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Abstract

Pac-Bayes bounds are among the most accurate generalizatiom®dor classifiers learned from
independently and identically distributed (11D) data, dinid particularly so for margin classifiers:
there have been recent contributions showing how pradtiesle bounds can be either to perform
model selection (Ambroladze et al., 2007) or even to diyagtide the learning of linear classifiers
(Germain et al., 2009). However, there are many practitaatons where the training data show
some dependencies and where the traditional 11D assumgties not hold. Stating generalization
bounds for such frameworks is therefore of the utmost istegoth from theoretical and prac-
tical standpoints. In this work, we propose the first—to thstlmé our knowledge—RC-Bayes
generalization bounds for classifiers trained on data é@xgbinterdependencies. The approach
undertaken to establish our results is based on the decdtiopax a so-called dependency graph
that encodes the dependencies within the data, in sets gpémdient data, thanks to grajolac-
tional covers Our bounds are very general, since being able to find an iygperd on the fractional
chromatic number of the dependency graph is sufficient tmegetRAc-Bayes bounds for specific
settings. We show how our results can be used to derive bdandking statistics (such asug)
and classifiers trained on data distributed according tatosary3-mixing process. In the way,
we show how our approach seamlessly allows us to deal withodegses. As a side note, we also
provide a Rc-Bayes generalization bound for classifiers learned onfdata stationaryp-mixing
distributions.
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1. Introduction

This introductory section first recalls a fewa&Bayesian results that set the background of the
present work. An overview of our contributions is then given, anditegérom the literature closely
related to ours are described. Lastly, the structure of the paper is pdovid

1.1 Background

Recently, there has been much progress in the field of generalizationldéomclassifiers, the
most noticeable of which are Rademacher-complexity-based boundie(Band Mendelson, 2002;
Bartlett et al., 2005), stability-based bounds (Bousquet and Elis28€2) and Rc-Bayes bounds
(McAllester, 1999). Rc-Bayes bounds, introduced by McAllester (1999), and refined inrakve
occasions (Seeger, 2002a; Langford, 2005; Audibert and Betisg007), are some of the most
appealing advances from the tightness and accuracy points of viewdcalleat monograph on the
Pac-Bayesian framework is that of Catoni (2007)). Among others, strikgsylts have been ob-
tained concerning A&Z-Bayes bounds for linear classifiers: Ambroladze et al. (2007) sthdinst
Pac-Bayes bounds are a viable route to do actual model selection; Germdin(22G9) recently
proposed to learn linear classifiers by directly minimizing the linear-Bayes bound with conclu-
sive results, while Langford and Shawe-taylor (2002) showed thdg¢nsome margin assumption,
the RAc-Bayes framework allows one to tightly bound not only the risk of the stdith@gbobs clas-
sifier (see below) but also the risk of the Bayes classifier. The variefglgdrithmic, theoretical,
practical) outcomes that can be expected from original contributions inabeBRyesian setting
explains and justifies the increasing interest it generates.

1.2 Contribution

To the best of our knowledgeAB-Bayes bounds have essentially been derived for the setting where
the training data arsmdependently and identically distributétD). Yet, being able to learn from
non-11D data while having strong theoretical guarantees on the geraiatizproperties of the
learned classifier is an actual problem in a number of real world applisasiach as, for instance,
bipartite ranking (and more generakypartite ranking) or classification from sequential data. Here,
we propose the firstAZ-Bayes bounds for classifiers trained on non-lID data; they constitute a
generalization of the IID Rc-Bayes bound and they are generic enough to provide a principled
way to establish generalization bounds for a number of non-I1D settirgsstablish these bounds,
we make use of simple tools from probability theory, convexity propertiesmwfesfunctions, and

we exploit the notion ofractional coversf graphs (Schreinerman and Ullman, 1997). One way to
get a high level view of our contribution is the following: fractional covallew us to cope with

the dependencies within the set of random variables at hand by proadimgtegy to make (large)
subsets of independent random variables on which the usualAtbBRyes bound is applied. Note
that we essentially provide bounds for the casédehtically and non-independenttlistributed
data; the additional results that we give in the appendix generalizesrtédentically and non-
independentlyistributed data.

1.3 Related Results

We would like to mention that the idea of dealing with sums of interdependentmardriables by
separating them into subsets of independent variables to establish tratioarinequalities dates
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back to the work of Hoeffding (1948, 1963) on U-statistics. Explicitly udimg notion of (frac-
tional) covers—or, equivalently, colorings—of graphs to derive sumitentration inequalities has
been proposed by Pemmaraju (2001) and Janson (2004) and latetezktgnUsunier et al. (2006)
to deal with functions that are different from the sum. Just as Usunadr €1006), who used their
concentration inequality to provide generalization bounds based dratt®mnal Rademacher com-
plexity, we take the approach of decomposing a set of dependent rand@blearinto subsets of
dependent random variables a step beyond establishing concentratjorlity to provide what we
call chromaticPAac-Bayes generalization bounds.

The genericity of our bounds is illustrated in several ways. It allows ugtivelgeneralization
bounds on the ranking performance of scoring/ranking functions usiaglifferent performance
measures, among which theea under thdRoc curve(Auc) . These bounds are directly related to
the work of Agarwal et al. (2005), Agarwal and Niyogi (2009)é@lencon et al. (2008) and Freund
et al. (2003). Even if our bounds are obtained as simple specific instahoar generic Rc-Bayes
bounds, they exhibit interesting peculiarities. Compared with the bound afwg et al. (2005)
and Freund et al. (2003), ouru& bound depends in a less stronger way ongkew(that is, the
imbalance between positive and negative data) of the distribution; besuttsssinot rest on (rank-
)shatter coefficients/VC dimension that may sometimes be hard to assesselgcim addition,
our bound directly applies to (kernel-based) linear classifiers. AdameaNiyogi (2009) base their
analysis of ranking performances on algorithmic stability, and the qualitabrrgoarison of their
bounds and ours is not straightforward because stability argumenteramvbat different from
the arguments used forB-Bayes bounds (and other uniform bounds). As already obseryed b
Janson (2004), coloring provides a way to generalize large deviasotgsdased on U-statistics;
this observation carries over when generalization bounds are cogdjahdrich allows us to draw a
connection between the results we obtain and that @fm@hcon et al. (2008).

Another illustration of the genericity of our approach deals with mixing preegsin particular,
we show how our chromatic bounds can be used to easily derive newatjzation bounds fof-
mixing processes. Rademacher complexity based bounds for such tgpacegses have recently
been established by Mohri and Rostamizadeh (2009). To the best &howtedge, it is the first
time that such a bound is given in thed®Bayes framework. The striking feature is that it is
done at a very low price: the independent block method proposed by 9Q4) directly gives a
dependency graph whose chromatic number is straightforward to compateie Ahall see, this
suffices to instantiate our chromatic bounds, which, after simple calculatéads to appropriate
generalization bound. For sake of completeness, we also provide-8&yes bound for stationary
¢-mixing processes; it is based on a different approach and its présanpostponed to the
appendix together with the tools that allows us to derive it.

1.4 Organization of the Paper

The paper is organized as follows. Section 2 recalls the standardA¢tEBRyes bound. Section 3
introduces the notion of fractional covers and states the new chrommati®&yes bounds, which
rely on the fractional chromatic number of thependency grapbf the data at hand. Section 4 pro-
vides specific versions of our bounds for the case of 11D data, rgrdal stationarf3-mixing pro-
cesses, giving rise to original generalization bounds.a&-Bayes bound for stationay-mixing
based on arguments different from the chromaticBayes bound is provided, in the appendix.
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2. 1ID Pac-Bayes Bound

We introduce notation that will hold from here on. We mainly consider the lprotof binary
classification over thanput spacex and we denote the set of possible labelgas {—1,+1} (for
the case of ranking described in Section 4, we welise R); Z denotes the product spagex .
H C RX is a family of real valued classifiers definedginfor h € #, the predicted output ofe X
is given by sigith(x)), where sigiix) = +1 if x> 0 and—1 otherwiseD is a probability distribution

defined overZ and Dy, denotes the distribution of am-sample; for instanceDy, = @ ,D = D™
is the distribution of an IID sampl& = {Z }{", of sizem (Z ~ D, i = 1...m). P andQ are
distributions over{. For any positive mtegem [m] stands fo{1,...,m}.

The IID Pac-Bayes bound, can be stated as follows (McAIIester, 2003; Seeda2a20ang-
ford, 2005).

Theorem 1 (IID Pac-Bayes Bound) VD, VH, Vo € (0,1], VP, with probability at least. — & over
the random draw oZ ~ D, = D™, the following holds:

m+1

vQ, K(&(2)lleg) < = [KL(QIIP) +1n T 2| &

This theorem provides a generalization error bound foGHmbs classifier g: given a distribution
Q, this stochastic classifier predicts a classfar X by first drawing a hypothestsaccording taQ
and then outputting sigh(x)). Here,&y is the empirical error ofig on an 11D sample& of sizem
andeg is its true error:

R 1 m
&(Z) :=Eno— Zl r(h,z) =EnoR(h,Z) withR(h,Z):= 215" r(hz),
€0 :=Ez-p,8(Z) = EngR(h) with R(h) := Ezp,R(h,2),

(2)

where, forz = (X,Y),
r(h,Z) :=Iynx)<o
Note that we will use this binary 0-1 risk functiothroughout the paper and that a generalization of

our results to bounded real-valued risk functions is given in appendige is an (independently)
identically distributed sample, we have

R(h) = Ez.p,R(h,Z) = Ezpr(h,Z). (3)

For p,q € [0,1], kl(q||p) is the Kullback-Leibler divergence between the Bernoulli distributions
with probabilities of successandp, and KL(Q||P) is the Kullback-Leibler divergence betweén
andP:

g 1-q
Ki@lp)==gln-J+ (1 —a)inT—p
. Q(h)

where k[0]|0) = kl(1/|1) = 0. All along, we assume that the posteriors are absolutely continuous
with respect to their corresponding priors.
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It is straightforward to see that the mapping kt — kl(q||q+t) is strictly increasing fot €
[0,1—q) and therefore defines a bijection frd1—q) to R,.: we denote by Igl its inverse. Then,

as pointed out by Seeger (2002a), the function' ki(g,) — ki~*(q,€) = ki, *(¢) is well-defined
over[0,1) x R ", and, by definition:

t >ki~*(q,e) < Ki(gl|g+1t) > &.

This makes it possible to rewrite bound (1) in a more ‘usual’ form:

1
m

¥Q, e < &(2) + K+ (@), [KLQ@P +1n ). @

We observe that even if bounds (1) and (4) apply to the eiglof the stochastic classifier
0o, a straightforward argument gives that,bth is the (deterministic) Bayes classifier such that
bo(x) = sign(En.gh(x)), thenR(bg) = Ezpr (bg,Z) < 2eq (see for instance Herbrich and Graepel,
2001). Langford and Shawe-taylor (2002) show that under somemasgumptionR(bg) can be
bounded even more tightly.

3. Chromatic Pac-Bayes Bounds

The problem we focus on is that of generalizing Theorem 1 to the situatienenthere may exist
probabilistic dependencies between the elem&nt$é Z = {Z;}" ; while the marginal distributions
of thez’s are identical. As announced before, we provideBayes bounds for classifiers trained
on identically but not independently distributed data. These results relyapegies of a depen-
dency graph that is built according to the dependencies wzhiBefore stating our new bounds,
we thus introduce the concepts of graph theory that will play a role in théamsemnts.

3.1 Dependency Graph, Fractional Covers

Definition 2 (Dependency Graph) LetZ = {Z }]"; be a set of m random variables taking values
in some space. Thedependency graph(Z) = (V,E) of Z is such that:

e the set of vertices V ¢¥(Z) isV = [m];

e (i,]) € E (there is no edge between i and4) Z; and Z; are independent.

Definition 3 (Fractional Covers, Schreinerman and Ullman, 1997)Let ' = (V,E) be an undi-
rected graph, with \'= [m].

e C CV isindependenif the vertices in C are independent (no two vertices in C are connected).

C = {Cj}!_;, with C; CV, is aproper covenf V if each G is independent angj_; Cj = V.
It is exactif C is a partition of V. The size & is n.

C={(Cj,wj) |1, with C; CV andw; € [0,1], is aproper exact fractional covef V if each
Cj is independent andi € V, _; wjlicc; = 1; w(C) = y'_; o is thechromatic weighof
C.

The (fractional) chromatic numbey(I") (x*(I")) is the minimum size (chromatic weight) over
all proper exact (fractional) covers ot
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A cover is a fractional cover such that all the weigtisare equal to 1 (and all the results we state
for fractional covers apply to the case of coversh I§ the size of a cover, it means that the nodes
of the graph at hand can be colored witkolors in a way such that no two adjacent nodes receive
the same color.

The problem of computing the (fractional) chromatic number of a graplribdNd (Schreiner-
man and Ullman, 1997). However, for some particular graphs as thoseotinat from the settings
we study in Section 4, this number can be evaluated precisely. If it caenetdduated, it can be
upper bounded using the following property.

Property 1 (Schreinerman and Ullman, 1997)Letl" = (V,E) be a graph. Let @) be theclique
numberof I, that is, the order of the largest clique N LetA(I") be the maximum degree of a
vertex inl". We have the following inequalities:

1< (M) <x"(N) < X(N) <A +1.
In addition,1=c(I") =x*(I') =x(I) =A(") + 1 if and only if is totally disconnected.

If Z={Z}", is asetof random variables ovBithen a (fractional) proper cover b{Z), splits
Z into subsets of independent random variables. This is a crucial faatastablish our results. In
addition, we can seg*(I'(Z)) andx (I (Z)) as measures of the amount of dependencies wthin
The following lemma (Lemma 3.1 in Janson, 2004) will be very useful in the fatigw

Lemma 4 If C = {(Cj,wj)}]_; is an exact fractional cover df = (V,E), with V = [m], then

m n
vte R™, Z\ti =) W Z tk.
i= jzl keC;j
In particular, m= y_; wj[Cj|.

3.2 Chromatic Pac-Bayes Bounds

We now provide new Rc-Bayes bounds for classifiers trained on samglesawn from distribu-
tionsDp, where dependencies exist. We assume these dependencies are fathyrestdyD,, and
we define the dependency grap(Dm) of Dy, to bel (D) = I(Z). As said before, the marginal
distributions ofD, along each coordinate are the same and are equal to some distribution

We introduce additional notation. ERC(Dyy) is the set of proper exact fractional covers of
[(Dm). Given a coveC = {(Cj,wj)}}_; € PEFC(Dm), we use the following notation:

o ZU = {Zkec;:

o DY, the distribution oZ(): it is equal toDICil = /D (C; is independent);

e o= (0j)1<j<n With o) = wj/w(C): we havea; > 0 andy;aj =1;

e Tt= (TTj)1<j<n, With T = w;|Cj|/m: we havert; > 0 andy ; i; = 1 (cf. Lemma 4).

In addition,P, andQ,, denote distributions ovet(", P,% andQ,j1 are the marginal distributions &%,
andQp with respect to thgth coordinate, respectively.
We can now state our main results.
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Theorem 5 (Chromatic PAc-Bayes Bound (1)) VDm, Vv, ¥& € (0,1], VC = {(Cj,wj)}]_; €
PEFC(Dm), VPn, with probability at leastl — & over the random draw af ~ Dy, the following
holds:

_ n m+u)
J J

wherew stands forw(C), and

n .

e_Qn(Z) = Z T[JEhNQ%R“]aZ(J))a
=1
eQn = IEZNDme_Qn (Z)

Proof Deferred to Section 3.4. [ |

We would like to emphasize that the same type of result, using the same proofies can be
obtained if simple (that is, not exact nor proper) fractional coversansidered. However, as we
shall see, the ‘best’ (in terms of tightness) bound is achieved for ctnegnsthe set of proper exact
fractional covers, and this is the reason why we have stated Theoreith & westriction to this
particular set of covers.

The empirical quantityeg, (Z) is a weighted average of the empirical errorsR of Gibbs
classifiers with respective distribution€). The following proposition characterizes
e, = Ez~0,8q,(2Z)-

Proposition 6 VD, V4, VC = {(Cj, wj) }|_; € PEFC(Dm), VQn! €q, = Ez.p,&q,(Z) is the error
of the Gibbs classifier based on the mlxture of distributiofis-Gy _; T Qb

Proof From the definition oft, 1y, > 0 andy_; 1 = 1. Thus,
Ez~0nQ,(Z) =Ez-p, Z e, oiR(h,Z10)
= Zn,IEhNQJEZ " R(h z) (marginalization)
= ;m iR (E, o0 R(NZD) =R(h), ¥))
=By _ruqir. +mot RN = ErognR(h).

Where, in the third line, we have used the fact that the variabl@$iinare identically distributed
(by assumption, they are IID). |

Remark 7 The prior P, and the posterioiQ, enter into play in Proposition 6 and Theorem 5
through their marginals only. This advocates for the following learning sehddiven a cover and
a (possibly factorized) prioP,, look for a factorized posterioQ, = ®?:1Qj such that each Q

independently minimizes the usulD PAc-Bayes bound given in Theorem 1 on eddh. Then
make predictions according to the Gibbs classifier defined with respect to  ;Q;.

The following theorem gives a result that readily applies without choasisygecific cover.

1933



RALAIVOLA , SZAFRANSKI AND STEMPFEL

Theorem 8 (Chromatic Pac-Bayes Bound (Il)) VDm, VH, V0 € (0,1], VP, with probability at
leastl— o over the random draw df ~ Dy, the following holds

m+ X*

X*

m

vQ, KI(&(2)leg) < X |KL(QIIP) +1n

wherex* is the fractional chromatic number 6fDp,), and whereéég(Z) and &) are as in (2).

Proof This theorem is just a particular case of Theorem 5. AssumeQhat{(Cj,wj)}}_; €
PEFC(Dm) such thaty(C) = X* (I (Dm)), Pn = ®]_;P=P" andQ, = ®]_;Q = Q", for someP and
Q.

For the right-hand side of (6), it directly comes that

3 a; KL(QHIR]) = ¥ a;KL(Q|IP) = KL (QI[P).
] J

It then suffices to show tha, (Z) = éy(Z2):

€0.(2) = 3 ME, oRh,ZV) = mEnoR(h,Z1)
] ]
_l 1CHE, 1 h.Z - wi[Gj] Vi
—ﬁzwﬂ i hNQ@Zr( +Zk) (G = =", V0)
]
1

= EhNQ% Z r(h,z) (cf. Lemma 4)
|

=En-qR(h,Z) = &(2).

A few comments are in order.

e A x* worsening. This theorem says that even in the case of non 11D date;-8&yes bound
very similar to the 11D Rc-Bayes bound (1) can be stated, with a worsening (syrice 1)
proportional tgx*, that is, proportional to the amount of dependencies in the data. In addition
the new Rc-Bayes bounds is valid with any priors and posteriors, without the nedtidee
distributions to depend on the chosen cover (as is the case with the moralgéreorem 5).

e X*: the optimal constant. Among all elements &He(Dp,), X* is the best constant achievable
in terms of the tightness of the bound (6) &t getting an optimal coloring gives rise to an
‘optimal’ bound. Indeed, it suffices to observe that the right-hand sid8)ds decreasing
with respect tao when allQ}, are identical (we let the reader check that).yAss the smallest
chromatic weight, it gives the tightest bound.

e [(Dm) vs. induced subgraphs. $fC [m| andZs = {Zs: s€ s}, it is obvious that Theorem 8
holds for|s|-samples drawn from the marginal distributibg of Zs. Considering onlyZg
amounts to working with the subgrapi{Ds) of I'(Dy) induced by the vertices ig this
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7 Zy, Zo o A Zo T
o O0—0O O O o O
(a) r1—edge (b) My

Figure 1: Ty is the subgraph induced Hyi.eqge (Which contains only one edge, betweegrmand
V) whenu is removed: it might be preferable to consider the distribution correspondifg in

Theorem 8 instead of the distribution defined Wteqge SiNCEX™ (M 1-edged = 2 andx™*(My) = 1 (see
text for detailed comments).

might provide a better bound in situations whgtéDs) /|5| is smaller tharx*(Dp,) /m (this is

not guaranteed, however, because the empirical egl@ts) computed orZs might be larger
than€g(Z)). To see this, consider a graph.eqge= (V, E) of mvertices whergE| = 1, that

is, there are only two nodes, sayandv, that are connected (see Figure 1). The fractional
chromatic numbex_¢qcOf I 1-edgels 2 (Uandv must use distinct colors) while the (fractional)
chromatic numbeg, of the subgraphiy of I'1_eqge Obtained by removing is 1: x;_edgeis
twice as big ay(, while the number of nodes only differ by 1 and, for lange this ratio
roughly carries over foxj_edge/m andy;/(m—1).

This last comment outlines that considering a subsgt of, equivalently, a subgraph 6{Dy,),
in (6), might provide a better generalization bound. However, it is assuhadhe choice of the
subgraph is donbeforecomputing the bound: the bound does only hold with probability&ifor
the chosen subgraph. To alleviate this and provide a bound that talkerstagl of several induced
subgraphs, we have the following proposition:

Proposition 9 Let{m}* denote{s: sC [m],|s| = m—Kk}. VD, VH, Vk € [m], ¥& € (0,1], VP, with
probability at leastl — d over the random draw A& ~ Dy, VQ,

&< min {éQ(zs) K (éQ(zs), Xs [KL(QHP) +In ’S|;X§ +In <T:) +In ;} ) }

se{m}# Is] :

whereyg is the fractional chromatic number 6f(Ds), and whereéy(Zs) is the empirical error of
the Gibbs classifiergonZs, that is: ég(Zs) = En.qR(h,Zs).

Proof Simply apply the union bound to Equation (6) of Theorem 8: for fikethere are(m“_"k) =
(V) subgraphs and usind/ () makes the bound hold with probability-15 for all possible(})
subgraphs (simultaneously). Making use of the form (4) gives thédtresu |

This bound is particularly useful when, for some snkallhere exists a subsstC {m}#k such
that the induced subgraphDs), which hask fewer nodes thaf (D), has a fractional chromatic
numberxg that is smaller tharx*(Dm) (as is the case with the graph.eqge Of Figure 1, where
k = 1). Obtaining a similar result that holds for subgraphs associated witls eétszeslarger or
equalto m—kis possible by replacing If}) with In3%_, (") in the bound (in that cask should be
kept small enough with respect te—for examplek = Oy (1)—to ensure that the resulting bound
still goes down to zero whem — ).
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3.3 On the Relevance of Fractional Covers

One may wonder whether using the fractional cover framework is the cayytavestablish a result
similar to the one provided by Theorem 5. Of course, this is not the casene@nthay imagine other
ways of deriving closely related results without mentioning the idea of fragkicover coloring.
(For instance, one may manipulate subsets of independent variablgs,asights to these subsets
without referring to fractional covers, and arrive at results thatamparable to ours.)

However, if we assume that singling out independent sets of variableg isotinerstone of
dealing with interdependent random variables, we find it enlightening toocaspproach within
the rich and well-studied fractional cover/coloring framework. On the twared, our objective of
deriving tight bounds amounts to finding a decomposition of the set of mndwiables at hand
into few and largeindependent subsets and taking the graph theory point of view, this @hyiou
corresponds to a problem of graph coloring. Explicitly using the fractiomaer/coloring argument
allows us to directly benefit from the wealth of related results, such asRyo) or, for instance,
approaches as to how compute a cover or approximate the fractionalaticaumber (for instance,
linear programming). On the other hand, from a technical point of viewjmgalse of the fractional
cover argument allows us to preserve the simple structure of the prooé afdksical 11D PAC-
Bayes bound to derive Theorem 5.

To summarize, the richness of the results on graph (fractional) colorovigas us with elegant
tools to deal with a natural representation of the dependencies that mayititn a set of random
variables. In addition, and as showed in this article, it is possible to seamtaksladvantage of
these tools in the PAC-Bayesian framework (and probably in other balatbd frameworks).

3.4 Proof of Theorem 5
A proof in three steps, following the lines of the proofs given by SeegedZa) and Langford
(2005) for the 11D RAc-Bayes bound, can be provided.

Lemma 10 VDm, V3 € (0,1], VC = {(Cj, wj)}]_;, VPn distribution over#", with probability at
leastl— & over the random draw & ~ Dy, the following holds (herep stands forw(C))

d kIR 2 _ m+ w
Eh-p, J;a ;elCil IRy Z0) [Rihy) %,
whereh = (hy,...,hy) is a random vector of hypotheses.
Proof We first observe the following:
Ez-Dy Y a;eCil KI(R(hj.ZD)|[R(hy)) 3 GjEZ(j)ND%)e\Cj|k|(I§(h.,Z<j))|\R(h))
] ]
< > aj(IGj|+1) (Lemma 20, Appendix)
]
= 23 w(IC+ 1)
04
= M, (Lemma 4)
W
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where using Lemma 20 is made possible by the factZitis an ||D sample. Therefore,

n ~ .
Bz En-p, 3 oGl EmZIIRN) < m+w
= w

According to Markov’s inequality (Theorem 22, Appendix),

P, (Ehmpn zaje\c,-|kl<f<<hj,z<i>>uR<hj>> > m(j;’) <5
J

Lemma 11 VDm, VC = {(Cj, wj)}]_;, VPn, VQn, with probability at leastl — & over the random
draw ofZ ~ Dy, the following holds

m+w
oW

m A~
63 1Ty g KRN ZO) RN < 3],y KL(QKIP +1n

Proof It suffices to use Jensen’s inequality (Theorem 21, Appendix) with ththe fact that

Expf(X) = EXNQ%NX), forall f,P,Q. ThereforeyQn:

INEn.p, Z O(je\c,- [KI(Rhj,ZD)IR()) — |n z O‘J'EhNP,J; lCil K (RZD)[R(h))
] ]

nSar PO c(Emzo)Rm)
B z ] hNQnQJ(h)

pi

ZZaj]EhNQ%In ((2)) eCilk (RZD)IR() ] (Jensen’s inequality)
n

:_ZO(JKL QJ|\PJ)+ZGJ|CJ\IEhNQ, kl( 0| |R(h )

=S aKLQUP)+ Zn, nopK (RZD) RGN

Lemma 10 then gives the result. |

Lemma 12 VD, VC = {(Cj,(&)]‘)}?:l, VQn,, the following holds

Z, L THE, o KIR(N,ZD)[[R(N)) = Ki(&|[eg)- (7)

Proof This simply comes from the convexity of(kly) in (x,y) (Lemma 23, Appendix). This, in
combination with Lemma 11, closes the proof of Theorem 5. |
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7 Zm

o O

(a) 11D data (b) Bipartite ranking data

Figure 2: Dependency graphs for different settings described itioBet Nodes of the same color
are part of the same cover element; hence, they are probabilistically imdkge (a) When the data
are 11D, the dependency graph is disconnected and the fractionalanisip = 1; (b) a dependency
graph obtained for bipartite ranking from a sample of 4 positive and 2tiwegastancesy™* = 4.

4. Applications

In this section, we provide instances of Theorem 8 for various settimgaziagly, they alllow us
to easily derive Rc-Bayes generalization bounds for problems such as ranking and lgdrom
stationaryp-mixing processes. The theorems we provide here are all nesBRyes bounds for
different non-11D settings.

4.1 1ID Case

The first case we are interested in is the |1D setting. In this case, the trammnpleZ = {(X;,Y/) }";

is distributed according tB,, = D™ and the fractional chromatic numberlofDy,) is X* = 1, since

the dependency graph, depicted in Figure 2a is totally disconnectedr(geerty 1). Plugging in

this value ofx* in the bound of Theorem 8 gives the [IDAn@-Bayes bound of Theorem 1. This
emphasizes the fact that the standaxdBayes bound is a special case of our more general results.

4.2 General Ranking and Connection to U-Statistics

Here, the learning problem of interest is the followimyis a distribution overX x & with & = R
and one looks for a ranking rutec ® **X that minimizes theanking risk R2"k(h) defined as:

R3K(h) := P (xv~0 ((Y = Y)h(X,X') < 0). (8)
(X! Y')~D
For a random paifX,Y), Y can be thought of as a score that allows one to rank objects: given two
pairs(X,Y) and(X’,Y’), X has a higher rank (or is ‘better’) thaf{ if Y > Y’. The ranking ruleh
predictsX to be better thaX’ if sign(h(X,X’)) = 1 and conversely. The objective of learning is to
produce a ruldn that makes as few misrankings as possible, as measured by (8). Ginége &l B
(according tadD) sampleS = {(X;,Y;)}'_, an unbiased estimate B2"¥(h) is Ra"(h, S), with:

~ 1 1
k .
Re™(h,s) == ) ; Lv—Y) (% xj)<0 = -1 ; Iy (. x; ) <05 9)
i#) 17]
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whereY;; := (Y — ;). A natural question is to bound the ranking risk for any learning nujé/en
S, where the difficulty is that (9) is a sum of identically but not independerthdom variables,
namely the variableb; nx x;)-

Let us defineX;j := (X| Xj), Zij := (Xij,Yij), andZ := {Z; }ij. We note that the numbérof
training data suffices to determine the structure of the dependencygrapbf Z and its distribu-
tion, which we denot®,,_1). Henceforth, we are clearly in the framework for the application of
the chromatic Rc-Bayes bounds defined in the previous section. In particular, to instamhate
rem 8 to the present ranking problem, we simply need to have at hand tleexyaly or an upper
bound thereof, of the fractional chromatic numbefgf,. We claim thatx’, . < ¢(¢{—1)/|¢/2]
where x| is the largest integer less than or equaktdNe provide the following new A&-Bayes
bound for the ranking risk:

Theorem 13 (RankingPAc-Bayes bound) VD over X x &, VH C R, ¥ € (0,1], VP, with
probability at leastl — & over the random draw d8 ~ DY, the following holds

LE/ZJ—i—l

vQ, KI(E5™(S)]1e5™) < KL(QIP)+In =51,

6/2
where

Arank(S) — EhNQFAQrank(h, S),
5™ = Es.p&3"(S)

Proof We essentially need to prove our claim on the boundgp. To do so, we consider a
fractional cover of 1ank motivated by the theory of U-statistics (Hoeffding, 1948, 193], S) is
indeed a U-statistics of order 2 and it might be rewritten as a sum of 11D blasKollows

. 1 1 1 L2
R(has):mi;r(hazij) % /2] Zl (0, Zs(iyo((e/2)+1)) »

whereZ, is the set of permutations ovfi. The innermost sum is obviously a sum of 11D random
variables as no two summands share the same indices.
A proper exact fractional coveZ, 4k can be derived from this decompositiort as

. [¢/2] 1
Crni={ (G = (Zovmnmn) 5 i~ i )
Indeed, as remarked before, e&his an independent set and each random variag|dor p # g,
appears in exactly/ — 2)! x |¢/2] setsCy (for i fixed, the number of permutatiors such that
o(i)=panda(|¢/2]+i) =qis equal to(¢ — 2)!, that is, the number of permutations ér- 2
elements; ascan take| ¢/2| values, this gives the result). Thereforg, g, p # q:

1 1
o T RNy, e ey A

1. Note that the cover defined here considers elem@ntsontaining random variables themselves instead of their
indices. This abuse of notation is made for sake of readability.
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which proves tha€an is a proper exact fractional cover. Its wei@htCran) is

L(l—-1))
=/ =
W(Crank) = £! X Wg 2
Hence, from the definition of;, .
NP GaEY)
rank = LK/ZJ :

The theorem follows by an instantiation of Theorem 8 with= /(¢ — 1) and the bound oR;;,«

we have just proven. |

To our knowledge, this is the firstaB-Bayes bound on the ranking risk, while a Rademacher-
complexity based analysis was given byeflencon et al. (2008). In the proof, we have used
arguments from the analysis of U-processes, which allow us to easilyededonvenient fractional
cover of the dependency graph&fNote however that our framework still applies even if not all the
Zj’s are known, as required if an analysis based on U-processesastakeh. This is particularly
handy in practical situations where one may only be given the vafuesbut not the values of;
andY;—for a limited number ofi, j) pairs (and not all the pairs).

Aninteresting question is to know how the so-called Hoeffding decomposisiet oy Cémencgon
et al. (2008) to establish fast rates of convergence for empiricalmamisk minimizers could be
used to draw possibly tightemB-Bayes bounds. This would imply being able to appropriately take
advantage of moments of order 2 ind2Bayes bounds, and a possible direction for that has been
proposed by Lacasse et al. (2006). This is left for future work asibigentral to the present paper.

Of course, the ranking rule may be based on a scoring fundtier® * such thath(X,X’) =
f(X)— f(X’), in which case all the results that we state in termis@dn be stated similarly in terms
of f. This is important to note from a practical point of view as it is probably maerealto learn
functions defined ovek rather thanX x X (as ish).

Finally, we would like to stress that the bound g, that we have exhibited is actually rather
tight. Indeed, it is straightforward to see that the cligue numbé&rgf is 2(¢ — 1) (the cliques are
made of variable$Z, } | U{Zpi}p for everyi), and according to Property 1(2—- 1) is therefore a
lower bound orx;, . If £is even, then our bound o, is equal to 2¢ — 1) and S0 is(}, . if £is
odd, then our bound isf2

4.3 Bipartite Ranking and a Bound on theAuc

A particular ranking setting is that of bipartite ranking, whefe- {—1,+1}. LetD be a distribution
overX x 9 andD.; (D-1) be the class conditional distributidyy_1 (Dxyy—_1) with respect to
D. In this setting (see, for instance, Agarwal et al., 2005), one may be#téet in controlling what
we call thebipartite misranking risk RV¢(h) (the reason for the B¢ superscript will become clear
in the sequel), of a ranking rutee R > by

RAYC(h) := P x-o,, (h(X,X) < 0). (10)

X/~D_q

Note that the relation betwed®*"¢ and Rak (cf. Equation 8) can be made clear whenever the

hypotheses under consideration are such thdk x') andh(X',x) have opposite signs. In this
situation, it is straightforward to see that

Ra%K(h) = 2P(Y = +1)P(Y = —1)RAY°(h).
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LetS= {(X;,Yi)}/_, be an 11D sample distributed accordingde= D. The empirical bipartite

ranking riskRAYC(h, S) of h on Sdefined as

A 1
RYE,S) = 7 3 Thixx)<o (11)

iYj=+1
jij=—1
where/" (¢7) is the number of positive (negative) dataSnestimates the fraction of paifX;, X;)
that are incorrectly ranked incorrectly (given that= +-1 andY; = —1) by h: it is an unbiased
estimator oRAV(h).
As before,h may be expressed in terms of a scoring functfoa ®* such thath(X,X’) =
f(X)— f(X’), in which case (overloading notation):

A 1
mUc(f) = PXND+1 (f(x) < f(xl)) andRA\UC(f7S) = €+€, ) ]If(X.)<f(Xl)7

X'~D_g iYj=+1
j:YJ':7l

where we recognize iRAYC(f,S) one minus the Area under theoR curve, or Auc, of f on'S
(Agarwal et al., 2005; Cortes and Mohri, 2004), hence tle Auperscript in the name of the risk.
As a consequence, providing a®Bayes bound oR"V¢(h) (or RAV¢(f)) amounts to providing a
generalization (lower) bound on theu&, which is a widely used measure in practice to evaluate
the performance of a scoring function.

Let us defineX;j := (X, Xj), Zij := (Xj,1) andZ := {Z;; }ij:Yi:+1,Yj:—1u that is,Z is a sequence
of pairs X;; made of one positive example and one negative example. We then aregancen
the framework defined earliérthat is, thez;;’s share the same distribution but are dependent on
each other, sincé;; depends o{Zpq: p=iorqg= j} (see Figure 2). Note that in order to ease
the reading of the present subsection, we make the implicit decompositiorirehgraetS into
S=S"US", whereS" (resp. S) is made of thet (¢~) positive (negative) data &; the size
¢ of Sis thereforel = ¢ + ¢~. This decomposition entails a separate reindexing of the positive
(negative) data from 1 t6" (from 1 to/™).

Building on Theorem 8, we have the following result:

Theorem 14 (Auc Pac-Bayes bound) VD over X x &, VH C RX*X, vd € (0,1], VP, with prob-
ability at leastl — & over the random draw @ ~ D!, the following holds

AAUC uc 1 Lnin+1
vQ, KI(&"°(S)| |5 )gm KL (Q||P)+In 6+ 7

wherelmin = min(¢*,¢7), and
égUC(S) = EhNQIi’AUC(h S),
%UC = ]ESND/,‘%UC(S).

Proof The proof works in three steps and borrows ideas from Agarwal €2@05). The first two
parts are necessary to deal with the fact that the dependency grapasit depends on the random
sampleS, does not have a deterministic structure.

2. The slight difference with what has been described above is thaetiendency graph is now a random variable: it
depends on th¥’s. It is shown in the proof of Theorem 14 how this can be dealt with.
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4.3.1 (ONDITIONINGONY =y

Lety € {—1,+1}' be a fixed vector and Iég,* and/y be the number of positive and negative labels
in'y, respectively. We define the distributi@y asDy := ®{_,Dy,; this is a distribution on*. With
a slight abuse of notatiol, will also be used to denote the distribution oyarx ) of samples
S={(X,Yi)}{_; such that the sequené;}/_, is distributed according tBy. It is easy to check
thatvh € #, ESVDyR’a”"(h S) = R2(h) (cf. Equations 10 and 11).

Given S, if we define, as said earliek;; := (X, Xj), Yij := 1 andZ;j := (X;,Y;j), thenZ :=
{Zij}i;yizl,j;yj:,l is a sample of identically distributed variables, each with distribufion =
Di1®D_1®1overX x X x 9, wherey = {—1,+1} and wherel is the distribution that pro-
duces 1 with probability 1.

Lettingm = E ¢y we denote byDy n, the distribution of the training samp, within which
interdependenmes eX|st, as illustrated in Figure 2. Theorem 8 can thuebtydapplied to clas-
sifiers trained orZ, the structure of (Dy m) and its corresponding fractional chromatic numjgr
being completely determined lyy Hence, letting?#/ C ®**X, we have:vd € (0,1], VP over #,
with probability at least - 6 over the random draw & ~ Dy m,

m+ Xy
6)(;;

)

vQ. K(Eo(2)] o) < X [KL(QHPHIH

whereeb( ) = EnoR(h,Z) = Eneg Yij Iv;hzj) <0 = Eh~q Yij Inz,)<0, Which is exactly equal to
eguc (cf. Equation 11); likewisegg = Ez.p,,&(Z) = IESVDyégUC(S) = eguc. Hence,vd €
(0,1], VP, with probability at least 1 & over the random draw & ~ Dy,

+ *
vQ, k(& (S)lleg™) < [KL (QIIP) +In 5X;(y]. (12)

4.3.2 UNCONDITIONING ONY

As proposed by Agarwal et al. (2005), let us c@(P, S,d) the event (12); we just stated that
vy € {—1,4+1}¢, VP, ¥3 € (0,1], Ps.p, (P(P,S,8)) > 13, or, equivalently

]P)SNDg(_‘cD(Pv Sv 6) |Y = Y) = IP)Sery(_'cD(Pa 87 6)) < 67

that is to say, the conditional (¥ = y) probability of the event-®(P, S, 9) is bounded by. This
directly implies that the unconditional probability efp(P, S, d) is bounded by as well:

Ps.p,(~®(P,S,9)) < Ps.p,(~P(P,S,9)[Y =y) <d.
Hence¥d € (0,1], P, with probability at least - 6 over the random draw & ~ Dy,

Ms+Xg
s |

vQ, ki(&3°°||eh’°) < KL(Q|[P)+In (13)

wherexs is the fractional chromatic number of the grép( ), with Z defined fromSas in the first
part of the proof, where the observed (random) labels are now tati@adonount; hereng = (¢,
wherel™ (¢7) is the number of positive (negative) dataSn
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4.3.3 MMPUTING THE FRACTIONAL CHROMATIC NUMBER

In order to finish the proof, it suffices to observe that, Zoe {Z;j }ij, if fmax= max¢*,¢~), then
the fractional chromatic number 6{Z) is X* = ¢max.

Indeed, the clique number 6%(Z) is maxas foralli=1,....0" (j=1,...,07), {Zj : j =
1,....07} ({Zj:i=1,...,"}) defines a clique of ordet™ (¢*) in ['(Z). Thus, from Property 1:
X > X" > lmax.

A proper exact cove€ = {Ck}ﬁff‘lX of I'(Z) can be constructed as follows. Suppose thak =
¢, thenCy = {Ziokm =1 ,Ei}, with

o(i) = (i+k—2 modft)+1,

is an independent set: no two variabgsandZq in C are such that= p or j = g. In addition,
it is straightforward to check tha is indeed a cover of (Z). This cover is of siz€" = /max
which means that it achieves the minimal possible weight over proper exactignal) covers
sincex* > fmax. Hencex* = X = ¢max(= ¢(I")). Plugging in this value of* in (13), and noting
thatms = Zmaxlmin With £min = min(¢*,¢7), closes the proof. [ ]

We observe that in the theorem, the dependence on the skew of the samyeessed in terms
of 1/min(¢*,¢7), whereas in the the works of Agarwal et al. (2005) and Usunier e2@05), the
bound depends on the largef/t +1/¢~.

The Rc-Bayes bound of Theorem 14 can be specialized to the case Wwhere) = f(x) —
f(X) with f € {x+—w-x:we X}: fis therefore a linear scoring function ahg,x') = w- (x—x).
The ranking rulén is thus a linear classifier acting on the difference of its arguments (theemxt r
we present therefore carries over to kernel classifiers). As peapby Langford (2005), we may
assume an isotropic Gaussian prive= A((0,1) and a family of posteriorQy,, parameterized by
w € X andp > 0 such thatQy, is A[(4,1) in the directionw and A((0,1) in all perpendicular
directions, we arrive at the following theorem:

Theorem 15 (Auc Linear Pac-Bayes bound) v/, VD overx x %, Vo € (0, 1], the following holds
with probability at leastl — & over the draw oS ~ D:

2 .
YW, >0, kl(egxﬁ(s)||egx§)<€rn1"]Bﬂném.?l}

Proof Straightforward from the bound of Langford (2005) and Theorem 14 |

Note that this specific parameterization @fcould have been done in Theorem 13 as well. We
arbitrarily choose to provide it for this Uc based bound as learning linear ranking rule hycA
minimization is a common approach (Ataman et al., 2006; Brefeld and Schzf&5s; Rakotoma-
monjy, 2004), and the presented result may be of practical interesh{fdel selection purpose, for
instance) for a larger audience.

The bounds given in Theorem 14 and Theorem 15 are very similar to watould get if
applying 11D Pnc-Bayes bound to one (independent) elen@ntf a minimal cover (i.e., its weight
equals the fractional chromatic numb&@)= {C;}}_; such as the one we used in the proof of
Theorem 14. This would imply the empirical en(eg”"" to be computed on only one specifigand
not all theCj’s simultaneously, as is the case for the new results. It turns out that;dpepexact
fractional cover<C = {(Cj, w)}]_; with element<C; having the same size, it is better, in terms of

1943



RALAIVOLA , SZAFRANSKI AND STEMPFEL

absolute moments of the empirical error, to assess it on the whole data satthatinon only one
Cj. The following proposition formalizes this.

Proposition 16 VD, V7, VC = {(Cj,wj}]_; € PEFC(Dm), VQ,Vr € A[,;r > 1, if |C1| = ... = [Cy
then

IEZNDm‘éQ(Z) - eQ|r < EZ(J')ND.(TJ;) ’éQ(Z(j)) - eQ|r,Vj S {l, .. n}.

Proof Using the convexity of - | for r > 1, the linearity ofE and the notation of Section 3, for

80(2) —eql” = | S m(EnqR(h,Z20) —R(h))[
J

<3 [Enq(R(h,Z0) —R(h))["
]

=D &o(2V) —eg)".
]

Taking the expectation of both sides with respectZtaand noting that the random variables
|8o(Z21)) — eg|", have the same distribution, gives the result. [ |

This proposition upholds the idea of Pemmaraju (2001) to base the decompos$iialependency
graph on equitable coloring.

4.4 B-mixing Processes

Here, we provide a &C-Bayes theorem for classifiers trained on data from a statiopramnyxing
process, of which we recall some definitions, as formulated by Yu (1&®€ also, for example,
Mohri and Rostamizadeh, 2009).

Definition 17 (Stationarity) A sequence of random variablgs= {Z };** ,, is stationanyif, for any
t and nonnegative integer m and k, the random subsequé#@ges.,Z;.m) and (Zk, - - -, Zt+m+k)
are identically distributed.

Definition 18 (B-mixing process) LetZ = {Z};"* ., be a stationary sequence of random variables.
Forany i j € ZU{—c, 4o}, let cij denote theo-algebra generated by the random variableg Z
i <k < j. Then, for any positive integer k, tiffiemixing coefficienf(k) of the stochastic procegs
is defined as
B(K) = supEsup{[P (Alo]) — P (A)| : A€ o5}

Z is said to beB-mixing if B(k) — 0 when k— co.

(Note there is an equivalent definition of tBemixing coefficient based on finite partitions; see
Yu, 1994 for details.) Stationafy-mixing processes model a situation where the interdependence
between the random variables at hand is temporal. When the process is,rtixmegns that the
strengh of dependence between variables weakens over times.

The bound that we propose is in the same vein as the one proposed biyakoRostamizadeh
(2009), with the difference that our bound issdPBayes bound and theirs a Rademacher-complexity-
based bounds. In addition to being a new type of data-dependent bmutie case of stationary
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-mixing process, we may anticipate that, in practical situations, our boundtstiee tightness
of the 11D Pac-Bayes bound (whereas, to the best of our knowledge, there is neneadf such
practicality for Rademacher-complexity-based bounds).

Let us state our generalization bound for classifiers trained on samplesvn from stationary
-mixing distributions.

Theorem 19 @-mixing processPAc-Bayes bound) Let m be a positive integer. L& be a sta-
tionary B-mixing distribution overZ and DEn be the distribution of m-samples according@8.

VH C RX, Vy,a e N\ such thalpua=m,Vd € (2(u— 1)B(a), 1], vP, with probability at least. — &

over the random draw of ~ DPn, the following holds

vQ, KI(E(2)le}) < [KL AP+ i

where
n m
eE(Z) = En.qR(h,Z) = En.q Zl]lvth(xtko,
t=

e% = EZ~D%%(Z)

Proof The proof makes use of the independent block decomposition propgséd (1994), our
chromatic Rc-Bayes bound of Theorem 8, and Corollary 24 (Appendix).

4.4.1 THE CHROMATIC BOUND FORINDEPENDENTBLOCKS

LetZ ={Z,...,Zn} be the random variables we have to deal withu #inda are two integers such
that Jua= m (we assume thah s even, if it is odd one may drop the last variallgand work on
a sample of sizen— 1). ThenZ can be decomposed into two subsequeigesndZ; as follows:

20?2{283:(Zak—a+b-~azak—a+9:Se[m}v
Z1:={2Z1:= (Zazs-1)41,-- - Za(2s-1)+a) - SE Y]

Both Zp andZ1 are made of1 blocks ofa consecutive random variables. The blocks are interde-
pendent as well as the variables within each bldkwill denote the distribution oZ .
We now define a sequengeof independent blocks as:

2:={2°=(Z,....25) :s< W},

such that the blockZ® are mutually independent and such that each bigtkas the same dis-
tribution asZ3, that is, from the stationarity assumption, the distributiorzéf(the blocksZ® are
[1D).

The dependency gragh of Z is such that all the variables in a block are all connected and
such that there are no connections between blocks. Theorem 8 dily besapplied to the random
sampleZ, whose distribution we denof®: for all P andd € (0, 1],

Pz.p(P(RZ,9)) <9, (14)
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with eq := Ez pégy(Z) and®(P, Z,d) is the event defined as:

0(P2.8) = { 30 K(&@)lleg) > - [KL@P) +in T2 ],

To see why and how Theorem 8 can be used to get (14), observe that:
e the number of variables i# is pa;

e by stationarity, all variableg3, for a € [a] ands € [y share the same distribution: we there-
fore do actually work with dependent but identically distributed variables;

e the (fractional) chromatic numbgr of I" is a, since

1. the clique number ia (that is, the number of variables in each block),

2. the coverC of I with
Q = {(CC( = {Z(:)If-a s 725}’1)}15(X§a
is a proper exact cover of size

Noting that, consequently

*

a

a

Ha+x* pat+a p+1
& % 3’

'C‘\><
Q
=l

gives the expression @b(P,Z,d) and (14).
The last two steps of the proof are similar to those used by Mohri and RostaehiZ2009) to
establish their bound.

4.4.2 A BOUND FORZj
To establish the bound fay, it suffices to use Corollary 24 (Appendix) witiiz) being defined as:

c(2) = lopzs),
which is a bounded measurable function on the blatkénd thus on the blockds). We have:
[Ezo~0oC(Z0) — Ez~pC(Z)[ < (M- 1)B(a),
and therefore, sincBz,.p,(P(P,Z0,0)) = Ez,.p,c(Z0) andPz..p (P(P,Z,08)) = Ez.pc(Z):

Pzo~Do(P(P,Z0,0)) < Pz.p (®(PZ,9)) + (M—1)B(a) (15)
<0+ (H—1)B(a). (cf. Equation 14)
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4.4.3 ESTABLISHING THE BOUND

Finally, observe that:

(PZ,8) = 3Q: 3KI(Eg(Zo)leq) + 5 Kl(E(Z1)] o) > H[KL(QHan“H

=30V {u@@ i) > k@ip)+mt 5 |

i€{0,1}
=V {50:@ i) > | kL@lP)+nt 5t |
i€{0,1} H
< ®(P,Zo,0)V®(PZy,9),

where we usedq(Z) = €g(Zo)/2+ ég(Z1)/2 and the convexity of kl in the first line.
This leads to:

PZNDB( (PZ 6)) o g (P(P,Zo,0)VPD(P,Z1,d))

P, o (P(P,Zo,9)) +IP>ZND%(<D(P, Z1,0)) (union bound)
= ZPZND&(‘D(R Zo,0)) (stationarity)
= 2Pz, (P(P,Z0,9)) (marginalization wrZg)
<25+ 2(p—1)B(a). (cf. Equation 15)

Adjustingd to /2 — (u—1)B(a) ends the proof. [ |

5. Conclusion

In this work, we propose the firstaB-Bayes bounds applying for classifiers trained on non-I11D
data. The derivation of these results rely on the use of fractional s@fegraphs, convexity and
standard tools from probability theory. The results that we provide agegeneral and can easily
be instantiated for specific learning settings such as ranking and learnimgfiom mixing dis-
tributions: amazingly, we obtain at a very low cost originacFBayes bounds for these settings.
Using a generalizedA2-Bayes bound, we provide in the appendix a chromatic-Bayes bound
that holds for non-independently and non-identically distributed data: walics to derive a AC-
Bayes bound for classifiers trained on data from a statioparyxing distribution.

This work gives rise to many interesting questions. First, it seems that usiagt@nal cover
to decompose the non-I1D training data into sets of 1ID data and then tighter@raptind through
the use of the chromatic number is some form of variational relaxation as efteruntered in
the context of inference in graphical models, the graphical model wahsideration in this work
being one that encodes the dependencid3pin It might be interesting to make this connection
clearer to see if, for instance, tighter and still general bounds canthmet with more appropriate
variational relaxations than the one incurred by the use of fractionarsov

Besides, Theorem 5 advocates for the learning algorithm describedriarR&@. We would like
to see how such a learning algorithm based on possibly multiple priors/multipierjpos could
perform empirically and how tight the proposed bound could be.
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On another empirical side, it might be interesting to run simulations on bipartikéngaprob-
lems to see how accurate the bound of Theorem 15 can be: we expeesthis to be of good
quality, because of the resemblance of the bound of the theorem with thEaAdEBayes theo-
rem for margin classifiers, which has proven to be rather accuratgfdah 2005). The work of
Germain et al. (2009) is also another contribution that tends to suppo traictical use of our
bounds should provide competitive results (note that Theorem 25 gisaffieient condition for
the general Rc-Bayes bound of Germain et al. (2009) to be non degenerate). Likeivigseuld
be interesting to see how the possibly more accurateBayes bound for large margin classifiers
proposed by Langford and Shawe-taylor (2002), which shouldlatat® the case of bipartite rank-
ing as well, performs empirically. The question also remains as to what kindadégies to learn
the prior(s) could be used to render the bound of Theorem 5 the tighissibfe. This is one of
the most stimulating question as performing such prior learning makes it possiol#ain very
accurate generalization bound (Ambroladze et al., 2007).

The connection between our ranking bounds and the theory of U-statisdioss it possible to
envision the use of higher order moments in establishixgrBayes bounds, thanks to Hoeffding’s
decomposition. We plan to investigate further in this direction, for both theimgnkeasures we
have studied (noting that theu& is a two-sample U-statistics Hoeffding, 1963).

Finally, we have been working on a more general way to establish chron@iitdb from
11D bounds (covering VC, RademachendBayes and—possibly—binomial tail test set bounds),
without the need to perform ‘low-level’ calculations such as the onesggeapin Section 3.4. The
meta-bound that we have been developing is in the spirit of that propg$lduchard and Fleuret
(2007), except that the randomization we propose is on the subsetiutormgsthe fractional cover
(and not the hypothesis set). In other terms, given a cGver{(Cj,wj)};, the fact that an 11D
bound holds on one subggt of a cover is considered as a random event, the probability of a subset
to be chosen being;/w(C). A simple union bound gives our generic result, which translates
into cover-independent (but fractional-chromatic-number-depdhderomatic bounds such as (6)
(Theorem 8) under very mild conditions on the shape of the base IIDdoétong with that
work, we try to answer the question of establishing a principled way to hasiidiations where
random variables show weak dependencies (as is the cafearioting processes), as for now, the
framework described here applies when variables are either depgemdetependent, disregarding
the magnitude of the dependencies—oncfBayes bound fof-mixing processes would then be a
specific case of such general result.
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Appendix A. Technical Lemmas

This appendix gathers useful (and well-known) results for the diftgreoofs.

Lemma 20 Let D be a distribution oveg.

vhe .’]‘[,EZNDmemkI(Q(h’Z)HR(h)) <m+1.
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Proof Lethe #. Forz e Z™ we letq(z) = R(h,z); we also letp = R(h). Note that sinc& is
i.i.d, mqZ) is binomial with parametens and p (recall thatr (h, Z) takes the values 0 and 1 upon
correct and erroneous classificationZoby h, respectively).

Es. Dmemkl Z)[|p) — Z gmkl(a(z)[[p) Pzon(Z = 2)

zezm

-3 memk'<nkwp>IPz~Dm(mq(Z> =K

— Z_ (T)emkl(mp)pk(l_p)mk
0<k<m
_ Z <T>e(k|n K(1-K)n(1-K))
0<k<m
AWIGIC

However, it is obvious that, from the definition of the binomial distribution,

vme A, vk € [0,m], vt € [0,1], (T)tk(l—t)m_k <1

This is obviously the case for= % which gives

PAKIENCRE RSt

Theorem 21 (Jensen’s inequality)Let f € ®* be a convex function. For all probability distribu-
tion P onX:
f (ExpX) < Expf(X).

Theorem 22 (Markov's Inequality) Let X be a positive random variable @), such thaffX < co.
VteR,IPX{X>} <L

ConsequentlyyM > EX, vt € R ,Px {X > ¥} < 1.
Lemma 23 (Convexity of kl) Vp,q,r,s€ [0,1],Va € [0, 1],
kl(ap+ (1—a)g|lar + (1—a)s) < akl(p||r) + (1 —a)kI(q||s).

Proof It suffices to see that € ® %1 f(v = [p ) = kI(q]|p) is convex ovelf0,1]2: the Hessian
H of fis

| P 2 p 1-p
H=| P, &p°
P Tp 4

q+q1i
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and, forp,q € [0, 1], % + (11:[?)2 >0anddeH = ng—p)z >0: H > 0 andf is indeed convexa

Finally, we have the following version by Mohri and Rostamizadeh (200Qavollary 2.7 in
Yu (1994), which is based on the definition of the bloZks

Corollary 24 Let c be a measurable function defined with respect to the bEg:ki$ ¢ has absolute
value bounded by M, then

|Ezo~DoC(Z) —EzpC(Z)| < (L—1)MB(a).

Appendix B. Applications of a GenericPAC-Bayes Theorem

Let us first recall the following genericaR-Bayes result, which is a corollary/compound of results
proposed by Seeger (2002b) and McAllester (2003). In particulary thnction need not be dif-
ferentiable with respect to its second argument and it applies to any ‘risktibnaly for which a
concentration inequality exists.

Corollary 25 (Generic Pac-Bayes Theorem)Let # C R* and i : H x Up_q Z™ — R.. If there
exista > 1,3 > 1 and a nonnegative convex functidn ® x ® — R, that is strictly increasing
with respect to its second argument such that

Vhe 7£,Ye > 0, Pz_p, [EW(h) — y(h,Z) > €] < aexp(—BAEY(h),€)), (16)

whereE(h) stands forEz.p,p(h,Z), then,vP, with probability at leastl — & over the draw of
1 op

vQ. Aeg &~ &(2)) < g7 [KLQIP) +In 5|
where
&(2) :=En.qu(h,2)
e?; = Ezét';(Z) = EngEzY(h,2)
Proof Along lines from Seeger (2002b) and McAllester (2003).
1. Observe that, thanks to Lemma 26 (below) vaith) := A(Ey(h),€),
R, eB- DAY EW(N)-w(h2) < o, and, Ry pEyelf DAEUN EWh)-w(h2) < oa

Applying Markov’s inequality then gives:
P, [Ehwpemlm(m(h),mm)w<h,2>> > G{ﬂ <38
2. Using the entropy extremal inequalityig .p f (X) > — KL (Q||P)) + ExqIn f(X), VP,Q, X

(see the proof of Lemma 11), and the fact thab Inx is nondecreasing, the previous step
leads to

Py [aQ: KL (QIP) + (B— DEn-oAE(h). Ey(h) - p(h,Z)) > ln“ﬂ <s.
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3. SinceA is convex, Jensen’s inequality can be used to give (lexeQ)

ap

<o.
6—6

Pz E|Q :—KL (Q‘ ’P) + (B_ 1)A(Eh,zl|»'(h7Z)Eh,zll»'(haz) - EhllJ(haZ)) > In

Lemma 26 (McAllester, 2003) Let X be a real-valued random variable ghanda > 1,3 > 1.
Letd: R — R be a nonnegative and strictly increasing function. We have:

vxe R, PX>x <ae ¥ | [e(Bfl)é(x)} <ap.
Proof See the proof of McAllester (2003). Here, we takato account. Ad is strictly increasing:
P[X > X =P[5(X) > 8(x)] = P [e<B—1)5<X> > e<B—1>5<X>] :
Hence:P [eP-18X) > gB-13X)] < qeP3X). Settingv = eP~12X), we get:
P {emfl)esoo > \,} < min(1,av—P/(B-1)y,
Thus, as for a nonnegative random variableE[W| = [5° P|W > v]dv:

E [ewfl)a(xq <1+a / v B/ — 14 q(B—1).
1

Sincea > 1, 1+ a(B—1) < af, which ends the proof. |

We observe that;

e if Y(h,2) =3 Iynxij<o then, by the one-sided Chernoff bound= 1, 3 = mandA(p,€) =
kl(p—¢€||p) make Equation (16) hold. ThexB-Bayes bound provided by Corollary 25 is that
of Theorem 1 wherenis replaced byn—1;

o if
Vie[mL sup |L|J(Z]_,...,Zm)_llJ(Z]_,...,Zj,l,z,ZiJrl,...,Zrn)‘SCi,
2,....ZmZ4 €2

then, thanks to McDiarmid inequality (McDiarmid, 1988)= 1, =2/ ¥;c? andA(p,&) =
€2, make Equation (16) hold and a&Bayes bound can be derived (we let the reader write
the correspondingAZ-Bayes bound);

e it suffices to have an appropriate concentration inequality for the proatérand to have an
effective Rc-Bayes bound.
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B.1 Generalized ChromaticPac-Bayes Bound

To get a chromatic &--Bayes theorem for non-identically non-independently distributed data, w
simply make use of the following concentration inequality of Janson (2004).

Theorem 27 (Janson, 2004)Suppose that = {Z; }{", is an m-sample of real-valued random vari-
ables distributed according to some distributibp,. Suppose that each Bas range[a;, by]. If
S =317, then,

2¢2
X*(Dm) 3%y (b —a)2 ]’

Ve>0, Pg, [ES —S > €] <exp|—

wherex*(Dp) is the fractional chromatic number of the dependency gragbyof

Note thatno assumptioiis made on th&;’s being identically distributed.

This concentration inequality gives rise to the following generalized chronfaticBayes
bound that applies to non independently, possibly non identically distribiatdahd allows us
to use any bounded loss functians

Theorem 28 (Generalized ChromaticPac-Bayes Bound) VD, V4, V& € (0,1], VP, with prob-
ability at leastl — o over the random draw df ~ Dy, the following holds

2 1
KL(Q|IP)+In—=" 4inz|,

~ B ) X*MZ

m— X*MZ
wherex* stands forx*(Dm), r is a bounded function with range M and

&(2) :=En-qR(h,Z)
eq := En-q&(Z) = En-qEz~p,R(h,2),

with R(h,Z) := ;r(h,Z)/m.

Proof It suffices to appr Corollary 25 with Theorem 2d,= 1, A(p,€) = €2 and = 2m/x*M
(since, as has rangéM, R has rangévi/m). |

We notice the following.

e Here, as no assumption is done regarding the identical distribution & 'thdéhe expected
risk R(h) = EzR(h,Z) does not unfold as in (3).

e In the case of using identically distributed random variables and the O-ltlms® is no
concentration inequality that allows us to retrieve the tightez-Bayes bound given in The-
orem 8.

e From a more general point of view, it is enticing to try to establish even marergeresults

resting on the principle of graph coloring with the aim of decoupling this aggrdo the
PAC-Bayesian framework. This is the subject of ongoing work.
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B.2 ¢-mixing PAc-Bayes Bound
The definition of ap-mixing process follows.

Definition 29 (¢p-mixing process) LetZ = {Z}{+* ,, be a stationary sequence of random variables.
Forany i j € ZU{—o,+o}, let cij denote theo-algebra generated by the random variableg Z
i <k < j. Then, for any positive integer k, tipemixing coefficien$ (k) of the stochastic proce&s
is defined as
¢(k)=  sup  |PAB]-PIA].

oo n
nAco,/.Beal,

Z is said to bep-mixing if ¢ (k) — 0 as k— 0.

In order to establish our newaB-Bayes bounds for stationagymixing distributions, it suffices
to make use of the following concentration inequality by Kontorovich and Ramé&2008).

Theorem 30 (Kontorovich and Ramanan, 2008)Let ) : U™ — R be a function defined over a
countable spacél. If Y is I-Lipschitz with respect to the Hamming metric for someQ, then the
following holds for all t> O:

2
P2 [W(Z) ~ Ez[w(2)]| > 1] < Zexp[zmlzﬂ/\mngj ’

where|[Amlle < 1+231 ¢(K).

Suppose that the loss functiois again such that it takes values@M]. Then, for anyh € #,
the functionp(Z) = 25M,r(h,z) = R(h,Z) is obviouslyM /m-Lipschitz. Therefore, for a sample
Z drawn according to @-mixing process, we have the following concentration inequalitiRdnz )
that holds for anyh € #:

(17)

Pz-pn [|R(N,Z) —R(h)| >t] < 2exp[— me* } .

2M2(|Am[Z
We directly get the following Rc-Bayes bound fo$-mixing processes.

Theorem 31 Pac-Bayes bound for stationary-mixing processes)Let D? be a stationary¢-
mixing distribution overZ and D?n be the distribution of m-samples accordingd®. YH C R,
Vo € (0, 1], VP, with probability at leasf. — & over the random draw o ~ DY, the following holds

2 2
vQ 842~ % < L 2RimE s KL(QIP) +n i ing).
where|[Amllo < 14+2351; 0(K), r(h,Z) = Iynx)<o and
m
&(2) = En-oR(.2) =En-q 3 Tyn)<o
eg = ]EZND%é%(Z).
Proof Equation (17), and Corollary 25 with = 2, B = m/(2M?||A||2), A(p, ) = €2. [ |
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