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Abstract

Methods based ofy-relaxation, such as basis pursuit and the Lasso, are venlgador sparse re-
gression in high dimensions. The conditions for succedsasd methods are now well-understood:
(1) exact recovery in the noiseless setting is possibledfarly if the design matriX satisfies the
restricted nullspace property, and (2) the squdgestror of a Lasso estimate decays at the minimax
optimal ratek'?]gp, wherek is the sparsity of thg-dimensional regression problem with additive
Gaussian noise, whenever the design satisfies a restrigfedvalue condition. The key issue is
thus to determine when the design matixsatisfies these desirable properties. Thus far, there
have been numerous results showing that the restricteceispmproperty, which implies both the
restricted nullspace and eigenvalue conditions, is sadisfihen all entries oK are independent
and identically distributed (i.i.d.), or the rows are unjtaThis paper proves directly that the re-
stricted nullspace and eigenvalue conditions hold witth lgpbability for quite general classes of
Gaussian matrices for which the predictors may be highlyddpnt, and hence restricted isometry
conditions can be violated with high probability. In thisyvaur results extend the attractive theo-
retical guarantees afi-relaxations to a much broader class of problems than tlreeafa®mpletely
independent or unitary designs.

Keywords: Lasso, basis pursuit, random matrix theory, Gaussian cosgueinequality, concen-
tration of measure

1. Introduction

Many fields in modern science and engineering—among them computatiolug\hiastrophysics,
medical imaging, natural language processing, and remote sensing—eitnadlecting data sets in
which the dimension of the daf@exceeds the sample sine Problems of statistical inference in
this high-dimensional setting have attracted a great deal of attention irt gezgns. One concrete
instance of a high-dimensional inference problem concerns the sthhdear regression model,
in which the goal is to estimate a vectdir € RP that connects a real-valued respogge a vec-
tor of covariatesX = (Xg,...,Xp). In the settingp > n, the classical linear regression model is
unidentifiable, so that it is not meaningful to estimate the parameter v@tterRP. However,
many high-dimensional regression problems exhibit special structureathdtad to an identifiable
model. In particular, sparsity in the regression ve@bis an archetypal example of such struc-
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ture, and there is now a substantial and rapidly growing body of workigimdimensional linear
regression with sparsity constraints.

Using thef1-norm to enforce sparsity has been very successful, as evidented Widespread
use of methods such as basis pursuit (Chen et al., 1998), the Lassbi(@it, 1996) and the
Dantzig selector (Candes and Tao, 2007). There is now a well-dewethpery on what condi-
tions are required on the design matkxc R"*P for such/;-based relaxations to reliably estimate
*. In the case of noiseless observation models, it is known that impogsiestricted nullspace
propertyon the design matriX € R"P is both necessary and sufficient for the basis pursuit linear
program to recovef* exactly. The nullspace property and its link to the basis pursuit linear pro-
gram has been discussed in various papers (Cohen et al., 200hd®and Huo, 2001; Feuer and
Nemirovski, 2003). In the case of noisy observations, exact regamfeb* is no longer possible,
and one goal is to obtain an estim@tsuch that the,-error ||B — |2 is well-controlled. To this
end, various sufficient conditions for the succesg;efelaxations have been proposed, including
restricted eigenvalue conditions (Bickel et al., 2009; Meinshausen an2009) and the restricted
Riesz property (Zhang and Huang, 2008). Of the conditions mentionedyfoveakest known suf-
ficient conditions for bounding,-error are the restricted eigenvalue (RE) conditions due to Bickel
et al. (2009) and van de Geer (2007). In this paper, we considestréicted eigenvalue condition
that is essentially equivalent to the RE condition in Bickel et al. (2009).hagva by Raskultti et al.
(2009), a related restriction is actually necessary for obtaining goaat@m the/>-error in the
minimax setting.

Thus, in the setting of linear regression with random design, the interestexiign is the fol-
lowing: for what ensembles of design matrices do the restricted nullspdaagemvalue conditions
hold with high probability? To date, the main routes to establishing these praplestie been via
either incoherence conditions (Donoho and Huo, 2001; Feuer and diekiiy 2003) or via the re-
stricted isometry property (Candes and Tao, 2005), both of which #fieisnt but not necessary
conditions (Cohen et al., 2009; van de Geer and Buhlmann, 2009) e$trected isometry property
(RIP) holds with high probability for various classes of random matrices iith entries, includ-
ing sub-Gaussian matrices (Mendelson et al., 2008) with samplensiz@ (klog(p/k)), and for
i.i.d. subexponential random matrices (Adamczak et al., 2009) provided th@ (klog?(p/k)). It
has also been demonstrated that RIP is satisfied for matrices from uniszEybkles (e.g., Gadon
et al., 2007, 2008; Romberg, 2009; Rudelson and Vershynin, 26@8yhich the rows are gener-
ated based on independent draws from a set of uncorrelated baci®ns.

Design matrices based on i.i.d. or unitary ensembles are well-suited to the @k pfessed
sensing (Candes and Tao, 2005; Donoho, 2006), where the nattan be chosen by the user.
However, in most of machine learning and statistics, the design matrix is net aodtrol of the
statistician, but rather is specified by nature. As a concrete examplepsugimat we are fitting
a linear regression model to predict heart disease on the basis of figebeariates (e.g., diet,
exercise, smoking). In this setting, it is not reasonable to assume that fieidifcovariates are
i.i.d. or unitary—for instance, one would expect a strong positive cdiveldbetween amount
of exercise and healthiness of diet. Nonetheless, at least in pragtioggthods still work very
well in settings where the covariates are correlated and non-unitargubgntly lacking is the
corresponding theory that guarantees the performanégrefaxations for dependent designs.

The main contribution of this paper is a direct proof that both the restrictégsbage and eigen-
value conditions hold with high probability for a broad class of dependans&an design matrices.
In conjunction with known results ofy-relaxation, our main result implies as corollaries that the
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basis pursuit algorithm reliably recove$ exactly in the noiseless setting, and that in the case
of observations contaminated by Gaussian noise, the Lasso and Daézigrseproduces a so-

lution B such thatHB— B2 = O(\/%). Our theory requires that the sample sizscale as
n= Q(klogp), wherek is the sparsity index of the regression vedsdrand p is its dimensions.
For sub-linear sparsitk( p — 0), this scaling matches known optimal rates in a minimax sense for
the sparse regression problem (Raskutti et al., 2009), and henget deimproved upon by any
algorithm. The class of matrices covered by our result allows for corralatitong different covari-
ates, and hence covers many matrices for which restricted isometry oenecale conditions fall
to hold but the restricted eigenvalue condition holds. Interestingly, onewamsample the rows
of the design matrixX from a multivariate Gaussian with a degenerate covariance nigtiéxad
nonetheless, our results still guarantee that the restricted nullspacegandadue conditions will
hold with high probability (see Section 3.3). Consequently, our resultséxteoretical guarantees
on /;-relaxations with optimal rates of convergence to a much broader clagadadm designs.

The remainder of this paper is organized as follows. We begin in Section dackkground on
sparse linear models, the basis pursuit and Lésselaxations, and sufficient conditions for their
success. In Section 3, we state our main result, discuss its conseqtmmégselaxations, and
illustrate it with some examples. Section 4 contains the proof of our main resutth wkploits
Gaussian comparison inequalities and concentration of measure for itzafsetttions.

2. Background

We begin with background on sparse linear models and sufficient corglifiwrthe success of
¢1-relaxations.

2.1 High-dimensional Sparse Models and;-relaxation

In the classical linear model, a scalar outgu R is linked to ap-dimensional vectoK; € RP of
covariates via the relatiop = X" B* +w;, wherew; is a scalar observation noise. If we make a set
of n such observations, then they can be written in the matrix-vector form

y = Xp'+w, 1)

wherey € R" is the vector of outputs, the matri € R"*P is the set of covariates (in which row
X, € RP represents the covariates it observation), andv € R" is a noise vector wheras ~
A(0,0%Ih.n). Given the pairy, X), the goal is to estimate the unknown regression veiter RP.

In many applications, the linear regression model is high-dimensional inenatwaning that
the number of observatiomsmay be substantially smaller than the number of covariptda this
p > nregime, it is easy to see that without further constraint§arhe statistical model (1) is
not identifiable, since (even whem= 0), there are many vectofs that are consistehwith the
observationyy and X. This identifiability concern may be eliminated by imposing some type of
sparsity assumption on the regression ve@oe RP. The simplest assumption is that etact
sparsity in particular, we say thdt* € RP is s-sparse if its support set

SB"):={ie{L....p} | Bj #0}

1. Indeed, any vectdd* in the nullspace oK, which has dimension at leagt- n, leads toy = 0 whenw = 0.
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has cardinality at most
Disregarding computational cost, the most direct approach to estimatiagarse3* in the
linear regression model would be solving a quadratic optimization problem with-eonstraint,
say
Beargminly—XB|;  such tha(lBo <

where||B||o simply counts the number of non-zero entrie3in Of course, this problem is non-
convex and combinatorial in nature, since it involves searching ove(tg)al'kubsets of size. A
natural relaxation is to replace the non-con¥gxonstraint with the/;-norm, which leads to the
constrained form of the Lasg€hen et al., 1998; Tibshirani, 1996), given by

Beargminly—Xp|2  suchthat|B|; <R,
BeRP

whereR s a radius to be chosen by the user. Equivalently, by Lagrangian duligyrogram can
also be written in the penalized form

B in{ |y —XBl[3 + A
B < arg min{|ly — XBll5+AlBll.},

whereA > 0 is a regularization parameter. In the case of noiseless observatitaiseolkby setting
w = 0 in the observation model (1), a closely related convex program ibdabis pursuit linear
program(Chen et al., 1998), given by

Beargmin|Bly  suchthaXp=y. (2)
BeRP

Chen et al. (1998) also study the constrained Lasso (2.1), which theeyaes relaxed basis pursuit.
Another closely related estimator based/grelaxation is the Dantzig selector (Candes and Tao,
2007).

2.2 Sufficient Conditions for Success

The high-dimensional linear model under the exact sparsity constranbden extensively ana-
lyzed. Accordingly, as we discuss here, there is a good understapfdimgnecessary and sufficient
conditions for the success 6f-based relaxations such as basis pursuit and the Lasso.

2.2.1 RESTRICTEDNULLSPACE INNOISELESSSETTING

In the noiseless settingv(= 0), it is known that the basis pursuit linear program (LP) (2) recovers
[3* exactly if and only if the design matriX satisfies a restricted nullspace condition. In particular,
for a given subse® C {1,..., p} and constantt > 1, let us define the set

C(S0o):={0eRP| [/ < a6s]1}.

For a given sparsity indek < p, we say that the matriX satisfies theestricted nullspace (RN)
condition of orderk if null (X) N C(S 1) = {0} for all subsetsS of cardinalityk. Although this
definition appeared in earlier work (Donoho and Huo, 2001; FeuerNsrdirovski, 2003), the
terminology of restricted nullspace is due to Cohen et al. (2009).
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This restricted nullspace property is important, because the basis puPs@gtbvers any vector
k-sparse vectop* exactly if and only ifX satisfies the restricted nullspace property of orkler
See the papers (Cohen et al., 2009; Donoho and Huo, 2001; EladracksRin, 2002; Feuer and
Nemirovski, 2003) for more discussion of restricted nullspaces andaguce to exact recovery
of basis pursuit.

2.2.2 RESTRICTEDEIGENVALUE CONDITION FOR /2 ERROR

In the noisy setting, it is impossible to reco&r exactly, and a more natural criterion is to bound
the ¢>-error betweer* and an estimaté. Various conditions have been used to analyze/the
norm convergence rate 6f-based methods, including the restricted isometry property (Candes and
Tao, 2007), various types of restricted eigenvalue conditions (varede @007; Bickel et al., 2009;
Meinshausen and Yu, 2009), and a partial Riesz condition (Zhang aadd;12008). Of all these
conditions, the least restrictive are the restricted eigenvalue conditiendickel et al. (2009)
and van de Geer (2007). As shown by Bickel et al. (2009), theiricestreigenvalue (RE) condition
is less severe than both the RIP condition (Candes and Tao, 2007) aadlian set of restricted
eigenvalue conditions due to Meinshausen and Yu (2009). All of theséiteans involve lower
bounds orj| X0||2 that hold uniformly over the previously defined g&iS o),

Here we state a condition that is essentially equivalent to the restricted aigeimondition due
to Bickel et al. (2009). In particular, we say that fhe p sample covariance matrk' X /n satisfies
therestricted eigenvalue (RE) conditimver Swith parametersa,y) € [1,) x (0, ) if

%eTxTxe _ %nxeug > V6|2 foralloc C(Sa).

If this condition holds uniformly for all subse8with cardinalityk, we say thaiX™X/n satisfies
a restricted eigenvalue condition of order k with parametersy). On occasion, we will also say
that a deterministiqp x p covariance matrix satisfies an RE condition, by which we mean that
|1=%/28]|, > v||0]|2 for all 8 € C(S,a). Itis straightforward to show that the RE condition for some
a implies the restricted nullspace condition for the sameso that the RE condition is slightly
stronger than the RN property.

Again, the RE condition is important because it yields guarantees ofa-#reor of any Lasso
estimateﬁ. For instance, iX satisfies the RE condition of ordkewith parameterst > 3 andy > 0,
then it can be shown that (with appropriate choice of the regularizati@nier) any Lasso esti-

mateﬁ satisfies the error bourﬁﬁ— B2 = O(r/ @) with high probability over the Gaussian
noise vectomw. A similar result holds for the Dantzig selector provided the RE condition is-satis
fied fora > 1. Bounds with this scaling have appeared in various papers on spaae fitodels
(Bunea et al., 2007; Bickel et al., 2009; Candes and Tao, 2007; Weaisen and Yu, 2009; van de
Geer, 2007; van de Geer and Buhlmann, 2009). Moreover/itkisnvergence rate is known to be
minimax optimal (Raskutti et al., 2009) in the regityg — O.

3. Main Result and Its Consequences

Thus, in order to provide performance guarantees (either exacsteigoor /o-error bounds) fo¥ -
relaxations applied to sparse linear models, it is sufficient to show that ther RE conditions
hold. Given that our interest is in providing sufficient conditions for ¢h@operties, the remainder
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of the paper focuses on providing conditions for the RE condition to holdfalom designs, which
implies that the RN condition is satisfied.

3.1 Statement of Main Result

Our main result guarantees that the restricted eigenvalue (and hetnda@sullspace) conditions
hold for a broad class of random Gaussian designs. In particularongder the linear model
Vi = XiTB*-l-Wi, in which each rowX; ~ A((0,%). We definep?(X) = max—1__pZjj to be the
maximal variance, and I&/2 denote the square root &f

Theorem 1 For any Gaussian random designeX®™ P with i.i.d. A((0,X) rows, there are univer-
sal positive constants ¢ such that

logp
n

XVl 1 <12
> = _
ne 2 1TVl 90(2)

with probability at leastl — ¢’ exp(—cn).

[IV]|1 forall v e RP, (3)

The proof of this claim is given later in Section 4. Note that we have not triexbtain sharpest
possible leading constants (i.e., the factors &f &nd 9 can easily be improved).

In intuitive terms, Theorem 1 provides some insight into the eigenstructuteeafample co-
variance matrixs = XTX/n. One implication of the lower bound (3) is that the nullspaceXof
cannot contain any vectors that are “overly” sparse. In particwdarrfiy vectorv € RP such that

IV]|1/]|Z2v]|2 = of, /og5) the right-hand side of the lower bound (3) will be strictly positive,

showing thatv cannot belong to the nullspace Xf In the following corollary, we formalize this
intuition by showing how Theorem 1 guarantees that whenever the poputatariance satisfies
the RE condition of ordek, then the sample covarianze= XTX /n satisfies the same property as
long as the sample size is sufficiently large.

Corollary 1 (Restricted eigenvalue property) Suppose thak satisfies the RE condition of order
k with parametersa,y). Then for universal positive constantxcc’, if the sample size satisfies

o p2(2)$+0f)2 Klogp. 4)

then the matrixz = XTX/n satisfies the RE condition with parametées §) with probability at
leastl — ¢’ exp(—cn).

n>

Proof Let Sbe an arbitrary subset of cardinalkyand suppose thate C(S o). By definition, we
have

[V[[1=[[vslls +[lvells < (1+a)|vs][a,

and consequentlfv||; < (1+a)vk||v|2. By assumption, we also hayi&/?v||, > y||v||» for all
v e C(Sa). Substituting these two inequalities into the bound (3) yields

X2 {Y -0+ wp() |2 i
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Under the assumed scaling (4) of the sample size, we have

91+ a)p(z) /29 < /s

which shows that the RE condition holds #f X /n with parametefa, y/8) as claimed. [ |

Remarks:

(&) From the definitions, it is easy to see that if the RE condition holds aith1 and any
y > 0 (even arbitrarily small), then the RN condition also holds. Indeed, if the méfri/n
satisfies the€1,y)-RE condition, then for any € (S 1)\{0}, we have‘p\(}”2 >y|lv|[2 > 0,
which implies thatC(S,1) N (X) = {0}.

(b) As previously discussed, it is known (Bickel et al., 2009; van derG2000; van de Geer
and Buhlmann, 2009) that)(TX/n satisfies the RE condition, then theerror of the Lasso
under the sparse linear model with Gaussian noise satisfies the bound

k'c;g Py wWith high probability.

IB—B"[l2=0O(
Consequently, in order to ensure that theerror is bounded, the sample size must scale as
= Q(klogp), which matches the scaling (4) required in Corollary 1, as long as thersegue
of covariance matrices have diagonal entries that stay bounded.

(c) Finally, we note that Theorem 1 guarantees that the sample covaXdnt satisfies a
property that is slightly stronger than the RE condition. As shown by Negaabal. (2009),
this strengthening also leads to error bounds for the Lasso f#fhismot exacthk-sparse, but
belongs to arfg-ball. The resulting rates are known to be minimax-optimal for tifgdealls
(Raskutti et al., 2009).

3.2 Comparison to Related Work

At this point, we provide a brief comparison of our results with some relatadtssin the literature
beyond the papers discussed in the introduction. Haupt et al. (20d@kdhhat a certain class of
random Toeplitz matrices, where the entries in the first row and first coluenBernoulli random
variables and the rest fill out the Toeplitz structure satisfy RIP ( anddreoveaker RE condition)
provided thatn = Q(k3log(p/k)). In Section 3.3, we demonstrate that Gausssian design matrices
where the covariance matrix is a Toeplitz matrix satisfies the RE condition uredaniliter scaling
requiremenn = Q(klog(p)). It would be of interest to determine such scaling can be established
for the random Toeplitz matrices considered by Haupt et al. (2010).

It is worth comparing the scaling (4) to a related result due to van de GeeBahlmann
(2009). In particular, their Lemma 10.1 also provides sufficient condifmresrestricted eigenvalue
condition to hold for design matrices with dependent columns. They shov thatrue covariance
matrix satisfies an RE condition, and if the elementwise maxirﬁﬁr-n 3 ||~ between the sample
covariances = XTX /n and true covariancg is suitably bounded, then the sample covariance also
satisfies the RE condition. Their result applied to the case of Gaussiammandtrices guarantees
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that S satisfies the RE property as long ms- Q(k?logp) andZ satisfies the RE condition. By
contrast, Corollary 1 guarantees the RE condition with the less restricélieago = Q(klogp).
Note that ifk = O(,/n), our scaling condition is satisfied while their condition fails. This quadratic-
linear gap in sparsity betweédd andk arises from the difference between a local analysis (looking
at individual entries oﬁ) versus the global analysis of this paper, which studies the full random
matrix. On the other hand, the result of van de Geer and Buhimann (2ppB@smore generally,
including the case of sub-Gaussian random matrices (e.g., those withdzbantties) in addition
to the Gaussian matrices considered in Theorem 1.

Finally, in work that followed up on the initial posting of this work (Raskuttilet2009), a paper
by Zhou (2009) provides an extension of Theorem 1 to the case @flated random matrices with
sub-Gaussian entries. Theorem 1.6 in her paper establishes that tamdies of sub-Gaussian
matrices satisfy the RE condition w.h.p. with sample sizeQ(slog(p/s). This extension is based
on techniques developed by Mendelson et al. (2008), while we usei@au®mparison inequalities
and simple concentration results for the case of Gaussian design.

3.3 Some lllustrative Examples

Let us illustrate some classes of matrices to which our theory applies. We wilhaeCorollary 1
applies to many sequences of covariance matidcesz ., that have much more structure than
the identity matrix. Our theory allows for the maximal eigenvalue ab be arbitrarily large, or
for 2 to be rank-degenerate, or for both of these degeneracies to octhg same time. In all
cases, we consider sequences of matrices for which the maximum vapfdBge= maxi_1 _pZj;
stays bounded. Under this mild restriction, we provide several examplesewie RE condition
is satisfied with high probability. For suitable choices, these same examplastisabthe RE
condition can hold with high probability, even when the restricted isometrygptp (R1P) of Candes
and Tao (2005) is violated with probability converging to one.

Example 1 (Toeplitz matrices) Consider a covariance matrix with the Toeplitz structdig =
ai~1l for some parameter a [0,1). This type of covariance structure arises naturally from au-
toregressive processes, where the parameter a allows for tuning ofdtrerng in the process. The
minimum eigenvalue & is 1—a > 0, independent of the dimension p, so that the population matrix
z clearly satisfies the RE condition. Sing&Z) = 1, Theorem 1 implies that the sample covariance
matrix & = XTX/n obtained by sampling from this distribution will also satisfy the RE condition
with high probability as long as & Q(klogp). This provides an example of a matrix family with
substantial correlation between covariates for which the RE property stiflsho

However, regardless of the sample size, the submatrices of the samplﬂaocei will not
satisfy restricted isometry properties (RIP) if the parameter a is sufficidemlye. For instance,
defining S={1,2,...,k}, consider the sub-blockss of the sample covariance matrix. Satisfying
RIP requires that that the condition numbk,ﬁax(fsg)/)\mm(fgs) be very close to one. As long
as n= Q(klogp), known results in random matrix theory (Davidson and Szarek, 200dregtee
that the eigenvalues &sswill be very close to the population versiohss see also the concrete
calculation in Example 2 to follow. Consequently, imposing RIP amounts tarirgjuhat the
population condition numbekmnax(Zss) /Amin(Zss) be very close to one. This condition number
grows as the parameter@0, 1) increases towards one (Gray, 1990), so RIP will be violated once
a < 1is sufficiently large.
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We now consider a matrix family with an even higher amount of dependency@the covariates,
where the RIP constants are actually unbounded as the sgansifyeases, but the RE condition is
still satisfied.

Example 2 (Spiked identity model) For a parameter & [0, 1), the spiked identity model is given
by the family of covariance matrices

S:=(1-a)lpxp+alll,

wherel € RP is the vector of all ones. The minimum eigenvaluE isf1 —a, so that the population
covariance clearly satisfies the RE condition for any fixe®l[,1). Since this covariance matrix
has maximum variange?(%) = 1, Corollary 1 implies that a sample covariance matix XTX/n
will satisfy the RE property with high probability with sample size @ (klogp).

On the other hand, the spiked identity maffikas very poorly conditioned sub-matrices, which
implies that a sample covariance matéix= XTX/n will violate the restricted isometry property
(RIP) with high probability as n grows. To see this fact, for an arbitrary sail$sof size k, consider
the associated k k submatrixZss An easy calculation shows thagn(2sg = 1—a > 0 and
Amax(Zsg = 1+a(k—1), so that the population condition number of this sub-matrix is

)\min(zss) 1— a ’

For any fixed ac (0,1), this condition number diverges as k increases. We now show that the
same statement applies to the sample covariance with high probability, shomanthe RIP is
violated. Let u= R¥ and ve R¥ denote (respectively) unit-norm eigenvectors corresponding to the
minimum and maximum eigenvaluessgk and define the random variableg Z ||Xu||3/n and

Z, = || Xvi|3/n. Since(X;, v) ~ N(0,Amax(Zsg)) by construction, we have

Z:}no(i V>Zg (ZSS){}nyZ}

V n i; ) max ni; 1 J»

where y ~ N(0,1) are i.i.d. standard Gaussians, astdenotes equality in distribution. By tail
bounds, we havi[} s, y? > 1] < ciexp(—czn), so that Z > Amax(Zsg)/2 with high probability.
A similar argument shows that,Z 2\min(Zsg With high probability, and putting together the
pieces shows that w.h.p.

MaZs) | Lma(Zsd) 1 1+ak-1)
)\min(iss) 4 Amin(Zs9 T 4 l1—a

)

which diverges as k increases.

In both of the preceding examples, the minimum eigenvallewés bounded from below and
the diagonal entries af were bounded from above, which allowed us to assert immediately that
the RE condition was satisfied for the population covariance matrix. As adiaahple, we now
consider sampling from population covariance matrices that are actuakydesgenerate, but for
which our theory still provides guarantees.
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Example 3 (Highly degenerate covariance matrices) et> be any matrix with bounded diagonal
that satisfies the RE property of some order k. Suppose that we sarntiplesnfrom a NO, %)
distribution, and then form the empirical covariance maffix- XTX/n. If n< p, then must be
rank degenerate, but Corollary 1 guarantees tRawill satisfy the RE property of order k with high
probability as long as r= Q(klogp). Moreover, byx?-tail bounds, the maximal diagonal element
pz(f) will be bounded with high probability under this same scaling.

Now if we condition on the original design matrix X in the high probability set, \my'vriewi
as a fixed but highly rank-degenerate matrix. Suppose that we dramaet of n i.i.d. vector ~
N(O, i) using this degenerate covariance matrix. Such a resampling proceduld be relevant
for a bootstrap-type calculation for assessing errors of the Lasso. Wethsm form a second
empirical covariance matrif = 1XTX Conditionally ons having the RE property of order k and
a bounded diagonal, Corollary 1 shows that the resampled empiricalr@ce > will also have
the RE property of order k with high probability, again foenQ(klog p).

This simple example shows that in the high-dimensional settisgm it is possible for the
RE condition to hold with high probability even when the original population cavae matrix
(f in this example) has a p n-dimensional nullspace. Note moreover that this is not an isolated
phenomenon—rather, it will hold for almost every sample covariandeixria constructed in the
way that we have described.

4. Proof of Theorem 1

We now turn to the proof of Theorem 1. The main ingredients are the GeBtepian comparison

inequalities (Gordon, 1985) for Gaussian processes, concentrdtioaasure for Lipschitz func-

tions (Ledoux, 2001), and a peeling argument. The first two ingrediewksrlie classical proofs on
the ordinary eigenvalues of Gaussian random matrices (Davidson anekS2001), whereas the
latter tool is used in empirical process theory (van de Geer, 2000).

4.1 Proof Outline

Recall that Theorem 1 states that the condition

[XVll2
NG

holds with probability at least 4 ¢’ exp(—cn), wherec, ¢’ are universal positive constants. Hence,
we are bounding the random quantjiXv||, in terms of ||Z¥/2v||, and ||v||; for all v with high
probability. It suffices to prove Theorem 1 f$EY/?v||, = 1. Indeed, for any vector € RP such
that =1/2v = 0, the claim holds holds trivially. Otherwise, we may consider the re-scaletbw
V=v/||Z¥/2v||5, and note that=1/2V||, = 1 by construction. By scale invariance of the condition (5),
if it holds for the re-scaled vector, it also holds fow.

Therefore, in the remainder of the proof, our goal is to lower bound tla@tity | X v||» over the
set ofv such that]|x¥/2v||, = 1 in terms of||v||1. At a high level, there are three main steps to the
proof:

Iog

1
> 1=V 9p(2) Il forallve R, 5)

(1) We begin by considering the $éfr) := {ve RP | ||[ZY2v|| = 1, ||v||1 < r}, for a fixed radius
r. Although this set may be empty for certain choices of 0, our analysis only concerns
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those choices for which it is non-empty. Define the random variable

o DY F: { !XVHz}
M(r,X):=1— inf = sup<l-— .
(5,%) vev(r) /N vev(r) Vvn

Our first step is to upper bound the expectatitiiM(r, X)], where the expectation is taken
over the random Gaussian matkx

(2) Second, we establish thet(r, X) is a Lipschitz function of its Gaussian arguments, and then
use concentration inequalities to assert that for each fixe@, the random variabl®l(r, X)
is sharply concentrated around its expectation with high probability.

(3) Third, we use a peeling argument to show that our analysis holds withphabability and
uniformly over all possible choice of thg-radiusr, which then implies that the condition (5)
holds with high probability as claimed.

In the remainder of this section, we provide the details of each of these steps

4.2 Bounding the ExpectationE[M(r, X)]

This subsection is devoted to a proof of the following lemma:

Lemma 1 For any radius r> 0 such that \{r) is non-empty, we have

EM(r,X)] < % +3p(2)y/ 'O% r

Proof: LetS™! = {uc R" | ||u||>= 1} be the Euclidean sphere of radius 1, and recall the previously
defined seV(r) := {ve RP | ||Z¥2v||, = 1, ||v|[1 < r}. For each paifu,v) € S"* x V(r), we may
define an associated zero-mean Gaussian random vamaple= u' X v. This representation is
useful, because it allows us to write the quantity of interest as a min-max prableerms of this
Gaussian process. In particular, we have

— inf HXVHQ—— inf sup u™Xv = sup inf u'Xv
vev(r VeV(r) yeg-1 vev(r)uest

We may now upper bound the expected value of the above quantity via si@au®mparison
inequality; here we state a form of Gordon’s inequality used in past worlcaussian random
matrices (Davidson and Szarek, 2001). Suppose{that (u,v) € U xV} and{Z,y, (u,v) eU xV}
are two zero-mean Gaussian processed orV. Usingo(-) to denote the standard deviation of its
argument, suppose that these two processes satisfy the inequality

o(Yuv—Yuv) <0(Zuy—Zyyv) for all pairs(u,v) and(u,V) inU xV,
and this inequality holds with equality wher= V. Then we are guaranteed that

[suplnf Yuv] < Elsupinf Zyy].

vev ueu vev ueu

We use Gordon'’s inequality to show that

EM(r,X)] =1+E[ sup inf Yuv] <1+E[sup inf Zuv]
veV(r )UGS1 vev(r )UGS‘

2251



RASKUTTI, WAINWRIGHT AND YU

where we recall that,,, = u' Xv andZ,, is a different Gaussian process to be defined shortly.

We begin by computing?(Y,y — Yy v ). To simplify notation, we note that thé¢ € R™P can be
written asWz/2, wherew € R™P is a matrix with i.i.d.A((0,1) entries, an&? is the symmetric
matrix square root. In terms ¥¥, we can write

Yoy = u"W3zY2y = uTwy,

wherev'= 31/2y. It follows that
n p

0% (Yuy —Yuv) i = E( Z

W (i — u))? = [lud® — (u)(@)T |2,
= j:l

where|| - || is the Frobenius norm¢4-norm applied elementwise to the matrix). This equality
follows immediately since thef; variables are i.i.d\((0,1).
Now consider a second zero-mean Gaussian praggssdexed byS'~1 x V(r), and given by

Zu7v == QT u + F]T zl/ZV,

whereg ~ N(O, Inxn) andh ~ N(O,1pxp) are standard Gaussian random vectors. Withs1/2y, we
see immediately that

0%(Zuy—Zuwy) = lu— U5+ [V 7I5.

Consequently, in order to apply the Gaussian comparison princigh ¢ and{Z,}, we need
to show that

U@ — () (@) TIIE < flu— 5+ -3 (6)

for all pairs(u,V) and (U, ¥) in the set of interest. Since the Frobenius ndfmi|e is simply the
£>-norm on the vectorized form of a matrix, we can compute

™ —u@)T)E = [lu—u)7 +u@-7)")|3
n p

P PACRUVECAS
i=1j=

12 2 210 7112 T 23110112 _ ol
= [V [lu— U3+ [[U][20 = T]I2+2(u" U — JU]|2) (|92 — 7" 7)
2 1o T2 2 T 512 T o

= [u=uz+ V=72 —2(Ju'[|l2—u"u)([[V]2 - T T),

where we have used equalitigg||, = ||U'||2 = 1 and||V||> = ||¥||2 = 1. By the Cauchy-Schwarz
inequality, we haveu||3 —u"u’ > 0, and||¥||5 — V"% > 0, from which the claimed inequality (6)
follows. Whenv=V, we also have = ¥1/2y = 5%/2/ =/, so that equality holds in the condition (6)
whenv'= V.
Consequently, we may apply Gordon'’s inequality to conclude that
E inf u'Xv] < E inf Z
[vi\lf(?) UGSHU ] < [vg\l/J(l?) ues™t o)

— E[ inf g'ul+E[ sup h'zY2y]
ues+t vev(r)

= —E[||gll2] +E[ sup AT="/2y].
veV(r)
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We now observe that by definition ¥fr), we have

sup (A" =Y2v] < sup [[V]l1 |26 < 1]|ZY?A]w.
veVv(r) veV(r)

Each elemen¢z/2h) j Is zero-mean Gaussian with variantg. Consequently, known results on
Gaussian maxima (cf. Ledoux and Talagrand, 1991, Equation (3.13)) gy =2/ 2h||..] <
3v/P%(Z) logp, wherep?(Z) = max; Zj;. Noting? thatE[||d||2] > 2,/n for all n > 10 by standard
X tail bounds and putting together the pieces, we obtain the bound

1/2

B[ inf |Xvlz] < —Zﬁ—i—B[pZ(Z)Iogp] r

vev(r

Dividing by y/n and adding 1 to both sides yields

logp

EIM(.X)] =E[1— inf [ Xvl2/VA <1/4+3p(2) /o0,

1— inf
veV(r)

as claimed.

4.3 Concentration Around the Mean for M(r, X)
Having controlled the expectation, the next step is to establish concentratid(r,oX) around its
mean. Note that Lemma 1 shows tE&aM (r, X)] < t(r), where

t(r) ::%+3rp(2) %. @

Now we prove the following claim:
Lemma 2 For any r such that ¥f) is non-empty, we have

P[M(r,x) > 3?] < 2exp(—nt?(r)/8).

Proof In order to prove this lemma, it suffices to show that
P[IM(r,X) —EM(r,X)]| > t(r)/2] < 2exg—nt?(r)/8),

and use the upper bound &fiM(r, X)] derived in Lemma 1.

By concentration of measure for Lipschitz functions of Gaussians (gpperdix B), this tail
bound will follow if we show that the Lipschitz constant b(r, X) as a function of the Gaussian
random matrix is less thary1/n. To make this functional dependence explicit, let us wwitg, X)
as the functioh(W) = SuR.cy( (1— [[WEZY2v][2/y/n). We find that

v[h(W) —h(W')] = sup —[WZ"/2v||2 — sup —[[W'E"2y|2.
veVv(r) veV(r)

2. In fact,|E[||@]|2] — v/n| = o(1/n), but this simple bound is sufficient for our purposes.
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SinceV(r) is closed and bounded and the objective function is continuous, theteezi¥/(r) such
thatV'= arg maxey() —[W=/2v 2. Therefore

sup (— [WEY?v]2) - sup (— [W'EY2||p) = —|WEYZ02— sup (- [[W'ZH2v|)
veV(r) veVv(r) veVv(r)
IW'ZY20]|p — W20

sup ([|(W' —W)zY2yl5).
veVv(r)

IAIA

For a matrixA, we define its spectral norfA(|2 = supy,—1 [[Aull2. With this notation, we can
bound the Lipschitz constant bfas

Vn[h(W) —hW')] < S\L/J(p) (| (W —W") =2y )

&

< { sup (|IZ2vll2) I (W —W)]ll2
veVv(r)

® 1/2 '

< { sup (IZ7Vll2) } l(W W)l
veVv(r)

©

=W =W

In this argument, inequality (a) follows by definition of the matrix spectral nfirrj»; inequality

(b) follows from the bound|(W —W')]||2 < ||[(W —W')||r between the spectral and Frobenius ma-
trix norms (Horn and Johnson, 1985); and equality (c) follows sij&%€?v||, = 1 for all v € V/(r).
Thus, we have shown thathas Lipschitz constant < 1/,/n with respect to the Euclidean norm
onW (viewed as a vector withp entries). Finally we use a standard result on the concentration for
Lipschitz functions of Gaussian random variables (Ledoux, 2001skt§2003)—see Appendix B

for one statement. Applying the concentration result (9) wite np, § =W, andt =t(r)/2 com-
pletes the proof. |

4.4 Extension to All Vectors Via Peeling
Thus far, we have shown that
[aSYIF:

M(r,X)=1— inf ——= = supq1
(5.%) vev(r) /N veV(E)){

_ IXvi2

Jn}zamn, ®)

with probability no larger than 2exp-nt?(r)/8) wheret(r) = 7 +3r p(X) \/@. The setV(r)
requires thaflv||; <r for somefixedradiusr, whereas the claim of Theorem 1 applies to all vectors
v. Consequently, we need to extend the bound (8) to an arbityagdius.

In order do so, we define the event

T = {3veRPs.t |22y, =1and(1—|XV|2/v/n) > 3t(||v]|1) }.

Note that there is noin the definition of7, because we are settifjg||1 to be the argument of the
functiont. We claim that there are constants positive constgrtssuch thatP[7] < cexp(—c'n),

2254



RESTRICTEDEIGENVALUE PROPERTIES FORCORRELATED GAUSSIAN DESIGNS

from which Theorem 1 will follow. We establish this claim by using a devicevkmas peeling
(Alexander, 1985; van de Geer, 2000); for the version used beeel.emma 3 proved in the Ap-
pendix. In particular, we apply Lemma 3 with the functions

fvwX) =1—[XV[2/vn,  h(v)=|vls, and g(r)=3t(r)/2,

the sequence, = n, and the seA = {v € RP | |Z¥/?y|, = 1}. Recall that the quantity, as
previously defined (7), satisfigér) > 1/4 for all r > 0 and is strictly increasing. Therefore, the
function g(r) = 3t(r)/2 is non-negative and strictly increasing as a functiom,céind moreover
satisfiesg(r) > 3/8, so that Lemma 3 is applicable with= 3/8. We can thus conclude that
P[T€] > 1— cexp(—c'n) for some numerical constantandc’.

Finally, conditioned on the evertC, for all v € RP with ||=%/2v||, = 1, we have

3 lo
L= IXVl2/vA < 3(IVl) = 5 +9IVlap(E)y/ 0.

which implies that

1 logp
IXMilz/vA> 5 = 9Vl1 p(z) /=

As noted in the proof outline, this suffices to establish the general claim.

5. Conclusion

Methods based ofy-relaxations are very popular, and the weakest possible conditionsateth
sign matrixX required to provide performance guarantees—namely, the restrictegaudlsaind
eigenvalue conditions—are well-understood. In this paper, we hawegthat these conditions
hold with high probability for a broad class of Gaussian design matrices alidiwirguite general
dependency among the columns, as captured by a covariance lhegpresenting the dependence
among the different covariates. As a corollary, our result guaratttee&known performance guar-
antees for;-relaxations such as basis pursuit and Lasso hold with high probabiligufdr prob-
lems, provided the population matrksatisfies the RE condition. Interestingly, our theory shows
that /1-methods can perform well when the covariates are sampled from a i@aukstribution
with a degenerate covariance matrix. Some follow-up work (Zhou, 208®9¥ktended these results
to random matrices with sub-Gaussian rows. In addition, there are a noidiber ways in which
this work could be extended. One is to incorporate additional dependeruss the rows of the de-
sign matrix, as would arise in modeling time series data for example. It would eliswdresting to
relate the allowable degeneracy structures tf applications involving real data. Finally, although
this paper provides various conditions under which the RE condition holdshgithprobability, it
does not address the issue of how to determine whether a given samaieoog matrix matrix
s= XTX /n satisfies the RE condition. It would be interesting to study if there are commaéyio
efficient methods for verifying the RE condition.

Acknowledgments

We thank Arash Amini for useful discussion, particularly regarding tteefs of Theorem 1 and
Lemma 3, and Rob Nowak for helpful comments on an earlier draft. This wak partially

2255



RASKUTTI, WAINWRIGHT AND YU

supported by NSF grants DMS-0605165 and DMS-0907632 to MJW anthEaddition, BY was
partially supported by the NSF grant SES-0835531 (CDI), and a fn@ntthe MSRA. MJW was
supported by an Sloan Foundation Fellowship and AFOSR Grant FAG8500466. During this
work, GR was financially supported by a Berkeley Graduate Fellowship.

Appendix A. Peeling Argument

In this appendix, we state a result on large deviations of the constrairieduop of random ob-
jective functions of the fornf (v; X), wherev € RP is the vector to be optimized over, aixdis
some random vector. Of interest is the problemygjg \ca f(v; X), whereh: RP — R, is some
non-negative and increasing constraint function, Amsla non-empty set. With this set-up, our goal
is to bound the probability of the event defined by

£ := {3veAsuchthatf(v;X) >2g(h(v)))},
whereg: R — R is non-negative and strictly increasing.

Lemma 3 Suppose that(g) > u for all r > 0, and that there exists some constant © such that
for all r > 0, we have the tail bound

P[ sup f(vX)>g(r)] < 2exg—cang’(r)),
veA, h(v)<r
for some @ > 0. Then we have
2 exp —4can?)
1—exp(—4can2)’
Proof : Our proof is based on a standard peeling technique (e.g., see varede2Ge0, p. 82). By

assumption, as varies overA, we haveg(r) € [y, o). Accordingly, form=1,2,..., defining the
sets

PZ]

An = {veA|2™'u<g(h(v)) <2™},

we may conclude that if there existse A such thatf (v,X) > 2g(h(v)), then this must occur for
somem andv € An,. By union bound, we have

P[E] < il]P’[H Vv € Ap such thatf (v, X) > 2g(h(v))].

If ve Ay and f(v,X) > 2g(h(v)), then by definition ofA,,, we havef(v,X) > 2(2™1)p= 2"y
Since for anw € A, we haveg(h(v)) < 2™y, we combine these inequalities to obtain

PE] < S P[ sup f(vX)>2"
m=1  h(v)<g~'(2™y)

< izex'”( ~can [g(g 1 (2"W)P)

= 2 S exp( — ca, 2°Mu?),
5 omcn

from which the stated claim follows by upper bounding this geometric sum. |
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Appendix B. Concentration for Gaussian Lipschitz Functions

We say that a functiof : R™ — R is Lipschitz with constant if |F (x) — F(y)| < L||x—y]||2 for all
x,y € R™M Itis a classical fact that Lipschitz functions of standard Gaussiaorseexhibit Gaussian
concentration. We summarize one version of this fact in the following:

Theorem 2 (Theorem 3.8 from Massart 2003)Let w~ A(0,Imxm) be an m-dimensional Gaus-
sian random variable. Then for any L-Lipschitz function F, we have

2

P |F(W)—E[F(W)]\zt} §2exp<—2t|_2>,forallt20. )

This result can be interpreted as saying that in terms of tail behavior, tdemavariable= (w) —
[E[F (w)] behaves like a zero-mean Gaussian with varidrfce
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