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Abstract

We study losses for binary classification and class proipalgbstimation and extend the under-
standing of them from margin losses to general composiwekwhich are the composition of a
proper loss with a link function. We characterise when nraigsses can be proper composite
losses, explicitly show how to determine a symmetric lostlhfrom half of one of its partial
losses, introduce an intrinsic parametrisation of contpdsinary losses and give a complete char-
acterisation of the relationship between proper losse$aasksification calibrated” losses. We also
consider the question of the “best” surrogate binary loss.iMfoduce a precise notion of “best”
and show there exist situations where two convex surrogates are incommensurable. We pro-
vide a complete explicit characterisation of the converityyomposite binary losses in terms of
the link function and the weight function associated witl floper loss which make up the com-
posite loss. This characterisation suggests new ways ofdgate tuning” as well as providing
an explicit characterisation of when Bregman divergencethe unit interval are convex in their
second argument. Finally, in an appendix we present somealgawithm-independent results on
the relationship between properness, convexity and robastto misclassification noise for binary
losses and show that all convex proper losses are non-rtwbossclassification noise.

Keywords: surrogate loss, convexity, probability estimation, dfésation, Fisher consistency,
classification-calibrated, regret bound, proper scoruig, Bregman divergence, robustness, mis-
classification noise

1. Introduction

A lossfunction is the means by which a learning algorithm'’s performance is judgddiaXy loss
function is a loss for a supervised prediction problem where there arpdssgible labels associated
with the examples. Aompositdoss is the composition of a proper loss (defined below) and a link
function (also defined below). In this paper we study composite binargdassd develop a number
of new characterisation results. Several of these results can besagreatension of the work by
Buja et al. (2005) applied to an analysis of composite losses by MasnadzSnd Vasconcelos
(2009).

Informally, proper losses are well-calibrated losses for class probakdtignation, that is for
the problem of not only predicting a binary classification label, but progi@din estimate of the
probability that an example will have a positive label. Link functions are aftad to map the out-
puts of a predictor to the intervid, 1] so that they can be interpreted as probabilities. Having such
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probabilities is often important in applications, and there has been condelémgerest in under-
standing how to get accurate probability estimates (Platt, 2000; Gneiting dialyR2007; Cohen
and Goldszmidt, 2004) and understanding the implications of requiring losidus provide good
probability estimates (Bartlett and Tewari, 2007).

Much previous work in the machine learning literature has focussedasgin lossesvhich in-
trinsically treat positive and negative classes symmetrically. However itvsvedl understood how
important it is to be able to deal with the non-symmetric case (Zellner, 1986n EX®1; Provost
and Fawcett, 2001; Buja et al., 2005; Bach et al., 2006; Beygelzimer &08i8; Christoffersen
and Diebold, 2009). A key goal of the present work is to consider coitgplosses in the general
(non-symmetric) situation. Since our development is for completely genessg¢do we automati-
cally cover non-symmetric losses. The generalised notion of classificatiitmation developed in
85 is intrinsically non-symmetric.

1.1 Overview and Contributions

We now provide an overview of the paper’s structure, highlighting thehoantributions and how
they relate to existing work. Central to this work are the notions of a loss aaddtsciated condi-
tional and full risk. These are introduced and briefly discussed in 82.

In 83 we introduce losses for Class Probability Estimation (CPE), define sarheical prop-
erties of them, and present some structural results originally by Shufald @966) and Savage
(1971) and recently studied in a machine learning context by Buja et @5)2Mhd Masnadi-Shirazi
and Vasconcelos (2009). The most important of these are Theorernth gilies a representation
of proper losses in terms of its associated conditional Bayes risk funetimwh,Theorem 1 which
relates a proper loss’s partial losses to its “weight function"—the negatieond derivative of the
conditional Bayes risk (see Corollary 3). We use these to provide d doaeacterisation of proper
symmetric CPE losses. Specifically, Theorem 9 shows these losses aretetyrgetermined by
the behaviour of one of its partial losses on half the unit interval.

Learning algorithms often make real-valued predictions that are not diretégpretable as
probability estimates but require a link function which maps their output to thevaitéx 1. In §4
we define composite losses as the composition of a CPE loss and a link. Tlemeibutions of
this section are Theorem 10 which generalises Theorem 1 to composits, lasdeCorollaries 12
and 14 which shows how requiring properness completely determines thaictkon for compos-
ite and margin losses. We also introduce a natural and intrinsic parametrisipimper composite
losses that is a generalisation of the weight function and show how it cardikto easily derive
gradients for stochastic descent algorithms.

In 85 we generalise the notion of classification calibrated losses (as stfmliexzkample, by
Bartlett et al., 2006) so it applies to non-symmetric composite losses (i.e., hobgugin losses)
and provide a characterisation of it in Theorem 17. We also describeHhiswew notion of clas-
sification calibrated relates to proper CPE and composite losses via its tionngith the weight
function.

The main results of this paper are found in 86: Theorems 24 and 29 tdrésacvhen proper
composite losses are convex. These characterisation are in terms ofasiip¢estable constraints
relating the losses’ weight and link functions. The results also charaetghisn a Bregman diver-
gence or0, 1] is convex in its second argument (86.3).
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In 87 we study how the above insights can be applied to the problem oficga@surrogate
loss. Here, asurrogateloss function is a loss function which is not exactly what one wishes to
minimise but is easier to work with algorithmically. This is still a relatively new areeeséarch
and our aim here is to open up a discussion rather than have the final Wordb so we define
a well founded notion of “best” surrogate loss and show that some gmweogate losses are
incommensurable on some problems. We also consider some other notioresifdind explicitly
determine the surrogate loss that has the best surrogate regret b@uceriain sense.

Finally, in 88 we draw some more general conclusions. In particular, gueeahat the weight
and link function parametrisation of losses provides a convenient waytiowith an entire class
of losses that are central to probability estimation and may provide new Wapooaching the
problem of “surrogate tuning” (Nock and Nielsen, 2009b).

Appendix C collects several observations which build upon some of thitseés the main
paper but are digressions from its central themes. In it, we presentreagorithm-independent
results on the relationship between properness, convexity and rossistneisclassification noise
for binary losses and show that all convex proper losses are tostrto misclassification noise.

2. Losses and Risks

We writex Ay := min(x,y) and[p] = 1 if pis true andp] = 0 otherwise* The generalised function
o(+) is defined byffé(x) f(x)dx= f(0) whenf is continuous at 0 ana < 0 < b. Random variables
are written in sans-serif fon¥X, Y.

Given a set of labely := {—1,1} and a set of prediction valuésdwe will say alossis any
functior? £: Y x V — [0,). We interpret such a loss as giving a pendltyv) when predicting the
valuev when an observed label ys We can always write an arbitrary loss in terms ofgtatial
lossed1 :=¢(1,-) and/_q := ¢(—1,-) using

(V) =y = 1w (v) + [y = =1 £-1(v).

Our definition of a loss function covers all commonly useargin lossegi.e., those which can
be expressed &8y, V) = @(yv) for some functionp: R — [0,)) such as th@®-1 loss(y,v) = [yv<
0], thehinge los¥(y,v) = max(1—yv,0), thelogistic loss/(y,v) = log(1+ €"Y), and theexponential
loss/(y,v) = e YY commonly used in boosting. It also covelgass probability estimation losses
where the predicted valuéisc V = [0, 1] are directly interpreted as probability estimataale will
usef instead ofv as an argument to indicate losses for class probability estimation and use the
shorthandCPE losseso distinguish them from general losses. For exangieare loshas partial
losse_1(A) = H2 and/1(f}) = (1—1)?, thelog loss?_1(f}) = log(1—1}) and/y1(f}) = log(f}), and
the family ofcost-weighted misclassification losgesametrised bg € (0, 1) is given by

to(~1,A) = c[fi > c] andte(1,A) = (1-)[A < c]. (1)

1. This is the Iverson bracket notation as recommended by Knuth Y1992

2. Restricting the output of a loss i@, ») is equivalent to assuming the loss has a lower bound and then translating its
output.

3. These are known a&soring rulesin the statistical literature (Gneiting and Raftery, 2007).
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2.1 Conditional and Full Risks

Suppose we have random exampewith associated label® € {—1,1} The joint distribution of
(X,Y) is denoted® and the marginal distribution &f is denotedV. Let the observation conditional
densityn(x) := Pr(Y = 1]X = X). Thus one can specify an experiment by either (n,M).

If n € [0,1] is the probability of observing the labgl= 1 the point-wise risk(or conditional
risk) of the estimater € V is defined as thg-average of the point-wise loss far

L(N,V) := By [6(Y, V)] = nfa(V) + (1= n)l-a(V).

Here,Y ~ n is a shorthand for labels being drawn from a Bernoulli distribution with ipaterrn.
Whenn : X — [0,1] is an observation-conditional density, taking teaverage of the point-wise
risk gives theg(full) risk of the estimatow, now interpreted as a functiort X — V:

L(n,v,M) := Ex.m[L(n(X),V(X))].

We sometimes writé&.(v,IP) for .(n,v,M) where (,M) corresponds to the joint distributidh We
write £, L andLL for the loss, point-wise and full risk throughout this paper. Bages riskis the
minimal achievable value of the risk and is denoted
L(n,M) := inf L(n,v,M) = Ex.m [L(n(X))],
vevx
where
[0,1] 5n—L(n) = infL(n,v)
veV

is thepoint-wiseor conditional Bayes risk

There has been increasing awareness of the importance of the condBayes risk curve
L(n)—also known as “generalized entropy” (@wald and Dawid, 2004)—in the analysis of losses
for probability estimation (Kalnishkan et al., 2004, 2007; Abernethy et @092Masnadi-Shirazi
and Vasconcelos, 2009). Below we will see how it is effectively theatuine ofL that determines
much of the structure of these losses.

3. Losses for Class Probability Estimation

We begin by considering CPE losses, that is, functibng—1,1} x [0,1] — [0,) and briefly
summarise a number of important existing structural resultgrmper losses-a large, natural class
of losses for class probability estimation.

3.1 Proper, Fair, Definite and Regular Losses

There are a few properties of losses for probability estimation that we wjllire. If fj is to be
interpreted as an estimate of the true positive class probatpifitg., wheny = 1) then it is desirable
to require that.(n,n) be minimised by =n for alln € [0,1]. Losses that satisfy this constraint are
said to berisher consisteréind are known agroper losse¢Buja et al., 2005; Gneiting and Raftery,
2007). That is, a proper logssatisfied.(n) = L(n,n) for all n € [0,1]. A strictly properloss is a
proper loss for which the minimiser afn,n) overn is unique.

We will say a loss igair whenever



COMPOSITEBINARY LOSSES

That is, there is no loss incurred for perfect prediction. The main pkiceess is relied upon is in
the integral representation of Theorem 6 where it is used to get rid of sonsants of integration.
In order to explicitly construct losses from their associated “weighttfans” as shown in Theo-
rem 7, we will require that the loss lukefinite that is, its point-wise Bayes risk for deterministic
events (i.e.n = 0 orn = 1) must be bounded from below:

L(0) > —oo, L(1) > —co.

Since properness of a loss ensutés) = L(n,n) we see that a fair proper loss is necessarily definite
sinceL(0,0) = ¢_1(0) = 0 > —oo, and similarly forL(1,1). Conversely, if a proper loss is definite
then the finite valueé_1(0) and/1(1) can be subtracted frofh 1(-) and/4(-) to make it fair.

Finally, for Theorem 4 to hold at the endpoints of the unit interval, we reqaitoss to be
regular;® that is,
(1-n)l-1(n) =0.

Intuitively, this condition ensures that making mistakes on events that neppeh should not incur
a penalty. In most of the situations we consider in the remainder of this palb@melve losses
which are proper, fair, definite and regular.

lim n? = lim
Jmnéa(n) = im

3.2 The Structure of Proper Losses

A key result in the study of proper losses is originally due to Shuford €.866) and Stél von
Holstein (1970) (confer Aczel and Pfanzagl, 1967) though ourgmtegion follows that of Buja

et al. (2005). The following theorehtharacterises proper losses for probability estimation via a
constraint on the relationship between its partial losses.

Theorem 1 (Shufordet al.) Supposé : {—1,1} x [0,1] — R is a loss and that its partial lossés
and/_; are both differentiable. Thehis a proper loss if and only if for alfj € (0,1)

04 (R) _ L (f)
1-4 A

= w(f}) (2)

for someweight functionw : (0,1) — R such thatfsl_gw(c) dc< o forall € > 0.

The equalities in (2) should be interpreted in the distributional sense.

This simple characterisation of the structure of proper losses has a nafbaresting impli-
cations. Observe from (2) thatéfis proper, giver{; we can determiné_; or vice versa. Also, the
partial derivative of the conditional risk can be seen to be the prodadimmear term and the weight
function:

Corollary 2 If ¢ is a differentiable proper loss then for ajl€ [0, 1]

d

EL(ﬂjﬁ)Z(l—ﬂ)ﬁ’_l(ﬁ)Jrﬂf'l(ﬁ)Z(ﬁ—ﬂ)W(ﬁ)- ®3)

Another corollary, observed by Buja et al. (2005), is that the weigittian is related to the curva-
ture of the conditional Bayes ridk

4. This is equivalent to the conditions of Savage (1971) and Sched2&9J.
5. This is a restatement of Theorem 1 in Shuford et al. (1966).
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Corollary 3 Let ¢ be a a twice differentiabfeproper loss with weight function w defined as in
Equation (2). Then for all & (0,1) its conditional Bayes risk katisfies

w(c) = —L"(c).

One immediate consequence of this corollary is that the conditional Bayesorigkdroper loss
is always concave. Along with an extra constraint, this gives anotheaciesisation of proper
losses (Savage, 1971; Reid and Williamson, 2009a).

Theorem 4 (Savage)A loss functior? is proper if and only if its point-wise Bayes risKr}) is
concave and for each,fj € (0,1)

L(n.A) =L(A)+(n—-A)L'().
Furthermore if¢ is regular this characterisation also holds at the endpoimt§ € {0, 1}.

This link between loss and concave functions makes it easy to establishection, as Buja et al.
(2005) do, betweeregretAL(n,n) := L(n,n) — L(n) for proper losses anBregman divergences
The latter are generalisations of distances and are defined in terms adomctions. Specifi-
cally, if f : 8§ — R is a convex function over some convex §et R" then its associated Bregman
divergencéis

Dt (s,50) == f(s) — f(s0) — {s— 0, 0f(0))

for any s, s € 8, whereOf(sy) is the gradient off atsy. By noting that oves = [0,1] we have
Of = f/, these definitions lead immediately to the following corollary of Theorem 4.

Corollary 5 If Zis a proper loss then its regret is the Bregman divergence associated with If.
That is,

AL(n,A) =D-L(n,A).

Many of the above results can be observed graphically by plotting thetwova risk for a
proper loss as in Figure 1. Here we see the two partial losses on the defigln sides of the
figure are related, for each fixeéd by the linear mam — L(n,n) = (1—n)¢_1(AQ) +n¢1(n). For
each fixedh the properness dfrequires that these convex combinations of the partial losses (each
slice parallel to the left and right faces) are minimised wher . Thus, the lines joining the
partial losses are tangent to the conditional Bayes risk agrveL(n) = L(n,n) shown above the
dotted diagonal. Since the conditional Bayes risk curve is the lower ermseloihese tangents it
is necessarily concave. The coupling of the partial losses via the tarigeghtsconditional Bayes
risk curve demonstrates why much of the structure of proper losses isnitetel by the curvature
of L—that is, by the weight functiow.

The relationship between a proper loss and its associated weight funataptised succinctly
by Schervish (1989) via the following representation of proper losses weighted integral of
the cost-weighted misclassification losggdefined in (1). The reader is referred to Reid and
Williamson (2009b) for the details, proof and the history of this result.

6. The restriction to differentiable losses can be removed in most cagmsafalised weight functions—that is, possibly
infinite but defining a measure @0, 1)—are permitted. For example, the weight function for the 0-1 losg 3 =
3(c—3).

7. A concise summary of Bregman divergences and their properiiggeis by Banerjee et al. (2005, Appendix A).
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Point-wise Risk

\\

Figure 1: The structure of the conditional risn, R}) for a proper loss (surface). The loss is log loss
and its partial?_1(n) = —log(f) and/1() = —log(1—nR) shown on the left and right
faces of the box. The conditional Bayes risk is the curve on the suataoee the dotted
line 4 = n. The line connecting points on the partial loss curves shows the conditional

risk for a fixed prediction.

Theorem 6 (Schervish)Let/: Y x [0,1] — R be a fair, proper loss. Then for ea¢he (0,1) and
yey
1
(. = [ty wie)de @
where w= —L". Conversely, i is defined by (4) for some weight function {0, 1) — [0, ) then
it is proper.

Some example losses and their associated weight functions are giverariT&uja et al. (2005)
show that is strictly proper if and only ifv(c) > O in the sense that has non-zero mass on every
open subset of0,1). The following theorem from Reid and Williamson (2009a) shows how to
explicitly construct a loss in terms of a weight function.
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w(c) £-1(R) {1(N) Loss

25(3—¢) A>3 [A < 3] 0-1

3(c—co) co[fi > co] (1-co)[fl <c] Ceys Co € [0, 1]
~ 1-A

(171@20 [2In(l—r])+1%ﬁ [Inﬁnﬂ—l} —

1 12/2 (1-AQ)?%/2 Square

e —In(1-7) —In(A) Log

T [In((2—)i) - | [In((2—)h) + =2 —

—L 2,/ 2, /%0 Boosting

[(1—c)c3/? 1-n n

Table 1: Weight functions and associated partial losses.

Theorem 7 (Reid and Williamson)Given a weight function w0, 1] — [0, »), letW(t) = [*w(c)dc
andW(t) = [*W(c)dc. Then the los&, defined by

tw(y,n) = -W(f) — (y—1)W(A)
is a proper loss. Additionally, #V(0) andW(1) are both finite then
w(y,1) + (W(1) —W(0))y +W(0)
is a fair, proper loss.

Observe that ifv andv are weight functions which differ on a set of measure zero then they will
lead to the same loss. A simple corollary to Theorem 6 is that the partial logsgi@n by

() = /n "1 cyw(c)de and £_1(f) — /0 " ew(o)dc 5)

A similar® integral representation of the partial losses can also be found in Shetf@l. (1966,
Theorem 2) and S&hvon Holstein (1970).

3.3 Symmetric Losses

We will say a loss isymmetridf ¢1(n) = ¢_1(1—n) for all | € [0,1]. We say a weight function
for a proper loss or the conditional Bayes risksisnmetridf w(c) =w(1—c) orL(c) =L(1—c)
for all c € [0,1]. Perhaps unsurprisingly, an immediate consequence of Theorem 1tisebatwo
notions are identical.

8. The weight functiom in Theorem 2 of Shuford et al. (1966) is related tothkere byh(c) = (1— c)w(c).
9. The relationship between a symmetti@and symmetric behaviour of the loss has been previously recognised by
Masnadi-Shirazi and Vasconcelos (2009).
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Corollary 8 A proper loss is symmetric if and only if its weight function is symmetric.

Proof If ¢ is symmetric, ther?}(f}) = —¢' ;(1—1) and so Equation (2) impliea/(1—1) =

Zl*ll(_lam = _f/i(r?) =w(f). Conversely, the symmetry of applied to Equation (5) establishes the
symmetry of?. |

Requiring a loss to be proper and symmetric constrains the partial losségargty. Proper-
ness alone completely specifies one partial loss from the other. Nowseippaddition that is
symmetric. Combiningy (i) = ¢_1(1— 1) with (2) implies

1-1
J

¢ 4(1-H) = ¢4(R). (6)
This shows that_ is completely determined b4 1(f}) for ) € [0 ,%] (orfn e [%,1]). Thus in order
to specify a symmetric proper loss, one needs to only specify one of ttial pagses on one half
of the interval[0, 1]. Assuming/_1 is continuous al} (or equivalently thatv has no atoms aﬁ), by
integrating both sides of (6) we can derive an explicit formula for the dia#rof /_; in terms of
that which is specified:

r]:

I\)H—‘

+/ —E’ —x)dx, (7)

which works for determining_, on either[0,3] or [3,1] when¢_; is specified or{3,1] or [0, 3]
respectively (recalling the usual convention tfﬁatit: — ). We have thus shown:

Theorem 9 If a loss is proper and symmetric, then it is completely determined by sipgoifire of
the partial losses on half the unit interval (eith[@;%] or [%,O]) and using (6) and (7).

We demonstrate (7) with four examples. Suppose thatf}) = 1%5 for f € [0,2]. Then one
can readily determine the complete partial loss to be

0 () = ””—2”+[[n>2ﬂ( )

Suppose instead théat () = ﬁ for fj € [3,1]. In that case we obtain

a1 IR WLES
m(n)—[mséﬂ (2+|oglﬁ>+ 22

Supposé€_1() = (= » for fj € [0,3]. Then one can determine that

[[n<2]]+[[ > 3] (4+2(2A +flogh —Alog(1—A) — 1))
(1-1)? n '

Finally consider specifying thdt 1(f}) = 1 for fj € [0, 3]. In this case we obtain that

£1(N) =

C-1(A)=[A < 31A+[A > 3] (1~ log2— A —log(1-1)).
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4. Composite Losses

General loss functions are often constructed with the aidlwkafunction For a particular set of
prediction value$’ this is any continuous mapping: [0,1] — V. In this paper, our focus will be
composite lossef®r binary class probability estimation. These are the composition of a CPE loss
¢: {—1,1} x [0,1] — R and the inverse of &nk functiony, an invertible mapping from the unit
interval to some range of values. Unless stated otherwise we will aspuritel] — R. We will
denote a composite loss by

V) = Uy V). (8)

The classical motivation for link functions (McCullagh and Nelder, 198#8)as often in estimating

n one uses a parametric representation 0¥ —[0,1] which has a natural scale not matchjAgl].
Traditionally one writes) = ~2(h) where 1 is the “inverse link” (and} is of course the forward
link). The functionh: X — Ris thehypothesisOftenﬁ = ha is parametrised linearly in a parameter
vectora. In such a situation it is computationally convenient(if, 1 (h)) is convex inh (which
implies it is convex in whenh,, is linear ina). The idea of a link function is not as well known
as it should be and is thus reinvented—see for example Granger andnsl§2006).

Often one will choose the loss first (tailoring its properties by the weightimgngaccording
to w(c)), andthenchoose the link somewhat arbitrarily to map the hypotheses appropriately. An
interesting alternative perspective arises in the literature on “elicitabilitytntext et al. (20087
provide a general characterisation of proper scoring rules (i.e.,dp&segeneralpropertiesof
distributions, that is, continuous and locally non-constant functionich assign a real value to
each distribution over a finite sample space. In the binary case, thesertigsgprovide another
interpretation of links that is complementary to the usual one that treats theénirgk ! as a
way of interpreting scores as class probabilities.

To see this, we first identify distributions ovgr1, 1} with the probabilityn of observing 1. In
this case properties are continuous, locally non-constant Mmaf} 1] — R. When a link function
W is continuous it can therefore be interpreted as a property since its as#wesibility implies it
is locally non-constant. A properfy is said to beelicitable whenever there exists a strictly proper
loss/ for it so that the composite log§ satisfies for alfy # n

L™ (n,A) :=Eyn[f" (Y,A)] > L (n,n).

Theorem 1 of Lambert et al. (2008) shows thas elicitable if and only ifr ~%(r) is convex for
allr € rangél). This immediately gives us a characterisation of “proper” link functionssettbat
are both continuous and have convex level set®,hj—they are the non-decreasing continuous
functions. Thus in Lambert’s perspective, one chooses a “propgrsy’(i.e., the invertible link)
andthenchooses the proper loss.

4.1 Proper Composite Losses

We will call a composite losg?¥ (8) aproper composite losé ¢ in (8) is a proper loss for class
probability estimation. As in the case for losses for probability estimation, theresgent that a
composite loss be proper imposes some constraints on its partial losses.oMaeyresults for
proper losses carry over to composite losses with some extra factorotoaéar the link function.

10. See also Gneiting (2009).
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Theorem 10 Let A = /¥ be a composite loss with differentiable and strictly monotoneyirdnd
suppose the partial lossé@s 1(v) andA1(v) are both differentiable. Thek is a proper composite
loss if and only if there exists a weight function (@,1) — R such that for allij € (0, 1)

A~

W) NLW@E) | wi)
-h - A ww o PW ®

where equality is interpreted in the distributional sense. Furthernm(g) > 0for all f € (0,1).

Proof This is a direct consequence of Theorem 1 for proper losses fbapildy estimation and
the chain rule applied t6,(}) = Ay(W(R)). Sincey is assumed to be strictly monotonic we know
Y > 0 and so, sincev > 0 we havep > 0. [ |

As we shall see, the rat()) is a key quantity in the analysis of proper composite losses. For
example, Corollary 2 has natural analogue in termg tifat will be of use later. It is obtained by
letting j = Y~1(v) and using the chain rule.

Corollary 11 SupposéV is a proper composite loss with conditional risk denotéd Then

0

Sy (V) = (WHV) = n)p(W (V). (10)

Loosely speaking them,is a “co-ordinate free” weight function for composite losses where the link
functiony is interpreted as a mapping from arbitrarg V to values which can be interpreted as
probabilities.

Another immediate corollary of Theorem 10 shows how properness iadiesised by a partic-
ular relationship between the choice of link function and the choice of padmaposite losses.

Corollary 12 LetA := ¢¥ be a composite loss with differentiable partial los3esandA_;. Then

/¥ is proper if and only if the linkp satisfies

_ A4 (v)
NS (V) =M (W)

Proof Substituting = w=1(v) into (9) yields—y~1(V)A} (V) = (1— w~1(v))N_;(v) and solving
this for ~1(v) gives the resuilt. [ |

W (v) wWev. (11)

These results give some insight into the “degrees of freedom” availalda sgrecifying proper
composite losses. Theorem 10 shows that the partial losses are compétegiyided once the
weight functionw andy (up to an additive constant) is fixed. Corollary 12 shows that for a given
link Y one can specify one of the partial lossgsbut then properness fixes the other partial loss
A_y. Similarly, given an arbitrary choice of the partial losses, Equation lésgikie single link
which will guarantee the overall loss is proper.

We see then that Corollary 12 provides us with a way of constructiedezence linkfor arbi-
trary composite losses specified by their partial losses. The referekamlirbe seen to satisfy

y(n) =argminL¥(n,v)

veR
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for n € (0,1) and thuscalibratesa given composite loss in the sense of Cohen and Goldszmidt
(2004).

Finally, we make a note of an analogue of Corollary 5 for composite lossshows that the
regret for an arbitrary composite loss is related to a Bregman divergéands link.

Corollary 13 Let/¥ be a proper composite loss with invertible link. Then forglfy € (0,1),
AL¥(n,v) = D_L(n,yH(v)). (12)

This corollary generalises the results due to Zhang (2004b) and M&aShaedzi and Vasconcelos
(2009) who considered only margin losses respectively without and wik.lin

4.2 Derivatives of Composite Losses

We now briefly consider an application of the parametrisation of propeesoss a weight func-
tion and link. In order to implement Stochastic Gradient Descent (SGD)iddg one needs to
compute the derivative of the loss with respect to predictioaR. Lettingj(v) = y~1(v) be the
probability estimate associated with the predictwmwe can use (10) whem e {0, 1} to obtain the
update rules for positive and negative examples:

Sl = G-l
2w = AWPAW).

=
—
<
N—
S~—

Given an arbitrary weight functiow (which defines a proper loss via Corollary 2 and Theorem 4)
and linky, the above equations show that one could implement SGD directly paramétriseahs
of p without needing to explicitly compute the partial losses themselves.

4.3 Margin Losses

The margin associated with a real-valued predictiore R and labely € {—1,1} is the product
z=yv. Any function@: R — R™ can be used asrargin losshy interpretingg(yv) as the penalty
for predictingv for an instance with labgl. Margin losses are inherently symmetric siryse=
(—y)(—Vv) and so the penaltg(yv) given for predictings when the label iy is necessarily the same
as the penalty for predictingv when the label is-y. Margin losses have attracted a lot of attention
(Bartlett et al., 2000) because of their central role in Support Vectahiias (Cortes and Vapnik,
1995). In this section we explore the relationship between these margis rsgéhe more general
class of composite losses and, in particular, symmetric composite losses.

Recall that a general composite loss is of the faty,v) = ¢(y,y~1(v)) for a loss/: Y x
[0,1] — [0,0) and an invertible linkp: R — [0, 1]. We would like to understand when margin losses
are suitable for probability estimation tasks. As discussed above, prgsesslare a hatural class of
losses ovef0, 1] for probability estimation so a natural question in this vein is the following: given
a margin losg can we choose a linl so that there exists a proper Idssuch thatp(yv) = /¥ (y,v)?

In this case the proper loss will Béy,) = @(yw(n)).

The following corollary of Theorem 10 gives necessary and suffi@denditions on the choice

of link Y to guarantee when a margin lagsan be expressed as a proper composite loss.
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Corollary 14 Supposep: R — R is a differentiable margin loss. The@(yv) can be expressed as
a proper composite los& (y,v) if and only if the linky satisfies

g v

MY R0
Proof Margin losses, by definition, have partial los3gév) = @(yv) which means\}(v) = ¢(v)
and\’_;(v) = —¢@(—V). Substituting these into (11) gives the result. [ |

This result provides a way of interpreting predictionss probabilities) = ¢~(v) in a consis-
tent manner, for a problem defined by a margin loss. Conversely, it al@gtees that using any
other link to interpret predictions as probabilities will be inconsistémnother immediate impli-
cation is that for a margin loss to be considered a proper loss its link functishmegymmetridn
the sense that

-1 ¢(v) ¢(-v) -1
M 7 R T A
and so, by lettiny = Y(f}), we havep(1— ) = —(f}) and thusp(3) = 0.

Corollary 14 can also be seen as a simplified and generalised version afghment by
Masnadi-Shirazi and Vasconcelos (2009) that a concave minimal caomitisk function and a
symmetric link completely determines a margin 165s.

We now consider a couple of specific margin losses and show how thdeassociated with a
proper loss through the choice of link given in Corollary 14. The exptakossg(v) = eV gives

rise to a proper los&(y,f}) = @(yy(f)) via the link
- 1
—_eV—e Vv - 1+e—2v

YY) =

which has non-zero denominator. In this cagg) = %Iog (ﬁ) is just the logistic link. Now
consider the family of margin losses parametrisedilay (0, o)

(V) = log(exp((1—v)a)+1) .

a
This family of differentiable convex losses approximates the hinge loas-aso and was studied
in the multiclass case by Zhang et al. (2009). Since these are all diffdrlenfienctions with

@ (v) = e;ﬁu%m, Corollary 14 and a little algebra gives

1+

a (1-v) -1
o) = e el ]

2o | gn(1+v)

Examining this family of inverse links a® — 0 gives some insight into why the hinge loss is a
surrogate for classification but not probability estimation. When0 an estimaté = y~(v) ~ %

for all but very largev € R. That is, in the limit all probability estimates sit infinitesimally to the
right or left of% depending on the sign of

11. Strictly speaking, if the margin loss has “flat spots"—that is, wighfe) = 0—then the choice of link may not be
unique.
12. Shen (2005, Section 4.4) seems to have been the first to view n@sgas from this more general perspective.
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5. Classification Calibration and Proper Losses

The notion of properness of a loss designed for class probability estimstomatural one. If one
is only interested in classification (rather than estimating probabilities) a weakdition suffices.
In this section we will relate the weaker condition to properness.

5.1 Classification Calibration for CPE Losses

We begin by giving a definition of classification calibration for CPE losses ¢ver the unit interval
[0,1]) and relate it to composite losses via a link.

Definition 15 We say a CPE lossis classification calibrated atc (0,1) and write/ is CC; if the
associated conditional risk L satisfies

vn#c, L(n) < N (ﬁ—(lz?(];] _C>S0L(n,r1). (13)
The expression constraining the infimum ensuresihaton the opposite side afton, orifj = c.

The condition CG is equivalent to what is called “classification calibrated” by Bartlett et al.
(2006) and “Fisher consistent for classification problems” by Lin (2@0though their definitions
were only for margin losses. One situation where this more generah@ton is more appropriate
is when the false positive and false negative costs for a classificatibfept@re unequal.

One might suspect that there is a connection between classification caliatai@nd standard
Fisher consistency for class probability estimation losses. The followingetreavhich captures
the intuition behind the “probing” reduction (Langford and Zadrozn@3)0characterises the situ-
ation.

Theorem 16 A CPE los¥ is CC; for all ¢ € (0,1) if and only if¢ is strictly proper.
Proof The loss/is CC; for all c € (0,1) is equivalent to

L(n) <infg=cL(n, n<ec
L(n) < infﬁch( n->

ve>n, L(n) < z ( ﬂ)

L(n) < infasconL(n,A)

= v S Oal 9 i e N

n ( ) { L(r]) < Infﬁ§c<r] L(nvn)

& Vne(0,1),L(n)< _ ian L(n.n)
(A>n) Or (A<n)

inf L(n, 1)

n)
vce (0,1), Vn;éc{ ﬁ)

& Wne(0,1),Ln)< Int

which meand. is strictly proper. |

The following theorem is a generalisation of the characterisation c%fbemargin losses via
¢ (0) due to Bartlett et al. (2006).

Theorem 17 Suppos¢ is a loss and suppose th&} and ¢’ ; exist everywhere. Then for any
ce (0,1) ¢is CC if and only if

¢ 4(c)>0 and ¢;(c) <0 and ;(c)+(1—c)¢ 4(c) =0. (14)
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Proof Since/; and/’ , are assumed to exist everywhere

;ﬁL(n,ﬁ) =N (A) + (1-n)¢ 4(A)

exists for allf. L is CC is equivalent to

o] . >0, n<c<n
%L(n,n) ﬁ_c{ <0 A<c<n
vn<c, nfi(c)+(1-n)¢ 4(c)>0
< {Vn>a NE(Q) + (1—N) 4(c) <O (15)

cl4(0) +(1— )’ 4(c) =0

and?’_;(c) > 0 and//(c) <0,
where we have used the fact that (15) with= 0 andn = 1 respectively substituted implies
¢ 1(c) > 0and/(c) < 0. [ |

(16)

If ¢is proper, then by evaluating (3) at= 0 andn = 1 we obtain?; () = —w(f)(1—A) and
¢ 1(A) =w(n)A. Thus (16) implies-w(c)(1—c) < 0 andw(c)c > 0 which holds if and only if
w(c) # 0. We have thus shown the following corollary.

Corollary 18 |If ¢ is proper with weight w, then for any« (0, 1),
w(c) #0 < (isCC..

The simple form of the weight function for the cost-sensitive misclassificdties/c, (W(c) =
d(c— cp)) gives the following corollary (confer Bartlett et al., 2006):

Corollary 19 /¢, is CC;if and only if ¢ = c.

5.2 Calibration for Composite Losses

The translation of the above results to general proper composite lossesveittible differentiable
link Y is straight forward. Condition (13) becomes

vn#c, LY(n) < inf LY(n,wt(v)).
n#c, L*(n) T L (N, W (v)

Theorem 16 then immediately gives:

Corollary 20 A composite losg¥(-,-) = £(-,~1()) with invertible and differentiable linkp is
CC:forallc € (0,1) if and only if the associated proper loéss strictly proper.

Theorem 17 immediately gives:

Corollary 21 SupposéV is as in Corollary 20 and that the partial lossésand/¢_; of the asso-
ciated proper losg are differentiable. Then for anye (0,1), ¥ is CC, if and only if (14) holds.

It can be shown that in the special case of margin losgeshich satisfy the conditions of Corollary
14 such that they are proper composite losses, Corollary 21 leads torthiéi@og (0) < 0 which
is the same as obtained by Bartlett et al. (2006).
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6. Convexity of Composite Losses

We have seen that composite losses are defined by the propéilodshe linky. We have further
seen from (14) that it is natural to parametrise composite losses in tenmarafly’, and combine
them asp. One may wish to choose a weight functianand determine which linkg) lead to a
convex loss; or choose a linkand determine which weight functioms(and hence proper losses)
lead to a convex composite loss. The main result of this section is Theorems2&s these
questions by characterising the convexity of composite losses in terfmsysf or p.

We first establish some convexity results for losses and their conditioddbfimisks.

Lemma 22 Let/:Y x V — [0,) denote an arbitrary loss. Then the following are equivalent:

1. vi— £(y,v) is convex for all y= {—1,1},
2. v— L(n,v) is convex for alh € [0, 1],
3. v L(VS) 1= & 3 (uy)es (¥, V(X)) is convex for all finite & X x Y.

Proof 1=-2: By definition,L(n,v) = (1—n)¢(—1,v)+n¢(1,v) which is just a convex combination
of convex functions and hence convex.

2 = 1: Choosea) = 0 andn = 1 in the definition ofL.

1 = 3: For a fixed(x,y), the functionv — £(y,v(x)) is convex since is convex. ThusL is
convex as it is a non-negative weighted sum of convex functions.

3 = 1: The convexity ofL holds for everyS so for eacty € {—1,1} chooseS= {(x,y)} for
somex. In each casg — L(v,S) = £(y,v(x)) is convex as required. [ |

The following theorem generalises the corollary on page 12 of Buja €@05) to arbitrary com-
posite losses with invertible links. It has less practical value than the prelémoma since, in
general, sums of quasi-convex functions are not necessarily quagsc (a functionf is quasi-
convex if the sef{x: f(x) > a} is convex for alla € R). Thus, assuming properness of the 16ss
does not guarantee its empirical risk-, S) will not have local minima.

Theorem 23 If ¥(y,v) = £(y,p~1(v)) is a composite loss whefds proper andy is invertible and
differentiable then ¥(n,v) is quasi-convex in v for al € [0, 1].

Proof Since/ is proper we know by Corollary 11 that the conditional Bayes risk satisfies
d _ -
LY = @) e v).

Sincey is invertible andp > 0 we see thag%L‘“(n,v) only changes sign at = y~*(v) and soL¥
is quasi-convex as required. |

The following theorem characterises convexity of composite losses witltiiotedinks.

Theorem 24 Let/¥(y,v) be a composite loss comprising an invertible lipkvith inverse g= g1
and strictly proper loss with weight function w. Assumg)g> 0. Then v (¥(y,v) is convex for
y € {—1,1} ifand only if

W) WX

1 1
- < W~ W00 < 1o ™E(1) 17)
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This theorem suggests a very natural parametrisation of composite lossagwsy’). Observe
thatw, y/: [0,1] — R*. (But also see the comment following Theorem 29.)
Proof We can write the conditional composite loss as

LY(n,v) = nfa(q(v)) + (1= n)-1(a(v))
and by substituting] = 1 into (10) we have
0

ov

A necessary and sufficient condition for» /¥ (y,v) = L¥(y,V) to be convex foy € {—1,1} is that

L¥(n,v) = w(a(v))d(v)[q(v) —n]. (18)

2
0Vv2

Using (18) the above condition is equivalent to

[wa(v)d' W]’ (a(v) - [y = 1)) +w(a(v))d (V)d (v) = 0, WER, (19)

LY(y,v) >0, WeR, vye{-1,1}.

where 5
[w(a(v))d (V] = zow(aW)d (v).
Inequality (19) is equivalent to (Buja et al., 2005, Equation 39). By frrthanipulations, we can

simplify (19) considerably.
Since[y = 1] is either 0 or 1 we equivalently have the two inequalities

Wa(v)d W)'a(v) +waW)(d(v))* > 0, WeR, (y=-1)
Wa(v)d W' (a(v) = 1) +w(aW)(d(v)? > 0, WeR, (y=1),
which we shall rewrite as the pair of inequalities
waW)(@(V)? > —qv)waW)d ()],  WeR, (20)
wgW)(d(V)? > (1-a(v)waW)d V)], WeR. (21)

Observe that ifj(-) = 0 (resp. - q(-) = 0) then (20) (resp. (21)) is satisfied anyway because of the
assumption onf and the fact thatvis non-negative. It is thus equivalent to restrict consideration to
vin the set

{x: q(x) #0 and (1-q(x)) # 0} =g *((0,1)) = W((0,1)).
Combining (20) and (21) we obtain the equivalent condition

(qv)? o Wam)dml _ =@ V)

1-q(v) =  w(v) — av)
where we have used the fact tlatR — [0, 1] and is thus sign-definite and consequently(-) is
always negative and division lmgfv) and 1— q(v) is permissible since as argued we can neglect the

cases when these take on the value zero, and division(&v)) is permissible by the assumption
of strict properness since that implieg-) > 0. Now

(w(a(-))d ()] =w (a(-))d (-)af () +w(a(-))a"(-)

, Wwey((0,1)), (22)
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and thus (22) is equivalent to
(@()? o WEaW)@W)?+waW)a'(v) _ —(d(v)?
1-qv) — w(a(v)) —ooaw)

Now divide all sides of (23) byq/(+))? (which is permissible by assumption). This gives the equiv-
alent condition

, Weuw((0,1)) (23)

1 w@w) | g 1
T qw) = waw) ' @mE -~ g e (24)

Letx = q(v) and sov = g~ 1(x) = Y(x). Then (24) is equivalent to

1 w(x)  q"(Ww(x) -1
—, ¥ 0,1). 25
532 w0 o > w0 ECY )
Now q,(q}(x)):q,(q}l(x)) (Y’ (x) = W' (x). Thus (25) is equivalent to
1 w -1
1 x = ((XX))JFq’uJ(X) 2~ "e(01), (26)
where

2

Py (x) =" (W(x)) (W'(x)".
All of the above steps are equivalences. We have thus shown that
(26) is true < v L¥(y,v) is convex fory € {—1,1}
where the right hand side is equivalent to the assertion in the theorermiopa 2.

Finally we simplify ®y,. We first computey” in terms ofg = q~1. Observe thatf = (1)’ =
ﬁ’(wi(-))' Thus

qC) = W)

Thus by substitution

dy(-) = " 1. /(.
WO = oo R e W)
-1
(W())®
_ Y0
R =7)
Substituting the simpler expression (27) by into (26) completes the proof. |
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Lemma 25 If g is affine therdy = 0.
Proof Using (27), this is immediate since in this cagg&-) = 0. [ |

Corollary 26 Composite losses with a linear link (including as a special case the identity liak) a
convex if and only if

S B

6.1 Canonical Links

Buja et al. (2005) introduced the notion ofanonical linkdefined by’ (v) = w(v). The canonical
link corresponds to the notion of “matching loss” as developed by Helmbodl. €1999) and
Kivinen and Warmuth (2001). Note that choice of canonical link imphies = w(c)/y/(c) = 1.

Lemma 27 Supposé is a proper loss with weight function w ardis the corresponding canonical
link, then

(28)

Proof Substituta}/ = winto (27). [ |
This lemma gives an immediate proof of the following result due to Buja et al5)200

Theorem 28 A composite loss comprising a proper loss with weight function w combinedtsvith
canonical link is always convex.

Proof Substitute (28) into (17) to obtain

X

1
<0< — 0,1
<0< =, ™e(0l

which holds for anyw. |

An alternative view of canonical links is given in Appendix B.

6.2 A Simpler Characterisation of Convex Composite Losses

The following theorem prrovides a simpler characterisation of the convekitpmposite losses.
Noting that loss functions can be multiplied by a scalar without affecting whestraing algorithm
will do, it is convenient to normalise them. W satisfies (17) then so doesv for all a € (0, ).
Thus without loss of generality we will normalise such thatvv(%) = 1. We chose to normalise
about% for two reasons: symmetry and the fact thatan have non-integrable singularities at 0 and
1; see, for example, Buja et al. (2005).

Theorem 29 Consider a proper composite log$with invertible linky and (strictly proper) weight
w normalised such that () = 1. Then/ is convex if and only if

V() < V(¥

s e S T

, Wxe(0,1), (29)

NIF

where= denotes< for x > 7 and denotes- for x <
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Observe that the condition (29) is equivalent to

1 1
24/ (3)x 29/(3)(1—x)
which suggests the importance of the functggn).
Proof Observing thai"‘% = (logw)’(x) we letg(x) := logw(x). Observe thag(v) = f%’g’(x)dXJr

9(3) andg(2) = logw(3) = 0. From Theorem 24, we know théis convex iff (17) holds. Using
the newly introduced notation, this is equivalent to

VIA

p(X)

VIA

vx € (0,1),

1 1

P S g < T~ Py(x).

Forv> 1 we thus have

" 1 d \ 1 d
[ < < R
/% « Dy (x)dx < g(v) < /% T x Dy (x)dx.

Similarly, forv < § we have

Vo1

and thus
\ < < \
—Inv—In2—/l Dy (x)dx = g(v) = —In2—|n(1—v)—/l Dy (x)dx.
2 2

Since exp-) is monotone increasing we can apply it to all terms and obtain

1 v 1 v
2Vexp</% d)w(x)dx) S w(v) = 20 ) exp(/% quJ(X)dX). (30)
Now y v ,
/% Dy (x)dv= : —ﬁ,é:;dx:—/% (Iogu.p’)’(x)dx:—Ioqu’(v)+Ioqu’(%)
and so v
\Y l]J/ Vv
— [ Py(x)dx | = .
oo | @us) =
Substituting into (30) completes the proof. |

If P is the identity (i.e., if?¥ is itself proper) we get the simpler constraints

1
2X

VIA

w(X)

VIA

2% vx € (0,1), (31)

which are illustrated as the shaded region in Figure 2. Observe that timeglised) weight function
for squared loss i&(c) = 1 which is indeed within the shaded region as one would expect.
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Allowable w(¢) to ensure convexity of proper loss
Y
(¢) ensuring convexity of proper loss using logistic link
8]
1

w

Figure 2: Allowable normalised weight functions to ensure convexity of amite loss functions
with identity link (left) and logistic link (right).

Consider the link}'9"(c) := log (1S;) with corresponding inverse lini(c) = 1t=. One can
check thaty/'(c) = c(ll—c)' Thus the constraints on the weight functieno ensure convexity of the
composite loss are

1 < < 1
8x2(1—x) ~ W) = 8x(1—x)2’

This is shown graphically in Figure 2. One can compute similar regions fofimky Two other
examples are the Complementary Log-Log lipk“" (x) = log(—log(1— x)) (confer McCullagh
and Nelder, 1989), the “square linki®9(x) = x? and the “cosine linkP°(x) = 1 — cogx). All

of these are illustrated in Figure 3. The reason for considering thessviasather unusual links
is to illustrate the following fact. Observing that the allowable region in Figuree2lpdes weight
functions that approach zero at the endpoints of the interval, and no&ihgntbrder to well approx-
imate the behaviour of 0-1 loss (with its weight function beivg(c) = &(c— %)) one would like a
weight function that does indeed approach zero at the end points, ftimht@ ask what constraints
are imposed upon a link such that a composite loss with that link and a weight funoti¢e) such
that

vx e (0,1).

(I:l\‘ng)w(c) = (I:|/r71lw(c) =0 (32)
is convex. Inspection of (29) reveals it is necessary tiiat) — 0 asx — 0 andx — 1. Suchy
necessarily have bounded range and thus the inverseplinkis only defined on a finite interval
and furthermore the gradient ¢f 1 will be arbitrarily large. If one wants inverse links defined on
the whole real line (such as the logistic link) then one can not obtain a cawavegosite link with
the associated proper loss having a weight function satisfying (32)s ®he can not choose an
effectively usable link to ensure convexity of a proper loss that is arljtr@lose to” 0-1 loss in
the sense of the corresponding weight functions.
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using comp. log-log link
I

onvexity of proper loss

uring c

) ens

w(e

Figure 3: Allowable normalised weight functions to ensure convexity of fimsstions with com-
plementary log-log, square and cosine links.

Corollary 30 If aloss is proper and convex, then it is strictly proper.

The proof of Corollary 30 makes use of the following special case of ttua@all style Lemma
1.1.1 of Bainov and Simeonov (1992).

Lemma 31 Let b: R — R be continuous for & a. Let \(t) be differentiable for & a and suppose
V(t) < b(t)v(t), fort > a and  a) < vp. Then for t> a,

t
v(t) < voexp</ b(s)ds> .
a
Proof (Corollary 30) Observe that the RHS of (17) implies
w(v)
wW(v) < —~, v>0.
Supposev(0) = 0. Thenvp = 0 and the setting = 0 the lemma implies
t 1 Vo
< _— = — = .
w(t) _voexp</O 1_Sds) 7 0, te (0,1

Thus ifw(0) = 0 thenw(t) =0 for allt € (0,1). Choosing any othem < (0,1) leads to a similar
conclusion. Thus ifv(t) = 0 for somet € [0,1), w(s) = 0 for all se [t,1]. Hencew(t) > O for all
t € [0,1] and hence by the remark immediately following Theorefi$strictly proper. |

6.3 Convexity of Bregman Divergences in their Second Argument

Bregman divergences are always convex in the first argument busometimes in their second.
Corollary 5 and Equation 31 together characterise when the BregmagetiaeDy(n, 1) defined

on (0,1) x (0,1) is convex inf, providing a more direct result that that in Bauschke and Borwein
(2001): Settingp= —L we immediately obtain thaj — Dg(n,R) is convex for alln € (0,1) iff

(31) holds, wherev(c) = @’(c).
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7. Choosing a Surrogate Loss

A surrogateloss function is a loss function which is not exactly what one wishes to minimiss bu
easier to work with algorithmically. Convex surrogate losses are ofteninggdce of the 0-1 loss
which is not convex.

Surrogate losses have garnered increasing interest in the machinedeammunity (Zhang,
2004b; Bartlett et al., 2006; Steinwart, 2007; Steinwart and Christm&@8)2 Some of the ques-
tions considered to date are bounding the regret of a desired loss in tearaarmogate (“surrogate
regret bounds”—see Reid and Williamson, 2009b and referencedthehe relationship between
the decision theoretic perspective and the elicitability perspective (MaShidzi and Vascon-
celos, 2009), and efficient algorithms for minimising convex surrogate imégses (Nock and
Nielsen, 2009b,a).

Typically convex surrogates are used because they lead to conethuamtractable, optimisa-
tion problems. To date, work on surrogate losses has focussed on riuaggs which necessarily
are symmetric with respect to false positives and false negatives (Buja22@b). In line with the
rest of this paper, our treatment will not be so restricted.

The aim here is put forward some plausible definitions of what it might meagldotsa “best”
surrogate from a class of losses—for example, the class of propemxaomposite losses. We
make use of the weight function perspective and the convexity resu#is g@ithe previous section
to investigate some new definitions for “best” surrogate and put forvearge £onjectures regarding
them.

7.1 The “Best” Surrogate Loss

There are many choices of surrogate loss one can choose. A natestlon is thus “which is
best?”. In order to do this we need to first define how we are evaluatisgda@s surrogates. To do
this we require notation to describe the set of minimisers of the conditionaldintsk associated
with a loss. Given a losé: {—1,1} x V — R its conditional minimisers at) € [0, 1] is the set

H(n):={veV:L(n,v)=L(n)}. (33)
Given a set of hypothesé$ C VX, the (constrained) Bayes optimal risk is

Lq = y!ng{H“(h’P)'

The (full) minimisers ovetH for IP is the set
H,P):={heH: L(h)=Ls},

where{ C V* is some restricted set of functions ah¢h) := Ex y)~p[¢(Y,h(X))] and the expec-
tation is with respect t®. Given areference losg,er, we will say theler-surrogate penaltyf a
loss/ over the function clas3( on a problem(n,M) (or equivalentlyP) is

Séref(& n, M) - Szref(&]P)) = heﬂl?(];,?’) Lref(h)7

where it is important to remember tHais with respect t&. That is,S,(¢,P) is the minimuméyes
risk obtainable by a function ifi¢ that minimises thé risk.
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Given a fixed experimeri, if £ is a class of losses then thest surrogate losses i for the
reference losg.es are those that minimise thgs-surrogate penalty. This definition is motivated by
the manner in which surrogate losses are used—one minifhizgoverh to obtain the minimiser
h* and one hopes thdts(h*) is small. Clearly, if the class of losses contains the reference loss
(i.e., fref € L) then/yes will be a best surrogate loss. Therefore, the question of best suerdass
is only interesting wheti,et ¢ £. One particular case we will consider is when the reference loss
is the 0-1 loss and the class of surrogadeis the set of convex proper losses. Since 0-1 loss is not
convex the question of which surrogate is best is non-trivial.

It would be nice if one could reason about the “best” surrogate losg tisenconditional per-
spective (that is working with. instead ofl.) and in a manner independent &f. It is simple to
see why this can not be done. Since all the losses we consider are, phep@inimiser over| of
L(n,n) isn. Thus any proper loss would lead to the safme [0,1]. It is only the introduction of
the restricted class of hypotheskghat prevents this reasoning being appliediforestrictions on
h € H preventh(x) = n(x) for all x € X. We conclude that the problem of best surrogate loss only
makes sense when one both takes expectationsXoaad restricts the class of hypothedeto be
drawn from some sek( [0, 1]

This reasoning accords with that of Nock and Nielsen (2009b,a) whuoieea which surrogate
to use and proposed a data-dependent scheme that tunes surrogatpsoblem. They explicitly
considered proper losses and said that “minimizing any [lower-boursyeaimetric proper] loss
amounts to thesameultimate goal” and concluded that “the crux of the choice of the [loss] relies
on data-dependent considerations”.

We demonstrate the difficulty of finding a universal best surrogate logy iconstructing a
simple example. One can construct experimgntsM) and (n2,M) and proper losse& and/»
such that

S%O—l(gla (nla M)) > 550_1(627 (nla M)) but Sfo-l(glﬂ (nZv M)) < 850_1“27 (nZa M))

(The examples we construct have weight functions that “cross-@aati other; the details are in
Appendix A.) However, this does not imply there can not exist a particolavex/* that minorizes
all proper losses in this sense. Indeed, we conjecture that, in the sstédd above, there is no
best proper, convex surrogate loss.

Conjecture 32 Given a proper, convex logsthere exists a second proper, convex 165s- ¢, a
hypothesis clas$(, and an experimerit such that g , (¢*,P) < S, ,(¢,P) for the classK.

To prove the above conjecture it would suffice to show that for a fixgubthesis class and any
pair of losses one can construct two experiments such that one loss mgniiesother loss on one
experiment andice versaon the other experiment.

Supposing the above conjecture is true, one might then ask for a besjjatarloss for some
reference losge; in a minimax sense. Formally, we would like the Id#&s £ such that the worst-
case penalty for usingf,

Yo (%) = sup{Sg,ef(é*,}P’) —inf Sgref(é,]P’)}
P el
is minimised. That isYy (¢*) <Y.(¢) forall £ € L.
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7.2 The “Minimal” Symmetric Convex Proper Loss

Theorem 29 suggests an answer to the question “What is the properxdoss closest to the 0-1
loss?” A way of making this question precise follows. Siide presumed proper, it has a weight
functionw. Suppose w.l.0.g. thav(%) = 1. Suppose the link is the identity. The constraints in (17)
imply that the weight function that is most similar to that for 0-1 loss meets the eamistr Thus
from (31)
ini 1/1 1
mﬂummal N 34
©=3(z i) (34)

is the weight for the convex proper loss closest to 0-1 loss in this sehisethe weight function
that forms the lower envelope of the shaded region in the left diagram afd-y Using (5) one
can readily compute the corresponding partial losses explicitly

mpm) = 2 ([ < 31(-A — (1) + [7 > 1A - 1-In(3))) (35)
and 1
AR = 5 ([7 < 30(-A —log(3)) + [ > 31(A—1-InA)). (36)

Observe that the partial losses are (in part) linear, which is unsurpésiligear functions are on the
boundary of the set convex functions. This loss is also best in anotherpnerise (but ultimately
unsatisfactory) sense, as we shall now show.

Surrogate regret bounds are theoretical bounds on the regretesiredl loss (say 0-1 loss)
in terms of the regret with respect to a surrogate. Reid and Williamson (20@&e shown the
following (we only quote the simpler symmetric case here):

Theorem 33 Supposé€ is a proper loss with corresponding conditional Bayes risktich is sym-
metric abouty: L(5 —¢) = L(3+¢) for c € [0, 3]. If the regret for the/; lossAL1 (n, fi) = o, then
the regretAL with respect td satisfies

AL(N,A) > L(3)—L(5+0). (37)

The bound in the theorem can be inverted to upper baﬁlnédgiven an upper bound ahL(n,R).
Considering all symmetric proper losses normalised sucl\m(@t: 1, the right side of (37) is max-
imised and thus the bound m% in terms ofAL is minimised wherL(3 + o) is maximised (over
all losses normalised as mentioned). But siwee —L”, that occurs for the pointwise minimiser of
w (subject tcw(%) = 1). Since we are interested in convex losses, the minimigiisggiven by (34).
In this case the right hand side of (37) can be explicitly determined (c%lae%) log(20+1) — %,
and the bound can be inverted to obtain the result thstTma(n {) = x then

AL

L1 (4x—1) 1
(n,n) < 2exp(LambertW( o > +l> ~5 (38)

Nl

which is plotted in Figure 43
The above argument doast show that the loss given by (35,36) is thestsurrogate loss. The
reason is that the above is optimisingp@undon the regret, not thactual regret; the argument in

13. The LambertW function is the real-valued solutioxe$ W (x)eV™. It is commonly found in solutions to differen-
tial equations, has no closed form. Its details are not relevant to thissgiscuexcept for computing Figure 4.
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Figure 4: Upper bound on the 0-1 regret in terma&bf"™mal a5 given by (38).

Appendix A demonstrates there can in general be no universally besgate loss (independent
of the underlying distribution). Nevertheless it does suggest it is at Ve@sh considering using
¢minimal 55 3 convex proper surrogate binary loss.

We conjecture that™"™mal ijs somehow special in the class of proper convex losses in some way
other than being the pointwise minimiser of weights (and the normalised loss with stmatieet
bound with respect té°~1), but the exact nature of the specialness still eludes us. Perhaps it is
optimal in some weaker (minimax) sense. The reason for this suggestion is ihabithard to
show that for reasonablethere existsH such that — L. (h,P) takes on all possible values within
the constraints

0 <L¢(h,P) <maxc,1—c)

which follows immediately from the definition of cost-sensitive misclassificatios. IBarthermore

the example in the appendix below seems to require loss functions whosspmrding weight

functions cross over each other and there is no weight function pomesg to a convex proper
loss that crosses ovafMnimal,

8. Conclusions

Composite losses are widely used. As outlined in §1.1, we have charagt@msanber of aspects
of them: their relationship to margin losses, the connection between prepeand classification
calibration, the constraints symmetry imposes, when composite losses ae® ,camy hatural ways
to parametrise them. We have also considered the question of the “bestjaterfoss.

The parametrisation of a composite loss in tefmg)’) (or p) has advantages over usifig )
or (L,W). As explained by Masnadi-Shirazi and Vasconcelos (2009), theseptation in terms of
(e,W) is in general not unique. The representation in ternisiefharder to intuit: whilst indeed the
Bayes risk for squared loss and 0-1 loss are “close” (compare tpé gfa — c(1— c) with that of
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c— cA(1—c)), by examining their weight functions they are seen to be very differefd) (= 1
versusw(c) = 25(c— 1)). We have also seen that on the basis of Theorem 24, the parametrisation
(w, ') is perhaps the most natural—there is a pleasing symmetry between the lose énH #s
they are in this form both parametrised in terms of non-negative weightiéunsocon|0, 1]. Recall
too that the canonical link sets equal tow.

The observation suggests an alternate inductive principle knovaurasgate tuning which
seems to have been first suggested by Nock and Nielsen (260%h} idea of surrogate tuning is
simple: noting that the best surrogate depends on the problem, adaptriigasel you are using to
the problem. In order to do so it is important to have a good parametrisatioa lafdh. The weight
function perspective does just that, especially given Theorem 29outdabe straight forward to
develop low dimensional parametrisationswpthat satisfy the conditions of this theorem which
would thus allow a learning algorithm to explore the space of convex lo€sescould (taking due
care with the subsequent multiple hypothesis testing problem) regelalyatethe 0-1 loss of the
hypotheses so obtained. The observations made in Section 4 regardingssito gradient descent
algorithms may be of help in this regard.
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Appendix A. Example Showing Incommensurability of Two Prope Surrogate Losses
We considefX = [0, 1] with M being uniform oriX, and consider the two problems that are induced
by
X

3

Wl

ni(x) =x* and na(x) =

We use a simple linear hypothesis class
H = {hq(x) ;== ax: a € [0,1]},

with identity link function and consider the two surrogate proper logsasd/, with weight func-

tions 1 1
wi(c) = = Wo(C) = ——.
1(0) = 2(0) =7
These weight functions correspond to the two curves that construettickagram in Figure 2. The
corresponding conditional losses can be readily calculated to be

Li(n,h) = n(h—1-log(h))+(1-n)h
Lo(n,h) = n(1-h)+(1-n)(-h—log(1-h)).

14. Surrogate tuning differs from logsiloring (Hand, 1994; Hand and Vinciotti, 2003; Buja et al., 2005) which involves
adapting the loss to what you really think is important.
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One can numerically compute the parameters for the constrained Bayes dptireath problem
and for each surrogate loss:

oy, = argminLi(ni,hy,M)=0.66666667
' ae(0,1]

a3, = argminLy(ng,hy,M)=0.81779259
' ac[0,1]
O(IZ = argminlL(nz,hy,M) = 1.00000000
' ael0,1]
a5, = argminly(nz,ha,M) =0.77763472
' ac[0,1]
Furthermore

Lo 1(N1,ha;,, M) = 0.3580272 Lo 1(N1,hay,, M) = 0.3033476
Lo_1(N2,hay,, M) = 0.4166666  Lo_1(N2,hay,, M) = 0.4207872

Thus for problenm; the surrogate losks, has a constrained Bayes optimal hypotheg'ﬁ which
has a lower 0-1 risk than the constrained Bayes optimal hypoth@sﬁor the surrogate loslks;.
Thus for problenmy surrogatd., is better than surrogate . However for problerm), the situation
is reversed: surrogate is worsethan surrogaté;.

Appendix B. An Alternate View of Canonical Links

This appendix contains an alternate approach to understanding cdtiokieasing convex duality.
In doing so we present an improved formulation of a result on the dualityegBan divergences
that may be of independent interest.

ThelLegendre-FenchgLF) dual@* of a functiong: R — R is a function defined by

¢ (s) = Sup((s $) —@(9)}-

The LF dual of any function is convex.

Wheng(s) is a function of a real argumesand the derivativey (s) exists, the Legendre-Fenchel
conjugatep* is given by the_egendre transforrfRockafellar, 1970; Hiriart-Urruty and Lentchal,
2001)

@(s) =5 (¢) () —9((@) (9))- (39)
Thus (writingd f := ') ' = (af*)~1. Thus withw, W, andW defined as above,

W= (@W")L, Wl=aW, W*:/W*l. (40)

Letw, W, W be as in Theorem 7. Denote hy, thew-weighted conditional loss parametrised
by W = [w and letALy be the corresponding regret (we can interchafigendD here by (12)
sincey =id.

Dw(n,A) =W(n) =W(f) — (n —A)W(H). (41)
We now further consided,, as given by (41). It will be convenient to parametri3éy W instead
of w. Note that the standard parametrisation for a Bregman divergence is inaéthes convex
functionW. Thus will write Dy, Dw andD,, to all represent (41). The following theorem is known
(e.g., Zhang, 2004a) but as will be seen, stating it in terni3pprovides some advantages.
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Theorem 34 Let w, W W and Qy be as above. Then for allx< [0, 1],

Dw (X,y) = Dw-1(W(y),W(X)). (42)
Proof Using (39) we have
W (u) = u-W(u) —W(W(u))
= WW u)=u-wWtu -W). (43)
Equivalently (using (40))
W (W(u)) = u-W(u) —W(u). (44)

Thus substituting and then using (43) we have

Dw(x W™ (V) = W(x) =W(W (V) = (x=W () -W(W*(v))
= W(X) +W"(v) —vW(v) — (x—=WL(v))-v
= WX +W'(v) —x-v. (45)
Similarly (this time using (44) we have
Dw 1(WW(x)) = W'(v) =W (W(x)) = (v—=W(x)) - W H(W(x))
= W (V) — XW(X) +W(X) — V- X+ XW(X)
= W' (V) +W(x)—Vv-x (46)

Comparing (45) and (46) we see that
Dw (%, W™*(V)) = Dy-1(%,W(x))

Lety =W~1(v). Thus subsititutingy = W(y) leads to (42). [ |

The weight function corresponding By-1 is %W*l(x) = WW I

Theorem 35 If the inverse linkp~! =W~ (and thusi = W~1(h)) then

Dw(n.f) = Dw(n,W *(R)=W(n)+W'(h)—n-h
Lw(nA) = Lw(nWi(R) =W'(R) —n-h+n(W(1) +W(0) ~W(0)
O Lwnwid) = A-n

and furthermore & (n,W-1(h)) and Ly (n,W-1(h)) are convex irh.

Proof The first two expressions follow immediately from (45) and (46) by substitufitie deriva-
tive follows from calculation:&Lw(n,W~*(h)) = &(W"(h) —n-h) =W~1(h) —n = f —n. The
convexity follows from the fact thalv™ is convex (since it is the LF dual of a convex functidf

and the overall expression is the sum of this and a linear term, and thusxconv |

Buja et al. (2005) caNV the canonical link We have already seen (Theorem 27) that the composite
loss constructed using the canonical link is convex.
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Appendix C. Convexity and Robustness

In this appendix we show how the characterisation of the convexity ofgpriogses (Theorem 29)
allows one to make general algorithm independent statements about tegesgsuof convex proper
losses to random mis-classification noise.

Long and Servedio (2008) have shown that boosting with convex pdténieions (i.e., con-
vex margin losses) is not robust to random class nbisghat is, they are susceptible to random
class noise. In particular they present a very simple learning task whiblé@stable”—can be per-
fectly solved using a linear combination of base classifiers—but for wiicthhe presence of any
amount of label noise, idealised, early stopping Bndegularised boosting algorithms will learn a
classifier with only 50% accuracy.

This has led to the recent proposal of boosting algorithms that use myecanargin losses
and experimental evidence suggests that these are more robust toaikesshan their convex
counterparts. Freund (2009) recently described RobustBoost, whiEha parameterised family
of non-convex surrogate losses that approximates the 0-1 loss asntivemnof boosting iterations
increases. Experiments on a variant of the task proposed by Longeameld® (2008) show that
RobustBoost is very insensitive to class noise. Masnadi-Shirazi aswbieaelos (2009) presented
SavageBoost, a boosting algorithm built upon a non-convex margin fundtfeey argued that even
when the margin function is non-convex the conditional risk may still be conWge elucidate
this via our characterisation of the convexity of composite losses. Althoughese results are
suggestive, it is not clear from these results whether the robustness isra property of the loss
function, the algorithm or a combination. We study that question by consglesliustness in an
algorithm-independent fashion.

Fora € (0,3) andn € [0,1] we will define

Na:=a(l-n)+(1-o)n

as thea-corrupted versiorof n. This captures the idea that instead of drawing a positive label for
the pointx with probabilityn (x) there is a random class flip with probability This might be done

on purpose in order to avoid problems with losses (e.g., log loss) that asfigte penalty to O

or 1 valued probability predictions. Sincg, is a convex combination af and 1— a it follows
thatng € [a,1—a]. The effect ofa-corruption on the conditional risk of a loss can be seen as a
transformation of the loss (Steinwart, 2009).

Lemma 36 If /¥ is any composite loss then its conditional risk satisfies
Lw(nu,v) = Ltl;(nv\/% n € [Oa l]a \AS V?

where/g (y,v) = (1—a)f¥(y,v) +at¥(—y,v).

15. We define exactly what we mean by robustness below. The notiohdhgtand Servedio (2008) examine is akin
to that studied for instance by Kearns (1998). There are many othaarings of “robust” which are different to that
which we consider. The classical notion of robust statistics (Hubef,)i9&notivated by robustness to contamination
of additive observation noise (some heavy-tail noise mixed in with the sEusioise often assumed in designing
estimators). There are some results about particular machine lealgnigrans being robust in that sense (8tktopf
et al., 2000). “Robust” is also used to mean robustness with respeamtdom attribute noise (Trafalis and Gilbert,
2006), robustness to unknown prior class probabilities (Provost amddtt, 2001), or a Huber-style robustness to
attribute noise (“outliers”) for classification (Fidler et al., 2006). We ostlydy robustness in the sense of random
label noise.
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Proof By simple algebraic manipulation we have

LY(Na,v) = (1-na)f¥(=1,v) +naf¥(L,v)
= [1-o)(1—n)+an*(=L,v) +[a(l—n)+(1—-a)n)e¥(1,v)
= 1-m[Q-a)¥(— 1,v)+0(6‘“(1,v)]+n[0(€‘“(—1,v)+(1—a)£‘“(l,v)]
= (L-n)(-Lv)+nl(Lv)
= i)
proving the result. |

In particular, if¢ is strictly proper thery cannot be proper because the minimisek @fq, -) is
Na and song # N must also be the minimiser af;(n,-). This suggests that strictly proper losses
are not robust to any class noise.

C.1 Robustness Implies Non-convexity

We now define a general notion of robustness for losses for clabalplity estimation.

Definition 37 Given ana € [0, 3), we will say a losg: {—1,1} x [0,1] — R is a-robust at if the
set of minimisers of the conditional risk fgrand the set of minimisers of the conditional risk for
Na have some common points.

That is, a loss isi-robust for a particulan if minimising the noisy conditional risk can potentially
give an estimate that is also a minimiser of the non-noisy conditional risk. Formadly-robust
atn when

H(Eand) OH(&W) 7é (D,

whereH (¢,n) is defined in (33). Due to the equivalenceostorruption of data and a transformed
loss, another way to think about this type of robustness is the followingerumidat conditions can
using non-proper losses still lead to the recovery of accurate condifiorzability estimates?

Label noise is symmetric aboétand so the map — ngq preserves the side éfon which the
valuesn andnq are found. That isp < 1 if and only if ng < 35 L foralla € [0, ). This means that
0-1 misclassification loss or, equwalenttgé, is a-robust for alln and for alla. For otherc, the
range ofn for which /; is a-robust is more limited.

Theorem 38 For each ce (0, 1), the loss/. is a-robust atn if and only if

c—a 1 c—a
n¢ {1—20(’C> forc<s or n¢ [0’1—20(> forc

I\)H—‘

Proof By the definition ofL; and[f < c¢] =1— A > c] we have

Le(n,f) = (1=n)e[A = c]+n(1-c)[f <c[ =n(1-c)+(c—n)[A =c].

Sincec — n is positive iffc > n we seeL¢(n, 1) is minimised fom < ¢ wheni < ¢ and forn > ¢
whenf > c. SoH(4,n) = [0,c) forn < candH(¢,n) = [c,1] for n > c. Since[0,c) and|c,1]
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are disjoint for allc € [0,1] we see thaH (¢c,n) andH (¢¢,n«) coincide if and only ifn,ng < cor
Nn,N« > ¢ and are disjoint otherwise.

We proceed by cases. First, suppo&e%. Forn<c<3; Litis easy to showq > ciff n > —
and soéC is nota-robust forn e [£55:C). Forc<n we seeéC must bea-robust sinceny < c iff

n < £ but £ < ¢ for ¢ < 3 which is a contradiction. Thus, far<  we havel. is a-robust
iff n ¢ [ ©)-
Forc > 1 the main differences are thagt, > cforc> 3 andnq <nforn> % Thus, by a

similar argument as above we see thas a-robust iffn ¢ [c, £ ). u

This theorem allows us to characterise the robustness of arbitraryrposges by appealing to
the integral representation in (4).

Lemma 39 If £ is a proper loss with weight function w ther(Hn) = N¢. w(c~oH (¢c,N) and so

H(n)NH( Na) = ﬂ H(¢c,n) NH(le,Na)-
c)>0

Proof We first show that (¢,n) € Nc. w)»oH(fe,N) by contradiction. Assume there is gnc
H(¢,n) but for which there is somey such thatw(cg) > 0 andf ¢ H(¢g,n). Then there is a
i’ € H({e,,n) andf)’ € H({) for all otherc for whichw(c) > 0 (otherwiseH (¢,n) = {{}). Thus,
Leo(N,71) < Leo(N, /') and sofy Le(n, i) w(c) de < fg Le(n, /) w(c) desincew(co) > 0.

Now supposé] € MNc. wie)=0H (¢, N). That is,f} is a minimiser ofL¢(n,-) for all ¢ such that
w(c) > 0 and therefore must also be a minimiseLof},-) = fol Lc(n,-)w(c)dcand is therefore in
H(4,n), proving the converse. [ ]

One consequence of this lemma is thawit) > 0 and/ is nota-robust atn then, by definition,
H(¢c,n) NH(4e,na) = 0 and sol cannot bea-robust atn. This means we have established the
following theorem regarding tha-robustness of an arbitrary proper loss in terms of its weight
function.

Theorem 40 If Z is a proper loss with weight function w then it is rierobust for any

e U [—Xe)ule—2
i 1-2a’ "1-2a )
c: w(c)>0

By Corollary 30 we see that convex proper losses are strictly propkthars have weight
functions which are non-zero for @k [0, 1] and so by Theorem 40 we have the following corollary.

Corollary 41 If a proper loss is convex, then for ail€ (0, 3) it is nota-robust at anyy € [0,1].

At a high level, this result—"convexity implies non-robustness”—appedbg togically equiv-
alent to Long and Servedio’s result that “robustness implies non-gay.eHowever, there are a
few discrepancies that mean they are not directly comparable. The defnitisgobustness differ.
We focus on the point-wise minimisation of conditional risk as this is, ideally, wigat risk min-
imisation approach try to achieve. However, this means that robustne&dwih regularisation
or restricted function classes is not directly captured with our definitiomedsd_ong and Servedio
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analyse this latter case directly. In our definition the focus is on probabilitm&son robustness
while the earlier work is focussed on classification accuracy. Our woukdcbe extended to this
case by analysingl (¢,n)NH (@,n).

Additionally, their work restricts attention to the robustness of boosting algositthat use
convex potential functions whereas our analysis is not tied to any spaigiathm. By restricting
their attention to a specific learning task and class of functions they are atlievioa very strong
result: that convex losses for boosting lead to arbitrarily bad perforenaith arbitrarily little noise.
Also, our focus on proper losses excludes some convex lossesatihhinge loss) that is covered
by Long and Servedio’s results.

Finally, it is worth noting that there are non-convex loss functions thattaialy proper and so
are not robust in the sense we use here. Thatis, the converseoit@o41 is not true. For example,
any loss with weight function that sits above 0 but outside the shaded riedtagure 2 will be non-
convex and non-robust. This suggests that the arguments made bydiASsivazi and Vasconcelos
(2009); Freund (2009) for the robustness of non-convex lossed further investigation.
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