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Abstract

Different aspects of the curse of dimensionality are knosvpresent serious challenges to various
machine-learning methods and tasks. This paper explores aspect of the dimensionality curse,
referred to afubnessthat affects the distribution df-occurrences: the number of times a point
appears among thenearest neighbors of other points in a data set. Throughetieal and empir-
ical analysis involving synthetic and real data sets we sihatvunder commonly used assumptions
this distribution becomes considerably skewed as dimeaity increases, causing the emergence
of hubs that is, points with very higl-occurrences which effectively represent “popular” neaire
neighbors. We examine the origins of this phenomenon, sigpttiat it is an inherent property
of data distributions in high-dimensional vector spacsecuss its interaction with dimensionality
reduction, and explore its influence on a wide range of machdarning tasks directly or indi-
rectly based on measuring distances, belonging to sugekvisemi-supervised, and unsupervised
learning families.

Keywords: nearest neighbors, curse of dimensionality, classifinasemi-supervised learning,
clustering

1. Introduction

The curse of dimensionality, a term originally introduced by Bellman (196Ipwadays com-
monly used in many fields to refer to challenges posed by high dimensionaligtatgdace. In the
field of machine learning, affected methods and tasks include Bayesiaringo@&shop, 2006),

nearest-neighbor prediction (Hastie et al., 2009) and search (Kah, &001), neural networks
(Bishop, 1996), and many others. One aspect of the dimensionalityisutistance concentratign

which denotes the tendency of distances between all pairs of points irdmgdnsional data to
become almost equal. Distance concentration and the meaningfulnesseastmeaghbors in high

x. A preliminary version of this paper appeared in the Proceedings of@tiel@ternational Conference on Machine
Learning (Radovanotiet al., 2009).

(©2010 Milcs Radovanow, Alexandros Nanopoulos and Mirjana Ivantvi



RADOVANOVIC, NANOPOULOS ANDIVANOVIC

dimensions has been thoroughly explored (Beyer et al., 1999; Hinpedbwal., 2000; Aggarwal
et al., 2001; Francois et al., 2007). The effect of the phenomenomaghine learning was demon-
strated, for example, in studies of the behavior of kernels in the contexippiort vector machines,
lazy learning, and radial basis function networks (Evangelista et alg; Zd@ncois, 2007).

There exists another aspect of the curse of dimensionality that is relateshtesh neigh-
bors (NNs), which we will refer to abubness Let D ¢ RY be a set ofd-dimensional points
andNg(x) the number ok-occurrencef each poini € D, that is, the number of timesoccurs
among thek nearest neighbors of all other pointsiin according to some distance measure. Under
widely applicable conditions, as dimensionality increases, the distributibia bécomes consider-
ably skewed to the right, resulting in the emergenceudis that is, points which appear in many
morek-NN lists than other points, effectively making them “popular” nearesthimgs. Unlike
distance concentration, hubness and its influence on machine learnimgdalieen explored in
depth. In this paper we study the causes and implications of this aspectdfrtbesionality curse.

As will be described in Section 4, the phenomena of distance concentratibhudoness are
related, but distinct. Traditionally, distance concentration is studied thraagmptotic behavior
of norms, that is, distances to the origin, with increasing dimensionality. Treinalol results
trivially extend to reference points other than the origin, and to pairwisendistabetween all
points. However, the asymptotic tendencies of distances of all points toeditfeeference points
do not necessarily occur at the saspeedwhich will be shown for normally distributed data by our
main theoretical result outlined in Section 4.2, and given with full details in Seétib. The main
consequence of the analysis, which is further discussed in Sectiondbsupported by theoretical
results by Newman et al. (1983) and Newman and Rinott (1985), is thatitireeks phenomenon is
an inherent property of data distributions in high-dimensional space widely used assumptions,
and not an artefact of a finite sample or specific properties of a partidatarset.

The above result is relevant to machine learning because many families aflgdkithms,
regardless of whether they are supervised, semi-supervised, upamsed, directly or indirectly
make use of distances between data points (and, with tkéif\, graphs) in the process of building
a model. Moreover, the hubness phenomenon recently started to beemzbseapplication fields
like music retrieval (Aucouturier and Pachet, 2007), speech recogiiidioddington et al., 1998),
and fingerprint identification (Hicklin et al., 2005), where it is described @roblematic situation,
but little or no insight is offered into the origins of the phenomenon. In thiepage present
a unifying view of the hubness phenomenon through theoretical analyd&adistributions, and
empirical investigation including numerous synthetic and real data setsirerglthe origins of the
phenomenon and the mechanism through which hubs emerge, discussirlg tfantihubs(points
which appear in very few, if ank-NN lists of other points), and studying the effects on common
supervised, semi-supervised, and unsupervised machine-learnimighats.

After discussing related work in the next section, we make the following ibonions. First,
we demonstrate the emergence of hubness on synthetic and real datéion Sed he following
section provides a comprehensive explanation of the origins of the ptesran, through empirical
and theoretical analysis of artificial data distributions, as well as olis@mgzon a large collection
of real data sets, linking hubness with tingrinsic dimensionality of data. Section 5 presents the
details of our main theoretical result which describes the mechanism thwhigh hubs emerge as
dimensionality increases, and provides discussion and further illustrdtiba behavior of nearest-
neighbor relations in high dimensions, connecting our findings with existingrekieal results.
The role of dimensionality reduction is discussed in Section 6, adding fusthpgrort to the previ-
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ously established link between intrinsic dimensionality and hubness, and deatomg that dimen-
sionality reduction may not constitute an easy mitigation of the phenomenon. rs@axplores
the impact of hubness on common supervised, semi-supervised, apeénrised machine-learning
algorithms, showing that the information provided by hubness can be usaghtficantly affect the
success of the generated models. Finally, Section 8 concludes the gaghgrovides guidelines
for future work.

2. Related Work

The hubness phenomenon has been recently observed in sevdicdtappareas involving sound
and image data (Aucouturier and Pachet, 2007; Doddington et al., 18898intet al., 2005). Also,
Jebara et al. (2009) briefly mention hubness in the context of graggtraotion for semi-supervised
learning. In addition, there have been attempts to avoid the influence oihdbNN time-series
classification, apparently without clear awareness about the existéiice phenomenon (Islam
et al., 2008), and to account for possible skewness of the distributidf @i reverse nearest-
neighbor search (Singh et al., 20d3)vhere Nx(x) denotes the number of times poitoccurs
among thek nearest neighbors of all other points in the data set. None of the mentiapedsp
however, successfully analyze the causes of hubness or genétratizether applications. One
recent work that makes the connection between hubness and dimensiisrtalyhesis by Beren-
zweig (2007), who observed the hubness phenomenon in the applica@afanusic retrieval and
identified high dimensionality as a cause, but did not provide practical ordtieal support that
would explain the mechanism through which high dimensionality causes taiimnesisic data.

The distribution ofN; has been explicitly studied in the applied probability community (New-
man et al., 1983; Maloney, 1983; Newman and Rinott, 1985; Yao and Sirh8886), and by math-
ematical psychologists (Tversky et al., 1983; Tversky and Hutchirs@86). In the vast majority
of studied settings (for example, Poisson procésdimensional torus), coupled with Euclidean
distance, it was shown that the distributiorNafconverges to the Poisson distribution with mean 1,
as the number of points and dimensionality go to infinity. Moreover, from the results by Yao
and Simons (1996) it immediately follows that, in the Poisson process casastiileution of Ng
converges to the Poisson distribution with méarfior anyk > 1. All these results imply that no
hubness is to be expected within the settings in question. On the other harelcasthof continu-
ous distributions with i.i.d. components, for the following specific order of limitsaswhown that
liM e liMg_e Var(Ny) = oo, while limy_. limg_. Ns = O, in distribution (Newman et al., 1983,
p. 730, Theorem 7), with a more general result provided by NewmarRaratt (1985). Accord-
ing to the interpretation by Tversky et al. (1983), this suggests that if thibauof dimensions is
large relative to the number of points one may expect a small proportionimsgo become hubs.
However, the importance of this finding was downplayed to a certain exigatgky et al., 1983;
Newman and Rinott, 1985), citing empirically observed slow convergenedofidy, 1983), with
the attention of the authors shifting more towards similarity measurements obtéieetlydrom
psychological and cognitive experiments (Tversky et al., 1983; Kyexrsd Hutchinson, 1986) that
do not involve vector-space data. In Section 5.2 we will discuss the absudis in more detall, as
well as their relations with our theoretical and empirical findings.

It is worth noting that ire-neighborhood graphs, that is, graphs where two points are codnecte
if the distancebetween them is less than a given limithe hubness phenomenon does not occur.

1. Reverse nearest-neighbor queries retrieve data points that hapgetlygoointg as their nearest neighbor.

2489



RADOVANOVIC, NANOPOULOS ANDIVANOVIC

Settings involving randomly generated points forméageighborhood graphs are typically referred
to as random geometric graphs, and are discussed in detail by Pe2(063g. (

Concentration of distances, a phenomenon related to hubness, wad studjeneral distance
measures (Beyer et al., 1999; Durrant and &al2009) and specifically for Minkowski and frac-
tional distances (Demartines, 1994; Hinneburg et al., 2000; Aggatvedl, 2001; Francois et al.,
2007; Francois, 2007; Hsu and Chen, 2009). Concentration aieasgnilarity was explored by
Nanopoulos et al. (2009).

In our recent work (Radovandvet al., 2009), we performed an empirical analysis of hubness,
its causes, and effects on techniques for classification, clusteringnfanchation retrieval. In this
paper we extend our findings with additional theoretical and empirical ipsidfering a unified
view of the origins and mechanics of the phenomenon, and its significan@ritmus machine-
learning applications.

3. The Hubness Phenomenon

In Section 1 we gave a simple set-based deterministic definitibip. ofo complement this definition
and introducé\y into a probabilistic setting that will also be considered in this papex,iat .. ., Xn,
be n+ 1 random vectors drawn from the same continuous probability distribution swipiport
S CRY,de{1,2...}, and letdist be a distance function defined & (not necessarily a metric).
Let functionsp; x, wherei,k € {1,2,...,n}, be defined as

() = 1, if xis among the& nearest neighbors af, according tadist,
Pi k(%) = 0, otherwise.

In this setting, we definBl(x) = S pik(x), that is,Nk(x) is the random number of vectors from
RY that havex included in their list ofk nearest neighbors. In this section we will empirically
demonstrate the emergence of hubness through increasing skewnbesdigtribution ofNg on
synthetic (Section 3.1) and real data (Section 3.2), relating the increasewhess with the di-
mensionality of data sets, and motivating the subsequent study into the offigihesphenomenon
in Section 4.

3.1 A Motivating Example

We start with an illustrative experiment which demonstrates the changes itsthibudion of Nk
with varying dimensionality. Let us consider a random data set consistib@Qgf0d-dimensional
points, whose components are independently drawn from the uniforntdtsn in rang€g0, 1], and
the following distance functions: Euclidedn)( fractionallg s (proposed for high-dimensional data
by Aggarwal et al., 2001), and cosine. Figure 1(a—c) shows the emlpirabserved distributions
of N, with k=5, for (a)d = 3, (b)d = 20, and (c)d = 100. In the same way, Figure 1(d—f) depicts
the empirically observelli for points randomly drawn from the i.i.d. normal distribution.

Ford = 3 the empirical distributions dfl5 for the three distance functions (Figure 1(a, d)) are
consistent with the binomial distribution. This is expected by considérmccurrences as node in-
degrees in th&-nearest neighbor digraph. For randomly distributed points in low dimendioais
degree distributions of the digraphs closely resemble the degree distribttienErds-Renyi (ER)
random graph model, which is is binomial and Poisson in the limit§Ehd Rnyi, 1959).

As dimensionality increases, the observed distributionblzpflepart from the random graph
model and become more skewed to the right (Figure 1(b,c), and Figaré i¢r I, andlgs).
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Figure 1: Empirical distribution o5 for Euclidean|y s, and cosine distances on (a—c) i.i.d. uni-
form, and (d—f) i.i.d. normal random data sets wite- 10000 points and dimensionality
(a,d)d =3, (b, e)d = 20, and (c, f)}d = 100 (log-log plot).

We verified this by being able to fit major right portions (that is, tails) of theeoled distributions
with the log-normal distribution, which is highly skewédWe made similar observations with
variousk values (generally focusing on the common clse& n, wheren is the number of points
in a data set), distance measurgsnorm distances for botp > 1 and 0< p < 1, Bray-Curtis,
normalized Euclidean, and Canberra), and data distributions. In virtubthyese cases, skewness
exists and produces hubs, that is, points with Higitcurrences. One exception visible in Figure 1
is the combination of cosine distance and normally distributed data. In mogicpfasettings,
however, such situations are not expected, and a thorough discoétfiemecessary conditions for
hubness to occur in high dimensions will be given in Section 5.2.

3.2 Hubness in Real Data

To illustrate the hubness phenomenon on real data, let us consider thécahtjistribution ofNy
(k= 10) for three real data sets, given in Figure 2. As in the previous seetimnsiderable increase
in the skewness of the distributions can be observed with increasing dimatlitgio

In all, we examined 50 real data sets from well known sources, belongitigee categories:
UCI multidimensional data, gene expression microarray data, and textaahdae bag-of-words

2. Fits were supported by theé® goodness-of-fit test at.05 significance level, where bins represent the number of
observations of individualN values. These empirical distributions were compared with the expectpdtaf a
(discretized) log-normal distribution, making sure that counts in the wmtifall below 5 by pooling the rightmost
bins together.
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Figure 2: Empirical distribution ol for three real data sets of different dimensionalities.

representation Jisted in Table 1. The table includes columns that describe data-set s¢@mde=ol-
umn), basic statistics (data transformation (3rd column): whether stana@odizvas applied, or for
textual data the used bag-of-words document representation; the nahgaents @, 4th column);
dimensionality ¢, 5th column); the number of classes (7th column)), and the distance measdre
(Euclidean or cosine, 8th column). We took care to ensure that the chaicgtance measure and
preprocessing (transformation) corresponds to a realistic scenatleefparticular data set.

To characterize the asymmetry lf we use the standardized third moment of the distribution
of k-occurrences,

wherepy, andoy, are the mean and standard deviatiolNgfrespectively. The corresponding (9th)
column of Table 1, which shows the empiric&,, values for the real data sets, indicates that the
distributions ofN;o for most examined data sets are skewed to the fightie value ofk is fixed

at 10, but analogous observations can be made with other valles of

It can be observed that sorfig, values in Table 1 are quite high, indicating strong hubness in the
corresponding data setsMoreover, computing the Spearman correlation betweand Sy, over
all 50 data sets reveals it to be strong (0.62), signifying that the relatiobshieen dimensionality
and hubness extends from synthetic to real data in general. On the atitkidareful scrutiny of the
charts in Figure 2 an@, values in Table 1 reveals that for real data the impact of dimensionality
on hubness may not be as strong as could be expected after viewingssutim synthetic data in
Figure 1. Explanations for this observation will be given in the next section

3. We used the movie review polarity data set v2.0 initially introduced by Badd.ee (2004), while the computers and
sports data sets were first used by Radovahanrd Ivanov (2006). Preprocessing of all text data sets (except dexter,
which is already preprocessed) involved stop-word removal andnsirggnusing the Porter stemmer. Documents
were transformed into the bag-of-words representation with word wselgging either term frequencies (tf), or term
frequencies multiplied by inverse document frequencies (tf-idf), wighcdtoice based on independent experiments
involving several classifiers. All term frequency vectors were ndized to average document length.

4. If Sy, = O there is no skewness, positive (negative) values signify skewnéss tight (left).

5. For comparison, sample skewness values for i.i.d. uniform dat&adlidean distance, shown in Figure 1(a—c), are
0.121, 1.541, and 5.445 for dimensionalities 3, 20, and 100, régplgc The values for i.i.d. normal data from
Figure 1(d—f) are 0.118, 2.055, and 19.210.
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Name Src. Trans. n d dne  Cls. Dist. Sy, Sﬁlo Clu. Cyr}qo N,}P BN1o CglN(’m CAV
abalone UCI stan 4177 8 539 29 0.277 0.235 62-0.047-0.526(0.804 0.934 0.806
arcene UCI stan 100 10000 2285 B 0.634 2.639 2-0.559-0.684(0.367 0.810 0.455
arrhythmia UCI stan 452 279 21.63 16 1984 6.769 8-0.867—-0.892|0.479 0.898 0.524
breast-w UCI stan 699 9 597 2, 1.020 0.667 7-0.062-0.240(0.052 0.021 0.048
diabetes UCI stan 768 8 6.00 2 0.555 0.486 15-0.479-0.727|0.322 0.494 0.337
dorothea UCI none 800100000 201.11 2 cos 2.355 1.016-0%32-0.672|0.108 0.236 0.092
echocardiogram  UCI stan 131 7 492 B 0.735 0.438 5-0.722-0.811|0.372 0.623 0.337
ecoli UCI stan 336 7 413 8l; 0116 0.208 8-0.396—-0.792|0.223 0.245 0.193
gisette UCI none 6000 5000 149.35 2 cos 1.967 4.671-D8667-0.854|0.045 0.367 0.241
glass UCI stan 214 9 437 A, 0.154 0.853 11-0.430-0.622|0.414 0.542 0.462
haberman UCI stan 306 3 289 » 0.087-0.316 11-0.330-0.573|0.348 0.305 0.360
ionosphere UCI stan 351 34 1357 B 1.717 2.051 18-0.639-0.832|0.185 0.464 0.259
iris UCI stan 150 4 296 3l 0.126-0.068 4-0.275-0.681]0.087 0.127 0.147
isoletl UCI stan 1560 617 13.72 26, 1.125 6.483 38-0.306-0.760(0.283 0.463 0.352
mfeat-factors UCI stan 2000 216 8.47 13 0.826 5.493 44-0.113-0.688|0.063 0.001 0.145
mfeat-fourier UCI stan 2000 76 1148 10, 1.277 4.001 44-0.350-0.596|0.272 0.436 0.415
mfeat-karhunen  UCI stan 2000 64 11.82 19 1.250 8.671 40-0.436-0.788|0.098 0.325 0.205
mfeat-morph UCI stan 2000 6 3.22 10, -0.153 0.010 44-0.039-0.424|0.324 0.306 0.397
mfeat-pixel UCI stan 2000 240 11.83 10, 1.035 3.125 44-0.210-0.738|0.049 0.085 0.107
mfeat-zernike UCI stan 2000 a7 7.66 1B 0.933 3.389 44-0.185-0.657|0.235 0.252 0.400
musk1 UCI stan 476 166 6.74 2, 1.327 3.845 17-0.376-0.752|0.237 0.621 0.474
optdigits UCI stan 5620 64 9.62 10, 1.095 3.789 74-0.223-0.601[0.044 0.097 0.168
ozone-eighthr UCI stan 2534 72 1292 B 2251 4.443 49-0.216-0.655|0.086 0.300 0.138
ozone-onehr UCI stan 2536 72 1292 12 2.260 5.798 49-0.215-0.651|0.046 0.238 0.070
page-blocks UCI stan 5473 10 373 b -0.014 0.470 72-0.063-0.289|0.049-0.046 0.068
parkinsons UCI stan 195 22 436 B 0.729 1964 8-0.414-0.649|0.166 0.321 0.256
pendigits UCI stan 10992 16 593 10, 0.435 0.982104-0.062—-0.513(0.014—-0.030 0.156
segment UCI stan 2310 19 393 KL 0313 1.111 48-0.077-0.453|0.089 0.074 0.332
sonar UCI stan 208 60 967 2, 1354 3.053 8-0.550-0.771|0.286 0.632 0.461
spambase UCI stan 4601 57 1145 12 1916 2.292 49-0.376-0.448|0.139 0.401 0.271
spectf UCI stan 267 44 1383 2, 1.895 2.098 11-0.616-0.729|0.300 0.595 0.366
spectrometer UCI stan 531 100 8.04 19 0.591 3.123 17-0.269-0.670(0.200 0.225 0.242
vehicle UCI stan 846 18 561 4, 0.603 1.625 25-0.162-0.643|0.358 0.435 0.586
vowel UCI stan 990 10 2.39 11, 0.766 0.935 27-0.252-0.605|0.313 0.691 0.598
wdbc UCI stan 569 30 826 2, 0.815 3.101 16-0.449-0.708|0.065 0.170 0.129
wine UCI stan 178 13 6.69 3l 0.630 1.319 3-0.589-0.874|0.076 0.182 0.084
wpbc UCI stan 198 33 869 2, 0.863 2.603 6-0.688—0.878|0.340 0.675 0.360
yeast UCI stan 1484 8 542 10, 0.228 0.105 34-0.421-0.715|0.527 0.650 0.570
AMLALL KR none 72 7129 3192 21, 1166 1578 2-0.868-0.927|0.171 0.635 0.098
colonTumor KR none 62 2000 11.22 2 1.055 1.869 3-0.815-0.781|0.305 0.779 0.359
DLBCL KR none 47 4026 16.11 2, 1.007 1.531 2-0.942-0.947|0.338 0.895 0.375
lungCancer KR none 181 12533 5966 BB 1.248 3.073 6-0.537-0.673|0.052 0.262 0.136
MLL KR none 72 12582 28.42 3|, 0.697 1.802 2-0.794-0.924|0.211 0.533 0.148
ovarian-61902 KR none 253 15154 958 2 0.760 3.771 10-0.559-0.773|0.164 0.467 0.399
computers dmoz tf 697 1168 190.33 2 cos 2.061 2.267-P666-—0.731]|0.312 0.699 0.415
dexter UCI none 300 20000 160.78 2 cos 3.977 4.639-18760-0.781|0.301 0.688 0.423
mini-newsgroups UCI tf-idf 1999 7827 3226.43 20 cos 1.980 63.744 —0.422—-0.704|0.524 0.701 0.526
movie-reviews PaBo tf 2000 11885 54.95 2 cos 8.796 7.247-084604-0.739(0.398 0.790 0.481
reuters-transcribed UCI tf-idf 201 3029 234.68 10 cos 1.18%93 3-0.781-0.763|0.642 0.871 0.595
sports dmoz tf 752 1185 250.24 2 cos 1.629 2.543 -2¥584-0.736|0.260 0.604 0.373

Table 1: Real data sets. Data sources are the University of Califorviize (UCI) Machine Learn-

ing Repository, Kent Ridge (KR) Bio-Medical Data Set Repository, dmperCDirectory,
and www.cs.cornell.edu/People/pabo/movie-review-data/ (PaBo).
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4. The Origins of Hubness

This section moves on to exploring the causes of hubness and the mechémangs which hubs
emerge. Section 4.1 investigates the relationship between the position of drpdata space
and hubness. Next, Section 4.2 explains the mechanism through whicleimgéoge as points in
high-dimensional space that become closer to other points than their lowsionahcounterparts,
outlining our main theoretical result. The emergence of hubness in reasdasiaied in Section 4.3,
while Section 4.4 discusses hubs and their opposites—antihubs—and thenstlgps between
hubs, antihubs, and different notions of outliers.

4.1 The Position of Hubs

Let us consider again the i.i.d. uniform and i.i.d. normal random data exarmni previous
section. We will demonstrate that the position of a point in data space hasfecaigneffect on its
k-occurrences value, by observing the sample mean of the data distribuagroa# of reference.
Figure 3 plots, for each poing, its Ns(x) against its Euclidean distance from the empirical data
mean, ford = 3, 20, 100. As dimensionality increases, stronger correlation emerges, implying
that points closer to the mean tend to become hubs. We made analogousititnsenvith other
values ofk, and combinations of data distributions and distance measures for whinkgsibccurs.

It is important to note that proximity to one global data-set mean correlates wlithess in high
dimensions when the underlying data distributiommsmodal For multimodal data distributions,
for example those obtained through a mixture of unimodal distributions, hotddaeappear close

to the means of individual component distributions of the mixture. In the dismughat follows

in Section 4.2 we will assume a unimodal data distribution, and defer the anafysisltimodal
distributions until Section 4.3, which studies real data.

4.2 Mechanisms Behind Hubness

Although one may expect that some random points are closer to the dateaetthan others, in
order to explain the mechanism behind hub formation we need to (1) unatbia geometrical
and distributional setting in which some points tend to be closer to the mean thas, athé then
(2) understand why such points become hubs in higher dimen%ions.

Hubness appears to be related to the phenomenon of distance concentvatah is usually
expressed as the ratio between some measure of spread (for exanmolardstieviation) and some
measure of magnitude (for example, the mean) of distances of all points ia aetao some ar-
bitrary reference point (Aggarwal et al., 2001; Francois et al.,7200 this ratio converges to 0
as dimensionality goes to infinity, it is said that the distances concentrated Basxisting the-
oretical results discussing distance concentration (Beyer et al., 19@@n#al et al., 2001), high-
dimensional points are approximately lying on a hypersphere centereel daitid-set mean. More-
over, the results by Demartines (1994) and Francois et al. (200¢)fspleat the distribution of
distances to the data-set mean has a non-negligible variance for anylfiniience, the existence
of a non-negligible number of points closer to the data-set meaxpisctedn high dimensions.

6. We will assume that random points originate from a unimodal data digtnibun the multimodal case, it can be said
that the observations which follow are applicable around one of the §éakhe pdf of the data distribution.

7. These results apply 1g-norm distances, but our numerical simulations suggest that othenctistanctions men-
tioned in Section 3.1 behave similarly. Moreover, any point can be usadeaference instead of the data mean, but
we observe the data mean since it plays a special role with respect tedsubn
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Figure 3: Scatter plots and Spearman correlatioNs0k) against the Euclidean distance of point
to the sample data-set mean for (a—c) i.i.d. uniform and (d—f) i.i.d. normdbrardata
sets with (a, dy = 3, (b, e)d = 20, and (c, f}d = 100.

To illustrate the above discussion, Figure 4 depicts, for i.i.d. normal datalistriéution of
Euclidean distances of all points to the true data mean (the origin) for $eveaes. By definition,
the distribution of distances is actually the Chi distribution wittlegrees of freedom (as the square
root of the sum of squares of i.i.d. normal variables, Johnson et al)$98 this setting, distance
concentration refers to the fact that the standard deviation of distangbutisns is asymptotically
constant with respect to increasidgwhile the means of the distance distributions asymptotically
behave likev/d (a direct consequence of the results by Francois et al., 2007, siéstsrther in
Section 5.1). On the other hand, fgrnorm distances witlp > 2, the standard deviation would tend
to 0 (Francois et al., 2007). However, for any finiteexisting variation in the values of random
coordinates causes some points to become closer to the distribution mean dranThiis happens
despite the fact that all distance values, in general, may be increasirigeoggéthd.

To understand why points closer to the data mean become hubs in high dingeristons
consider the following example. We observe, within the i.i.d. normal setting, tugtgpdrawn
from the data, but at specific positions with respect to the origin: fgimthich is at the expected
distance from the origin, and poimty which is two standard deviations closer. In light of the
above, the distances af andbgy from the origin change with increasimly and it could be said that
differentag-s (andby-s) occupy analogous positions in the data spaces, with respect tampdng
The distances ddy (andbg) to all other points, again following directly from the definition (Oberto
and Pennecchi, 2006), are distributed accordingdiacentralChi distributions withd degrees of

8. For this reason, in Figure 4 we plot the known pdf, not the empiricallgioed distribution.
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Distribution of distances from iid normal data mean
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Figure 4: Probability density function of observing a point at distanitem the mean of a multi-
variated-dimensional normal distribution, far= 1, 3, 20, 100.

Distribution of distances from two points at analogous positions in iid normal data
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Figure 5: (a) Distribution of distances to other points from i.i.d. normal remdata for a point at
the expected distance from the origin (dashed line), and a point two sthdelgations
closer (full line). (b) Difference between the means of the two distributioith respect
to increasingl.

freedom and noncentrality paramedeequaling the distance @ (bg) to the origin. Figure 5(a)
plots the probability density functions of these distributions for severakgatfid. It can be seen
that, asd increases, the distance distributions &randby move away from each other. This
tendency is depicted more clearly in Figure 5(b) which plots the differeat@den the means of
the two distributions with respect th

It is known, and expected, for points that are closer to the mean of thedidiidution to be
closer, on average, to all other points, for any valuel.oHowever, the above analysis indicates
that this tendency is amplified by high dimensionality, making points that reside jordxamity
of the data mean become closer (in relative terms) to all other points than thedinmwnsional
analogues are. This tendency causes high-dimensional points thabseeto the mean to have
increased inclusion probability inteNN lists of other points, even for small valueslofWe will
discuss this relationship further in Section 5.2.

In terms of the notion of nodeentrality typically used in network analysis (Scott, 2000), the
above discussion indicates that high dimensionality amplifies what we will cajtigal centrality
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of a point (by increasing its proximity to other points), which, in turn, affélsesdegree centrality
of the corresponding node in tlkeNN graph (by increasing its degree, thathg). Other notions
of node centrality, and the structure of tkéNN graph in general, will be studied in more detalil
in Section 5.2.1. The rest of this section will focus on describing the mecharfishe observed
spatial centrality amplification.

In the preceding discussion we selected two points from i.i.d. normal datapeitifie distances
from the origin expressed in terms of expected distance and deviationify@nd tracked the
analogues of the two points for increasing values of dimensior@liGenerally, we can express the
distances of the two points to the origin in terms of “offsets” from the expeditgdnce measured
by standard deviation, which in the case of i.i.d. normal random data would; be= L q) +
C10y(d) @ndAq 2 = Hy(g) + C20y(d), Wheredq ;1 andAq 2 are the distances of the first and second point
to the origin, y4) andoyq) are the mean and standard deviation of the Chi distribution @ith
degrees of freedom, argd andc, are selected constants (the offsets). In the preceding example
involving pointsag andby, we setc; = —2 andc, = 0, respectively. However, analogous behavior
can be observed with arbitrary two points whose distance to the data medaovisthe expected
distance, that is, focy,c; < 0. We describe this behavior by introducing the following notation:
Apa(Ad1,Md.2) = My (dhgo) — Mx(dagq) s WhETely d ;) IS the mean of the noncentral Chi distribution
with d degrees of freedom and noncentrality paramgger(i € {1,2}). In the following theorem,
which we prove in Section 5.1, we show t#aty(Aq 1,Aq2) increases with increasing valuescf

Theorem 1 LetAq 1 = Hy(d) + C10x(d) @aNdAd 2 = Py (q) + C20y(d), Where de IN*,¢,62<0, ¢ <Cp,
and I(q) and oy q) are the mean and standard deviation of the Chi distribution with d degrees of
freedom, respectively. Define

Apd(Ad1,Md.2) = Fy(dag2) — Px(dAgy) »

where ly(q,4;) is the mean of the noncentral Chi distribution with d degrees of freedormand
centrality parametelg; (i € {1,2}).
There exists gle IN such that for every ¢ dp,

Apg(Ag1,Ad,2) >0,

and
Apg2(Ad42,1,Ad+22) > DPd(Ad,1,Ad,2) - (1)

The main statement of the theorem is given by Equation 1, which expressentiency of the
difference between the means of the two distance distributions to increasmevitasing dimen-
sionalityd. Itis important to note that this tendency is obtained through analysiswibutionsof
data and distances, implying that the behavior is an inherent propertyaofiidéributions in high-
dimensional space, rather than an artefact of other factors, sudiitasimple size, etc. Through
simulation involving randomly generated points we verified the behavior for nadnal data by
replicating very closely the chart shown in Figure 5(b). Furthermore,lations suggest that the
same behavior emerges in i.i.d. uniform daw@s well as numerous other unimodal random data
distributions, producing charts of the same shape as in Figure 5(b).dR&alon the other hand,

9. The uniform cube setting will be discussed in more detail in Section 5tBeinontext of results from related work
(Newman and Rinott, 1985).
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tends to be clustered, and can be viewed as originating fronixt@reof distributions resulting in a
multimodal distribution of data. In this case, the behavior described by &hear and illustrated
in Figure 5(b), is manifested primarily on the individual component distribstiointhe mixture,
that is, on clusters of data points. The next section takes a closer look latitmess phenomenon
in real data sets.

4.3 Hubness in Real Data

Results describing the origins of hubness given in the previous sectarmesolvtained by examining
data sets that follow specific distributions and generated as i.i.d. sampleshiesmdistributions.
To extend these results to real data, we need to take into account two aalditictors: (1) real
data sets usually contain dependent attributes, and (2) real data setuallg clustered, that is,
points are organized into groups produced by a mixture of distributionsamhstieoriginating from
a single (unimodal) distribution.

To examine the first factor (dependent attributes), we adopt the agfpob&rancois et al. (2007)
used in the context of distance concentration. For each data set wamlyrgermute the elements
within every attribute. This way, attributes preserve their individual digtiobs, but the dependen-
cies between them are lost and th&insic dimensionalityof data sets increases, becoming equal
to their embedding dimensionality (Francois et al., 2007). In Table 1 (10th column) we give the
empirical skewness, denoted%, of the shuffled data. For the vast majority of high-dimensional
data setsSﬁk is considerably higher tha8y,, indicating that hubness actually depends on the in-
trinsic rather than embedding dimensionality. This provides an explanatidng@pparent weaker
influence ofd on hubness in real data than in synthetic data sets, which was obsenadionS3.2.

To examine the second factor (many groups), for every data set weiradagi) the Spearman
correlation, denoted a@'ﬁ;’ (12th column), of the observed and distance from the data-set mean,
and (ii) the correlation, denoted e (13th column), of the observelk and distance to the
closest group mean. Groups are determined Wiheans clustering, where the number of clusters
for each data set, given in column 11 of Table 1, was determined by dkleassarch of values
between 2 and/n|, to maximizeCH.2° In most casesCer is considerably stronger thag}™.
Consequently, in real data, hubs tend to be closer than other points taegpactive cluster centers
(which we verified by examining the individual scatter plots).

To further support the above findings, we include the 6th coludpp)to Table 1, corresponding
to intrinsic dimensionality measured by the maximum likelihood estimator (Levina ardIBic
2005). Next, we compute Spearman correlations between various mmaasisdrom Table 1 over
all 50 examined data sets, given in Table 2. The observed skewndislugsides being strongly
correlated withd, is even more strongly correlated with the intrinsic dimensiondlity. Moreover,
intrinsic dimensionality positively affects the correlations betwlgand the distance to the data-
set mean / closest cluster mean, implying that in higher (intrinsic) dimensiop®#itens of hubs
become increasingly localized to the proximity of centers.

Section 6, which discusses the interaction of hubness with dimensionalitgti@duwill pro-
vide even more support to the observation that hubness depends osicntather than embedding
dimensionality.

10. We report averages @ﬁ',%? over 10 runs oK-means clustering with different random seeding, in order to reduce the
effects of chance.
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| d dne Swu, Gy CO¥ BNio ChE.
drmie 0.87
Sy 0.62 0.80
Chle |1-0.52 -0.60 —0.42
chw || -0.43-0.48-0.31 0.82
BNjp ||-0.05 0.03-0.08-0.32-0.18

cy || 032 039 0.29-0.61-0.46 0.82
CAV || 003 003 0.03-0.14-0.05 0.85 0.76

Table 2: Spearman correlations over 50 real data sets.
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Figure 6: Correlation between IoM and outlier scorel{(= 20).

4.4 Hubs and Outliers

The non-negligible variance of the distribution of distances to the data mesmnitabl in Sec-
tion 4.2 has an additional “side”: we also expect points farther from thenraed, therefore, with
much lower observedl than the rest! Such points correspond to the bottom-right parts of Fig-
ure 3(b, c, e, f), and will be referred to astihubs Since antihubs are far away from all other points,
in high dimensions they can be regarded as distance-lmaslkers (Tan et al., 2005).

To further support the connection between antihubs and distancd-basiers, let us consider
a common outlier score of a point as the distance frorkthisnearest neighbor (Tan et al., 2005).
Low Nk values and high outlier scores are correlated as exemplified in Figuil® Giatheir lower-
right parts) for two data sets from Table 1.

Next, let us recall the i.i.d. normal random data setting, and the probabilitsitgdeianction
corresponding to observing a point at a specified distance from the, pleded in Figure 4. An
analogous chart for real data is given in Figure 7, which shows the e@pdistributions of dis-
tances from the closest cluster mean for three real data sets, as @ésariBection 4.3. In both
figures it can be seen that in low dimensions the probability of observingparpgear a center is quite
high, while as dimensionality increases it becomes close to zero. If we nusides gorobabilistic
definition of an outlier as a point with a low probability of occurrence (Taalgt2005), in high

11. Assuming the presence of hubs, the existence of points wittNkow implied by the constant-sum property N:
for any data seD, 3 x.p Nk(X) = k|D| (Aucouturier and Pachet, 2007).
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Distribution of distances from closest cluster mean
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Figure 7: Probability density function of observing a point at distané®m the closest cluster
mean for three real data sets.

dimensions hubs actualbre outliers, as points closer to the distribution (or cluster) mean than the
majority of other points. Therefore, somewhat counterintuitively, it casde that hubs are points
that reside in low-density regions of the high-dimensional data spaceyarmd the same time close

to many other points. On the other hand, distance-based outliers caordegpprobabilistic out-
liers that are farther away from the center(s). It follows that the defirstiof distance-based and
probabilistic outliers significantly diverge from one another in high dimerssiaith distance-based
outliers only partially corresponding to probabilistic outliers. To prevenfusion in the rest of the
paper, we shall continue to refer to “hubs” and “outliers” in the distaraged sense. Outliers will

be analyzed further in Section 7.3.2.

5. Proofs and Discussion

This section is predominantly devoted to the theoretical aspects of the beb&wdstances in

high-dimensional space and the hubness phenomenon. Section 5. prasttp-by-step proof of
Theorem 1 which was introduced in Section 4.2, while Section 5.2 discuddé®nal aspects of
the phenomenon in the context of the geometry of high-dimensional spaddbhe properties of
data distributions which occupy them.

5.1 Proof of Theorem 1

In this section we analyze the behavior of distances that provides the m&chfar the formation
of hubs, introduced in Section 4.2, culminating with the proof of Theorenetti@ 5.1.1 reviews
distance concentration results by Francois et al. (2007), while Sectichdiscusses distance dis-
tributions in i.i.d. normal random data and extended interpretations of thikssrbguFrancois et al.
(2007) in this setting. The notion of asymptotic equivalence that will be us#teiproof of The-
orem 1 is the subject of Section 5.1.3. The expectation of the noncentraiiiibution, which

is a key feature in the analysis of distance distributions in i.i.d. hormal randaa) i defined in
Section 5.1.4, together with the generalized Laguerre function on whicliei$ réroperties of the
generalized Laguerre function that will be used in the proof of Thedteare presented in Sec-
tion 5.1.5. Finally, the proof of Theorem 1 is given in Section 5.1.6.
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5.1.1 DSTANCE CONCENTRATION RESULTS

We begin by reviewing the main results of Francois et al. (2007) regadigtance concentration.
Let Xq = (X1,X2,...,Xq) be a randond-dimensional variable with i.i.d. component§:~ ¥, and
let || Xq|| denote its Euclidean norm. For random variadh$’, let K2 and cr‘sz|2 signify their

mean and variance, respectively. Francois et al. (2007) provelbeing two lemmas-?

Lemma 2 (Francois et al., 2007, Equation 17, adapted)

im E(B(adu) -
Lemma 3 (Francois et al., 2007, Equation 21, adapted)
o2,

lim Var(|| Xa|) = 4;;

The above lemmas imply that, for i.i.d. random data, the expectation of the distritmitieu-
clidean distances to the origin (Euclidean norms) asymptotically behaveg/tikevhile the stan-
dard deviation is asymptotically constant. From now on, we will denote the nrehwaaaiance of
random variables that are distributed according to some distribgiog pye ando’j}, respectively.

5.1.2 DSTANCES IN I.I.D. NORMAL DATA

We now observe more closely the behavior of distances in i.i.d. normal manidta. LetZy =
(Z1,23,...,2Zq) be a randond-dimensional vector whose components independently follow the
standard normal distributiorz; ~ A((0; 1), for everyi € {1,2,...,d}. Then, by definition, random
variable||Zq|| follows the Chi distribution withd degrees of freedom|:Zq|| ~ x(d). In other words,
x(d) is the distribution of Euclidean distances of vectors drawn fegnto the origin. If one were

to fix another reference vectry instead of the origin, the distribution of distances of vectors drawn
from Z4 to x4 would be completely determined ljyq|| since, again by definition, random variable
|Z4 — x4|| follows the noncentral Chi distribution witd degrees of freedom and noncentrality
parameteh = [|xq||: [|Za —Xall ~ X(d. [xal))-

In light of the above, let us observe two pointg, andxq 2, drawn fromZy, and express their
distances from the origin in terms of offsets from the expected distancetheitbffsets described
using standard deviation$§Xq 1|| = ky(d) + C10x(d) and ||Xq2|| = y(d) + C20x(d)» wherecy,cz < 0.

We will assumee; < cy, that is,Xq 1 is closer to the data distribution mean (the origin) thap. By
treatingc; andc; as constants, and varyimly we observe analogues of two points in spaces of dif-
ferent dimensionalities (roughly speaking, poirgs have identical “probability” of occurrence at
the specified distance from the origin for evetyand the same holds fog 2). LetAq1 = ||Xd.1|
andAqg2 = ||Xd,2||. Then, the distributions of distances of poirgs, andxq» to all points from the
data distributiorZ4 (that is, the distributions of random variablggy — Xq,1|| and||Zq — Xq,2||) are
noncentral Chi distributiong(d,Aq1) andx(d,Aq2), respectively. We study the behavior of these
two distributions with increasing values df

Lemmas 2 and 3, taking to be the standard normal distributie(0; 1), and translating the
space so thaty 1 or xq2 become the origin, imply that botlg q4,,) andpy,,) asymptotically

12. Frangois et al. (2007) provide a more general resuli;faprms with arbitraryp > 0.
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behave like/d asd — o, while Ui(d,xd N andc)z((dm ,) are both asymptotically constattHowever,

for xq1 andxq 2 placed at different distances form the orighy { # Ad 2, that is,cq # cy), these
asymptotic tendencies do not occur at the saped In particular, we will show that adincreases,
the difference betweem 4 ,,) andpyq,,,) actuallyincreases If we takexq ;1 to be closer to the
origin thanxq» (c1 < C2), this means thaxgy; becomes closer to all other points from the data
distributionZ4 thanxgq 2, simply by virtue of increasing dimensionality, since for different values
of d we place the two points at analogous positions in the data space with regéngsdistance
from the origin.

5.1.3 ASYMPTOTIC EQUIVALENCE

Before describing our main theoretical result, we present severaltd®efs and lemmas, beginning
with the notion of asymptotic equivalence that will be relied upon.

Definition 4 Two real-valued functions(k) and gx) are asymptotically equalf (x) ~ g(x), iff for
everye > 0 there exists x€ R such that for every % X, | f(x) —g(x)| < €.

Equivalently,f (x) ~ g(x) iff lim x| f (X) —g(X)| = 0. Note that thex relation is different from
the divisive notion of asymptotic equivalence, whéfg) ~ g(x) iff lim y_,. f(X)/g(x) = 1.

The following two lemmas describe approximations that will be used in the pfddfeprem 1,
based on the: relation.

Lemma 5 For any constant & R, let f(d) = v/d+c, and gd) = v/d. Then, fd) ~ g(d).

Proof

lim \/d+c—\/a‘:lim ( d+c—\/a)M -
d—oo d—oo

d+c+vd

d—oo

c )—O
dtc+vd|

Lemma 6 Ly q) ~ v/d, andoyq) ~ 1/v2.
Proof Observe the expression for the mean ofthe) distribution,
d
r (%)
d
r(z)

The equalityxI" (x) = ' (x+ 1) and the convexity of lof(x) yield (Haagerup, 1982, p. 237):

(5520 (0 (4)-$(2)

M) = V2

13. More precisely, the lemmas can be applied only for paitsthat have equal values of all components, since
after translation data components need to be i.i.d. Because of the symoh#te Gaussian distribution, the same
expectations and variances of distance distributions are obtainedefgrdewith anyxgq ; that has the same norm as
x&wtherebyprodudngidenﬂcalasynunoﬂcresuns
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and

d+1\? d—1_/d-1 d+1\ d—1_/d\?
— > —
(%) =t () ()= (3)

from which we have

va—i<va ) < va

From Lemma 5 it now follows thaty q) ~ v/d.
Regarding the standard deviation of th@l) distribution, from Lemma 3, taking to be the
standard normal distribution, we obtain

2
Oew 1

lim ox(d) Ihen 2

d—o0

since the square of a standard normal random variable follows the earesdistribution with one
degree of freedom(z( 1), whose mean and variance are knowgy ) = 1, 0)2(2(1) = 2. It now di-

rectly follows thatoy q) ~ 1/v/2. [ |

5.1.4 EXPECTATION OF THENONCENTRAL CHI DISTRIBUTION

The central notion in Theorem 1 is the noncentral Chi distribution. Toesgpthe expectation of
the noncentral Chi distribution, the following two definitions are neededydniring the Kummer
confluent hypergeometric functiafr;, and the generalized Laguerre function.

Definition 7 (Itd, 1993, p. 1799, Appendix A, Table 19.1)
For a,b,z € R, the Kummer confluent hypergeometric functibp(a; b; z) is given by

o (a)k
1h(abiz) Z)b) k+1
where(-)i is the Pochhammer symbdk), = (rf;)k)

Definition 8 (Itd, 1993, p. 1811, Appendix A, Table 20.VI)
Forv,a,z € R, the generalized Laguerre functior\()al)_(z) is given by

rv+a+1) 1F(—v;a+1;2)

(@) _
oy O R (B

The expectation of the noncentral Chi distribution wdtbdegrees of freedom and noncentrality
paramete, denoted by, 4 »), can now be expressed via the generalized Laguerre function (Oberto

and Pennecchi, 2006):
T (d/2-1) [ AN
M) = \@Ll/z (-2 : 2)
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5.1.5 FROPERTIES OF THEGENERALIZED LAGUERREFUNCTION

The proof of Theorem 1 will rely on several properties of the genaxdlizaguerre function. In this
section we will review two known properties and prove several additiomes as lemmas.

An important property of the generalized Laguerre function is its infiniteedgffitiability inz,
with the result of differentiation again being a generalized Laguerrdifumc

0
L@ =LY, 3)

Another useful property is the following recurrence relation:
L% (2) =L 2+ L V(). (4)

Lemma 9 Fora > 0and z< 0:

@) L(f‘l)/z(z) is a positive monotonically increasing function in z, while

(b) '-(17)2(2) is a positive monotonically decreasing concave function in z.

Proof (a) From Definition 8,

L@ _ Ma+1/2) 1F(1/2;a+1;2)
~12(2) = r(1/2)  T(a+1)

Sincea > 0 all three terms involving the Gamma function are positive. We transform thainéng
term using the equality @ 1993, p. 1799, Appendix A, Table 19.1):

1F1(ab;z) = e1F(b—ajb;—2), (5)
which holds arbitrang, b,z € R, obtaining
1F1(1/2;C( + l;Z) = elel(G + 1/2;0( + l;*Z) .

From Definition 7 it now directly follows thalf‘l)/z(z) is positive fora > 0 andz < 0.

To show thatL(_“l)/z(z) is monotonically increasing iz, from Equation 3 and Definition 8

we have

MNa+1/2) 1F(3/2;0+2;2)
(=12 T(a+2)
Fora > 0 andz < 0, from Equation 5 it follows thatF; (3/2;a + 2;2z) > 0. Sincel (—1/2) < 0 and
all remaining terms are positive, it follows thall_(_“;/;)(z) > 0. Thus,L(_al)/Z(z) is monotonically
increasing ire.

(b) Proofs thaL(l%(z) is positive and monotonically decreasing are very similar to the proofs in

part (a), and will be omitted. To address concavity, we observe thedeivative oil_(l%(z):

9, @ (@+1)
a1 ="L5, (@)=

ajL(a) (2) = L(or+2)(z) _ M(a+3/2) 1F(3/2,a+3;2)

oz 1129 T 32 r-1/2)  T(a+3)
Similarly to part (a), from Equation 5, Definition 7, and basic properties @fgdamma function it
follows thath‘;/? (z7 <0Ofora >0andz< 0. Thus,L(ﬁ;(Z) is concave ire. [
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Lemma 10 For a > 0 and z< 0, L(l%rl)(z) ~ L(l?)z(z).

Proof From the recurrence relation in Equation 4 we obtain

1 1
L V@=L @+

Therefore, to prove the lemma it needs to be shown that 00,

im 1 (@) _
J@w Lfl/z(z) =0. (6)
From Definition 8 and Equation 5 we have
e’ T(a+1/2
L(_al)/z(z): a+l )~1F1(0(+1/2;a+1;—z).

r/2) r(a+1

From the asymptotic expansion by Fujikoshi (2007, p. 16, adapted),

1F1<;”:;<n+b>:x> =& (1+0(n™), %

wheren is large andx > 0, it follows that limy_.1Fi(0 + 1/2;0 + 1;—2) < . Thus, to prove
Equation 6 and the lemma it remains to be shown that

_T(a+1/2)

ase [(0+1) =0 ®)

As in the proof of Lemma 6, from the inequalities derived by Haagerup2)1 @@ have

()
VB-1<V2 20

where3 > 1. Applying inversion and substitutirgwith 2a + 1 yields the desired limit. |

</B,

Lemma 11 Fora > 1/2and z< O:
(a) lim,., L") ,(2) =0, and

(b) limg e L% ,(2) = 0.

Proof (a) From Definition 8 we have

L@ ~ (a—-1/2) 1F1(3/2;041;2)

B A T VT CE Y ®

The following property (Abramowitz and Stegun, 1964, p. 504, EquatBh.%),

r'(b)

1F1 (&b z) = Fb—a)

(-22(1+0(2™%) (z<0),
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when substituted into Equation 9, takiag-= 3/2 andb = a + 1, yields

@ o L 3 1
L%0(2) = r(—1/2)( 27V (1+0(|1271). (10)
From Equation 10 the desired limit directly follows.

(b) The proof of part (b) is analogous to the proof of Lemma 10, thatdgiaBon 6. From
Definition 8 and Equation 5, after applying the expansion by Fujikoshi{@en in Equation 7,
it remains to be shown that

. Ma-1/2)
oIrILnoo m =0. (12)
Sincel (a —1/2) < T'(a+1/2) for everya > 2, the desired limit in Equation 11 follows directly
from Equation 8. n

5.1.6 THE MAIN RESULT

This section restates and proves our main theoretical result.

Theorem 1 LetAq 1 = Hy(d) + C10x(d) @aNdAq 2 = P (q) + C20y(d), Where de IN*t, 1,6, <0, ¢ < Cp,
and |q) and gy q) are the mean and standard deviation of the Chi distribution with d degrees of
freedom, respectively. Define

Apd(Ad1,Md.2) = Fy(dag2) — Px(dAga) »

where I, is the mean of the noncentral Chi distribution with d degrees of freedormand
centrality parametely; (i € {1,2}).
There exists gle IN such that for every ¢ dp,

Aud()\d,la)\d,Z) > 07 (12)

and
APd+2(Ad+2,1,Ad+2.2) > DHd(Ad.1,Ad2) - (13)

Proof To prove Equation 12, we observe that b 2,

Apd(Ad1:Ad2) = MyxdAaz) — Mx(dAga)

— EL(%*l) _}‘5,2 _ EL(%*D _)\371
2 12 2 5 “1/2 >

> 0,

(d/2-1)

where the last inequality holds far > 2 becausé\q; < Aqg2, and L1/2

decreasing function im< 0 ford/2—1 > 0 (Lemma 9).

In order to prove Equation 13, we will use approximate values of noraléptparameterdq 1
andAg. LetAgs = v/d+c1/v/2, andhg 2 = Vd+¢,/v/2. From Lemma 6 it follows thaty ; ~ Ag1
andide ~ Ag,2. Thus, by proving that there exisis € IN such that for everg > da,

(z) is a monotonically

Mg 2(Na 21, Ady2.2) > Dla(Md.1,Md.2) (14)
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we prove that there existh € IN such that for everyl > d; Equation 13 holds. The existence of

suchd;, when approximations are used as function arguments, is ensured laycithieatL(li)z(z) is

a monotonically decreasirgpncaveunction inz (Lemma 9), and by the transition fromto a + 1

having an insignificant impact on the value of the Laguerre function fgelanoughx (Lemma 10).

Once Equation 14 is proven, Equations 12 and 13 will hold for edterydy, wheredy = max(2,d; ).
To prove Equation 14, from Equation 2 it follows we need to show that

d/2 1 2 d/2 1 2
L <_2 (\/d+2+02/\f2> ) -~ <_2 (\/d+2+C1/\/§> )
_ 1 2 - 1 2
S L(l%z 1) (_2 <\@+C2/\f2> ) —|_(1C}/22 1) (_2 <\/a+cl/\[2> ) _ (15)
We observe the second derivativ %(z):

& (@) (a+2)
a—ZLl/z(z) =L57 (2.

SinceL(f’;/g) (z) tends to 0 ag — —oo, and tends to 0 also @as— o (Lemma 11), it follows that the

two Laguerre functions on the left side of Equation 15 can be approxirhgtadinear function with

an arbitrary degree of accuracy for large enodgiMore precisely, since(ﬁ;(z) is monotonically

decreasing irz (Lemma 9) there exist,b € R, a > 0, such that the left side of Equation 15, for
large enouglt, can be replaced by

-a <—; (\/m+C2/\@)2> +b - <—a (—; (\/m—FCl/\@)Z) +b>
= S(Varzre/v2) -5 (Vatara/va) (16)

From Lemma 10 it follows that the same linear approximation can be used foigtiteside of
Equation 15, replacing it by

S (Va+ev2) -5 (Ve ve) @

After substituting the left and right side of Equation 15 with Equations 16 anhdekpectively, it
remains to be shown that

*(Varareva) - S (vVarzra/ve)
>3 (Vateve) -2 (Virava) (18)

Multiplying both sides by/2/a, moving the right side to the left, and applying algebraic simplifi-
cation reduces Equation 18 to

(Cz—01> (M— \@) >0,

which holds forc; < ¢, thus concluding the proof. [ |
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5.2 Discussion

This section will discuss several additional considerations and relatédregarding the geometry
of high-dimensional spaces and the behavior of data distributions within fiest.let us consider
the geometric upper limit to the number of points that poirdan be a nearest neighbor of, in
Euclidean space. In one dimension, this number is 2, in two dimensions it i$I8 jmB dimensions
it equals 11 (Tversky and Hutchinson, 1986). Generally, for Eudtidgeace of dimensionalitgt
this number is equal to thdssing numberwhich is the maximal number of hyperspheres that can
be placed to touch a given hypersphere without overlapping, with akrspheres being of the
same sizé# Exact kissing numbers for arbitracyare generally not known, however there exist
bounds which imply that they progress exponentially witf©dlyzko and Sloane, 1979; Zeger and
Gersho, 1994). Furthermore, when considekmgearest neighbors fde> 1, the bounds become
even larger. Therefore, only for very low valuesdojeometrical constraints of vector space prevent
hubness. On the other hand, for higher values lmfibness may or may not occur, and the geometric
bounds, besides providing “room” for hubness (even for valudsasflow as 1) do not contribute
much in fully characterizing the hubness phenomenon. Therefore, irdimggmsions the behavior
of data distributionsneeded to be studied.

We focus the rest of the discussion around the following important r€sdiawing parallels
with our results and analysis, and extending existing interpretations.

Theorem 12 (Newman and Rinott, 1985, p. 803, Theorem 3, adapted)

Letx) = (x(li),..., S)), i =0,...,n be a sample of & 1 i.i.d. points from distributiorF(X),
X = (Xg,...,X4) € RY. Assume thaF is of the formF(X) = M, # (X), that is, the coordinates
X1,...,Xq are ii.d. Let the distance measure be of the for®,x(1) = 58, g(x" x(1)). Let N}
denote the number of points amofig?, ..., x("} whose nearest neighbor&? .

Suppos® < Var(g(X,Y)) < « and set
B = Correlatiorfg(X,Y),q9(X,2)), (19)

where XY, Z are i.i.d. with common distributioff (the marginal distribution of ¥.
(@)If B=0then

. . nyd o . . . . . .
Amoc![)nw N, = PoissoifA = 1) in distribution (20)
and
. . n,d o
Aﬂgmvarml )=1. (21)
(b) If B> Othen
lim lim N = 0 in distribution (22)
n—o0 d— o0
while
. . n7d o
r!mo(!lﬁrrlcVar(N1 ) =00, (23)

14. If ties are disallowed, it may be necessary to subtract 1 from thiegisember to obtain the maximum b .
15. A theorem that is effectively a special case of this result was prpreviously (Newman et al., 1983, Theorem 7)
for continuous distributions with finite kurtosis and Euclidean distance.
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What is exceptional in this theorem are Equations 22 and 23. According totdrpretation by
Tversky et al. (1983), they suggest that if the number of dimensionggis tatative to the number
of points, one may expect to have a large proportion of points Wijtlequaling 0, and a small
proportion of points with high\; values, that is, hub$ Trivially, Equation 23 also holds fo
with k > 1, since for any point, Ni(x) > Ni(X).

The setting involving i.i.d. normal random data and Euclidean distance, usen Ttheorem 1
(and, generally, any i.i.d. random data distribution with Euclidean distahd#ls the conditions
of Theorem 12 for Equations 22 and 23 to be applied, since the correfmmametef; > 0. This
correlation exists because, for example, if we view vector componeiabl@k; (j € {1,2,...,d})
and the distribution of data points within it, if a random point drawn fignis closer to the mean
of Xj itis more likely to be close to other random points drawn fiémand vice versa, producing
the cased > 0.17 Therefore, Equations 22 and 23 from Theorem 12 directly apply to ttiage
studied in Theorem 1, providing asymptotic evidence for hubness. Howswce the proof of
Equations 22 and 23 in Theorem 12 relies on applying the central limit thetordma (normalized)
distributions of pairwise distances between vectdtsandx(}) (0 <i # j < n) asd — « (obtaining
limit distance distributions which are Gaussian), the results of Theoreneli@terently asymptotic
in nature. Theorem 1, on the other hand, describes the behavior ofadistan finite dimensionali-
ties18 providing the means to characterize the behaviddah high, but finite-dimensional space.
What remains to be done is to formally connect Theorem 1 with the skewhbisrofinite dimen-
sionalities, for example by observing potvith a fixed position relative to the data distribution
mean (the origin) across dimensionalities, in terms of being at distapget- coy q) from the ori-
gin, and expressing how the probability xfto be the nearest neighbor (or among kheearest
neighbors) of a randomly drawn point changes with increasing dimenijottaWe address this
investigation as a point of future work.

Returning to Theorem 12 and the valuefiofrom Equation 19, as previously discussgd; 0
signifies that the position of a vector component value makes a differehea somputing dis-
tances between vectors, causing some component values to be moieal*span others. Another
contribution of Theorem 1 is that it illustrates how the individual differenicecomponent values
combine to make positions of whole vectors more special (by being closer tataeenter). On
the other hand, iB = 0 no point can have a special position with respect to all others. In thés cas
Equations 20 and 21 hold, which imply there is no hubness. This setting ismgléor example, to
points being generated by a Poisson process which spreads the vedfonsly overRY, where all
positions within the space (both at component-level and globally) becorreabasquivalent. Al-
though it does not directly fit into the framework of Theorem 12, the satineipte can be used to
explain the absence of hubness for normally distributed data and cosiarcdisrom Section 3.1:
in this setting no vector is more spatially central than any other. Equationsd2@larwhich im-
ply no hubness, hold for many more “centerless” settings, including rargtaphs, settings with
exchangeable distances, avdimensional toruses (Newman and Rinott, 1985).

16. Reversing the order of limits, which corresponds to having a larg@auof points relative to the number of dimen-
sions, produces the same asymptotic behavior as in Equations 20 &hdt24, no hubness, in all studied settings.

17. Similarly to Section 4.2, this argument holds for unimodal distributidnsomponent variables; for multimodal
distributions the driving force behind nonzdds the proximity to a peak in the probability density function.

18. Although the statement of Theorem 1 relies on dimensionality beingegitban somely which is finite, but can be
arbitrarily high, empirical evidence suggests that actijalalues are low, often equaling 0.

19. Forc < 0 we expect this probability to increase sincis closer to the data distribution mean, and becomes closer to
other points as dimensionality increases.
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Figure 8: (a) Out-link, and (b) in-link densities of groups of hubs withéasing size; (c) ratio of
the number of in-links originating from points within the group and in-links oagjimg
from outside points, for i.i.d. uniform random data with dimensionality 3, 20, 100.

The following two subsections will address several additional issuesecoimg the interpreta-
tion of Theorem 12.

5.2.1 NEARESTFNEIGHBOR GRAPH STRUCTURE

The interpretation of Theorem 12 by Tversky et al. (1983) may be statzdt in the sense that, with
increasing dimensionalityery fewexceptional points become hubs, while all others are relegated
to antihubs. In this section we will empirically examine the structural changeed¢MiN graph as
the number of dimensions increases. We will also discuss and consolideremlifnotions node
centrality in thek-NN graph, and their dependence on the (intrinsic) dimensionality of data.

First, as in Section 3.1, we consider= 10000 i.i.d. uniform random data points of different
dimensionality. Let us observe hubs, that is, points with highigstcollected in groups of pro-
gressively increasing size; B),15,...,10000. In analogy with the notion of network density from
social network analysis (Scott, 2000), we define grouplink densityas the proportion of the num-
ber of arcs that originate and end in nodes from the group, and the tmitddar of arcs that originate
from nodes in the group. Conversely, we define grimilink densityas the proportion of the num-
ber of arcs that originate and end in nodes from the group, and the totddar of arcs thatndin
nodes from the group. Figure 8(a, b) shows the out-link and in-linkiles®f groups of strongest
hubs in i.i.d. uniform random data (similar tendencies can be observed with ththetic data
distributions). It can be seen in Figure 8(a) that hubs are more cehieshigh dimensions, with
more of their out-links leading to other hubs. On the other hand, FiguresB@gests that hubs also
receive more in-links from non-hub points in high dimensions than in low diroeas Moreover,
Figure 8(c), which plots the ratio of the number of in-links that originate withengtoup, and the
number of in-links which originate outside, shows that hubs receive erl@rg@portion of in-links
from non-hub points in high dimensions than in low dimensions. We haveteshour findings for
k =5, however similar results are obtained with other valuds of

Overall, it can be said that in high dimensions hubs receive more in-linksitthamw dimen-
sions from both hubs and non-hubs, and that the range of influenoebsfgradually widens as
dimensionality increases. We can therefore conclude that the transitioiboéss from low to high
dimensionalities is “smooth,” both in the sense of the change in the overall diftrikof Ny, and
the change in the degree of influence of data points, as expresseddiyotheanalysis of links.
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So far, we have viewed hubs primarily through their exhibited high valuég othat is, high
degree centrality in thé&-NN directed graph. However, (scale-free) network analysis litezatur
often attributes other properties to hubs (Albert and Basal2002), viewing them as nodes that are
important for preserving network structure due to their central positidgthénthegraph, indicated,
for example, by theibetweenness centralif§scott, 2000). On the other hand, as discussed by Li
et al. (2005), in both synthetic and real-world networks high-degrdesdo not necessarily need
to correspond to nodes that are central in the graph, that is, higlkealagdes can be concentrated
at theperipheryof the network and bear little structural significance. For this reasonpwpated
the betweenness centrality of nodekiN graphs of synthetic and real data sets studied in this
paper, and calculated its Spearman correlation with node degree, dethetimgasure bgzl';'kc. For
i.i.d. uniform data k = 5), whend = 3 the measured correlation(I%‘?; =0.311, whend = 20 the
correlation isCh%. = 0.539, and finally wherl = 100 the correlation rises @52 = 0.6472° This
suggests that with increasing dimensionality the centrality of nodes incneakesly in the sense
of higher node degree or spatial centrality of vectors (as discussegttios 4.2), but also in the
structural graph-based sense. We support this observation fsttmamputing, over the 50 real
data sets listed in Table 1, the correlation bet\/\@% andSy,,, finding it to be significant: 0.548
This indicates that real data sets which exhibit strong skewness in the wlistnilof N, also tend
to have strong correlation betwebky and betweenness centrality of nodes, giving hubs a broader
significance for the structure of tikeNN graphs.

5.2.2 RaTE oF CONVERGENCE AND THEROLE OF BOUNDARIES

On several occasions, the authors of Theorem 12 have somewhapldged the significance of
equations 22 and 23 (Tversky et al., 1983; Newman and Rinott, 1985} eitirpirically observed

slow convergence (Maloney, 1983), even to the extent of not ologesignificant differences be-
tween hubness in the Poisson process and i.i.d. uniform cube settingsevétowesults in the

preceding sections of this paper suggest that this convergence enfaggh to produce notable
hubness in high-dimensional data. In order to directly illustrate the differéetween a setting
which provides no possibility for spatial centrality of points, and one thasgdwe will observe the

Poisson process vs. the i.i.d. unit cube setting. We will be focusing on taédoof the nearest
neighbor of a point from the cube, that is, on determining whether it stapwhe boundaries of

the cube as dimensionality increases.

Lemma 13 Let points be spread iRY according to a Poisson process with constant intersity 1.
Observe a unit hypercube € RY, and an arbitrary poin = (x1,Xz,...,Xs) € C, generated by the
Poisson process. Lety\g denote the probability that the nearest neighborxpfwith respect to
Euclidean distance, is not situated in C. Then,

lim pyg=1.
d—oo

Proof Out of the 3 — 1 unit hypercubes that surroufidlet us observe only thedthypercubes that
differ from C only in one coordinate. We will restrict the set of considered points to tPetsabes,
and prove that the probability that the nearest neighborafmes from one of thedcubes,p, g,
converges to 1 ad — . From this, the convergence pf 4 directly follows, sincepy 4 > Py g

20. Betweenness centrality is computed on dire&t®tN graphs. We obtained similar correlations when undirected
graphs were used.
21. When betweenness centrality is computed on undirected graphsytakaton is even stronger: 0.585.
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Figure 9: Probability that the nearest neighbor of a point from the umiefoube originates from
one of the adjacent hypercubes, for Poisson processes\witi00, 100Q and 10000
expected points per hypercube, obtained through simulation and astleragel0 runs.

Let Py (i) denote the probability that the nearest neighbor obmes from one of the two hy-
percubes which differ fron€ only in theith coordinate, € {1,2,...,d}. For a given coordi-
natei and pointx, let the1-dimensional nearest neighbof x; denote the closest value of all
other pointsy from the Poisson process, observed when all coordinates eixaeptdisregarded.
Conversely, for a given coordinateand pointx, let the (d — 1)-dimensional nearest neighbof
(X1, ., %—1,%i+1,-..,Xd) denote the closest poi(yi,...,Yi—1,Yi+1,---,Yd), Obtained when coordi-
natei is disregarded.

Observing thath coordinate only, the probability for the 1-dimensional nearest neighfagr o
to come from one of the surrounding unit intervaljs;. Although small,p, ; > 0. Assuming
this event has occurred, Igtc RY be the point whose componeytis the 1-dimensional nearest
neighbor ofx; that is not within the unit interval containing. Letr, denote the probability that
the remaining coordinates 9f (y1,...,Yi-1,Yi+1,---,Yd), constitute §d — 1)-dimensional nearest
neighbor of(xa, ..., Xi-1,%11,...,Xd), within the confines o€. It can be observed thaf is strictly
greater than O, inversely proportionaltgroughly equaling 1(A — 1)), and independent af. Thus,
Pra(i) > Pr1-ra >0.

Let Oy g = 1— Pr 4, the probability that the nearest neighborxotomes fromC (recall the
restriction of the location of the nearest neighbo€Ctand its immediately surroundingizhyper-
cubes). In light of the abovél ¢ = 1%, Gv.a(i) = IL1(1— Pra(i)). Since eactPy 4(i) is bounded
from below by a constant strictly greater than 0 (which depends onh),ceachg, q4(i) is bounded
from above by a constant strictly smaller than 1. It follows thailim@y ¢ = 0, and therefore
liMy_e0 /p\)\7d =1. |

To illustrate the rate of convergence in Lemma 13, Figure 9 plots the empiricadigredd
probabilities that the nearest neighbor of a point from a unit hyperotigaates in one of the
immediately adjacent unit hypercubgs, (). It can be seen that the probability that the nearest
neighbor comes from outside of the cube quickly becomes close to 1 as dbmeditg increases.
Please note that due to feasibility of simulation the plots in Figure 9 represeeirieical lower
bounds (that is, the empirical estimatespyfy) of the true probabilities from Lemma 18)(y) by
considering only the @immediately adjacent hypercubes.
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The above indicates that when boundaries are introduced in high dimentiersetting com-
pletely changes, in the sense that new nearest neighbors need totied ioséde the boundaries.
Under such circumstances, points which are closer to the center hatteradance of becoming
nearest neighbors, with the mechanism described in previous sectiontheh implication of the
above observations, stemming from Figure 9, is that the number of dimensieasidt need to be
very large compared to the number of points for the setting to change. Astmdaries, they can
be viewed as a dual notion to spatial centrality discussed earlier. With Rgissocesses and cubes
this duality is rather straightforward, however for continuous distributioggneral there exist no
boundaries in a strict mathematical sense. Nevertheless, since datangais adinite number of
points, it can be said that “practical” boundaries exist in this case as well.

6. Hubness and Dimensionality Reduction

In this section we elaborate further on the interplay of skewnes ahd intrinsic dimensionality
by considering dimensionality-reduction (DR) techniques. The main questitivating the dis-
cussion in this section is whether dimensionality reduction can alleviate the icgue skewness
of k-occurrences altogether. We leave a more detailed and general intiestigfathe interaction
between hubness and dimensionality reduction as a point of future work.

We examined the following methods: principal component analysis—PCA {8pRi002), in-
dependent component analysis—ICA (Hyiwnen and Oja, 2000), stochastic neighbor embedding—
SNE (Hinton and Roweis, 2003), isomap (Tenenbaum et al., 2000),ifimsiah maps (Lafon and
Lee, 2006; Nadler et al., 2006). Figure 10 depicts the relationship bettheepercentage of the
original number of features maintained by the DR methods&ydfor several high-dimensional
real data sets (muskl, mfeat-factors, and spectrometer; see Tabkkil)dmniform random data
(with Euclidean distancé = 10, and the same number of neighbors used for isomap and diffusion
maps). For PCA, ICA, SNE, and the real data sets, looking from rightftoSg, stays relatively
constant until a small percentage of features is left, after which it slygldeops (Figure 10(a—c)).

It can be said that this is the point where the intrinsic dimensionality of data setscised, and fur-
ther reduction of dimensionality may incur loss of valuable information. Sucavehis in contrast
with the case of i.i.d. uniform random data (full black line in Figure 10(a~e)ereS, steadily
and steeply reduces with the decreasing number of randomly selecteée@imensionality re-
duction is not meaningful in this case), because intrinsic and embeddedsiimalities are equal.
Since PCA is equivalent to metric multidimensional scaling (MDS) when Euclidedances are
used (Tenenbaum et al., 2000), and SNE is a variant of MDS whichddkie preservation of dis-
tances between nearby points, we can roughly regard the notion of intlingensionality used in
this paper as the minimal number of features needed to account fosiedlise distancesvithin

a data set. Although ICA does not attempt to explicitly preserve pairwise detanombinations
of independent components produce skewnedg afhich behaves in a way that is similar to the
skewness observed with PCA and SNE.

On the other hand, isomap and diffusion maps replace the original distasitbedistances
derived from a neighborhood graph. It can be observed in Figd¢e, &) that such replacement
generally reduceSy,, but in most cases does not alleviate it completely. With the decreasing number
of features, howevegy, of real data sets in Figure 10(d, e) still behaves in a manner more similar
to Sy, of real data sets for PCA, ICA, and SNE (Figure 10(a—c)) than i.i.ddoandata (dash-dot
black line in Figure 10(d, €)).
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Figure 10: Skewness dfljp in relation to the percentage of the original number of features
maintained by dimensionality reduction, for real and i.i.d. uniform random dath
(a) principal component analysis—PCA, (b) independent comporrelyss—ICA,
(c) stochastic neighbor embedding—SNE, (d) isomap, and (e) diffusips.ma

The above observations signify that, if distances are not explicitly alteasdith isomap and
diffusion maps DR methods), that is, if one cares about preservingitliealdistances, dimension-
ality reduction may not have a significant effect on hubness when thearunhifeatures is above
the intrinsic dimensionality. This observation is useful in most practical deesesmise if dimension-
ality is reduced below intrinsic dimensionality, loss of information can occuméf still chooses to
apply aggressive dimensionality reduction and let the resulting numbeaitof és fall below intrin-
sic dimensionality, it can be expected of pairwise distances and nearglsboerelations between
points in the data set to be altered, and hubness to be reduced or evaNhesher these effects
should be actively avoided or sought really depends on the applicatimaid@and task at hand, that
is, whether and to what degree the original pairwise distances repredeable information, and
how useful are the new distances and neighborhoods after dimensioedlitgtion.

7. The Impact of Hubness on Machine Learning

The impact of hubness on machine-learning applications has not beendghdy investigated so far.
In this section we examine a wide range of commonly used machine-learningdadtrsuper-

vised (Section 7.1), semi-supervised (Section 7.2), and unsuperveaihig (Section 7.3), that
either directly or indirectly use distances in the process of building a modelm@inr objective is

to demonstrate that hubs (as well as their opposites, antihubs) can higudieast effect on these
methods. The presented results highlight the need to take hubs into aotawsay equivalent to
other factors, such as the existence of outliers, the role of which hasisdkstudied.
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7.1 Supervised Learning

To investigate possible implications of hubness on supervised learningstw&tidy the interaction
of k-occurrences with information provided by labels (Section 7.1.1). We there mwto examine
the effects of hubness on several well-known classification algorithmeadtida 7.1.2.

7.1.1 “GooD” AND “BAD” k-OCCURRENCES

When labels are presemtoccurrences can be distinguished based on whether labels of neighbo
match. We define the number ‘tfad” k-occurrencesof x, BNk(x), as the number of points from
data setD for which x is among the firsk NNs, and the labels of and the points in question
do not match ConverselyGNk(x), the number ofgood” k-occurrencesof x, is the number of
such points where labels do match. Naturally, for evegyD, Nk(X) = BNk(X) + GNk(X).

To account for labels, Table 1 includﬁxllo (14th column), the sum of all observed “bad”
k-occurrences of a data set normalizedylgyN1o(x) = 10n. This measure is intended to express the
total amount of “bad’k-occurrences within a data set. Also, to express the amount of information
that “regular’k-occurrences contain about “bakFoccurrences in a particular data s@@'ﬁfm (15th
column) denotes the Spearman correlation betvg&dn andNyg vectors. The motivation behind
this measure is to express the degree to wBiklh andN follow a similar distribution.

“Bad” hubs, that is, points with higBNy, are of particular interest to supervised learning be-
cause they carry more information about the location of the decision boeadhan other points,
and affect classification algorithms in different ways (as will be desdriheSection 7.1.2). To
understand the origins of “bad” hubs in real data, we rely on the notigheafluster assumption
from semi-supervised learning (Chapelle et al., 2006), which roughiysstiaat most pairs of points
in a high density region (cluster) should be of the same class. To measutegte= to which the
cluster assumption is violated in a particular data set, we simply defindubter assumption vi-
olation (CAV) coefficient as follows. Let be the number of pairs of points which are in different
classes but in the same cluster, &rithe number of pairs of points which are in the same class and

cluster. Then, we define
a

AV ="
c a+b’

which gives a number in thi®, 1] range, higher if there is more violation. To reduce the sensitivity
of CAV to the number of clusters (too low and it will be overly pessimistic, too tdagh it will
be overly optimistic), we choose the number of clusters to be 3 times the numblaiseés of a
particular data set. Clustering is performed vKthmeans.

For all examined real data sets, we computed the Spearman correlatioeb#tedotal amount
of “bad” k-occurrencesBN;o, and CAV (16th column of Table 1) and found it strong (0.85, see Ta-
ble 2). Another significant correlation (0.39) is observed bet\@é@o and intrinsic dimensionality.

In contrastBNyg and CAV are not correlated with intrinsic dimensionality nor with the skewnkss o
N1o. The latter fact indicates that high dimensionality and skewnelsg afe not sufficient to induce
“bad” hubs. Instead, based on the former fact, we can argue thatdahetwo, mostly independent,
forces at work: violation of the cluster assumption on one hand, and Higfsiic dimensionality on

the other. “Bad” hubs originate from putting the two together; that is, theexurences of violating
the cluster assumption can be more severe in high dimensions than in low dinsgmsibim terms

of the total amount of “badk-occurrences, but in terms of their distribution, since strong regular
hubs are now more prone to “pick up” b@ccurrences than non-hub points. This is supported by
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the positive correlation betweél@',l\?10 and intrinsic dimensionality, meaning that in high dimensions
BNy tends to follow a more similar distribution td than in low dimensions.

7.1.2 INFLUENCE ONCLASSIFICATION ALGORITHMS

We now examine how skewnessgf and the existence of (“bad”) hubs affects well-known clas-
sification techniques, focusing on thenearest neighbor classifiek-NN), support vector ma-
chines (SVM), and AdaBoost. We demonstrate our findings on a seledtitaiasets from Table 1
which have relatively high (intrinsic) dimensionality, and a non-negligible arhof “badness”
(BNk) and cluster assumption violation (CAV). Generally, the examined classificatgorithms
(including semi-supervised learning from Section 7.2) exhibit similar behavicmther data sets
from Table 1 with the aforementioned properties, and also with variougeiffealues ok (in the
general range 1-50, as we focused on valudswafiich are significantly smaller than the number
of points in a data set).

k-nearest neighbor classifielThe k-nearest neighbor classifier is negatively affected by the
presence of “bad” hubs, because they provide erroneous classiatfon to many other points. To
validate this assumption, we devised a simple weighting scheme. For eacl psstompute its
standardized “bad” hubness score:

) = BN(X) — Han,

hB(X7 k
OBN,

wherepgy, andogy, are the mean and standard deviatiorBdfi, respectively. During majority
voting in thek-NN classification phase, when pomparticipates in th&-NN list of the point being
classified, the vote of is weighted by

Wi(X) = exp(—hg(x,K)),

thus lowering the influence of “bad” hubs on the classification decisionur&igjl compares the
resulting accuracy df-NN classifier with and without this weighting scheme for six data sets from
Table 1. Leave-one-out cross-validation is performed, with Euclidéstarge being used for de-
termining nearest neighbors. Thevalue for Nk is naturally set to thé value used by th&NN
classifier, andhg(x, k) is recomputed for the training set of each fold. The reduced accufdbg o
unweighted scheme signifies the negative influence of “bad” hubs.

Although “bad” hubs tend to carry more information about the location ofsckasindaries
than other points, the “model” created by tkeN classifier places the emphasis on describing
non-borderline regions of the space occupied by each class. Foetsen, it can be said that
“bad” hubs are truly bad fok-NN classification, creating the need to penalize their influence on
the classification decision. On the other hand, for classifiers that explicittiehtbe borders be-
tween classes, such as support vector machines, “bad” hubs ecasasppoints which contribute
information to the model in a positive way, as will be discussed next.

Support vector machine®Ve consider SVMs with the RBF (Gaussian) kernel of the form:

K(x,y) = exp(—yl[x —y|?),

wherey is a data-dependent constalitx,y) is a smooth monotone function of Euclidean distance
between points. Therefor&lk values in the kernel space are exactly the same as in the original
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Figure 11: Accuracy ok-NN classifier with and without the weighting scheme.

spaceé?? To examine the influence of “bad” hubs on SVMs, Figure 12 illustratesolross-
validation accuracy results of SVM trained using sequential minimal optimizaBdatt( 1999;
Keerthi et al., 2001), when points are progressively removed frortraim@ng sets: (i) by decreas-
ing BNk (k = 5), and (ii) at random. Accuracy drops with removal B), indicating that bad
hubs are important for support vector machines. The difference in eddracy between ran-
dom removal and removal B3Ny becomes consistently significant at some stage of progressive
removal, as denoted by the dashed vertical lines in the plots, according paitled t-test at 0.05
significance levef?

The reason behind the above observation is that for high-dimensidaapdénts with higrBNg
can comprise good support vectors. Table 3 exemplifies this point by lisémgottmalized average
ranks of support vectors in the 10-fold cross-validation models wittrdsga decreasinBNg. The
ranks are in the rand@, 1], with the value 0.5 expected from a random set of points. Lower values
of the ranks indicate that the support vectors, on average, tend tchigivBNy. The table also
lists the values of thg parameter of the RBF kernel, as determined by independent experiments
involving 9-fold cross-validation.

AdaBoost.Boosting algorithms take into account the “importance” of points in the trainihg se
for classification by weak learners, usually by assigning and updatiiggntseof individual points—
the higher the weight, the more attention is to be paid to the point by subsequaibdtmweak
learners. We consider the AdaBoost.MH algorithm (Schapire and Sit@@9) in conjunction with

22. Centering the kernel matrix changes iyeof points in the kernel space, but we observed that the overall distnibutio
(that is, its skewness) does not become radically different. Thexefoe following arguments still hold for centered
kernels, providing\ is computed in the kernel space.

23. Since random removal was performed in 20 runs, fold-wiseracias for statistical testing were obtained in this
case by averaging over the runs.
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Figure 12: Accuracy of SVM with RBF kernel and points being removethfthe training sets by
decreasind®Ns, and at random (averaged over 20 runs).

Data set y SV rank Data set y SV rank
mfeat-factors  0.005 0.218| segment 0.3 0.272
mfeat-fourier 0.02 0.381 | spectrometer 0.005 0.383
optdigits 0.02 0.189 | vehicle 0.07 0.464

Table 3: Normalized average support vector ranks with regards teasnogBNs.

CART trees (Breiman et al., 1984) with the maximal depth of tRfeale define for each pointits
standardized hubnessore:
h(X, k) Nk(X) — g ,

= (24)

wherepy, , On, are the mean and standard deviatiomNgfrespectively. We set the initial weight of
each poink in the training set to
1

T 14 |h(xK)|’
normalized by the sum over all points, for an empirically determined valde dihe motivation

behind the weighting scheme is to assign less importance to both hubs and thaleosher points
(this is why we take the absolute valuetgk, k)).

Figure 13 illustrates on six classification problems from Table 1 how the weggétimeme helps
AdaBoost achieve better generalization in fewer iterations. The data setssplit into training,

Wi (X)

24. More precisely, we use the binary “Real AdaBoost” algorithm anatigevs-all scheme to handle multi-class prob-
lems, which is equivalent to the original AdaBoost.MH (Friedman et aD02.
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validation, and test sets with size ratio 2:1:1, paramkteas chosen based on classification ac-
curacy on the validation sets, and accuracies on the test sets are deptitige it is known that
AdaBoost is sensitive to outliers @sch et al., 2001), improved accuracy suggests that hubs should
be regarded in an analogous manner, that is, both hubs and antihubtiasécally more difficult
to classify correctly, and the attention of the weak learners should initiallypteséd on “regu-
lar” points. The discussion from Section 4.4, about hubs correspgmndiprobabilistic outliers in
high-dimensional data, offers an explanation for the observed gadorpance of the weighting
scheme, as both hubs and antihubs can be regarded as (probabiligitc¥ ou

To provide further support, Figure 14 depicts binned accuraciesredigited AdaBoost trained
in one fifth of the iterations shown in Figure 13, for points sorted by deargdy. It illustrates
how in earlier phases of ensemble training the generalization power withamadsr antihubs is
worse than with regular points. Moreover, for the considered data sstagtually the hubs that
appear to cause more problems for AdaBoost than antihubs (that iscéidiased outliers).

7.2 Semi-Supervised Learning

Semi-supervised learning algorithms make use of data distribution informaterded by unla-
beled examples during the process of building a classifier model. An impéataity of approaches
are graph-based methods, which represent data as nodes of atlyeagdiges of which are weighted
by pairwise distances of incident nodes (Chapelle et al., 2006).

We consider the well-known algorithm by Zhu et al. (2003), whose styateglves computing
a real-valued functiori on graph nodes, and assign labels to nodes based on its values. Fdinction
which exhibits harmonic properties, is obtained by optimizing a quadratic yrdengtion that
involves graph edge weights, with the probability distribution on the spacenctibnsf formed
using Gaussian fields. For data poirty € RY we consider edge weights assigned by the radial
basis function (RBF) of the following form:

W(x,y) = exp(_ HX—y|!2> 7

o2

whereo is a data-dependent constant. Therefore, large edge weights myeedssetween nodes
that are close to one another with respect to Euclidean distance.

Taking into account the properties of hubs and antihubs discussed/inyseections, for high-
dimensional data sets it can be expected of hubs to be closer to many aitftsrtpan “regular”
points are, and thus carry larger edge weights and be more influentialpnabess of determining
the optimal functionf. Conversely, antihubs are positioned farther away from other points, a
are expected to bear less influence on the computatidn ©herefore, following an approach that
resembles active learning, selecting the initial labeled point set from loubd be more beneficial
in terms of classification accuracy than arbitrarily selecting the initial points tallmded. On the
other extreme, picking the initial labeled point set from the ranks of antihobisl e expected to
have a detrimental effect on accuracy.

To validate the above hypothesis, we evaluated the accuracy of the hafonartion algorithm
by Zhu et al. (2003) on multiple high-dimensional data sets from Table llafmled set sizes
ranging from 1% to 10% of the original data set size, with the test set d¢irgs all remaining
unlabeled points. Because the setting is semi-supervised, we compiiiesitares of points based
on complete data sets, instead of only training sets which was the case in SettibnBased on
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Figure 15: Accuracy of the semi-supervised algorithm by Zhu et al.3p@0h respect to the initial
labeled set size as a percentage of the original data set size. Labelexigre selected
in the order of decreasings (hubs first), increasindyls (antihubs first), and in random
order. Sigma values of the RBF are: @) 2.9, (b)o=2, (c)o =21, (d)o=0.9,
(e)o=1.8, and (fljo=0.7.

theNg scores k= 5), Figure 15 plots classification accuracies for labeled points selecteslandar
of decreasing\s (we choose to take hub labels first), in the order of increasin(antihub labels
are taken first), and in random order (where we report accurageaged over 10 runsy. It can be
seen that when the number of labeled points is low in comparison to the sized#tthsets, taking
hub labels first generally produces better classification accuracy.eCnhibr hand, when assigning
initial labels to antihubs, accuracy becomes significantly worse, with a mudr latieled set size
required for the accuracy to reach that of randomly selected labeletspoin

7.3 Unsupervised Learning

This section will discuss the interaction of the hubness phenomenon witipemssed learning,
specifically the tasks of clustering (Section 7.3.1) and outlier detection (8§et8®).

7.3.1 Q.USTERING

The main objectives of (distance-based) clustering algorithms are to minimiaecioster distance
and maximize inter-cluster distance. The skewnessaufcurrences in high-dimensional data influ-
ences both objectives.

25. We determined the values of the RBF function in a separate experiment involving 10 runamafam selection of
points for the labeled set, the size of which is 10% of the original data set.
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Intra-cluster distance may be increased due to points withk@ecurrences. As discussed
in Section 4.4, such points are far from all the rest, acting as distanee-loasliers. Distance-
based outliers and their influence on clustering are well-studied subjecte(hl., 2005): outliers
do not cluster well because they have high intra-cluster distance, thpysitheften discovered
and eliminated beforehand. The existence of outliers is attributed to vagaserns (for example,
erroneous measurements). Nevertheless, the skewnBgsofgests that in high-dimensional data
outliers are also expected due to inherent properties of vector spaotior57.3.2 will provide
further discussion on this point.

Inter-cluster distance, on the other hand, may be reduced due to pointagbitkoccurrences,
that is, hubs. Like outliers, hubs do not cluster well, but for a differeason: they have low
inter-cluster distance, because they are close to many points, thus alsettoffmmm other clusters.

In contrast to outliers, the influence of hubs on clustering has not atraigfeificant attention.

To examine the influence of both outliers and hubs, we used the populavetidaoeffi-
cients (SC) (Tan et al., 2005). For ttle point, leta; be the average distance to all points in its cluster
(& corresponds to intra-cluster distance), &nthe minimum average distance to points from other
clusters [ corresponds to inter-cluster distance). The SC ofitheoint is (b — &)/ max(a;, b;),
ranging between-1 and 1 (higher values are preferred). The SC of a set of points ignettay
averaging the silhouette coefficients of the individual points.

We examined several clustering algorithms, and report results for tbeaiagorithm of Meia
and Shi (2001) and Euclidean distance, with similar results obtained f@icdils-means, as well
as the spectral clustering algorithm by Ng et al. (2002) in conjunction K4theans and the algo-
rithm by Meila and Shi (2001). For a given data set, we set the number of clusteosthe number
of classes (specified in Table 1). We select as hubs those poimits h(x,k) > 2, that is,Nk(x)
more than two standard deviations higher than the mean (noth(th&d, defined by Equation 24,
ignores labels). Lety be the number of hubs selected. Next, we select as outliens,theints
with the lowesk-occurrences. Finally, we randomly selegtpoints from the remaining points (we
report averages for 100 different selections). To compare hubartihubs against random points,
we measure theelative SCof hubs (antihubs): the mean SC of hubs (antihubs) divided by the mean
SC of random points. For several data sets from Table 1, Figure létslegth bars the relative
silhouette coefficient®® As expected, outliers have relative SC lower than one, meaning that they
cluster worse than random points. Notably, the same holds for hub%’, too.

To gain further insight, Figure 16 plots with lines (referring to the right valiéxes) the relative
mean values of; andb; for hubs and outliers (dividing with those of randomly selected points).
Outliers have high relative; values, indicating higher intra-cluster distance. Hubs, in contrast,
have low relativeb; values, indicating reduced inter-cluster distance. In conclusion, whetedng
high-dimensional data, hubs should receive analogous attention assutlier

7.3.2 QUTLIER DETECTION

This section will briefly discuss possible implications of high dimensionality onmtigtdbased out-
lier detection, in light of the findings concerning the hubness phenomemaented in previous
sections. Section 4.4 already discussed the correspondence of amtittublistance-based outliers

26. Data sets were selected due to their high (intrinsic) dimensionality—sintif@reations can be made with other
high-dimensional data sets from Table 1

27. The statistical significance of differences between the SC of huhsaadomly selected points has been verified with
the paired t-test at 0.05 significance level.
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Figure 16: Relative silhouette coefficients for hubs (gray filled bard)oarliers (empty bars). Rel-
ative values fom andb coefficients are also plotted (referring to the right vertical axes).

in high dimensions, and demonstrated on real data the negative correlatiezelnN, and a com-
monly used outlier score—distance to tkia nearest neighbor. On the other hand, a prevailing
view of the effect of high dimensionality on distance-based outlier detectithraisdue to distance
concentration, every point seems to be an equally good outlier, thus higderilier-detection al-
gorithms (Aggarwal and Yu, 2001). Based on the observations rieggndbness and the behavior
of distances discussed earlier, we believe that the true problem actualtytiesopposite extreme:
high dimensionality induces antihubs that can represent “artificial” outlighngs is because, from
the point of view of common distance-based outlier scoring schemes, astihap appear to be
stronger outliers in high dimensions than in low dimensions, only due to thesfféincreasing
dimensionality of data.

To illustrate the above discussion, Figure 17(a) plots for i.i.d. uniformaandata the highest
and lowest outlier score (distance to tkie NN, k = 5) with respect to increasing (n = 10000
points, averages over 10 runs are reported). In accordance witisyhgptotic behavior of all pair-
wise distances discussed in previous sections, both scores increade Matwever, as Figure 17(b)
shows, thaifferencebetween the two scores also increases. This implies that a point could-be con
sidered a distance-based outlier only because of high dimensionalityositiiegs are not expected
for any other reason in i.i.d. uniform data (we already demonstrated tblatespoint would most
likely be an antihub). As a consequence, outlier-detection methods basedasuring distances
between points may need to be adjusted to account for the (intrinsic) dimelitgiohdata, in order
to prevent dimensionality-induced false positives.

8. Conclusion

In this paper we explored an aspect of the curse of dimensionality that isestad through the
phenomenon of hubness—the tendency of high-dimensional data set#amnduwubs, in the sense
of popular nearest neighbors of other points. To the best of our ledige, hubs and the effects they
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Figure 17: (a) Highest and lowest distance to the 5th nearest neightiad.inniform random data,
with respect to increasing; (b) The difference between the two distances.

have on machine-learning techniques have not been thoroughly studiedts. Through theoret-
ical and empirical analysis involving synthetic and real data sets we demtmtsthe emergence
of the phenomenon and explained its origins, showing that it is an inherepény of data dis-
tributions in high-dimensional vector space that depends on the intringiier rdnan embedding
dimensionality of data. We also discussed the interaction of hubness with dimality reduction.
Moreover, we explored the impact of hubness on a wide range of malg@ngng tasks that di-
rectly or indirectly make use of distances between points, belonging tovisgersemi-supervised,
and unsupervised learning families, demonstrating the need to take hiinesxount in an equiv-
alent degree to other factors, like the existence of outliers.

Besides application areas that involve audio and image data (AucoutuddPainet, 2007;
Doddington et al., 1998; Berenzweig, 2007; Hicklin et al., 2005), ideinfjyrubness within data
and methods from other fields can be considered an important aspetiraf fvork, as well as de-
signing application-specific methods to mitigate or take advantage of the pheoonWe already
established the existence of hubness and its dependence on data dialépsioncollaborative
filtering data with commonly used variants of cosine distance (Nanopoulbs20@9), time-series
data sets in the context &NN classification involving dynamic time warping (DTW) distance
(Radovano et al., 2010b), text data within several variations of the classical veptare model
for information retrieval (Radovanaviet al., 2010a), and audio data for music information retrieval
using spectral similarity measures (Karydis et al., 2010). In the immediatefitiplan to perform
a more detailed investigation of hubness in the fields of outlier detection and imagey. An-
other application area that could directly benefit from an investigation irtindas are reveréeNN
gueries (which retrieve data points that have the query mpag one of theik nearest neighbors,
Tao et al., 2007).

One concern we elected not to include into the scope of this paper is therefficof com-
puting Nx. It would be interesting to explore the interaction between approxit&idl graphs
(Chen et al., 2009) and hubness, in both directions: to what degreppdoxamatek-NN graphs
preserve hubness information, and can hubness information be usauhioce the computation of
approximatek-NN graphs for high-dimensional data (in terms of both speed and aggura

Possible directions for future work within different aspects of machinaieg include a more
formal and theoretical study of the interplay between hubness and satistance-based machine-
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learning models, possibly leading to approaches that account for themle@on at a deeper level.
Supervised learning methods may deserve special attention, as it wabsdseea in another study
(Caruanaetal., 2008) that tkeNN classifier and boosted decision trees can experience problems in
high dimensions. Further directions of research may involve determininthetine phenomenon

is applicable to probabilistic models, (unboosted) decision trees, and otheigaes not explicitly
based on distances between points; and also to algorithms that operate wittrial geetric spaces.
Since we determined that fé¢-means clustering of high-dimensional data hubs tend to be close
to cluster centers, it would be interesting to explore whether this can beagagrove iterative
clustering algorithms, lik&K-means or self-organizing maps (Kohonen, 2001). Nearest-neighbor
clustering (Bubeck and von Luxburg, 2009) of high-dimensional dataatsa directly benefit from
hubness information. Topics that could also be worth further study aretdrplay of hubness with
learned metrics (Weinberger and Saul, 2009) and dimensionality reduict@ngding supervised
(Vlassis et al., 2002; Geng et al., 2005), semi-supervised (Zhang €08al7), and unsupervised
approaches (van der Maaten et al., 2009; Kumar, 2009). Finally, a&teemined high correlation
between intrinsic dimensionality and the skewnes§gfit would be interesting to see whether
some measure of skewness of the distributiorNpfcan be used for estimation of the intrinsic
dimensionality of a data set.
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