrer, 1994), while prediction in expectedaverage KL divergence is
only concerned with the probabilities of the next observation, and only on timeand data average.
For the latter measure of prediction quality, consistent predictors exist notonly for the class of all
Bernoulli processes, but also for the class of all stationary processes (Ryabko, 1988). The next
theorem establishes the result similar to Theorem 4 for expected average KL divergence.

Theorem 5 LetC be a set of probability measures on(X∞,F ). If there is a measureρ such thatρ
predicts every µ∈ C in expected average KL divergence, then there exist a sequence µk ∈ C , k∈ N

and a sequence wk > 0,k ∈ N, such that∑k,∈N wk = 1, and the measureν := ∑k∈N wkµk predicts
every µ∈ C in expected average KL divergence.

A difference worth noting with respect to the formulation of Theorem 4 (apart from a different
measure of divergence) is in that in the latter the weightswk can be chosen arbitrarily, while in
Theorem 5 this is not the case. In general, the statement “∑k∈N wkνk predictsµ in expected average
KL divergence for some choice ofwk, k ∈ N” does not imply “∑k∈N w′

kνk predictsµ in expected
average KL divergence for every summable sequence of positivew′

k,k ∈ N,” while the implication
trivially holds true if the expected average KL divergence is replaced bythe total variation. This
is illustrated in the last example of this section. An interesting related question (which is beyond
the scope of this paper) is how to chose the weights to optimize the behaviour ofa predictor before
asymptotic.

The idea of the proof of Theorem 5 is as follows. For everyµ and everyn we consider the
setsTn

µ of thosex1..n on whichµ is greater thanρ. These sets have to have (from somen on) a
high probability with respect toµ. Then sinceρ predictsµ in expected average KL divergence, the
ρ-probability of these sets cannot decrease exponentially fast (that is, ithas to be quite large). (The
sequencesµ(x1..n)/ρ(x1..n), n∈ N will play the role of densities of the proof of Theorem 4, and the
setsTn

µ the role of setsTµ on which the density is non-zero.) We then use, for each givenn, the
same scheme to cover the setX n with countably manyTn

µ , as was used in the proof of Theorem 4 to
construct a countable covering of the setX∞ , obtaining for eachn a predictorνn. Then the predictor
ν is obtained as∑n∈N wnνn, where the weights decrease subexponentially. The latter fact ensures
that, although the weights depend onn, they still play no role asymptotically. The technically most
involved part of the proof is to show that the setsTn

µ in asymptotic have sufficiently large weights
in those countable covers that we construct for eachn. This is used to demonstrate the implication
“if a set has a highµ probability, then itsρ-probability does not decrease too fast, provided some
regularity conditions.” The proof is broken into the same steps as the (simpler) proof of Theorem 4,
to make the analogy explicit and the proof more understandable.
Proof Define the weightswk := wk−2, wherew is the normalizer 6/π2.
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Step 1: densities.Define the sets

Tn
µ :=

{

x1..n ∈ X
n : µ(x1..n) ≥

1
n

ρ(x1..n)

}

. (4)

Using Markov’s inequality, we derive

µ(X n\Tn
µ ) = µ

(

ρ(x1..n)

µ(x1..n)
> n

)

≤ 1
n

Eµ
ρ(x1..n)

µ(x1..n)
=

1
n
, (5)

so thatµ(Tn
µ ) → 1. (Note that ifµ is singular with respect toρ, as is typically the case, thenρ(x1..n)

µ(x1..n)

converges to 0µ-a.e. and one can replace1
n in (4) by 1, while still havingµ(Tn

µ ) → 1.)

Step 2n: a countable cover, time n.Fix an n ∈ N. Definemn
1 := maxµ∈C ρ(Tn

µ ) (sinceX n are
finite all suprema are reached). Find anyµn

1 such thatρn
1(T

n
µn

1
) = mn

1 and letTn
1 := Tn

µn
1
. For k > 1,

let mn
k := maxµ∈C ρ(Tn

µ \Tn
k−1). If mn

k > 0, let µn
k be anyµ∈ C such thatρ(Tn

µn
k
\Tn

k−1) = mn
k, and let

Tn
k := Tn

k−1∪Tn
µn

k
; otherwise letTn

k := Tn
k−1. Observe that (for eachn) there is only a finite number

of positivemn
k, since the setX n is finite; letKn be the largest indexk such thatmn

k > 0. Let

νn :=
Kn

∑
k=1

wkµ
n
k.

As a result of this construction, for everyn ∈ N everyk ≤ Kn and everyx1..n ∈ Tn
k using (4) we

obtain

νn(x1..n) ≥ wk
1
n

ρ(x1..n). (6)

Step 2: the resulting predictor.Finally, define

ν :=
1
2

γ+
1
2 ∑

n∈N

wnνn, (7)

whereγ is the i.i.d. measure with equal probabilities of allx∈ X (that is,γ(x1..n) = |X |−n for every
n∈ N and everyx1..n ∈ X n). We will show thatν predicts everyµ∈ C , and then in the end of the
proof (Step r) we will show how to replaceγ by a combination of a countable set of elements ofC

(in fact,γ is just a regularizer which ensures thatν-probability of any word is never too close to 0).

Step 3:ν predicts every µ∈ C . Fix anyµ∈ C . Introduce the parametersεn
µ ∈ (0,1), n∈ N, to

be defined later, and letjnµ := 1/εn
µ. Observe thatρ(Tn

k \Tn
k−1) ≥ ρ(Tn

k+1\Tn
k ), for anyk > 1 and any

n∈N, by definition of these sets. Since the setsTn
k \Tn

k−1, k∈N are disjoint, we obtainρ(Tn
k \Tn

k−1)≤
1/k. Hence,ρ(Tn

µ \Tn
j ) ≤ εn

µ for some j ≤ jnµ, since otherwisemn
j = maxµ∈C ρ(Tn

µ \Tn
jnµ
) > εn

µ so that

ρ(Tn
jnµ+1\Tn

jnµ
) > εn

µ = 1/ jnµ, which is a contradiction. Thus,

ρ(Tn
µ \Tn

jnµ
) ≤ εn

µ. (8)

589



DANIIL RYABKO

We can upper-boundµ(Tn
µ \Tn

jnµ
) as follows. First, observe that

dn(µ,ρ) = − ∑
x1..n∈Tn

µ ∩Tn
jnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

− ∑
x1..n∈Tn

µ \Tn
jnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

− ∑
x1..n∈X n\Tn

µ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= I + II + III . (9)

Then, from (4) we get
I ≥− logn. (10)

Observe that for everyn∈ N and every setA⊂ X n, using Jensen’s inequality we can obtain

− ∑
x1..n∈A

µ(x1..n) log
ρ(x1..n)

µ(x1..n)
= −µ(A) ∑

x1..n∈A

1
µ(A)

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

≥−µ(A) log
ρ(A)

µ(A)
≥−µ(A) logρ(A)− 1

2
. (11)

Thus, from (11) and (8) we get

II ≥−µ(Tn
µ \Tn

jnµ
) logρ(Tn

µ \Tn
jnµ
)−1/2≥−µ(Tn

µ \Tn
jnµ
) logεn

µ−1/2. (12)

Furthermore,

III ≥ ∑
x1..n∈X n\Tn

µ

µ(x1..n) logµ(x1..n) ≥ µ(X n\Tn
µ ) log

µ(X n\Tn
µ )

|X n\Tn
µ |

≥ −1
2
−µ(X n\Tn

µ )nlog|X | ≥ −1
2
− log|X |, (13)

where in the second inequality we have used the fact that entropy is maximizedwhen all events are
equiprobable, in the third one we used|X n\Tn

µ | ≤ |X |n, while the last inequality follows from (5).
Combining (9) with the bounds (10), (12) and (13) we obtain

dn(µ,ρ) ≥− logn−µ(Tn
µ \Tn

jnµ
) logεn

µ−1− log|X |,

so that

µ(Tn
µ \Tn

jnµ
) ≤ 1

− logεn
µ

(

dn(µ,ρ)+ logn+1+ log|X |
)

. (14)

Sincedn(µ,ρ) = o(n), we can define the parametersεn
µ in such a way that− logεn

µ = o(n) while
at the same time the bound (14) givesµ(Tn

µ \Tn
jnµ
) = o(1). Fix such a choice ofεn

µ. Then, using

µ(Tn
µ ) → 1, we can conclude

µ(X n\Tn
jnµ
) ≤ µ(X n\Tn

µ )+µ(Tn
µ \Tn

jnµ
) = o(1). (15)
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We proceed with the proof ofdn(µ,ν) = o(n). For anyx1..n ∈ Tn
jnµ

we have

ν(x1..n) ≥
1
2

wnνn(x1..n) ≥
1
2

wnw jnµ

1
n

ρ(x1..n) =
wnw
2n

(εn
µ)

2ρ(x1..n), (16)

where the first inequality follows from (7), the second from (6), and in the equality we have used
w jnµ = w/( jnµ)

2 and jnµ = 1/εµ
n. Next we use the decomposition

dn(µ,ν) = − ∑
x1..n∈Tn

jnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
− ∑

x1..n∈X n\Tn
jnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
= I + II . (17)

From (16) we find

I ≤− log
(wnw

2n
(εn

µ)
2
)

− ∑
x1..n∈Tn

jnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= (1+3logn−2logεn
µ−2logw)+



dn(µ,ρ)+ ∑
x1..n∈X n\Tn

jnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)





≤ o(n)− ∑
x1..n∈X n\Tn

jnµ

µ(x1..n) logµ(x1..n)

≤ o(n)+µ(X n\Tn
jnµ
)nlog|X | = o(n), (18)

where in the second inequality we have used− logεn
µ = o(n) anddn(µ,ρ) = o(n), in the last inequal-

ity we have again used the fact that the entropy is maximized when all events are equiprobable, while
the last equality follows from (15). Moreover, from (7) we find

II ≤ log2− ∑
x1..n∈X n\Tn

jnµ

µ(x1..n) log
γ(x1..n)

µ(x1..n)
≤ 1+nµ(X n\Tn

jnµ
) log|X | = o(n), (19)

where in the last inequality we have usedγ(x1..n) = |X |−n andµ(x1..n) ≤ 1, and the last equality
follows from (15).

From (17), (18) and (19) we conclude1
ndn(ν,µ) → 0.

Step r: the regularizerγ. It remains to show that the i.i.d. regularizerγ in the definition ofν (7),
can be replaced by a convex combination of a countably many elements fromC . Indeed, for each
n∈ N, denote

An := {x1..n ∈ X
n : ∃µ∈ C µ(x1..n) 6= 0},

and let for each x1..n ∈ X n the measureµx1..n be any measure fromC such that
µx1..n(x1..n) ≥ 1

2 supµ∈C µ(x1..n). Define

γ′n(x
′
1..n) :=

1
|An| ∑

x1..n∈An

µx1..n(x
′
1..n),

for eachx′1..n ∈ An, n∈ N, and letγ′ := ∑k∈N wkγ′k. For everyµ∈ C we have

γ′(x1..n) ≥ wn|An|−1µx1..n(x1..n) ≥
1
2

wn|X |−nµ(x1..n)
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for everyn ∈ N and everyx1..n ∈ An, which clearly suffices to establish the boundII = o(n) as
in (19).

Example: countable classesof measures. A very simple but rich example of a classC that satisfies
the conditions of both the theorems above, is any countable familyC = {µk : k ∈ N} of measures.
In this case, any mixture predictorρ := ∑k∈N wkµk predicts allµ ∈ C both in total variation and
in expected average KL divergence. A particular instance, that has gained much attention in the
literature, is the family of all computable measures. Although countable, this familyof processes
is rather rich. The problem of predicting all computable measures was introduced in Solomonoff
(1978), where a mixture predictor was proposed.
Example: Bernoulli i.i.d. processes.Consider the classCB = {µp : p∈ [0,1]} of all Bernoulli i.i.d.
processes:µp(xk = 0) = p independently for allk ∈ N. Clearly, this family is uncountable. More-
over, each set

Tp := {x∈ X∞ : the limiting fraction of 0s inx equalsp},

has probability 1 with respect toµp and probability 0 with respect to anyµp′ : p′ 6= p. Since the
setsTp, p∈ [0,1] are non-overlapping, there is no measureρ for which ρ(Tp) > 0 for all p∈ [0,1].
That is, there is no measureρ with respect to which allµp are absolutely continuous. Therefore,
by Theorem 2, a predictor that predicts anyµ∈ CB in total variation does not exist, demonstrating
that this notion of prediction is rather strong. However, we know (e.g., Krichevsky, 1993) that the
Laplace predictor (1) predicts every Bernoulli i.i.d. process in expectedaverage KL divergence (and
not only). Hence, Theorem 4 implies that there is a countable mixture predictor for this family too.
Let us find such a predictor. Letµq : q∈Q be the family of all Bernoulli i.i.d. measures with rational
probability of 0, and letρ := ∑q∈Qwqµq, wherewq are arbitrary positive weights that sum to 1. Let
µp be any Bernoulli i.i.d. process. Leth(p,q) denote the divergenceplog(p/q)+ (1− p) log(1−
p/1−q). For eachε we can find aq∈ Q such thath(p,q) < ε. Then

1
n

dn(µp,ρ) =
1
n

Eµp log
logµp(x1..n)

logρ(x1..n)
≤ 1

n
Eµp log

logµp(x1..n)

wq logµq(x1..n)

= − logwq

n
+h(p,q) ≤ ε+o(1). (20)

Since this holds for eachε, we conclude that1ndn(µp,ρ)→ 0 andρ predicts everyµ∈ CB in expected
average KL divergence.
Example: stationary processes.In Ryabko (1988) a predictorρR was constructed which predicts
every stationary processρ ∈ CS in expected average KL divergence. (This predictor is obtained as
a mixture of predictors fork-order Markov sources, for allk ∈ N.) Therefore, Theorem 5 implies
that there is also a countable mixture predictor for this family of processes. Such a predictor can be
constructed as follows (the proof in this example is based on the proof in Ryabko and Astola, 2006,
Appendix 1). Observe that the familyCk of k-order stationary binary-valued Markov processes
is parametrized by 2k [0,1]-valued parameters: probability of observing 0 after observingx1..k,
for eachx1..k ∈ X k. For eachk ∈ N let µk

q, q ∈ Q2k
be the (countable) family of all stationaryk-

order Markov processes with rational values of all the parameters. We will show that any predictor
ν := ∑k∈N ∑q∈Q2k wkwqµk

q, wherewk, k ∈ N andwq,q ∈ Q2k
, k ∈ N are any sequences of positive

real weights that sum to 1, predicts every stationaryµ∈ CS in expected average KL divergence. For
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µ∈ CS andk ∈ N define thek-order conditional Shannon entropyhk(µ) := Eµ logµ(xk+1|x1..k). We
havehk+1(µ) ≥ hk(µ) for everyk∈ N andµ∈ CS, and the limit

h∞(µ) := lim
k→∞

hk(µ) (21)

is called the limit Shannon entropy; see, for example, Gallager (1968). Fix someµ∈ CS. It is easy
to see that for everyε > 0 and everyk ∈ N we can find ak-order stationary Markov measureµk

qε ,

qε ∈ Q2k
with rational values of the parameters, such that

Eµ log
µ(xk+1|x1..k)

µk
qε

(xk+1|x1..k)
< ε. (22)

We have

1
n

dn(µ,ν) ≤− logwkwqε

n
+

1
n

dn(µ,µk
qε)

= O(k/n)+
1
n

Eµ logµ(x1..n)−
1
n

Eµ logµk
qε

(x1..n)

= o(1)+h∞(µ)− 1
n

Eµ

n

∑
k=1

logµk
qε(xt |x1..t−1)

= o(1)+h∞(µ)− 1
n

Eµ

k

∑
t=1

logµk
qε(xt |x1..t−1)−

n−k
n

Eµ logµk
qε(xk+1|x1..k)

≤ o(1)+h∞(µ)− n−k
n

(hk(µ)− ε), (23)

where the first inequality is derived analogously to (20), the first equalityfollows from (2), the
second equality follows from the Shannon-McMillan-Breiman theorem (e.g.,Gallager, 1968), that
states that1n logµ(x1..n) → h∞(µ) in expectation (and a.s.) for everyµ ∈ CS, and (2); in the third
equality we have used the fact thatµk

qε
is k-order Markov andµ is stationary, whereas the last

inequality follows from (22). Finally, since the choice ofk andε was arbitrary, from (23) and (21)
we obtain limn→∞

1
ndn(µ,ν) = 0.

Example: weights may matter.Finally, we provide an example that illustrates the difference between
the formulations of Theorems 4 and 5: in the latter the weights are not arbitrary. We will construct a
sequence of measuresνk,k∈ N, a measureµ, and two sequences of positive weightswk andw′

k with
∑k∈N wk = ∑k∈N w′

k = 1, for whichν := ∑k∈N wkνk predictsµ in expected average KL divergence,
butν′ := ∑k∈N w′

kνk does not. Letνk be a deterministic measure that first outputsk 0s and then only
1s,k ∈ N. Let wk = w/k2 with w = 6/π2 andw′

k = 2−k. Finally, letµ be a deterministic measure
that outputs only 0s. We havedn(µ,ν) = − log(∑k≥nwk) ≤ − log(wn−2) = o(n), but dn(µ,ν′) =
− log(∑k≥nw′

k) = − log(2−n+1) = n−1 6= o(n), proving the claim.

4. Characterizing Predictable Classes

Knowing that a mixture of a countable subset gives a predictor if there is one, a notion that naturally
comes to mind, when trying to characterize families of processes for which a predictor exists, is
separability. Can we say that there is a predictor for a classC of measures if and only ifC is
separable? Of course, to talk about separability we need a suitable topology on the space of all
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measures, or at least onC . If the formulated questions were to have a positive answer, we would
need a different topology for each of the notions of predictive quality that we consider. Sometimes
these measures of predictive quality indeed define a nice enough structure of a probability space, but
sometimes they do not. The question whether there exists a topology onC , separability with respect
to which is equivalent to the existence of a predictor, is already more vagueand less appealing.
Nonetheless, in the case of total variation distance we obviously have a candidate topology: that
of total variation distance, and indeed separability with respect to this topology is equivalent to the
existence of a predictor, as the next theorem shows. This theorem also implies Theorem 4, thereby
providing an alternative proof for the latter. In the case of expected average KL divergence the
situation is different. While one can introduce a topology based on it, separability with respect to
this topology turns out to be a sufficient but not a necessary condition for the existence of a predictor,
as is shown in Theorem 9.

4.1 Separability

Definition 6 (unconditional total variation distance) Introduce the (unconditional) total varia-
tion distance

v(µ,ρ) := sup
A∈F

|µ(A)−ρ(A)|.

Theorem 7 Let C be a set of probability measures on(X∞,F ). There is a measureρ such thatρ
predicts every µ∈ C in total variation if and only ifC is separable with respect to the topology of
total variation distance. In this case, any measureν of the formν = ∑∞

k=1wkµk, where{µk : k∈ N}
is any dense countable subset ofC and wk are any positive weights that sum to 1, predicts every
µ∈ C in total variation.

Proof Sufficiency and the mixture predictor.Let C be separable in total variation distance, and let
D = {νk : k ∈ N} be its dense countable subset. We have to show thatν := ∑k∈N wkνk, wherewk

are any positive real weights that sum to 1, predicts everyµ∈ C in total variation. To do this, it is
enough to show thatµ(A) > 0 impliesν(A) > 0 for everyA∈ F and everyµ∈ C . Indeed, letA be
such thatµ(A) = ε > 0. SinceD is dense inC , there is ak ∈ N such thatv(µ,νk) < ε/2. Hence
νk(A) ≥ µ(A)−v(µ,νk) ≥ ε/2 andν(A) ≥ wkνk(A) ≥ wkε/2 > 0.

Necessity.For anyµ∈ C , sinceρ predictsµ in total variation,µ has a density (Radon-Nikodym
derivative) fµ with respect toρ. We can defineL1 distance with respect toρ asLρ

1(µ,ν) =
R

X∞ | fµ−
fν|dρ. The set of all measures that have a density with respect toρ, is separable with respect to
this distance (for example, a dense countable subset can be constructedbased on measures whose
densities are step-functions, that take only rational values, see, e.g., Kolmogorov and Fomin, 1975);
therefore, its subsetC is also separable. LetD be any dense countable subset ofC . Thus, for every
µ∈ C and everyε there is aµ′ ∈D such thatLρ

1(µ,µ′) < ε. For every measurable setA we have

|µ(A)−µ′(A)| =
∣

∣

∣

∣

Z

A
fµdρ−

Z

A
fµ′dρ

∣

∣

∣

∣

≤
Z

A
| fµ− fµ′ |dρ ≤

Z

X∞
| fµ− fµ′ |dρ < ε.

Therefore,v(µ,µ′) = supA∈F |µ(A)−µ′(A)|< ε, and the setC is separable in total variation distance.
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Definition 8 (asymptotic KL “distance” D) Define asymptotic expected average KL divergence
between measures µ andρ as

D(µ,ρ) = limsup
n→∞

1
n

dn(µ,ρ). (24)

Theorem 9 For any setC of probability measures on(X∞,F ), separability with respect to the
asymptotic expected average KL divergence D is a sufficient but not a necessary condition for the
existence of a predictor:

(i) If there exists a countable setD := {νk : k ∈ N} ⊂ C , such that for every µ∈ C and every
ε > 0 there is a measure µ′ ∈ D, such that D(µ,µ′) < ε, then every measureν of the form
ν = ∑∞

k=1wkµk, where wk are any positive weights that sum to 1, predicts every µ∈ C in
expected average KL divergence.

(ii) There is an uncountable setC of measures, and a measureν, such thatν predicts every µ∈ C

in expected average KL divergence, but µ1 6= µ2 implies D(µ1,µ2) = ∞ for every µ1,µ2 ∈ C ;
in particular,C is not separable with respect to D.

Proof (i) Fix µ∈ C . For everyε > 0 pickk∈ N such thatD(µ,νk) < ε. We have

dn(µ,ν) = Eµ log
µ(x1..n)

ν(x1..n)
≤ Eµ log

µ(x1..n)

wkνk(x1..n)
= − logwk +dn(µ,νk) ≤ nε+o(n).

Since this holds for everyε, we conclude1
ndn(µ,ν) → 0.

(ii) LetC be the set of all deterministic sequences (measures concentrated on just one sequence)
such that the number of 0s in the firstn symbols is less than

√
n. Clearly, this set is uncountable. It

is easy to check thatµ1 6= µ2 impliesD(µ1,µ2) = ∞ for everyµ1,µ2 ∈ C , but the predictorν, given
by ν(xn = 0) := 1/n independently for differentn, predicts everyµ∈ C in expected average KL
divergence.

Examples.Basically, the examples of the preceding section carry over here. Indeed, the example
of countable families is trivially also an example of separable (with respect to either of the consid-
ered topologies) family. For Bernoulli i.i.d. andk-order Markov processes, the (countable) sets of
processes that have rational values of the parameters, considered in the previous section, are dense
both in the topology of the parametrization and with respect to the asymptotic average divergence
D. It is also easy to check from the arguments presented in the corresponding example of Section 3,
that the family of allk-order stationary Markov processes with rational values of the parameters,
where we take allk∈ N, is dense with respect toD in the setCS of all stationary processes, so that
CS is separable with respect toD. Thus, the sufficient but not necessary condition of separability is
satisfied in this case. On the other hand, neither of these latter families is separable with respect to
the topology of total variation distance.

4.2 Conditions Based on the Local Behaviour of Measures

Next we provide some sufficient conditions for the existence of a predictor based on local charac-
teristics of the class of measures, that is, measures truncated to the firstn observations. First of all,
it must be noted that necessary and sufficient conditions cannot be obtained this way. The basic
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example is that of a familyC0 of all deterministic sequences that are 0 from some time on. This
is a countable class of measures which is very easy to predict. Yet, the classof measures onX n,
obtained by truncating all measures inC0 to the firstn observations, coincides with what would be
obtained by truncating all deterministic measures to the firstn observations, the latter class being
obviously not predictable at all (see also examples below). Nevertheless, considering this kind of
local behaviour of measures, one can obtain not only sufficient conditions for the existence of a
predictor, but also rates of convergence of the prediction error. It also gives some ideas of how to
construct predictors, for the cases when the sufficient conditions obtained are met.

For a classC of stochastic processes and a sequencex1..n ∈ X n introduce the coefficients

cx1..n(C ) := sup
µ∈C

µ(x1..n).

Define also the normalizer
cn(C ) := ∑

x1..n∈X n

cx1..n(C ).

Definition 10 (NML estimate) The normalized maximum likelihood estimatorλ is defined (e.g.,
Krichevsky, 1993) as

λC (x1..n) :=
1

cn(C )
cx1..n(C ),

for each x1..n ∈ X n.

The family λC (x1..n) (indexed byn) in general does not immediately define a stochastic process
overX∞ (λC are not consistent for differentn); thus, in particular, using average KL divergence for
measuring prediction quality would not make sense, since

dn(µ(·|x1..n−1),λC (·|x1..n−1))

can be negative, as the following example shows.
Example: negative dn for NML estimates. Let the processesµi , i ∈ {1, . . . ,4} be defined on the steps
n= 1,2 as follows.µ1(00) = µ2(01) = µ4(11) = 1, whileµ3(01) = µ3(00) = 1/2. We haveλC (1) =
λC (0) = 1/2, while λC (00) = λC (01) = λC (11) = 1/3. If we defineλC (x|y) = λC (yx)/λC (y), we
obtainλC (1|0) = λC (0|0) = 2/3. Thend2(µ3(·|0),λC (·|0)) = log3/4 < 0.

Yet, by taking an appropriate mixture, it is still possible to construct a predictor (a stochastic
process) based onλ, that predicts all the measures in the class.

Definition 11 (predictor ρc) Let w := 6/π2 and let wk := w
k2 . Define a measure µk as follows.

On the first k steps it is defined asλC , and for n> k it outputs only zeros with probability 1; so,
µk(x1..k) = λC (x1..k) and µk(xn = 0) = 1 for n > k. Define the measureρc as

ρc =
∞

∑
k=1

wkµk.

Thus, we have taken the normalized maximum likelihood estimatesλn for eachn and continued
them arbitrarily (actually, by a deterministic sequence) to obtain a sequence of measures on(X∞,F )
that can be summed.
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Theorem 12 For any setC of probability measures on(X∞,F ), the predictorρc defined above
satisfies

1
n

dn(µ,ρc) ≤
logcn(C )

n
+O

(

logn
n

)

; (25)

in particular, if
logcn(C ) = o(n), (26)

thenρc predicts every µ∈ C in expected average KL divergence.

Proof Indeed,

1
n

dn(µ,ρc) =
1
n

E log
µ(x1..n)

ρc(x1..n)
≤ 1

n
E log

µ(x1..n)

wnµn(x1..n)

≤ 1
n

log
cn(C )

wn
=

1
n
(logcn(C )+2logn+ logw). (27)

Example: i.i.d., finite-memory.To illustrate the applicability of the theorem we first consider the
class of i.i.d. processesCB over the binary alphabetX = {0,1}. It is easy to see that, for each
x1, . . . ,xn,

sup
µ∈CB

µ(x1..n) = (k/n)k(1−k/n)n−k,

wherek = #{i ≤ n : xi = 0} is the number of 0s inx1, . . . ,xn. For the constantscn(C ) we can derive

cn(C) = ∑
x1..n∈X n

sup
µ∈CB

µ(x1..n) = ∑
x1..n∈X n

(k/n)k(1−k/n)n−k

=
n

∑
k=0

(

n
k

)

(k/n)k(1−k/n)n−k ≤
n

∑
k=0

n

∑
t=0

(

n
k

)

(k/n)t(1−k/n)n−t = n+1,

so thatcn(C) ≤ n+1.
In general, for the classCk of processes with memory kover a finite spaceX we can get poly-

nomialcn(C ) (see, for example, Krichevsky, 1993, and also Ryabko and Hutter, 2007). Thus, with
respect to finite-memory processes, the conditions of Theorem 12 leave ample space for the growth
of cn(C ), since (26) allows subexponential growth ofcn(C ). Moreover, these conditions are tight,
as the following example shows.
Example: exponential coefficients are not sufficient.Observe that the condition (26) cannot be
relaxed further, in the sense that exponential coefficientscn are not sufficient for prediction. Indeed,
for the class of all deterministic processes (that is, each process from the class produces some fixed
sequence of observations with probability 1) we havecn = 2n, while obviously for this class a
predictor does not exist.
Example: stationary processes.For the set of all stationary processes we can obtaincn(C) ≥ 2n/n
(as is easy to see by considering periodicn-order Markov processes, for eachn ∈ N), so that the
conditions of Theorem 12 are not satisfied. This cannot be fixed, sinceuniform rates of convergence
cannot be obtained for this family of processes, as was shown in Ryabko(1988).
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4.2.1 OPTIMAL RATES OFCONVERGENCE

A natural question that arises with respect to the bound (25) is whether it can be matched by a lower
bound. This question is closely related to the optimality of the normalized maximum likelihood
estimates used in the construction of the predictor. In general, since NML estimates are not optimal,
neither are the rates of convergence in (25). To obtain (close to) optimal rates one has to consider a
different measure of capacity.

To do so, we make the following connection to a problem in information theory. LetP (X∞) be
the set of all stochastic processes (probability measures) on the space(X∞,F ), and letP (X ) be the
set of probability distributions over a (finite) setX . For a classC of measures we are interested in a
predictor that has a small (or minimal) worst-case (with respect to the classC ) probability of error.
Thus, we are interested in the quantity

inf
ρ∈P (X∞)

sup
µ∈C

D(µ,ρ), (28)

where the infimum is taken over all stochastic processesρ, andD is the asymptotic expected average
KL divergence (24). (In particular, we are interested in the conditions under which the quantity (28)
equals zero.) This problem has been studied for the case when the probability measures are over
a finite setX , andD is replaced simply by the KL divergenced between the measures. Thus, the
problem was to find the probability measureρ (if it exists) on which the following minimax is
attained

R(A) := inf
ρ∈P (X )

sup
µ∈A

d(µ,ρ), (29)

whereA⊂P (X ). This problem is closely related to the problem of finding the best code for the class
of sourcesA, which was its original motivation. The normalized maximum likelihood distribution
considered above does not in general lead to the optimum solution for this problem. The optimum
solution is obtained through the result that relates the minimax (29) to the so-called channel capacity.

Definition 13 (Channel capacity) For a set A of measures on a finite setX thechannel capacityof
A is defined as

C(A) := sup
P∈P0(A)

∑
µ∈S(P)

P(µ)d(µ,ρP),

whereP0(A) is the set of all probability distributions on A that have a finite support, S(P) is the
(finite) support of a distribution P∈ P0(A), andρP = ∑µ∈S(P) P(µ)µ.

It is shown in Ryabko (1979) and Gallager (1976 (revised 1979) thatC(A) = R(A), thus reducing the
problem of finding a minimax to an optimization problem. For probability measures over infinite
spaces this result (R(A) = C(A)) was generalized by Haussler (1997), but the divergence between
probability distributions is measured by KL divergence (and not asymptotic average KL divergence),
which gives infiniteR(A), for example, already for the class of i.i.d. processes.

However, truncating measures in a classC to the firstn observations, we can use the results
about channel capacity to analyze the predictive properties of the class. Moreover, the rates of
convergence that can be obtained along these lines are close to optimal. In order to pass from
measures minimizing the divergence for each individualn to a process that minimizes the divergence
for all n we use the same idea as when constructing the processρc.
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Theorem 14 Let C be a set of measures on(X∞,F ), and letC n be the class of measures fromC
restricted toX n. There exists a measureρC such that

1
n

dn(µ,ρC) ≤ C(C n)

n
+O

(

logn
n

)

;

in particular, if C(C n)/n → 0, thenρC predicts every µ∈ C in expected average KL divergence.
Moreover, for any measureρC and everyε > 0 there exists µ∈ C such that

1
n

dn(µ,ρC) ≥ C(C n)

n
− ε.

Proof As shown in Gallager (1976 (revised 1979), for eachn there exists a sequenceνn
k, k ∈ N of

measures onX n such that
lim
k→∞

sup
µ∈Cn

dn(µ,νn
k) →C(C n).

For eachn∈ N find an indexkn such that

| sup
µ∈Cn

dn(µ,νn
kn

)−C(C n)| ≤ 1.

Define the measureρn as follows. On the firstn symbols it coincides withνn
kn

andρn(xm = 0) =

1 for m > n. Finally, setρC = ∑∞
n=1wnρn, wherewk = w

n2 ,w = 6/π2. We have to show that
limn→∞

1
ndn(µ,ρC) = 0 for everyµ∈ C . Indeed, similarly to (27), we have

1
n

dn(µ,ρC) =
1
n

Eµ log
µ(x1..n)

ρC(x1..n)

≤ logw−1
k

n
+

1
n

Eµ log
µ(x1..n)

ρn(x1..n)
≤ logw+2logn

n
+

1
n

dn(µ,ρn)

≤ o(1)+
C(C n)

n
.

The second statement follows from the fact (Ryabko, 1979; Gallager, 1976 (revised 1979) that
C(C n) = R(C n) (cf. (29)).

Thus, if the channel capacityC(C n) grows sublinearly, a predictor can be constructed for the
class of processesC . In this case the problem of constructing the predictor is reduced to findingthe
channel capacities for differentn and finding the corresponding measures on which they are attained
or approached.
Examples.For the class of all Bernoulli i.i.d. processes, the channel capacityC(C n

B) is known to
be O(logn) (Krichevsky, 1993). For the family of all stationary processes it isO(n), so that the
conditions of Theorem 14 are satisfied for the former but not for the latter.

We also remark that the requirement of a sublinear channel capacity cannot be relaxed, in the
sense that a linear channel capacity is not sufficient for prediction, since it is the maximal possible
capacity for a set of measures onX n, achieved, for example, on the set of all measures, or on the set
of all deterministic sequences.
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5. Discussion

The first possible extension of the results of the paper that comes to mind is to find out whether
the same holds for other measures of performance, such as prediction in KL divergence without
time-averaging, or with probability 1 rather then in expectation, or with respect to other measures
of prediction error, such as absolute distance. (See Ryabko and Hutter, 2007 for a discussion of
different measures of performance and relations between them.) Maybe the same results can be
obtained in more general formulations, for example, usingf -divergences of Csiszar (1967).

More generally, the questions we addressed in this work are a part of a larger problem: given
an arbitrary classC of stochastic processes, find the best predictor for it. We have considered two
subproblems: first, in which form to look for a predictor if one exists. Herewe have shown that
if any predictor works then a Bayesian one works too. The second one isto characterize families
of processes for which a predictor exists. Here we have analyzed what the notion of separability
furnishes in this respect, as well as identified some simple sufficient conditions based on the local
behaviour of measures in the class. Another approach would be to identifythe conditions which
two measuresµ andρ have to satisfy in order forρ to predictµ. For prediction in total variation
such conditions have been identified (Blackwell and Dubins, 1962; Kalaiand Lehrer, 1994) and, in
particular, in the context of the present work, they turn out to be very useful. Kalai and Lehrer (1994)
also provide some characterization for the case of a weaker notion of prediction: difference between
conditional probabilities of the next (several) outcomes (weak merging of opinions). In Ryabko and
Hutter (2008b) some sufficient conditions are found for the case of prediction in expected average
KL divergence, and prediction in average KL divergence with probability 1. Of course, another
very natural approach to the general problem posed above is to try andfind predictors (in the form
of algorithms) for some particular classes of processes which are of practical interest. Towards
this end, we have found a rather simple form that some solution to this question has if a solution
exists: a Bayesian predictor whose prior is concentrated on a countable set. We have also identified
some sufficient conditions under which a predictor can actually be constructed (e.g., using NML
estimates). However, the larger question of how to construct an optimal predictor for an arbitrary
given family of processes, remains open.

Taking an even more general perspective, one can consider the problem of finding the best
response to the actions of a (stochastic) environment, which itself responds to the actions of a
learner. Allowing into consideration environments that change their behaviour in response to the
action of the learner, clearly makes the problem much more difficult, but it alsodramatically extends
the range of applications. For this general problem one can pose the samequestions: given a setC
of environments, how can we construct a learner that is (asymptotically) optimal if any environment
from C is chosen to generate the data? One can consider Bayesian learners forthis formulation too
(Hutter, 2005); it would be interesting to find out whether one can show that, when there is a learner
which is optimal in every environment fromC , then there is a Bayesian learner with a countably
supported prior that has this property too.
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