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Abstract
We study losses for binary classification and class probability estimation and extend the under-
standing of them from margin losses to general composite losses which are the composition of a
proper loss with a link function. We characterise when margin losses can be proper composite
losses, explicitly show how to determine a symmetric loss infull from half of one of its partial
losses, introduce an intrinsic parametrisation of composite binary losses and give a complete char-
acterisation of the relationship between proper losses and“classification calibrated” losses. We also
consider the question of the “best” surrogate binary loss. We introduce a precise notion of “best”
and show there exist situations where two convex surrogate losses are incommensurable. We pro-
vide a complete explicit characterisation of the convexityof composite binary losses in terms of
the link function and the weight function associated with the proper loss which make up the com-
posite loss. This characterisation suggests new ways of “surrogate tuning” as well as providing
an explicit characterisation of when Bregman divergences on the unit interval are convex in their
second argument. Finally, in an appendix we present some newalgorithm-independent results on
the relationship between properness, convexity and robustness to misclassification noise for binary
losses and show that all convex proper losses are non-robustto misclassification noise.
Keywords: surrogate loss, convexity, probability estimation, classification, Fisher consistency,
classification-calibrated, regret bound, proper scoring rule, Bregman divergence, robustness, mis-
classification noise

1. Introduction

A lossfunction is the means by which a learning algorithm’s performance is judged. Abinary loss
function is a loss for a supervised prediction problem where there are twopossible labels associated
with the examples. Acompositeloss is the composition of a proper loss (defined below) and a link
function (also defined below). In this paper we study composite binary losses and develop a number
of new characterisation results. Several of these results can be seen as an extension of the work by
Buja et al. (2005) applied to an analysis of composite losses by Masnadi-Shirazi and Vasconcelos
(2009).

Informally, proper losses are well-calibrated losses for class probabilityestimation, that is for
the problem of not only predicting a binary classification label, but providing an estimate of the
probability that an example will have a positive label. Link functions are oftenused to map the out-
puts of a predictor to the interval[0,1] so that they can be interpreted as probabilities. Having such
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probabilities is often important in applications, and there has been considerable interest in under-
standing how to get accurate probability estimates (Platt, 2000; Gneiting and Raftery, 2007; Cohen
and Goldszmidt, 2004) and understanding the implications of requiring loss functions provide good
probability estimates (Bartlett and Tewari, 2007).

Much previous work in the machine learning literature has focussed onmargin losseswhich in-
trinsically treat positive and negative classes symmetrically. However it is now well understood how
important it is to be able to deal with the non-symmetric case (Zellner, 1986; Elkan, 2001; Provost
and Fawcett, 2001; Buja et al., 2005; Bach et al., 2006; Beygelzimer et al.,2008; Christoffersen
and Diebold, 2009). A key goal of the present work is to consider composite losses in the general
(non-symmetric) situation. Since our development is for completely general losses, we automati-
cally cover non-symmetric losses. The generalised notion of classification calibration developed in
§5 is intrinsically non-symmetric.

1.1 Overview and Contributions

We now provide an overview of the paper’s structure, highlighting the novel contributions and how
they relate to existing work. Central to this work are the notions of a loss and itsassociated condi-
tional and full risk. These are introduced and briefly discussed in §2.

In §3 we introduce losses for Class Probability Estimation (CPE), define sometechnical prop-
erties of them, and present some structural results originally by Shuford et al. (1966) and Savage
(1971) and recently studied in a machine learning context by Buja et al. (2005) and Masnadi-Shirazi
and Vasconcelos (2009). The most important of these are Theorem 4 which gives a representation
of proper losses in terms of its associated conditional Bayes risk function,and Theorem 1 which
relates a proper loss’s partial losses to its “weight function”—the negative second derivative of the
conditional Bayes risk (see Corollary 3). We use these to provide a novel characterisation of proper
symmetric CPE losses. Specifically, Theorem 9 shows these losses are completely determined by
the behaviour of one of its partial losses on half the unit interval.

Learning algorithms often make real-valued predictions that are not directlyinterpretable as
probability estimates but require a link function which maps their output to the interval [0,1]. In §4
we define composite losses as the composition of a CPE loss and a link. The newcontributions of
this section are Theorem 10 which generalises Theorem 1 to composite losses, and Corollaries 12
and 14 which shows how requiring properness completely determines the linkfunction for compos-
ite and margin losses. We also introduce a natural and intrinsic parametrisationof proper composite
losses that is a generalisation of the weight function and show how it can beused to easily derive
gradients for stochastic descent algorithms.

In §5 we generalise the notion of classification calibrated losses (as studied, for example, by
Bartlett et al., 2006) so it applies to non-symmetric composite losses (i.e., not just margin losses)
and provide a characterisation of it in Theorem 17. We also describe howthis new notion of clas-
sification calibrated relates to proper CPE and composite losses via its connection with the weight
function.

The main results of this paper are found in §6: Theorems 24 and 29 characterise when proper
composite losses are convex. These characterisation are in terms of some easily testable constraints
relating the losses’ weight and link functions. The results also characterise when a Bregman diver-
gence on[0,1] is convex in its second argument (§6.3).
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In §7 we study how the above insights can be applied to the problem of choosing a surrogate
loss. Here, asurrogateloss function is a loss function which is not exactly what one wishes to
minimise but is easier to work with algorithmically. This is still a relatively new area ofresearch
and our aim here is to open up a discussion rather than have the final word. To do so we define
a well founded notion of “best” surrogate loss and show that some convex surrogate losses are
incommensurable on some problems. We also consider some other notions of “best” and explicitly
determine the surrogate loss that has the best surrogate regret bound ina certain sense.

Finally, in §8 we draw some more general conclusions. In particular, we argue that the weight
and link function parametrisation of losses provides a convenient way to work with an entire class
of losses that are central to probability estimation and may provide new ways of approaching the
problem of “surrogate tuning” (Nock and Nielsen, 2009b).

Appendix C collects several observations which build upon some of the results in the main
paper but are digressions from its central themes. In it, we present somenew algorithm-independent
results on the relationship between properness, convexity and robustness to misclassification noise
for binary losses and show that all convex proper losses are non-robust to misclassification noise.

2. Losses and Risks

We writex∧y :=min(x,y) andJpK= 1 if p is true andJpK= 0 otherwise.1 The generalised function
δ(·) is defined by

∫ b
a δ(x) f (x)dx= f (0) when f is continuous at 0 anda< 0< b. Random variables

are written in sans-serif font:X, Y.

Given a set of labelsY := {−1,1} and a set of prediction valuesV we will say aloss is any
function2 ℓ : Y×V→ [0,∞). We interpret such a loss as giving a penaltyℓ(y,v) when predicting the
valuev when an observed label isy. We can always write an arbitrary loss in terms of itspartial
lossesℓ1 := ℓ(1, ·) andℓ−1 := ℓ(−1, ·) using

ℓ(y,v) = Jy= 1Kℓ1(v)+ Jy=−1Kℓ−1(v).

Our definition of a loss function covers all commonly usedmargin losses(i.e., those which can
be expressed asℓ(y,v) = φ(yv) for some functionφ : R→ [0,∞)) such as the0-1 lossℓ(y,v) = Jyv<
0K, thehinge lossℓ(y,v) =max(1−yv,0), thelogistic lossℓ(y,v) = log(1+eyv), and theexponential
lossℓ(y,v) = e−yv commonly used in boosting. It also coversclass probability estimation losses
where the predicted valuesη̂ ∈ V= [0,1] are directly interpreted as probability estimates.3 We will
useη̂ instead ofv as an argument to indicate losses for class probability estimation and use the
shorthandCPE lossesto distinguish them from general losses. For example,square losshas partial
lossesℓ−1(η̂) = η̂2 andℓ1(η̂) = (1− η̂)2, thelog lossℓ−1(η̂) = log(1− η̂) andℓ1(η̂) = log(η̂), and
the family ofcost-weighted misclassification lossesparametrised byc∈ (0,1) is given by

ℓc(−1, η̂) = cJη̂ ≥ cK andℓc(1, η̂) = (1−c)Jη̂ < cK. (1)

1. This is the Iverson bracket notation as recommended by Knuth (1992).
2. Restricting the output of a loss to[0,∞) is equivalent to assuming the loss has a lower bound and then translating its

output.
3. These are known asscoring rulesin the statistical literature (Gneiting and Raftery, 2007).
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2.1 Conditional and Full Risks

Suppose we have random examplesX with associated labelsY ∈ {−1,1} The joint distribution of
(X,Y) is denotedP and the marginal distribution ofX is denotedM. Let the observation conditional
densityη(x) := Pr(Y = 1|X= x). Thus one can specify an experiment by eitherP or (η,M).

If η ∈ [0,1] is the probability of observing the labely = 1 thepoint-wise risk(or conditional
risk) of the estimatev∈ V is defined as theη-average of the point-wise loss forv:

L(η,v) := EY∼η[ℓ(Y,v)] = ηℓ1(v)+(1−η)ℓ−1(v).

Here,Y ∼ η is a shorthand for labels being drawn from a Bernoulli distribution with parameterη.
Whenη : X→ [0,1] is an observation-conditional density, taking theM-average of the point-wise
risk gives the(full) risk of the estimatorv, now interpreted as a functionv : X→ V:

L(η,v,M) := EX∼M[L(η(X),v(X))].

We sometimes writeL(v,P) for L(η,v,M) where (η,M) corresponds to the joint distributionP. We
write ℓ, L andL for the loss, point-wise and full risk throughout this paper. TheBayes riskis the
minimal achievable value of the risk and is denoted

L(η,M) := inf
v∈VX

L(η,v,M) = EX∼M [L(η(X))] ,

where
[0,1] ∋ η 7→ L(η) := inf

v∈V
L(η,v)

is thepoint-wiseor conditional Bayes risk.
There has been increasing awareness of the importance of the conditional Bayes risk curve

L(η)—also known as “generalized entropy” (Grünwald and Dawid, 2004)—in the analysis of losses
for probability estimation (Kalnishkan et al., 2004, 2007; Abernethy et al., 2009; Masnadi-Shirazi
and Vasconcelos, 2009). Below we will see how it is effectively the curvature ofL that determines
much of the structure of these losses.

3. Losses for Class Probability Estimation

We begin by considering CPE losses, that is, functionsℓ : {−1,1}× [0,1] → [0,∞) and briefly
summarise a number of important existing structural results forproper losses—a large, natural class
of losses for class probability estimation.

3.1 Proper, Fair, Definite and Regular Losses

There are a few properties of losses for probability estimation that we will require. If η̂ is to be
interpreted as an estimate of the true positive class probabilityη (i.e., wheny= 1) then it is desirable
to require thatL(η, η̂) be minimised bŷη = η for all η ∈ [0,1]. Losses that satisfy this constraint are
said to beFisher consistentand are known asproper losses(Buja et al., 2005; Gneiting and Raftery,
2007). That is, a proper lossℓ satisfiesL(η) = L(η,η) for all η ∈ [0,1]. A strictly proper loss is a
proper loss for which the minimiser ofL(η, η̂) overη̂ is unique.

We will say a loss isfair whenever

ℓ−1(0) = ℓ1(1) = 0.
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That is, there is no loss incurred for perfect prediction. The main place fairness is relied upon is in
the integral representation of Theorem 6 where it is used to get rid of someconstants of integration.
In order to explicitly construct losses from their associated “weight functions” as shown in Theo-
rem 7, we will require that the loss bedefinite, that is, its point-wise Bayes risk for deterministic
events (i.e.,η = 0 or η = 1) must be bounded from below:

L(0)>−∞ , L(1)>−∞.

Since properness of a loss ensuresL(η)= L(η,η) we see that a fair proper loss is necessarily definite
sinceL(0,0) = ℓ−1(0) = 0> −∞, and similarly forL(1,1). Conversely, if a proper loss is definite
then the finite valuesℓ−1(0) andℓ1(1) can be subtracted fromℓ−1(·) andℓ1(·) to make it fair.

Finally, for Theorem 4 to hold at the endpoints of the unit interval, we require a loss to be
regular;4 that is,

lim
ηց0

ηℓ1(η) = lim
ηր1

(1−η)ℓ−1(η) = 0.

Intuitively, this condition ensures that making mistakes on events that never happen should not incur
a penalty. In most of the situations we consider in the remainder of this paper will involve losses
which are proper, fair, definite and regular.

3.2 The Structure of Proper Losses

A key result in the study of proper losses is originally due to Shuford et al.(1966) and Stäel von
Holstein (1970) (confer Aczel and Pfanzagl, 1967) though our presentation follows that of Buja
et al. (2005). The following theorem5 characterises proper losses for probability estimation via a
constraint on the relationship between its partial losses.

Theorem 1 (Shufordet al.) Supposeℓ : {−1,1}× [0,1]→R is a loss and that its partial lossesℓ1

andℓ−1 are both differentiable. Thenℓ is a proper loss if and only if for all̂η ∈ (0,1)

−ℓ′1(η̂)
1− η̂

=
ℓ′−1(η̂)

η̂
= w(η̂) (2)

for someweight functionw : (0,1)→ R+ such that
∫ 1−ε

ε w(c)dc< ∞ for all ε > 0.

The equalities in (2) should be interpreted in the distributional sense.
This simple characterisation of the structure of proper losses has a numberof interesting impli-

cations. Observe from (2) that ifℓ is proper, givenℓ1 we can determineℓ−1 or vice versa. Also, the
partial derivative of the conditional risk can be seen to be the product of a linear term and the weight
function:

Corollary 2 If ℓ is a differentiable proper loss then for allη ∈ [0,1]

∂
∂η̂

L(η, η̂) = (1−η)ℓ′−1(η̂)+ηℓ′1(η̂) = (η̂−η)w(η̂). (3)

Another corollary, observed by Buja et al. (2005), is that the weight function is related to the curva-
ture of the conditional Bayes riskL.

4. This is equivalent to the conditions of Savage (1971) and Schervish (1989).
5. This is a restatement of Theorem 1 in Shuford et al. (1966).
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Corollary 3 Let ℓ be a a twice differentiable6 proper loss with weight function w defined as in
Equation (2). Then for all c∈ (0,1) its conditional Bayes risk Lsatisfies

w(c) =−L′′(c).

One immediate consequence of this corollary is that the conditional Bayes risk for a proper loss
is always concave. Along with an extra constraint, this gives another characterisation of proper
losses (Savage, 1971; Reid and Williamson, 2009a).

Theorem 4 (Savage)A loss functionℓ is proper if and only if its point-wise Bayes risk L(η) is
concave and for eachη, η̂ ∈ (0,1)

L(η, η̂) = L(η̂)+(η− η̂)L′(η̂).

Furthermore ifℓ is regular this characterisation also holds at the endpointsη, η̂ ∈ {0,1}.

This link between loss and concave functions makes it easy to establish a connection, as Buja et al.
(2005) do, betweenregret∆L(η, η̂) := L(η, η̂)−L(η) for proper losses andBregman divergences.
The latter are generalisations of distances and are defined in terms of convex functions. Specifi-
cally, if f : S→ R is a convex function over some convex setS ⊆ Rn then its associated Bregman
divergence7 is

D f (s,s0) := f (s)− f (s0)−〈s−s0,∇ f (s0)〉

for any s,s0 ∈ S, where∇ f (s0) is the gradient off at s0. By noting that overS = [0,1] we have
∇ f = f ′, these definitions lead immediately to the following corollary of Theorem 4.

Corollary 5 If ℓ is a proper loss then its regret is the Bregman divergence associated with f=−L.
That is,

∆L(η, η̂) = D−L(η, η̂).

Many of the above results can be observed graphically by plotting the conditional risk for a
proper loss as in Figure 1. Here we see the two partial losses on the left and right sides of the
figure are related, for each fixed̂η, by the linear mapη 7→ L(η, η̂) = (1−η)ℓ−1(η̂)+ηℓ1(η̂). For
each fixedη the properness ofℓ requires that these convex combinations of the partial losses (each
slice parallel to the left and right faces) are minimised whenη̂ = η. Thus, the lines joining the
partial losses are tangent to the conditional Bayes risk curveη 7→ L(η) = L(η,η) shown above the
dotted diagonal. Since the conditional Bayes risk curve is the lower envelope of these tangents it
is necessarily concave. The coupling of the partial losses via the tangentsto the conditional Bayes
risk curve demonstrates why much of the structure of proper losses is determined by the curvature
of L—that is, by the weight functionw.

The relationship between a proper loss and its associated weight function iscaptured succinctly
by Schervish (1989) via the following representation of proper losses as a weighted integral of
the cost-weighted misclassification lossesℓc defined in (1). The reader is referred to Reid and
Williamson (2009b) for the details, proof and the history of this result.

6. The restriction to differentiable losses can be removed in most cases ifgeneralised weight functions—that is, possibly
infinite but defining a measure on(0,1)—are permitted. For example, the weight function for the 0-1 loss isw(c) =
δ(c− 1

2).
7. A concise summary of Bregman divergences and their properties isgiven by Banerjee et al. (2005, Appendix A).

2392



COMPOSITEBINARY LOSSES

Figure 1: The structure of the conditional riskL(η, η̂) for a proper loss (surface). The loss is log loss
and its partialsℓ−1(η̂) = − log(η̂) andℓ1(η̂) = − log(1− η̂) shown on the left and right
faces of the box. The conditional Bayes risk is the curve on the surfaceabove the dotted
line η̂ = η. The line connecting points on the partial loss curves shows the conditional
risk for a fixed prediction̂η.

Theorem 6 (Schervish)Let ℓ : Y× [0,1]→ R be a fair, proper loss. Then for eacĥη ∈ (0,1) and
y∈ Y

ℓ(y, η̂) =
∫ 1

0
ℓc(y, η̂)w(c)dc, (4)

where w=−L′′. Conversely, ifℓ is defined by (4) for some weight function w: (0,1)→ [0,∞) then
it is proper.

Some example losses and their associated weight functions are given in Table 1. Buja et al. (2005)
show thatℓ is strictly proper if and only ifw(c)> 0 in the sense thatw has non-zero mass on every
open subset of(0,1). The following theorem from Reid and Williamson (2009a) shows how to
explicitly construct a loss in terms of a weight function.
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w(c) ℓ−1(η̂) ℓ1(η̂) Loss

2δ
(

1
2 −c

)

Jη̂ > 1
2K Jη̂ ≤ 1

2K 0-1

δ(c−c0) c0Jη̂ ≥ c0K (1−c0)Jη̂ < c0K ℓc0, c0 ∈ [0,1]

1
(1−c)2c

[

2ln(1− η̂)+ η̂
1−η̂

] [

ln 1−η̂
η̂ −1

]

—

1 η̂2/2 (1− η̂)2/2 Square

1
(1−c)c − ln(1− η̂) − ln(η̂) Log

1
(1−c)2c2

[

ln((1− η̂)η̂)− 1−2η̂
η̂

] [

ln((1− η̂)η̂)+ 1−2η̂
η̂

]

—

1
[(1−c)c]3/2 2

√

η̂
1−η̂ 2

√

1−η̂
η̂ Boosting

Table 1: Weight functions and associated partial losses.

Theorem 7 (Reid and Williamson)Given a weight function w: [0,1]→ [0,∞), let W(t)=
∫ t w(c)dc

andW(t) =
∫ t W(c)dc. Then the lossℓw defined by

ℓw(y, η̂) =−W(η̂)− (y− η̂)W(η̂)

is a proper loss. Additionally, ifW(0) andW(1) are both finite then

ℓw(y, η̂)+(W(1)−W(0))y+W(0)

is a fair, proper loss.

Observe that ifw andv are weight functions which differ on a set of measure zero then they will
lead to the same loss. A simple corollary to Theorem 6 is that the partial losses are given by

ℓ1(η̂) =
∫ 1

η̂
(1−c)w(c)dc and ℓ−1(η̂) =

∫ η̂

0
cw(c)dc. (5)

A similar8 integral representation of the partial losses can also be found in Shuford et al. (1966,
Theorem 2) and Staël von Holstein (1970).

3.3 Symmetric Losses

We will say a loss issymmetricif ℓ1(η̂) = ℓ−1(1− η̂) for all η̂ ∈ [0,1]. We say a weight function
for a proper loss or the conditional Bayes risk issymmetricif w(c) = w(1− c) or L(c) = L(1− c)
for all c∈ [0,1]. Perhaps unsurprisingly, an immediate consequence of Theorem 1 is thatthese two
notions are identical.9

8. The weight functionh in Theorem 2 of Shuford et al. (1966) is related to thew here byh(c) = (1−c)w(c).
9. The relationship between a symmetricL and symmetric behaviour of the loss has been previously recognised by

Masnadi-Shirazi and Vasconcelos (2009).
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Corollary 8 A proper loss is symmetric if and only if its weight function is symmetric.

Proof If ℓ is symmetric, thenℓ′1(η̂) = −ℓ′−1(1− η̂) and so Equation (2) impliesw(1− η̂) =
ℓ′−1(1−η̂)

1−η̂ =
−ℓ′1(η̂)

1−η̂ = w(η̂). Conversely, the symmetry ofw applied to Equation (5) establishes the
symmetry ofℓ.

Requiring a loss to be proper and symmetric constrains the partial losses significantly. Proper-
ness alone completely specifies one partial loss from the other. Now suppose in addition thatℓ is
symmetric. Combiningℓ1(η̂) = ℓ−1(1− η̂) with (2) implies

ℓ′−1(1− η̂) =
1− η̂

η̂
ℓ′−1(η̂). (6)

This shows thatℓ−1 is completely determined byℓ−1(η̂) for η̂ ∈ [0, 1
2] (or η̂ ∈ [1

2,1]). Thus in order
to specify a symmetric proper loss, one needs to only specify one of the partial losses on one half
of the interval[0,1]. Assumingℓ−1 is continuous at12 (or equivalently thatw has no atoms at12), by
integrating both sides of (6) we can derive an explicit formula for the otherhalf of ℓ−1 in terms of
that which is specified:

ℓ−1(η̂) = ℓ−1(
1
2)+

∫ η̂

1
2

x
1−x

ℓ′−1(1−x)dx, (7)

which works for determiningℓ−1 on either[0, 1
2] or [1

2,1] whenℓ−1 is specified on[1
2,1] or [0, 1

2]

respectively (recalling the usual convention that
∫ b

a =−
∫ a

b ). We have thus shown:

Theorem 9 If a loss is proper and symmetric, then it is completely determined by specifying one of
the partial losses on half the unit interval (either[0, 1

2] or [1
2,0]) and using (6) and (7).

We demonstrate (7) with four examples. Suppose thatℓ−1(η̂) = 1
1−η̂ for η̂ ∈ [0, 1

2]. Then one
can readily determine the complete partial loss to be

ℓ−1(η̂) =
Jη̂ ≤ 1

2K

1− η̂
+ Jη̂ > 1

2K

(

2+ log
η̂

1− η̂

)

.

Suppose instead thatℓ−1(η̂) = 1
1−η̂ for η̂ ∈ [1

2,1]. In that case we obtain

ℓ−1(η̂) = Jη̂ ≤
1
2
K

(

2+ log
η̂

1− η̂

)

+
Jη̂ ≥ 1

2K

1− η̂
.

Supposeℓ−1(η̂) = 1
(1−η̂)2 for η̂ ∈ [0, 1

2]. Then one can determine that

ℓ−1(η̂) =
Jη̂ < 1

2K

(1− η̂)2 +
Jη̂ ≥ 1

2K(4+2(2η̂+ η̂ logη̂− η̂ log(1− η̂)−1))

η̂
.

Finally consider specifying thatℓ−1(η̂) = η̂ for η̂ ∈ [0, 1
2]. In this case we obtain that

ℓ−1(η̂) = Jη̂ ≤ 1
2Kη̂+ Jη̂ ≥ 1

2K(1− log2− η̂− log(1− η̂)) .

2395



REID AND WILLIAMSON

4. Composite Losses

General loss functions are often constructed with the aid of alink function. For a particular set of
prediction valuesV this is any continuous mappingψ : [0,1]→ V. In this paper, our focus will be
composite lossesfor binary class probability estimation. These are the composition of a CPE loss
ℓ : {−1,1}× [0,1] → R and the inverse of alink functionψ, an invertible mapping from the unit
interval to some range of values. Unless stated otherwise we will assumeψ : [0,1]→ R. We will
denote a composite loss by

ℓψ(y,v) := ℓ(y,ψ−1(v)). (8)

The classical motivation for link functions (McCullagh and Nelder, 1989) isthat often in estimating
η one uses a parametric representation ofη̂ : X→[0,1] which has a natural scale not matching[0,1].
Traditionally one writeŝη = ψ−1(ĥ) whereψ−1 is the “inverse link” (andψ is of course the forward
link). The functionĥ: X→R is thehypothesis. Oftenĥ= ĥα is parametrised linearly in a parameter
vectorα. In such a situation it is computationally convenient ifℓ(y,ψ−1(ĥ)) is convex inĥ (which
implies it is convex inα whenĥα is linear inα). The idea of a link function is not as well known
as it should be and is thus reinvented—see for example Granger and Machina (2006).

Often one will choose the loss first (tailoring its properties by the weighting given according
to w(c)), andthenchoose the link somewhat arbitrarily to map the hypotheses appropriately. An
interesting alternative perspective arises in the literature on “elicitability”. Lambert et al. (2008)10

provide a general characterisation of proper scoring rules (i.e., losses) for generalpropertiesof
distributions, that is, continuous and locally non-constant functionsΓ which assign a real value to
each distribution over a finite sample space. In the binary case, these properties provide another
interpretation of links that is complementary to the usual one that treats the inverse link ψ−1 as a
way of interpreting scores as class probabilities.

To see this, we first identify distributions over{−1,1} with the probabilityη of observing 1. In
this case properties are continuous, locally non-constant mapsΓ : [0,1]→ R. When a link function
ψ is continuous it can therefore be interpreted as a property since its assumed invertibility implies it
is locally non-constant. A propertyΓ is said to beelicitablewhenever there exists a strictly proper
lossℓ for it so that the composite lossℓΓ satisfies for all̂η 6= η

LΓ(η, η̂) := EY∼η[ℓ
Γ(Y, η̂)]> LΓ(η,η).

Theorem 1 of Lambert et al. (2008) shows thatΓ is elicitable if and only ifΓ−1(r) is convex for
all r ∈ range(Γ). This immediately gives us a characterisation of “proper” link functions: those that
are both continuous and have convex level sets in[0,1]—they are the non-decreasing continuous
functions. Thus in Lambert’s perspective, one chooses a “property”first (i.e., the invertible link)
andthenchooses the proper loss.

4.1 Proper Composite Losses

We will call a composite lossℓψ (8) a proper composite lossif ℓ in (8) is a proper loss for class
probability estimation. As in the case for losses for probability estimation, the requirement that a
composite loss be proper imposes some constraints on its partial losses. Manyof the results for
proper losses carry over to composite losses with some extra factors to account for the link function.

10. See also Gneiting (2009).
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Theorem 10 Let λ = ℓψ be a composite loss with differentiable and strictly monotone linkψ and
suppose the partial lossesλ−1(v) andλ1(v) are both differentiable. Thenλ is a proper composite
loss if and only if there exists a weight function w: (0,1)→ R+ such that for allη̂ ∈ (0,1)

−λ′
1(ψ(η̂))
1− η̂

=
λ′
−1(ψ(η̂))

η̂
=

w(η̂)
ψ′(η̂)

=: ρ(η̂), (9)

where equality is interpreted in the distributional sense. Furthermore,ρ(η̂)≥ 0 for all η̂ ∈ (0,1).

Proof This is a direct consequence of Theorem 1 for proper losses for probability estimation and
the chain rule applied toℓy(η̂) = λy(ψ(η̂)). Sinceψ is assumed to be strictly monotonic we know
ψ′ > 0 and so, sincew≥ 0 we haveρ ≥ 0.

As we shall see, the ratioρ(η̂) is a key quantity in the analysis of proper composite losses. For
example, Corollary 2 has natural analogue in terms ofρ that will be of use later. It is obtained by
letting η̂ = ψ−1(v) and using the chain rule.

Corollary 11 Supposeℓψ is a proper composite loss with conditional risk denoted Lψ. Then

∂
∂v

Lψ(η,v) = (ψ−1(v)−η)ρ(ψ−1(v)). (10)

Loosely speaking then,ρ is a “co-ordinate free” weight function for composite losses where the link
function ψ is interpreted as a mapping from arbitraryv ∈ V to values which can be interpreted as
probabilities.

Another immediate corollary of Theorem 10 shows how properness is characterised by a partic-
ular relationship between the choice of link function and the choice of partialcomposite losses.

Corollary 12 Let λ := ℓψ be a composite loss with differentiable partial lossesλ1 andλ−1. Then
ℓψ is proper if and only if the linkψ satisfies

ψ−1(v) =
λ′
−1(v)

λ′
−1(v)−λ′

1(v)
, ∀v∈ V. (11)

Proof Substitutingη̂ = ψ−1(v) into (9) yields−ψ−1(v)λ′
1(v) = (1−ψ−1(v))λ′

−1(v) and solving
this for ψ−1(v) gives the result.

These results give some insight into the “degrees of freedom” available when specifying proper
composite losses. Theorem 10 shows that the partial losses are completely determined once the
weight functionw andψ (up to an additive constant) is fixed. Corollary 12 shows that for a given
link ψ one can specify one of the partial lossesλy but then properness fixes the other partial loss
λ−y. Similarly, given an arbitrary choice of the partial losses, Equation 11 gives the single link
which will guarantee the overall loss is proper.

We see then that Corollary 12 provides us with a way of constructing areference linkfor arbi-
trary composite losses specified by their partial losses. The reference link can be seen to satisfy

ψ(η) = argmin
v∈R

Lψ(η,v)
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for η ∈ (0,1) and thuscalibratesa given composite loss in the sense of Cohen and Goldszmidt
(2004).

Finally, we make a note of an analogue of Corollary 5 for composite losses. It shows that the
regret for an arbitrary composite loss is related to a Bregman divergencevia its link.

Corollary 13 Let ℓψ be a proper composite loss with invertible link. Then for allη, η̂ ∈ (0,1),

∆Lψ(η,v) = D−L(η,ψ−1(v)). (12)

This corollary generalises the results due to Zhang (2004b) and Masnadi-Shirazi and Vasconcelos
(2009) who considered only margin losses respectively without and with links.

4.2 Derivatives of Composite Losses

We now briefly consider an application of the parametrisation of proper losses as a weight func-
tion and link. In order to implement Stochastic Gradient Descent (SGD) algorithms one needs to
compute the derivative of the loss with respect to predictionsv∈ R. Letting η̂(v) = ψ−1(v) be the
probability estimate associated with the predictionv, we can use (10) whenη ∈ {0,1} to obtain the
update rules for positive and negative examples:

∂
∂v

ℓ
ψ
1 (v) = (η̂(v)−1)ρ(η̂(v)),

∂
∂v

ℓ
ψ
−1(v) = η̂(v)ρ(η̂(v)).

Given an arbitrary weight functionw (which defines a proper loss via Corollary 2 and Theorem 4)
and linkψ, the above equations show that one could implement SGD directly parametrisedin terms
of ρ without needing to explicitly compute the partial losses themselves.

4.3 Margin Losses

The margin associated with a real-valued predictionv ∈ R and labely ∈ {−1,1} is the product
z= yv. Any functionφ : R→ R+ can be used as amargin lossby interpretingφ(yv) as the penalty
for predictingv for an instance with labely. Margin losses are inherently symmetric sinceyv=
(−y)(−v) and so the penaltyφ(yv) given for predictingv when the label isy is necessarily the same
as the penalty for predicting−v when the label is−y. Margin losses have attracted a lot of attention
(Bartlett et al., 2000) because of their central role in Support Vector Machines (Cortes and Vapnik,
1995). In this section we explore the relationship between these margin losses and the more general
class of composite losses and, in particular, symmetric composite losses.

Recall that a general composite loss is of the formℓψ(y,v) = ℓ(y,ψ−1(v)) for a lossℓ : Y×
[0,1]→ [0,∞) and an invertible linkψ : R→ [0,1]. We would like to understand when margin losses
are suitable for probability estimation tasks. As discussed above, proper losses are a natural class of
losses over[0,1] for probability estimation so a natural question in this vein is the following: given
a margin lossφ can we choose a linkψ so that there exists a proper lossℓ such thatφ(yv) = ℓψ(y,v)?
In this case the proper loss will beℓ(y, η̂) = φ(yψ(η̂)).

The following corollary of Theorem 10 gives necessary and sufficient conditions on the choice
of link ψ to guarantee when a margin lossφ can be expressed as a proper composite loss.
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Corollary 14 Supposeφ : R→ R is a differentiable margin loss. Then,φ(yv) can be expressed as
a proper composite lossℓψ(y,v) if and only if the linkψ satisfies

ψ−1(v) =
φ′(−v)

φ′(−v)+φ′(v)
.

Proof Margin losses, by definition, have partial lossesλy(v) = φ(yv) which meansλ′
1(v) = φ′(v)

andλ′
−1(v) =−φ′(−v). Substituting these into (11) gives the result.

This result provides a way of interpreting predictionsv as probabilitieŝη = ψ−1(v) in a consis-
tent manner, for a problem defined by a margin loss. Conversely, it also guarantees that using any
other link to interpret predictions as probabilities will be inconsistent.11 Another immediate impli-
cation is that for a margin loss to be considered a proper loss its link function must besymmetricin
the sense that

ψ−1(−v) =
φ′(v)

φ′(v)+φ′(−v)
= 1−

φ′(−v)
φ′(−v)+φ′(v)

= 1−ψ−1(v),

and so, by lettingv= ψ(η̂), we haveψ(1− η̂) =−ψ(η̂) and thusψ(1
2) = 0.

Corollary 14 can also be seen as a simplified and generalised version of theargument by
Masnadi-Shirazi and Vasconcelos (2009) that a concave minimal conditional risk function and a
symmetric link completely determines a margin loss.12

We now consider a couple of specific margin losses and show how they canbe associated with a
proper loss through the choice of link given in Corollary 14. The exponential lossφ(v) = e−v gives
rise to a proper lossℓ(y, η̂) = φ(yψ(η̂)) via the link

ψ−1(v) =
−ev

−ev−e−v =
1

1+e−2v

which has non-zero denominator. In this caseψ(η̂) = 1
2 log

(

η̂
1−η̂

)

is just the logistic link. Now

consider the family of margin losses parametrised byα ∈ (0,∞)

φα(v) =
log(exp((1−v)α)+1)

α
.

This family of differentiable convex losses approximates the hinge loss asα → ∞ and was studied
in the multiclass case by Zhang et al. (2009). Since these are all differentiable functions with
φ′

α(v) =
−eα(1−v)

eα(1−v)+1
, Corollary 14 and a little algebra gives

ψ−1(v) =

[

1+
e2α +eα(1−v)

e2α +eα(1+v)

]−1

.

Examining this family of inverse links asα → 0 gives some insight into why the hinge loss is a
surrogate for classification but not probability estimation. Whenα ≈ 0 an estimatêη = ψ−1(v)≈ 1

2
for all but very largev ∈ R. That is, in the limit all probability estimates sit infinitesimally to the
right or left of 1

2 depending on the sign ofv.

11. Strictly speaking, if the margin loss has “flat spots”—that is, whereφ′(v) = 0—then the choice of link may not be
unique.

12. Shen (2005, Section 4.4) seems to have been the first to view marginlosses from this more general perspective.
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5. Classification Calibration and Proper Losses

The notion of properness of a loss designed for class probability estimationis a natural one. If one
is only interested in classification (rather than estimating probabilities) a weakercondition suffices.
In this section we will relate the weaker condition to properness.

5.1 Classification Calibration for CPE Losses

We begin by giving a definition of classification calibration for CPE losses (i.e., over the unit interval
[0,1]) and relate it to composite losses via a link.

Definition 15 We say a CPE lossℓ is classification calibrated atc∈ (0,1) and writeℓ is CCc if the
associated conditional risk L satisfies

∀η 6= c, L(η)< inf
η̂ : (η̂−c)(η−c)≤0

L(η, η̂). (13)

The expression constraining the infimum ensures thatη̂ is on the opposite side ofc to η, or η̂ = c.
The condition CC1

2
is equivalent to what is called “classification calibrated” by Bartlett et al.

(2006) and “Fisher consistent for classification problems” by Lin (2002) although their definitions
were only for margin losses. One situation where this more general CCc notion is more appropriate
is when the false positive and false negative costs for a classification problem are unequal.

One might suspect that there is a connection between classification calibrated atc and standard
Fisher consistency for class probability estimation losses. The following theorem, which captures
the intuition behind the “probing” reduction (Langford and Zadrozny, 2005), characterises the situ-
ation.

Theorem 16 A CPE lossℓ is CCc for all c ∈ (0,1) if and only ifℓ is strictly proper.

Proof The lossℓ is CCc for all c∈ (0,1) is equivalent to

∀c∈ (0,1), ∀η 6= c

{

L(η)< infη̂≥cL(η, η̂), η < c
L(η)< infη̂≤cL(η, η̂), η > c

⇔ ∀η ∈ (0,1), ∀c 6= η
{

∀c> η, L(η)< infη̂≥cL(η, η̂)
∀c< η, L(η)< infη̂≤cL(η, η̂)

⇔ ∀η ∈ (0,1),

{

L(η)< infη̂≥c>η L(η, η̂)
L(η)< infη̂≤c<η L(η, η̂)

⇔ ∀η ∈ (0,1), L(η)< inf
(η̂>η) or (η̂<η)

L(η, η̂)

⇔ ∀η ∈ (0,1), L(η)< inf
η̂6=η

L(η, η̂)

which meansL is strictly proper.

The following theorem is a generalisation of the characterisation of CC1
2

for margin losses via

φ′(0) due to Bartlett et al. (2006).

Theorem 17 Supposeℓ is a loss and suppose thatℓ′1 and ℓ′−1 exist everywhere. Then for any
c∈ (0,1) ℓ is CCc if and only if

ℓ′−1(c)> 0 and ℓ′1(c)< 0 and cℓ′1(c)+(1−c)ℓ′−1(c) = 0. (14)
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Proof Sinceℓ′1 andℓ′−1 are assumed to exist everywhere

∂
∂η̂

L(η, η̂) = ηℓ′1(η̂)+(1−η)ℓ′−1(η̂)

exists for allη̂. L is CCc is equivalent to

∂
∂η̂

L(η, η̂)
∣

∣

∣

∣

η̂=c

{

> 0, η < c< η̂
< 0, η̂ < c< η

⇔

{

∀η < c, ηℓ′1(c)+(1−η)ℓ′−1(c)> 0
∀η > c, ηℓ′1(c)+(1−η)ℓ′−1(c)< 0

(15)

⇔
cℓ′1(c)+(1−c)ℓ′−1(c) = 0
andℓ′−1(c)> 0 andℓ′1(c)< 0,

(16)

where we have used the fact that (15) withη = 0 and η = 1 respectively substituted implies
ℓ′−1(c)> 0 andℓ′1(c)< 0.

If ℓ is proper, then by evaluating (3) atη = 0 andη = 1 we obtainℓ′1(η̂) = −w(η̂)(1− η̂) and
ℓ′−1(η̂) = w(η̂)η̂. Thus (16) implies−w(c)(1− c) < 0 andw(c)c > 0 which holds if and only if
w(c) 6= 0. We have thus shown the following corollary.

Corollary 18 If ℓ is proper with weight w, then for any c∈ (0,1),

w(c) 6= 0 ⇔ ℓ is CCc.

The simple form of the weight function for the cost-sensitive misclassificationloss ℓc0 (w(c) =
δ(c−c0)) gives the following corollary (confer Bartlett et al., 2006):

Corollary 19 ℓc0 is CCc if and only if c0 = c.

5.2 Calibration for Composite Losses

The translation of the above results to general proper composite losses withinvertible differentiable
link ψ is straight forward. Condition (13) becomes

∀η 6= c, Lψ(η)< inf
v: (ψ−1(v)−c)(η−c)≤0

Lψ(η,ψ−1(v)).

Theorem 16 then immediately gives:

Corollary 20 A composite lossℓψ(·, ·) = ℓ(·,ψ−1(·)) with invertible and differentiable linkψ is
CCc for all c ∈ (0,1) if and only if the associated proper lossℓ is strictly proper.

Theorem 17 immediately gives:

Corollary 21 Supposeℓψ is as in Corollary 20 and that the partial lossesℓ1 andℓ−1 of the asso-
ciated proper lossℓ are differentiable. Then for any c∈ (0,1), ℓψ is CCc if and only if (14) holds.

It can be shown that in the special case of margin lossesLφ, which satisfy the conditions of Corollary
14 such that they are proper composite losses, Corollary 21 leads to the condition φ′(0) < 0 which
is the same as obtained by Bartlett et al. (2006).
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6. Convexity of Composite Losses

We have seen that composite losses are defined by the proper lossℓ and the linkψ. We have further
seen from (14) that it is natural to parametrise composite losses in terms ofw andψ′, and combine
them asρ. One may wish to choose a weight functionw and determine which linksψ lead to a
convex loss; or choose a linkψ and determine which weight functionsw (and hence proper losses)
lead to a convex composite loss. The main result of this section is Theorem 29 answers these
questions by characterising the convexity of composite losses in terms of(w,ψ′) or ρ.

We first establish some convexity results for losses and their conditional and full risks.

Lemma 22 Let ℓ : Y×V→ [0,∞) denote an arbitrary loss. Then the following are equivalent:

1. v 7→ ℓ(y,v) is convex for all y∈ {−1,1},
2. v 7→ L(η,v) is convex for allη ∈ [0,1],
3. v 7→ L̂(v,S) := 1

|S| ∑(x,y)∈Sℓ(y,v(x)) is convex for all finite S⊂ X×Y.

Proof 1⇒ 2: By definition,L(η,v) = (1−η)ℓ(−1,v)+ηℓ(1,v)which is just a convex combination
of convex functions and hence convex.

2⇒ 1: Chooseη = 0 andη = 1 in the definition ofL.
1 ⇒ 3: For a fixed(x,y), the functionv 7→ ℓ(y,v(x)) is convex sinceℓ is convex. Thus,̂L is

convex as it is a non-negative weighted sum of convex functions.
3 ⇒ 1: The convexity ofL̂ holds for everyS so for eachy ∈ {−1,1} chooseS= {(x,y)} for

somex. In each casev 7→ L̂(v,S) = ℓ(y,v(x)) is convex as required.

The following theorem generalises the corollary on page 12 of Buja et al. (2005) to arbitrary com-
posite losses with invertible links. It has less practical value than the previous lemma since, in
general, sums of quasi-convex functions are not necessarily quasi-convex (a functionf is quasi-
convex if the set{x: f (x) ≥ α} is convex for allα ∈ R). Thus, assuming properness of the lossℓ
does not guarantee its empirical riskL̂(·,S) will not have local minima.

Theorem 23 If ℓψ(y,v) = ℓ(y,ψ−1(v)) is a composite loss whereℓ is proper andψ is invertible and
differentiable then Lψ(η,v) is quasi-convex in v for allη ∈ [0,1].

Proof Sinceℓ is proper we know by Corollary 11 that the conditional Bayes risk satisfies

∂
∂v

Lψ(η,v) = (ψ−1(v)−η)ρ(ψ−1(v)).

Sinceψ is invertible andρ ≥ 0 we see that∂∂vLψ(η,v) only changes sign atη = ψ−1(v) and soLψ

is quasi-convex as required.

The following theorem characterises convexity of composite losses with invertible links.

Theorem 24 Letℓψ(y,v) be a composite loss comprising an invertible linkψ with inverse q:= ψ−1

and strictly proper loss with weight function w. Assume q′(·) > 0. Then v7→ ℓψ(y,v) is convex for
y∈ {−1,1} if and only if

−
1
x

≤
w′(x)
w(x)

−
ψ′′(x)
ψ′(x)

≤
1

1−x
, ∀x∈ (0,1). (17)
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This theorem suggests a very natural parametrisation of composite losses isvia (w,ψ′). Observe
thatw,ψ′ : [0,1]→ R+. (But also see the comment following Theorem 29.)
Proof We can write the conditional composite loss as

Lψ(η,v) = ηℓ1(q(v))+(1−η)ℓ−1(q(v))

and by substitutingq= ψ−1 into (10) we have

∂
∂v

Lψ(η,v) = w(q(v))q′(v)[q(v)−η]. (18)

A necessary and sufficient condition forv 7→ ℓψ(y,v) = Lψ(y,v) to be convex fory∈ {−1,1} is that

∂2

∂v2Lψ(y,v)≥ 0, ∀v∈ R, ∀y∈ {−1,1}.

Using (18) the above condition is equivalent to

[w(q(v))q′(v)]′(q(v)− Jy= 1K)+w(q(v))q′(v)q′(v) ≥ 0, ∀v∈ R, (19)

where

[w(q(v))q′(v)]′ :=
∂
∂v

w(q(v))q′(v).

Inequality (19) is equivalent to (Buja et al., 2005, Equation 39). By further manipulations, we can
simplify (19) considerably.

SinceJy= 1K is either 0 or 1 we equivalently have the two inequalities

[w(q(v))q′(v)]′q(v)+w(q(v))(q′(v))2 ≥ 0, ∀v∈ R, (y=−1)

[w(q(v))q′(v)]′(q(v)−1)+w(q(v))(q′(v))2 ≥ 0, ∀v∈ R, (y= 1),

which we shall rewrite as the pair of inequalities

w(q(v))(q′(v))2 ≥ −q(v)[w(q(v))q′(v)]′, ∀v∈ R, (20)

w(q(v))(q′(v))2 ≥ (1−q(v))[w(q(v))q′(v)]′, ∀v∈ R. (21)

Observe that ifq(·) = 0 (resp. 1−q(·) = 0) then (20) (resp. (21)) is satisfied anyway because of the
assumption onq′ and the fact thatw is non-negative. It is thus equivalent to restrict consideration to
v in the set

{x: q(x) 6= 0 and (1−q(x)) 6= 0}= q−1((0,1)) = ψ((0,1)).

Combining (20) and (21) we obtain the equivalent condition

(q′(v))2

1−q(v)
≥

[w(q(v))q′(v)]′

w(q(v))
≥

−(q′(v))2

q(v)
, ∀v∈ ψ((0,1)), (22)

where we have used the fact thatq: R→ [0,1] and is thus sign-definite and consequently−q(·) is
always negative and division byq(v) and 1−q(v) is permissible since as argued we can neglect the
cases when these take on the value zero, and division byw(q(v)) is permissible by the assumption
of strict properness since that impliesw(·)> 0. Now

[w(q(·))q′(·)]′ = w′(q(·))q′(·)q′(·)+w(q(·))q′′(·)
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and thus (22) is equivalent to

(q′(v))2

1−q(v)
≥

w′(q(v))(q′(v))2+w(q(v))q′′(v)
w(q(v))

≥
−(q′(v))2

q(v)
, ∀v∈ ψ((0,1)) (23)

Now divide all sides of (23) by(q′(·))2 (which is permissible by assumption). This gives the equiv-
alent condition

1
1−q(v)

≥
w′(q(v))
w(q(v))

+
q′′(v)
(q′(v))2 ≥

−1
q(v)

, ∀v∈ ψ((0,1)). (24)

Let x= q(v) and sov= q−1(x) = ψ(x). Then (24) is equivalent to

1
1−x

≥
w′(x)
w(x)

+
q′′(ψ(x))
(q′(ψ(x)))2 ≥

−1
x
, ∀x∈ (0,1). (25)

Now 1
q′(ψ(x)) =

1
q′(q−1(x)) = (q−1)′(x) = ψ′(x). Thus (25) is equivalent to

1
1−x

≥
w′(x)
w(x)

+Φψ(x) ≥
−1
x
, ∀x∈ (0,1), (26)

where
Φψ(x) := q′′ (ψ(x))

(

ψ′(x)
)2
.

All of the above steps are equivalences. We have thus shown that

(26) is true ⇔ v 7→ Lψ(y,v) is convex fory∈ {−1,1}

where the right hand side is equivalent to the assertion in the theorem by Lemma 22.
Finally we simplifyΦψ. We first computeq′′ in terms ofψ = q−1. Observe thatq′ = (ψ−1)′ =
1

ψ′(ψ−1(·))
. Thus

q′′(·) = (ψ−1)′′(·)

=

(

1
ψ′(ψ−1(·))

)′

=
−1

(ψ′(ψ−1(·)))2 ψ′′(ψ−1(·))
(

ψ−1(·)
)′

=
−1

(ψ′(ψ−1(·)))3 ψ′′(ψ−1(·)).

Thus by substitution

Φψ(·) =
−1

(ψ′(ψ−1(ψ(·))))3 ψ′′(ψ(ψ−1(·)))
(

ψ′(·)
)2

=
−1

(ψ′(·))3 ψ′′(·)
(

ψ′(·)
)2

= −
ψ′′(·)

ψ′(·)
. (27)

Substituting the simpler expression (27) forΦψ into (26) completes the proof.
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Lemma 25 If q is affine thenΦψ = 0.

Proof Using (27), this is immediate since in this caseψ′′(·) = 0.

Corollary 26 Composite losses with a linear link (including as a special case the identity link) are
convex if and only if

−
1
x

≤
w′(x)
w(x)

≤
1

1−x
, ∀x∈ (0,1).

6.1 Canonical Links

Buja et al. (2005) introduced the notion of acanonical linkdefined byψ′(v) = w(v). The canonical
link corresponds to the notion of “matching loss” as developed by Helmbold etal. (1999) and
Kivinen and Warmuth (2001). Note that choice of canonical link impliesρ(c) = w(c)/ψ′(c) = 1.

Lemma 27 Supposeℓ is a proper loss with weight function w andψ is the corresponding canonical
link, then

Φψ(x) =−
w′(x)
w(x)

. (28)

Proof Substituteψ′ = w into (27).

This lemma gives an immediate proof of the following result due to Buja et al. (2005).

Theorem 28 A composite loss comprising a proper loss with weight function w combined withits
canonical link is always convex.

Proof Substitute (28) into (17) to obtain

−
1
x

≤ 0 ≤
1

1−x
, ∀x∈ (0,1)

which holds for anyw.

An alternative view of canonical links is given in Appendix B.

6.2 A Simpler Characterisation of Convex Composite Losses

The following theorem prrovides a simpler characterisation of the convexityof composite losses.
Noting that loss functions can be multiplied by a scalar without affecting what alearning algorithm
will do, it is convenient to normalise them. Ifw satisfies (17) then so doesαw for all α ∈ (0,∞).
Thus without loss of generality we will normalisew such thatw(1

2) = 1. We chose to normalise
about1

2 for two reasons: symmetry and the fact thatw can have non-integrable singularities at 0 and
1; see, for example, Buja et al. (2005).

Theorem 29 Consider a proper composite lossℓψ with invertible linkψ and (strictly proper) weight
w normalised such that w(1

2) = 1. Thenℓ is convex if and only if

ψ′(x)
x

⋚ 2ψ′(1
2)w(x) ⋚

ψ′(x)
1−x

, ∀x∈ (0,1), (29)

where⋚ denotes≤ for x≥ 1
2 and denotes≥ for x≤ 1

2.
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Observe that the condition (29) is equivalent to

1

2ψ′(1
2)x

⋚ ρ(x) ⋚
1

2ψ′(1
2)(1−x)

, ∀x∈ (0,1),

which suggests the importance of the functionρ(·).
Proof Observing thatw

′(x)
w(x) = (logw)′(x) we letg(x) := logw(x). Observe thatg(v) =

∫ v
1
2
g′(x)dx+

g(1
2) andg(1

2) = logw(1
2) = 0. From Theorem 24, we know thatℓ is convex iff (17) holds. Using

the newly introduced notation, this is equivalent to

−
1
x
−Φψ(x) ≤ g′(x) ≤

1
1−x

−Φψ(x).

Forv≥ 1
2 we thus have

∫ v

1
2

−
1
x
−Φψ(x)dx ≤ g(v) ≤

∫ v

1
2

1
1−x

−Φψ(x)dx.

Similarly, for v≤ 1
2 we have

∫ v

1
2

−
1
x
−Φψ(x)dx ≥ g(v) ≥

∫ v

1
2

1
1−x

−Φψ(x)dx,

and thus

− lnv− ln2−
∫ v

1
2

Φψ(x)dx ⋚ g(v) ⋚ − ln2− ln(1−v)−
∫ v

1
2

Φψ(x)dx.

Since exp(·) is monotone increasing we can apply it to all terms and obtain

1
2v

exp

(

−
∫ v

1
2

Φψ(x)dx

)

⋚ w(v) ⋚
1

2(1−v)
exp

(

−
∫ v

1
2

Φψ(x)dx

)

. (30)

Now ∫ v

1
2

Φψ(x)dv=
∫ v

1
2

−
ψ′′(x)
ψ′(x)

dx=−
∫ v

1
2

(logψ′)′(x)dx=− logψ′(v)+ logψ′(1
2)

and so

exp

(

−
∫ v

1
2

Φψ(x)dx

)

=
ψ′(v)

ψ′(1
2)
.

Substituting into (30) completes the proof.

If ψ is the identity (i.e., ifℓψ is itself proper) we get the simpler constraints

1
2x

⋚ w(x) ⋚
1

2(1−x)
, ∀x∈ (0,1), (31)

which are illustrated as the shaded region in Figure 2. Observe that the (normalised) weight function
for squared loss isw(c) = 1 which is indeed within the shaded region as one would expect.
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Figure 2: Allowable normalised weight functions to ensure convexity of composite loss functions
with identity link (left) and logistic link (right).

Consider the linkψlogit(c) := log
(

c
1−c

)

with corresponding inverse linkq(c) = 1
1+e−c . One can

check thatψ′(c) = 1
c(1−c) . Thus the constraints on the weight functionw to ensure convexity of the

composite loss are
1

8x2(1−x)
⋚ w(x) ⋚

1
8x(1−x)2 , ∀x∈ (0,1).

This is shown graphically in Figure 2. One can compute similar regions for anylink. Two other
examples are the Complementary Log-Log linkψCLL(x) = log(− log(1− x)) (confer McCullagh
and Nelder, 1989), the “square link”ψsq(x) = x2 and the “cosine link”ψcos(x) = 1− cos(πx). All
of these are illustrated in Figure 3. The reason for considering these lasttwo rather unusual links
is to illustrate the following fact. Observing that the allowable region in Figure 2 precludes weight
functions that approach zero at the endpoints of the interval, and noting that in order to well approx-
imate the behaviour of 0-1 loss (with its weight function beingw0−1(c) = δ(c− 1

2)) one would like a
weight function that does indeed approach zero at the end points, it is natural to ask what constraints
are imposed upon a linkψ such that a composite loss with that link and a weight functionw(c) such
that

lim
cց0

w(c) = lim
cր1

w(c) = 0 (32)

is convex. Inspection of (29) reveals it is necessary thatψ′(x) → 0 asx → 0 andx → 1. Suchψ
necessarily have bounded range and thus the inverse linkψ−1 is only defined on a finite interval
and furthermore the gradient ofψ−1 will be arbitrarily large. If one wants inverse links defined on
the whole real line (such as the logistic link) then one can not obtain a convexcomposite link with
the associated proper loss having a weight function satisfying (32). Thus one can not choose an
effectively usable link to ensure convexity of a proper loss that is arbitrarily “close to” 0-1 loss in
the sense of the corresponding weight functions.
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Figure 3: Allowable normalised weight functions to ensure convexity of lossfunctions with com-
plementary log-log, square and cosine links.

Corollary 30 If a loss is proper and convex, then it is strictly proper.

The proof of Corollary 30 makes use of the following special case of the Gronwall style Lemma
1.1.1 of Bainov and Simeonov (1992).

Lemma 31 Let b: R→R be continuous for t≥ α. Let v(t) be differentiable for t≥ α and suppose
v′(t)≤ b(t)v(t), for t ≥ α and v(α)≤ v0. Then for t≥ α,

v(t)≤ v0exp

(∫ t

α
b(s)ds

)

.

Proof (Corollary 30) Observe that the RHS of (17) implies

w′(v)≤
w(v)
1−v

, v≥ 0.

Supposew(0) = 0. Thenv0 = 0 and the settingα = 0 the lemma implies

w(t)≤ v0exp

(∫ t

0

1
1−s

ds

)

=
v0

1− t
= 0, t ∈ (0,1].

Thus if w(0) = 0 thenw(t) = 0 for all t ∈ (0,1). Choosing any otherα ∈ (0,1) leads to a similar
conclusion. Thus ifw(t) = 0 for somet ∈ [0,1), w(s) = 0 for all s∈ [t,1]. Hencew(t) > 0 for all
t ∈ [0,1] and hence by the remark immediately following Theorem 6ℓ is strictly proper.

6.3 Convexity of Bregman Divergences in their Second Argument

Bregman divergences are always convex in the first argument but only sometimes in their second.
Corollary 5 and Equation 31 together characterise when the Bregman divergenceDφ(η, η̂) defined
on (0,1)× (0,1) is convex inη̂, providing a more direct result that that in Bauschke and Borwein
(2001): Settingφ = −L we immediately obtain that̂η 7→ Dφ(η, η̂) is convex for allη ∈ (0,1) iff
(31) holds, wherew(c) = φ′′(c).
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7. Choosing a Surrogate Loss

A surrogateloss function is a loss function which is not exactly what one wishes to minimise but is
easier to work with algorithmically. Convex surrogate losses are often usedin place of the 0-1 loss
which is not convex.

Surrogate losses have garnered increasing interest in the machine learning community (Zhang,
2004b; Bartlett et al., 2006; Steinwart, 2007; Steinwart and Christmann, 2008). Some of the ques-
tions considered to date are bounding the regret of a desired loss in terms of a surrogate (“surrogate
regret bounds”—see Reid and Williamson, 2009b and references therein), the relationship between
the decision theoretic perspective and the elicitability perspective (Masnadi-Shirazi and Vascon-
celos, 2009), and efficient algorithms for minimising convex surrogate margin losses (Nock and
Nielsen, 2009b,a).

Typically convex surrogates are used because they lead to convex, and thus tractable, optimisa-
tion problems. To date, work on surrogate losses has focussed on marginlosses which necessarily
are symmetric with respect to false positives and false negatives (Buja et al., 2005). In line with the
rest of this paper, our treatment will not be so restricted.

The aim here is put forward some plausible definitions of what it might mean to select a “best”
surrogate from a class of losses—for example, the class of proper, convex composite losses. We
make use of the weight function perspective and the convexity results given in the previous section
to investigate some new definitions for “best” surrogate and put forward some conjectures regarding
them.

7.1 The “Best” Surrogate Loss

There are many choices of surrogate loss one can choose. A natural question is thus “which is
best?”. In order to do this we need to first define how we are evaluating losses as surrogates. To do
this we require notation to describe the set of minimisers of the conditional and full risk associated
with a loss. Given a lossℓ : {−1,1}×V→ R its conditional minimisers atη ∈ [0,1] is the set

H(ℓ,η) := {v∈ V : L(η,v) = L(η)}. (33)

Given a set of hypothesesH ⊆ VX, the (constrained) Bayes optimal risk is

LH := inf
h∈H

L(h,P).

The(full) minimisers overH for P is the set

H(ℓ,P) := {h∈H : L(h) = LH},

whereH ⊆ VX is some restricted set of functions andL(h) := E(X,Y)∼P[ℓ(Y,h(X))] and the expec-
tation is with respect toP. Given areference lossℓref, we will say theℓref-surrogate penaltyof a
lossℓ over the function classH on a problem(η,M) (or equivalentlyP) is

Sℓref(ℓ,η,M) = Sℓref(ℓ,P) := inf
h∈H(ℓ,P)

Lref(h),

where it is important to remember thatL is with respect toP. That is,Sℓref(ℓ,P) is the minimumℓref

risk obtainable by a function inH that minimises theℓ risk.
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Given a fixed experimentP, if L is a class of losses then thebest surrogate losses inL for the
reference lossℓref are those that minimise theℓref-surrogate penalty. This definition is motivated by
the manner in which surrogate losses are used—one minimizesL(h) overh to obtain the minimiser
h∗ and one hopes thatLref(h∗) is small. Clearly, if the class of losses contains the reference loss
(i.e., ℓref ∈ L) thenℓref will be a best surrogate loss. Therefore, the question of best surrogate loss
is only interesting whenℓref /∈ L. One particular case we will consider is when the reference loss
is the 0-1 loss and the class of surrogatesL is the set of convex proper losses. Since 0-1 loss is not
convex the question of which surrogate is best is non-trivial.

It would be nice if one could reason about the “best” surrogate loss using the conditional per-
spective (that is working withL instead ofL) and in a manner independent ofH. It is simple to
see why this can not be done. Since all the losses we consider are proper, the minimiser over̂η of
L(η, η̂) is η. Thus any proper loss would lead to the sameη̂ ∈ [0,1]. It is only the introduction of
the restricted class of hypothesesH that prevents this reasoning being applied forL: restrictions on
h∈H preventh(x) = η(x) for all x∈ X. We conclude that the problem of best surrogate loss only
makes sense when one both takes expectations overX and restricts the class of hypothesesh to be
drawn from some setH ( [0,1]X.

This reasoning accords with that of Nock and Nielsen (2009b,a) who examined which surrogate
to use and proposed a data-dependent scheme that tunes surrogates for a problem. They explicitly
considered proper losses and said that “minimizing any [lower-bounded,symmetric proper] loss
amounts to thesameultimate goal” and concluded that “the crux of the choice of the [loss] relies
on data-dependent considerations”.

We demonstrate the difficulty of finding a universal best surrogate loss inby constructing a
simple example. One can construct experiments(η1,M) and(η2,M) and proper lossesℓ1 andℓ2

such that

Sℓ0−1(ℓ1,(η1,M))> Sℓ0−1(ℓ2,(η1,M)) but Sℓ0−1(ℓ1,(η2,M))< Sℓ0−1(ℓ2,(η2,M)).

(The examples we construct have weight functions that “cross-over”each other; the details are in
Appendix A.) However, this does not imply there can not exist a particular convexℓ∗ that minorizes
all proper losses in this sense. Indeed, we conjecture that, in the sense described above, there is no
best proper, convex surrogate loss.

Conjecture 32 Given a proper, convex lossℓ there exists a second proper, convex lossℓ∗ 6= ℓ, a
hypothesis classH, and an experimentP such that Sℓ0−1(ℓ

∗,P)< Sℓ0−1(ℓ,P) for the classH.

To prove the above conjecture it would suffice to show that for a fixed hypothesis class and any
pair of losses one can construct two experiments such that one loss minorises the other loss on one
experiment andvice versaon the other experiment.

Supposing the above conjecture is true, one might then ask for a best surrogate loss for some
reference lossℓref in a minimax sense. Formally, we would like the lossℓ∗ ∈ L such that the worst-
case penalty for usingℓ∗,

ϒL(ℓ
∗) := sup

P

{

Sℓref(ℓ
∗,P)− inf

ℓ∈L
Sℓref(ℓ,P)

}

is minimised. That is,ϒL(ℓ
∗)≤ ϒL(ℓ) for all ℓ ∈ L.

2410



COMPOSITEBINARY LOSSES

7.2 The “Minimal” Symmetric Convex Proper Loss

Theorem 29 suggests an answer to the question “What is the proper convex loss closest to the 0-1
loss?” A way of making this question precise follows. Sinceℓ is presumed proper, it has a weight
functionw. Suppose w.l.o.g. thatw(1

2) = 1. Suppose the link is the identity. The constraints in (17)
imply that the weight function that is most similar to that for 0-1 loss meets the constraints. Thus
from (31)

wminimal(c) =
1
2

(

1
c
∧

1
1−c

)

(34)

is the weight for the convex proper loss closest to 0-1 loss in this sense. It is the weight function
that forms the lower envelope of the shaded region in the left diagram of Figure 2. Using (5) one
can readily compute the corresponding partial losses explicitly

ℓminimal
−1 (η̂) =

1
2

(

Jη̂ < 1
2K(−η̂− ln(1− η̂))+ Jη̂ ≥ 1

2K(η̂−1− ln(1
2))

)

(35)

and

ℓminimal
1 (η̂) =

1
2

(

Jη̂ < 1
2K(−η̂− log(1

2))+ Jη̂ ≥ 1
2K(η̂−1− ln η̂)

)

. (36)

Observe that the partial losses are (in part) linear, which is unsurprisingas linear functions are on the
boundary of the set convex functions. This loss is also best in another more precise (but ultimately
unsatisfactory) sense, as we shall now show.

Surrogate regret bounds are theoretical bounds on the regret of a desired loss (say 0-1 loss)
in terms of the regret with respect to a surrogate. Reid and Williamson (2009b) have shown the
following (we only quote the simpler symmetric case here):

Theorem 33 Supposeℓ is a proper loss with corresponding conditional Bayes risk Lwhich is sym-
metric about12: L(1

2 −c) = L(1
2 +c) for c∈ [0, 1

2]. If the regret for theℓ 1
2

loss∆L 1
2
(η, η̂) = α, then

the regret∆L with respect toℓ satisfies

∆L(η, η̂)≥ L(1
2)−L(1

2 +α). (37)

The bound in the theorem can be inverted to upper bound∆L 1
2

given an upper bound on∆L(η, η̂).
Considering all symmetric proper losses normalised such thatw(1

2)= 1, the right side of (37) is max-
imised and thus the bound on∆L 1

2
in terms of∆L is minimised whenL(1

2 +α) is maximised (over

all losses normalised as mentioned). But sincew=−L′′, that occurs for the pointwise minimiser of
w (subject tow(1

2) = 1). Since we are interested in convex losses, the minimisingw is given by (34).
In this case the right hand side of (37) can be explicitly determined to be(α

2 +
1
4) log(2α+1)− α

2 ,
and the bound can be inverted to obtain the result that if∆Lminimal(η, η̂) = x then

∆L 1
2
(η, η̂)≤

1
2

exp

(

LambertW

(

(4x−1)
e

)

+1

)

−
1
2

(38)

which is plotted in Figure 4.13

The above argument doesnot show that the loss given by (35,36) is thebestsurrogate loss. The
reason is that the above is optimising aboundon the regret, not theactual regret; the argument in

13. The LambertW function is the real-valued solution ofx 7→W(x)eW(x). It is commonly found in solutions to differen-
tial equations, has no closed form. Its details are not relevant to this discussion except for computing Figure 4.
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Figure 4: Upper bound on the 0-1 regret in terms of∆Lminimal as given by (38).

Appendix A demonstrates there can in general be no universally best surrogate loss (independent
of the underlying distribution). Nevertheless it does suggest it is at leastworth considering using
ℓminimal as a convex proper surrogate binary loss.

We conjecture thatℓminimal is somehow special in the class of proper convex losses in some way
other than being the pointwise minimiser of weights (and the normalised loss with smallest regret
bound with respect toℓ0−1), but the exact nature of the specialness still eludes us. Perhaps it is
optimal in some weaker (minimax) sense. The reason for this suggestion is that itis not hard to
show that for reasonableP there existsH such thatc 7→ Lc(h,P) takes on all possible values within
the constraints

0≤ Lc(h,P)≤ max(c,1−c)

which follows immediately from the definition of cost-sensitive misclassification loss. Furthermore
the example in the appendix below seems to require loss functions whose corresponding weight
functions cross over each other and there is no weight function corresponding to a convex proper
loss that crosses overwminimal.

8. Conclusions

Composite losses are widely used. As outlined in §1.1, we have characterised a number of aspects
of them: their relationship to margin losses, the connection between properness and classification
calibration, the constraints symmetry imposes, when composite losses are convex, and natural ways
to parametrise them. We have also considered the question of the “best” surrogate loss.

The parametrisation of a composite loss in terms(w,ψ′) (or ρ) has advantages over using(φ,ψ)
or (L,ψ). As explained by Masnadi-Shirazi and Vasconcelos (2009), the representation in terms of
(φ,ψ) is in general not unique. The representation in terms ofL is harder to intuit: whilst indeed the
Bayes risk for squared loss and 0-1 loss are “close” (compare the graph ofc 7→ c(1−c) with that of
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c 7→ c∧ (1− c)), by examining their weight functions they are seen to be very different (w(c) = 1
versusw(c) = 2δ(c− 1

2)). We have also seen that on the basis of Theorem 24, the parametrisation
(w,ψ′) is perhaps the most natural—there is a pleasing symmetry between the loss and the link as
they are in this form both parametrised in terms of non-negative weight functions on[0,1]. Recall
too that the canonical link setsψ′ equal tow.

The observation suggests an alternate inductive principle known assurrogate tuning, which
seems to have been first suggested by Nock and Nielsen (2009b).14 The idea of surrogate tuning is
simple: noting that the best surrogate depends on the problem, adapt the surrogate you are using to
the problem. In order to do so it is important to have a good parametrisation of the loss. The weight
function perspective does just that, especially given Theorem 29. It would be straight forward to
develop low dimensional parametrisations ofw that satisfy the conditions of this theorem which
would thus allow a learning algorithm to explore the space of convex losses.One could (taking due
care with the subsequent multiple hypothesis testing problem) regularlyevaluatethe 0-1 loss of the
hypotheses so obtained. The observations made in Section 4 regarding stochastic gradient descent
algorithms may be of help in this regard.
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Appendix A. Example Showing Incommensurability of Two Proper Surrogate Losses

We considerX= [0,1] with M being uniform onX, and consider the two problems that are induced
by

η1(x) = x2 and η2(x) =
1
3
+

x
3
.

We use a simple linear hypothesis class

H := {hα(x) := αx: α ∈ [0,1]},

with identity link function and consider the two surrogate proper lossesℓ1 andℓ2 with weight func-
tions

w1(c) =
1
c
, w2(c) =

1
1−c

.

These weight functions correspond to the two curves that construct theleft diagram in Figure 2. The
corresponding conditional losses can be readily calculated to be

L1(η,h) := η(h−1− log(h))+(1−η)h
L2(η,h) := η(1−h)+(1−η)(−h− log(1−h)).

14. Surrogate tuning differs from losstailoring (Hand, 1994; Hand and Vinciotti, 2003; Buja et al., 2005) which involves
adapting the loss to what you really think is important.
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One can numerically compute the parameters for the constrained Bayes optimalfor each problem
and for each surrogate loss:

α∗
1,1 = argmin

α∈[0,1]
L1(η1,hα,M) = 0.66666667

α∗
2,1 = argmin

α∈[0,1]
L2(η1,hα,M) = 0.81779259

α∗
1,2 = argmin

α∈[0,1]
L1(η2,hα,M) = 1.00000000

α∗
2,1 = argmin

α∈[0,1]
L2(η2,hα,M) = 0.77763472.

Furthermore

L0−1(η1,hα∗
1,1
,M) = 0.3580272, L0−1(η1,hα∗

2,1
,M) = 0.3033476,

L0−1(η2,hα∗
1,2
,M) = 0.4166666, L0−1(η2,hα∗

2,2
,M) = 0.4207872.

Thus for problemη1 the surrogate lossL2 has a constrained Bayes optimal hypothesishα∗
2,1

which
has a lower 0-1 risk than the constrained Bayes optimal hypothesishα∗

1,1
for the surrogate lossL1.

Thus for problemη1 surrogateL2 is better than surrogateL1. However for problemη2 the situation
is reversed: surrogateL2 is worsethan surrogateL1.

Appendix B. An Alternate View of Canonical Links

This appendix contains an alternate approach to understanding canonical links using convex duality.
In doing so we present an improved formulation of a result on the duality of Bregman divergences
that may be of independent interest.

TheLegendre-Fenchel(LF) dualφ⋆ of a functionφ : R→ R is a function defined by

φ⋆(s⋆) := sup
s∈R

{〈s,s⋆〉−φ(s)}.

The LF dual of any function is convex.
Whenφ(s) is a function of a real argumentsand the derivativeφ′(s) exists, the Legendre-Fenchel

conjugateφ⋆ is given by theLegendre transform(Rockafellar, 1970; Hiriart-Urruty and Lemaréchal,
2001)

φ⋆(s) = s· (φ′)−1(s)−φ
(

(φ′)−1(s)
)

. (39)

Thus (writing∂ f := f ′) f ′ = (∂ f ⋆)−1. Thus withw, W, andW defined as above,

W = (∂(W⋆
))−1, W−1 = ∂(W⋆

), W
⋆
=

∫
W−1. (40)

Let w, W, W be as in Theorem 7. Denote byLW thew-weighted conditional loss parametrised
by W =

∫
w and let∆LW be the corresponding regret (we can interchange∆L andD here by (12)

sinceψL = id.
Dw(η, η̂) =W(η)−W(η̂)− (η− η̂)W(η̂). (41)

We now further considerDw as given by (41). It will be convenient to parametriseD by W instead
of w. Note that the standard parametrisation for a Bregman divergence is in termsof the convex
functionW. Thus will writeDW, DW andDw to all represent (41). The following theorem is known
(e.g., Zhang, 2004a) but as will be seen, stating it in terms ofDW provides some advantages.
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Theorem 34 Let w, W,W and DW be as above. Then for all x,y∈ [0,1],

DW(x,y) = DW−1(W(y),W(x)). (42)

Proof Using (39) we have

W
⋆
(u) = u·W−1(u)−W(W−1(u))

⇒ W(W−1(u)) = u·W−1(u)−W
⋆
(u). (43)

Equivalently (using (40))
W

⋆
(W(u)) = u·W(u)−W(u). (44)

Thus substituting and then using (43) we have

DW(x,W−1(v)) = W(x)−W(W−1(v))− (x−W−1(v)) ·W(W−1(v))

= W(x)+W
⋆
(v)−vW−1(v)− (x−W−1(v)) ·v

= W(x)+W
⋆
(v)−x ·v. (45)

Similarly (this time using (44) we have

DW−1(v,W(x)) = W
⋆
(v)−W

⋆
(W(x))− (v−W(x)) ·W−1(W(x))

= W
⋆
(v)−xW(x)+W(x)−v·x+xW(x)

= W
⋆
(v)+W(x)−v·x (46)

Comparing (45) and (46) we see that

DW(x,W−1(v)) = DW−1(v,W(x))

Let y=W−1(v). Thus subsititutingv=W(y) leads to (42).

The weight function corresponding toDW−1 is ∂
∂xW

−1(x) = 1
w(W−1(x)) .

Theorem 35 If the inverse linkψ−1 =W−1 (and thusη̂ =W−1(ĥ)) then

DW(η, η̂) = DW(η,W−1(ĥ)) =W(η)+W
⋆
(ĥ)−η · ĥ

LW(η, η̂) = LW(η,W−1(ĥ)) =W
⋆
(ĥ)−η · ĥ+η(W(1)+W(0))−W(0)

∂
∂ĥ

LW(η,W−1(ĥ)) = η̂−η

and furthermore DW(η,W−1(ĥ)) and LW(η,W−1(ĥ)) are convex in̂h.

Proof The first two expressions follow immediately from (45) and (46) by substitution. The deriva-
tive follows from calculation: ∂

∂ĥ
LW(η,W−1(ĥ)) = ∂

∂ĥ
(W

⋆
(ĥ)−η · ĥ) =W−1(ĥ)−η = η̂−η. The

convexity follows from the fact thatW
⋆

is convex (since it is the LF dual of a convex functionW)
and the overall expression is the sum of this and a linear term, and thus convex.

Buja et al. (2005) callW thecanonical link. We have already seen (Theorem 27) that the composite
loss constructed using the canonical link is convex.
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Appendix C. Convexity and Robustness

In this appendix we show how the characterisation of the convexity of proper losses (Theorem 29)
allows one to make general algorithm independent statements about the robustness of convex proper
losses to random mis-classification noise.

Long and Servedio (2008) have shown that boosting with convex potential functions (i.e., con-
vex margin losses) is not robust to random class noise.15 That is, they are susceptible to random
class noise. In particular they present a very simple learning task which is “boostable”—can be per-
fectly solved using a linear combination of base classifiers—but for which,in the presence of any
amount of label noise, idealised, early stopping andL1 regularised boosting algorithms will learn a
classifier with only 50% accuracy.

This has led to the recent proposal of boosting algorithms that use non-convex margin losses
and experimental evidence suggests that these are more robust to class noise than their convex
counterparts. Freund (2009) recently described RobustBoost, whichuses a parameterised family
of non-convex surrogate losses that approximates the 0-1 loss as the number of boosting iterations
increases. Experiments on a variant of the task proposed by Long and Servedio (2008) show that
RobustBoost is very insensitive to class noise. Masnadi-Shirazi and Vasconcelos (2009) presented
SavageBoost, a boosting algorithm built upon a non-convex margin function. They argued that even
when the margin function is non-convex the conditional risk may still be convex. We elucidate
this via our characterisation of the convexity of composite losses. Although allthese results are
suggestive, it is not clear from these results whether the robustness ornot is a property of the loss
function, the algorithm or a combination. We study that question by considering robustness in an
algorithm-independent fashion.

For α ∈ (0, 1
2) andη ∈ [0,1] we will define

ηα := α(1−η)+(1−α)η

as theα-corrupted versionof η. This captures the idea that instead of drawing a positive label for
the pointx with probabilityη(x) there is a random class flip with probabilityα. This might be done
on purpose in order to avoid problems with losses (e.g., log loss) that assigninfinite penalty to 0
or 1 valued probability predictions. Sinceηα is a convex combination ofα and 1−α it follows
that ηα ∈ [α,1−α]. The effect ofα-corruption on the conditional risk of a loss can be seen as a
transformation of the loss (Steinwart, 2009).

Lemma 36 If ℓψ is any composite loss then its conditional risk satisfies

Lψ(ηα,v) = Lψ
α(η,v), η ∈ [0,1], v∈ V,

whereℓψ
α(y,v) = (1−α)ℓψ(y,v)+αℓψ(−y,v).

15. We define exactly what we mean by robustness below. The notion thatLong and Servedio (2008) examine is akin
to that studied for instance by Kearns (1998). There are many other meanings of “robust” which are different to that
which we consider. The classical notion of robust statistics (Huber, 1981) is motivated by robustness to contamination
of additive observation noise (some heavy-tail noise mixed in with the Gaussian noise often assumed in designing
estimators). There are some results about particular machine learning algorithms being robust in that sense (Schölkopf
et al., 2000). “Robust” is also used to mean robustness with respect to random attribute noise (Trafalis and Gilbert,
2006), robustness to unknown prior class probabilities (Provost and Fawcett, 2001), or a Huber-style robustness to
attribute noise (“outliers”) for classification (Fidler et al., 2006). We onlystudy robustness in the sense of random
label noise.
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Proof By simple algebraic manipulation we have

Lψ(ηα,v) = (1−ηα)ℓ
ψ(−1,v)+ηαℓ

ψ(1,v)

= [(1−α)(1−η)+αη]ℓψ(−1,v)+ [α(1−η)+(1−α)η]ℓψ(1,v)

= (1−η)[(1−α)ℓψ(−1,v)+αℓψ(1,v)]+η[αℓψ(−1,v)+(1−α)ℓψ(1,v)]

= (1−η)ℓψ
α(−1,v)+ηℓψ

α(1,v)

= Lψ
α(η,v)

proving the result.

In particular, ifℓ is strictly proper thenℓα cannot be proper because the minimiser ofL(ηα, ·) is
ηα and soηα 6= η must also be the minimiser ofLα(η, ·). This suggests that strictly proper losses
are not robust to any class noise.

C.1 Robustness Implies Non-convexity

We now define a general notion of robustness for losses for class probability estimation.

Definition 37 Given anα ∈ [0, 1
2), we will say a lossℓ : {−1,1}× [0,1]→ R is α-robust atη if the

set of minimisers of the conditional risk forη and the set of minimisers of the conditional risk for
ηα have some common points.

That is, a loss isα-robust for a particularη if minimising the noisy conditional risk can potentially
give an estimate that is also a minimiser of the non-noisy conditional risk. Formally, ℓ is α-robust
at η when

H(ℓ,ηα)∩H(ℓ,η) 6= /0,

whereH(ℓ,η) is defined in (33). Due to the equivalence ofα-corruption of data and a transformed
loss, another way to think about this type of robustness is the following: under what conditions can
using non-proper losses still lead to the recovery of accurate conditional probability estimates?

Label noise is symmetric about1
2 and so the mapη 7→ ηα preserves the side of1

2 on which the
valuesη andηα are found. That is,η ≤ 1

2 if and only if ηα ≤ 1
2 for all α ∈ [0, 1

2). This means that
0-1 misclassification loss or, equivalently,ℓ 1

2
is α-robust for allη and for allα. For otherc, the

range ofη for which ℓc is α-robust is more limited.

Theorem 38 For each c∈ (0,1), the lossℓc is α-robust atη if and only if

η /∈

[

c−α
1−2α

,c

)

for c< 1
2 or η /∈

[

c,
c−α

1−2α

)

for c≥ 1
2.

Proof By the definition ofLc andJη̂ < cK = 1− Jη̂ ≥ cK we have

Lc(η, η̂) = (1−η)cJη̂ ≥ cK+η(1−c)Jη̂ < cK = η(1−c)+(c−η)Jη̂ ≥ cK.

Sincec−η is positive iff c> η we seeLc(η, η̂) is minimised forη < c whenη̂ < c and forη ≥ c
whenη̂ ≥ c. SoH(ℓc,η) = [0,c) for η < c andH(ℓc,η) = [c,1] for η ≥ c. Since[0,c) and [c,1]
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are disjoint for allc∈ [0,1] we see thatH(ℓc,η) andH(ℓc,ηα) coincide if and only ifη,ηα < c or
η,ηα ≥ c and are disjoint otherwise.

We proceed by cases. First, supposec< 1
2. Forη < c< 1

2 it is easy to showηα ≥ c iff η ≥ c−α
1−2α

and soℓc is notα-robust forη ∈ [ c−α
1−2α ,c). For c≤ η we seeℓc must beα-robust sinceηα < c iff

η < c−α
1−2α but c−α

1−2α < c for c< 1
2 which is a contradiction. Thus, forc< 1

2 we haveℓc is α-robust
iff η /∈ [ c−α

1−2α ,c).
For c> 1

2 the main differences are thatc−α
1−2α > c for c> 1

2 andηα < η for η > 1
2. Thus, by a

similar argument as above we see thatℓc is α-robust iff η /∈ [c, c−α
1−2α).

This theorem allows us to characterise the robustness of arbitrary proper losses by appealing to
the integral representation in (4).

Lemma 39 If ℓ is a proper loss with weight function w then H(ℓ,η) =
⋂

c: w(c)>0H(ℓc,η) and so

H(ℓ,η)∩H(ℓ,ηα) =
⋂

c: w(c)>0

H(ℓc,η)∩H(ℓc,ηα).

Proof We first show thatH(ℓ,η) ⊆
⋂

c: w(c)>0H(ℓc,η) by contradiction. Assume there is anη̂ ∈
H(ℓ,η) but for which there is somec0 such thatw(c0) > 0 and η̂ /∈ H(ℓc0,η). Then there is a
η̂′ ∈ H(ℓc0,η) andη̂′ ∈ H(ℓc) for all otherc for which w(c) > 0 (otherwiseH(ℓ,η) = {η̂}). Thus,
Lc0(η, η̂′)< Lc0(η, η̂′) and so

∫ 1
0 Lc(η, η̂′)w(c)dc<

∫ 1
0 Lc(η, η̂)w(c)dcsincew(c0)> 0.

Now supposêη ∈
⋂

c: w(c)>0H(ℓc,η). That is,η̂ is a minimiser ofLc(η, ·) for all c such that

w(c) > 0 and therefore must also be a minimiser ofL(η, ·) =
∫ 1

0 Lc(η, ·)w(c)dc and is therefore in
H(ℓ,η), proving the converse.

One consequence of this lemma is that ifw(c) > 0 andℓc is notα-robust atη then, by definition,
H(ℓc,η)∩H(ℓc,ηα) = /0 and soℓ cannot beα-robust atη. This means we have established the
following theorem regarding theα-robustness of an arbitrary proper loss in terms of its weight
function.

Theorem 40 If ℓ is a proper loss with weight function w then it is notα-robust for any

η ∈
⋃

c: w(c)>0

[

c−α
1−2α

,c

)

∪

[

c,
c−α

1−2α

)

.

By Corollary 30 we see that convex proper losses are strictly proper and thus have weight
functions which are non-zero for allc∈ [0,1] and so by Theorem 40 we have the following corollary.

Corollary 41 If a proper loss is convex, then for allα ∈ (0, 1
2) it is not α-robust at anyη ∈ [0,1].

At a high level, this result—“convexity implies non-robustness”—appears tobe logically equiv-
alent to Long and Servedio’s result that “robustness implies non-convexity”. However, there are a
few discrepancies that mean they are not directly comparable. The definitions of robustness differ.
We focus on the point-wise minimisation of conditional risk as this is, ideally, whatmost risk min-
imisation approach try to achieve. However, this means that robustness of ERM with regularisation
or restricted function classes is not directly captured with our definition whereas Long and Servedio
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analyse this latter case directly. In our definition the focus is on probability estimation robustness
while the earlier work is focussed on classification accuracy. Our work could be extended to this
case by analysingH(ℓ,η)∩H(ℓ 1

2
,η).

Additionally, their work restricts attention to the robustness of boosting algorithms that use
convex potential functions whereas our analysis is not tied to any specificalgorithm. By restricting
their attention to a specific learning task and class of functions they are able toshow a very strong
result: that convex losses for boosting lead to arbitrarily bad performance with arbitrarily little noise.
Also, our focus on proper losses excludes some convex losses (suchas the hinge loss) that is covered
by Long and Servedio’s results.

Finally, it is worth noting that there are non-convex loss functions that arestrictly proper and so
are not robust in the sense we use here. That is, the converse of Corollary 41 is not true. For example,
any loss with weight function that sits above 0 but outside the shaded regionin Figure 2 will be non-
convex and non-robust. This suggests that the arguments made by Masnadi-Shirazi and Vasconcelos
(2009); Freund (2009) for the robustness of non-convex losses need further investigation.
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