Journal of Machine Learning Research 11 (2010) 1043-1080 bm8ted 10/08; Revised 12/09; Published 3/10

Message-passing for Graph-structured Linear Programs: Proximal
Methods and Rounding Schemes

Pradeep Ravikumar PRADEEPROSTAT.BERKELEY.EDU
Department of Statistics

University of California, Berkeley

Berkeley, CA 94720

Alekh Agarwal ALEKH @CS.BERKELEY.EDU
Department of Electrical Engineering and Computer Scisnce

University of California, Berkeley

Berkeley, CA 94720

Martin J. Wainwright WAINWRIG @STAT.BERKELEY.EDU
Department of Statisti¢s

University of California, Berkeley

Berkeley, CA 94720

Editor: Yair Weiss

Abstract

The problem of computing a maximum a posteriori (MAP) configion is a central computational
challenge associated with Markov random fields. There has seme focus on “tree-based” linear
programming (LP) relaxations for the MAP problem. This pagevelops a family of super-linearly
convergent algorithms for solving these LPs, based on pralininimization schemes using Breg-
man divergences. As with standard message-passing onsgtaphalgorithms are distributed and
exploit the underlying graphical structure, and so scalkéteéarge problems. Our algorithms have
a double-loop character, with the outer loop correspontbirthe proximal sequence, and an inner
loop of cyclic Bregman projections used to compute eachiprakupdate. We establish conver-
gence guarantees for our algorithms, and illustrate tlegfopmance via some simulations. We also
develop two classes of rounding schemes, deterministicarbmized, for obtaining integral con-
figurations from the LP solutions. Our deterministic rourgdschemes use a “re-parameterization”
property of our algorithms so that when the LP solution iggn&l, the MAP solution can be ob-
tained even before the LP-solver converges to the optimura. al8b propose graph-structured
randomized rounding schemes applicable to iterative UArgpalgorithms in general. We ana-
lyze the performance of and report simulations compariegelrounding schemes.

Keywords: graphical models, MAP Estimation, LP relaxation, proximmahimization, rounding
schemes

1. Introduction

A key computational challenge that arises in applications of discrete gedphociels is to compute
the most probable configuration(s), often referred to asrtagimum a posterioliMAP) problem.
Although the MAP problem can be solved exactly in polynomial time on treesr(eamd generally,
graphs with bounded treewidth) using the max-product algorithm, it is cotiquedly challenging
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for general graphs. Indeed, the MAP problem for general disgrejghical models includes a large
number of classical NP-complete problems as special cases, includingGAAX independent set,
and various satisfiability problems.

This intractability motivates the development and analysis of methods for olga@pproximate
solutions, and there is a long history of approaches to the problem. Os@€tlagthods is based on
simulated annealing (Geman and Geman, 1984), but the cooling schedylasddor theoretical
guarantees are often prohibitively slow. Besag (1986) proposed theeiieconditional modes algo-
rithm, which performs a sequence of greedy local maximizations to approxinekAP solution,
but may be trapped by local maxima. Greig et al. (1989) observed thhirfary problems with at-
tractive pairwise interactions (the ferromagnetic Ising model in statisticaipbiyerminology), the
MAP configuration can be computed in polynomial-time by reduction to a max-ftob@m. The
ordinary max-product algorithm, a form of non-serial dynamic-progréng (Bertele and Brioschi,
1972), computes the MAP configuration exactly for trees, and is alsadraly applied to graphs
with cycles. Despite some local optimality results (Freeman and Weiss, 200dykight et al.,
2004), it has no general correctness guarantees for graph wigscwnd even worse, it can con-
verge rapidly to non-MAP configurations (Wainwright et al., 2005) nefee problems that are easily
solved in polynomial time (e.g., ferromagnetic Ising models). For certain gralpinodels arising
in computer vision, Boykov et al. (2001) proposed graph-cut basaitk algorithms that compute
a local maximum over two classes of moves. A broad class of methods & drathe principle of
convex relaxation, in which the discrete MAP problem is relaxed to a conptmization problem
over continuous variables. Examples of this convex relaxation probldodmtinear programming
relaxations (Koval and Schlesinger, 1976; Chekuri et al., 2005; Waght et al., 2005), as well
as quadratic, semidefinite and other conic programming relaxations (fondestgRavikumar and
Lafferty, 2006; Kumar et al., 2006; Wainwright and Jordan, 2004)).

Among the family of conic programming relaxations, linear programming (LPXagilan is the
least expensive computationally, and also the best understood. Theypfouas of this paper is a
well-known LP relaxation of the MAP estimation problem for pairwise Markawdom fields, one
which has been independently proposed by several groups (Koggbehlesinger, 1976; Chekuri
et al., 2005; Wainwright et al., 2005). This LP relaxation is based on optigiauer a set of
locally consistent pseudomarginals on edges and vertices of the graighanl exact method for
any tree-structured graph, so that it can be viewed naturally as adsee-hP relaxatioh.The first
connection between max-product message-passing and LP relaxasiomagea by Wainwright et al.
(2005), who connected the tree-based LP relaxation to the class aoewegghted max-product
(TRW-MP) algorithms, showing that TRW-MP fixed points satisfying a strdnge agreement”
condition specify optimal solutions to the LP relaxation.

For general graphs, this first-order LP relaxation could be solvedeaat in principle—by
various standard algorithms for linear programming, including the simplex &sdarrpoint meth-
ods (Bertsimas and Tsitsikilis, 1997; Boyd and Vandenberghe, 20@#)ettr, such generic meth-
ods fail to exploit the graph-structured nature of the LP, and hencetscale favorably to large-
scale problems (Yanover et al., 2006). A body of work has extendedaieection between the
LP relaxation and message-passing algorithms in various ways. Kolmo{108) developed a
serial form of TRW-MP updates with certain convergence guaranteegsjso showed that there
exist fixed points of the TRW-MP algorithm, not satisfying strong tree agese, that do not cor-

1. In fact, this LP relaxation is the first in a hierarchy of relaxations, thasethe treewidth of the graph (Wainwright
etal., 2005).

1044



MESSAGEPASSINGFOR GRAPH-STRUCTUREDLINEAR PROGRAMS

respond to optimal solutions of the LP. This issue has a geometric interpretaimted to the fact
that coordinate ascent schemes (to which TRW-MP is closely related}, neconverge to the
global optima for convex programs that are not strictly convex, but emore trapped in cor-
ners. Kolmogorov and Wainwright (2005) showed that this trapping q@inema does not arise
for graphical models with binary variables and pairwise interactions, $d &&/-MP fixed points
are always LP optimal. Globerson and Jaakkola (2007b) developddtaddut different dual-
ascent algorithm, which is guaranteed to converge but is not guaranteelde the LP. Weiss et al.
(2007) established connections between convex forms of the sumegbaddarithm, and exactness
of reweighted max-product algorithms; Johnson et al. (2007) alscopeapalgorithms related to
convex forms of sum-product. Various authors have connected tiveaoydnax-product algorithm
to the LP relaxation for special classes of combinatorial problems, includétghing (Bayati et al.,
2005; Huang and Jebara, 2007; Bayati et al., 2007) and indepesetdSanghavi et al., 2007). For
general problems, max-product does solve the LP; Wainwright et al. (2005) describe a instance
of the MIN-CUT problem on which max-product fails, even though LPxa&l®n is exact. Other
authors (Feldman et al., 2002a; Komodakis et al., 2007) have implementgrhdigmt methods
which are guaranteed to solve the linear program, but such methods typiaa#ysub-linear con-
vergence rates (Bertsimas and Tsitsikilis, 1997).

This paper makes two contributions to this line of work. Our first contributiaa develop and
analyze a class of message-passing algorithms with the following propéneesonly fixed points
are LP-optimal solutions, they are provably convergent with at leastmeeic rate, and they have
a distributed nature, respecting the graphical structure of the problerof #hié algorithms in this
paper are based on the well-established idearaXimal minimization instead of directly solving
the original linear program itself, we solve a sequence of so-calledmabyroblems, with the
property that the sequence of associated solutions is guaranteed trgmhy the LP solution.
We describe different classes of algorithms, based on differentehoicthe proximal function:
guadratic, entropic, and tree-reweighted entropies. For all choiceshaw how the intermedi-
ate proximal problems can be solved by forms of message-passing oragitethat are similar to
but distinct from the ordinary max-product or sum-product updates.additional desirable fea-
ture, given the wide variety of lifting methods for further constraining LiBxations (Wainwright
and Jordan, 2003), is that new constraints can be incorporated irtigelglaeamless manner, by
introducing new messages to enforce them.

Our second contribution is to develop various types of rounding scherataltbw for early
termination of LP-solving algorithms. There is a substantial body of pas (eog., Raghavan and
Thompson, 1987) on rounding fractional LP solutions so as to obtain alteglutions with approx-
imation guarantees. Our use of rounding is rather different: insteadomgder rounding schemes
applied to problems for which the LP solution is integral, so that rounding wieelldnnecessary
if the LP were solved to optimality. In this setting, the benefit of certain roungingedures (in
particular, those that we develop) is allowing an LP-solving algorithm to beinatedbeforeit has
solved the LP, while still returning the MAP configuration, either with a deterriinis high prob-
ability guarantee. Our deterministic rounding schemes apply to a class oitlahgemwhich, like
the proximal minimization algorithms that we propose, maintain a certain invariaheairiginal
problem. We also propose and analyze a class of graph-structudmhrezed rounding procedures
that apply to any algorithm that approaches the optimal LP solution from théointé the relaxed
polytope. We analyze these rounding schemes, and give finite bourttle anmber of iterations
required for the rounding schemes to obtain an integral MAP solution.
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The remainder of this paper is organized as follows. We begin in Section Zoasitkground
on Markov random fields, and the first-order LP relaxation. In Sectjame3introduce the notions
of proximal minimization and Bregman divergences, then derive varionsestage-passing algo-
rithms based on these notions, and finally discuss their convergenaigepSection 4 is devoted
to the development and analysis of rounding schemes, both for our prlostimames as well as
other classes of LP-solving algorithms. We provide experimental resulesciiog 5, and conclude
with a discussion in Section 6.

2. Background

We begin by introducing some background on Markov random fieldstreanidP relaxations that are
the focus of this paper. Given a discrete space {0,1,2,...,m—1}, let X = (Xg,...,Xy) € XN
denote aN-dimensional discrete random vector. (While we have assumed the variakéevalues

in the same sek, we note that our results easily generalize to the case where the varidtdes ta
values in different sets with differing cardinalities.) We assume that the disoidP of the random
vector is a Markov random field, meaning that it factors according to thetste of an undirected
graphG = (V,E), with each variableXs associated with one nodec V, in the following way.
LettingBs: X — R andBg : X x X — R be singleton and edgewise potential functions respectively,
we assume that the distribution takes the form

P(x;6) O exp{ Z/GS(XS)+ z Bst(Xs, %) }-

(st)eE
The problem ofmaximum a posteriorffMAP) estimation is to compute a configuration with
maximum probability—that is, an element
X € argmax{ Z/BS(XS) +
Sc

xeXxN

S Bslx )}, (1)
(st)eE

where the arg max operator extracts the configurations that achieve thmahealue. This problem
is an integer program, since it involves optimizing over the discrete sp¥c€&or future reference,
we note that the functiorf;(-) and6g(-) can always be represented in the form

Bs(Xs) = Z Bsjl[xs = j],
JEX

Bst(Xs, %) = g Ost;jkI[Xs = J; % = K],
j.kex

where them-vectors{8sj,j € X} andmx m matrices{6s;jk, (j,K) € X x X} parameterize the
problem.

The first-order linear programming (LP) relaxation (Koval and SchlesiritP76; Chekuri et al.,
2005; Wainwright et al., 2005) of this problem is based on a set of pseajinalsys and pst,
associated with the nodes and vertices of the graph. These pseudaisaageconstrained to be
non-negative, as well to normalize and be locally consistent in the follovenges

> Ws(x) = 1, forallseV,and ()
Xs€EX
Z Hot(Xs; %) = Hs(Xs) forall (sit) € E, xs € X. (3)
X €X
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The polytope defined by the non-negativity constrajnts 0, the normalization constraints (2) and
the marginalization constraints (3), is denotedllf5). The LP relaxation is based on maximizing
the linear function

O = Z/Zes Xs) Hs(Xs) + Z Z Bst(Xs, %) Hst(Xs, X ), (4)

Se (st)EE Xs;%

subject to the constraipte L(G).

In the sequel, we write the linear program (4) more compactly in the formasy (6, 1.
By construction, this relaxation is guaranteed to be exact for any problem tree-structured
graph (Wainwright et al., 2005), so that it can be viewed as a treatbratsxation. The main
goal of this paper is to develop efficient and distributed algorithms for splt¥iis LP relaxatior?,
as well as strengthenings based on additional constraints. For instaeceatural strengthening is
by “lifting”: view the pairwise MRF as a particular case of a more generaFMh higher order
cliques, define higher-order pseudomarginals on these cliques, atigens to impose higher-order
consistency constraints. This particular progression of tighter relasatinderlies the Bethe to
Kikuchi (sum-product to generalized sum-product) hierarchy (Yedita., 2005); see Wainwright
and Jordan (2003) for further discussion of such LP hierarchies.

3. Proximal Minimization Schemes

We begin by defining the notion of a proximal minimization scheme, and varioes typdiver-
gences (among them Bregman) that we use to define our proximal segudnstead of dealing
with the maximization problem max;,)(0, 1), it is convenient to consider the equivalent mini-
mization problem,

min —{(0, .
min, CAW

3.1 Proximal Minimization

The class of methods that we develop are based on the notion of proximal naitionigBertsekas
and Tsitsiklis, 1997). Instead of attempting to solve the LP directly, we soleguesice of problems
of the form

n+1

W =arg mln{—(e, u>+$1Df(ullu”)}, (5)

HEL(G)

where for iteration numbers=0,1,2, ..., the vectoid" denotes current iterate, the quantityis a
positive weight, andD¢ is a generalized distance function, known as the proximal function. (Note
that we are using superscripts to represent the iteration numditdor the power operation.)

The purpose of introducing the proximal function is to convert the oridiRalwhich is convex
but not strictly so—into a strictly convex problem. The latter property is del&ri®mr a number of
reasons. First, for strictly convex programs, coordinate desceatrsehare guaranteed to converge
to the global optimum; note that they may become trapped for non-strictly cpneblems, such as
the piecewise linear surfaces that arise in linear programming. Mordbeetpal of a strictly con-
vex problem is guaranteed to be differentiable (Bertsekas, 1995gramgee which need not hold

2. The relaxation could fail to be exact though, in which case the optintati@o to the relaxed problem will be
suboptimal on the original MAP problem
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for non-strictly convex problems. Note that differentiable dual functicens in general be solved
more easily than non-differentiable dual functions. In the sequel, we sloav for appropriately
chosen generalized distances, the proximal sequgfigecan be computed using message passing
updates derived from cyclic projections.

We note that the proximal scheme (5) is similar to an annealing scheme, in thativies\per-
turbing the original cost function, with a choice of weights"}. While the weights{w"} can be
adjusted for faster convergence, they can also be set to a consttke, fon standard annealing
procedures in which the annealing weight is taken to 0. The reason iBthall u™), as a gen-
eralized distance, itself converges to zero as the algorithm approaehagstimum, thus providing
an “adaptive” annealing. For appropriate choice of weights and prdXimetions, these proximal
minimization schemes converge to the LP optimum with at least geometric and pasgibljinear
rates (Bertsekas and Tsitsiklis, 1997; lusem and Teboulle, 1995).

In this paper, we focus primarily on proximal functions that are Bregmegrgéences (Censor
and Zenios, 1997), a class that includes various well-known diveggemmong them the squared
£o-distance and norm, and the Kullback-Leibler divergence. We say flatction f : S— R, with
domainSC RP, is aBregman functiorif int S# 0 and it is continuously differentiable and strictly
convex on intS. Any such function induces Bregman divergence D Sx intS— R as follows:

Di(M[|v) = f()—Tf(v)—(OF(v), ) -v). (6)

Figure 1 illustrates the geometric interpretation of this definition in terms of the naag@roxi-
mation. A Bregman divergence satisfleg(l! || v) > 0 with equality if and only iff = v, but need
not be symmetric or satisfy the triangle inequality, so it is only a generalizechdestdurther re-
strictions on the inducing functioh are thus required for the divergence to be “well-behaved,” for
instance that it satisfy the property that for any sequerfice> v*, wherev" € int S v* € S, then
D¢ (v*||v") — 0. Censor and Zenios (1997) impose such technical conditions explicitlyein th
definition of a Bregman function; in this paper, we impose the stronger yet gasily stated con-
dition that the Bregman functioh (as defined above) be of Legendre type (Rockafellar, 1970). In
this case, in addition to the Bregman function properties, it satisfies the folgwaperty: for any
sequenc@" — p* wherep" € int S, pu* € dS, it holds that| O f (U")|| — 0. Further, we assume that
the rangedf (int S) = RP.

Let us now look at some choices of divergences, proximal minimizatiors&gd on which we
will be studying in the sequel.

3.1.1 QUADRATIC DIVERGENCE

This choice is the simplest, and corresponds to setting the inducing Bregn@iofuf in (6) to be
the quadratic function

a = ;{S;zuaxsw S S e,

Xs€X (st)€E (xs,x)eX XX

defined over nodes and edges of the graph. The divergence idiiy@y the quadratic norm across
nodes and edges

1 1
Qv =5 3 Ihe-velP+5 3 vl ™)

(st)€eE
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Figure 1: Graphical illustration of a Bregman divergence.

where we have used the shorthafid — vs||? = 3, x |Hs(Xs) — Vs(Xs)|?, with similar notation for
the edges.

3.1.2 WEIGHTED ENTROPICDIVERGENCE

Another choice for the inducing Bregman function is the weighted sum cftivegentropies

ﬁa(“—): Z/ngs(Us)+ z GStl_TSt(“St)v 8)

se (st)eE

whereHs andHs; are defined by

Hs(bs) 1= Y Hs(xs)loghis(xs), and

Xs€X

Ha(bst) 1= 5 Hotl¥s, %) l0gHei(%s. %),

(X, X ) EX X X

corresponding to the node-based and edge-based negative entreppectively. The correspond-
ing Bregman divergence is a weighted sum of Kullback-Leibler (KL) djeaces across the nodes
and edges. In particular, lettirg; > 0 andag; > 0 be positive weights associated with ncoend
edge(s,t) respectively, we define

Da(H[lV) = Z/GSD(USHVS)‘F(; AstD (Mst[| Vst), ©)
se st)eE

whereD(p||q) := ¥ (p(X) Iog% — [p(x) = q(x)]) is the KL divergence. An advantage of the
KL divergence, relative to the quadratic norm, is that it automatically actsfev@non-negativity
constraints on the pseudomarginals in the proximal minimization problem. (St@erSge for a

more detailed discussion of this issue.)

3.1.3 TREE-REWEIGHTEDENTROPICDIVERGENCE

Our last example is based ortrae-reweightedentropy. The notion of a tree-reweighted entropy
was first proposed by Wainwright et al. (2002). Their entropy fumctiowever while a Bregman
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function is not of the Legendre type. Nonetheless let us first descelirgpttoposed function. Given
a set7 of spanning tree$ = (V,E(T)), and a probability distributiop overZ, we can obtain edge
weightspg: € (0, 1] for each edgés,t) of the graphG aspst = St I((s,t) € E). Given such edge
weights, define

frw(W) = ;H_s(us) + > Pstlst(Hst); (10)
se (st)eE
whereH is the negative entropy as defined earlier, while the quahtitiefined as
pst(XS7Xt)
% x Hst(Xs, X)] [T Mot (X6, % )]
is the mutual information associated with edget). It can be shown that the functiofy is
strictly convex and continuously differentiable when restricted ¢oL.(G); and in particular that it

is a Bregman function with domaiin(G). Within its domainL(G), the function can be re-expressed
as a weighted negative entropy family (8),

frw() = Z/(l— Z Pst)"_'t(ut)-i- z pstl'Tst(ust),
se t:(st)eE (st)eE

Ist(bst) = Z Hst(Xs, % ) l0g
(Xe, Xt ) EX X X [

but where the node entropy weiglits:= 1 — 3 .s1)ce Pst are not always positive. The correspond-
ing Bregman divergence belongs to the weighted entropic family (9), witk naightsas defined
above, and edge-weights; = ps;. However as stated above, this tree-reweighted entropy function
is not of Legendre type, and hence is not admissible for our proximal mintimizarocedure (5).
However, Globerson and Jaakkola (2007a) proposed an altertratveeweighted entropy that
while equal tofyw (M) for pe L(G) is yet convex for all (not just when restricted th(G)). Their
proposed function is described as follows. For each undirected ed§ecionstruct two oriented
edges in both directions; denote the set of these oriented edgés bhen given node weights
Pos € (0,1] for each node € V, and edge weights; < (0, 1] for oriented edgeé — s) € E, define

fow(H) 1= ;posgs(lis)‘f‘ Z 7ps|t|_Ts\t(uSt)v (11)
S (t—s)eE
where the quantityis, defined as
n Hst(Xs, %)
Hgp(Mst) = Hst(Xs, Xt) log ——————"—,
st (xs,x()%xxx st\ Xs ZX’SuSt(ngxt)

is the conditional entropy ofs given X; with respect to the joint distributiops. It can be shown
that this oriented tree-reweighted entropy is not only a Bregman functiondeitiain the non-
negative orthanR" , but is also of Legendre type, so that it is indeed admissible for our proxima
minimization procedure. The corresponding divergence is given as,
Do(ufv) = ;posD(usHvs) + 5 Pst(D(Hst[| Vst) + D (Hst [ Vst))
Sc

t—scE

whereD(p||q) is the KL divergence, anB(- | -) is a KL divergence like term, defined as

D [ZXgVSt(Xlsaxt)]
DMt [[Vet) 1= s X )log==—— > =
i) (XSaXt)%.XXX b X109 [ bst (X5, %0 )]
Ve x) )

[ZX,’SVSt(X/S,Xt)] [Ust(X37Xt) Vst(Xs,Xt>].
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3.2 Proximal Sequences via Bregman Projection

The key in designing an efficient proximal minimization scheme is ensuring tegirtdximal se-
quence{p"} can be computed efficiently. In this section, we first describe how seqaef prox-
imal minimizations (when the proximal function is a Bregman divergence) caafoemulated as
a particular Bregman projection. We then describe how this Bregman projectivitself be com-
puted iteratively, in terms of a sequence of cyclic Bregman projectionss(Cemd Zenios, 1997)
based on a decomposition of the constrainflg&). In the sequel, we then show how these cyclic
Bregman projections reduce to very simple message-passing updates.

Given a Bregman divergend®, the Bregman projectiorof a vectorv onto a convex set is
given by

R o= argminD¢(U||v). (12)
peC

That this minimum is achieved and is unique follows from our assumption thatitietidn f is of
Legendre type and from Theorem 3.12 in Bauschke and Borwein }1887hat the projection is
well-defined. We define the projection operator

Mc(v) :=argminDs (K[| v), (13)
peC

where we have suppressed the dependence on the Bregman fuinatitime notation. When the
constraint se€ = NM ,C; is an intersection of simpler constraint sets, then a candidate algorithm
for the Bregman projection is to compute it ircgclic manner by iteratively projecting onto the
simple constraint setfC;} (Censor and Zenios, 1997). Define the sequence

IJtH = nCi(t) (Ut)7

for some control sequence paramdtelN — {1,...,M} that takes each output value an infinite
number of times, for instandét) = tmodM. It can be shown thavhen the constraints are affine
then such cyclic Bregman projectiopisconverge to the projectiginonto the entire constraint set as
defined in (12) so that* — [i (Censor and Zenios, 1997). But when a constiGjié non-affine, the
individual projection would have to be followed by a correction (Dykst&885; Han, 1988; Censor
and Zenios, 1997) in order for such convergence to hold. In Apgehdve have outlined these
corrections briefly for the case where the constraints are linear ineqgsiaktie ease of notation, we
will now subsume these corrections into the iterative projection notgtioh,= I'Iq(t)(ut), so that
the notation assumes that the Bregman projections are suitably correctedhelmnstraint€
are non-affine. In this paper, other than positivity constraints, we witidmeerned only with affine
constraints, for which no corrections are required.

Let us now look at the stationary condition characterizing the optimui(12). As shown in
for instance Bertsekas (1995), the optimpimf any constrained optimization problem mig (1)
is given by the stationary condition,

(Og(l), u—m >0, (14)

for all pe C. For the projection problem (12), the gradient of the objecEvéu||v) := f(p) —
f(v)—(Of(v), u—v) with respect to the first argumepis given byl f (u) — Of (v), which when
substituted in (14) yields the stationary condition of the optiniuas

(Of([@-0f(v),u—f) > 0, (15)
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for all p € C. Now consider the proximal minimization problem to be solved at stemamely the
strictly convex problem

1
i —(0 —D M 5. 16
ugl(g){ 0w+ f(ullu)} (16)
Solving for the derivative of this objective with respectytas —6 + 5 (Of (W) — Of(4")), and
substituting in (14), we obtain the conditions defining the optinpiit as

(OF () — Of () -0, u— ™) > 0,

for all p€ L(G). Comparing these with the conditions for Bregman projection (15), we se# tha
there exists a vectar such that
Of(v) = Of (1) + "8, (17)

then the proximal iteratg™"? is the Bregman projection of this vectoronto the sefl.(G). As
shown in Bauschke and Borwein (1997), for any functfoaf Legendre type with domai§, the
gradientJf is a one-to-one function with domain i8f so that its inverséf) ! is a well-defined
function on the rangélf(int S) of Of. Since we have assumed that this rang&fswe can thus
obtain the unique which satisfies the condition in (17) &s= (Of)~1(0f (W) + w'8) (Note that
the range constraint could be relaxed to only require that the rangé bk a cone containing).
Accordingly, we set up the following notation: for any Bregman functipmduced divergencBy,
and convex set, we define the operator

() = (OF) T () +v).
We can then write the proximal update (16) in a compact manner as the codguboperation

= Mg (Jf(una(*)ne))

Consequently, efficient algorithms for computing the Bregman projectioncdr2 be leveraged to
compute the proximal update (16). In particular, we consider a decompogititbe constraint set
as an intersectiond(G) = N}_; Ly (G)—and then apply the method of cyclic Bregman projections
discussed above. Initializing"® = u" and updating fronp™® — p™™+1 by projectingu™* onto con-
straint sefl;(;)(G), wherei(t) =1 modM, for instance, we obtain the meta-algorithm summarized
in Algorithm 1.

As shown in the following sections, by using a decompositiofi.@®) over the edges of the
graph, the inner loop steps correspond to local message-passirtgssiightly different in nature
depending on the choice of Bregman distance. lIterating the inner andloopsryields a prov-
ably convergent message-passing algorithm for the LP. Converd@iaes from the convergence
properties of proximal minimization (Bertsekas and Tsitsiklis, 1997), comhiittdconvergence
guarantees for cyclic Bregman projections (Censor and Zenios, 190He following section, we
derive the message-passing updates corresponding to various Bragrfons of interest.

3.3 Quadratic Projections

Consider the proximal sequence with the quadratic distahéem Equation (7); the Bregman
function inducing this distance is the quadratic functegg) = %yz, with gradientdq(y) =y. A
little calculation shows that the operatgrtdkes the form

JQ(“J (*)e) = IH‘COG,
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Algorithm 1 Basic proximal-Bregman LP solver
Given a Bregman distand®, weight sequencéw"} and problem parameteés

« Initialize p° to the uniform distribution” (xs) = £, 1 (¥s, %) = .

e Outer Loop: For iterationan=0,1,2, ..., updateu"* = ML) (Jf (u”,wne)).

— Solve Outer Loop vidnner Loop:
(@) Inner initializationu™® = J¢ (", w"0).
(b) Fort =0,1,2,..., seti(t) =t modM.
(c) Updateu™** =y, ) (W)

whence we obtain the initialization in Equation (19).

We now turn to the projections™™+1 = Mq(u"7,Li(G)) onto the individual constraints;(G).
For each such constraint, the local update is based on the solving therprob

04— arg min {a) - v. 0 (19)

veLi(G)

In Appendix B.1, we show how the solution to these inner updates takes riine(2®) given in
Algorithm 2. The{Zs, Z} variables correspond to the dual variables used to correct the Bregman
projections for positivity (and hence inequality) constraints, as outline83hit Section 3.2.

3.4 Entropic Projections

Consider the proximal sequence with the Kullback-Leibler dist&n¢s| v) defined in Equation (9).
The Bregman functiom, inducing the distance is a sum of negative entropy functibfy =
ulogy, and its gradient is given by f (1) = log(p) + 1. In this case, some calculation shows that
the mapv = Js (1, w0) is given by

v = pexpwb/a),

whence we obtain the initialization Equation (21). In Appendix B.2, we de¢hgenessage-passing
updates summarized in Algorithm 3.

3.5 Tree-reweighted Entropy Proximal Sequences

In the previous sections, we saw how to solve the proximal sequencesifalohe algorithmic

template 1 and using message passing updates derived from cyclic Bregopections. In this

section, we show that for the tree-reweighted entropic divergendgsifiladdition to the cyclic

Bregman projection recipe of the earlier sections, we can also use weahted sum-product
or related methods (Globerson and Jaakkola, 2007b; Hazan andugha§i®8) to compute the
proximal sequence.
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Algorithm 2 Quadratic Messages fpf+!

Initialization:
K (k%) = K (%6 %) + WBst(Xs, %), (19)
W () = WY () +WBs(Xs).
(n0)
Zs(xs) = Us (XS)a
ZalXsx) = WY (Xs%):
repeat

for each edgés,t) € E do

(n,T+1)

1
) = W+ () (470 - i 0e0). 0
1
W) = ué”’”(xs)Jr(rM)( 0 (s +z (%% )
CSt(XSaXt) = min{ZSt(X57 ) “‘S?T-HL (XS7Xt)}7
ZSt(XS7Xt) = ZSI(X& ) CSI(XSa )7
o) = 06 0) ~ Cal6.%).

end for

1
M(Sn,T-~-l)(Xs) _ U< )(Xs)“‘ < zusnr Xs>,

Colxs) = min{Zs(xs), W™ (%)},
Zs(Xs) = Zs(Xs) —Cs(Xs),
uén,T+l)(Xs) _ usnr+l)( ) Cs(Xs)~

end for
until convergence

Recall the proximal sequence optimization problem (5) written as

1
n+1 : n
V) = arg min< — (6 +—D V)

gve]L(IG){ < ’V> w" f(VH )}

= argmin @)+ (10~ FG0) - @AMV (@)

Let us denotd®" := w"0+ Of ("), and set the Bregman functidnto the tree-reweighted entropy
fyw defined in (10) (or equivalently the oriented tree-reweighted entfgpy(11) since both are
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Algorithm 3 Entropic Messages fqu*+!
Initialization:

(% %) = Mo (X X)exp(oBsi(xs,%)/0s),  and (21)
W) = 1 (xs) expl(o" Bs(xs) /).

repeat
for each edgés,t) € E do

(n7) o
X Os+0st
ek = W0 (Y )T @)
ZX( pSt/ (XSaXt)

Ost
Os+0st

K0 = W () (Z e (XS’Xt)>
Xt

end for
for each nodescV do

() - HE0O) (23)

end for
until convergence

equivalent over the constraint detG)). The proximal optimization problem as stated above (24)
reduces to,
M= in {(6",v)+ f :
H argver]g(lg){( V) + few(V)}
But this is precisely the optimization problem solved by the tree-reweightedpsoduct (Wain-
wright and Jordan, 2003), as well as other related methods (Globansbiaakkola, 2007b; Hazan
and Shashua, 2008), for a graphical model with parameéters

Computing the gradient of the functidi,,, and performing some algebra yields the algorithmic
template of Algorithm 4.

3.6 Convergence

We now turn to the convergence of the message-passing algorithms thaves@ioposed. At a
high-level, for any Bregman proximal function, convergence followaftwo sets of known results:
(a) convergence of proximal algorithms; and (b) convergence dicdgoegman projections.

For completeness, we re-state the consequences of these resulEoharey positive sequence
w" > 0, we say that it satisfies thefinite travel conditionif $_1(1/w") = 4. We letp* € L(G)
denote an optimal solution (not necessarily unique) of the LP, anfl‘'usef (1*) = (6, yu*) to denote
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Algorithm 4 TRW proximal solver

e For outer iterations=0,1,2,.. .,

(a) Update the parameters:

Bl(x) = WOs(xs)+I0g(H(x)) +1,

n
B0 (X, Xt) = 'Bst(Xs,X) + Pst <|0 Hat (Xs: %) B 1) ‘

0 S B0 ) 3 ¢ K%, X)

(b) Run a convergent TRW-solver on a graphical model with param@feso as to com-
pute

n+1 ; _/pn
U = argveT(lg){ (9,v)+ftrw(v)}.

the LP optimal value. We say that the convergence ragapgrlinearif

LR 1
ORI

andlinear if

lim |f(Un+1) — f*’

— <
e i 1 =Y

for somey € (0,1). We say the convergenceggometricif there exists some consta@t> 0 and
y € (0,1) such that for alh,

[f(U) -7 < Cy.

Proposition 1 (Rate of outer loop convergence)Consider the sequence of iterates produced by a
proximal algorithm(5) for LP-solving.

(a) Using the quadratic proximal function and positive weight sequenites +o satisfying
infinite travel, the proximal sequengg"} converges superlinearly.

(b) Using the entropic proximal function and positive weight sequentsatisfying infinite
travel, the proximal sequend@t”} converges:

(i) superlinearly ifw" — 0, and
(i) atleast linearly if1/w" > c for some constants 0.

The quadratic case is covered in Bertsekas and Tsitsiklis (1997), aghére entropic case was
analyzed by Tseng and Bertsekas (1993), and lusem and Tebdfie) (1

Our inner loop message updates use cyclic Bregman projections, for thieiehis also a sub-
stantial literature on convergence. Censor and Zenios (1997) showithadual feasibility cor-
rection, cyclic projections onto general convex sets are convergenku€lidean projections with
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linear constraints, Deutsch and Hundal (2006) establish a linear rameérgence, with the rate
dependent on angles between the half-spaces defining the consframiatuition is that the more
orthogonal the half-spaces, the faster the convergence; for iestargingle iteration suffices for
completely orthogonal constraints. Our inner updates thus convergdyit@she solution within
each outer proximal step.

We note that the rate-of-convergence results for the outer proximas lesgume that the prox-
imal update (computed within each inner loop) has been performed exaciyadtice, the inner
loop iterations do not converge finitely (though they have a linear rate mfetgence), so that
an early stopping entails that the solution to each proximal update would beuteinpnly ap-
proximately, up to some accuraey That is, if the proximal optimization function at outer itera-
tion nis (W) with minimum u"1, then the computed proximal updaté™ is sub-optimal, with
h(u*+1) — h"(u"1) < &. Some recent theory has addressed whether superlinear coreegan
still be obtained in such a setting; for instance, Solodov and Svaiter (2b@%)s that that under
mild conditions superlinear rates still hold for proximal iterates with inner-lampt®ns that are
e-suboptimal. In practice, we cannot directly ssuboptimality as the stopping criterion for the
inner loop iterations since we do not have the optimal solyifoR. However, since we are trying to
solve a feasibility problem, it is quite natural to check for violation in the coimggaefiningL(G).
We terminate our inner iterations when the violation in all the constraints belowrarncke. As
we show in Section 5, our experiments show that setting this termination thrasteold 10~ is
small enough for sub-optimality to be practically irrelevant and that suparlioenvergence still
occurs.

3.6.1 REMARKS

The quadratic proximal updates turn out to be equivalent to solving the Igidnma of the LP by
the projected subgradient method (Bertsekas, 1995) for constramiesization. (This use of the
subgradient method should be contrasted with other work Feldman et @22 &omodakis et al.
(2007) which performed subgradient descent to the dual of the LParfycconstrained optimization
problem:

muin fo(W)
st. fi(w) <0, j=1,....m, (25)

the projected subgradient method performs subgradient descentébrati (i) the objective func-
tion fo, as well as on (i) the constraint functiof$; }’j“:l till the constraints are satisfied. Casting it
in the notation of Algorithm 1; over outer loop iterations= 1,.. ., it sets

WM = W' — anOfo (W),
and computes, over inner loop iteratidns 1,.. .,

jt) = t modm,

|.ln’t+l lJ.n,t — Oy 0 fj ® (un,t )’

and setg/™?! = ", the converged estimate of the inner loops of outer iteratiofihe constants
{an,ant} are step-sizes for the corresponding subgradient descent steps.

1057



RAVIKUMAR , AGARWAL AND WAINWRIGHT

The constraint set in our LP problef(G), has equality constraints so that it is not directly in
the form of Equation (25). However any equality constraifpt) = O can be rewritten equivalently
as two inequality constraintgp) < 0, and—h(p) < 0; so that one could cast our constrained LP
in the form of (25) and solve it using the constrained subgradient desoethod. As regards the
step-sizes, suppose we sgt= w", andap; according to Polyak’s step-size (Bertsekas, 1995) so
fio (W)= fjn (W)

[EETCEIE:
f; () = 0. Further, for the normalization constraitis(|) § 1 whereCsg(1) 1= 3 x.cx Hs(Xs) — 1,

we have||OCss() |2 = m, while for the marginalization constrain@s; (1) § 0, whereCg(p) :=

3 xex Mst(Xs, ) = Ps(Xs), we have||OCs(M)[|2 = (m+1). It can then be seen that the subgradient
method for constrained optimization applied to our constrained LP with the abepesizes yields
the same updates as our quadratic proximal scheme.

thatant = , Wherep* is the constrained optimum. Sinpéis feasible by definition,

4. Rounding Schemes with Optimality Guarantees

The graph-structured LP in (4) was a relaxation of the MAP integer progi1), so that there
are two possible outcomes to solving the LP: either an integral vertex is othtaitnéch is then
guaranteed to be a MAP configuration, or a fractional vertex is obtainedhich case the relax-
ation is loose. In the latter case, a natural strategy is to “round” the frattgmbution, so as to
obtain an integral solution (Raghavan and Thompson, 1987). Suctinguschemes may either be
randomized or deterministic. A natural measure of the quality of the rourddetiios is in terms of
its value relative to the optimal (MAP) value. There is now a substantial literatamperformance
guarantees of various rounding schemes, when applied to particutatesges of MAP problems
(e.g., Raghavan and Thompson, 1987; Kleinberg and Tardos, 18@8u€ et al., 2005).

In this section, we show that rounding schemes can be useful eventivadrd optimum is
integral, since they may permit an LP-solving algorithm tdfingely terminated—that is, before
it has actually solved the LP—while retaining the same optimality guarantees thiadfinal out-
put. An attractive feature of our proximal Bregman procedures is théeexis of precisely such
rounding schemes—namely, that under certain conditions, rounding@®euginals at intermedi-
ate iterations yields the integral LP optimum. We describe these rounding ssirethe following
sections, and provide two kinds of results. We provide certificates wmdieh the rounded solu-
tion is guaranteed to be MAP optimal; moreover, we provide upper boundsgmthber of outer
iterations required for the rounding scheme to obtain the LP optimum.

In the next Section 4.1, we describe and analyze deterministic roundiagsstthat are specif-
ically tailored to the proximal Bregman procedures that we have descrityah in the following
Section 4.2, we propose and analyze a graph-structured randomizeting scheme, which applies
not only to our proximal Bregman procedures, but more broadly to aroritign that generates a
sequence of iterates contained within the local polyfo(8).

4.1 Deterministic Rounding Schemes

We begin by describing three deterministic rounding schemes that explo#ttieutar structure of
the Bregman proximal updates.
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4.1.1 NODE-BASED ROUNDING

This method is the simplest of the deterministic rounding procedures, andsafaptiee quadratic
and entropic updates. It operates as follows: given the vggtof pseudomarginals at iteration
obtain an integral configuratiof(u") € XN by choosing

xt € argmayl(x,), foreachseV.
XsEX
We say that the node-rounded solutidris edgewise-consisteiit
(x2,x') € arg( max MY(X,X%)  forall edgegs,t) € E. (26)
LX)eXxX

4.1.2 NEIGHBORHOOD-BASED ROUNDING

This rounding scheme applies to all three proximal schemes. For eacls gddedenote its star-
shaped neighborhood graph by = {(s,t)|t € N(s)}, consisting of edges between nagland its
neighbors. LefQUA ENT, TRW} refer to the quadratic, entropic, and tree-reweighted schemes
respectively.

(a) Define the neighborhood-based energy function

20 (%) + Y H'(Xs, %) for QUA

teN(s)

FOcp") = ¢ 20slogus(xs) + Z asflogpl(xs, %) for ENT 27)

teN(s)

HS (%, %)
2logu"(xs) +t€%(s) pPstlog = THEATAEY for TRW.

(b) Compute a configuratiox'(Ns) maximizing the functiori(x; 1") by running two rounds of
ordinary max-product on the star graph.

Say that such a roundingnighborhood-consisteifthe neighborhood MAP solutions<"(Ns), s €
V} agree on their overlaps.

4.1.3 TREE-BASED ROUNDING

This method applies to all three proximal schemes, but most naturally to the TéXivhal method.
LetTy,..., Tk be a set of spanning trees that cover the graph (meaning that eacapmges in at
least one tree), and lép(Ti),i =1,...,K} be a probability distribution over the trees. For each
edge(s,t), define theedge appearance probabilipy: = z, 1P(T) I[(s,t) € Ti]. Then for each tree
i=1,...,K:

(a) Define the tree-structured energy function
y log'(x)+ 3 gologig(x,x)  for QUA
sV (st)eE(Ti)

Fogu") = ZGslogun(Xs)+ 2 o2 logpgi(xe, %) for ENT (28)
(st)eE(Ti)

z logu"(Xs) + Z log "S‘(’)‘s”‘&) for TRW.
(st)eE(T)
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(b) Run the ordinary max-product problem on energy; u") to find a MAP-optimal configura-
tion x"(T;).

Say that such a rounding ieee-consistenif the tree MAP solutiondx"(T;),i = 1,...,M} are all
equal. This notion of tree-consistency is similar to the underlying motivationedfe-reweighted
max-product algorithm (Wainwright et al., 2005).

4.1.4 CPTIMALITY CERTIFICATES FORDETERMINISTIC ROUNDING

The following result characterizes the optimality guarantees associated esthribunding schemes,
when they are consistent respectively in duge-consistengyeighborhood-consistenandtree-
consistencgenses defined earlier.

Theorem 2 (Deterministic rounding with MAP certificate) Consider a sequence of iteratgs'}
generated by the quadratic or entropic proximal schemes. For agyln2 3,..., any consistent
rounded solution % obtained from [ via any of the node, neighborhood or tree-rounding schemes
(when applicable) is guaranteed to be a MAP-optimal solution. For the iteratd RW proximal
scheme, the guarantee holds for both neighborhood and tree-rounubitgpds.

We prove this claim in Section 4.1.6. It is important to note that such deterministiziiiog
guarantees daot apply to an arbitrary algorithm for solving the linear program. At a highileve
there are two key properties required to ensure guarantees in thénmguhRast, the algorithm must
maintain some representation of the cost function that (up to possible coatmts) is equal to
the cost function of the original problem, so that the set of maximizers of tlaiamce would
be equivalent to the set of maximizers of the original cost function, andéhthe MAP problem.
Second, given a rounding scheme that maximizes tractable sub-partsreptrameterized cost
function, the rounding is said to be admissible if these partial solutions agfteene another. Our
deterministic rounding schemes and optimality guarantees follow this appamele detail in the
proof of Theorem 2.

We note that the invariances maintained by the proximal updates in this pemptosely related
to the reparameterization condition satisfied by the sum-product and mduepedgorithms (Wain-
wright et al., 2003). Indeed, each sum-product (or max-producthteocan be shown to compute
a new set of parameters for the Markov random field that preservgsrobability distribution.
A similar but slightly different notion of reparameterization underlies the tesesighted sum-
product and max-product algorithms (Wainwright et al., 2005); foretadgorithms, the invariance
is preserved in terms of convex combinations over tree-structured graphe tree-reweighted
max-product algorithm attempts to produce MAP optimality certificates that aegllin verifying
consistency of MAP solutions on certain tree-structured componentsewdars’ex combination
is equal to the LP cost. The sequential TRW-S max-product algorithm whégorov (2006) is
a version of tree-reweighted max-product using a clever schedulititeahessages to guarantee
monotonic changes in a dual LP cost function. Finally, the elegant wokikei$s et al. (2007)
exploits similar reparameterization arguments to derive conditions under wiachconvex free-
energy based sum-product algorithms yield the optimal MAP solution.

An attractive feature of all the rounding schemes that we consider is étaiively low compu-
tational cost. The node-rounding scheme is trivial to implement. The neigbbd+tbased scheme
requires running two iterations of max-product for each neighborluddtie graph. Finally, the
tree-rounding scheme requirégKN) iterations of max-product, whei€ is the number of trees
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that cover the graph, ard is the number of nodes. Many graphs with cycles can be covered with
a small numbeK of trees; for instance, the lattice graph in 2-dimensions can be coveretagith
spanning trees, in which case the rounding cost is linear in the numbede$no

4.1.5 BOUNDS ONITERATIONS FORDETERMINISTIC ROUNDING

Of course, the natural question is how many iterations are sufficientd@igen rounding scheme
to succeed. The following result provides a way of deriving such uppends:

Corollary 3 Suppose that the LP optimum is uniquely attained at an integral vefteand con-
sider algorithms generating sequenge'} converging to L Then we have the following guaran-
tees:

(a) for quadratic and entropic schemes, all three types of roundinguercthe MAP solution
once||u" — Mo < 1/2.

(b) for the TRW-based proximal method, tree-based rounding rezdhe MAP solution once
I — bl < -
Proof We first claim that if the/e,-bound||u" — || < 3 is satisfied, then the node-based rounding
returns the (unique) MAP configuration, and moreover this MAP corditijumx* is edge-consistent
with respect tq1". To see these facts, note that thebound implies, in particular, that at every node
seV, we have L
H506) — K 06)] = [H50) =1 < 3,

which implies thap(x5) > 1/2 asps(x5) = 1. Due to the non-negativity constraints and marginal-
ization constrainty, .y U"(Xs) = 1, at most one configuration can have mass abg\z Trhus,
node-based rounding returrSat each nods, and hence overall, it returns the MAP configuration
X*. The same argument also shows that the inequplitys, x°) > % holds, which implies that
(X5,%) = argmax, x, I"(xs, %) for all (s,t) € E. Thus, we have showxt is edge-consistent fqQu;,
according to the definition (26).

Next we turn to the performance of neighborhood and tree-roundintpéoquadratic and en-
tropic updates. Fan > n*, we know thatx* achieves the unique maximum idf(xs) at each node,
and pg(xs, %) on each edge. From the form of the neighborhood and tree energig&2@),
this node- and edge-wise optimality implies thatN(s)) := {X',t € sSUN(s)} maximizes the
neighborhood-based and tree-based cost functions as well, whichsmplieess of neighborhood
and tree-rounding. (Note that the positivity of the weighi®ndag; is required to make this asser-
tion.)

For the TRW algorithm in part (b), we note that whigd' — pj| < 1/(4N), then we must have
HO(X5) > 1—1/(4N) for every node. We conclude that these inequalities implyxhat(x;, ..., x\)
must be the unique MAP on every tree. Indeed, consider th®sefx € XN | x# x*}. By union
bound, we have

P(S) =P[3seV | Xs # Xg]

<Y Pxs#X)

z ﬁfv1z

Al

= Zx(l_ Ks(X%s)) <

f
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showing that we havB(x*) > 3/4, so that* must be the MAP configuration.

To conclude the proof, note that the tree-rounding scheme computes tRechtfliguration on
each treel;, under a distribution with marginalg ands;. Consequently, under the stated condi-
tions, the configuratior* must be the unique MAP configuration on each tree, so that tree rounding
is guaranteed to find it. [ ]

Using this result, it is possible to bound the number of iterations required tevactne/..-
bounds. In particular, suppose that the algorithm has a linear ratewdrgemce—say thaf (L") —
f(u)| < | f(WO) — f(u)|y" for somey € (0,1). For the quadratic or entropic methods, it suffices to
show that||" — p*||2 < 1/2. For the entropic method, there exists some con§tant0 such that
U — |2 < 5| F(U") — ()| (cf. Prop. 8, lusem and Teboulle, 1995). Consequently, we have

N [ (10) — F (1)
W=z < Tyn

Consequently, aftem : W iterations, the rounding scheme would be guaranteed to

configuration for the entropic proximal method. Similar finite iteration boundsatso be obtained
for the other proximal methods, showing finite convergence throughfus& counding schemes.

Note that we proved correctness of the neighborhood and tree-tmas®ting schemes by lever-
aging the correctness of the node-based rounding scheme. In pradipessible for neighborhood-
or tree-based rounding to succeed even if node-based roundindfaisver, we currently do not
have any sharper sufficient conditions for these rounding schemes.

4.1.6 RROOF OFTHEOREM?2

We now turn to the proof of Theorem 2. At a high level, the proof consiktsvo main steps.
First, we show that each proximal algorithm maintains a certain invariant obrigegnal MAP
cost functionF (x; 8); in particular, the iterat@” induces a reparameterizatiéiix; ") of the cost
function such that the set of maximizers is preserved—viz.:

argmaxF (x;6) :=argmax % 6s(xs) + > Bst(Xs, 1) = arg max (x; . (29)
xexXN XeXN se\fzex (St)EE X, % €X xex

Second, we show that the consistency conditions (edge, neighboohtre, respectively) guaran-
tee that the rounded solution belongs to arggaxF (x; u")
We begin with a lemma on the invariance property:

Lemma 4 (Invariance of maximizers) Define the function

Y Ms(Xs) + Y Hst(Xs, ) for QUA
sV (st)eE
F(X' ) = z Gslog uS(XS) + z Gstlog lJSt(XSuXt) f0r ENT (30)
H seV (st)eE
logps(Xs) + log HeX for TRW.
SGZV QUS( S) (5,'§6Ep3t gps(xs) ( )

At each iteration n= 1,2, 3, ... for which ' > 0, the function Ex; u") preserves the set of maximiz-
ers(29).
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The proof of this claim, provided in Appendix C, is based on exploiting thessary (Lagrangian)
conditions defined by the optimization problems characterizing the sequeemtons{|"}.

For the second part of the proof, we show how a solutigrobtained by a rounding procedure,
is guaranteed to maximize the functibiix; 1), and hence (by Lemma 4) the original cost function
F(x;8). In particular, we state the following simple lemma:

Lemma 5 The rounding procedures have the following guarantees:

(a) Any edge-consistent configuration from node rounding maximiges'H for the quadratic
and entropic schemes.

(b) Any neighborhood-consistent configuration from neighborhoodding maximizes
F (x;u") for the quadratic and entropic schemes.

(c) Any tree-consistent configuration from tree rounding maximizgg.®) for all three schemes.

Proof We begin by proving statement (a). Consider an edge-consistent integfeggurationx*
obtained from node rounding. By definition, it maximiz€$xs) for all s€ V, andpg;(xs, %) for all
(s,t) € E, and so by inspection, also maximiZegs; ") for the quadratic and proximal cases.

We next prove statement (b) on neighborhood rounding. Supposadligitborhood round-
ing outputs a single neighborhood-consistent integral configurati.oSincex’,Q(S) maximizes the
neighborhood energy (27) at each nsdeV, it must also maximize the suffi., Fs(x; 1"). A little
calculation shows that this sum is equal #(&; i), the factor of two arising since the term on edge
(s,t) arises twice, one for neighborhood rooted,and once fot.

Turning to claim (c), lek* be a tree-consistent configuration obtained from tree rounding. Then
foreach =1,... K, the configuratiox* maximizes the tree-structured functigiix; u"), and hence
also maximizes the convex combinatigtt ; p(T))F (x;u"). By definition of the edge appearance
probabilitiesps;, this convex combination is equal to the functiefx; u"). |

4.2 Randomized Rounding Schemes

The schemes considered in the previous section were all deterministic(disregarding any pos-
sible ties), the output of the rounding procedure was a deterministic functitme given pseu-
domarginals{pg, L& }. In this section, we consider randomized rounding procedures, in wiéch
output is a random variable.

Perhaps the most naive randomized rounding scheme is the followingadbrreder € V,
assign it valuex, € X with probability W{)(x,). We propose a graph-structured generalization of
this naive randomized rounding scheme, in which we perform the roundiagdependent way
across sub-groups of nodes, and establish guarantees for itssudaearticular, we show that
when the LP relaxation has a unique integral optimum that is well-separatedifie second best
configuration, then the rounding scheme succeeds with high probabilityaadte-specified number
of iterations.

4.2.1 THE RANDOMIZED ROUNDING SCHEME

Our randomized rounding scheme is based on any given sbbséthe edge seE. Consider the
subgraphG(E\E'), with vertex seV, and edge seE\E'. We assume th&’ is chosen such that
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the subgraplG(E\E’) is a forest. That is, we can decompd3¢E\E’) into a union of disjoint
trees,{Ti,..., Tk}, whereT; = (V;,E), such that the vertex subséfsare all disjoint andvV =
ViUV U...UVk. We refer to the edge subsetfagest-inducingvhen it has this property. Note that
such a subset always exists, sifie= E is trivially forest-inducing. In this case, the “trees” simply
correspond to individual nodes, without any edgés: {i},E;=0,i=1,...,N.

For any forest-inducing subskEt C E, Algorithm 5 defines our randomized rounding scheme.

Algorithm 5 RANDOMIZED ROUNDING SCHEME

for subtree indices=1,...,K do
Sample a sub-configuratiofy, from the probability distribution

T M M%)
PowiT) = [1409) T {eumog

end for
Form the global configuratioX € XN by concatenating all the local random samples:

X = (le,...,XVK).

To be clear, the randomized solutidhis a function of both the pseudomarginals and the
choice of forest-inducing subs&t, so that we occasionally use the notatd("; E’) to reflect
explicitly this dependence. Note that the simplest rounding scheme of this tygi#amed by
settingE’ = E. Then the “trees” simply correspond to individual nodes without angsdand the
rounding scheme is the trivial node-based scheme.

The randomized rounding scheme can be “derandomized” so that we @btlEterministic
solutionxd(u"; E’) that does at least well as the randomized scheme does in expectation. This
derandomization scheme is shown in Algorithm 6, and its correctness isgeraan the following
theorem, proved in Appendix D.

Theorem 6 Let (G = (V,E), 8) be the given MAP problem instance, and I8tquL(G) be any
set of pseudomarginals in the local polytapéG). Then, for any subset’E- E of the graph G,
the (E’, u")-randomized rounding scheme in Algoritinwhen derandomized as in Algorithén
satisfies,

FC(YE):8) > E<F(X(u”:E’>:9)),
where X";E’) and ¥ (u";E’) denote the outputs of the randomized and derandomized schemes

respectively.

4.2.2 OSCILLATION AND GAPS

In order to state some theoretical guarantees on our randomized rogetigEmges, we require some
notation. For any edges,t) € E, we define theedge-based oscillation

Ost(0) = r;z%){est(x&xt)]_rXTS‘?i)g‘[est(X&Xt)]‘

1064



MESSAGEPASSINGFOR GRAPH-STRUCTUREDLINEAR PROGRAMS

Algorithm 6 DERANDOMIZED ROUNDING SCHEME
Initialize: p=W".

for subtree indices=1,...,K do

Solve
6y —argmans {600+ 5 TRO0Bex) [+ T Bue
N e t: (SDEE’ X (st)eE
Updatey:
B Hs(Xs) if s¢ Vi
LX) = { 0 ifseVixd#xs
1 ifseVipd=x
_ _ Hst(Xs, ) i (s,t) € Ei
Hot(Xs; Xt) = { Hs(Xs) e (%) if (s,t) € .
end for

Form the global configuratioxf € XN by concatenating all the subtree configurations:

X = (x\‘}l,...,x\‘}K>.

We define thenode-based oscillatiods(0) in the analogous manner. The quantitg®) andds(0)
are measures of the strength of the potential functions.
We extend these measures of interaction strength to the full graph in thalrvaayr

0c(0) = maxqy max ds(0), maxds(0) .

o(©) { maxsu(0), max(o)}

Using this oscillation function, we now define a measure of the quality of a arvt@P optimum,
based on its separation from the second most probable configuratiparticular, lettinge* € xN
denote a MAP configuration, and recalling the nota#q; 0) for the LP objective, we define the
graph-based gap

QL@[F(X*;G) —F(x 6)}
3c(0)

This gap function is a measure of how well-separated the MAP optixiumfrom the remaining
integral configurations. By definition, the gdg0;G) is always non-negative, and it is strictly
positive whenever the MAP configuratiofi is unique. Finally, note that the gap is invariant to
the translationsq+— 6’ = 6 +C) and rescalings®(— 6’ = c0) of the parameter vectd®. These
invariances are appropriate for the MAP problem since the optima of tmgyefumctionF (x; 8) are
not affected by either transformation (i.e., arg giakx; 6) = argmaxF (x;6') for both® =6+C
and6’ = c0).

A(B;G) =
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Finally, for any forest-inducing subset, we E’) be the maximum degree of any node with
respect to edges iB'—namely,

dE") = Tez\:l/x]tev | (sit) € E'|.

4.2.3 CQPTIMALITY GUARANTEES FORRANDOMIZED ROUNDING

We show, in this section, that when the pseudomargipalare within a specified; norm ball
around the unique MAP optimump, the randomized rounding scheme outputs the MAP configu-
ration with high probability.

Theorem 7 Consider a problem instandgs, 8) for which the MAP optimum®xis unique, and let
U be the associated vertex of the polytdd&). For anye € (0,1), if at some iteration n, we have
" e L(G), and

eA(6;G)
1+d(E)’

then(E’, u")-randomized rounding succeeds with probability greater thare,

" — |y < (31)

PX(WE) =x] > 1-¢.

We provide the proof of this claim in Appendix E. It is worthwhile observingttthe theorem
applies to any algorithm that generates a sequéptgof iterates contained within the local poly-
topelL(G). In addition to the proximal Bregman updates discussed in this paper, it@iiesato
interior-point methods (Boyd and Vandenberghe, 2004) for solving. LIFor the naive rounding
based orE’ = E, the sequencéu"} need not belong té.(G), but instead need only satisfy the
milder conditiongig(xs) > 0 for alls€ V andxs € X, andy, s(xs) =1 forallse V.

The derandomized rounding scheme enjoys a similar guarantee, as shinerialowing the-
orem, proved in Appendix F.

Theorem 8 Consider a problem instandgs, 8) for which the MAP optimum*xis unique, and let
K be the associated vertex of the polytdg&). If at some iteration n, we havé g L(G), and

A(B;G)

n_ * < T\~
W=y < 1rdE)’

then the(E’, 1")-derandomized rounding scheme in AlgoritBroutputs the MAP solution,
XA(UME) =X

4.2.4 BOUNDS ONITERATIONS FORRANDOMIZED ROUNDING

Although Theorems 7 and 8 apply even for sequer ¢} that need not converge 6, it is most
interesting when the LP relaxation is tight, so that the sequéptegenerated by any LP-solver
satisfies the conditiop” — p*. In this case, we are guaranteed that for any figed(0,1), the
bound (31) will hold for an iteration numbaer that is “large enough”. Of course, making this
intuition precise requires control of convergence rates. RecallNhiatthe number of nodes in
the graph, andn is cardinality of the sefx’ from which all variables takes their values. With this
notation, we have the following.
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Corollary 9 Under the conditions of Theorem 7, suppose that the sequence of stépétecon-
verge to the LP (and MAP) optimum at a linear ratg" — p*|[2 < y"||u® — @ ||2. Then:

(&) The randomized rounding in AlgorithBnsucceeds with probability at least- € for all iter-
ations greater than

. Ylog (Nm-+NZm?) +log ([[1°—p[l2) +log (4567 ) +log(1/e)

log(1/y)
(b) The derandomized rounding in AlgoritlGyields the MAP solution for all iterations greater
than
. 1og (Nm+N2m?) +log ([0 — p*|[2) +|og(1§(‘éf§;))
' log(1/y)

This corollary follows by observing that the vectqr" — p*) has less thatNm-+ N2n? ele-
ments, so thafp" — p*||x < vNm+ N2m¥ || — p*||2. Moreover, Theorems 7 and 8 provide an
£1-ball radius such that the rounding schemes succeed (either with flitybgdeater than 1-¢, or
deterministically) for all pseudomarginal vectors within these balls.

5. Experiments

In this section, we provide the results of several experiments to illustratef@vior of our methods
on different problems. We performed experiments on 4-nearest neiginiographs with sizes
varying fromN = 100 toN = 900, using models with eithen =3 or m=5 labels. The edge
potentials were set to Potts functions, of the form

Bst if Xs =%
0 otherwise

Bst(Xs, %) = {

for a parameteflss € R. These potential functions penalize disagreement of labebg; it> O,

and penalize agreement B; < 0. The Potts weights on edg@s; were chosen randomly as
Uniform(—1,+1). We set the node potentials @gXxs) ~ Uniform(— SNR SNR), for some signal-
to-noise parameter SNR 0 that controls the ratio of node to edge strengths. In applying all of the
proximal procedures, we set the proximal weightsds= n.

5.1 Rates of Convergence

We begin by reporting some results on the convergence rates of proxpdatas. Figure 2(a)
plots the logarithmic distance lgg" — p*||2 versus the number of iterations for grids of differ-
ent sizes (node numbeh$ € {100,400 900}). Herep" is the iterate at step entropic proximal
method andu* is the LP optimum. In all cases, note how the curves have an inverted ¢juadra
shape, corresponding to a superlinear rate of convergence, whiohssstent with Proposition 1.

On other hand, Figure 2(b) provides plots of the logarithmic distance vétesation number for
problem sizesN = 900, and over a range of signal-to-noise ratios SNR (in particular, ENR
{0.05,0.25,0.50,1.0,2.0}). Notice how the plots still show the same inverted quadratic shape, but
that the rate of convergence slows down as the SNR decreases, as sxjoeloted.
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Figure 2: (a) Plot of distance lgg||" — 1'||2 between the current entropic proximal iterate
and the LP optimumu® versus iteration number for Potts models on grids vitke
{100, 400,900} vertices,m =5 labels and SNR= 1. Note the superlinear rate of con-
vergence, consistent with Proposition 1. (b) Plot of distancg,lfd' — 1 || between the
current entropic proximal iteratd” and the LP optimunu* versus iteration number for
Potts models on grids witlh= 5 labelsN = 900 vertices, and a range of signal-to-noise
ratios SNRe {0.05,0.25,0.50,1.0,2.0}. The rate of convergence remains superlinear but
slows down as the SNR is decreased.

In Figure 3, we compare two of our proximal schemes—the entropic andiftratic schemes—
with a subgradient descent method, as previously proposed (Feldialar?602a; Komodakis et al.,
2007). For the comparison, we used a Potts model on a grid of 400 neitle®ach node taking
three labels. The Potts weights were set as earlier, with SKRPlotted in Figure 3(a) are the log
probabilities of the solutions from the TRW-proximal and entropic proximal nathcompared to
the dual upper bound that is provided by the sub-gradient method. dkgelon the horizontal axis
is a single outer iteration for the proximal methods, and five steps of theadibgt method. (We
note that it is slower to perform five subgradient steps than a single prbairtex iteration.) Both
the primal proximal methods and the dual subgradient method converge $aurtee point. The
TRW-based proximal scheme converges the fastest, essentially withiodtairiterations, whereas
the entropic scheme requires a few more iterations. The convergenaé tiagesubgradient ascent
method is slower than both of these proximal schemes, even though we altdovtake more steps
per “iteration”. In Figure 3(b), we plot a number of traces showing thalmer of inner iterations
(vertical axis) required as a function of outer iteration (horizontal axi$)e average number of
inner iterations is around 20, and only rarely does the algorithm requistastially more.

5.2 Comparison of Rounding Schemes

In Figure 4, we compare five of our rounding schemes on a Potts modebdogrgphs withiN = 400,
m = 3 labels and SNR= 2. For the graph-structured randomized rounding schemes, we used the
node-based rounding scheme (so tBQE’ = 0), and the chain-based rounding scheme (so that
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Figure 3: (a) Plots of the function value (for fractional itergi®sversus number of iterations for
a Potts model witiN = 400 verticesm = 3 labels and SNR= 2. Three methods are
compared: a subgradient method (Feldman et al., 2002b; Komodakis €d@t), Zhe
entropic proximal method (Ent. Prox.), and the TRW-based proximal mefhiBuV(
Prox.). (b) Traces of different algorithm runs showing the number oéirterations
(vertical axis) versus the outer iteration number (horizontal axis). ®lgiaround 20
inner iterations are required.

E\E’ is the set of horizontal chains in the grid). For the deterministic roundingnsek, we used
the node-based, neighborhood-based and the tree-based rosodérges. Panel (a) of Figure 4
shows rounding schemes as applied to the entropic proximal algorithm, aghgagel (b) shows
rounding schemes applied to the TRW proximal scheme. In both plots, theaseeland star-based
deterministic schemes are the first to return an optimal solution, whereastidoaeed randomized
scheme is the slowest in both plots. Of course, this type of ordering is topeetexi, since the tree
and star-based schemes look over larger neighborhoods of the grayaicur larger computational
cost.

6. Discussion

In this paper, we have developed distributed algorithms, based on the abfimximal sequences,
for solving graph-structured linear programming (LP) relaxations. Ouhaous respect the graph
structure, and so can be scaled to large problems, and they exhibitrireagrerate of convergence.
We have also developed a series of graph-structured rounding sslieatean be used to gener-
ate integral solutions along with a certificate of optimality. These optimality certificdtew the
algorithm to be terminated in a finite number of iterations.

The structure of our algorithms naturally lends itself to incorporating additiooastraints,
both linear and other types of conic constraints. It would be interestingvielajean adaptive ver-
sion of our algorithm, which selectively incorporated new constraints esssary, and then used
the same proximal schemes to minimize the new conic program. Our algorithmgvingsiie
LP are primal-based, so that the updates are in terms of the pseudo-rsqughmet are the primal
parameters of the LP. This is contrast to typical message-passing algositbimas tree-reweighted
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Rounded cost versus iteration (Ent. Prox.) Rounded cost versus iteration (TRW Prox.)
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Figure 4: Plots of the log probability of rounded solutions versus the nuoftigsrations for the
entropic proximal scheme (panel (a)), and the TRW proximal schemel(i@h In both
cases, five different rounding schemes are compared: node-tmwwmized rounding
(Node Rand.), chain-based randomized rounding (Chain Rand.);basdel determinis-
tic rounding (Node. Det.), star-based deterministic rounding (Star Det)traa-based
deterministic rounding (Tree Det.).

max-product, which are dual-based and where the updates are entiteigngrofmessag@aram-
eters that are the dual parameters of the LP. However, the dual of tieerign-differentiable, so
that these dual-based updates could either get trapped in local minima¢doalinate ascent) or
have sub-linear convergence rates (dual sub-gradient ascemthene hand, our primal-based
algorithm converges to the LP minimum, and has at least linear convergaese ©n the other, it
is more memory-intensive because of the need to mair@4jg|) edge pseudo-marginal parame-
ters. It would be interesting to modify our algorithms so that maintaining thedieilypcould be
avoided; note that our derandomized rounding scheme (Algorithm 4.2e%) it make use of the
edge pseudo-marginal parameters.
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Appendix A. Corrections to Bregman Projections

We briefly outline the corrections needed to cyclic Bregman projections éorcélse where the
constraints are linear inequalities. It is useful, in order to characterize theeded corrections,
to first note that these cyclic projections are equivalent to co-ordinagnasteps on the dual of
the Bregman projection problem (13). Let the linear constraint set foBtegman projection
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problem (13) b&€ = Ni{ (&, W) < by }. Its Lagrangian can be written as
L(w2) =Dr (V) + T z((@, W)~ by),
|

wherez > 0 are the Lagrangian or dual parameters. The dual function is givgg@jas min, L(,z),
so that the dual problem can be written as

min g(2).

If the constraints were lineaqualities the dual variable$z} would be unconstrained, and itera-
tive co-ordinate ascent—which can be verified to be equivalent to cyjegtions of the primal
variables onto individual constraints—would suffice to solve the dudlpm. However, when the
constraints have inequalities, the dual problem is no longer unconstraimedual variables are
constrained to be positive. We would thus need to constrain the co-ordisedat steps. This can
also be understood as the following primal-dual algorithmic scheme. Note tietessary KKT
condition for optimality of a primal-dual paii, z) for (13) is

Of (W) = 0f(v) - ¥ za. (32)

The primal-dual algorithmic scheme then consists of maintaining primal-dual &éat# ) which
satisfy the equality (32), are dual feasible wth> 0, and which entail co-ordinate ascent on the
dual problem, so thag(Z*+1) > g(Z) with at most one co-ordinate @f updated ini**. We can
now write down the corrected-projection updatglogiven the single constrai; = {(a;, 1) < bj}.
According to the primal-dual algorithmic scheme this corresponds to coadedascent on thieth
co-ordinate o2 so that (32) is maintained, whereby

Ofu*h) = Of(W)+Ca, (33)
't = Z-cCaq,
C = min{Z,B},

whereg is the co-ordinate vector with one in ti¢h co-ordinate and zero elsewhere, hid the
i-th dual parameter setting corresponding to an unconstrained coterds@ent update,

Of(w = Of(u")+Ba, (34)
<U7a|> = bi-

One could derive such corrections corresponding to constrainddadoant for general convex
constraints (Dykstra, 1985; Han, 1988).

Appendix B. Detailed Derivation of Message-passing Updates

In this appendix, we provided detailed derivation of the message-pagsilages for the inner loops
of the algorithms.
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B.1 Derivation of Algorithm 2

Consider the edge marginalization constraint for etge), Li(G) = 5 Hst(Xs,%) = Us(Xs). De-
noting the dual (Lagrange) parameter corresponding to the constyaigt(Rs), the Karush-Kuhn-
Tucker conditions for the quadratic update (18) are given by

(g (%, %)) Oa(Msi' (Xs %)) 4+ Ast(Xs),
Oq(le™ (%) = Dok (xs)) — Ast(Xs),
K e %) = M (% X) +Ast(Xs),
KT (%) ST (%) — Ast(Xs),

while the constraint itself gives

3G %) = KT ().
Xt

Solving forAg(Xs) yields Equation (20). The node marginalization follows similarly.

The only inequalities are the positivity constraints, requiring that the nodeedge pseudo-
marginals be non-negative. Following the correction procedure fayrBaa projections in (33), we
maintain Lagrange dual variables corresponding to these constraintseZigxs) as the Lagrange
variables for the node positivity constrainigxs) > 0, andZsi(xs,% ) for the edge-positivity con-
straintspist(Xs, %) > O.

Consider the projection dfu™*1} onto the constrainis(xs) > 0. Following (34), we first solve
for Bs(xs) that satisfies

Hs(Xs) = IJ.';’T+1(XS)—BS(XS),
Bs(Xs) = O,

so thatBs(xs) = e’ T+1( Xs). Substituting in (33), we obtain the update

Col%) = min{Zs(xs), " (%)},
ZS(XS) = Zs(xs) CS(XS)J
) = 1T () —Co(x9),

The edge positivity constraint updates follow similarly.
Thus overall, we obtain message-passing Algorithm 2 for the inner loop.

B.2 Derivation of Algorithm 3

Note that we do not need to explicitly impose positivity constraints in this casmauBe the domain
of the entropic Bregman function is the positive orthant, if we start fromsitige point, any further
Bregman projections would also result in a point in the positive orthant.

The projectionu™™* = My, (U7, Li(G)) onto the individual constrairit;(G) is defined by the
optimization problem:

= min{h(y —u OhGEM).
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Consider the subsét;(G) defined by the marginalization constraint along edge), namely
Y xex Mst(Xs, %) = Ms(Xs) for eachxs € X. Denoting the dual (Lagrange) parameters correspond-
ing to these constraint bysi(xs), the KKT conditions are given by

Oh(ug (%, X)) = Oh(Ug (%, %)) +Ast(%s), and
Dh(UQHl( Xs)) = Oh(UgT(Xs)) — Ast(Xs)-

Computing the gradiernih and performing some algebra yields the relations

WY (%) = ué””’(xs, Jexp AT (),
W) = 1) exp(-AGT (k) and

(nT)
exp(2)\ nr+1)(xs)) _ Hs (Xs) 7

Z)Q Uét )(XS) )

from which the updates (22) follow.
Similarly, for the constraint set defined by the node marginalization constrain
5 vex Ms(Xs) = 1, we havedh(u™ ™ (xs)) = Oh(ud™? (xs)) + ALY, from which

uén T‘Fl)( ) — uénf[) (XS) exq)\gn,'r*‘rl))’ and
expA"TY) = 1/ Y W (x).
Xs€EX

The updates in Equation (23) follow.

Appendix C. Proof of Lemma 4

We provide a detailed proof for the entropic scheme; the arguments farmitvémal algorithms
are analogous. The key point is the following: regardless of how themped updates are com-
puted, they must satisfy the necessary Lagrangian conditions for optuimas$ pver the sek.(G).
Accordingly, we define the following sets of Lagrange multipliers:

Ass  for the normalization constraifiss(Hs) = ¥ Ms(X5) — 1 =0,
Ast(Xs) for the marginalization constrai@s(Xs) = ¥ x Mst(Xs, X{ ) — Hs(Xs) = O,
Yst(Xs, Xt ) for the non-negativity constraiipt:(xs, %) > O.

(There is no need to enforce the non-negativity constgaiix) > 0 directly, since it is implied by
the non-negativity of the joint pseudo-marginals and the marginalizatioriraoms.)

With this notation, consider the Lagrangian associated with the entropic praxitate at step
n:

LOGA,Y) =C(18,1") + (v, W) + Z/ sCss(Xs) + Z P\ts(xs)cts(xs) "‘)\st(xt)cst(xt)],

(st)ek

whereC(}; 6, ") is shorthand for the cost component8, p) + 2 Dq (1| U"). UsingC,C’ to denote
constants (whose value can change from line to line), we now take tilees#o find the necessary
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Lagrangian conditions:

oL 205, ps(Xs)
= —Bs(xs) + -0 +CH+Asst Y Ais(%),  and
O G g TR 2 Ml
oL 205, Pet(Xe, %) |
ey = Oslxex)+ lo +C + Vst (X, %) — Ats(Xs) — Ast(X).
Ot (Xs, Xt ) st %) w" gu’s‘t(xs,xt) Yat(Xs: Xt) — Ats(Xs) — Ast(%)

Solving for the optimunu = u"** yields

205
“2logil Hx) = B(x) +

o IogpS Xs) — Ais(Xs) +

teN(s)
20 20
FSt |09U2t+1(xs, ) = Ost(Xs, %)+ FSt log gy (Xs, Xt ) — Yst(Xs, %)

+)\IS(XS) + )\st(Xt) + C/.
From these conditions, we can compute the energy invariant (30):

2 205 1 205t n+1
Foou™) = 5 “loghg™(xs) + log g™ (xs, %) +C
W SEZ/ o’ (ng o

- F(x;e)+£n{ Z/aslogu”(xs)Jr( > astlogpgt(xs,xt)}

st)eE

; Yst(Xs, %) +C
(st)eE

2
= FxO)+ ZFOH) = 5 vailxs%) +C.
(st)eE

Now sincep" > 0, by complementary slackness, we must hawes, ) = 0, which implies that

2 Ln+1 _ . 2 N
P0G = F(x8)+ SF(xH)+C. (35)

From this equation, it is a simple induction to show for some constgnts0 andC, € R,
we haveF (x; 1") = yaF (x;0) + C, for all iterationsn = 1,2, 3,..., which implies preservation of
the maximizers. If at iteration = 0, we initializep® = 0 to the all-uniform distribution, then we
havewlF(X' ut) = F(X' 8) +C/, so the statement follows for= 1. Suppose that it holds at stap

then ZF (x; 1) = ZynF (x;6) + 2=, and hence from the induction step (35), we hee ™) =
yn+1F (Xl e) +Cﬂ+1, Whereyn+l = %yn_

Appendix D. Proof of Theorem 6

Consider the expected cost of the configuratidp”; E’) obtained from the randomized rounding
procedure of Algorithm 5. A simple computation shows that

K
EIF(X(E):0) = G := 5 ) +H(ME)
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where
HIHGT) 1= 5 Y H6)0s(6)+ D Hail(Xs,Xt)Bst(Xs, %), (36)
SEV; Xs (st)€Ei X%
HIGE) = 5 5 M) Bst(Xu, X).-
(u,v)EE! Xs: Xt

We now show by induction that the de-randomized rounding scheme asldeseat least as
large as this expected value. Lt denote the updated pseudomarginals at the end oft-tie
iteration. Since we initialize with® = ", we haveG(®)) = E[F (X (U";E’); 8)]. Consider thé-th
step of the algorithm; the algorithm computes the portion of the de-randomikﬁiﬂ)eo@i over the
i—th tree. It will be convenient to use the decompositi®e- Gj + G,;, where

Gi(p := 2 Xzsﬁs(xs) {Gs(xs) + N (S%EE/} ; Pe (% ) Bst(Xs, %) }+

S (% %) B, X),
(st)€Ej Xs:%

andG,; = G- G;. If we define
X\/| . Z/ {es Xs + z T 1 eSt XS7 }+ Z eSt(XS7Xt)7

(s eE % (st)eE
it can be seen thag; (V) = E[If.(xvi)] where the expectation is under the tree-structured distri-
bution overXy, given by

_ Hi-1)
DTy~ (Y 06 %)
PO ' (Ti)) S|€_|Vi“ (%) (s,t)rlEi =D (xg) =) (%)

Thus when the algorithm makes the chok@_ec argmax, F (%), it holds that

Gi(H'Y) = ER(w)] < ROG).
The updated pseudomargingl8 at the end thé-th step of the algorithm are given by,

" ﬂg*l)(xs) if s¢V,
Hs'(Xs) = 0 if sEVi, Xas # Xs }
1 if s€ Vi, Xy s = Xs.

. Hi-1) i
Xs, if (st) ¢ E
0 (xox) = { He (j)xt) if(st) ¢E
Hs' (X))l (%) if (st) € Ei.
In other words ™ (Ty) is the indicator vector of the maximum energy sub—configurat&)nCon—
sequently, we have

G = RO = GEY),

andG,; (") = G,;(1'~Y), so that at the end of thieth step.G(HV) > G(~Y). By induction, we
conclude thaG(X)) > G((?), whereK is the total number of trees in the rounding scheme.

At the end ofK steps, the quantity® is the indicator vector for?(u™; E’) so thatG(uK)) =
F(Xa(U";E’);8). We have also shown th&(?) = E[F (X(u"E’);8)]. Combining these pieces,
we conclude thaf (x3(u"; E’);8) > E[F (X(U";E’);8)], thereby completing the proof.
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Appendix E. Proof of Theorem 7

Let psucc= P[X(U"; E’) = x*|, and letR(L"; E’) denote the (random) integral vertexIofG) that is
specified by the random integral soluti¥iu™; E). (SinceE’ is some fixed forest-inducing subset,
we frequently shorten this notation R(l").) We begin by computing the expected cost of the
random solution, where the expectation is taken over the rounding pnecedl simple computation
shows tha[(8, R(U")] := SI 4y H(W"; Ti) +H (U™ E’), whereH (u"; T) andH (U™ E') were defined
previously (36).

We now upper bound the differenc®, u*) — E[(8, R(W"))]. For each subtree=1,...,K, the
quantityD; : = H (u*; T;) — H(U"; T;) is upper bounded as

Di = ;Z[u;(xs)—u;‘(xs)}es(xs) Z z He (%) (%) — Mgt(Xs, %) | Ost(Xs, %)

(st)€E; Xs:%
< Y RO Y0 OO+ T 8u(0) S el x) —H x|
seVi Xs (st)eE; Xs, Xt

In asserting this inequality, we have used the fact that that the matrix with £mgfiten by
K (Xs) 5 (%) — Mk(%s, %) IS a difference of probability distributions, meaning that all its entries are
between-1 and 1, and their sum is zero.

Similarly, we can upper bound the differeri@éE’) = H (u*;E’) — H(W"; E’) associated witl’:

DE) = 55 WO - KO0 Bt

(u,v) EE" Xu,Xv

< Z duv(0) 1 (%) 1Y (%) — G (%) O (%)
(u,v)eE’ Xu, Xy

< 3 aw®) 3 { oo - oo+ - 1o |
(u,v)eE’ Xu, Xy

<3 awO {30 -+ 3 0w - K -
(uv)eE’ Xu Xu

Combining the pieces, we obtain

) ~EI@RU)] < S b —wla+ T d(SE) T 80e) 100}
sc Xs
< (1+d(E"))3e(B) |1 — K2 37)
In the other direction, we note that when the rounding fails, then we have

(6, 1) — (8, R(W") = fXT;g}%F(X 16) —F(x.8)].

Consequently, conditioning on whether the rounding succeeds or failsawe

(6, 1) —E[(8, RIUM)] > Psucc[(8, K) — (8, )] + (1 — Psuco) [(T;r’;lﬂF(x*;G) —F(x0)]
= (1— Psucd Qgg{F(x*;e) —F(x;0)].
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Combining this lower bound with the upper bound (37), performing some &gabd using the
definition of the ga@\(6; G) yields that the probability of successful rounding is at least

(1+d(E'))

n_

Psucc > 1—

If the condition (31) holds, then this probability is at least 4, as claimed.

Appendix F. Proof of Theorem 8

The proof follows that of Theorem 7 until Equation (37), which gives
(6, w) —E[(6, R(W"))] < (1+d(E'))dc(6) " — 2.

Letvd (U™, E’) denote the integral vertex &f(G) that is specified by the de-randomized integral so-
lution xd(u"; E’). SinceE’ is some fixed forest-inducing subset, we frequently shorten this notation
to vd(u"). Theorem 6 shows that

E[(6, R()] < (8, V().

Suppose the de-randomized solution is not optimal softigt) # p*. Then, from the definition
of the graph-based gay6; G), we obtain

(6, 1) — (8, V(") > 36(8) A(6; G).
Combining the pieces, we obtain

56(6)A(6;6) < (8, 1) — (B, V(")
< (6,u) —E[(6, R(")]
<

(1+d(E'))da(0) 1" — 11,

which implies||p" — p*|l1 > ﬁ%@) However, this conclusion is a contradiction under the given
assumption of{u” — (|1 in the theorem. It thus holds that the de-randomized solwfi¢p") is

equal to the MAP optimurp*, thereby completing the proof.
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