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Abstract

Learning dynamic Bayesian network structures providesircipled mechanism for identifying
conditional dependencies in time-series data. An impbaasumption of traditional DBN struc-
ture learning is that the data are generated by a statiomacggs, an assumption that is not true in
many important settings. In this paper, we introduce a nesscof graphical model called a non-
stationary dynamic Bayesian network, in which the condaialependence structure of the under-
lying data-generation process is permitted to change awer. tNon-stationary dynamic Bayesian
networks represent a new framework for studying problemhiith the structure of a network is
evolving over time. Some examples of evolving networks eardcriptional regulatory networks
during an organism’s development, neural pathways duaarning, and traffic patterns during the
day. We define the non-stationary DBN model, present an MChapding algorithm for learning
the structure of the model from time-series data undermdiffeassumptions, and demonstrate the
effectiveness of the algorithm on both simulated and bickigiata.

Keywords: Bayesian networks, graphical models, model selectiongcstre learning, Monte
Carlo methods

1. Introduction

A principled mechanism for identifying conditional dependencies in timeselata is provided
through structure learning of dynamic Bayesian networks. An importauoinement of this learn-
ing is that the time-series data is generated by a distribution that does ngechih time—it is
stationary. The assumption of stationarity is adequate in many situations sit&i@ espects of
data acquisition or generation can be easily controlled and repeatedvétpaiher interesting and
important circumstances exist where that assumption does not hold amdigdaten-stationarity
cannot be ignored.

The inspiration for this model of “networks evolving over time” comes primarityrf neurobi-
ology. Dynamic Bayesian networks have been used to identify networksusél information flow
that operate in the brains of songbirds (Smith et al., 2006). When a juverigesragbird is born,
he cannot sing any songs; however, as he ages, he learns swngslier birds singing around him.
As the songbird learns from its environment, the networks of neuralrivdtion flow slowly adapt
to make the processing of sensory information more efficient. The anabsied out by Smith
et al. (2006) was limited by the fact that the researchers were forcedrtoletworks on subsets of
the data since DBN structure learning algorithms assume stationarity of th@ atafore, a learn-
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ing algorithm based upon dynamic Bayesian networks that relaxes thetakidaarity assumption
would be ideally suited to this problem.

As another example, structure learning of DBNs has been used widelganstucting tran-
scriptional regulatory networks from gene expression data (Friedtreln 2000; Hartemink et al.,
2001). But during development, these regulatory networks are evadviergtime, with certain con-
ditional dependencies between gene products being created as thsmrgevelops, and others
being destroyed. As yet another example, one can use a DBN to modiel fimf patterns. The
roads upon which traffic passes do not change on a daily basis, kgribenic utilization of those
roads changes daily during morning rush, lunch, evening rush, aeklends.

If one collects time-series data describing the levels of gene products im$keot transcrip-
tional regulation, traffic density in the case of traffic flow, or neuralvitgtin the case of neural
information flow, and attempts to learn a DBN describing the conditional demeias in the time-
series, one could be seriously misled if the data-generation process ssatmmary.

Here, we introduce a new class of graphical model called a non-statidgaamic Bayesian
network (nsDBN), in which the conditional dependence structure ofnldenlying data-generation
process is permitted to change over time. In the remainder of the paper, aduicgrand define
the nsDBN framework, present a simple but elegant algorithm for efflgitBgarning the structure
of an nsDBN from time-series data under a variety of different assungpteord demonstrate the
effectiveness of these algorithms on both simulated and experimental data.

1.1 Related Work

Representing relationships or statistical dependencies between vaiatiiesform of a network
is a popular technique in many communities, from economics to computational bitoggci-
ology. Recently, researchers have been interested in elucidating the &meymution of genetic
regulatory networks (Arbeitman et al., 2002; Luscombe et al., 2004) anthhinformation flow
networks (Smith et al., 2006), but were forced to perform their analysgibsets of the data since
their structure learning algorithms assumed stationarity of the data. Additiosaithe economics
techniques require prior specification of a graphical model (for a pdatidata set) and assume itis
stationary (Carvalho and West, 2007) when the data set may actually e mighstationary (Xuan
and Murphy, 2007). Therefore, the identification of non-stationahats®r in graphical models is
of significant interest and importance to many communities.

We divide models of evolving statistical dependencies into those that magledicty structures
and those that model changing parameters, and describe examples iofthigtsection. Addition-
ally, we briefly explain how our approach compares and some of the tadyemit provides over
other methods.

1.1.1 S RUCTURAL NON-STATIONARITY

Approaches that learn structural non-stationarities are those thatigxptiodel the presence of
statistical dependencies between variables and allow them to appear appkedisover time (e.g.,
they define directed or undirected networks whose edges changenoggr

In recent work modeling the temporal progression of networks fromdbialnetworks commu-
nity (Hanneke and Xing, 2006), thex or exponential random graph model (ERGM) (Wasserman
and Pattison, 1996) was generalized to the temporal ERGM (tERGM) modetgevehstructural
evolutionary process is modeled with a set of features between adjad®mrk structures (Han-
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neke and Xing, 2006). The tERGM model was further extended to the midRGM (htERGM)
to handle situations where the networks are latent (unobserved) vartalblegenerate observed
time-series data (Guo et al., 2006, 2007).

While the transition model of an htERGM allows for nearly unlimited generality imattariz-
ing how the network structure changes with time, it is restricted to functionsngddeally adjacent
network structures. Therefore, an evolutionary process that gliffetween early observations and
later observations may not be effectively captured by a single transitioelmatso, the emission
model defined in Guo et al. (2007) must be estimatgatiori and only captures pairwise corre-
lations between variables; more complicated relationships between multiplelsaribbt change
over time may be missed altogether. Finally, Guo and colleagues focus onydentindirected
edges. Although it is possible to adapt the ERGM model for directed gréiphecomes more
difficult to define the parameters of the tERGM and the emission model assumgoted edges.

In the continuous domain, some research has focused on learning tttargtiaf a time-varying
undirected Gaussian graphical model (Talih and Hengartner, 20BB%€eTauthors use a reversible-
jump MCMC approach to estimate the time-varying variance structure of the Tagg. explicitly
model the network’s edges as non-zeroes in the precision matrix. While thisl mitows for fast,
efficient sampling, it only does so by defining several restrictions to theehgphce. First, the
structural evolutionary process is piecewise-stationary and restricgidgie edge changes. Rapid
and significant structural changes would be approximated by a slowhgetg@network structure,
resulting in an inaccurate portrayal of the true evolutionary behaviorad#ta-generating process.
Additionally, the total number of segments or epochs in the piecewise statipreargss is assumed
knowna priori, thereby limiting application of the method in situations where the number of epochs
is not known. Finally, this approach only identifies undirected edgesdletions), while time-
series data should allow one to identify directed edges (conditional depeies).

A similar algorithm—also based on undirected Gaussian graphical modelsbebkasdevel-
oped to segment multivariate time-series data (Xuan and Murphy, 2007).appisach iterates
between a convex optimization for determining the graph structure and andypaogramming
algorithm for calculating the segmentation. This results in some notable adeartegy Talih and
Hengartner (2005): it has no single edge change restriction and theenwihgegments is calcu-
lateda posteriori The main restriction, however, is that the graph structure must be desalripo
Additionally, because this method models structure as non-zeroes in thsigmeoatrix, it only
identifies undirected edges. Finally, the networks (precision matricesgimsegment are assumed
independent, preventing the sharing of parameters and data betwesmseg

Another recently proposed model for identifying evolving networks is thepterally smoothed
l1-regularized logistic regression (TESLA) method, described by Kolalr €2010) and Ahmed and
Xing (2009). This approach involves learning a discrete binary Markodom field with sparse,
varying parameters. A useful advantage of this model is that can bearspgerized to account
for either smoothly varying or abrupt sudden changes to the networgtsteu Additionally, it
scales well to thousands of nodes. However, it is undirected, redpiiraly data, and only captures
pairwise relationships between variables. The binary input and pairelsgonship requirements
may be relaxed, but the likelihood function would have to be significantly madifiencorporate
cliques; the resulting optimization problem might become intractable.
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1.1.2 RRAMETER NON-STATIONARITY

Approaches that learn parameter non-stationarities are those that exphioidgl the evolution
of parameters over time. Here we only focus on a few that can be repedsas networks with
temporally changing parameters.

Switching state-space models (SSMs) represent a piecewise-statiatemgien of linear dy-
namic systems (Ghahramani and Hinton, 2000). In an SSM, a sequeonlesarfations is modeled
as a function of several independent hidden variables which is itselfadied by a switch vari-
able. The hidden variables as well as the switch variable all have Markdyi@amics. While this
approach is similar to ours in that it describes the evolution of a piecewisenstey process, it
does have some notable differences. Our model has no hidden variatiiesbserved variables.
Critically, our variables are not assumed to be independent; rather, dpgEndencies are unknown
and must be estimatexdposteriori Additionally, the piecewise-stationary process in our approach
does not follow Markovian dynamics, like the switch variable in an SSM.

A more closely related model is the recently published non-homogeneowesiBaynetwork
(Grzegorczyk et al., 2008). In this model, the conditional distributionsef#riables are assumed
to follow a mixture of Gaussians. Each observation is allocated to a single mioounponent
where the parameters and number of the mixture components are deteenfiostérioriusing an
allocation sampler. Unfortunately, an allocation sampler does not allow dat $bdred across
different mixture components since they are assumed independent. éfowds model seems
to do a good job of capturing the non-stationary behavior of parameter&iuasian Bayesian
network, assuming that the underlying structure is inferred correctly.

1.1.3 QUR APPROACH

Although we provide more detail in Section 3, for the purpose of compariserdefine our ap-
proach as the identification of a discrete Bayesian network that evoleesdiing to a piecewise-
stationary process where edges are gained and lost over time. Buildithg @ayesian network
model allows us to identify directed networks and results in efficient learfiinder certain as-
sumptions). Additionally, when the conditional probability distributions of thgeB#an network
are multinomial, we can identify linear, non-linear, and combinatorial interacti@tween vari-
ables. Finally, the piecewise-stationary assumption (and additional dotstoa how and when
edge changes occur) allows our method to scale to large data sets with mabjegaand provides
a natural parameterization for placing priors on the structural evolutioeegs.

Our method falls into the category of models that identify non-stationarities intstejamot
parameters. In the rest of this paper, we define non-stationarities as timésch conditional
dependencies between variables are gained or lost (i.e., edges &@ galast). We have chosen
to focus on structural non-stationarity for several reasons. Firsgrevaot as interested in making
predictions about future data (such as might be the case with spam pnedediave are in the
analysis of collected data to identify non-stationary statistical relationshipgebe variables in
multivariate time-series. Additionally, the problems we analyze in this papeigiiky Imultimodal
in the posterior over structures and likely to be even more varied in the jpostger parameters.
By assuming conjugate parameter priors, we address both problemsrhgiageout all possible
parameters and only examining the posterior over structures.

However, we recognize that the parameters of the conditional distributiaysalso change
with time. Some changes to the parameters of the conditional distributions metjveteresult in
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a structural change, while other changes may be dramatic, yet not alsrdbure. Ultimately, a
trade-off must be made between simplifying model assumptions resulting tegséatistical power
versus a completely general framework requiring approximation scheieder our modeling
assumptions, we can identify non-stationarities in the parameters of the coabidistributions that
are significant enough to result in structural changes; we assumecbtdrgges are small enough to
not alter edges in the predicted structure.

2. Brief Review of Structure L earning of Bayesian Networ ks

Bayesian networks are directed acyclic graphical models that represeditional dependencies
between variables as edges. They define a simple decomposition of the jmiptadistribution—
a variablex; is conditionally independent of its non-descendants given its parentyefbne, the
joint distribution of every variable; can be rewritten aB(xq, ..., X)) = [1i P(%|T), wheret, are
the parents ok;. Bayesian networks may be learned on time-series data, but the semaatics ar
slightly different, leading to the dynamic Bayesian network (DBN) model. DBisbée cyclic
dependencies between variables to be modeled across time. DBNs amgah cqse of Bayesian
networks, with modeling assumptions regarding how far back in time one i@arian depend
on another (minimum and maximum lag), and constraints placed on edges $ioethdb not go
backwards in time. For notational simplicity, we assume hereafter that the minimadimaximum
lag are both 1.

The task of inferring the structure (i.e., the set of conditional depele®naf a Bayesian net-
work is typically expressed using Bayes’ rule, where the posteriorgiibty of a given network
structureG (i.e., the set of conditional dependencies) after having observeddatgiven by

P(DIG)P(G)
P(D)

SinceP(D) is the same for all structures, we see tR4G|D) O P(D|G)P(G). The prior over
networksP(G) can be used to incorporate prior knowledge about the existence dfisgeges
(Bernard and Hartemink, 2005) or the overall topology of the netwoxk ,(sparse); often, prior
knowledge is not available afr{©®) is assumed uniform. The marginal likelihoB@D|G) is further
defined in terms of the paramet@®sof the conditional probability distributions (CPDs) between a
variable and its paren®(x;|T5, ©;). The entire set of parametd®s for all variables is simph®.

P(G|D) =

mmaz/wmammqam. (1)

One might be interested in inferring the values@®fiven a particular network, but we will be
focusing on learning the network itself, or the set of conditional dep®eids. In computer science,
this task is often referred to as structure learning; in statistics, it is ofterdoaltelel selection.
More detailed reviews of structure learning of Bayesian networks cdourel in Buntine (1996),
Chrisman (1998), Krause (1998), and Murphy (2001).

For the remainder of this section, we review the most common approachesrinigidynamic
Bayesian networks, thereby setting the stage for what changes we adltoenake in the following
section to handle inference in the non-stationary setting. For brevity, wdoasilis on dynamic
Bayesian networks with discrete variables, though the ideas could algapbedato networks of
continuous variables. Details specific to structure learning of Bayesiawories with continuous
variables can be found in Hofmann and Tresp (1995) and Margariti§20

3651



ROBINSON AND HARTEMINK

2.1 Evaluatingthe Marginal Likelihood P(D|G)

Evaluation of the marginal likelihood in Equation (1) can be performed eithproximately or
exactly. The marginal likelihood can be approximated with the Akaike informatioerion (AIC),
the Bayesian information criterion (BIC) (Friedman et al., 1998), or the minindescription
length (MDL) (Lam and Bacchus, 1994; Suzuki, 1996) metric. Each e$éhmetrics suggests
how model complexity should be penalized. For example, the AIC metric pesdliae parame-
ters less strongly than the BIC metric; therefore, a Bayesian networlel@asing the AIC metric
would be likely be more dense than a Bayesian network learned using the&he.

Alternatively, if a conjugate prior is placed @ which is then marginalized out, the value of
P(D|G) can be computed exactly. Assuming tRaparameterizes multinomially distributed condi-
tional probability distributions, one can place a conjugate Dirichlet prior erptirameter® and
then marginalize them out to obtain the Bayesian-Dirichlet (BD) metric. The BBierzan be
further modified so that all of the networks that represent the same senditional independence
relationships have the same probability; this is called the Bayesian-Dirichltadent (BDe) met-
ric (Heckerman et al., 1995). By using a Dirichlet prior and marginalizirgy @ values o, the
BD and BDe metrics inherently penalize more complex models, so a prior on terke?(G)
may not always be necessary. The primary advantage of the BD familytatmis that the evalu-
ation of P(D|G) is exact and can be computed in closed form. However, if the assumpticin¢hat
parameters of CPDs are multinomially distributed is incorrect, these metrics migfiniahthe true
network of conditional dependencies.

Since we will be modifying it later in this paper, we show the closed-formeasgion for the

BDe metric below:
alj r(aljk+Nljk)

P(DIG) = r“_LF (aij +Nij) I (ajk) @

whereq; is the number of configurations of the parent sgtr; is the number of discrete states
of variablex;, Njjk is the number of timeg; took on the value given the parent configuratiop
Nij = ZE:l Nij, andajj andajjk are Dirichlet hyper-parameters on various entrie®inf o;j is
set toa/(qiri) (essentially a uniform Dirichlet prior), we get a special case of the BDeien¢he
uniform BDe metric (BDeu), whose parameter priors are all controlled $ipgle hyperparameter
a.

2.2 Deciding Between Search or Sampling Strategies

Once a form of the marginal likelihod®(D|G) is defined and a method for evaluating it is chosen,
one must decide whether the objective is to identify the best network or tareape uncertainty
over the space of all posterior networks. Search methods may be usad tbdibest network or
set of networks (i.e., a mode in the space of all networks), while sampling dwethay be used to
estimate posterior quantities from the space of all networks.

Search methods may be exact or heuristic, but exact search fori@8ayetworks is compu-
tationally infeasible for more than about 30 variables because the numiparssible networks
is super-exponential in the number of variables. In fact, identifying thedsigscoring Bayesian
network has been shown to be NP-Hard (Chickering et al., 1994). Ifriwémum number of
parents for any variable is limited to some constppiy the total number of valid networks be-
comes exponential in the number of variables; however, finding the bagork is still NP-Hard
(for pmax > 2). Therefore, heuristic searches are often employed, includinggrekalimbing,
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simulated annealing (Heckerman et al., 1995), the K2 algorithm (Chicketradg £995), genetic al-
gorithms (Larréiaga et al., 1996), and even ant colony optimization (de Campos et al), 2002
heuristic searches perform well in a variety of settings, with greedy hill-glimland simulated
annealing being the most commonly used techniques.

A different approach from search is the use of sampling techniquediffsia et al., 1995; Giu-
dici et al., 1999; Tarantola, 2004). If the best network is all that is ddsineuristic searches will
typically find it more quickly than sampling techniques. However, sampling msthtidw the
probability or importance of individual edges to be evaluated over allilplessetworks. In set-
tings where many modes are expected, sampling techniques will more abcoagiire posterior
probabilities regarding various properties of the network. The primaigdgentage of sampling
methods in comparison to search methods is that they often take longer betumate results
become available.

A common sampling technique often used in this setting is the Metropolis-Hastiray#aig,

which is a Markov chain Monte Carlo (MCMC) method. The M-H acceptamodability for
moving from statex to statex’ is shown below, where eacliateis a DBN.

a(xx’):min{l p<D|X’>Xp<X’%X>}:mm p POX) o SwRMpX M) |

p(D[x)  p(x—X) pP(DIx) >m P(M)p(X[x, M)

likelihood ratio proposal ratio

whereM is the move type that allows for a transition from state X' andM’ is the reverse move
type for a transition from stat€ back to statex. While multiple moves may result in a transition
from statex to statex’ (and vice versa), typically there is only a single move for each transition.
In such a case, the sums owdrandM’ each only include one term, and the proposal ratio can be
split into two terms: one is the ratio of the proposal probabilities for move type$hee other is the
ratio of selecting a particular state given the current state and the moveltypehoice of scoring
metric determines the likelihoods, apdM’) and p(M) are often chosea priori to be equivalent

or simple to calculate.

2.3 Determining the M ove Set

Once a search or sampling strategy has been selected, one must detenmitweniove through
the space of all networks. fove setlefines a set of local traversal operators for moving from
a particular state (i.e., a network) to nearby states. The set of states thbe ag@ached from
the current one is often called thecal neighborhoodf that state. The values @f{x'|x,M) and
p(x|X',M) in the proposal ratio are defined by the move set.

Ideally, the move set includes changes that allow posterior modes to hefithqvisited. For
example, it is reasonable to assume that networks that differ by a singtevetidnave similar
likelihoods. A well-designed move set results in fast convergence sigsditiee is spent in the low
probability regions of the state space. For example, with traditional Bayestarorks, Madigan
et al. (1995) proposed that the move set &#d an edgeinddelete an edgeHowever, it was later
shown by Giudici and Castelo (2003) that the convergence rate coindieased with the addition
of another move to the move se¢verse an edge
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Figure 1: An example nsDBN with labeled components (namely, transition tinaeslt, and edge
change setAg; andAgy). Edges that are gained from the previous epoch are shown as
thicker lines and edges that will be lost in the next epoch are shown hsdilses. Note
that the network at each epoch is actually a DBN drawn in compact fornmewdeaeh
edge represents a statistical dependence between a node atanméts parent at the
previous time — 1.

3. Learning Non-Stationary Dynamic Bayesian Networks

While DBNs are excellent models for describing dependencies betweerséines- random vari-
ables, they cannot represent or reason about how these depiesderght change over time. In
contrast, our nsDBN model is capable of characterizing dependerstigsdn temporally observed
variables, as well as reasoning about whether and how those depeslehange. Because DBNs
are well studied and well understood, we have chosen to introducetiits@$ our nsDBN model
by building upon the existing DBN model. Therefore, we use this section td Hetathe structure
learning procedure for DBNs needs to be modified and extended to racimmunon-stationarity
when learning a non-stationary DBN.

Assume that we observe the statenahndom variables afl discrete times. Call this multivari-
ate time-series dafa, and further assume that it is generated according to a non-statioloasspy
which is unknown. The process is non-stationary in the sense that therketfvconditional de-
pendencies prevailing at any given time is itself changing over time. We cahitia (dynamic)
network of conditional dependenci€s and subsequent networks are cal@g Gs,...,Gn. We
defineAg; to be the set of edges that change (either added or deleted) beBveedG;, 1. The
number of edge changes specifiedg is 5. We define théransition time tto be the time at which
G is replaced byG; . ; in the data-generation process. We call the period of time between censecu
tive transition times—during which a single network of conditional deperidsns operative—an
epoch So we say thaB; prevails during the first epocks, prevails during the second epoch, and
so forth. We will refer to the entire series of prevailing networks assthactureof the nsDBN.
Figure 1 shows an example nsDBN with the components labeled.

3.1 Updating the Marginal Likelihood and Incorporating Priors

Since we wish to estimate a set of networks instead of one network we mivet @@ew expression
for the marginal likelihood. Consider the simplest case wimere 2 and the transition timg at
which the structure of the nsDBN evolves from netw@kto networkG, is known. We would like
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to find the network$5; andG; that have the highest probability given the observed time-series data
D and prior. Thus, we want to find the networks that maximize the expresslowb

D|G1,G2,t1)P(G1, Go|t1)
P(Dlta)

P(G1,G2|D,t1) = i O P(D|G1, Go,t1)P(G1,Ga|t1).

To maximize the marginal likelihooB(D|G1, Gg,t1) in the above expression, one approach might
be to estimate a different network for each epoch. Unfortunately, if thebeu of observations in
each epoch is small, accurate reconstruction of the correct structurberdifficult or impossible
(Friedman and Yakhini, 1996; Smith et al., 2003). Additionally, learning eedtvork separately
might lead to predictions that are vastly different during each epoctridf knowledge about the
problem dictates that the networks will not vary dramatically across adjapechs, information
about the networks learned in adjacent epochs can be leveraged éasedhe accuracy of the
network learned in the current epoch.

Expanding the simple formulation to multiple epochs, assume there raxdsterent epochs
with transition timesT = {ts,...,tm_1}. The networkG;; prevailing in epoch + 1 differs from
networkG; prevailing in epoch by a set of edge changes we aadj. We would like to determine
the sequence of network, . . ., Gy, that maximize the posterior given below:

P(Gy,...,Gm|D,T) OP(D|Gy,...,Gm, T)P(G,...,Gn|T). (4)

Since each network differs from the previous one by a set of edgeelsawe can rewrite the prior
and obtain the expression below:

P(Gl, .. .,Gm‘T) = P(Gl,Agl, ce ,Agm,1|T).

By writing the objective function this way, we rephrase the problem as fintffia initial network
andm— 1 sets of edge changes that best describe the data. Unfortunatelgatich space for
finding the best structure is still super-exponential rnfor the initial network and the task of
identifying the other networks is exponential (in bottandn). However, using this formulation, it
is easy to place some constraints on the search space to reduce the niwabéstructures. If we
specify that the maximum number of parents for any variabiais and, through priors, require
that the maximum number of edge changes for&gyis swax the search space for finding the best
structure becomes exponential (ipfor the initial network and exponential (im andsmay) for the
other networks.

We assume the prior over networks can be further split into componentstdegdhe initial
network and subsequent edge changes, shown below:

P(Gl,Agl, c.. ,Agm_l‘T) = P(Gl)P(Agl, cen ,Agm_l‘T).
leading to the final form of the posterior
P(Gl,Agl, ce ,Agmfl‘D,T) O P(D’Gl,Agl, ce ,Agmfl,T)P(Gl)P(Agl, ce ,AgmfllT). (5)

As in the stationary setting, if prior knowledge about particular edges erathtopology is avail-
able, an informative prior can be placed®(G;). In the context of the simulations and experiments
in this paper, we had no prior knowledge about the network; thus, weressa uniform prior on
P(G1). We do, however, place some prior assumptions on the ways in which edgege in the
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structure. First, we assume that the networks evolve smoothly over time. cbaemhis prior
knowledge, we place a truncated geometric prior with paranmeterl — e s on the number of
changes<) in each edge change s&g), with the distribution truncated fog > spax. For the
problems we explore, the truncation has no noticeable effect sipgés chosen to be large. The
updated posterior for the structure is given below:

1o ()’

P(Gl,Agl,...,Agm,ﬂD,T) 0 P(D|Gl,...,Gm,T) |_| ( e,)\s)Smax-l-l

(
0 P(D[Gy.....Gm T)[] (e*hs)S

[EEN

O P(D|Gy,...,Gm, T)e™s,

wheres = ¥;s. Therefore, a (truncated) geometric prior on egcis essentially equivalent to a
(truncated) geometric prior on the sufficient statisfithe total number of edge changes.

When the transition times aeepriori unknown, we would like to estimate them. The posterior
in this setting becomes

P(G1,AQ1,...,A0m-1,T|D) O P(D|Gy,...,Gm, T)P(G1,A01,...,A0m-1,T)
= P(D|Gy,...,Gm, T)P(G1)P(Agy,...,AQm-1,T)
= P(D|Gy,...,Gm, T)P(G1)P(Agy,...,AQm-1)P(T).

We assume that the joint prior over the evolutionary behavior of the netammtkhe locations of
transition times can be decomposed into two independent components. Weuedwatinse the
previous geometric prior with parametpr= 1 — e s on the total number of edge changes. Any
choice forP(T) can be made, but for the purposes of this paper, we have no prioldahgavabout
the transition times; therefore, we assume a uniform pridr eno that all settings of transition times
are equally likely for a given value oh.

Finally, when neither the transition times nor the number of epochs are kaqgwiori, both
the number and times of transitions must be estimatpdsteriori If prior knowledge dictates that
the networks evolve slowly over time (i.e., a transition does not occur af ebservation), we can
include this knowledge by placing a non-uniform prior mnfor example a (truncated) geometric
prior with parameteip = 1 — e’ on the number of epochs, with the distribution truncated for
m > N. A geometric prior on the number of epochs is equivalent to a geometric @mi@poch
lengths (see Appendix A).

The form of the geometric prior was chosen for convenience since andg transformation,
the likelihood (and prior) calculations reduce to: (tkelihood) — Ass— Amm. In general, large
values ofA, encode the strong prior belief that the structure changes slowly (i.e. pieghs exist)
and large values ofs encode the strong prior belief that the structure changes smoothly (i.e., few
edge changes exist).

Fortunately, the likelihood component of the posterior does not changthethwe know the
transition timesa priori or not. Therefore, any uncertainty about the transition times can be incor-
porated into the evaluation of the prior, leaving the evaluation of the likelihocanged.

3.2 Evaluating the New Marginal Likelihood

Now that a new likelihood has been defined, we must decide on which metlisd for evaluation
and how to modify it to account for multiple structures. Any of the previousiytneed metrics
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can be modified to account for non-stationarity, but we chose to exte@Dibenetric because it is

exact and because edges are the only representation of conditipealdgacies that are left after
the parameters have been marginalized away. This provides a usefdigmarfor non-stationarity

that is both simple to define and easy to analyze.

The BDe metric needs to be modified when learning an nsDBN because itidfq(2), N;;
andN;j are calculated for a particular parent set over the entire dafa. sébwever, in an nsDBN,
a node may have multiple parent sets operative at different times. Theat@lodor Ni; andN;jx
must therefore be modified to specify timervalsduring which each parent set is operative. Note
that an interval may include several epochs. An epoch is defined hetwdggcent transition times
while an interval is defined as the union of consecutive epochs durifghatparticular parent set
is operative (which may include all epochs).

For each nodg the parent sef; in the BDe metric is replaced by a set of parent sgtswhere
h indexes the intervd}, during which parent seaty, is operative for node Letting p; be the number
of such intervals andi, be the number of configurations of, results in the expression below:

n P dn r(aij(lh)) i r(aijk(|h)+Nijk(|h))
PDIGL,-.Gm T) Diuhlju: r(“ij('h)+Nij(|h))k|:|1 (@i (1n))

where the countslijx and pseudocountsijx have been modified to apply only to the data in each
interval I. The modified BDe metric will be referred to as nsBDe. Given tfhdt= th 1 —th,

we setaijk(In) = (aijk|In|)/N (e.g., proportional to the length of the interval during which that
particular parent set is operative).df is set everywhere ta/(qr;) as in the BDeu metric, then
we generalize the BDeu metric to nsBDeu, and the parameter priors areadigaontrolled by a
single hyperparameter.

The derivation of the BDe metric requires seven assumptions: multinomial sgpapéeneter
independence, likelihood modularity, parameter modularity, Dirichlet distribdto parameters,
complete data, likelihood equivalence, and structure possibility (Heckeemaln, 1995). To ex-
tend the BDe metric to account for non-stationary behavior, we must extelgydthe parameter
independence assumption.

Parameter independence is split into local parameter independence babpglcameter inde-
pendence. Lettin® represent an individual network, global parameter independeneprissented
asp(©g|G) =L, p(Gi|G). In other words, the conditional probabilities can be decomposed by
variable. Local parameter independence is represente@®sss) = ﬂ?‘:l p(Gij|G); the conditional
probabilities for each variable are decomposable by parent configuratio

For nsDBNSs, we also need to assume parameter independence acnysdsinfearameter in-
dependence is thus split into three assumptions. The updated paramepenithelece assumptions
are defined below, whef@ represents an nsDBN structure, or set of hetworks.

Global parameter independencthe conditional probabilities are decomposable by variable:

P(©5[6) = [ POIG).

Interval parameter independencghe conditional probabilities for each variable are decomposable

by interval:
Pi
P(GI|G) = [ P(Gin|G).
h=1
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Local parameter independencéhe conditional probabilities for each variable for each interval are
decomposable by parent configuration:

Gih
P(Oih|G) =[] p(Oihi |G).
(Gin|G) J]1( hj|G)

3.3 Using a Sampling Strategy and Choosing a New M ove Set

We decide to take a sampling approach rather than using heuristic seaatfsb¢he posterior over
structures includes many modes. In particular, when the transition timestdoeavena priori, the
posterior is highly multimodal because structures with slightly different trandimoes likely have
similar posterior probabilities. Additionally, sampling offers the further beéméfallowing us to
evaluate interesting posterior quantities, such as when are the most likely timleisla transitions
occur—a question that would be difficult to answer in the context of hisuigsarch.

Because the number of possible nsDBN structures is so large (significaatiyer than the
number of possible DBNSs), we must be careful about what is includecimthve set. To provide
quick convergence, we want to ensure that every move in the movefisarafy jumps between
posterior modes. Therefore, the majority of the next section is devoteddtoildiag effective move
sets under different levels of uncertainty.

4. Settings

Each of the following subsections demonstrates a method for calculatindd®@iNnsnder a variety

of settingsthat differ in terms of the level of uncertainty about the number and timesnsditians.

The different settings will be abbreviated according to the type of uringrtavhether thenumber

of transitions isknown (KN) or unknown(UN) and whether the transitiotimesthemselves are
known(KT) or unknown(UT). Figure 2 shows plate diagrams relating the DBN model to the three
different settings of the nsDBN model, described in the following subsextion

4.1 Known Number and Known Times of Transitions (KNKT)

In the KNKT setting, we know all of the transition timespriori; therefore, we only need to
identify the most likely initial networks; and sets of edge changkg, .. .,Agm-1. Thus, we wish
to maximize Equation (5).

To create a move set that results in an effectively mixing chain, we consitieh types of
local moves result in jumps between posterior modes. As mentioned eartisgrke that differ
by a single edge will probably have similar likelihoods. Therefore, the mevesludes a single
edge addition or deletion 1@;1. Each of these moves results in the structural difference of a single
edge over all observations. One can also consider adding or deletiegganin a particulafg;;
this results in the structural difference of a single edge for all obsenstdtert;. Finally, we
consider moving an edge from ody; to another, which results in the structural difference of a
single edge for all observations betweeandt;. These moves are listed &—Ms in Table 1,
along with the various proposal probabilities defined in the Metropolis-Hgsticceptance ratio
shown in Equation (3).
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Figure 2: Plate diagrams relating DBNs to nsDBNs under each setting. Bekasecepresent quan-
tities that are knowm priori while white circles represent those that are unknown. Non-
stationary DBNs may have multiple networks, (indexed byj) and multiple different
parent sets for each variablp; for variablei, indexed byh). In the KNKT setting, the
transition timed; are knowna priori, but they must be estimated in the two other set-
tings. In the KNUT setting, the number of epoamss still known, but the transition
times themselves are not. Finally, in the UNUT setting, even the number of efochs
unknown; instead a truncated geometric prior is placethon

@q

G &r®
& @

4.2 Known Number But Unknown Times of Transitions (KNUT)

Knowing in advance the times at which all the transitions occur, as was adsortiee previous
subsection, is often unrealistic. To relax this assumption, we now assumdilein is known, the
setT is not givena priori but must also be estimated. Thus, rather than maximizing Equation (5),
we maximize the expression below:

P(Gl,Agl, ... ,Agm_l, T|D)

Structures with the same edge sets but slightly different transition times wilaplpbave similar
likelihoods. Therefore, we can add a new move that proposes a ldftaiosbne of the transition
times: letd be some small positive integer and let the new tifriee drawn from a discrete uniform
distributiont/ ~ DU (ti — d, t; +d) with the constraint that_; <t/ <ti;1. Initially, we set them—1
transition times so that the epochs are roughly equal in length. This placatitevd the transition
times ample room to locally shift without “bumping” into each other too early in thepsag
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procedure. The complete move set for this setting includes all of the mosest previously as
well as this newocal shift movelisted adVig in Table 1.

As with the last setting, the number of epochs does not change; thereftyehe prior on the
number of edge changess used.

4.3 Unknown Number and Unknown Times of Transitions (UNUT)

In the most general UNUT setting, both the transition timieand the number of transitions are
unknown and must be estimated. While this is the most interesting setting, it is alsaogie
difficult. Since the move set from the KNUT setting provides a solution to thiblpno whenm
is known, a simple approach would be to try various valueshaihd then determine which value
of m seems optimal. However, this approach is theoretically unsatisfying and Wwedfttredibly
slow. Instead, we will further augment the move set to allow the humber dfitiams to change.
Since both the number of edge changesd the number of epocinsare allowed to vary, we need
to incorporate both priors mentioned in Section 3.1 when evaluating the paosterio

To allow the number of epoch® to change during sampling, we introduseergeand split
operations to the move set. For the merge operation, two adjacent edgAgetadAg;.1) are
combined to create a new edge set. The transition time of the new edge settescsteldoe the mean
of the previous locations weighted by the size of each edge/setst; +S1ti11)/(S +S+1). For
the split operation, an edge €&j; is randomly chosen and randomly partitioned into two new edge
setsAg/ andAg;, ; with all subsequent edge sets re-indexed appropriately. Each nesitivatime
is selected as described above. The move set is completed with the inclusieradtittransition
timeanddelete transition timeperations. These moves are similar to the split and merge operations
except they also increase or decreggbe total number of edge changes in the structure. The four
additional moves are listed &;—M1gin Table 1.

4.4 MCMC Sampler Implementation Details

In practice, the sampler is designed so that the proposal " 2((>)‘(‘>|‘;',‘\"A’) is exactly 1 for most

moves. For example, if either mowéd; or moveM, is randomly selected, the sampling procedure
is as follows: random variableg andx; are selected, if the edge— Xx; exists inGy, it is deleted,
otherwise it is added (subject to the maximumpgfx parents constraint). We know that the max-
imal number of edges i; iS Npmax (due to the maximum parent constraint) and wedgbe the
current number of edges i@;. If we are making moveéM,, the probability that we select a legal
edge to add i$, = ”““ﬁifl. The probability of making the reverse move (frofnback tox) is

Py = %. The resulting proposal ratio is thus:

@ P(X|X', Mlz) . Eir+1 npnax—E1

A similar approach can be applied to the other moves.

This paradigm also handles boundary case§; ifs complete, thef(M;) = O; if G1 is empty,
thenP(M2) = 0; if 5§ = SmaxVi, thenP(M3) = 0; if 5§ = 1Vi, thenP(M,4) = 0; etc.

The relative proposal probabilities between different moves are dmbigo that all pairs of
complementary moves (a move and its reverse move) are equally likely. Uredi€NtKT setting,
P; + Py = Pae+ Pge = 2Pne Under the KNUT settingP; + Py = Pae+ Pge = 2Pme = 2Pst. Finally,
under the UNUT settingRa + Py = Pae+ Pie = 2Pme = 2Pst = Pm+ Ps = Pag+ Pug.

=1

3660



LEARNING NON-STATIONARY DYNAMIC BAYESIAN NETWORKS

Move typeM probeity e Bk

(M) add edge t@3; Pa E—‘; % = np“%f 171

(M) delete edge frons; Py B (np““gliﬁl)il = e

(M3) add edge tdg; Pae R mTff(siféTA = St % 5

(My) delete edge fromyg; Pe R mﬁlﬁfﬁ;‘fl)il = gy 3

(Ms) move edge fron\g; to Ag; Pre 1 %E%;%%§£;=l .

(Ms) locally shiftt Py 1 G =1 g
: T

(M7) mergeAg; andAgi1 Pn m (m_l)ilz(sﬁnsfll))*l(ﬁ?1) - <s+s+1>2(s‘+§‘“)

(Mg) split Ag; Ps o % =(5/2)(3)

(Mg) create newAg; Pag E%g (N<T,;>1);:—z = mn?ﬂgnz

(M1o) deleteAg; Pag %az <N7mr;—1171n72 = (N—rTrln—l)nz

Table 1. The move sets under different settingsis the total number of edges By, pmaxis the
maximum parent set sizgyaxis the maximum number of edge changes allowed in a single
transition time, and; is the number of edge changes in the&sgt The proposal ratio is
the product of the last two columns. The KNKT setting uses mdWedMs, KNUT uses
movesM;—Mg, and UNUT uses movdd;—Ms, in each case with the proposal probabili-
ties appropriately normalized to add to 1.

5. Results on Simulated and Real Data Sets

Here we examine both the speed and accuracy of our sampling algorithen alhthree settings
and on both simulated and real data sets. We want to solve real-worldpgtidat accurate ground
truths are often not available to assess performance; therefore, vieatyusn simulation studies
to provide representative performance estimates for the real problantsafst.

We have studied the performance characteristics of our algorithm in simusatidies that vary
by several orders of magnitude in number of observations, numberiables, number of epochs,
and network density. In each case, we perform simulations with multiple dastansdtiple times
with multiple chains to help ensure our results are robust to simulation artifactsbrévity, we
only present a few simulation results here; the broader set of experimertave conducted yield
similar results.

All experiments were run on a 3.6GHz dual-core Intel Xeon machine with 41GBAM.

5.1 Small Simulated Data Set

To evaluate the effectiveness of our method, we first apply it to a small, dedudata set. The first
experiment is on a simulated ten node network with 1020 observations aridgecsedge changes
between seven epochs, where the length of each epoch varies bethaah400 observations. The
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Figure 3: nsDBN structure learning with known numbers of transitioAsTrue non-stationary
data-generation process. The structure evolves gradually from tlvenkeat the left la-
beledG; to the network at the right label&sl;. The epochs in which the various networks
are active are shown in the horizontal bars, roughly to scale. Theombaizbars repre-
sent the segmentation of the 1020 observations, with the transition times lakeéed b
When these times are known to the algorithm (the KNKT setting), the recovetaiNh
structure is exactly the true structu.When the times of the transitions are not known
(the KNUT setting), the algorithm learns the model-averaged nsDBN steustuwwn
(selecting edges that occur in greater than fifty percent of the sampleduses). The
learned networks and most likely transition times are highly accurate (only misson
edges inG; and all predicted transition times close to the truth).

true structure is shown in Figure 3A. We chose a small network with feabim&sgically relevant
to genetic regulatory networks: a feedback loop, a variable with at le@st farents, a pathway of
length six, and the inclusion of observed variables that do not evenipatédn the network.

5.1.1 KNKT S&ETTING

In this simple setting, the sampler rapidly converges to the correct solutiogeWrate a data set
using the structure in Figure 3A, and run our sampler for 100,000 iteratiatis the first 25,000
samples thrown out for burn-in.

To obtain a consensus (model averaged) structure prediction, amsetlesidered present at a
particular time if the posterior probability of the edge is greater than 0.5. The @A, has no
effect in this setting, and the value &{ is varied between 0.1 and 50. The predicted structure is
exactly identical to the true structure shown in Figure 3A for a broad rahgalues, 06 < A; < 10,
indicating robust and accurate learning.

5.1.2 KNUT SETTING

In this setting, transition times are unknown and must be estimaasteriori The prior onm
remains unused, and for the prior grithe value of\5 is again varied between 0.1 and 50.
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Figure 4: Posterior probability of transition times when learning an nsDBN irKMET setting.
The blue triangles on the baseline represent the true transition times and ttetsed
represent one standard deviation from the mean probability, which isndrava black
line. The variance estimates were obtained using multiple chains. The highigipeo
transition times correspond closely with the true transition times.

Again, we generate a data set using the structure from Figure 3A atidersampler for 200,000
iterations, with the first 50,000 samples thrown out for burn-in. More sasrarie collected in the
KNUT setting because we expect that convergence will be slower ¢ieclarger space of nsDBNs
to explore.

The predicted consensus structure is shown in Figure 3Bgfer5; this choice ofAs provides
the most accurate predictions. The estimated structure and transition timesryadose to the
truth. All edges are correct, with the exception of two missing edgéds;inand the predicted
transition times are all within 10 of the true transition times. We can also examine $teripo
probabilities of transition times over all sampled structures. This is shown ind=iguThe blue
triangles on the baseline represent the true transition times, and spikesemipiransition times
that frequently occurred in the sampled structures. While the highesalpitity regions do occur
near the true transition times, some uncertainty exists about the exact locdtigasdt, since the
fourth epoch is exceedingly short.

To obtain more accurate measures of the posterior quantities of interelstgsuhe locations
of transition times), we generate samples from multiple chains; we use 25 in thd Ishitting.
Combining the samples from several chains allows us to estimate both the ifitpbéh transition
occurring at a certain time and the variance of that estimate. The red dotsune Bigepresent one
standard deviation above and below the estimated mean probability of a tramgitioning at a
particular time. We discovered that the speed of convergence undeiNik& Knd KNUT settings
were very similar for a givem. This unexpected result implies that the posterior over transition
times is rather smooth; therefore, the mixing rate is not greatly affected vameplisg transition
times.
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5.1.3 UNUT ETTING

Finally, we consider the UNUT setting where the number and times of transitiei®#h unknown.
We examine the accuracy of our method in this setting using several valdagapfiA,,. We use

the range K As < 5 because we know from the previous settings that the most accurate m®lutio
were obtained using a prior within this range; the range X, < 50 is selected to provide a wide
range of estimates for the prior emsince we have no previous knowledge of what it should be.

Again, we generate a data set using the structure from Figure 3A atigargsampler for 300,000
iterations, with the first 75,000 samples thrown out for burn-in. We colketisdes from 25 chains
in this setting.

Figure 5 shows the posterior probabilities of transition times for various sgtbifky andAn,.
As expected, when, increases, the number of peaks decreases. Essentially, Mhisnlarge,
only the few transition times thdtestcharacterize the non-stationary behavior of the data will be
identified. On the other hand, whag, is very small, noises within the data begin to be identified
as transition times, leading to poor estimates of transition times.

We can also examine the posterior on the number of epochs, as showniia Eigthe largest
peak can be used to provide an estimatenofA smallerA,, results in more predicted epochs and
less confidence about the most probable valua.of

Finally, since we know what the true structure is, we can obtain a preaisaailcurve for each
value ofAg andAn,. The precision-recall curves are shown at the top of Figure 7. Toleédécthese
values, we obtained individual precision and recall estimates for edalorkeat each observation
and averaged them over all observations. Therefore, the repodeidipn and recall values can be
viewed as the average precision and average recall over all obsasva

One way to identify the best parameter settingsMoandA, is to examine the best F1-measure
(the harmonic mean of the precision and recall) for each. The table in Figshiews the best F1-
measures and reveadls= 5 and\A, = 1 as best for this data, although nearly all choices achieve an
F1-measure above 0.9.

5.2 Larger Simulated Data Set

To evaluate the scalability of our technique in the most difficult UNUT settingalse simulate
data from a 100 variable network with an average of 50 edges over iwehe spanning 4800
observations, with one to three edges changing between each epogen@fate 10 different data
sets from the model and acquire 25 chains from each data set. For legioh we take 800,000
samples, with the first 200,000 samples thrown out for burn-in.

The posterior probabilities of transition times and the number of epocheépannding to Fig-
ures 5 and 6) for one of the simulated data sets are shown in Figure 8.ighifecantly sharper
prediction for the posterior probabilities of transitions occurring at spetiifies is most likely due
to having more observations and, thus, more confident estimates. The moih@pechs with the
highest posterior probability is five for all choices of priors, which isatlyathe true number of
epochs for this data set.

Additionally, the precision-recall curves and F1-measures are shotiguime 9, revealing the
As=1andA,, = 5 assignments to be best for this data, although all choices achieve ekcedidis.
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Figure 5: The posterior probabilities of transition times from the sampled stascin the UNUT
setting for various values &f; andAn,. As in Figure 4, the blue triangles on the baseline
represent the true transition times and the red dots represent one dtdedation from
the mean probability obtained from several runs, which is drawn as a lim&clOnly the
(As,Am) values of (11) and (12) seem to result in poor estimates of the true transition
times.

5.3 Drosophila Muscle Development Gene Regulatory Networks

Having achieved excellent results even in the hardest UNUT settingsatmoglifferent data sets
generated from two different simulated networks—one with 10 variabldsrenother with 100—
we are confident enough in the usefulness of our model to analyze sairaata.
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Figure 6: The posterior probabilities of the number of epochs for vanalues ofAs andAy,. The
x-axes range from 1 to 10 and the y-axes from 0 to 1 for all of the platemixthose
marked with a star. The starred plots show predictions with significantly maehep
than the truth. The posterior estimates on the number of epuetie closest to the true
value of 7 wherhis 1 or 2.

In this subsection, we apply our method to identify non-stationary netwcikg Drosophila
development gene expression data from Arbeitman et al. (2002). Ttascdatains expression
measurements of 408rosophilagenes over 66 time steps throughout development and growth
during the embryonic, larval, pupal, and adult stages of life. Zhao 2@086) focused on 19 genes
involved in muscle development and learned a single network over all 66 tipe with this data.
Using the same data, Guo et al. (2007) learned a time-varying undiredtgdrk@ver a subset of

3666



LEARNING NON-STATIONARY DYNAMIC BAYESIAN NETWORKS

UNUT Setting
As =1 As =2 As =3 As =4 As =5H
1.0 M e e

0.8+

0.6

0.4+

0.2+

(- 1.0—\ —
S
N o6y
L_) 0.4 Am =5
R
| -
o o
I e e e
Am = 10
r— T [T [T T
i * | e
Recall
As
1 2 3 4 5
0.4341 0.9423 0.9469 0.9738 0.9912 1
0.6760 0.9562 0.9553 0.9906 0.9909
0.9206 0.9553 0.9729 0.9731 0.9905 5 Am
0.9264 0.9550 0.9657 0.9829 0.9791 10
0.8804 0.8806 0.9042 0.8922 0.8807 50

Figure 7: Top. Precision-recall curves for various values\giindA, under the UNUT setting. The
most accurate estimates for the structure of the nsDBN arise wherb andA, = 1.
Bottom Corresponding F1-measures for the precision-recall curvesnédsures over
0.9 are shaded; darker shades indicate values closer to 1, and thst aghe is shown
in bold.
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Figure 8: The posterior probabilities of transition times and number of eplwohs one of the
larger (100 variables, 5 epochs, and 4800 observations) simulatedetatansler the
UNUT setting for various values af; andAn,. The axes are the same for all ploTap
The blue triangles on the baseline represent the true transition times and ttetsed
represent one standard deviation from the mean probability obtainedsi&eenal runs,
which is drawn as a black line.

3668



LEARNING NON-STATIONARY DYNAMIC BAYESIAN NETWORKS

UNUT Setting
s = 1 As = 2 As =D
1.0 - [
0.8+
) Am =2
.0,
c I
S
'8 )\m — 3
(]
—
o
0:8: %
) Am =5
Recall
As
1 3 5
0.9489 0.9510 0.9468
0.9377 0.9521 0.9356 2 Am
0.9531 0.9459 0.9398

Figure 9: Top Precision-recall curves for several values\gindA, under the larger 100 variable
simulation. Bottom Corresponding F1-measures for the precision-recall curves. F1-
measures over 0.9 are shaded; the highest value is shown in bold.

11 of the 19 genes identified by Zhao et al. (2006). To facilitate compawitbras many existing
methods as possible, we apply our method to the data describing the exprestdie same 11
genes, preprocessing the data in the same way as described by Zha@@d@). Unfortunately,
no other techniques predict non-stationary directed networks, smmparisons are made against
the stationary directed network predicted by Zhao et al. (2006) and tstationary undirected
network predicted by Guo et al. (2007).

We collect 50,000 samples and throw out the first 10,000 for burn-in; @reréepeat this process
for 25 chains. We need fewer samples in this problem compared to prelataisets because there
are relatively few variables and observations.
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Figure 10 shows how our predicted structure compares to those repgriitho et al. (2006)
and Guo et al. (2007). The nsDBN in Figure 10C was learned using therQdtting with transition
times defined at the borders between the embryonic, larval, pupal, ahdzdes.

While all three predictions share many edges, certain similarities betweerraalictipn and
one or both of the other two predictions are of special interest. In all {hregictions, a cluster
seems to form arounehyo61f msp-30Qup, mhg prm, andmicl All of these genes excepip are
in the myosin family, which contains genes involved in muscle contraction. Withimditeeted
predictionsmsp-30Qorimarily serves as a hub gene that regulates the other myosin family genes. |
is interesting to note that the undirected method predicts connections baetekprm, andmhc
while neither directed method makes these predictions. $mspe300Geems to serve as a regulator
to these genes, the method of Guo et al. (2007) may be unable to distingtiskebedirect and
indirect interactions, due to its undirected nature and reliance on corredatio

Two interesting temporal similarities arise when comparing our predictions te fhas Guo
et al. (2007). First, an interaction betweereandactnarise at the beginning of the pupal stage in
both methods. Second, the connection betwasp-300andup is lost in the adult network. Note
that the loss of this edge actually characterizes the progression to thestadydtfrom the pupal
stage in our prediction, while the method from Guo et al. (2007) combines thatages. The
estimation of a combined pupal/adult stage may simply be due to predicting the Itss edge
betweermsp-30Qandup earlier in development than our method.

Despite the similarities, some notable differences exist between our predicitbthe other
two predictions. First, we predict interactions franyo61fto bothprm andup, neither of which
is predicted in the other methods, suggesting a greater roteyfo61fduring muscle development.
Also, we do not predict any interactions witli. During muscle development IDrosophilg twi
acts as a regulator ofief2which in turn regulates some myosin family genes, includiigl and
mhc (Sandmann et al., 2006; Elgar et al., 2008); our prediction of no cdionet twi mirrors
this biological behavior. Finally, we note that in our predicted structacé never connects as a
regulator (parent) to any other genes, unlike in the network predictedhay £t al. (2006). Since
actn (actinin) only binds actin, we do not expect it to regulate other muscle dewelopgenes,
even indirectly.

If we transition to the UNUT setting, we can also examine the posterior probabititiran-
sition times and epochs. These plots are shown in Figure 11A and 11Rctiesty. The tran-
sition times with high posterior probabilities correspond well to the embryetacval and the
larval—pupal transitions, but a posterior peak occurs well before the sadptise of the
pupal—adult transition; this reveals that the gene expression program gogetr@riransition to
adult morphology is active well before the fly emerges from the pupapatielearly be expected.
Also, we see that the most probable number of epochs is three to fouryingrdosely the total
number of developmental stages.

5.4 Simulated Data Set Similar to the Drosophila Data Set

To evaluate the accuracy of a recovered nsDBN on a problem of exhetlgame size as the pre-
dictedDrosophilamuscle development network, we simulate a non-stationary time-series with the
same number of nodes and a similar level of connectivity a®theophiladata set. We generate
data from an nsDBN with 66 observations and transition times at 30, 40,&tudrbirror the num-

ber of observations in embryonic, larval, pupal, and adult stages okpgegimental fly data. Since
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Embryonic Larval

Figure 10: Comparison of computationally predictembsophilamuscle development networks.
A: The directed network reported by Zhao et al. (200B).The undirected networks
reported by Guo et al. (2007¢: The nsDBN structure learned under the KNKT setting
with A = 2. Only the edges that occurred in greater than 50 percent of the saamles
shown, with thicker edges representing connections that occurredfraquently.
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Figure 11: Learning nsDBN structure in the UNUT setting usingin@sophilamuscle develop-
ment data.A: Posterior probabilities of transition times usiNg = As = 2. The blue
triangles on the baseline represent the borders of embryonic, laryzd), and adult
stages.B: Posterior probability of the number of epochs. The high weight for 34and
epochs closely matches the true number of developmental stages.

it is difficult to estimate the amount of noise in the experimental data, we also sinmdeste at
various signal-to-noise ratios, from 4:1 down to 1:1. Finally, since many diicdb processes have
more variables than observations, we examine the effect of increasimgithiger of experimental
replicates as a possible means to overcome this challenge.
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Figure 12: An nsDBN was learned on simulated data that mimicked the numbedes$ nconnec-
tivity, and transition behavior of the experimental fly data. This allowed ustimate
the accuracy of learned nsDBNSs on a problem of this $z@recision-recall curves for
increasing values of the signal to noise ratio in the data (using one repli@Gateye-
cision recall curves for an increasing number of experimental repli¢asasy an SNR
of 2:1). A greater signal to noise ratio and a greater number of experilmeptates
both result in better performance, as expected.

As discussed earlier, to obtain posterior estimates of quantities of interestasihe number
of epochs or transition times, we generate many samples from severad;cdagnaging over chains
provides a more efficient exploration of the sample space. To incorpefaieates into the posterior
calculations, we generate samples from multiple chains (25) for each ssplfates. Since the
underlying data generation process is the same for each replicate, we swvephge over all the
chains. The results of these simulations are summarized in Figure 12.

As expected, as the signal-to-noise ratio of the data increases, ther gheasecuracy in the
learned nsDBNs as reflected in the F1-measures: 1:1is 0.734, 2:1 is B.85%90.875, and 4:1 is
0.950. Additionally, increasing the number of replicates also increasdfioa accuracy: one is
0.869, two is 0.924, three is 0.945, and four is 0.956. This demonstrates tbdamge of multiple
replicates for biological data with many variables but few observations.

This simulation study allows us to explore how much a relatively small data setcasel affect
the predictions from our algorithm on a problem of similar size asiitesophilamuscle devel-
opment network. From the results in Figure 12, we see that learning @NsiD a problem of
the same scale as tlirosophiladata set results in accurate network reconstruction, even in the
presence of substantial noise. Therefore, we can surmise that auiaeies in our predicted
Drosophilamuscle development network would not arise due to the use of a dataseit cizé,
but might arise from an exceptionally high level of noise in the data (or mggr@te modeling
assumptions).
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5.5 Neural Information Flow Networksin Songbirds

Our goal is to learn neural information flow networks in the songbird br8urch networks repre-
sent the transmission of information between different regions of the.lriki@ roads, the anatom-
ical connectivity of a brain indicates potential pathways along which infaomaan travel. Like
traffic, neural information flow networks represent the dynamic utilizatiothese pathways. By
identifying the neural information flow networks in songbirds during augittimuli, we hope to
understand how sounds are stored and processed in the brain.

In this experiment, eight electrodes were placed into the vocal nuclei tdrsiale zebra finches.
\oltage changes were recorded from populations of neurons whilérttenvtere provided with four
different two-second auditory stimuli, each presented twenty times. Tléingsvoltages were
post-processed with an RMS transformation and binned to 5 ms; this inteagathosen because
it takes 5-10 ms for a neural signal to propagate through one synaptiection (Kimpo et al.,
2003). We analyze data recorded from electrodes for two secoadsiprulus, two seconds during
stimulus, and two seconds post-stimulus. We learn an nsDBN for two of the dret six seconds
for two different stimuli using all repetitions; this data set contains 8 varsahtel nearly 25,000
observations for each bird and each stimulus.
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Figure 13: Posterior results of learning nsDBNs under the UNUT settingMobirds presented
with two different stimuli (white noise and song: Posterior transition time probabili-
ties. Transitions are consistently predicted near the stimulus onset (Zs¢aon offset
(4 seconds)B: Posterior estimates of the number of epochs. The estimated number of
epochs is three or four, with strong support for the value four whebitds presented
with a song.

The posterior transition time probabilities and the posterior number of epochwd birds
presented with two different stimuli under the UNUT settihg-£ A\, = 2) can be seen in Figure 13.
Note how the estimated transition times correspond closely with the times of the stimsktsand
offset and how the posterior estimate of the number of epochs is arowsdathiour; taken together,
these statistics imply that different networks predominate in the pre-stimulisgdiimulus, and
post-stimulus time periods.
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The posterior estimates consistently differ when the bird is listening to white meisas song.
When listening to a song, an additional transition is predicted 300—400 mstladt@mset of a
song but not after the onset of white noise. This implies that the bird fuathalyzes a sound
after recognizing it (e.g., hearing a known song), but performs nibduanalysis when it does not
recognize a sound (e.g., hearing white noise).

Previous analysis of this data assumed that any changes in the neunalatiém flow network
of a songbird listening to sound occurred only at sound onset anet ¢8mith et al., 2006). Only
by appropriately modeling the neural information flow networks as nsDBBlsva able to learn
that this assumption is not accurate.

Further analysis and investigation of this data is left to future work.

5.6 Performance and Scalability

Due to the use of efficient data structures in the sampler implementation, the tetiomai time
needed to update the likelihood is essentially the same for all moves. Tleeréferruntimes of
the algorithm under the KNKT, KNUT, and UNUT settings do not differ fogiaen number of
samples. Nevertheless, one typically wants more samples in settings with etcreasrtainty to
ensure proper convergence.

For the small ten variable simulated data set, the sample collection processHahadn takes
about 10 seconds per 100,000 samples, which translates to 10 secoptius KNKT setting, 20
seconds for the KNUT setting, and 30 seconds for the UNUT setting. riadgly, all runs can
easily be executed in parallel. Sample collection forBinesophiladata set and the similarly sized
simulated data set takes only a few seconds for each chain under all settings

For the larger 100 variable simulated data set, sample collection takes abouti@srjrer
100,000 samples. The increased runtime is primarily due to the larger numbariables, so
defining the neighborhood for each move takes more time. Due to intelligemngeschemes, the
number of observations affects runtime in only a sublinear fashion (mrdwitat enough memory
is available).

Surprisingly, one of the largest contributors to running time is the actuaitdewy of the MCMC
samples. For example, each sample in the larger simulated data set caresentsat by a 10,000
by 4,800 binary matrix of indicators for individual edges at every poirtinte. A full recording of
each sample is therefore very time consuming: just recording each sampéelarghr simulated
data set leads to an increased runtime of about 50 minutes per 100,000ssaviiplean alleviate
this problem in several ways. First, because only a small number of tBasdlbn values actually
change between samples, each sample can be represented and outpotripressed fashion;
however, the same amount of processing still must occur after the saniigetioa completes.
A better option is to only record the posterior quantities of interest. For examgaerding just
the transition times and number of epochs adds only a few seconds to the romtithe larger
simulated data set.

6. Discussion

Non-stationary dynamic Bayesian networks provide a useful framefootkarning Bayesian net-
works when the generating processes are non-stationary. Using thee satss/described in this
paper, nsDBN learning is efficient even for networks of 100 varialidegeneralizable to situations
of varying uncertainty (KNKT, KNUT, and UNUT), and is robust (i.e.,tmery sensitive) to the

3674



LEARNING NON-STATIONARY DYNAMIC BAYESIAN NETWORKS

choice of hyper-parameters over a large range of values. Additiobgllysing a sampling-based
approach, our method allows us to assess a confidence for eachqutertige—an advantage that
neither Zhao et al. (2006) nor Guo et al. (2007) share.

We have demonstrated the feasibility of learning an nsDBN in all three settiys simulated
data sets of various numbers of transition times, observations, variapthse and connection
densities. Additionally, we have identified nsDBNSs in the KNKT and UNUT settingjing biologi-
cal gene expression data. Thmsophilamuscle development network we predict is consistent with
the predictions from other techniques and conforms to many known bioldgieeactions from the
literature. The predicted transition times and number of epochs also comegpthe known times
of large developmental changes. Although each connection on the eidiosophilamuscle de-
velopment network is difficult to verify, simulated experiments of a similar scateahstrate highly
accurate predictions, even with moderately noisy data and one replicate.

While we focus on certain aspects of the model in this paper, many of oisialesare choices
rather than restrictions. For example, we present results using a Maxko¥one, but any Markov
lag could be used. Additionally, we use the BDe score metric, but any svetréc or conditional
independence test can be used instead; however, any score metficdelE not integrate over
the non-structural parameters would require an augmented samplinglprecelhe assumption
of discrete data is not necessary; our method easily extends to contidat@)provided that an
appropriate scoring metric (like BG) is adapted.

A discrete view of time is necessary to our approach, but many contirtinasdata sets can
be transformed into discrete-time ones without significant loss of informatfibe.use of directed
graphs is also necessary, and desired, but undirected estimatesata#aibed through moralization
of directed estimates. Although we choose simple priors to learn smoothly ayateitworks,
nearly any priors would be easy to incorporate; in particular, incotipgraxpert knowledge about
the problem domain would be an ideal method for defining priors.

For problems of more than a few variables, the use of MCMC sampling istesgnce EM
techniques would not converge in any reasonable time frame given saeasample space. One
of our key discoveries for increasing convergence is the reformulafitive problem from learning
multiple networks to learning a network and changes to that network. Thesnederization pro-
vides an intuitive means for defining evolving networks and allows us toalafove sets with good
convergence properties. Our particular choices of the move sets tateeranly possible ones, but
we have taken extra care to ensure that they work well on the typesldéprs we examine in this
paper.

The proposed sampling algorithm scales well to problems with hundredsiables and thou-
sands of observations, but we are not certain how well it will scale tblgnas that are orders of
magnitude larger. When obtaining sample runs takes days instead of mininesrsy it may be-
come desirable to obtain faster estimates, even if they are approximate. Vaiiatiethods are one
alternative to MCMC sampling approaches, often obtaining faster estimatesaist of decreased
accuracy (Beal and Ghahramani, 2006). For the scale of problems ipajhés, the run times and
convergence rates of our MCMC sampling algorithm were good enouglwthaid not have to
resort to variational approximations. However, if we wish to explore mudetadata sets in the
future, we may need to develop a variational algorithm to obtain results irsamahble time frame.

Non-stationary DBNs offer all of the advantages of DBNs (identifyingeclied, potentially
non-linear interactions between variables in multivariate time-series) anaddigonally able to
identify non-stationarities in the interactions between variables. The samjijogtiam presented
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here allows one to estimate the strength of individual edges as well asipodistributions of and
guantities of interest. In future work, we hope to analyze data from o#ldsfihat have traditionally
used DBNs and instead use nsDBNs to identify and model previously wmkapuncharacterized
non-stationary behavior.

Another direction that could be explored in the future is nsDBN learning withntavariables.
Following an EM approach like in Friedman (1997) would be the first stefmfeiwould also need
to consider how to connect hidden variables across epochs and haetpaonate different numbers
of hidden variables at different epochs. Learning non-stationatwanks with latent variables
seems to present a vexing challenge in the general case, but mighstdef@asimple cases when
enough data is available.
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Appendix A.

While we decided to place a (truncated) geometric prior on the number dfiggpother priors may
be considered. Talih and Hengartner (2005) chose to model epot¢hdersy.i.d. geometric random
variables. Here, we prove that a geometrically distributed prior on epogihie is equivalent to a
geometrically distributed prior on the number of epochs.

Letting I; be the length of epochandN be the total number of observations, we can write a
geometrically distributed prior on epoch lengths as:

_ﬁ(l— p'tp = p"ﬁ(l— Pt
= pM(1-p)it
p(L-p)" "

- () o

SinceN is the same for every nsDBN, we see that the geometrically distributed priomjmys
a function of the number of epocims. Compare this to a geometrically distributed prior on the
number of epochs, shown below:

(1-q™q = (1-gm
= All-g™

whereA is a constant that is the same for all nsDBNs. Therefore, a geometricatijpdisd prior
on epoch lengths with success probabipty %%g < 1/2is equivalent to a geometrically distributed
prior on the number of epochs with success probalyjitin this paper, we assume thatakes the

formq=1—e*, allowing for a more intuitive control of the prior by simply changihg
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