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Abstract

In multivariate regression models we have the opportumitipbk for hidden structure unrelated
to the observed predictors. However, when one fits a modehiimg such latent variables it is
important to be able to tell if the structure is real, or justaatifact of correlation in the regression
errors. We develop a new statistical test based on randaticos for verifying the existence of
latent variables. The rotations are carefully construtbamtate orthogonally to the column space
of the regression model. We find that only non-Gaussian fatetables are detectable, a finding
that parallels a well known phenomenon in independent comips analysis. We base our test on
a measure of non-Gaussianity in the histogram of the prad@jgenvector components instead of
on the eigenvalue. The method finds and verifies some latehbidimies in the microarray data
from the AGEMAP consortium.

Keywords: independent components analysis, Kronecker covariaatmtlvariables, projection
pursuit, transposable data

1. Introduction

The problem we consider here is one of verifying statistically that an app#atent variable is
real. The context is a microarray study, although the ideas are applicatdther high throughput
biological settings, and more generally for problems where a large nurhibautaally correlated
variables has been observed.

To fix ideas, suppose we have a matrixx R™N of gene expression data. EachMfgenes
has been measured omicroarrays. We can often assume thatritegrays come from statistically
independent trials, but tHe genes on any single array have a rich and unknown correlation struc-
ture. There is also anx p matrix X of predictor variables to relate to the gengs<(n). We are
interested in which of the predictors significantly affect the response.

The motivating context is the AGEMAP project of Zahn et al. (2007) forchim = 40, N =
8932, anth = 3, a project whose primary goal is to find which genes are statisticallylatedewith
age. The covariate matrix € R"™3 has columns for intercept, age, and sex. In matrix form, we
modelY = XB+ E whereB is a p-by-N matrix of regression coefficients aids ann-by-N matrix
of Gaussian or approximately Gaussian errors.

The residuals from the linear model showed a sharp dichotomy, splitting AGEMAP sub-
jects into two groups. The split could not be explained by the measuredhsriand it strongly
suggests the presence of a binary latent variable. Binary and othdrvat@bles can arise when
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the microarray data are generated at different times, by differentiteahs, or at different sites.
Sometimes a suspected latent variable can be confirmed by looking more ebgwydata or lab
notes. At that point we might identify the cause and use it as an ordingrgsson variable. In
other cases we may not be able to pinpoint the cause, but we still want sthtstidirmation that
it is real. When we are confident that the variable is real then it makeg sense a model that
includes one or more latent variables.

A natural way to test for a latent variable is to compute a singular value dexsiom of the
residual matrixE = Y — XB and decide that a latent variable is present when the largest singular
value ofE is sufficiently large. Equivalently, such a testis based on the eigenv@itiescovariance
matrix of the rows ofE. As we show below, a test based on those eigenvalues cannot work whe
the rows ofE are correlated Gaussian random vectors. Adding a Gaussian lat@itl@aimply
changes the covariance structure and hence is not detectable. Thersigisimilar to that faced in
independent components analysis (Hyvarinen et al., 2001) which beategenerate for Gaussian
components.

While the eigenvalues offer no possibility to confirm the presence of a leteiable in corre-
lated Gaussian noise, the eigenvectors of the covariance matrix do. @uatedased on eigen-
vectors, rejecting the null hypothesis when the components of an eigensfter significantly
from what we would get with Gaussian errors. Such measures havedeeiged for exploratory
projection pursuit by Friedman (1987), although it is important to note thatifran’s measures by
themselves do not measure of statistical significance. We cannot applastdasts of Gaussianity
such as the Anderson-Darling test, because such tests require aantiidesand the components
of the eigenvector are not IID. Instead we show how to use a test basethdom rotations of the
data. When the noise is independent across observations and comes ifnaltivariate Gaussian
distribution, then under the null hypothesis of no latent variable, randtetions don’t change the
distribution of our test statistic. Importantly, our test is still valid when thereadbérary correla-
tions between the columns Bf

Rotation tests have been used before, by Langsrud (2005). Our nwdiibation is to extend
rotation tests to the context of regression for the explicit purpose oftilegdatent variables. We
show how to apply rotations orthogonally to a given linear model and we cambtation tests
with measures of non-Gaussianity of eigenvectors.

Our principal focus is on testing for the presence versus the abséone atent variable. The
regression model is usually used when we expect no latent variablesprésence of even one
latent variable would make it reasonable to switch to a factor model. We alsideorsequential
tests for the correct number of latent variables when there is at leasf tmem.

The outline of the paper is as follows: Section 2 introduces the AGEMAP daanzotivating
example and introduces the regression model mixing measured and latdictgyee Section 3
develops rotation tests for the existence of latent structure in the residtrat fram a regression.
The tests surveyed in Langsrud (2005) need to be modified in order te mthogonally to the
regression model. We also show that Gaussian latent vectors cannetigloted, and then present
some test statistics for non-Gaussian latent vectors. Section 4 presargsaal simulations on
examples where we know the structure. The test is able to identify large Vaigaitles and we find
that it gives reliablep-values when no latent variables are present. Section 5 discusses fitting a
validating latent variables for the AGEMAP data. Section 6 presents ogiugions.
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2. Background

Here we describe the AGEMAP data and introduce regression models ¢thatérboth measured
and latent variables.

2.1 The AGEMAP Data

The motivating application arises from the AGEMAP (Zahn et al., 2007) stfidygimg in mice.

AGEMAP is a large microarray study conducted at the National Institute angAgnd analyzed
in collaboration with the Kim lab in Stanford’s department of developmental byoldge primary

focus of the AGEMAP analysis was to find which genes have expressiets lthat change with
age.

Mice of ages 1, 6, 16, and 24 months were included. There were five madean@ach age
and five female mice at each age. For each of these 40 mice, 16 microamsyprepared, one
for each of 16 tissues. The tissues considered were: adrenendsgltaone marrow, cerebellum,
cerebrum, eye, gonad (ovaries/testis), heart, hippocampus, kidmeylling, muscle, spleen, spinal
cord, striatum, and thymus.

From each of the 4@ 16 = 640 microarrays, values for 8932 genes were obtained. The mi-
croarrays had more than 8932 probes, but data from multiple probessponding to any single
gene have been averaged.

We arrange the data into tissue specific matri¢és for k = 1,...,16. EachY® has 8932
columns. The matrix¥ K hasny rows, one for each sample of tissue typeThe values ofy are
unequal due to missing data. We have88x < 40 and the average sample size is62%. The

enterigk) is the logarithm of the expression value for mous@d geng in tissuek.

2.2 Regression with Measured and Latent Variables

For a single tissue type we can drop the supersg&rigtahn et al. (2007) used multiple regression
analysis to investigate the effects of aging on gene expression. Tlessegr model for gengis

Yij = Boj +ByjA +P2jS+&j, 1<i<n 1)

whereY;; is log expression4 is the age in months of mouseand§ is 1 if mousei is female
and is 0 otherwise. The random error term is denoted;pyWe write allN regression models
simultaneously as

Y =XB+E

whereB is a p by N matrix of regression coefficients afidis ann by N matrix of random noise.
Then by p design matrixX has a column for each covariate.

Now suppose that there is a latent variable taking the vd|uer the array of thath mouse.
Then adding the latent variable to the regression (1) yields

Yij = Boj +B1jA + B2 S +yUi+&j, 1<i<n,
where bothy; andU; are unknown. In matrix notation we have

Y =XB+Ul+E )
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whereU € R™! andl" € RN, If there are/ latent variables then the model remains as shown
in (2), except that now € R™* andlr € RN,

Each individual regression includes more parameters than obserydtavisgn latent values
U; and a coefficieny;. But in aggregate only(N + n) parameters are added to the regression for
Nn observations, so the model is not saturated for siall

2.3 Forcing ldentifiability

The latent variable model in (2) is not identifiable. To see why, note that ifveme to replacé)

by U + X8 andB by B— @I, for some8 € RP*N then we would get the same residuals. A similar
indeterminacy arises from replacitg by UC and ™ by C~II" for an invertibleC € RP*P. We

will sometimes assume that the latent variallesatisfyX™U =0, UTU =, andl'"I =D =
diag(ds,...,d;) whered; > dp > --- > dy; > 0. This makes the model identifiable apart from the
signs of the columns @f. Those can be specified by making the first nonzero value in each column
positive. The existence of a latent term is not affected by identifiability a§o we won'’t have to
forceU to be identifiable to detect a latent variable. We will also assumexthathas full rankp

(this can be easily arranged by removing redundant predictors).

2.4 Noise Model and Estimation

In this section we describe the noise matixOne construction would be to assume that the entries
of E are all independent and normally distributed with mean 0 and a differernear for each
gene. We do not believe that the normality assumption causes serioudtgificctthe AGEMAP
data. But, assuming zero correlations among genes on the same arrayesai¢. We assume
instead that the rows d& are independent draws from thé(0, =) distribution wherezy € RN*N
is a gene-gene covariance matrix.

We will make frequent use of Kronecker notation. The random m&rxA (M, A® B) if its
elements have a joint normal distribution witlS;) = M;; and Co\Sj,Sq) = AxB; for matrices
M, A, andB of appropriate dimensionality.

Our model for the error is th& ~ A(0,1,® Zy). Then model (2) may be written as

Y ~ AUXB+UT, I, ®2y).

The identifiability restrictions of Section 2.3 are as before. It will often be Emp introduce an
nx N matrixZ with 1D A’(0,1) entries and note that

Y L xB+Ur 4251/ 3)

wherezy/? € RNN satisfiessy/ 2(5x/%)T = 3y andz,/? is a shorthand fozy/*)T. Similarly A-T
meang A~1)T for invertible A,

Because of our orthogonality constraikt' U = 0, the least squares estimateBaf unaffected
by the latent variable. That i8 = (XTX) XXTY. We find thatB is normally distributed with

A~

E(B) = B and the covariance betwef andpy is (XTX) Dik(Zn) ji- We summarize this via
B~ A(B,(XTX) t@3y).

We can estimate the latent tetdT from the residual matriE =Y — XB. The least squares
estimates correspond to Principal Components Analysis (PCA), and agottiea from truncating
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the singular value decomposition Bfto ¢ terms. This least squares procedure has been described
by Gabriel (1978), who also incorporates column based covariatésgania to the row based ones

in X. Another alternative is to use Independent Components Analysis (IC#&Ere is some prior
knowledge about the distribution of the possible latent factors, this kngeledn be used in the
estimation procedure, for example by choosing a particular test statistic to 8setion 3.

3. Rotation Tests for Structure in the Residual Matrix

We have two tasks when dealing with a latent term. The primary task is to deterrhetber any
latent structure exists in the residual matyix- XB. A secondary task is to estimate that latent
structure when we believe it exists.

The main complication is thaty, the noise covariance, is unknown. Whegq is known, we
can multiply both sides (3) from the right hjim/z) ~1 and obtain a model with the same regression
variables, the same number of factors, and errors that aré\[(D,1). Then ifn>> N classical
methods due first to Gollob (1968) and refined by Mandel (1971) basedsted hypothesis test-
ing, may be applied. If instead < N the resulting IIDA’(0,1) errors can be handled by recent
developments in random matrix theory due to Baik and Silverstein (2006)anidZ®907a). For ex-
ample, in this setting Rao and Edelman (2008) apply an approach basedAitatke information
criterion (AIC).

Most methods for identifying latent structure only look at the singular valti¢beoresidual
matrix E. Since the correlation in the residuals is nontrivial and unknown, our gddads us to
consider other functions d.

We will use the following elementary formula.\If ~ A’(0,¥ @ ®) then

BWC™ ~ A((0,(BWB™) ® (CPCT)), (4)

so long as the product matBWC' is well defined.

3.1 Rotations Under the Null Hypothesis

Under the null hypothesis of no latent variable, our error terfd is A((0,| ® Zy). For anyn x n

orthogonal matrix0, we find thatOE ~ A((0, [010T] @ Zx) = A((0,1 ® Zy) so thatOE 2 E. The
original residual matrixg, and the rotated residual matri®E have the same distribution. This
fact provides our starting point.

We refer to orthogonal matrices as rotations. A stricter usage of the tguines defOQ) = 1 but
following Langsrud (2005) we allow dgd) = —1 as well. Such reflections, as they are sometimes
called, also preserve the distribution®ko they are worth including. In a rotation test we compare
some aspect of the data to its value under repeated random rotations @taheSlich rotation
tests are analogous to the more familiar permutation tests. Rotation tests wenetrficticed
by Wedderburn (1975) and Heiberger (1978). A recent surv@gans in Langsrud (2005) who
focuses on multiple testing issues.

Here we give a self-contained derivation of rotation tests for multiple ssgre. The regression
context requires us to make some modifications to the method.

The data ar& = XB+E with E 2 UT + ZZE/2 wherez;; are [ID A((0,1). The matrixX has
rankp < nand hat matrisH = X(XTX)"1XT. The residual matrix i&€ = (I —H)Y = (I —H)XB+
(I—H)E = (I —H)E. We will apply many random rotations i This is mathematically equivalent
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to rotating bothX andY each time, and then taking the residuals from the rotated variables, but of
course it is faster to simply rotate the residuals. To prove equivalence:

Proposition 1 For integers > p>0and N> 1, let X e R™P, Y ¢ R™N B RP*N and Ec R™N
satisfy Y= XB+ E. Suppose that H- X(XTX) *XT has rank p. Lef) € R™" be an orthogonal
matrix. PutY = QY,X = OX,H = X(X"X) !XT andE = (I —H)Y. TherE = O(I —H)Y.

Proof The rotated hat matrix satisfieb= OX(XTOTOX)~*XTOT = OHO. The new residual
is E =Y —HY. NowHY = OHOTOY = OHY. Finally E = QY — OHY = O(l — H)Y. n

In the regression context, randomly rotating the residuals does notaljgmeeserve their dis-
tribution. First becausd —H)(l —H)T = (I —H), we find that under the null hypothesis & 0):

E~ A0, (I —H)®Zy).
But then, for the rotated residual we have
QE ~ A(0,[0(1 —H)OT] @ 2N),

by Equation (4). These distributions do not usually coincide.

We will fix this problem by restricting attention to a special subset of rotationicestr The
desired rotation®) satisfy OHO™ = H (equivalentlyO(l —H)OT = (I —H)) for then the rota-
tion does not change the distribution Bf The rotations we want will fixX but rotate the space
orthogonal toX. Specific construction details follow.

BecauseH has p eigenvalues equal to 1 and— p eigenvalues equal to 0 we may write it
asH = Q:Q] whereQ; € R™P satisfiesQ] Q; = Ip. Let Q; € R™("P) be a matrix such that
Q= (Q1 Q) is orthogonal. For our construction, we @t € R("-P*("=P) pe an orthogonal matrix
and then take

0 =QiQ] +Q0.Q;. (5)
The matrices produced by Equation (5) are orthogonal and s@idf$” = H. We summarize as
follows:

Proposition 2 Let Y ~ A((XB, I, ® Zn) where Xe R™P has rank p< n and Be RP*N, Lgtl? =
(1 —H)Y where H= X(XTX)"1XT and letE = OE whereQ satisfieq5). Then bottE andE have
the AL(O, (I — H) ® X distribution.

Proof LetE =Y —XB~ A((0,l,®2n). ThenE = (I —H)Y ( H)E ~ AL(0, (I —H)®Zn) as
above. Now suppose th@tsatisfies (5). The& = O(I —H)E ~ AL(0, [O(l —H)@T]®ZN). Next

O —H)O" = (Q1Q] + Q0.Q7) (I —H)(Q1Q] +Q20.Q3)
= (QiQ] +Q:0.Q]) Q) (UQ{ +Q0;QJ)

= Q0.0[Q]
—1—H,

and soE 2 E. m
To complete this section we show that Equation (5) generates all of thediestiagions.
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Proposition 3 Let Q= (Q Q2) € R™" be an orthogonal matrix, where;@ R™P for n > p > 0.
Let® € R™" be an orthogonal matrix and write B Q;QJ. If OHOT = H thenQ = Q;0.QJ +
Q20.QJ whereQ, € RP*P andQ, € R("P)*("=P) are orthogonal matrices.

Proof First, any orthogonal matri® can be written a§®) = QPQ" where
P11 P12>
P=
(le P22

is orthogonal, and partitioned with; € RP*P, Py, € R("P*("-P) and so on. We may take =
QT0OQ. NowOHOT = QPQ"Q1Q{ QP'Q' = FF Twhere

Po1 P >

P1 P i
F=QPQ'Q1= (1 Q) ( - 12) (Q#> Q1 = QiP11 + QoPos.

Assume thaDHOT = H. ThenQ{OHOTQ; = I, so that(Q] F)(Q{F)T =1,. ButQ{F = Pi1.
ThereforePllPlTl = lp, or in other words; is an orthogonal matrix. The columns Bf; are unit
vectors and so are thoself ThereforeP,; = 0. Similarly P1> = 0 andP»; is an orthogonal matrix.
TakingQ, = P11 andQ,. = P,, completes the proof. [ |

From Proposition 3 we see that the suitable rotations take the(tt)meﬁrQl@oQI + Qz@*QZ.
In Equation (5), we only us@, = |,. We don’t need to vary that part of the rotation because in our
application we work with

O(I —H) = 0Q:Q} = (Q10.Q] + Q0.Q7)QQI = Q0.Q].

The choice ofd, does not affect the value &= O(I —H)Y, and so we may simply tak@, = lp.

3.2 Testing for the Existence of Structure

Here we construct a test for latent structure in the residual matrix. Tiheypothesis iHg:U =0
and the alternative isl; : U £ 0. We will construct a rotation test by modifying the rotation tests
in Langsrud (2005). As in the discussion of the randomization tests in Lahmad Romano
(2005) we find a group of rotations. It is easy to show that= {Q:Q] + Q.0.QJ | 0. €
R(=P*(=P) OO, = I,_p} is a group under multiplication, because orthoganalp by r — p
matrices are a group. Southworth et al. (2009) give a cautionary ng@ndomizations without a
group structure.

Proposition 2 allows us to perform a test of the hypothesis as follows: 1&"N — R be any
statistic of the residual matrix. Specific examples are given in Section 3.4eki¢eate independent
n by nrandom rotation$)4, ..., Or_1 uniformly from Oy. Then, construct g-value as

1 R-1

ﬁ:§(1+ Zl{T(@ﬁ)zT(ﬁ)}). (6)

Since under the null hypothesﬁBI? andE have the same distrlbution and sin@g is a group, this
gives us a valigp-value. The leading 1 ip Counts the observdd and prevents us from claiming ~
below 1/Rif we have only seeR rotations (including the original one).
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3.3 Gaussian Alternative

Here we show that wheXxy is unknown, a Gaussian latent variable cannot be detected. This was re-
marked on by Snee (1982) and it is well known in the independent companalysis community;
see Hyvarinen et al. (2001).

To see how the problem manifests, consider the model in (3) with just one \ateable with
entriesU; ~ A((0,1) independently oZ. The regression mod&{B is assumed nonrandom. To
focus on essentials we do not initially impose the normalizatiob = I,.

Proposition 4 For positive integers N, n, anlet Z~ A((0,1,®In) independently of U- A((0,1,&
lp). Letl € RN, Then U + 2532 £ 257 /? whereSy = Sy +TTT.

T/2 <T/2

Proof We only need to show thail" + Z%,/" has the same distribution & ,'“~. The ma-
T/2

trix UT +Z%/“ has independent identically distributed rows fraf(0,Zy + ). Therefore

ur +ZZL/2 has representatioﬁf;/2 whereZ € RN*" has IID entries fron\((0,1). ThisZ has
the same distribution a& [ |

If we do normalizeU then nothing essential changes. We repldceéy UC for a random
normalizing matrixC € R**¢ that is independent o (that is,UC ~ A[(0,I,®I,) andUTU =
). Then we compensate by replaciigey C™1I and getUr +ZZL/2 4 Z5N WhereSy = Sy +
FT'C-TC~Ir is now random.

The implication of Proposition 4 is that if we don’t know anything ab@wt or I', then a
Gaussian latent variable is impossible to detect. There is no mathematicalrdifdvetween a
Gaussian latent vector and a changed correlation structure. Put eamatpesuch latent variables
are already well accounted for in the correlation structure.

Latent variables of practical interest typically exhibit non-Gaussian fik#lumping or out-
liers. Also, if a latent variable corresponds to a roughly-linear time trerah) thwill be nearly
uniformly distributed if the points are sampled at regular time intervals. Therdifiis restriction
still leaves many interesting testing problems.

3.4 Choice of the Test StatisticT

Since a Gaussian latent variable is covered by the correlation model amd detectable, any
effective test statistid must be tuned for non-Gaussian latent variables. A non-Gaussian latent
variable makes for an error tetd’ +ZZL/ ? that does not have a rotationally invariant distribution.

In principle any functioril (E) can be used. However, the choiceTowill often be dictated by
what we deem to be interesting structure. Here we describe four diffpossibilities forT. We
first apply a simplification procedure to redugeto a vectoru(E). Then, we apply a function to
reduceu to a scalar. The end result is a scalar-valued funcligh).

We would likeu(E) to be representative of latent structureenAn obvious choice is the first
left singular vector of, which corresponds to the first principal componenEofA second choice
is to apply ICA toE, treating the columns as mixturesmflimensional sources, and haw&) be
the first estimated source. In both cagés) is a unit vector.

We cannot simply use a test for normality of the components(Bf, such as the Anderson-
Darling test, because the components we get are not indepeidént) even undeHy.
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Instead, we propose two functions for reducing u(E) to a scalar. The first is the! norm of
the vector:

T = 3 Jul

As a point of reference, for independent- A/ (0, %) we would gefT, 1 = 1/2n/Tt So, the expected
L norm of a uniformly distributed-dimensional unit vector is approximately2n/m= 0.798,/n.
Larger values off; 1 correspond to distributions whose expected absolute value is large cainpar
to their root mean square. Uniform distributions|eri, 1] or {—1,1} behave this way. Conversely,
small values off; : arise from very heavy tailed distributions like the Cauchy which have outliers
The rotation baseg-value (6) is sensitive to large values §fi and should therefore catch
dichotomies and light tailed latent variables. To detect heavy tailed altersativecould use (6)
with 1/T,1. Because we are potentially interested in both kinds of non-Gaussiansaigrture we
take

2 R-1 R-1
f):Rmin<1+ le{Ti >T} 1+ 211{1} gT}), )
1= 1=
whereT = T(E) andT; = T(Q;E) andT(-) subsumes all the computation Tp.. The leading 2
in (7) compensates for using the more extreme of two tails.
The second test statistic comes from Exploratory Projection Pursuit (FaiedL987) Teppis a
distance measure on densities, represented as a Legendre-setlesrandncated to 4 terms:

4
1 2
Tepr(U) = 21(1 +5) (ER (R)
where,P; is the j-th Legendre polynomiaR is a random variable uniformly distributed over the
discrete se{2d(u;) — 1} ;, ® is the cumulative distribution function of th& (0, 1) distribution,
andE denotes expectation over the randomnedR.iffthe Legendre polynomials can be computed
using the recurrence relation

Po(X)
Pr(x and,
(J +1)Pj2(X) = (2] + 1)xP;(x) — jPj—1(X).

In computingTegppwe use

1
X7

~—
I

EPj(R) = i-ipj (2d(u) —1).

Teppis designed to be close to 0 when the histogranu tdoks Gaussian, and it gets bigger the
more “non-Gaussiand is. The full derivation ofTgppis given by Friedman (1987).

Because only large values ©fppare interesting we use (6) directly without making a two-tailed
modification.

We can combine PCA or ICA witfigpp(u) or T 1(u) and get four different test statistics. We
write Tepp(E) or Tp1(E) when the context dictating PCA or ICA faris clear. The choice of is
independent of the procedure for estimating the latent variable. In gartidts possible to detect
the existence of latent structurel?nusing a PCA-based test statistic and then fit the structure using
ICA. Indeed, in simulations it turns out to be better to use PCAufdrhis will be further explored
in Section 4.
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3.5 ldentifying the Rank of the Latent Term

When we are able to reject the null hypothesis we conclude that some latestuse exists, but
we do not know the rank dfi. To estimate the number of latent variables we consider a sequential
approach, based on subtracting estimated latent variables and lookitagefior structure in the
residuals.

First, we fit the modeY = XoBp and get the residual matr&. The subscripts denote a model
with O latent terms. Next, we test for latent structurEAd')m If we determine that any structure exists,
we fit a single latent variable;

At this stage, we treat; "as a known covariate. We create a new covariate mirix [Xo U]
by appendingi{ as a column onto the old covariate matrix. Now, we fit the a new mgdelX;B;
and get a new residual matrisg. We proceed in a sequential matter: test for structurﬁ;irmpon
identifying structure, fit a single latent variable, treat it as a covariatbgaha new residual matrix
Ei.1. We stop when there is no latent structuréEjn

In the context of PCA, fittingi> sequentially after adjusting for 0y is equivalent to fittingu;
anduy simultaneously. For other estimation methods, this equivalence may not helgrdt¢edure
we describe is still valid, but there may be some loss in power. If this is a oortbe practitioner
can adjust the testing procedure accordingly.

One has to be careful when testing for more than one latent term. In partioulsome settings
whenn < N, it is impossible to consistently estimate the latent variabaleg/hen we do not have a
good estimate afi; treating it as a known covariate will introduce a potentially serious errtvewW
this happens, only thp-value for the first term is reliable. This point is illustrated in the example
of Section 4.3, where the error in tipevalue distribution was small.

3.6 Caveats

When we reject the null hypothesis, then either there is strong enough datecture in the data,
or the noise is far from Gaussian. Therefore, rejecting the null hyptlienecessaryo deem
latent structure to be real, but not sufficient. Often there is ambiguity baetwat constitutes
non-Gaussianity and what can be explained by a latent variable. An aghidse modeled using a
latent variable that has support on a single observation. Bi-modal remideecre-cast as a clumping
latent effect.

3.7 Related Work

Rank determination methods have been the subject of much interest in @opescFor a recent
survey see Crossa and Cornelius (2002). Those methods tend toofotiis amount of variance
explained by the first principal component. In an eigen-analys\'/seb(@, they focus on the size
of the eigenvalues. There has been considerable difficulty with gettingodsése the right level,

as described for example by dos S Dias and Krzanowski (2003). difeepcoblem is that there is
no good way to count the degrees of freedom for such data setstedessyent progress in random
matrix theory including El Karoui (2007), Paul (2007b), and Nadl@0@. Owen and Perry (2009)
apply a cross-validation-based approach to rank determination for theated SVD and non-

negative matrix factorization. That work requires independent noistethe correlated noise we
consider here. Efron (2009) uses permutations to test whether someumagioare independent of
each other.
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4. Empirical Testing

In this section we examine the performance of rotation tests on construcietples where we
know the answer. Some readers may prefer to read the real data exdr8pletion 5 first. In our
constructed examples, the response satisfies

Y ~ N(XB4+UTl,Ih,®Zy),
with parameters described below.

4.1 Microarray Model

This example is designed to resemble microarray studies. Weptak®, n = 20 andN = 256. This
value ofN is small, to allow a larger number of simulated cases. The mAthas a first column of
1s. The second column has values. 1, n. We takeB to be ap x N matrix of 0s. HavingB =0 is
no loss of generality, because the analysis works on residuals aftessem orX and the residuals
are unaffected bia.

We construct latent variablés € R™3. The first latent variabley;, is the first column ofJ
and has independent elements distributed as Cauchy random varididesecond latent variable,
Uy, has elements which are eithed or 1 with equal probability. The third latent variable, has
elements that are independent and exponentially distributed with mean 1, uthsign “outlier”
effect,u, is a “clumping” effect, andi; is some other latent effect.

The latent coefficient matrixX;, has independent elements distributed\é®, 1). We do not
think that non-normal” would make the signal artificially easy to detect, but taking Gaudsian
removes any such worry. As describéd,l", andX do not satisfy the identifiability conditions of
Section 2.3. The existence of an unnormalized latent variable implies thatrelwed one exists,
and so the testing problem is unaffected.

For 2y we need a 256& 256 correlation matrix. The true correlation patterns for microarray
data are not known. The sample sizes to date are far too small to allow aurdi&keription of the
patterns. Owen (2005) looks at what gene-gene correlations are liealidata. We mimic two
features of microarray data. First, genes are often thought to beloredatovely small clusters.
Second, the mean of the squared estimated off-diagonal sample coreiatften seen to be a
small multiple of n. The value ¥nis very close to what we would expect in the event that all true
correlations were zero. To encode the first property, we take

1 i=j,
s )P i=1/32/=[(i-1)/32, & i#]
" p i—j=0mod32 & i#]j,
0 else.

In words, genébelongs to two clusters: one cluster of 8 genes corresponding to theigaitcant
digit of i — 1 in base 32, and one cluster of 32 genes corresponding to the mostesighdigit of
i —1in base 32. Geniehas 38 non-zero correlations with other genes. The valpe-o0 is chosen
so that signal is about 30% of the noise:

PREDIEPTEN
N(N—1)/n
Thus 3§? = (N —1)/(0.30n) sop = \/0.30(N — 1)/(38n) = 0.317.

=0.30.
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4.2 Rotation Tests

The true model has three latent variables. We are interested in whatiisappen testing for the
first, second, third, and fourth latent terms. We look at two differentogisofor the test statistic:
Tepp in conjunction with PCA, andgpp in conjunction with ICA. The results are summarized in
ROC curves in Figure 1.

The upper-right panel shows the results from testing the residual méteixaae latent term
has been removed. Here, we see that testingupigia results in about 75% of the replicates having
estimatedo-values less than.D, while testing withuica, results in about 55%. Generally, the PCA
test gave us higher power. We also found that FastICA can get stuclogalminimum. This is
what lead to its surprisingly poor performance in the upper left panel.|dtkat variables of the
randomly-rotated data are more non-Gaussian than the latent variable edtiroatethe original
data.

The lower-right panel shows the estimatedalues after three latent terms have been fit and
removed from the residual matrix. As expected, the estimptedlues are close to the specified
false-positive rates. Comparing the lower left panel to the others, weausearprisingly that the
smallest latent vector is hardest to detect while the largest is easiest tb detely, testing for
a fourth latent variable gives us a unifonpavalue, which is exactly what we want since there are
only three latent terms.

Aword is in order about how we removed the first latent variable when teftirthe presence of
the second. We tried removing vectors as estimated by PCA and also by Hefe Was not much
difference in performance, and PCA has the computational advantagth¢hastimated second
vector does not change when we remove the first. Therefore whergtistthek’th vector, whether
by ICA or PCA, we always used PCA to remove the ficst 1 of them.

4.3 Testing Under and Near the Null Hypothesis

In the previous simulation, the signal-to-noise ratio between the latent &ffats and the random
error is relatively high, and so thgvalues for non-existent latent terms are faithful. In this simula-
tion, we demonstrate that thgevalues for testing for multiple latent variables are slightly liberal if
the signal strength is too weak, but thgsealues are still within tolerable accuracy.

We generate an x N data matrixXy according to the model

Y = (NN Y2uyT 4+ 75072,
with n= 20 andN = 200. There is a single latent variahlevhich has elements equal tel or
+1 with equal probability. The coefficient vectgiis a uniformly distributed random unit vector
in RN, The noise covariancgy is a diagonal matrix witliZy )i independent from all other entries

and exponentially-distributed with meanZl]r;l/ %isits square root. The noise variable maZikas
IID A((0,1) elements. We chooseto be a fixed scalar, specified below.

The theory in Section 3.2 tells us that thesalue from a rotation test of a single latent term is
uniformly-distributed wher\ = 0. However, it tells us nothing aboptvalues for a second term.
Regardless of the value &f we would like them to be uniformly distributed, so that the test is
faithful to the specified false positive rate. The issue is whether errdreiastimated first latent
vector spoil the test for the second. Results in Onatski (2007) sutigests the sample size goes
to infinity, p-values from the second and higher terms will be faithful when we fit with RQur
sample size is only 20, so we do an empirical test.
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Figure 1: MULTI-FACTOR ROTATION TESTS WITH PCA AND ICA. We simulate data from a
model with three latent terms and then apply rotation tests for latent structbheste$t
statistic isTepp(u) applied to either the first principal componempica, or the first inde-
pendent componenica (via FastlICA) of the residual matrix. The plots show estimated
ROC curves after 0, 1, 2, or 3 principal components have been fiesmoMed. The axis
of each plot is the specified false-positive rate. Vlais is the proportion of replicates
with an estimategb-value below that level, using 500 total replicates of the data set. The
plots are discussed further in the text.

For all A in the set{0,0.5,1,5,10,50,100,500, 1000}, we perform the following simulation,
which we repeat 1000 times:

1) Generate dafd as described above.
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Figure 2: TESTING FOR A NONEXISTENT SECOND TERM We estimate a factor generated ac-
cording to(NA)¥/2uy" and then test for a second term. Depending on the factor strength
(which is related to our ability to estimate), tipevalues for validating the second term
may be slightly liberal. This seems to be the case\fer 50. ForA > 100, thep-values
appear to be faithful.

2) Fit a single latent variable, Uising the first term in the SVD of.

3) Construct the matrix of residuals Bs=Y —aa’y.

4) Test for the existence of more latent terms using a PCA-based rotatiositegTeppas our test
statistic and treating &s a known covariate. Record tipevalue estimated from 999 random
rotations.

We would like to assess the implications of treatingsa known covariate. Wheis big, this is a
reasonable assumption since the term is easy to estimate, butwvitiemall this is not the case.

We summarize the results in Figure 2. We can see that 060, the smalp-values are slightly
liberal. WhenA > 100, thep-values appear to be faithful. When the first latent variable is strong,
then we have a reliable test for the second.

616



ROTATION TEST FORLATENT STRUCTURE

o Female X Male
l l l l l l l l l
g g | i
2 X g o)
o | X g_ o
S 4 L
<
o > o
S B S 38 B
<5 S ©
g
. L — -
g - g
o
X 38 B
[aV]
s & X Q - -
I Q o
o o X o 4 -
T T T T T T T T T
5 10 15 20 -5 0 5 10 15
Age ¥

Figure 3: (EREBELLUM LATENT VARIABLE. The left plot shows the latent variable estimated for
the cerebellum in each of 39 mice plotted versus the ages of those mice. Weecan
apparent dichotomy that is unrelated to gender. The right plot showsogitssn of the
regression coefficients for the latent variable. The long tail of the higtogndicates that
a large number of genes (about 100) are related to the dichotomy.

5. Latent Variables for the AGEMAP Mice

Now that we have seen how rotation tests work in simulations, we apply them datheescribed
in the beginning of the paper. Recall that in the AGEMAP data set thereGatissue types and
32-40 mice per tissue with known age and sex. Here we will see patterncettiainly appear
unlikely to be artifacts. Then we verify them by the rotation test.

We fit 16 regression models of gene activation on age and sex with onevatable, one for
each tissue. The result is that for each tissue type kemil, ..., 16, we have an estimated latent
variables vectot ¥ € R,

The latent variables for tissue 2 (the cerebellum) have a striking patteeme Tshone vaIuEAJi(z)
for each ofn, = 39 mice for which a cerebellum array was available. Figure 3 shows that late
variable plotted versus age and with plot symbols encoding the sex of theerbissclear that the
mice are split into two different groups, one with a high value of the latemabirand one low.

Often when one sees two distinct groups in microarray data, they cormégp male versus
female samples, and certain genes that are sex related, such as omthiese’achromosome in
males or Xist genes that silence a second X chromosome for females.aimatt e the case here
because the estimated latent variable is orthogonal to both the sex andiabgkesdy construction,
meaning the sum of its coefficients over male samples must equal the neddtie sum over
females.

There are high and low values for the latent variable for the cerebellura.s&bond panel of
Figure 4 shows the histogram of these latent values. It is clearly bimodal offter 15 panels in
Figure 4 show the corresponding histograms for the other 15 tissues.
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Latent variable by tissue
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Figure 4: LATENT VARIABLES BY TISSUE. This figure shows histograms of the latent variables
found in microarray data from 16 mouse tissues. In each histogram thé Vatgable
values from up to 40 mice are given.

Some of the other histograms have interesting and interpretable structurBhedistograms
for spinal tissue, gonad and striatum all show outliers. The biggest laffertt in these tissues
is that the expression of one mouse was quite different from the other micthat difference is
reflected in a large number of genes. Itis not simply one unusual animae Tifferent mice were
the outliers in the three different tissues.

The histogram for the cerebrum shows an apparent dichotomy, similat tedsupronounced
than the one for the cerebellum. For both of these tissues, the latent vasiapléting the mice
into two groups. Both dichotomies are somewhat imbalanced with one grogplydwice as large
as the other. Such an effect would be explainable if the same latent fagteraffecting both of
these brain tissues. Figure 5 plots the estimated latent variable from theurenadrsus that for the
cerebellum. There is one point for each of the 39 mice in which both tissuesmeasured.
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Figure 5: LATENT VARIABLES OF MICE. This figure plots the latent variable from the cerebrum
versus that from the cerebellum for the 39 mice for which both arrays weailable.
There appear to be three kinds of mice in this population.

Figure 5 shows that the apparent dichotomy in the cerebrum is not the satme @ne in the
cerebellum. The pattern is not a simple double dichotomy either. Rather theearapo be a
trichotomy. It is visually striking that there are no mice in the upper right hamder of Figure 5.
The counts of the four corners of Figure 5 are set out in Table 1.

About one third of the mice have the rare cerebellum type, one third havartheerebrum type
and the remaining mice the common form for both tissues. Were the types ingepeve would
expect about one ninth of the mice to be rare for bothp ®alue based on Fisher’s exact test is
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Count Common cerebellum Rare cerebellum
Rare cerebrum 13 0
Common cerebrum 12 14

Table 1: Counts of mice in the corners of Figure 5.

0.00094. While we can’t be sure that the next mouse won't be the rarddypeth brain parts, the
failure to observe one here is statistically significant.

Although we don’t have laboratory notes to identify the meaning of thesgpgrgs, the fact
that the joint behavior of two dichotomies from different tissues forms surcimteresting pattern
lends additional support to the rotation results.

We applied rotation tests for all 16 tissues in the AGEMAP data set using tveoetitf measures
of non-normality.

We demonstrate the calculation pfvalues for the spleen and cerebellum data in Figure 6. The
rotation distributions for the other 15 tissues have approximately the same, sawve do not
display them here. Instead, we summarize the results in Table 2. The estintatedvéaiables
for the cerebellum, cerebrum, and eye tissues exhibited dichotomies. Bkis gp in significantly
high values off| 1 andTgpp. The gonad, spinal cord, and striatum latent variables have clear sutlier
which manifest as a significantly low values §fi, and a significantly high values dtpp. The
spleen latent variable potentially has an outlier at age 5 months, and is fouel rt@rginally
significant according tdgpp, and not significant according 1. The discrepancy is because of
the two- versus one-tailegtvalue.

The only case wher@ 1 and Tgpp give drastically different results is with the latent variable
estimated from the hippocampus data. Usipg the variable is nowhere near significamt="
0.586), but usindlgpp, the variable is unquestionably significapt< 0.001). Teppfinds the skewed
histogram interesting, whil@ : does not. A possible explanation for why the latent variable is
insignificant according td;: is this: T;: is simultaneously measuring presence of outliers and
presence of clumping. Outliers correspond to low valueg gfand clumping corresponds to high
values ofT, 1. In the hippocampus data, we see both outlems clumping. The two features
“cancel out”, giving a moderate value &fi. Tepp, 0n the other hand, does not distinguish between
the different kinds of non-Gaussianity. The two features act in tandegivéoa high value of the
test statistic.

6. Conclusions

We find that it is possible to test for latent variables in correlated Gaussiaa hy a rotation test
using a projection pursuit index applied to the components of the first smgetdor, instead of
the usual test based on the size of the largest singular value. This testisdbe lack of rotational
invariance of the matrix of errors. The rotations must be done orthogaaethe regression vari-
ables. Testing for one latent variable is theoretically justified and reliablstingefor additional
terms is possible, but can give somewhat libgrablues if the signal strength is too weak.

For microarray data, a normal distribution is often a very reasonable m8deie researchers
apply transformations for the explicit purpose of making the data more norhaltybuted. For
data that is not close to normally distributed a strategy of looking for laterghlas by measuring
how non-Gaussian they are is not recommended. It might uncover erggens with especially
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Figure 6: This figure shows histograms of 1000 realizations of the testis@lis and Tepp after
applying random rotations to the estimated latent variable. The top row coamegHe
spleen data, and the bottom row from the cerebellum. The dashed line giowalue
of the test statistic at the observed data. In the top-left plot, the area in titdaibis
0.049, giving a two-sideg-value of Q098. In the top-right plot, the tail area and the
one-sidedp-value are equal t0.045. Formal descriptions of thevalues can be found
in Equations (6) and (7). The latent variable is found to be barely signifaathe 0.05
level according tdlgpp, but not according td;:. In the bottom plots, the observed data
falls at the extreme of the rotation histograms, and is found to be strongly sayniifin
both cases.

non-Gaussian components but their interpretation is more difficult withowtus$an background
to compare them to.

Our original interest was to see if thousands of genes could be usefine degenomic “true
age” of a sample of mouse tissue as a latent variable in the residuals frgreagien that did not
include age. It turned out that the dominant latent variable bore no rdsecetto chronological
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T Tepp

Tissue R? T P T p
Adrenal 0.109| 0.7986| 0.816 0.0204| 0.460
Bone Marrow| 0.227| 0.8098| 0.988 0.0035| 0.931
Cerebellum | 0.593| 0.9464| 0.002* | 0.6233| 0.001*
Cerebrum 0.520| 0.8961| 0.002* | 0.4344| 0.001*
Eye 0.165| 0.8927| 0.004° | 0.2343| 0.001*
Gonad 0.197| 0.4788| 0.002* | 0.3899| 0.001*
Heart 0.287| 0.7866| 0.562 0.0611| 0.117
Hippocampus 0.208| 0.8222| 0.586 0.2281| 0.001*
Kidney 0.247| 0.7702| 0.320 | 0.0145| 0.598
Liver 0.311| 0.7758| 0.384 | 0.0608| 0.170
Lung 0.169| 0.8085| 0.944 | 0.0130| 0.625
Muscle 0.318| 0.7601| 0.172 0.0583]| 0.121
Spleen 0.328| 0.8555| 0.098 0.0829| 0.045f
Spinal Cord | 0.309| 0.4641| 0.002* | 0.3864| 0.001**
Striatum 0.319] 0.5851| 0.002* | 0.4020| 0.001*
Thymus 0.266| 0.8125| 0.838 | 0.0264| 0.386

Table 2: Test statistics anglvalues from the rotation tests applied to the AGEMAP data. In all
cases, 1000 random rotation were used to construct the a referstogréim, and ap-
proximatep-values were estimated. Significant results at tl® Qevel are marked with
a single asterisk. In instances where the observed test statistic was atrémesend of
the histogram, we have marked thesalues with two asterisks. In the second column of
the table, we indicate how much of the residual is explained by the latent terntakiVe
see that higtR? does not necessarily indicate significance according to the rotation test. A
Bonferroni correction for multiple testing would multiply thevalues by 32 and would
find most of the same latent variables significant.

age. We never uncovered a biological explanation for the dichotomiesthedlatent variables that
we saw. But, the rotation tests confirm that these striking anomalies wouldis@fr@m correlated

Gaussian noise. Several of the tissues did not have apparent latables Accordingly results
like those in Table 2 help one focus on where to search for physicaésauglerlying apparent
latent variables.

It may happen that a latent variable is statistically significant when judgedrbiation test
but only explains a negligible amount of the response variation. This sedikelyto happen in
practice and did not happen for the AGEMAP data, according tdRfheolumn in Table 2. But,
when it does happen one can always declare the variable statisticallgtipriactically significant.

It is natural to ask if rotation tests extend to nonlinear models. Our method ig)ktrgeared to
linear models because of the way we construct our rotations, so we swaigbtforward extension.
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