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Abstract
In multivariate regression models we have the opportunity to look for hidden structure unrelated
to the observed predictors. However, when one fits a model involving such latent variables it is
important to be able to tell if the structure is real, or just an artifact of correlation in the regression
errors. We develop a new statistical test based on random rotations for verifying the existence of
latent variables. The rotations are carefully constructedto rotate orthogonally to the column space
of the regression model. We find that only non-Gaussian latent variables are detectable, a finding
that parallels a well known phenomenon in independent components analysis. We base our test on
a measure of non-Gaussianity in the histogram of the principal eigenvector components instead of
on the eigenvalue. The method finds and verifies some latent dichotomies in the microarray data
from the AGEMAP consortium.
Keywords: independent components analysis, Kronecker covariance, latent variables, projection
pursuit, transposable data

1. Introduction

The problem we consider here is one of verifying statistically that an apparent latent variable is
real. The context is a microarray study, although the ideas are applicable for other high throughput
biological settings, and more generally for problems where a large number of mutually correlated
variables has been observed.

To fix ideas, suppose we have a matrixY ∈ R
n×N of gene expression data. Each ofN genes

has been measured onn microarrays. We can often assume that then arrays come from statistically
independent trials, but theN genes on any single array have a rich and unknown correlation struc-
ture. There is also ann× p matrix X of predictor variables to relate to the genes (p < n). We are
interested in which of the predictors significantly affect the response.

The motivating context is the AGEMAP project of Zahn et al. (2007) for which n = 40, N =
8932, andp= 3, a project whose primary goal is to find which genes are statistically correlated with
age. The covariate matrixX ∈ R

n×3 has columns for intercept, age, and sex. In matrix form, we
modelY = XB+E whereB is a p-by-N matrix of regression coefficients andE is ann-by-N matrix
of Gaussian or approximately Gaussian errors.

The residuals from the linear model showed a sharp dichotomy, splitting then AGEMAP sub-
jects into two groups. The split could not be explained by the measured variables and it strongly
suggests the presence of a binary latent variable. Binary and other latent variables can arise when
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the microarray data are generated at different times, by different technicians, or at different sites.
Sometimes a suspected latent variable can be confirmed by looking more closelyat the data or lab
notes. At that point we might identify the cause and use it as an ordinary regression variable. In
other cases we may not be able to pinpoint the cause, but we still want statistical confirmation that
it is real. When we are confident that the variable is real then it makes sense to use a model that
includes one or more latent variables.

A natural way to test for a latent variable is to compute a singular value decomposition of the
residual matrixÊ = Y−XB̂ and decide that a latent variable is present when the largest singular
value ofÊ is sufficiently large. Equivalently, such a test is based on the eigenvaluesof the covariance
matrix of the rows ofÊ. As we show below, a test based on those eigenvalues cannot work when
the rows ofE are correlated Gaussian random vectors. Adding a Gaussian latent variable simply
changes the covariance structure and hence is not detectable. The situation is similar to that faced in
independent components analysis (Hyvarinen et al., 2001) which becomes degenerate for Gaussian
components.

While the eigenvalues offer no possibility to confirm the presence of a latentvariable in corre-
lated Gaussian noise, the eigenvectors of the covariance matrix do. Our tests are based on eigen-
vectors, rejecting the null hypothesis when the components of an eigenvector differ significantly
from what we would get with Gaussian errors. Such measures have been derived for exploratory
projection pursuit by Friedman (1987), although it is important to note that Friedman’s measures by
themselves do not measure of statistical significance. We cannot apply standard tests of Gaussianity
such as the Anderson-Darling test, because such tests require an IID sample and the components
of the eigenvector are not IID. Instead we show how to use a test basedon random rotations of the
data. When the noise is independent across observations and comes from a multivariate Gaussian
distribution, then under the null hypothesis of no latent variable, random rotations don’t change the
distribution of our test statistic. Importantly, our test is still valid when there arearbitrary correla-
tions between the columns ofE.

Rotation tests have been used before, by Langsrud (2005). Our main contribution is to extend
rotation tests to the context of regression for the explicit purpose of detecting latent variables. We
show how to apply rotations orthogonally to a given linear model and we combine rotation tests
with measures of non-Gaussianity of eigenvectors.

Our principal focus is on testing for the presence versus the absence of one latent variable. The
regression model is usually used when we expect no latent variables. The presence of even one
latent variable would make it reasonable to switch to a factor model. We also consider sequential
tests for the correct number of latent variables when there is at least oneof them.

The outline of the paper is as follows: Section 2 introduces the AGEMAP data as a motivating
example and introduces the regression model mixing measured and latent predictors. Section 3
develops rotation tests for the existence of latent structure in the residual matrix from a regression.
The tests surveyed in Langsrud (2005) need to be modified in order to rotate orthogonally to the
regression model. We also show that Gaussian latent vectors cannot be detected, and then present
some test statistics for non-Gaussian latent vectors. Section 4 presents numerical simulations on
examples where we know the structure. The test is able to identify large latentvariables and we find
that it gives reliablep-values when no latent variables are present. Section 5 discusses fitting and
validating latent variables for the AGEMAP data. Section 6 presents our conclusions.
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2. Background

Here we describe the AGEMAP data and introduce regression models that include both measured
and latent variables.

2.1 The AGEMAP Data

The motivating application arises from the AGEMAP (Zahn et al., 2007) study of aging in mice.
AGEMAP is a large microarray study conducted at the National Institute on Aging and analyzed
in collaboration with the Kim lab in Stanford’s department of developmental biology. The primary
focus of the AGEMAP analysis was to find which genes have expression levels that change with
age.

Mice of ages 1, 6, 16, and 24 months were included. There were five male mice at each age
and five female mice at each age. For each of these 40 mice, 16 microarrayswere prepared, one
for each of 16 tissues. The tissues considered were: adrenenal glands, bone marrow, cerebellum,
cerebrum, eye, gonad (ovaries/testis), heart, hippocampus, kidney, liver, lung, muscle, spleen, spinal
cord, striatum, and thymus.

From each of the 40×16 = 640 microarrays, values for 8932 genes were obtained. The mi-
croarrays had more than 8932 probes, but data from multiple probes corresponding to any single
gene have been averaged.

We arrange the data into tissue specific matricesY(k) for k = 1, . . . ,16. EachY(k) has 8932
columns. The matrixY(k) hasnk rows, one for each sample of tissue typek. The values ofnk are
unequal due to missing data. We have 32≤ nk ≤ 40 and the average sample size is 38.625. The
entryY(k)

i j is the logarithm of the expression value for mousei and genej in tissuek.

2.2 Regression with Measured and Latent Variables

For a single tissue type we can drop the superscriptk. Zahn et al. (2007) used multiple regression
analysis to investigate the effects of aging on gene expression. The regression model for genej is

Yi j = β0 j +β1 jAi +β2 jSi + εi j , 1≤ i ≤ n (1)

whereYi j is log expression,Ai is the age in months of mousei, andSi is 1 if mousei is female
and is 0 otherwise. The random error term is denoted byεi j . We write all N regression models
simultaneously as

Y = XB+E

whereB is a p by N matrix of regression coefficients andE is ann by N matrix of random noise.
Then by p design matrixX has a column for each covariate.

Now suppose that there is a latent variable taking the valueUi for the array of theith mouse.
Then adding the latent variable to the regression (1) yields

Yi j = β0 j +β1 jAi +β2 jSi + γ jUi + εi j , 1≤ i ≤ n,

where bothγ j andUi are unknown. In matrix notation we have

Y = XB+UΓ+E (2)
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whereU ∈ R
n×1 andΓ ∈ R

1×N. If there areℓ latent variables then the model remains as shown
in (2), except that nowU ∈ R

n×ℓ andΓ ∈ R
ℓ×N.

Each individual regression includes more parameters than observations, havingn latent values
Ui and a coefficientγ j . But in aggregate onlyℓ(N + n) parameters are added to the regression for
Nnobservations, so the model is not saturated for smallℓ.

2.3 Forcing Identifiability

The latent variable model in (2) is not identifiable. To see why, note that if wewere to replaceU
by U +Xθ andB by B−θΓ, for someθ ∈ R

p×N then we would get the same residuals. A similar
indeterminacy arises from replacingU by UC and Γ by C−1Γ for an invertibleC ∈ R

p×p. We
will sometimes assume that the latent variablesU satisfyXTU = 0, UTU = Iℓ, andΓTΓ = D =
diag(d1, . . . ,dℓ) whered1 > d2 > · · · > dℓ > 0. This makes the model identifiable apart from the
signs of the columns ofU . Those can be specified by making the first nonzero value in each column
positive. The existence of a latent term is not affected by identifiability ofU , so we won’t have to
forceU to be identifiable to detect a latent variable. We will also assume thatXTX has full rankp
(this can be easily arranged by removing redundant predictors).

2.4 Noise Model and Estimation

In this section we describe the noise matrixE. One construction would be to assume that the entries
of E are all independent and normally distributed with mean 0 and a different variance for each
gene. We do not believe that the normality assumption causes serious difficulty for the AGEMAP
data. But, assuming zero correlations among genes on the same array is nottenable. We assume
instead that the rows ofE are independent draws from theN (0,ΣN) distribution whereΣN ∈ R

N×N

is a gene-gene covariance matrix.
We will make frequent use of Kronecker notation. The random matrixS∼ N (M,A⊗B) if its

elements have a joint normal distribution withE(Si j ) = Mi j and Cov(Si j ,Skl) = AikB jl for matrices
M, A, andB of appropriate dimensionality.

Our model for the error is thatE ∼N (0, In⊗ΣN). Then model (2) may be written as

Y ∼N (XB+UΓ, In⊗ΣN).

The identifiability restrictions of Section 2.3 are as before. It will often be simpler to introduce an
n×N matrixZ with IID N (0,1) entries and note that

Y
d
= XB+UΓ+ZΣT/2

N (3)

whereΣ1/2
N ∈ R

N×N satisfiesΣ1/2
N (Σ1/2

N )T = ΣN andΣT/2
N is a shorthand for(Σ1/2

N )T. Similarly A−T

means(A−1)T for invertibleA.
Because of our orthogonality constraint,XTU = 0, the least squares estimate ofB is unaffected

by the latent variable. That iŝB = (XTX)−1XTY. We find thatB̂ is normally distributed with
E(B̂) = B and the covariance betweenβ̂i j andβ̂kl is ((XTX)−1)ik(ΣN) jl . We summarize this via

B̂∼N (B,(XTX)−1⊗ΣN).

We can estimate the latent term̂U Γ̂ from the residual matrix̂E = Y−XB̂. The least squares
estimates correspond to Principal Components Analysis (PCA), and can begotten from truncating
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the singular value decomposition ofÊ to ℓ terms. This least squares procedure has been described
by Gabriel (1978), who also incorporates column based covariates analogous to the row based ones
in X. Another alternative is to use Independent Components Analysis (ICA).If there is some prior
knowledge about the distribution of the possible latent factors, this knowledge can be used in the
estimation procedure, for example by choosing a particular test statistic to usein Section 3.

3. Rotation Tests for Structure in the Residual Matrix

We have two tasks when dealing with a latent term. The primary task is to determine whether any
latent structure exists in the residual matrixY−XB̂. A secondary task is to estimate that latent
structure when we believe it exists.

The main complication is thatΣN, the noise covariance, is unknown. WhenΣN is known, we
can multiply both sides (3) from the right by(ΣT/2

N )−1 and obtain a model with the same regression
variables, the same number of factors, and errors that are IIDN (0,1). Then if n ≫ N classical
methods due first to Gollob (1968) and refined by Mandel (1971) basedon nested hypothesis test-
ing, may be applied. If insteadn ≪ N the resulting IIDN (0,1) errors can be handled by recent
developments in random matrix theory due to Baik and Silverstein (2006) and Paul (2007a). For ex-
ample, in this setting Rao and Edelman (2008) apply an approach based on theAkaike information
criterion (AIC).

Most methods for identifying latent structure only look at the singular values of the residual
matrix Ê. Since the correlation in the residuals is nontrivial and unknown, our setting leads us to
consider other functions of̂E.

We will use the following elementary formula. IfW ∼N (0,Ψ⊗Φ) then

BWCT ∼N (0,(BΨBT)⊗ (CΦCT)), (4)

so long as the product matrixBWCT is well defined.

3.1 Rotations Under the Null Hypothesis

Under the null hypothesis of no latent variable, our error term isE ∼ N (0, I ⊗ΣN). For anyn×n

orthogonal matrixO, we find thatOE ∼N (0, [OIOT]⊗ΣN) = N (0, I ⊗ΣN) so thatOE
d
= E. The

original residual matrix,E, and the rotated residual matrix,OE have the same distribution. This
fact provides our starting point.

We refer to orthogonal matrices as rotations. A stricter usage of the term requires det(O) = 1 but
following Langsrud (2005) we allow det(O) = −1 as well. Such reflections, as they are sometimes
called, also preserve the distribution ofE so they are worth including. In a rotation test we compare
some aspect of the data to its value under repeated random rotations of the data. Such rotation
tests are analogous to the more familiar permutation tests. Rotation tests were firstintroduced
by Wedderburn (1975) and Heiberger (1978). A recent survey appears in Langsrud (2005) who
focuses on multiple testing issues.

Here we give a self-contained derivation of rotation tests for multiple regression. The regression
context requires us to make some modifications to the method.

The data areY = XB+E with E
d
= UΓ +ZΣT/2

N whereZi j are IIDN (0,1). The matrixX has
rank p< n and hat matrixH = X(XTX)−1XT. The residual matrix iŝE = (I −H)Y = (I −H)XB+
(I −H)E = (I −H)E. We will apply many random rotations tôE. This is mathematically equivalent
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to rotating bothX andY each time, and then taking the residuals from the rotated variables, but of
course it is faster to simply rotate the residuals. To prove equivalence:

Proposition 1 For integers n> p> 0 and N≥ 1, let X∈R
n×p, Y∈R

n×N, B∈R
p×N and E∈R

n×N

satisfy Y= XB+E. Suppose that H= X(XTX)−1XT has rank p. LetO ∈ R
n×n be an orthogonal

matrix. PutỸ = OY,X̃ = OX, H̃ = X̃(X̃TX̃)−1X̃T andẼ = (I − H̃)Ỹ . ThenẼ = O(I −H)Y.

Proof The rotated hat matrix satisfies̃H = OX(XT
O

T
OX)−1XT

O
T = OHO

T. The new residual
is Ẽ = Ỹ− H̃Ỹ. Now H̃Ỹ = OHO

T
OY = OHY. Finally Ẽ = OY−OHY = O(I −H)Y.

In the regression context, randomly rotating the residuals does not generally preserve their dis-
tribution. First because(I −H)(I −H)T = (I −H), we find that under the null hypothesis (U = 0):

Ê ∼N (0,(I −H)⊗ΣN).

But then, for the rotated residual we have

OÊ ∼N (0, [O(I −H)OT]⊗ΣN),

by Equation (4). These distributions do not usually coincide.
We will fix this problem by restricting attention to a special subset of rotation matrices. The

desired rotationsO satisfyOHO
T = H (equivalentlyO(I −H)OT = (I −H)) for then the rota-

tion does not change the distribution ofÊ. The rotations we want will fixX but rotate the space
orthogonal toX. Specific construction details follow.

BecauseH has p eigenvalues equal to 1 andn− p eigenvalues equal to 0 we may write it
as H = Q1QT

1 whereQ1 ∈ R
n×p satisfiesQT

1 Q1 = Ip. Let Q2 ∈ R
n×(n−p) be a matrix such that

Q=
(
Q1 Q2

)
is orthogonal. For our construction, we letO∗ ∈R

(n−p)×(n−p) be an orthogonal matrix
and then take

O = Q1QT

1 +Q2O∗Q
T

2 . (5)

The matrices produced by Equation (5) are orthogonal and satisfyOHO
T = H. We summarize as

follows:

Proposition 2 Let Y∼ N (XB, In⊗ΣN) where X∈ R
n×p has rank p< n and B∈ R

p×N. Let Ê =
(I −H)Y where H= X(XTX)−1XT and letẼ = OÊ whereO satisfies(5). Then botĥE andẼ have
theN (0,(I −H)⊗ΣN) distribution.

Proof Let E = Y−XB∼N (0, In⊗ΣN). ThenÊ = (I −H)Y = (I −H)E ∼N (0,(I −H)⊗ΣN) as
above. Now suppose thatO satisfies (5). TheñE = O(I −H)E ∼N (0, [O(I −H)OT]⊗ΣN). Next

O(I −H)OT =
(
Q1QT

1 +Q2O∗Q
T

2

)
(I −H)

(
Q1QT

1 +Q2O∗Q
T

2

)

=
(
Q1QT

1 +Q2O∗Q
T

2

)
Q2QT

2

(
Q1QT

1 +Q2O
T

∗ QT

2

)

= Q2O∗O
T

∗ QT

2

= I −H,

and soẼ
d
= Ê.

To complete this section we show that Equation (5) generates all of the desired rotations.
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Proposition 3 Let Q=
(
Q1 Q2

)
∈ R

n×n be an orthogonal matrix, where Q1 ∈ R
n×p for n > p > 0.

Let O ∈ R
n×n be an orthogonal matrix and write H= Q1QT

1 . If OHO
T = H thenO = Q1O◦QT

1 +
Q2O∗QT

2 whereO◦ ∈ R
p×p andO∗ ∈ R

(n−p)×(n−p) are orthogonal matrices.

Proof First, any orthogonal matrixO can be written asO = QPQT where

P =

(
P11 P12

P21 P22

)

is orthogonal, and partitioned withP11 ∈ R
p×p, P22 ∈ R

(n−p)×(n−p) and so on. We may takeP =
QT

OQ. Now OHO
T = QPQTQ1QT

1 QPTQT = FFTwhere

F = QPQTQ1 =
(
Q1 Q2

)
(

P11 P12

P21 P22

)(
QT

1

QT

2

)
Q1 = Q1P11+Q2P21.

Assume thatOHO
T = H. ThenQT

1 OHO
TQ1 = Ip so that(QT

1 F)(QT

1 F)T = Ip. But QT

1 F = P11.
ThereforeP11PT

11 = Ip, or in other wordsP11 is an orthogonal matrix. The columns ofP11 are unit
vectors and so are those ofP. ThereforeP21 = 0. SimilarlyP12 = 0 andP22 is an orthogonal matrix.
TakingO◦ = P11 andO∗ = P22 completes the proof.

From Proposition 3 we see that the suitable rotations take the formO = Q1O◦QT

1 + Q2O∗QT

2 .
In Equation (5), we only useO◦ = Ip. We don’t need to vary that part of the rotation because in our
application we work with

O(I −H) = OQ2QT

2 = (Q1O◦Q
T

1 +Q2O∗Q
T

2 )Q2QT

2 = Q2O∗Q
T

2 .

The choice ofO◦ does not affect the value of̃E = O(I −H)Y, and so we may simply takeO◦ = Ip.

3.2 Testing for the Existence of Structure

Here we construct a test for latent structure in the residual matrix. The null hypothesis isH0 : U = 0
and the alternative isH1 : U 6= 0. We will construct a rotation test by modifying the rotation tests
in Langsrud (2005). As in the discussion of the randomization tests in Lehmann and Romano
(2005) we find a group of rotations. It is easy to show thatOH = {Q1QT

1 + Q2O∗QT

2 | O∗ ∈
R

(n−p)×(n−p),OT
∗ O∗ = In−p} is a group under multiplication, because orthogonalr − p by r − p

matrices are a group. Southworth et al. (2009) give a cautionary note onrandomizations without a
group structure.

Proposition 2 allows us to perform a test of the hypothesis as follows: letT : R
n×N → R be any

statistic of the residual matrix. Specific examples are given in Section 3.4. We generate independent
n by n random rotationsO1, . . . ,OR−1 uniformly fromOH . Then, construct ap-value as

p̂ =
1
R

(
1+

R−1

∑
i=1

1{T(OiÊ) ≥ T(Ê)}
)
. (6)

Since under the null hypothesisOiÊ andÊ have the same distribution and sinceOH is a group, this
gives us a validp-value. The leading 1 in ˆp counts the observed̂E and prevents us from claiming ˆp
below 1/R if we have only seenR rotations (including the original one).
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3.3 Gaussian Alternative

Here we show that whenΣN is unknown, a Gaussian latent variable cannot be detected. This was re-
marked on by Snee (1982) and it is well known in the independent component analysis community;
see Hyvarinen et al. (2001).

To see how the problem manifests, consider the model in (3) with just one latent variable with
entriesUi ∼ N (0,1) independently ofZ. The regression modelXB is assumed nonrandom. To
focus on essentials we do not initially impose the normalizationUTU = Iℓ.

Proposition 4 For positive integers N, n, andℓ, let Z∼N (0, In⊗IN) independently of U∼N (0, In⊗
Iℓ). LetΓ ∈ R

ℓ×N. Then UΓ+ZΣT/2
N

d
= ZΣ̃T/2

N whereΣ̃N = ΣN +ΓTΓ.

Proof We only need to show thatUΓ + ZΣT/2
N has the same distribution asZΣ̃T/2

N . The ma-

trix UΓ + ZΣT/2
N has independent identically distributed rows fromN (0,ΣN + ΓTΓ). Therefore

UΓ + ZΣT/2
N has representatioñZΣ̃T/2

N whereZ̃ ∈ R
N×n has IID entries fromN (0,1). This Z̃ has

the same distribution asZ.

If we do normalizeU then nothing essential changes. We replaceU by UC for a random
normalizing matrixC ∈ R

ℓ×ℓ that is independent ofZ (that is,UC ∼ N (0, In ⊗ Iℓ) andUTU =

I ). Then we compensate by replacingΓ by C−1Γ and getUΓ + ZΣT/2
N

d
= ZΣ̃N whereΣ̃N = ΣN +

ΓTC−TC−1Γ is now random.
The implication of Proposition 4 is that if we don’t know anything aboutΣN, or Γ, then a

Gaussian latent variable is impossible to detect. There is no mathematical difference between a
Gaussian latent vector and a changed correlation structure. Put another way, such latent variables
are already well accounted for in the correlation structure.

Latent variables of practical interest typically exhibit non-Gaussian traitslike clumping or out-
liers. Also, if a latent variable corresponds to a roughly-linear time trend, then it will be nearly
uniformly distributed if the points are sampled at regular time intervals. Therefore this restriction
still leaves many interesting testing problems.

3.4 Choice of the Test Statistic,T

Since a Gaussian latent variable is covered by the correlation model and is not detectable, any
effective test statisticT must be tuned for non-Gaussian latent variables. A non-Gaussian latent
variable makes for an error termUΓ+ZΣT/2

N that does not have a rotationally invariant distribution.
In principle any functionT(E) can be used. However, the choice ofT will often be dictated by

what we deem to be interesting structure. Here we describe four different possibilities forT. We
first apply a simplification procedure to reduceE to a vectoru(E). Then, we apply a function to
reduceu to a scalar. The end result is a scalar-valued functionT(E).

We would likeu(E) to be representative of latent structure inE. An obvious choice is the first
left singular vector ofE, which corresponds to the first principal component ofE. A second choice
is to apply ICA toE, treating the columns as mixtures ofn-dimensional sources, and haveu(E) be
the first estimated source. In both casesu(E) is a unit vector.

We cannot simply use a test for normality of the components ofu(E), such as the Anderson-
Darling test, because the components we get are not independentN (0,1) even underH0.
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Instead, we propose two functions for reducingu = u(E) to a scalar. The first is theL1 norm of
the vector:

TL1(u) =
n

∑
i=1

|ui |.

As a point of reference, for independentui ∼N (0, 1
n) we would getTL1

.
=
√

2n/π. So, the expected
L1 norm of a uniformly distributedn-dimensional unit vector is approximately

√
2n/π .

= 0.798
√

n.
Larger values ofTL1 correspond to distributions whose expected absolute value is large compared
to their root mean square. Uniform distributions on[−1,1] or {−1,1} behave this way. Conversely,
small values ofTL1 arise from very heavy tailed distributions like the Cauchy which have outliers.

The rotation basedp-value (6) is sensitive to large values ofTL1 and should therefore catch
dichotomies and light tailed latent variables. To detect heavy tailed alternatives we could use (6)
with 1/TL1. Because we are potentially interested in both kinds of non-Gaussian latentstructure we
take

p̂ =
2
R

min

(
1+

R−1

∑
i=1

1{T̃i ≥ T̂}, 1+
R−1

∑
i=1

1{T̃i ≤ T̂}
)

, (7)

whereT̂ = T(Ê) and T̃i = T(OiÊ) andT(·) subsumes all the computation inTL1. The leading 2
in (7) compensates for using the more extreme of two tails.

The second test statistic comes from Exploratory Projection Pursuit (Friedman, 1987).TEPP is a
distance measure on densities, represented as a Legendre-series andthen truncated to 4 terms:

TEPP(u) =
4

∑
j=1

(
j +

1
2

)(
EPj(R)

)2

where,Pj is the j-th Legendre polynomial,R is a random variable uniformly distributed over the
discrete set{2Φ(ui)−1}n

i=1, Φ is the cumulative distribution function of theN (0,1) distribution,
andE denotes expectation over the randomness inR. The Legendre polynomials can be computed
using the recurrence relation

P0(x) = 1,

P1(x) = x, and,

( j +1)Pj+1(x) = (2 j +1)xPj(x)− jPj−1(x).

In computingTEPPwe use

EPj(R) =
1
n

n

∑
i=1

Pj(2Φ(ui)−1).

TEPP is designed to be close to 0 when the histogram ofu looks Gaussian, and it gets bigger the
more “non-Gaussian”u is. The full derivation ofTEPP is given by Friedman (1987).

Because only large values ofTEPPare interesting we use (6) directly without making a two-tailed
modification.

We can combine PCA or ICA withTEPP(u) or TL1(u) and get four different test statistics. We
write TEPP(E) or TL1(E) when the context dictating PCA or ICA foru is clear. The choice ofT is
independent of the procedure for estimating the latent variable. In particular, it is possible to detect
the existence of latent structure in̂E using a PCA-based test statistic and then fit the structure using
ICA. Indeed, in simulations it turns out to be better to use PCA foru. This will be further explored
in Section 4.
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3.5 Identifying the Rank of the Latent Term

When we are able to reject the null hypothesis we conclude that some latent structure exists, but
we do not know the rank ofU . To estimate the number of latent variables we consider a sequential
approach, based on subtracting estimated latent variables and looking forlatent structure in the
residuals.

First, we fit the model̂Y0 = X0B̂0 and get the residual matrix̂E0. The subscripts denote a model
with 0 latent terms. Next, we test for latent structure inÊ0. If we determine that any structure exists,
we fit a single latent variable ˆu1.

At this stage, we treat ˆu1 as a known covariate. We create a new covariate matrixX1 = [X0 û1]
by appending ˆu1 as a column onto the old covariate matrix. Now, we fit the a new modelŶ1 = X1B̂1

and get a new residual matrix̂E1. We proceed in a sequential matter: test for structure inÊi ; upon
identifying structure, fit a single latent variable, treat it as a covariate, and get a new residual matrix
Êi+1. We stop when there is no latent structure inÊi .

In the context of PCA, fitting ˆu2 sequentially after adjustinĝE for û1 is equivalent to fitting ˆu1

andû2 simultaneously. For other estimation methods, this equivalence may not hold. The procedure
we describe is still valid, but there may be some loss in power. If this is a concern, the practitioner
can adjust the testing procedure accordingly.

One has to be careful when testing for more than one latent term. In particular, for some settings
whenn≪ N, it is impossible to consistently estimate the latent variables ˆui . When we do not have a
good estimate of ˆui , treating it as a known covariate will introduce a potentially serious error. When
this happens, only thep-value for the first term is reliable. This point is illustrated in the example
of Section 4.3, where the error in thep-value distribution was small.

3.6 Caveats

When we reject the null hypothesis, then either there is strong enough latent structure in the data,
or the noise is far from Gaussian. Therefore, rejecting the null hypothesis isnecessaryto deem
latent structure to be real, but not sufficient. Often there is ambiguity between what constitutes
non-Gaussianity and what can be explained by a latent variable. An outliercan be modeled using a
latent variable that has support on a single observation. Bi-modal noise can be re-cast as a clumping
latent effect.

3.7 Related Work

Rank determination methods have been the subject of much interest in crop science. For a recent
survey see Crossa and Cornelius (2002). Those methods tend to focuson the amount of variance
explained by the first principal component. In an eigen-analysis ofY−XB̂, they focus on the size
of the eigenvalues. There has been considerable difficulty with getting teststo have the right level,
as described for example by dos S Dias and Krzanowski (2003). The core problem is that there is
no good way to count the degrees of freedom for such data sets, despite recent progress in random
matrix theory including El Karoui (2007), Paul (2007b), and Nadler (2007). Owen and Perry (2009)
apply a cross-validation-based approach to rank determination for the truncated SVD and non-
negative matrix factorization. That work requires independent noise, not the correlated noise we
consider here. Efron (2009) uses permutations to test whether some microarrays are independent of
each other.
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4. Empirical Testing

In this section we examine the performance of rotation tests on constructed examples where we
know the answer. Some readers may prefer to read the real data example of Section 5 first. In our
constructed examples, the response satisfies

Y ∼N (XB+UΓ, In⊗ΣN),

with parameters described below.

4.1 Microarray Model

This example is designed to resemble microarray studies. We takep= 2, n= 20 andN = 256. This
value ofN is small, to allow a larger number of simulated cases. The matrixX has a first column of
1s. The second column has values 1, . . . ,n. We takeB to be ap×N matrix of 0s. HavingB = 0 is
no loss of generality, because the analysis works on residuals after regression onX and the residuals
are unaffected byB.

We construct latent variablesU ∈ R
n×3. The first latent variable,u1, is the first column ofU

and has independent elements distributed as Cauchy random variables. The second latent variable,
u2, has elements which are either−1 or 1 with equal probability. The third latent variable,u3, has
elements that are independent and exponentially distributed with mean 1. Thus, u1 is an “outlier”
effect,u2 is a “clumping” effect, andu3 is some other latent effect.

The latent coefficient matrix,Γ, has independent elements distributed asN (0,1). We do not
think that non-normalΓ would make the signal artificially easy to detect, but taking GaussianΓ
removes any such worry. As described,U , Γ, andX do not satisfy the identifiability conditions of
Section 2.3. The existence of an unnormalized latent variable implies that a normalized one exists,
and so the testing problem is unaffected.

For ΣN we need a 256× 256 correlation matrix. The true correlation patterns for microarray
data are not known. The sample sizes to date are far too small to allow confident description of the
patterns. Owen (2005) looks at what gene-gene correlations are like inreal data. We mimic two
features of microarray data. First, genes are often thought to belong to relatively small clusters.
Second, the mean of the squared estimated off-diagonal sample correlations is often seen to be a
small multiple of 1/n. The value 1/n is very close to what we would expect in the event that all true
correlations were zero. To encode the first property, we take

Σi j =





1 i = j,

ρ ⌊(i−1)/32⌋ = ⌊( j −1)/32⌋, & i 6= j,

ρ i− j ≡ 0 mod 32, & i 6= j,

0 else.

In words, genei belongs to two clusters: one cluster of 8 genes corresponding to the least-significant
digit of i −1 in base 32, and one cluster of 32 genes corresponding to the most-significant digit of
i−1 in base 32. Genei has 38 non-zero correlations with other genes. The value ofρ > 0 is chosen
so that signal is about 30% of the noise:

∑N
i=1 ∑N

j=1 Σ2
i j −N

N(N−1)/n
= 0.30.

Thus 38ρ2 = (N−1)/(0.30n) soρ =
√

0.30(N−1)/(38n)
.
= 0.317.
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4.2 Rotation Tests

The true model has three latent variables. We are interested in what happens when testing for the
first, second, third, and fourth latent terms. We look at two different choices for the test statistic:
TEPP in conjunction with PCA, andTEPP in conjunction with ICA. The results are summarized in
ROC curves in Figure 1.

The upper-right panel shows the results from testing the residual matrix after one latent term
has been removed. Here, we see that testing withuPCA results in about 75% of the replicates having
estimatedp-values less than 0.2, while testing withuICA , results in about 55%. Generally, the PCA
test gave us higher power. We also found that FastICA can get stuck in alocal minimum. This is
what lead to its surprisingly poor performance in the upper left panel. Thelatent variables of the
randomly-rotated data are more non-Gaussian than the latent variable estimated from the original
data.

The lower-right panel shows the estimatedp-values after three latent terms have been fit and
removed from the residual matrix. As expected, the estimatedp-values are close to the specified
false-positive rates. Comparing the lower left panel to the others, we see, unsurprisingly that the
smallest latent vector is hardest to detect while the largest is easiest to detect. Finally, testing for
a fourth latent variable gives us a uniformp-value, which is exactly what we want since there are
only three latent terms.

A word is in order about how we removed the first latent variable when testing for the presence of
the second. We tried removing vectors as estimated by PCA and also by ICA. There was not much
difference in performance, and PCA has the computational advantage that the estimated second
vector does not change when we remove the first. Therefore when testing for thek’th vector, whether
by ICA or PCA, we always used PCA to remove the firstk−1 of them.

4.3 Testing Under and Near the Null Hypothesis

In the previous simulation, the signal-to-noise ratio between the latent effectterms and the random
error is relatively high, and so thep-values for non-existent latent terms are faithful. In this simula-
tion, we demonstrate that thep-values for testing for multiple latent variables are slightly liberal if
the signal strength is too weak, but thesep-values are still within tolerable accuracy.

We generate ann×N data matrixY according to the model

Y = (Nλ)1/2uγT +ZΣT/2
N ,

with n = 20 andN = 200. There is a single latent variableu which has elements equal to−1 or
+1 with equal probability. The coefficient vectorγ is a uniformly distributed random unit vector
in R

N. The noise covarianceΣN is a diagonal matrix with(ΣN)ii independent from all other entries

and exponentially-distributed with mean 1;Σ1/2
N is its square root. The noise variable matrixZ has

IID N (0,1) elements. We chooseλ to be a fixed scalar, specified below.
The theory in Section 3.2 tells us that thep-value from a rotation test of a single latent term is

uniformly-distributed whenλ = 0. However, it tells us nothing aboutp-values for a second term.
Regardless of the value ofλ, we would like them to be uniformly distributed, so that the test is
faithful to the specified false positive rate. The issue is whether errors inthe estimated first latent
vector spoil the test for the second. Results in Onatski (2007) suggestthat as the sample size goes
to infinity, p-values from the second and higher terms will be faithful when we fit with PCA. Our
sample size is only 20, so we do an empirical test.
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Figure 1: MULTI -FACTOR ROTATION TESTS WITH PCA AND ICA. We simulate data from a
model with three latent terms and then apply rotation tests for latent structure. The test
statistic isTEPP(u) applied to either the first principal componentuPCA, or the first inde-
pendent componentuICA (via FastICA) of the residual matrix. The plots show estimated
ROC curves after 0, 1, 2, or 3 principal components have been fit and removed. Thex axis
of each plot is the specified false-positive rate. They axis is the proportion of replicates
with an estimatedp-value below that level, using 500 total replicates of the data set. The
plots are discussed further in the text.

For all λ in the set{0,0.5,1,5,10,50,100,500,1000}, we perform the following simulation,
which we repeat 1000 times:

1) Generate dataY as described above.
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Figure 2: TESTING FOR A NON-EXISTENT SECOND TERM. We estimate a factor generated ac-
cording to(Nλ)1/2uγT and then test for a second term. Depending on the factor strength
(which is related to our ability to estimate), thep-values for validating the second term
may be slightly liberal. This seems to be the case forλ ≤ 50. Forλ ≥ 100, thep-values
appear to be faithful.

2) Fit a single latent variable ˆu, using the first term in the SVD ofY.
3) Construct the matrix of residuals asÊ = Y− ûûTY.
4) Test for the existence of more latent terms using a PCA-based rotation test usingTEPPas our test

statistic and treating ˆu as a known covariate. Record thep-value estimated from 999 random
rotations.

We would like to assess the implications of treating ˆu as a known covariate. Whenλ is big, this is a
reasonable assumption since the term is easy to estimate, but whenλ is small this is not the case.

We summarize the results in Figure 2. We can see that forλ ≤ 50, the smallp-values are slightly
liberal. Whenλ ≥ 100, thep-values appear to be faithful. When the first latent variable is strong,
then we have a reliable test for the second.
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Figure 3: CEREBELLUM LATENT VARIABLE . The left plot shows the latent variable estimated for
the cerebellum in each of 39 mice plotted versus the ages of those mice. We cansee an
apparent dichotomy that is unrelated to gender. The right plot shows a histogram of the
regression coefficients for the latent variable. The long tail of the histogram indicates that
a large number of genes (about 100) are related to the dichotomy.

5. Latent Variables for the AGEMAP Mice

Now that we have seen how rotation tests work in simulations, we apply them to thedata described
in the beginning of the paper. Recall that in the AGEMAP data set there are 16 tissue types and
32–40 mice per tissue with known age and sex. Here we will see patterns thatcertainly appear
unlikely to be artifacts. Then we verify them by the rotation test.

We fit 16 regression models of gene activation on age and sex with one latent variable, one for
each tissue. The result is that for each tissue type fromk = 1, . . . ,16, we have an estimated latent
variables vectorU (k) ∈ R

nk.
The latent variables for tissue 2 (the cerebellum) have a striking pattern. There is one valuêU (2)

i
for each ofn2 = 39 mice for which a cerebellum array was available. Figure 3 shows that latent
variable plotted versus age and with plot symbols encoding the sex of the mouse. It is clear that the
mice are split into two different groups, one with a high value of the latent variable and one low.

Often when one sees two distinct groups in microarray data, they correspond to male versus
female samples, and certain genes that are sex related, such as on those on the Y chromosome in
males or Xist genes that silence a second X chromosome for females. That cannot be the case here
because the estimated latent variable is orthogonal to both the sex and age variables by construction,
meaning the sum of its coefficients over male samples must equal the negative of the sum over
females.

There are high and low values for the latent variable for the cerebellum. The second panel of
Figure 4 shows the histogram of these latent values. It is clearly bimodal. The other 15 panels in
Figure 4 show the corresponding histograms for the other 15 tissues.
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Figure 4: LATENT VARIABLES BY TISSUE. This figure shows histograms of the latent variables
found in microarray data from 16 mouse tissues. In each histogram the latent variable
values from up to 40 mice are given.

Some of the other histograms have interesting and interpretable structure too.The histograms
for spinal tissue, gonad and striatum all show outliers. The biggest latenteffect in these tissues
is that the expression of one mouse was quite different from the other mice and that difference is
reflected in a large number of genes. It is not simply one unusual animal. Three different mice were
the outliers in the three different tissues.

The histogram for the cerebrum shows an apparent dichotomy, similar to but less pronounced
than the one for the cerebellum. For both of these tissues, the latent variableis splitting the mice
into two groups. Both dichotomies are somewhat imbalanced with one group roughly twice as large
as the other. Such an effect would be explainable if the same latent factor were affecting both of
these brain tissues. Figure 5 plots the estimated latent variable from the cerebrum versus that for the
cerebellum. There is one point for each of the 39 mice in which both tissues were measured.
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Figure 5: LATENT VARIABLES OF MICE. This figure plots the latent variable from the cerebrum
versus that from the cerebellum for the 39 mice for which both arrays were available.
There appear to be three kinds of mice in this population.

Figure 5 shows that the apparent dichotomy in the cerebrum is not the same as the one in the
cerebellum. The pattern is not a simple double dichotomy either. Rather there appears to be a
trichotomy. It is visually striking that there are no mice in the upper right hand corner of Figure 5.
The counts of the four corners of Figure 5 are set out in Table 1.

About one third of the mice have the rare cerebellum type, one third have therare cerebrum type
and the remaining mice the common form for both tissues. Were the types independent we would
expect about one ninth of the mice to be rare for both. Ap value based on Fisher’s exact test is
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Count Common cerebellum Rare cerebellum
Rare cerebrum 13 0
Common cerebrum 12 14

Table 1: Counts of mice in the corners of Figure 5.

0.00094. While we can’t be sure that the next mouse won’t be the rare typefor both brain parts, the
failure to observe one here is statistically significant.

Although we don’t have laboratory notes to identify the meaning of these groupings, the fact
that the joint behavior of two dichotomies from different tissues forms suchan interesting pattern
lends additional support to the rotation results.

We applied rotation tests for all 16 tissues in the AGEMAP data set using two different measures
of non-normality.

We demonstrate the calculation ofp-values for the spleen and cerebellum data in Figure 6. The
rotation distributions for the other 15 tissues have approximately the same shape, so we do not
display them here. Instead, we summarize the results in Table 2. The estimated latent variables
for the cerebellum, cerebrum, and eye tissues exhibited dichotomies. This shows up in significantly
high values ofTL1 andTEPP. The gonad, spinal cord, and striatum latent variables have clear outliers,
which manifest as a significantly low values ofTL1, and a significantly high values ofTEPP. The
spleen latent variable potentially has an outlier at age 5 months, and is found tobe marginally
significant according toTEPP, and not significant according toTL1. The discrepancy is because of
the two- versus one-tailedp-value.

The only case whereTL1 andTEPP give drastically different results is with the latent variable
estimated from the hippocampus data. UsingTL1, the variable is nowhere near significant ( ˆp =
0.586), but usingTEPP, the variable is unquestionably significant ( ˆp< 0.001).TEPPfinds the skewed
histogram interesting, whileTL1 does not. A possible explanation for why the latent variable is
insignificant according toTL1 is this: TL1 is simultaneously measuring presence of outliers and
presence of clumping. Outliers correspond to low values ofTL1, and clumping corresponds to high
values ofTL1. In the hippocampus data, we see both outliersand clumping. The two features
“cancel out”, giving a moderate value ofTL1. TEPP, on the other hand, does not distinguish between
the different kinds of non-Gaussianity. The two features act in tandem togive a high value of the
test statistic.

6. Conclusions

We find that it is possible to test for latent variables in correlated Gaussian noise by a rotation test
using a projection pursuit index applied to the components of the first singular vector, instead of
the usual test based on the size of the largest singular value. This test detects the lack of rotational
invariance of the matrix of errors. The rotations must be done orthogonallyto the regression vari-
ables. Testing for one latent variable is theoretically justified and reliable. Testing for additional
terms is possible, but can give somewhat liberalp-values if the signal strength is too weak.

For microarray data, a normal distribution is often a very reasonable model.Some researchers
apply transformations for the explicit purpose of making the data more normallydistributed. For
data that is not close to normally distributed a strategy of looking for latent variables by measuring
how non-Gaussian they are is not recommended. It might uncover eigenvectors with especially
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Figure 6: This figure shows histograms of 1000 realizations of the test statistics TL1 andTEPPafter
applying random rotations to the estimated latent variable. The top row comes from the
spleen data, and the bottom row from the cerebellum. The dashed line showsthe value
of the test statistic at the observed data. In the top-left plot, the area in the right tail is
0.049, giving a two-sidedp-value of 0.098. In the top-right plot, the tail area and the
one-sidedp-value are equal to 0.045. Formal descriptions of thep-values can be found
in Equations (6) and (7). The latent variable is found to be barely significant at the 0.05
level according toTEPP, but not according toTL1. In the bottom plots, the observed data
falls at the extreme of the rotation histograms, and is found to be strongly significant in
both cases.

non-Gaussian components but their interpretation is more difficult without a Gaussian background
to compare them to.

Our original interest was to see if thousands of genes could be used to define a genomic “true
age” of a sample of mouse tissue as a latent variable in the residuals from a regression that did not
include age. It turned out that the dominant latent variable bore no resemblance to chronological
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TL1 TEPP

Tissue R2 T p̂ T p̂
Adrenal 0.109 0.7986 0.816 0.0204 0.460
Bone Marrow 0.227 0.8098 0.988 0.0035 0.931
Cerebellum 0.593 0.9464 0.002∗∗ 0.6233 0.001∗∗

Cerebrum 0.520 0.8961 0.002∗∗ 0.4344 0.001∗∗

Eye 0.165 0.8927 0.004∗ 0.2343 0.001∗∗

Gonad 0.197 0.4788 0.002∗∗ 0.3899 0.001∗∗

Heart 0.287 0.7866 0.562 0.0611 0.117
Hippocampus 0.208 0.8222 0.586 0.2281 0.001∗∗

Kidney 0.247 0.7702 0.320 0.0145 0.598
Liver 0.311 0.7758 0.384 0.0608 0.170
Lung 0.169 0.8085 0.944 0.0130 0.625
Muscle 0.318 0.7601 0.172 0.0583 0.121
Spleen 0.328 0.8555 0.098 0.0829 0.045∗

Spinal Cord 0.309 0.4641 0.002∗∗ 0.3864 0.001∗∗

Striatum 0.319 0.5851 0.002∗∗ 0.4020 0.001∗∗

Thymus 0.266 0.8125 0.838 0.0264 0.386

Table 2: Test statistics andp-values from the rotation tests applied to the AGEMAP data. In all
cases, 1000 random rotation were used to construct the a reference histogram, and ap-
proximatep-values were estimated. Significant results at the 0.05 level are marked with
a single asterisk. In instances where the observed test statistic was at the extreme end of
the histogram, we have marked thep-values with two asterisks. In the second column of
the table, we indicate how much of the residual is explained by the latent term. Wecan
see that highR2 does not necessarily indicate significance according to the rotation test. A
Bonferroni correction for multiple testing would multiply thep-values by 32 and would
find most of the same latent variables significant.

age. We never uncovered a biological explanation for the dichotomies andother latent variables that
we saw. But, the rotation tests confirm that these striking anomalies would not arise from correlated
Gaussian noise. Several of the tissues did not have apparent latent variables. Accordingly results
like those in Table 2 help one focus on where to search for physical causes underlying apparent
latent variables.

It may happen that a latent variable is statistically significant when judged by arotation test
but only explains a negligible amount of the response variation. This seems unlikely to happen in
practice and did not happen for the AGEMAP data, according to theR2 column in Table 2. But,
when it does happen one can always declare the variable statistically but not practically significant.

It is natural to ask if rotation tests extend to nonlinear models. Our method is strongly geared to
linear models because of the way we construct our rotations, so we see nostraightforward extension.
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