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Abstract

For many supervised learning tasks it may be infeasiblednr &xpensive) to obtain objective and
reliable labels. Instead, we can collect subjective (ftgsioisy) labels from multiple experts or
annotators. In practice, there is a substantial amountsafgdeement among the annotators, and
hence it is of great practical interest to address conveatisupervised learning problems in this
scenario. In this paper we describe a probabilistic appréacsupervised learning when we have
multiple annotators providing (possibly noisy) labels batabsolute gold standard. The proposed
algorithm evaluates the different experts and also givessdimate of the actual hidden labels.
Experimental results indicate that the proposed methodgdsrsor to the commonly used majority
voting baseline.

Keywords: multiple annotators, multiple experts, multiple teacherswdsourcing

1. Supervised Learning From Multiple Annotators/Experts

A typical supervised learning scenario consists of a trainingZset {(x;,yi)}N; containingN
instances, where; € X is an instance (typically d-dimensional feature vector) argde 9 is the
corresponding known label. The task is to learn a functior’X — 9 which generalizes well on
unseen data. Specifically for binary classification the supervision is fhenset)” = {0, 1}, for
multi-class classificatio” = {1,...,K}, for ordinal regressio®” = {1,...,K} (with an ordering
1<...<K),and9y =R for regression.
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However, for many real life tasks, it may not be possible, or may be toeresiye (or tedious)
to acquire the actual labg] for training—which we refer to as thgold standardor the objec-
tive ground truth Instead, we may have multiple (possibly noisy) labgls. ., yR provided byR
different experts or annotators. In practice, there is a substantialrarobdisagreement among
the experts, and hence it is of great practical interest to addreserd@mmnal supervised learning
algorithms in this scenario.

Our motivation for this work comes from the area of computer-aided diagin@AD), where
the task is to build a classifier to predict whether a suspicious region on aahedage (like a
X-ray, CT scan, or MRI) is malignant (cancerous) or benign. Inoralérain such a classifier, a set
of images is collected from hospitals. The actual gold standard (whetheaicer or not) can only
be obtained from a biopsy of the tissue. Since it is an expensive, ieyasid potentially dangerous
process, often CAD systems are built from labels assigneduiiple radiologistavho identify the
locations of malignant lesions. Each radiologist visually examines the mediogéa@and provides
a subjective(possibly noisy) version of the gold stand&rdhe radiologist also annotates various
descriptors of the potentially malignant lesion, like the size (a regressitatepnd, shape (a multi-
class classification problem), and also degree of malignancy (an ordgraisssion problem). The
radiologists come from a diverse pool including luminaries, experts,essdand novices. Very
often there is lot of disagreement among the annotations.

For a lot of tasks the labels provided by the annotators are inhesutifectiveand there will
be substantial variation among different annotators. The domain of tesdifdtation offers such
a scenario. In this context the task is to predict the category for a toké&xof The labels for
training are assigned by human annotators who read the text and attribusaitijective category.
With the advent of crowdsourcing (Howe, 2008) services like Amazet@shanical Turkd Games
with a Purposé,and reCAPTCHA it is quite inexpensive to acquire labels from a large number of
annotators (possibly thousands) in a short time (Sheng et al., 2008; Srmabw2008; Sorokin and
Forsyth, 2008). Websites such as Galaxy Zaltow the public to label astronomical images over
the internet. In situations like these, the performance of different annstdarvary widely (some
may even be malicious), and without the actual gold standard, it may notslsébfmto evaluate the
annotators.

In this work, we provide principled probabilistic solutions to the following dicess:

1. How to adapt conventional supervised learning algorithms when weerhaitiple annotators
providing subjective labels but no objective gold standard?

2. How to evaluate systems when we do not have absolute gold-standard?

3. Aclosely related problem—particularly relevant when there are a langder of annotators—
is to estimate how reliable/trustworthy is each annotator.

1. See Fung et al. (2009) for an overview of the data mining issues inrdas a

2. Sometimes even a biopsy cannot confirm whether it is cancer onddience all we can hope to get is subjective
ground truth.

3. Mechanical Turk found dit t ps: // wwv. nt ur k. com

4. Games with a Purpose foundhat p: / / www. gwap. com

5. reCAPTCHA found aht t p: / / recapt cha. net/.

6. Galaxy Zoo found dit t p: / / gal axyzoo. or g.
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1.1 The Problem With Majority Voting

When we have multiple labels a commonly used strategy is to use the labels on vehiohjtrity
of them agree (or average for regression problem) as an estimate afttia gold standard. For
binary classification problems this amounts to using the majority iatheit is,

.1 it /RIRy >05
B=1 0 if /R,y <05

as arestimate of the hidden true labahd use this estimate to learn and evaluate classifiers/annotators.
Another strategy is that of considering every pair (instance, labeljged\by each expert as a sep-
arate example. Note that this amounts to using a soft probabilistic estimate ofttiaé ground

truth to learn the classifier, that is,

R
Pryi = 1lyf,....y1] = (1/R) Y v
j=1

Majority voting assumes all experts are equally good. However, for ebaarnifphere is only one
true expert and the majority are novices, and if novices give the sameeonttabel to a specific
instance, then the majority voting method would favor the novices since thay amajority. One
could address this problem by introducing a weight capturing how gocll @gpert is. But how
would one measure the performance of an expert when there is no golthsdaavailable?

1.2 Proposed Approach and Organization

To address the apparent chicken-and-egg problem, we presentimumaiikelihood estimator
that jointly learns the classifier/regressor, the annotator accuracy, and thé tagtukabel. For
ease of exposition we start with binary classification problem in § 2. Thi®npeance of each
annotator is measured in terms of the sensitivity and specificity with respect tsmmémown gold
standard (8 2.1). The proposed algorithm automatically discovers theexesits and assigns a
higher weight to them. In order to incorporate prior knowledge about eanotator, we impose a
beta prior on the sensitivity and specificity and derive the maximum-a-postestimate (8 2.6).
The final estimation is performed by an Expectation Maximization (EM) algorithanitbratively
establishes a particular gold standard, measures the performance ofp#rés egiven that gold
standard, and refines the gold standard based on the performanagresea&’hile the proposed
approach is described using logistic regression as the base classHig},(& is quite general, and
can be used with any black-box classifier (§ 2.7), and can also handlmgnliakels (that is, each
expert is not required to label all the instances). Furthermore, wedgterproposed algorithm to
handle categorical (8 3), ordinal (§ 4), and regression problem} (8 § 6 section we extensively
validate our approach using both simulated data and real data from diftemains.

1.3 Related Work and Novel Contributions

We first summarize the novel contributions of this work in context of othiated work in this
emerging new area. There has been a long line of work in the biostatistiepatamiology litera-
ture on latent variable models where the task is to get an estimate of the oheeovaates based

7. When there is no clear majority among the multiple experts (thg is,0°5) in CAD domain the final decision is
often made by an adjudicator or a super-expert. When there is no aatjudicfair coin toss is used.
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on the results from multiple diagnostic tests without a gold standard (see Dadikene, 1979,
Hui and Walter, 1980, Hui and Zhou, 1998, Albert and Dodd, 20G#references therein). In the
machine learning community Smyth et al. (1995) first addressed the sanierpriolihe context of
labeling volcanoes in satellite images of Venus. We differ from this previody bf work in the
following aspects:

1. Unlike Dawid and Skene (1979) and Smyth et al. (1995) which justskdwn estimating
the ground truth from multiple noisy labels, we specifically address the idsieamming a
classifier Estimating the ground truth and the annotator/classifer performance is@dongp
of our proposed algorithm.

2. In order to learn a classifier Smyth (1995) proposed to first estimatedabadjtruth (without
using the features) and then use the probabilistic ground truth to learrsdielasn contrast,
our proposed algorithrtearns the classifier and the ground truth jointlpur experiments
(8 6.1.1) show that the classifier learnt and ground truth obtained by dtpeged algorithm
is superior to that obtained by other procedures which first estimatesahedytruth and then
learns the classifier.

3. Our solution is more general and can be easily extended to categogal§dinal(g 4),
and continuous data(8 5). It can also be used in conjunction with any\ésge learning
algorithm. A preliminary version of this paper (Raykar et al., 2009) mainlyudised the
binary classification problem.

4. Our proposed algorithm is also Bayesian—we impose a prior on thetexféie priors can
potential capture the skill of different annotators. In this paper wairefrom doing a full
Bayesian inference and use the mode of the posterior as a point estimateeA complete
Bayesian generalization of these kind of models has been developedsn@a (2008).

5. The EM approach used in this paper is similar to that proposed by Jintzatt&nani (2003).
However their motivation is somewhat different. In their setting, each traiekagnple is
annotated with a set of possible labels, only one of which is correct.

There has been recent interest in the natural language proceskemng(&t al., 2008; Snow et al.,
2008) and computer vision (Sorokin and Forsyth, 2008) communities viheyeuse Amazon'’s
Mechanical Turk to collect annotations from many people. They showtthah be potentially as
good as that provided by an expert. Sheng et al. (2008) analyzed iisevorthwhile to acquire
new labels for some of the training examples. There is also some theoretida(see Lugosi,
1992 and Dekel and Shamir, 2009a) dealing with multiple experts. Recenkigl @ad Shamir
(2009b) presented an algorithm which does not resort to repeatdthiglibat is, each example
does not have to be labeled by multiple teachers. Donmez et al. (200@sadte issue of active
learning in this scenario—How to jointly learn the accuracy of labeling seuand obtain the most
informative labels for the active learning task? There has also been sonkeirwthe medical
imaging community (Warfield et al., 2004; Cholleti et al., 2008).

2. Binary Classification

We first describe our proposed noise model for the annotators. Tfepance of each annotator
is measured in terms of the sensitivity and specificity with respect to the umkgold standard.
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2.1 A Two-coin Model for Annotators

Letyl € {0,1} be the label assigned to the instaacky the j" annotator/expert. Latbe the actual
(unobserved) label for this instance. Each annotator provides sweytthis hidden true label
based on two biased coins. If the true label is one, she flips a coin witlubi@ensitivity. If the
true label is zero, she flips a coin with bigs(specificity. In each case, if she gets heads she keeps
the original label, otherwise she flips the label.

If the true label is one, the sensitivity (true positive rate) for flHeannotator is defined as the
probability that she labels it as one.

ol :=Pry =1ly=1]. 1)

On the other hand, if the true label is zero, the specificityfélse positive rate) is defined as the
probability that she labels it as zero.

Bl :=Pry =0ly=0]. (2)
The assumption introduced is thwk andp! do not depend on the instanze For example, in the

CAD domain, this means that the radiologist’s performance is consistestsatifferent sub-groups
of data®

2.2 Classification Model

While the proposed method can be used for any classifier, for eas@aditian, we consider the
family of linear discriminating functions# = {f,,}, where for anyz,w € RY , f,(x) = w'z.
The final classifier can be written in the following form:="1 if w2 >y and 0 otherwise. The
thresholdy determines the operating point of the classifier. The Receiver Operatiageristic
(ROC) curve is obtained agis swept from—o to . The probability for the positive class is
modeled as #ogistic sigmoidacting onf,, that is,

Prly = 1|z, w] = o(w ' x),

where the logistic sigmoid function is defined@g) = 1/(1+ e %). This classification model is
known adogistic regression

2.3 Estimation/Learning Problem

Given the training dat@ consisting ofN instances with annotations froR annotators, that is,
D = {zi,y},...,yR}N |, the task is to estimate the weight vectorand also the sensitivity =
[al,...,aR] and the specificityd = [B,...,BR] of the R annotators. It is also of interest to get an
estimate of the unknown gold standaxd. . ., yn.

2.4 Maximum Likelihood Estimator

Assuming the training instances are independently sampled, the likelihood fun€tioe parame-
ters® = {w, o, 3} given the observation® can be factored as

N
Pi{D|6] = u Py, ...y, 8.

8. While this is a reasonable assumption, it is not entirely true. It is knowrstime radiologists are good at detecting
certain kinds of malignant lesions based on their training and experience.
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Conditioning on the true labgl, and also using the assumptiyfnis conditionally independent (of
everything else) given!, B! andy;, the likelihood can be decomposed as

N
PiDl6] = _rl{PrM,...,yﬂyi:1,a]Pr[yi:1ywi,w}

+  Pry,...,YRlyi = 0,8]Prlyi = 0|2, w] } .

Given the true labe};, we assume that', ... yR are independent, that is, the annotators make their
decisions independentlyHence,

R . .
I—Uaj]yi’ [1—al2 ¥,

R . )
Priy!,....¥flyi=1,0] = rlPr[yi‘ lyi =10/ =
= =

Similarly, we have

R oy
Priy, ..., YRy = B L-pI.
i = JI:L
Hence the likelihood can be written as
N
Pr{DI[6] = [ai pi +bi(1— pl)}
=
where we have defined
pi = o(w'z).
R C1y
a = [a]]yi [1_GJ}1*yi‘
n
R

b = I—L[Bj]lyij [1- Bj]Yij .

J:

The maximum-likelihood estimator is found by maximizing the log-likelihood, that is,

OuL = {&,3,%} = arg rrga>{|n PiD|6]}.

2.5 The EM Algorithm

This maximization problem can be simplified a lot if we use the Expectation-Maximiz &)
algorithm (Dempster et al., 1977). The EM algorithm is an efficient iteratigegrure to compute
the maximum-likelihood solution in presence of missing/hidden data. We will usentk@own
hidden true label; as the missing data. If we know the missing dgta [y1,...,yn] then the
complete likelihood can be written as

InPr[D,y|6] = iyi Inpiai + (1—yi)In(1— pi)bi.

9. This assumption is not true in general and there is some correlati@mgahe labels assigned by multiple annotators.
For example in the CAD domain if the cancer is in advanced stage (whichryseasy to detect) almost all the
radiologists assign the same label.
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Each iteration of the EM algorithm consists of two steps: an ExpectationéR)asd a Maximization(M)-
step. The M-step involves maximization of a lower bound on the log-likelihoodish&fined in
each iteration by the E-step.

1. E-step. Given the observatiorD and the current estimate of the model parameferthe
conditional expectation (which is a lower bound on the true likelihood) is cord@age

N
E{InPrD,y|0]} = 'ZLM Inpiaj + (1— ) In(1— py)bi, 3

where the expectation is with respect tg0, 8], andy, = Prly; = 1y},...,yR x;,0]. Using
Bayes’ theorem we can compute

O Py, yRyi =1,0]-Pry = 1|z,
aipi+hi(l—p)

2. M-step. Based on the current estimateand the observation®, the model parametefsare
then estimated by maximizing the conditional expectation. By equating the gradi@)tto
zero we obtain the following estimates for the sensitivity and specificity:

oSl g AWy
Sk yiva(1— )

Due to the non-linearity of the sigmoid, we do not have a closed form solutiow fand we
have to use gradient ascent based optimization methods. We use the NRapiosen update
given byw'! = w' —nH g, whereg is the gradient vecto is the Hessian matrix, and
n is the step length. The gradient vector is given by

2

g(w) = [ua - O(wTwi)} zi.

The Hessian matrix is given by

N

Hw=-Y |o(w'=z)||1-o(w =z)| zix.
3 [otwTa] | 0|z
Essentially, we are estimatirglogistic regression model with probabilistic labels p

These two steps (the E- and the M-step) can be iterated till convergeteelogd-likelihood in-
creases monotonically after every iteration, which in practice implies coaneegto a local maxi-
mum. The EM algorithm is only guaranteed to converge to a local maximum. Itigeacultiple
restarts with different initializations can potentially mitigate the local maximum problenthis
paper we use majority voting = 1/RZJR:lyiJ as the initialization fog; to start the EM-algorithm.
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2.6 A Bayesian Approach

In some applications we may want to trust a particular expert more than thes.otbae way to
achieve this is by imposing priors on the sensitivity and specificity of the &xp&incea; and
B; represent the probability of a binary event, a natural choice of prioribéta prior. The beta
prior is also conjugate to the binomial distribution. For any 0, b > 0, andd € [0, 1] the beta
distribution is given by
6a71(1_ 5)b71

B(a,b) ’

where Ba,b) = [, 8* 1(1—5)>1d3 is the beta function.We assume a beta pfidor both the
sensitivity and the specificity as

Betad|a,b) =

Priajlal,al) = Betaa;laj,a}).

PriBj|bl,bj] = Beta(B[bi.b)).
For sake of completeness we also assume a zero mean Gaussian priomaigtitsw with in-
verse covariance matri, that is, Pfw] = A((w|0,T'1). Assuming thafa;}, {Bj}, andw have
independent priors, the maximum-a-posteriori (MAP) estimator is found bygmizng the log-

posterior, that is, A
Bmap = arg ngja>{|n Pr{D|6] +InPr{6]}.

An EM algorithm can be derived in a similar fashion for MAP estimation by relyinghe inter-
pretation of Neal and Hinton (1998). The final algorithm is summarized below

1. Initializey = (1/R) zJR:lyij based on majority voting.

2. Giveny;, estimate the sensitivity and specificity of each annotator/expert as follows.

al = f"‘i__l"‘Zi'\I:ﬂli)’ij .
ay+ay—2+ 3L 1
, i N (1_u)(l—V

bi*‘bé_ 2+ 3N, (1— W)

The Newton-Raphson update for optimiziagis given byw!'™* = w' — nH g, with step
lengthn, gradient vector

pd

g(w) = [p; - O(mei)} zi — Tw,

and Hessian matrix

H(w)=— io(mei) [1— O(wT:ci)} xixz; —T.

10. It may be convenient to specify a prior in terms of the mpaand variances?. The mean and the variance
for a beta prior are given by = a/(a+b) and a® = ab/((a+ b)%(a+b+1)). Solving fora and b we get
a= (—13+ ¥ —po?)/o% andb = a(1 - p) /.
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3. Given the sensitivity and specificity of each annotator and the modmingders, updatg as

ai pi

M= B ThI=p) ©
where

p = ow' x).
R ) )

a = []l/ML-al.
N
R . .

b= BV L-p. (6)
N

Iterate (2) and (3) till convergence.

2.7 Discussions

1. Estimate of the gold standardThe value of the posterior probability is a soft probabilis-
tic estimate of the actual ground trugh that is, i = Prly; = 1|yt,...,yR, x;,8]. The actual
hidden labely; can be estimated by applying a thresholdpnthat is,y; = 1 if | > y and
zero otherwise. We can uge- 0.5 as the threshold. By varyingve can change the misclas-
sification costs and obtain a ground truth with large sensitivity or large sgigcifBecause
of this in our experimental validation we can actually draw an ROC curve oegimated
ground truth.

2. Log-odds of i A particularly revealing insight can be obtained in terms of the log-odds or
thelogit of the posterior probability;. From (5) the logit ol can be written as

M _ |n Pr[)/i = 1‘y|175y|R)xl>e]
1-W Pryi = Oy}, ..., YR i, 6]

logit(p) = In
—w 'z +C+ E y! [logit(al) + logit(B1))].
=1

wherec = szzllogl%"‘J is a constant term which does not depend.omhis indicates that
the estimated ground truth (in the logit form of the posterior probability viihted linear
combinationof the labels from all the experts. The weight of each expert is the suireof
logit of the sensitivity and specificity.

3. Using any other classifierFor ease of exposition we used logistic regression. However,
the proposed algorithm can be used with any generalized linear model actinvith any
classifier that can be trained with soft probabilistic labels. In each ste &NMralgorithm,
the classifier is trained with instances sampled figmThis modification is easy for most
probabilistic classifiers. For general black-box classifiers whereanweat tweak the training
algorithm an alternate approach is to replicate the training examples accoodihg soft
label. For example a probabilistic labgl= 0.8 can be effectively simulated by adding 8
training examples with deterministic label 1 and 2 examples with label 0.
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4. Obtaining ground truth with no features In some scenarios we may not have featutgs
and we wish to obtain an estimate of the actual ground truth based only on & fiadm
multiple annotators. Here instead of learning a classifier we estipaltéch is the prevalence
of the positive class, that ip,= Prly; = 1]. We further assume a beta prior for the prevalence,
that is, Betép|p1, p2). The algorithm simplifies as follows.

(@) Initializey; = (1/R) sz:lyij based on majority voting.

(b) Giveny;, estimate the sensitivity and specificity of each annotator using (4). Thia-pre
lence of the positive class is estimated as follows.

PL—1+ 3N 1
 pr+p2—2+N°
(c) Given the sensitivity and specificity of each annotator and prevajeetiney; as fol-
lows.
b= ap .
ap+hi(1-p)

Iterate (2) and (3) till convergence. This algorithm is similar to the one m®egdy Dawid
and Skene (1979) and Smyth et al. (1995).

5. Handling missing labelsThe proposed approach can easily handle missing labels, that is,
when the labels from some experts are missing for some instanceR; hetthe number of
radiologists labeling thé" instance, and lexl; be the number of instances labeled by iKe
radiologist. Then in the EM algorithm, we just need to replbcby N; for estimating the
sensitivity and specificity in (4), and replaBey R; for updatingy; in (6).

6. Evaluating a classifierWe can use the probability scorgsdirectly to evaluate classifiers.
If z are the labels obtained from any other classifier, then sensitivity andisipgcan be
estimated as

a

_Ziakad g Sha(t-w(-z)
SIiH S (1)

7. Posterior approximation At the end of each EM iteration a crude approximation to the
posterior is obtained as

N . N _
oj ~ Betalajlag+ Y uylay+ S w(d-y) |,
j <J|1iZHM 2i;M( Yi)

e N j
Bi ~ Beta|Bjlbi+>S 1—w)(A—-y),bb+> 21—y |.
j ( jlb i;( J(L—yi). by i;( ) |>

3. Multi-class Classification

In this section we describe how the proposed approach for binanjfidagen can be extended
to categorical data. Suppose there Hre= 2 categories. An example for categorical data from
the CAD domain is in LungCAD, where the radiologist needs to label whetmedale (known

to be precursors of cancer) is a solid, a part-solid, or a ground gfzsstp—which are three
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different kinds on nodules. We can extend the previous model and irtteagivector of multinomial

parametersyl = (aél, aéK) for each annotator, where

aly =Pyl = kly =

andszzlo(ik =1. Herea(j:k denotes the probability that the annotatassigns classto an instance

given the true class is. WhenK = 2, 0(’11 andcx(‘)O are sensitivity and specificity, respectively. A
similar EM algorithm can be derived. In the E-step, we estimate

R K ) .
Priyi = ¢9, @] O Prly = cla] [ [ (@l
J=1k=1

whered(u,v) = 1 if u= v and 0 otherwise and in the M-step we learn a multi-class classifier and
update the multinomial parameter as

Gj __Z| lPﬂYI—'QSya ](yh ).
SN Plyi=c|9.qf

One can also assign a Dirichlet prior for the multinomial parameters, and shiksé a smoothing
term in the above updates in the MAP estimate.

4. Ordinal Regression

We now consider the situation where the outputs are categorical and mardexing among the
labels. In the CAD domain the radiologist often gives a score (for exarhigle 5 from lowest to
highest) to indicate how likely she thinks it is malignant. This is different from &irolass setting
in which we do not have any preference among the multiple class labels.

Lety! € {1,...,K} be the label assigned to tite instance by thg™ expert. Note that there is
an ordering in the labels & ... < K. A simple approach is to convert the ordinal data into a series
of binary data (Frank and Hall, 2001). Specifically theclass ordinal labels are transformed into
K — 1 binary class labels as follows:

ic_ | 1 if yij>c _
ic _ , c=1,...,K-1.
Y { 0 otherwise

Applying the same procedure used for binary labels we can estimgtesRy forc=1,... K- 1.
The probability of the actual class values can then be obtained as

Prlyi = ¢] = Prlyi > c— 1 andy; < c| =Prly; > c— 1] —Prly; > c].

The class with the maximum probability is assigned to the instance.

5. Regression

In this section we develop a similar algorithm to learn a regression functiog asmotations from
multiple experts. In the CAD domain as a part of the annotation process a comtasiofor a
radiologist is to measure the diameter of a suspicious lesion.
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5.1 Model for Annotators

Let yiJ € R be the continuous target value assigned ta'thiastance by th¢" annotator. Our model

is that the annotator provides a noisy version of the actual true yalugor the | annotator we
will assume a Gaussian noise model with mga(the true unknown value) and inverse-variance
(precision)t!, that is,

Priy/ [y, '] = AC(Y! [y, /7)), @)

where the Gaussian distribution is defined¥éézim, 0?) = (2m0?)~Y2exp(—(z— m)?/202). The
unknown inverse-varianceé measures the accuracy of each annotator—the larger the vatue of
the more accurate the annotator. We have assumed!tdaes not depend on the instange For
example, in the CAD domain, this means that the radiologist’'s accuracy doe®pend on the
nodule she is measuring. While this a practical assumption, it is not entirelyltriseknown that
some nodules are harder to measure than others.

5.2 Linear Regression Model for Features

As before we consider the family of linear regression functighs: { f,}, where for anye, w € R
, fw(x) =w ' z. We assume that the actual target responisagiven by the deterministic regression
function f,, with additive Gaussian noise, that is,
m:uﬁwﬁi,

whereg is a zero-mean Gaussian random variable with inverse-variance {prggisHence

Priyi|ai, w,y] = A(yilw " zi,1/y). ®)
5.3 Combined Model
Combining both the annotator (7) and the regressor (8) model we have

Py, w031 = [ Py b 0P 0 Vi = Ay o, 1/ + /).

Since the two precision termy &ndtj) are grouped together they are not uniquely identifiable.
Hence we will define a new precision teihas

11,1
Ny U
So we have the following model
Pry! |ai, w,M] = A(y! |w i, 1/AD). 9)

5.4 Estimation/Learning Problem

Given the training dat&® consisting ofN instances with annotations froRiexperts, that isp =
{xi,yt,...,yR}N |, the task is to estimate the weight vectorand the precisiot = A1,...,AR] of
all the annotators.
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5.5 Maximume-likelihood Estimator

Assuming the instances are independent the likelihood of the paranetefaw, A} given the
observation® can be factored as

N
PI[D|6] = [l PryL, ..., yR|xi,6].

Conditional on the instance; we assume thagtil,...,yiR are independent, that is, the annotators
provide their responses independently. Hence from (9) the likelihooteavritten as

N R _ _
PrD|6] = rl rLN(YiJ‘wa"ial/}‘J)~
i=1]=

The maximume-likelihood estimator is found by maximizing the log-likelihood
BwL = {\, @} =arg r%a>{ln PrD|6]}.

By equating the gradient of the log-likelihood to zero we obtain the followirdatgequations for
the precision and the weight vector.

;j - ,ﬁi(yﬁ—ﬁxi)z. (10)
N

-1 R i
. T [ Tz
w = (i;m,ml ) i;x, (zﬁ*_lii ) . (11)

As the parameter& and are coupled together we iterate these two steps till convergence.

5.6 Discussions

1. Is this standard least-squares?Define the design matri¥X = [x1,...,2zn] " and the re-
sponse vector for each annotatorgds= [y}, ...,y§] . Using matrix notation Equation 11
can be written as

leq:lxjyj
SR
Equation 12 is essentially the solution to a standard linear regression mamgdt éhat we are
training a linear regression model withas the ground truth, which is a precision weighted
mean of the response vectors from all the annotators. The varianachfamnotator is
estimated using (10). The final algorithm iteratively establishes a particvidstandardg),

measures the performance of the annotators and learns a regreesothgit gold standard,
and refines the gold standard based on the performance measures.

w=(X"X)"1XxTy where 7= (12)

2. Are we better than the best annotator? If we assume\ is fixed (i.e., we ignore the vari-
ability and assume that it is well estimated) thenis an unbiased estimator of and the
covariance matrix is given by

Cov() = Cov(§) (XTx)_lz lei- (XTX)_l.
=1
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SincezJR:lXj > max (/Xj) the proposed method has a lower variance than the regressor learnt
with the best annotator (i.e., the one with the minimum variance).

3. Are we better than the average?or a fixedX the error inw depends only on the variance
of y1. If we know the true\! theny; is the best linear unbiased estimatorvahich mini-
mizes the variance. To see this consider any linear estimator of theyfe:ny ; al (yI bl).
The variance is given by V@i| = 3 ; (aJ)Z/)\J Since BYi| =Viy; al, for the bias of this es-
timator to be zero we require thgl'1 al = 1. Solving the constrained minimization problem
we see thahj = A/ 3;A; minimizes the variance.

4. Obtaining a consensus without feature§Vhen no features are available the same algorithm
can be simplified to get a consensus estimate of the actual ground truth amdallsate the
annotators. Essentially we have to iterate the following two updates till cozweeg

R A\ .
Yi ::E;%iji?l %ﬁ hl§;<y' M) .

6. Experimental Validation

We now experimentally validate the proposed algorithms on both simulated drhtaa

6.1 Classification Experiments

We use two CAD and one text data set in our experiments. The CAD data skidera digital
mammography data set and a breast MRI data set, both of which are biepgnpthat is, the
gold standard is available. For the digital mammography data set we simulataliblegests in
order to validate our methods. The breast MRI data has annotationsdromatiiologists. We also
report results on a Recognizing Textual Entailment data collected by Snalw(2008) using the
Amazon’s Mechanical Turk which has annotations from 164 annotators.

6.1.1 DGITAL MAMMOGRAPHY WITH SIMULATED RADIOLOGISTS

Mammograms are used as a screening tool to detect early breast dcaAgesystems search for
abnormal areaddsiong in a digitized mammographic image. These lesions generally indicate
the presence of malignant cancer. The CAD system then highlights these @m the images,
alerting the radiologist to the need for a further diagnostic mammogram or sybilmpclassification
terms, given a set of descriptive morphological features for a regioa onage, the task is to
predict whether it is potentially malignant (1) or not (0). In order to traiohsa classifier, a set
of mammograms is collected from hospitals. The ground truth (whether it isecammot) is
obtained from biopsy. Since biopsy is an expensive, tedious, and asiievprocess, very often
CAD systems are built from labels collected fromultiple expert radiologiste/ho visually examine
the mammograms and mark the lesion locations—this constitutes our ground truth lgrialigds)
for learning.

In this experiment we use a proprietary biopsy-proven data set (Kxmham et al., 2008)
containing 497 positive and 1618 negative examples. Each instanceighdddy a set of 27 mor-
phological features. In order to validate our proposed algorithm, we sinmlaitégple radiologists
according to the two-coin model described in § 2.1. Based on the labelsitdtiple radiologists,
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we can simultaneously (1) learn a logistic-regression classifier, (2) estinesgensitivity and speci-
ficity of each radiologist, and (3) estimate the golden ground truth. We cantiparesults with the
classifier trained using the biopsy proved ground truth as well as the majotityg baseline. For
the first set of experiments we use 5 radiologists with sensitevity: [0.90 080 057 0.60 0.55|

and specificity3 = [0.95 085 062 065 058]. This corresponds to a scenario where the first two
radiologists are experts and the last three are novices. Figure 1 sunsrhezesults. We compare
on three different aspects: (1) How good is the learnt classifier? ¢@) well can we estimate the
sensitivity and specificity of each radiologist? (3) How good is the estimatmghdrtruth? The
following observations can be made.

1. Classifier performanceFigure 1(a) plots the ROC curve of the learnt classifier on the training

set. The dotted (black) line is the ROC curve for the classifier learnt ustsngdiual ground
truth. The solid (red) line is the ROC curve for the proposed algorithm adakhed (blue)
line is for the classifier learnt using the majority-voting scheme. The claskifient using

the proposed method is as good as the one learnt using the golden gratlmdTine area
under the ROC curve (AUC) for the proposed algorithm is aroul@c3greater than that
learnt using the majority-voting scheme.

. Radiologist performanceThe actual sensitivity and specificity of each radiologist is marked
as a blackx in Figure 1(b). The end of the solid red line shows the estimates of the séwpsitiv
and specificity from the proposed method. We used a uniform prior onejbainameters.
The ellipse plots the contour of one standard deviation as obtained fronethgbsterior
estimates. The end of the dashed blue line shows the estimate obtained fromjdhigyma
voting algorithm. We see that the proposed method is much closer to the adued v
sensitivity and specificity.

. Actual ground truth Since the estimates of the actual ground truth are probabilistic scores,
we can also plot the ROC curves of the estimated ground truth. From Fifoirevé can

see that the ROC curve for the proposed method dominates the majority votgR@e.
Furthermore, the area under the ROC curve (AUC) is around 3% hidlner.estimate ob-
tained by majority voting is closer to the novices since they form a majority (3/8nds not
have an idea of who is an expert and who is a novice. The proposettlalg@appropriately
weights each radiologist based on their estimated sensitivity and specifitigyimiprove-
ment obtained is quite large in Figure 2 which corresponds a situation wkehave only

one expert and 7 novices.

. Joint Estimation To learn a classifier, Smyth et al. (1995) proposed to first estimate the
golden ground truth and then use the probabilistic ground truth to learnsifidadn contrast,

our proposed algorithm learns the classifier and the ground jointtly as a part of the EM
algorithm. Figure 3 shows that the classifier and the ground truth learnnebtay the
proposed algorithm is superior than that obtained by other procedinieb ¥irst estimates

the ground truth and then learns the classifier.

6.1.2 BREASTMRI

In this example, each radiologist reviews the breast MRI data and asséssmalignancy of each
lesion on a BIRADS scale of 1to 5. The BIRADS scale is defined as folldwWwsegative, 2 Benign,
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Majority Voting Truel True2 True3 Trued4 Trueb5

Estimated 1 X 0.0217 0 X 0.0000
Estimated 2 x  0.5869 0 X 0.1785
Estimated 3 X 0.2391 0 X 0.1071
Estimated 4 X 0.1521 1 X 0.2500
Estimated 5 X 0.0000 0 X 0.4642
EM algorithm Truel True2 True3d Trued4 Trueb
Estimated 1 X 0.0000 0 X 0.0000
Estimated 2 X  0.6957 0 X 0.1428
Estimated 3 X 0.1304 0 X 0.0000
Estimated 4 X 0.1739 1 X 0.3214
Estimated 5 X 0.0000 0 X 0.5357

Table 1: The confusion matrix for the estimate obtained using majority voting angrtiposed
EM algorithm. The x indicates that there was no such category in the true (gteigold
standard). The gold-standard is obtained by the biopsy which canmonfiether it is
benign (BIRADS=2) or malignant (BIRADS=5).

3 Probably Benign, 4 Suspicious abnormality, and 5 Highly suggestive lajmaacy. Our data set
comprises of 75 lesions with annotations from four radiologists, and thdabas from biopsy.
Based on eight morphological features, we have to predict whethepa Igsnalignant or not.

For the first experiment we reduce the BIRADS scale to a binary ondeaion with a BIRADS
> 3 is considered malignant and benign otherwise. The set included 28 nmlem& 47 benign
lesions. Figure 4 summarizes the results. We show the leave-one-osivetmsted ROC for the
classifier. The cross-validated AUC of the proposed method is approdynt&te better than the
majority voting baseline.

We also consider the BIRADS labels as a set of ordinal measurementdtséneds an order-
ing among the BIRADS label. The confusion matrix in Table 1 shows that the Igbtithm is
significantly superior than the majority voting in estimating the true BIRADS.

6.1.3 RECOGNIZING TEXTUAL ENTAILMENT

Finally we report results on Recognizing Textual Entailment data collecteghby et al. (2008)
using the Amazon’s Mechanical Turk. In this task, the annotator is piedevith two sentences
and given a choice of whether the second sentence can be infaynedhfe first. The data has 800
tasks and 164 distinct readers, with 10 annotations per task along withlttengpound truth. The
majority of the entries (94 %) in the 800x164 matrix are missing. There is or@aton who has
labeled all the tasks. We use this data set to obtain an estimate of the actured grah. Figure 5
plots the accuracy of the estimated ground truth as a function of the numl@nofators. The
proposed EM algorithm achieves a higher accuracy than majority votirhér words to achieve
a desired accuracy the proposed algorithm needs fewer annotatothéhaajority voting scheme.
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ROC Curve for the classifier
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Figure 1. Results for the digital mammography data set with annotations framulased radiol-
ogists. (a) The ROC curve of the learnt classifier using the golden drouth (dotted
black line), the majority voting scheme (dashed blue line), and the propddealdo-
rithm (solid red line). (b) The ROC curve for the estimated ground truth. adteal
sensitivity and specificity of each of the radiologists is marked as &he end of the
dashed blue line shows the estimates of the sensitivity and specificity obtaimedhfe
majority voting algorithm. The end of the solid red line shows the estimates from the
proposed method. The ellipse plots the contour of one standard deviation.

1313



RAYKAR, YU, ZHAO, VALADEZ, FLORIN, BOGONI AND MOY

ROC Curve for the classifier

[y

o
©

o
®

e
~

o
)

True Positive Rate (sensitivity)
o
al

0.4 -
0.3 E
0.2 E

----- Golden ground truth AUC=0.915
0.1F Proposed EM algorithm AUC=0.906 b

= = = Majority voting baseline AUC=0.884
0 : n n L

0 0.2 0.4 0.6 0.8 1

False Positive Rate (1—-specifcity)

@

ROC Curve for the estimated true labels

o

o
)
L
1)
1
Jec
%

True Positive Rate (sensitivity)
o
al

] 1
. 1 : X4 h
1 1 ’
= 1 -
0.4 . :
1 1
0.3} . J
4 1
0.2} ! -
0.1f Proposed EM algorithm AUC=0.967 b
- = = Majority voting baseline AUC=0.872
0 h n n L
0] 0.2 0.4 0.6 0.8 1
False Positive Rate (1—-specifcity)
(b)

Figure 2: Same as Figure 1 except with 8 different radiologist annotations
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ROC Curve for the classifier
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Figure 3: ROC curves comparing the proposed algorithm (solid red line)thétbecoupled Esti-
mationprocedure (dotted blue line), which refers to the algorithm where thengrtsuth
is first estimated using just the labels from the five radiologists and then a logigtis-
sion classifier is trained using the soft probabilistic labels. In contrastrpoped EM
algorithm estimates the ground truth and learns the classifier simultaneouisly the
EM algorithm.
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Leave—One—Out ROC Curve for the classifier
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Figure 4: Breast MRI results. (a) The leave-one-out cross validD¥d. (b) ROC for the estimated
ground truth.
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Figure 5. The mean and the one standard deviation error bars for theaeg®f the estimated
ground truth for the Recognizing Textual Entailment task as a function afuh#er of
annotators. The plot was generated by randomly sampling the annotaficisn&8.

6.2 Regression Experiments

We first illustrate the algorithm on a toy dataset and then present a cagdataditomated polyp
measurements.

6.2.1 ILLUSTRATION

Figure 6 illustrates the the proposed algorithm for regression on a onaslivnal toy data set with
three annotators. The actual regression model (shown as a blue dotjad §iven byy = 5x— 2.
We simulate 20 samples from three annotators with precisions 0.01, 0.1, andHeOdata are
shown by the annotators’s number. While we can fit a regression moithgl @ach annotators’s
response, we see that only the model for annotator three (with higkeessipn) is close to the true
regression model. The green dashed line shows the model learnt usiaigetiage response from
all the three annotators. The red line shows the model learnt by the peptgorithm.

6.2.2 AUTOMATED POLYP MEASUREMENTS

Colorectal polyps are small colonic findings that may develop into cancerater stage. The
diameter of the polyp is one of the key factors which decides the malignarecgugpicious polyp.
Hence accurate size estimation is crucial to decide the action to be taken dypa e have
developed various algorithms to segment a polyp. Multiple segmentation algoditiensgse to a
set of features which are correlated with the diameter of the polyp. Wetewd@hrn a regression
function which can predict the diameter of a polyp as a function of theserésa In order to learn
a regression function we collect our ground truth by asking many radsitogp manually measure
the the diameter of the polyps from the three-dimensional images. In practiee itha lot of
disagreement among the radiologists as to the actual size of the polyp.
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N=50 examples R=3 annotators

T T T
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Figure 6: lllustration of the proposed algorithm on a one-dimensional tty sket. The actual
regression model (shown as a blue dotted line) is givey Bybx — 2. We simulate 50
samples from three annotators with precisions 0.01, 0.1, and 1.0. Therdathaavn
by the annotators’s number. While we can fit a regression model usihgeaotators’s
response, we see that only the model for annotator three (with higleessipn) is close
to the true regression model. The green dashed line shows the modelusiagnthe
average response from all the three annotators. The red line showstet learnt by
the proposed algorithm.
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Figure 7: Scatter plot of the actual polyp diameter vs the diameter predictdtebyodels learnt
using (a) the actual gold standard, (b) the proposed algorithm with dimmstdrom five

radiologists, and (c) the average of the radiologist’s annotations. (8e&Zfor a de-
scription of the experimental setup.)
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We use a proprietary data set containing 393 examples (which point toig@%ctipolyps—
the segmentation algorithms generally return multiple marks on the same polyp.) vétbnipe
measured diameter (ranging from 2mm to 15mm) as our training set. Each exardpkcribed
by a set of 60 morphological features which are correlated to the dianfetee polyp. In order
to validate the feasibility of our proposed algorithm, we simulate five radiologistsrding to the
noisy model described in § 5.1 with= [0.001 Q01 01 1 17. This corresponds to a situation where
the first three radiologists are extremely noisy and the last two are quiteasecuiBased on the
measurements from multiple radiologists, we can simultaneously (1) learn ariggassor and (2)
estimate the precision of each radiologist. We compare the results with the elasaified using
the actual golden ground truth as well as the regressor learnt usingetega of the radiologists
measurements. The results are validated on an independent test s@irng3@7 examples (which
point to 298 distinct polyps).

Figure 7 shows the scatter plot of the actual polyp diameter vs the diamedatpdby the three
different models. We compare the performance based on the root mearedaegrror (RMSE) and
also the Pearson’s correlation coefficient. The regressor leargttisgiproposed iterative algorithm
(Figure 7(b)) is almost as good as the one learnt using the golden ghathdFigure 7(a)). The
correlation coefficient for the proposed algorithm is significantly largantthat learnt using the
average of the radiologists response. The estimate obtained by aveisagioger to the novices
since they form a majority (3/5). The proposed algorithm appropriatelyMeigach radiologist
based on their estimated precisions.

7. Conclusions and Future Work

In this paper we proposed a probabilistic framework for superviseditgawith multiple annota-
tors providing labels but no absolute gold standard. The proposedthfgateratively establishes
a particular gold standard, measures the performance of the annotiasitat gold standard,
and then refines the gold standard based on the performance mea&arspecifically discussed
binary/categorical/ordinal classification and regression problems.

We made two key assumptions: (1) the performance of each annotatoratadepend on the
feature vector for a given instance and (2) conditional on the truth thertexare independent, that
is, they make their errors independently. As we pointed out earlier thesenptions are not true
in practice. The annotator performance depends on the instance helisgab® there is some
degree of correlation among the annotators. We briefly discuss someigtsate relax these two
assumptions.

7.1 Instance Difficulty

One drawback of the current model is that it doesn’t estimate difficulty wistdt is often observed
that for the easy instances all the annotators agree on the labels—thumgiolar conditional
independence assumption. The difficulty of annotating an item can be ediyranother latent
variabley; for each instance—which modulates the annotators performance. Mod#issibave
been developed in the area of item-response theory (Baker and Kim), 20@4so in epidemiol-
ogy (Uebersax and Grove, 1993)—see also Whitehill et al. (2009) fecent paper in the machine
learning community. While these models do not take into account the availalleeeaur pro-
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posed model for sensitivity and specificity can be extended as followsa@e pf (1) and (2)):
ol (yi) := Py} = 1y = 1,v] = o(ajo + bjayi)-

B'(vi) := Prly! = Oly: = 0,y] = a(ajo+ bjoy)-
Here the parameteig; andajo are related to the sensitivity and specificity of tf& annotator,
while the latent terny; captures the difficulty of the instance. The key assumption here is that the
annotators are independent conditional on hp@mdy;. Various assumptions can be made on two
parameterd;; andbjo to simplify these models further—for example we could Isgt= b; and
bjo = b for all the annotators.

7.2 Annotators Actually Look at the Data

In our model we made the assumption that the sensitivitgnd the specificitp! of the jt" annota-
tor does not depend on the feature veatprFor example, in the CAD domain, this meant that the
radiologist’'s performance is consistent across different sub-grotipata—which is not entirely
true. It is known that some radiologists are good at detecting certain kinaalanant lesions
based on their training and experience. We can extend the previous suntiethat the sensitivity
and the specificity depends on the feature vegtaxplicitly as follows

_ _ -
ol (yi, i) := Pyl = 1)y = 1,yi,xi] = o(aj1 + bjayi + wi z).

. . -
al (vi,2i) 1= Prly! = Olyi = 0,yi,zi] = o(@jo+ bjovi +wy ).
However this change increases the number of parameters to be learned.
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