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Abstract

We introduce a simple order-based greedy heuristic fomiegrdiscriminative structure within
generative Bayesian network classifiers. We propose twhadstfor establishing an order bif
features. They are based on the conditional mutual infaomatnd classification rate (i.e., risk),
respectively. Given an ordering, we can find a discrimiresiructure withO (Nk”) score evalu-
ations (where constaftis the tree-width of the sub-graph over the attributes). Vésegnt results
on 25 data sets from the UCI repository, for phonetic classifin using the TIMIT database,
for a visual surface inspection task, and for two handwritlegit recognition tasks. We provide
classification performance fdrothdiscriminativeandgenerative parameter learning baothdis-
criminatively andgeneratively structured networks. The discriminativacttire found by our new
procedures significantly outperforms generatively predustructures, and achieves a classifica-
tion accuracy on par with the best discriminative (greedgydsian network learning approach, but
does so with a factor of10-40 speedup. We also show that the advantages of geredatorim-
inatively structured Bayesian network classifiers stillchim the case of missing features, a case
where generative classifiers have an advantage over dipative classifiers.

Keywords: Bayesian networks, classification, discriminative leagnistructure learning, graphi-
cal model, missing feature

1. Introduction

bm8ted 10/08; Revised 5/09; Published 8/10

Bayesian networks (Pearl, 1988; Cowell et al., 1999) have been withelgl as a space within
which to search for high performing statistical pattern classifiers. Suwtonies can be produced

in a number of ways, and ideally the structure of such networks will bedediscriminatively. By

“discriminative learning” of Bayesian network structure, we mean simplyttteaprocess of learn-
ing corresponds to optimizing an objective function that is highly represeamtaf classification

error, such as maximizing class conditional likelihood, or minimizing classificatitor under the

0/1-loss function or some smooth convex upper-bound surrogate (fBattéd., 2006).

Unfortunately, learning the structure of Bayesian networks is hardreTieve been a number

of negative results over the past years, showing that optimally learnifauggorms of constrained
Bayesian networks is NP-complete even in the “generative” sensex&mpde, it has been shown
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that learning paths (Meek, 1995), polytrees (Dasgupta, 198{#fges (Arnborg et al., 1987) or
bounded tree-width graphs (Karger and Srebro, 2001; Srebd8) 28nd general Bayesian networks
(Geiger and Heckerman, 1996) are all instances of NP-complete optimipatiblems. Learning
the best “discriminative structure” is no less difficult, largely because disé fanctions that are
needed to be optimized do not in general decompose (Lauritzen, 12@@heoe has as of yet not
been any formal hardness results in the discriminative case.

Discriminative optimization of a Bayesian network structure for the purpokekssification
does have its advantages, however. For example, the resulting nemveramenable to interpre-
tation compared to a purely discriminative model (the structure specifiesticoadl independen-
cies between variables that may indicate distinctive aspects of how bestéordizetween objects
Bilmes et al., 2001), it is simple to work with missing features and latent variabtes/é show
in this paper), and to incorporate prior knowledge (see below for fudbtils). Since discrimi-
native learning of such networks optimizes for only one inference sicefeag., classification) the
resulting networks might be simpler or more parsimonious than generativehed@etworks, may
better abide Occam’s razor, and may restore some of the benefits mentio/aguhik (1998).

Many heuristic methods have been produced in the past to learn the strat®8ayesian net-
work classifiers. For example, Friedman et al. (1997) introduced thatrgmented naive (TAN)
Bayes approach, where a naive Bayes (NB) classifier is augmenteddgés according to various
conditional mutual information criteria. Bilmes (1999, 2000) introducedettdaining away resid-
ual (EAR) for discriminative structure learning of dynamic Bayesian netwéwkspeech recogni-
tion applications, which also happens to correspond to “synergy” in theaheode (Brenner et al.,
2000). The EAR measure is in fact an approximation to the expected clagiional distribution,
and so improving EAR is likely to decrease the KL-divergence betweenubelass posterior and
the resultant approximate class posterior. A procedure for providingad éptimum of the EAR
measure was outlined in Narasimhan and Bilmes (2005) but it may be compullstexpensive.
Greiner and Zhou (2002); Greiner et al. (2005) express genargdan networks as standard lo-
gistic regression—they optimize parameters with respect to the conditional tikdli{CL) using a
conjugate gradient method. Similarly, Roos et al. (2005) provide conditrgeneral Bayesian
networks under which the correspondence to logistic regression hisidsrossman and Domin-
gos (2004) the conditional log likelihood (CLL) function is used to learn ardisnative structure.
The parameters are set using maximum likelihood (ML) learning. They useealghill climbing
search with the CLL function as a scoring measure, where at each itevagogdge is added to the
structure which conforms with the restrictions of the network topology (eAd\) Bind the acyclic-
ity property of Bayesian networks. In a similar algorithm, the classification (@R has also
been used for discriminative structure learning (Keogh and Pazz&®®, Prnkopf, 2005). The
hill climbing search is terminated when there is no edge which further improegskh The CR is
the discriminative criterion with the fewest approximations, so it is expectedrfonm well given
sufficient data. The problem, however, is that this approach is extrermelgtationally expensive,
as a complete re-evaluation of the training set is needed for each catsetige. Many generative
structure learning algorithms have been proposed and are reviewedherdd®n (1995), Murphy
(2002), Jordan (1999) and Cooper and Herskovits (1992). krtignce tests may also be used for
generative structure learning using, say, mutual information (de CarBp086) while other recent

1. Maximizing CR is equivalent to minimizing classification error which is idexitio empirical risk (Vapnik, 1998)
under the 0/1-loss function. We use the CR terminology in this paper sincsdnigwhat more consistent with
previous Bayesian network discriminative structure learning literature.
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independence test work includes Gretton afjoi® (2008) and Zhang et al. (2009). An experimen-
tal comparison of discriminative and generative parameter training on lethndinatively and
generatively structured Bayesian network classifiers has beemrpedadn Pernkopf and Bilmes
(2005). An empirical and theoretical comparison of certain discriminatideggnerative classifiers
(specifically logistic regression and NB) is given in Ng and Jordan (RA0B shown that for small
sample sizes the generative NB classifier can outperform the discriminzoitel.

This work contains the following offerings. First, a new case is made for avid when dis-
criminatively structured generative models can be usefully used to solve ctadsi-classification
problems.

Second, we introduce a hew order-based greedy search heurisitndlfog discriminative struc-
tures in generative Bayesian network classifiers that is computationattieaffand that matches
the performance of the currently top-performing but computationally estpemgreedy “classifi-
cation rate” approach. Our resulting classifiers are restricted to TAMeland TAN 2-trees, and
so our method is a form of search within a complexity-constrained model .sgdwe approach
we employ looks first for an ordering of thé features according to classification based informa-
tion measures. Given the resulting ordering, the algorithm efficiently dessadvigh-performing
discriminative network structure with no more thar(N 1) score evaluations wheieindicates
the tree-width of the sub-graph over the attributes, and where a scalteaon can either be a
mutual-information or a classification error-rate query. Our order<baBecture learning is based
on the observations in Buntine (1991) and the framework is similar to the K2ithgoproposed
in Cooper and Herskovits (1992). We use, however, a discriminatmengcmetric and suggest
approaches for establishing the variable ordering based on conditiartaal information (CMI)
(Cover and Thomas, 1991) and CR.

Lastly, we provide a wide variety of empirical results on a diverse collectfatata sets show-
ing that the order-based heuristic provides comparable classificatigltsresthe best procedure -
the greedy heuristic using the CR score, but our approach is computitionech cheaper. Fur-
thermore, we empirically show that the chosen approaches for ordegngtlables improve the
classification performance compared to simple random orderings. Wedregpgally compare both
discriminative and generative parameter trainindgothdiscriminativeandgeneratively structured
Bayesian network classifiers. Moreover, one of the key advantdggmerative models over dis-
criminative ones is that it is still possible to marginalize away any missing featdfésis not
known at training time which features might be missing, a typical discriminativeelmsdendered
unusable. We provide empirical results showing that discriminatively |dagaperative models are
reasonably insensitive to such missing features and retain their advaotagyegenerative models
in such case.

The organization of the paper is as follows: In Section 2, Bayesian nietware reviewed
and our notation is introduced. We briefly present the NB, TAN, and&+swork structures. In
Section 3, a practical case is made for why discriminative structure cagsiralle. The most com-
monly used approaches for generative and discriminative structungeaacheter learning are sum-
marized in Section 4. Section 5 introduces our order-based greedgtieun Section 6, we report
classification results on 25 data sets from the UCI repository (Merz et97)Jand from Kohavi
and John (1997) using all combinations of generative/discriminativetstelparameter learning.
Additionally, we present classification experiments for synthetic datardord- and segment-based
phonetic classification using the TIMIT speech corpus (Lamel et al., 18863 visual surface in-
spection task (Pernkopf, 2004), and for handwritten digit recogniteinguthe MNIST (LeCun
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et al., 1998) and USPS data set. Last, Section 7 concludes. We note tehiranary version of a
subset of our results appeared in Pernkopf and Bilmes (2008b).

2. Bayesian Network Classifiers

A Bayesian network (BN) (Pearl, 1988; Cowell et al., 1989 (G, 0) is a directed acyclic graph
G = (Z,E) consisting of a set of nodeés and a set of directed edg&s= {Ez z7,,Ez 7 ...} con-
necting the nodes whek, 7, is an edge directed fro& to Z;. This graph represents factorization
properties of the distribution of a set of random varialdes {Z,...,Zy;1}. Each variable in
Z has values denoted by lower case letf#sz, ..., zy1}. We use boldface capital letters, for
example,Z, to denote a set of random variables and correspondingly boldfae age letters
denote a set of instantiations (values). Without loss of generality, in Bayastavork classifiers
the random variabl&; represents the class varial@le= {1,...,|C|}, |C| is the cardinality ofC or
equivalently the number of classe§,n = {X1,...,Xn} = {Z2,...,2Zn+1} denote the set of random
variables of theN attributes of the classifier. Each graph node represents a randorleavidile
the lack of edges in a graph specifies some conditional independentiensti#ps. Specifically, in
a Bayesian network each node is independent of its non-descendaaistg parents (Lauritzen,
1996). A Bayesian network’s conditional independence relationships due to missing parents
in the graph. Moreover, conditional independence can reduce cotigoutar exact inference on
such a graph. The set of parameters which quantify the network aresespged byo. Each node
Zj is represented as a local conditional probability distribution given its pargn. We useei"h to
denote a specific conditional probability table entry (assuming discretebles)athe probability
that variableZ; takes on its™ value assignment given that its paredts take theirh™ (lexico-
graphically ordered) assignment, thateﬁh =Po (Zj =i|Zn; = h). Hence,h contains the parent
configuration assuming that the first elementpthat is,h;, relates to the conditioning class and
the remaining elements\h; denote the conditioning on parent attribute values. The training data

consists ofM independent and identically distributed samples: {z™}n_; = {(cm,xEN)}m:l.

For most of this work, we assume a complete data set with no missing values¢tdmien being
Section 6.6 where input features are missing at test time). The joint probaligitibution of the
network is determined by the local conditional probability distributions as

N+1
Po(Z2) = Po (Zj|Zn,
JI:L ( J J)
and the probability of a sampi' is
N+1Zj N

Po(Z=2")= ,Du.l:“:l <9ilm>u" ’

where we introduced an indicator functiuﬁ}]m of them" sample

um 1, ifz?":iandzﬁj:h.
i 0, otherwise

In this paper, we restrict our experiments to NB, TAN 1-tree (Friedmah,et397), and TAN
2-tree classifier structures (defined in the next several paragrapihs NB network assumes that
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all the attributes are conditionally independent given the class label. Thissntlest, giverC, any
subset oiX is independent of any other disjoint subsekofAs reported in the literature (Friedman
et al., 1997; Domingos and Pazzani, 1997), the performance of the NBifea is surprisingly
good even if the conditional independence assumption between attributesadistic or even false
in most of the data. Reasons for the utility of the NB classifier range betweeefits from the
bias/variance tradeoff perspective (Friedman et al., 1997) to stredhakare inherently poor from
a generative perspective but good from a discriminative perspd@&ilees, 2000). The structure
of the naive Bayes classifier represented as a Bayesian network isatisin Figure 1a.

(a) (b)

(@) (o)
ONORORER ol &) Lo I

Figure 1: Bayesian Network: (a) NB, (b) TAN.

In order to correct some of the limitations of the NB classifier, Friedman efl@87) intro-
duced the TAN classifier. A TAN is based on structural augmentations dfiBheetwork, where
additional edges are added between attributes in order to relax some ofghitami@nt conditional
independence properties of NB. Each attribute may have at most onattiterte as an additional
parent which means that the tree-width of the attribute induced sub-grapityisthat is, we have to
learn a 1-tree over the attributes. The maximum number of edges addedxttheeladependence
assumption between the attributedNis- 1. Thus, two attributes might not be conditionally inde-
pendent given the class label in a TAN. An example of a TAN 1-tree né&tis@hown in Figure 1b.
A TAN network is typically initialized as a NB network and additional edges betvwattributes are
determined through structure learning. An extension of the TAN networkuseak-tree, that is,
each attribute can have a maximumkodttribute nodes as parents. In this work, TAN datlee
structures are restricted such that the class node remains parentdéss,Gh = 0. While many
other network topologies have been suggested in the past (and a ggetonvs provided in Acid
et al., 2005), in this work we keep the class variable parent-less sincewsal®to achieve one of
our goals, which is to concentrating on generative models and their seactur

3. Discriminative Learning in Generative Models

A dichotomy exists between the two primary approaches to statistical pattesifielasgenerative
anddiscriminative(Bishop and Lasserre, 2007; Jebara, 2001; Ng and Jordan;, B&®dp, 2006;
Raina et al., 2004; Juang et al., 1997; Juang and Katagiri, 1992; Balhl¥986). Under generative
models, what is learned is a model of the joint probability of the featdrand the corresponding
class random variabl€& Complexity penalized likelihood of the data is often the objective used for
optimization, leading to standard maximum likelihood (ML) learning. Prediction witih & model

is then performed either by using Bayes rule to form the class posteribalpifity or equivalently

by forming class-prior penalized likelihood. Generative models have weisly studied, and are
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desirable because they are amenable to interpretation (e.g., the strucaugerdérative Bayesian
network specifies conditional independencies between variables thatmaigha useful high-level
explanation). Additionally, they are amenable to a variety of probabilisticenfex scenarios ow-
ing to the fact that they often decompose (Lauritzen, 1996)—the decatiopd®r factorization)
properties of a model are often crucial to their efficient computation.

Discriminative approaches, on the other hand, more directly represgetta of the distribution
that are important for classification accuracy, and there are a numbetysfthis can be done. For
example, some approaches model only the class posterior probability (ttei@oal probability
of the class given the features) p(C|X). Other approaches, such as support vector machines
(SVMs) (Sclolkopf and Smola, 2001; Burges, 1998) or neural networks (BisB6pg, 1995),
directly model information about decision boundary sometimes without neédlicgncentrate on
obtaining an accurate conditional distribution (neural networks, hawave also used to produce
conditional distributions above and beyond just getting the class rankesct®&ishop, 1995). In
each case, the objective function that is optimized is one whose minima odaeaessarily when
the joint distributionp(C, X) is accurate, but rather when the classification error rate on a training
set is small. Discriminative models are usually restricted to one particular mtieigcenario, that
is, the mapping from observed input featukeso the unknown class output varialife and not the
other way around.

There are several reasons for using discriminative rather thanajmearlassifiers, one of which
is that the classification problem should be solved most simply and directlyyevedt via a more
general problem such as the intermediate step of estimating the joint distribdéipnik, 1998).
The superior performance of discriminative classifiers has beentegpior many application do-
mains (Ng and Jordan, 2002; Raina et al., 2004; Juang et al., 1991 dod Katagiri, 1992; Bahl
etal., 1986).

Why then should we have an interest in generative models for discriminafien&ddress this
guestion in the next several paragraphs. The distinction betweeragjgaend discriminative mod-
els becomes somewhat blurred when one considers that there are betatiye and discriminative
methods to learn a generative model, and within a generative model one mayanaidtinction
between learning model structure and learning its parameters. In fact, paghes, we make a clear
distinction between learning the parameters of a generative model anth¢gtira structure of a
generative model. When using Bayesian networks to describe factonipatiperties of generative
models, the structure of the model corresponds to the graph: fixing thé,gfee parameters of
the model are such that they must respect the factorization propertieessag by that graph. The
structure of the model, however, can be independently learned, aedediffstructures correspond
to different families of graph (each family is spanned by the parametepgatisg a particular
structure). A given structure is then evaluated under a particular “bestif parameter values, one
possibility being the maximum likelihood settings. Of course, one could congjinizing both
parameters and structure simultaneously. Indeed, both structure amdgbars are “parameters”
of the model, and it is possible to learn the structure along with the parametersandomplexity
penalty is applied that encourages sparse solutions, su@hragularization (Tibshirani, 1996) in
linear regression and other models. We, however, find it useful to matihiaidistinction between
structure and parameters for the reason that parameter learning isnithhareontinuous optimiza-
tion procedure, while structure learning is inherently a combinatorial optimizatioblem. In our
case, moreover, it is possible to stay within a given fixed-complexity model fanifilywe wish to
stay within the family of sak-trees for fixedk, ¢; regularization is not guaranteed to oblige.
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Moreover, both parameters and structure of a generative model daarped either genera-
tively or discriminatively. Discriminative parameter learning of generativel@s such as hidden
Markov models (HMMs) has occurred for many years in the speeclynétan community (Bahl
et al., 1986; Ephraim et al., 1989; Ephraim and Rabiner, 1990; Juathdgatagiri, 1992; Juang
et al., 1997; Heigold et al., 2008), and more recently in the machine learamganity (Greiner
and Zhou, 2002; Greiner et al., 2005; Roos et al., 2005; Ng andida2da?2; Bishop and Lasserre,
2007; Pernkopf and Wohlmayr, 2009). Discriminative structure learnirsgalso more recently re-
ceived some attention (Bilmes, 1999, 2000; Pernkopf and Bilmes, 20@gHand Pazzani, 1999;
Grossman and Domingos, 2004). In fact, there are four possible oa$esrning a generative
model as depicted in Figure 2. Case A is when both structure and paranaetendeis generative.
Case B is when the structure is learned generatively, but the parantet&araed discriminatively.
Case C is the mirror image of case B. Case D, potentially the most preferabléoc@lassification,
is where both the structure and parameters are discriminatively learned.

Parameter Learning
Generative| Discriminative
Structure Generative Case A Case B
Learning Discriminative| Case C Case D

Figure 2: Learning generative-model based classifiers: Caseadop@ssible combination of gen-
erative and discriminative learning of either the parameters or the struaftBayesian
network classifiers.

In this paper, we are particularly interested in learning the discriminativetateiof a gener-
ative model. With a generative model, even discriminatively structured, sepectof the joint
distribution p(C, X) is still being represented. Of course, a discriminatively structured géver
model needs only represent that aspect of the joint distribution that efibiah from a classifica-
tion error rate perspective, and need not “generate” well (Bilmes 2@01). For this reason, it is
likely that a discriminatively trained generative model will not need to be agptex as an accurate
generatively trained model. In other words, the advantage of parsinfangiscriminative model
over a generative model will likely be partially if not mostly recovered whes ains a generative
model discriminatively. Moreover, there are a number of reasons wiynight, in certain contexts,
prefer a generative to a discriminative model including: parameter tyinglandin knowledge-
based hierarchical decomposition is facilitated; it is easy to work with strettiata; there is less
sensitivity to training data class skew; generative models can still be traikestraictured discrim-
inatively (as mentioned above); and it is easy to work with missing featuresabginalizing over
the unknown variables. This last point is particularly important: a discrimielgtistructured gen-
erative model still has the ability to go frop{C, X) to p(C, X") whereX’ is a subset of the features
in X. This amounts to performing the marginalizatip(C, X’) = ¥ x\x' p(C,X), something that
can be tractable if the complexity class @(iC, X) is limited (e.g.,k-trees) and the variable order
in the summation is chosen appropriately. In this work, we verify that a discitiaely structured
model retains its advantages in the missing feature case (see Section 6i§jrivhidative model,
however, is inherently conditional and it is not possible in general wbemesof the features are
missing to go fronp(C|X) to p(C|X’). This problem is also true for SVMs, logistic regression, and
multi-layered perceptrons.
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Learning a discriminatively structured generative model is inherently a ic@tdsial optimiza-
tion problem on a “discriminative” objective function. This means that theemialgorithm that
operates by tending to prefer structures that perform better on somenadaat is related to clas-
sification error. Assuming sufficient training data, the ideal objectivetfan is empirical risk
under the 0/1-loss (what we call CR, or the average error rate oveinggadata), which can be im-
plicitly regularized by constraining the optimization process to consider only a drgenplexity
model family (e.g.k-trees for fixed). In the case of discriminative parameter learning, CR can be
used, but typically alternative continuous and differentiable cost fumgtiwhich may upper-bound
CR and might be convex (Bartlett et al., 2006), are used and includetiooradi (log) likelihood
CLL(B|S) = log[M_ Po (C = cMX1n = x[}y ) —this last objective function in fact corresponds to
maximizing the mutual information between the class variable and the features $B#6G0), and
can easily be augmented by a regularization term as well.

One may ask, given discriminative parameter learning, is discriminativetsteustill neces-
sary? In the following, we present a simple synthetic example (similar to Narasiard Bilmes,
2005) and actual training and test results that indicate when a discrimintaiineuse would be
necessary for good classification performance in a generative modelmddel consists of 3 bi-
nary valued attributeX;, X, X3 and a binary uniformly distributed class varialleX; denotes the
negation ofX;. For both classe; is uniformly distributed an&, = X; with probability 0.5 and a
uniformly distributed random number with probability 0.5. So we have the follgwiobabilities
for both classes:

N 0 with probability 05
1= 1 with probability 05

X1 with probability Q5
X = 0 with probability 025
1 with probability 025

For class 1X3 is determined according to the following:

X1 with probability Q3
Xo  with probability Q5

%3:=9 0 with probability 01
1 with probability 01
For class 2X3 is given by:
X1 with probability 03
X - Xz with probability Q5
3=

0 with probability 01
1 with probability 01

For both classes, the dependence betwgenX; is strong. The dependenig— X3 is stronger
thanX; — X3, but only from a generative perspective (ilgXz; X3) > | (X1;X3) andl (Xz; X3|C) >
| (X1;X3|C)). Hence, if we were to use the strength of mutual information, or conditionebal
information, to choose the edge, we would choXse X3. However, it is theX; — X3 dependency
that enables discrimination between the classes. Sampling from this distribwgofirst learn
structures using generative and discriminative methods, and then werpgrhrameter training
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on these structures using either ML or CL (Greiner et al., 2005). Fonilega generative TAN
structure, we use the algorithm proposed by Friedman et al. (1997) wehidsed on optimizing
the CMI between attributes given the class variable. For learning a disctiveirsdructure, we
apply our order-based algorithm proposed in Section 5 (we note that opitintie EAR measure
(Pernkopf and Bilmes, 2005) leads to similar results in this case).

Recognition rate

—— TAN-Discriminative Structure—Ml|
- - - - _ > — ©— TAN-Discriminative Structure-Cl|
—H— SvM

—><— TAN-Generative Structure-ML

— X — TAN-Generative Structure-CL
—@— NB-ML

T T — @ — NB-CL

1 1 1 1 1 1
200 300 400 500 600 700 800 900 1000
Sample size

Figure 3: Generative and discriminative learning of Bayesian netwositkers on synthetic data.

Figure 3 compares the classification performance of these various easkes addition we
show results for a NB classifier, which resorts to random guessing betath classes due to the
lack of any feature dependency. Additionally, we provide the classifitgt@sformance achieved
with SVMs using a radial basis function (RBF) kerdeDn thex-axis, the training setample size
varies according t¢20,50,100,200,500,1000 and the test data set contains 1000 samples. Plots
are averaged over 100 independent simulations. The solid line is therparfoe of the classifiers
using ML parameter learning, whereas, the dashed line correspondsatar&meter training.

(@) (b)

C)—)—()

Figure 4: (a) Generatively learned 1-tree, (b) Discriminatively leafn&ée.

Figure 4 shows (a) the generative (b) the discriminative 1-tree ovetttitiges of the resulting
TAN network (the class variable which is the parent of each feature ishmn in this figure).
A generative model prefers edges betwegnr- X, and X, — X3 which do not help discrimination.

2. The SVM uses two parametéZ$ anda, whereC* is the penalty parameter for the errors of the non-separable case
ando is the variance parameter for the RBF kernel. We set the values forghesmmeters t€* = 3 ando = 1.
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The dependency betweefi and X3 enables discrimination to occur. Note that for this example
the difference between ML and CL parameter learning is insignificant@rtié generative model,
only a discriminative structure enables correct classification. Thenpesftce of the non-generative
SVM is similar to our discriminatively structured Bayesian network classifitier@fore, when a
generative model is desirable (see the reasons why this might be theboasg, dhere is clearly a
need for good discriminative structure learning.

In this paper, we show that the loss of a “generative meaning” of a gévemodel (when
it is structured discriminatively) does not impair the generative model’s abiligagily deal with
missing features (Figure 11).

4. Learning Bayesian Networks

In the following sections, we briefly summarize state-of-the-art generatid discriminative struc-
ture and parameter learning procedures that are used to comparedetsbased discriminative
structure learning heuristics (which will be described in Section 5 and&ealun Section 6).

4.1 Generative Parameter Learning

The parameters of the generative model are learned by maximizing the logdibe@ldf the data
which leads to the ML estimation @flh. The log likelihood function of a fixed structure #fis

M N+1

L(BlS) = ZlogPe z") ngljZIOQPO(ZJ ﬁ\ZnJZZH‘,):

(1)

M N+11Zj]

rrplJ 12;“3?'%( I|h>-

It is easy to show that the ML estimate of the parameters is

ej Zm_l u||h

ith = 1Zj1
1Y u||h

using Lagrange multipliers to constrain the parameters to a valid normalizeahilithbdistribution.
Since we are optimizing over constrained BN structukesdes), we do not perform any further
regularization during training other than simple smoothing to remove zerabiliip entries (see
Section 6.1).

4.2 Discriminative Parameter Learning

As mentioned above, for classification purposes, having a good dpatian to the posterior prob-
ability is sufficient. Hence, we want to learn parameters so that CL is maximizefbrtunately,
CL does not decompose as ML does. Consequently, there is no claseddlution and we have to
resort to iterative optimization techniques. The objective function of thditonal log likelihood
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is
- M P (C=c™ Xy = X
CLL(B|S) =log [ Pe (C=c"Xin =xTiy) = ¥ log C@( IN=XTn)

zlpe (C =C,X1N = XT;N)

C

M IC|
> [IogP@ (C=c" Xun=X{) —log ) Po(C=cXin= XT:'N)] .
c=1

m=1

Similar to Greiner and Zhou (2002) we use a conjugate gradient algorithrmimatisearch (Press
et al., 1992). In particular, thBolak-Ribieranethod is used (Bishop, 1995). The derivative of the
objective function is

M
w = i, logPe (C = c™ X1n = XIn) —
69”h m=1 [ 09
1 o [
: Po(C=c,Xin=XIN)| -
IC aeijhczl

|
C;Po (C=c,Xin=x1\)

Further, we distinguish two cases for deriviﬁ%jeﬂﬂ. For TAN, NB, or 2-tree structures each
. ilh

parameteﬁi‘h involves the class node value, eitt@k i for j =1 (Case A) olC =h; for j > 1

(Case B) wheré; denotes the class instantiatibne h.

4.2.1 ASEA

For the class variable, that is= 1 andh = 0, we get

oCLL(B|S) M [ut™ wm
oCLL(BS) _ r—ar

o 2|0
where we use Equation 1 for deriving the first term (omitting the sum pesrdh) and we intro-
duced the posterior
Po (C=i,X1n=XT))

IC| '
C;PG (C = C7X1:N = XEN)

W™= Po (C=i[X1n = X]y) =

4.2.2 (ASEB

For the attribute variables, that is;> 1, we derive correspondingly and have

OCLL(BlS) M [Ui”ﬁ" WmVi”hThl]
- 7 = _— h |
eij\h "8l

ae|1|h m=1
whereW = Po (C=hy|X1n =XT}y) is the posterior for clads; and samplen, and
Jm [ 1 itz =iandz} =h\h
ilh\hy 0, otherwise
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The probabllltyel‘h is constrained tc&)l|h >0 andzl‘z‘iel“h = 1. We re-parameterize the problem
to incorporate the constraints e;‘h in the conjugate gradient algorithm. Thus, we use different
parametersl‘h as follows

exp(Bl‘h>
5 exp<BI|h) |

This requires the gradleM which is computed after some modifications as
|\h

ilh =

. j
aCLL(Q§|S) _ % oCLL(B[S) aekIh _ % [u_l,m_wm] _91% E [ul.m_Wm]
- i - i i c c
aBWh k=1 aeim aBWh m=1 I m=1c=1

for Case A and similarly for Case B we get the gradient

oCLL(BlS) M | A
6[3“1’ rg [UIJ”T WhTViJ\ﬁ\]hl} _eij‘“n;zi [Uﬂ\h Wh1V||h\h}
|

4.3 Generative Structure Learning

The conditional mutual information between the attributes given the clasbhlaisecomputed as:
P (X, XjIC)

P(X|C)P(X;|C)

This measures the information betwegrandX; in the context ofC. Friedman et al. (1997) gives
an algorithm for constructing a TAN network using this measure. This algoightan extension of
the approach in Chow and Liu (1968). We briefly review this algorithm in ¢flewing:

I (%; Xj|C) = Ep(x.x ) log

1. Compute the pairwise CMI(X;;X;|C) VvV 1<i<Nandi<j<N.

2. Build an undirected 1-tree using the maximal weighted spanning tree atgdiftruskal,
1956) where each edge connectiygndX; is weighted byl (X;; X;|C).

3. Transform the undirected 1-tree to a directed tree. That is, select aariable and direct
all edges away from this root. Add to this tree the class roded the edges froi@ to all
attributesXy, ..., Xn.

4.4 Discriminative Structure Learning

As a baseline discriminative structure learning method, we use a greedyaadmentation method
and also thesuperParerglgorithm (Keogh and Pazzani, 1999).

4.4.1 (REEDY HEURISTICS

While this method is expected to perform well, it is much more computationally costlythigen
method we propose below. The method proceeds as follows: a network iBzadito NB and at
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each iteration we add the edge that, while maintaining a partial 1-tree, givéarglest improve-
ment of the scoring function (defined below). This process is terminatesh itiere is no edge
which further improves the score. This process might thus result in algkttiee (forest) over the
attributes. This approach is computationally expensive since each time arsaatifed, the scores

for all O (N?) edges need to be re-evaluated due to the discriminative non-decompssatihey
functions we employ. This method overall has cOs(ﬂ\l3) score evaluations to produce a 1-tree,
which in the case of a® (NM)) score evaluation cost (such as the below), has an overall complexity
of O (N4). There are two score functions we consider: the CR (Keogh and iiaz289; Pernkopf,
2005)

1 M
CR(ZS[S) = 17 3 S(B5 ()<

and the CL (Grossman and Domingos, 2004)
M
CL(B|S) =[] Po(C=c"Xun=XIn),
m=1

where the expressiah(B; (xT}) ,c™) = 1 if the Bayesian network classifig (xT ) trained with
samples inS assigns the correct class laloBl to the attribute valuesT, and is equal to O other-
wise? In our experiments, we consider the CR score which is directly related tavipieal risk

in Vapnik (1998). The CR is the discriminative criterion that, given suffictesining data, most
directly judges what we wish to optimize (error rate), while an alternativddvoe to use a convex
upper-bound on the 0/1-loss function (Bartlett et al., 2006). Like in tinegdive case above, since
we are optimizing over a constrained model spaegdes), and are performing simple parameter
smoothing, again regularization is implicit. This approach has in the literature dsemvn to be
the algorithm that produces the best performing discriminative structwegiikand Pazzani, 1999;
Pernkopf, 2005) but at the cost of a very expensive optimizationepitae. To accelerate this algo-
rithm in our implementation of this procedure (which we use as a baseline to cemgainst our
still to-be-defined proposed approach), we apply two techniques:

1. The data samples are reordered during structure learning so thatssifsethsamples from
previous evaluations are classified first. The classification is terminatedass the perfor-
mance drops below the currently best network score (Pazzani, 1996).

2. During structure learning the parameters are set to the ML values. Méraimg the structure
we only have to update the parameters of those nodes where the se¢mtsgar changes.
This observation can be also used for computing the joint probability dutasgiication.
We can memorize the joint probability and exchange only the probabilities of thades
where the set of parents changed to get the new joint probability (KeadjRPazzani, 1999).

In the experiments this greedy heuristic is labeled as TAN-CR and 2-trefeiCRtree and 2-tree
structures, respectively.
4.4.2 SIPERPARENT AND ITS k-TREE GENERALIZATION

Keogh and Pazzani (1999) introduced SwperPareralgorithm to efficiently learn a discriminative
TAN structure. The algorithm starts with a NB network and the edges pointorg the class

3. Note that the CR scoring measure is determined from a classifier tiangested on the same data
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variable to each attribute remain fixed throughout the algorithm. In the fifst seh attribute in
turn is considered as a parent of all other parentless attributes (g¢keegtiss variable). If there
are no parentless attributes left, the algorithm terminates. The parent whiobvasghe CR the
most is selected and designated the current superparent. The sempfides the most recently
chosen superparent and keeps only the single best child attribute cluiherparent. The single
edge between superparent and best child is then kept and the ppbsebecting a new superparent
is repeated, unless no improvement is found at which point the algorithm tesiriThe number of
CR evaluations therefore in a complete run of the algorith(isl?). Moreover, CR determination
can be accelerated as mentioned above.

We can extend this heuristic to learn 2-trees by simply modifying the first stegrdingly:
consider each attribute as an additional parent of all parentless or-paugeted attributes (while
ensuring acyclicity), and choose as the superparent the one thaateghest, requiring (N)
CR evaluations. Next, we retain the pair of edges between superpaceparentless or single-
parented) children that evaluates best using CR, requtﬂl(luz) CR evaluations. The process
repeats if successful and otherwise terminates. The obkite® generalization modifies the first
step to choose an additional parent of all attributes with fewer khaarents, and then selects the
best children for edge retention, leading overall to a process @/(ﬂNk“) score evaluations. In
this paper, we compare against this heuristic in the case-ofl andk = 2, abbreviating them,
respectively, a§AN-SuperParerdand?2-tree-SuperParent

5. New Heuristics: Order-based Greedy Algorithms

It was first noticed in Buntine (1991); Cooper and Herskovits (1992} ttie best network consis-
tent with a given variable ordering can be found wi{N%"¢) score evaluations wheigis the
maximum number of parents per node in a Bayesian network, and wieassmall fixed constant.
These facts were recently exploited in Teyssier and Koller (2005) wd@erative structures were
learned. Here, we are inspired by these ideas and apply them to thef tesenmg discriminative
structures. Also, unlike Teyssier and Koller (2005), we establish ondyasdering, and since our
scoring cost is discriminative, it does not decompose and the learnenidistive structure is not
guaranteed to be optimal. However, experiments show good results atalglédiv computational
learning costs.

Our procedure looks first for a total orderirgof the variables<;.y according to certain criteria
which are outlined below. The parents of each node are chosen in suai that the ordering is
respected, and that the procedure results in at mastree. We note here, letree is typically
defined on an undirected graphical model as one that has a tree-width-arfuivalently, there
exists an elimination order in the graph such that at each elimination step, théeiod eliminated
has no more thak neighbors at the time of elimination. When we speak of a Bayesian network
being ak-tree, what we really mean is that the moralized version of the Bayesian tkasnadt-tree.

As a reminder, our approach is to leark-tree (i.e., a computationally and parameter constrained
Bayesian network) over the featur¥s.y. We still assume, as is done with a naive Bayes model,
thatC is a parent of eacl; and this additional is not counted ka—thus, a 1-tree would have two
parents for eaclf;, bothC and one additional feature. As mentioned above, in order to stay strictly
within the realm of generative models, we do not consider the case @heas any parents.
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5.1 Step 1: Establishing an Order<

We propose three separate heuristics for establishing an orderafghe attribute nodes prior to
parent selection. In each case as we will see later, we use the resulliexingrsuch that later
features may only have earlier features as parents—this limit placed onttbepsgents leads to
reduced computational complexity. Two of the heuristics are based ontld&iooal mutual infor-
mation| (C; Xa|Xg) between the class variaband some subset of the featudés given some
disjoint subset of variable$g (SoANB = 0). The conditional mutual information (CMI) measures
the degree of dependence between the class variablX amgiven Xz and it may be expressed
entirely in terms of entropy vi&(C; Xa|Xg) = —H(C,Xa, Xg) + H(Xa,Xg) + H(C,Xg) —H(Xg),
where entropy o is defined add (X) = — S, p(x)logp(x). WhenB = 0, we of course obtain
(unconditional) mutual information. A structure that maximizes the mutual informaigdweerC
andX is one that will lead to the best approximation of the posterior probability. laeratlords, an
ideal form of optimization would do the following:

B* € argmax z(X1:n;C),
Q%eﬂ;

where¥3z is a complexity constrained class of BNs (elgtrees), andB* is an optimum network. Of
course, this procedure being intractable, we use mutual information togeaficient heuristics
but that we show work well in practice on a wide variety of tasks (Sectiorm B third heuristic
we describe is similar to the first two except that it is based directly on CR (imirieal error
or 0/1-loss) itself. The heuristics detailed in the following are compared stgaimdom orderings
(RO) of the attributes in Section 6 to show that they are doing better thanehanc

1: OMI: Our initial approach to finding an order is a greedy algorithm that firsosés the
attribute node that is most informative ab@utThe next attribute in the order is the attribute node
that is most informative abo@ conditioned on the first attribute, and subsequent nodes are chosen
to be most informative abo@ conditioned on previously chosen attribute nodes. More specifically,
our algorithm forms an ordered sequence of attribute n¥dds= {X2%,X2,..., X"} according to

e aomax (1G] g

wherej € {1,...,N}.

It is not possible to describe the motivation for this approach without ceriagl at least the
general way parents of each attribute node are ultimately selected—moite degagiven below,
but for now it is sufficient to say that each node’s set of potentialrgarie restricted to come from
nodes earlier in the ordering. L¥f, C Xﬁlfl be the set of chosen parents Xyrin an ordering.
There are several reasons why the above ordering should bé. USedt) suppose we consider two
potential next variableX;j, andXj, as thej" variable in the ordering, whergX;,;C|X1:j_1) <
1(Xj,;C|X1:;j—1). ChoosingX;, could potentially lead to the case that no additional variable within
the allowable set of paren¥;:j_1 could be beneficially added to the model as a pareix; ofThe
reason is that, conditioning on all of the potential parent¥;gfthe variableX|, is less informative
aboutC. If Xj, is chosen, however, then there is a possibility that some edge augmentation as
parents ofXj, will render X;, residually informative abou@—the reason for this is tha€j, chosen
to have this property, and one set of parents that rerJerssidually informative aboul is the set

Xﬁjfl. Stated more concisely, we wish to choose as a next variable in the ordegrtbat has the
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potential to be strongly and residually predictive®fvhen choosing earlier variables as parents.
When choosing; such that (C;X,-\Xi”*l) is large, this is possible at least in the case wKen

may have up tg — 1 additional parents.

Of course, only a subset of these nodes will ultimately be chosen to etinsirdhe model is
ak-tree and remains tractable and just becdXg C|X1:j_1) is large does not necessarily mean
thatl (Xj;C|Xg) is also large for som8 C {1,...,(j —1)}. The strict sub-set relationship, where
IB| < (j —1), is necessary to restrict the complexity class of our models, but this gazVés/
an accuracy-computation tradeoff. Our approach, therefore, iseohuristic. Nevertheless, one
justification for our ordering heuristic is based on the aspect of ouriiigothat achieves compu-
tational tractability, namely the parent-selection strategy where variablesrallowed to have
previously ordered variables as their parents (as we describe in maikbdtow). Moreover, we
have empirically found this property to be the case in both real and artifarialom data (see be-
low). Loosely speaking, we see our ordering as somewhat analogéduwatboost but applied to
feature selection, where later decisions on the ordering are chosemaotdor the deficiencies of
earlier decisions.

A second reason our ordering may be beneficial stems from the reag@nrthive Bayes model
is itself useful. In a NB, we have that eaghis independent oK; givenC. This has beneficial
properties both from the bias-variance (Friedman et al., 1997) andtherliscriminative structure
perspective (Bilmes, 2000). In any given ordering, variables eheaédier in the order have more
of a chancen the resulting modeio render later variables conditionally independent of each other
conditioned on botlC and the earlier variable. For example, if two later variables both ask for
the same earlier single parent, the two later variables are modeled as ineleipgindnC and that
earlier parent. This normally would not be useful, but in our ordering;esthe earlier variables
are in general more correlated with this mimics the situation in NBC and variables similar t€
render conditionally independent other variables that are less simIafvidh NB alone,C renders
all other variables conditionally independent). For reasons similar to NBdFan et al., 1997),
such an ordering will tend to work well.

Our approach rests on being able to compute CMI queries over a largeenwintariables,
something that requires both solving a potentially difficult inference prolalethalso is sensitive
to training-data sparsity. In our case, however, a conditional mutuatniafiton query can be
computed efficiently by making only one pass over the training data, albeit witkeaitial problem
with bias and variance of the mutual information estimate. As mentioned abareCadl query
can be represented as a sum of signed entropy terms. Moreoverallinagables are discrete in
our studies, an entropy query can be obtained in one pass over theydatmputing an empirical
histogram of random variable values only that exist in the data, then sumrengmly the resulting
non-zero values. Let us assume, for simplicity, that integer varidhlepresents the Cartesian
product of all possible values of the vector random variable for we toigliotain an entropy value.
Normally, H(Y) = — 5 p(y) log p(y) would require an exponential number of terms, but we avoid
this by computingH (Y) = — 3z p(y) logp(y) — |2y \ Ty|eloge, wheredy are the set of values
that occur in the training data, argj is the set of all possiblgvalues, and is any smoothing value
that we might use tofill in zeros in the empirical histogram. Therefore, if gardghm requires only
a polynomial number of CMI queries, then the complexity of the algorithm is stiyl palynomial
in the size of the training data. Of course, as the number of actual variablesises, the quality
of this estimate decreases. To mitigate these problems, we can restrict ther mfirvdngables in
Xﬁ’fl for a CMI query, leading to the following second heuristic based on CMI.
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2: OMISP: For a 1-tree each variab}el has one single parent (SRj; which is selected from

the variableé(ﬁjfl appearing beforé&i in the ordering (i.e.|Mj| = 1,¥]). This leads to a simple

variant of the above, where CMI conditions only on a single variable wmﬁﬁ*. Under this
heuristic, an ordered sequence is determined by

XLe argmax max [l (C;X|XZ)]] -
XXy \XE [ Xeexd

Note, in this work, we do not present results using OMISP since the ragaitesnot significantly
different than OMI. We refer the interested reader to Pernkopf and Bi(@2@08a) which gives the
results for this heuristic, and more, in their full glory.

3: OCR: Here, CR on the training data is used in a way similar to the aforementionedygreed
OMI approach. The ordered sequence of nodEY is determined according to

XL<— argmax CR(BsS),
XeXin\XE

wherej € {1,...,N} and the graph of3s at each evaluation is a fully connected sub-graph only
over the node€, X, andXEJ_l, that is, we have aaturategub-graph (note, her8s; depends on
the currentX and the previously chosen attribute nodes in the order, but this is not tedita
notational simplicity). This can of course lead to very large local conditiprabability tables. We
thus perform this computation by using sparse probability tables that hawestightly smoothed

as described above. We then compute CR on the baﬁ’i{@fx,xﬁj*l) oP <X,Xﬁj*1|C) P(C).

The justification for this approach is that it produces an ordering basedmmutual information
but on a measure more directly related to classification accuracy.

5.2 Step 2: Heuristic for Selecting Parents w.r.t. a Given Order to Form &-tree

Once we have the ordering™, we selecn, € X% ~* for eachx’, with j € {2,...,N}. When

the size ofXp; (i.e.,N) and ofk are small we can use even a computational costly scoring function
to find Xn,. In case of a largél, we can restrict the size of the parent Xgt similar to thesparse
candidate algorithnFriedman et al., 1999). While either the CL or the CR can be used as a cost
function for selecting parents, we in this work restrict our experiments tddCRarent selection
(empirical results show it performed better). The parent selection edscas follows. For each

j € {2,...,N}, we choose the bektparentsxp, C XX for X, by scoring each of the (('L‘))
possibilities with CR. We note that fgre {2,...,N — 1} there will be a set of variables that have
not yet had their parents chosen, namely varial&l&st —for these variables, we simply use the
NB assumption. That is, those variables have no parents otheCttwathe selection of parents for

X! (we relax this property in Pernkopf and Bilmes, 2008a). Note that thef setrents is judged
using CR, but the model parameters for any given candidate set oftpardected are trained using
ML (we did not find further advantages, in addition to using CR for pasefdction, in also using
discriminative parameter training). We also note that the parents for eablt&tinode are retained

in the model only when CR is improved, and otherwise the ntidis left parent-less. This therefore
might result in a partiak-tree (forest) over the attributes. We evaluate our algorithnk ferl and
k=2, but is defined above to leakrtrees k > 1), and thus use® (N*1) score evaluations where,
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due to ML training, each CR evaluation@(NM). Overall, for learning a 1-tree, the ordering and
the parent selection cos@(Nz) score evaluations. We see that the computation is comparable to
that of theSuperParerdlgorithm and itk-tree generalization.

Algorithm 1 OMI-CR
InpUt X 1:N7C75
Output: set of edge& for TAN network
X1,X2 « argmax xexy [1 (C; X, X))
if 1 (C;X2) <1(C;X2) then
X2+ Xt
end if
E« {ENaive Baye¢’ Exi,xg}
j«2
CRyg <0
repeat
jeij+1 .
X, argma, i1 [I <C;x|xi-lfl)}
X% argma>§<6x£171CR($5\5) where edges 0B; are {E U Ex,xL}

CRw <~ CR(%s15) where edges ofi are {EUE,. |
if CRyew > CRoig then
CRoid ¢ CRaew
e {EUE. )
end if
until j=N

5.3 OMI-CR Algorithm

Recapitulating, we have introduced three order-based greedy heufistiroducing discriminative
structures in Bayesian network classifiers: First, there is OMI-CR (Qvdsed on Mutual Infor-

mation with CR used for parent selection); Second, there is OMISP-C&e(@ased on Mutual
Information conditioned on a Single Parent, with CR used for parent seigcsiod third OCR-CR

(Order based on Classification Rate, with CR used for parent seleckonkvaluation purposes,
we also consider random orderings in step 1 and CR for parent sel¢R@CR). The OMI-CR

procedure is summarized in Algorithm 1 where both steps (order andtpsaiection) are merged
at each loop iteration (which is of course equivalent to considering liefis separately). The
different algorithmic variants are obtained by modifying the ordering criterio

6. Experiments

We present classification results on 25 data sets from the UCI repoditery &t al., 1997) and from
Kohavi and John (1997), for frame- and segment-based phonetgifidagon experiments using
the TIMIT database (Lamel et al., 1986), for a visual surface inspettisk (Pernkopf, 2004),
and for handwritten digit recognition using the MNIST (LeCun et al., 1988) USPS data set.
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Additionally, we show performance results on synthetic data. We use NB, &Ad 2-tree network
structures. Different combinations of the following parameter/structummiteg approaches are
used to learn the classifiers:

e Generative (ML) (Pearl, 1988) and discriminative (CL) (Greiner eR&I05) parameter learn-
ing.

e CMI: Generative structure learning using CMI as proposed in Friedrah @997).

e CR: Discriminative structure learning with greedy heuristic using CR adrggdunction
(Keogh and Pazzani, 1999; Pernkopf, 2005) (see Section 4.4).

e RO-CR: Discriminative structure learning using random ordering (RO)ep & and CR for
parent selection in step 2 of the order-based heuristic.

e SuperPareri-tree: Discriminative structure learning using the SuperParent algorKbogh
and Pazzani, 1999) with= 1,2 (see Section 4.4).

e OMI-CR: Discriminative structure learning using CMI for ordering theiahles (step 1) and
CR for parent selection in step 2 of the order-based heuristic.

e For OMI-CR, we also evaluate discriminative parameter learning by optimizinguging
the selection of the parent in step 2. We call this OMI-CRCL. Discriminativarpater
learning while optimizing discriminative structure is computationally feasible onlsatrer
small data sets due to the cost of the conjugate gradient parameter optimization.

We do not include experimental results for OMISP-CR and OCR-CR facspeasons. The
results, however, show similar performance to OMI-CR, and can bealfouan extended technical-
report version of this paper (Pernkopf and Bilmes, 2008a).

While we have attempted to avoid a proliferation of algorithm names, some namdaatoe
has unavoidably occurred in this paper. We therefore have attemptee ¢osirmple 2-, 3-, or even
4-tag naming scheme where A-B-C-D is such that “A’ (if given) refersitber TAN (1-tree) or 2-
tree, “B” and “C” refer to the structure learning approach, and “Dg{ifen) refers to the parameter
training method of thdinal resultant model structure. For the ordering heuristics “B” refers to the
ordering method, “C” refers to the parent selection and internal parameetaing strategy. For
the remaining structure learning heuristics only “B” is present. Thus, OWI-CRML-CL would
be the OMI procedure for ordering, parent selection evaluated usth@vw@h ML training used at
that time), and with CL used to train the final model which would be a 1-tree (noteover that
TAN-OMI-CR-CL is equivalent since ML is the default training method).

6.1 Experimental Setup

Any continuous features were discretized using recursive minimal gnprampitioning (Fayyad and
Irani, 1993) where the codebook is produced using only the training @latadiscretization method
uses the class entropy of candidate partitions to determine the bin bounddgesandidate parti-
tion with the minimal entropy is selected. This is applied recursively on the establljzartitions

and the minimum description length approach is used as stopping criteria fordinesive parti-
tioning. In Dougherty et al. (1995), an empirical comparison of diffediscretization methods
has been performed and the best results have been achieved with tbjs/drased discretization.
Throughout our experiments, we use exactly the same data partitioningdotraining procedure.

We performed simple smoothing, where zero probabilities in the conditionbapility tables are
replaced with small values & 0.00001). For discriminative parameter learning, the parameters are
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initialized to the values obtained by the ML approach (Greiner et al., 200%).gfadient descent
parameter optimization is terminated usicrgss tunings suggested in Greiner et al. (2005).

6.2 Data Characteristics

In the following, we introduce several data sets used in the experiments.

6.2.1 UCI DatA

We use 25 data sets from the UCI repository (Merz et al., 1997) andKamavi and John (1997).
The same data sets, 5-fold cross-validation, and train/test learning sslasnme Friedman et al.
(1997) are employed. The characteristics of the data sets are summarikzgolén7 in the Ap-
pendix A.

6.2.2 TIMIT-4/6 DaTA

This data set is extracted from the TIMIT speech corpus using the ds&deeking region 4 which
consists of 320 utterances from 16 male and 16 female speakers. Tdwhdpesampled at 16
kHz. Speech frames are classified into the following classes, voicediiVdjced (U), silence (S),
mixed sounds (M), voiced closure (VC), and release (R) of plosWsstherefore are performing
frame-by-frame phone classification (contrasted with pliecegnitionusing, say, a hidden Markov
model). We perform experiments with only four classes V/U/S/M and all sise&%8/U/S/IM/VC/R
using 110134 and 121629 samples, respectively. The class distribfitiomfour class experiment
V/UISIM is 23.08%, 60.37%, 13.54%, 3.01% and of the six class case V/U/S/MN&ZR.9%,
54.66%, 12.26%, 2.74%, 6.08%, 3.36%. Additionally, we perform classdit@xperiments on
data of male speakers (Ma), female speakers (Fe), and both geli@deisd). For each gender we
have approximately the same number of samples. The data have been splihumige®y exclusive
subsets ofD € {51, 5.} where the size of the training dasais 70% and of the test daf% is 30%
of D. The classification experiments have been performed with 8 wavelet-fesgades combined
with 12 mel-frequency cepstral coefficients (MFCC) features, that(sfedtures. More details
about the features can be found in Pernkopf et al. (2008). We hdifée6ent classification tasks
for each classifier, that is, Ma+Fe, Ma, ked or 6 Classes.

6.2.3 TIMIT-39 DaTA

This again is a phone classification test but with a larger number of clabBsescordance with
Halberstadt and Glass (1997) we cluster the 61 phonetic labels into 3@slagsoring glottal
stops. For training, 462 speakers from the standard NIST trainingasetlieen used. For testing
the remaining 168 speakers from the overall 630 speakers were empl&peh speaker speaks
10 sentences including two sentences which are the same among all spéatheled asg, five
sentences which were read from a list of phonetically balanced sestéabeled asx), and 3
randomly selected sentences (labeledipdn the experiments, we only use theandsisentences
since thesasentences introduce a bias for certain phonemes in a particular contexinddns that
we have 3696 and 1344 utterances in the training and test set, resiyedtederive from each
phonetic segment one feature vector which results in 140173 training saamude50735 testing
samples. The features are derived similarly as proposed in Halbersth@lass (1997). First, 12
MFCC + log-energy feature (13 MFCC’s) and their derivatives (18\aéves) are calculated for
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X

Figure 5: Acquired surface data with an embedded crack.

every 10ms of the utterance with a window size of 25ms. A phonetic segmenh @dn be variable
length, is split at a 3:4:3 ratio into 3 parts. The fixed-length feature vectamigposed of: 1) three
averages of the 13 MFCC's calculated from the 3 portions (39 feat@eitje 13 Derivatives of the
beginning of the first and the end of the third segment part (26 feafaned)3) the log duration of
the segment (1 feature). Hence, each phonetic segment is represgb@features.

6.2.4 SURFACEINSPECTIONDATA (SURFINSP)

This data set was acquired from a surface inspection task. Surféaesieith three-dimensional

characteristics on scale-covered steel blocks have to be classifieddlatss®8s. The 3-dimensional
raw data showing the case of an embedded surface crack is given e Biglihe data set consists
of 450 surface segments uniformly distributed into three classes. Eacles@mface segment) is

represented by 40 features. More details on the inspection task andtheefeused can be found
elsewhere (Pernkopf, 2004).

6.2.5 MNIST DnaTA

We evaluate our classifiers on the MNIST data set of handwritten digitsuibe€al., 1998) which
contains 60000 samples for training and 10000 digits for testing. The digiteatered in a 28 28
gray-level image. We re-sample these images at a resolution ef1#4pixels. This gives 196
features where the gray-levels are discretized using the proceduand-fryyad and Irani (1993).
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Figure 6: USPS data.

6.2.6 USPS 1A

This data set contains 11000 handwritten digit images (uniformly distributdticted from zip
codes of mail envelopes. Each digit is represented as-alBsgrayscale image, where each pixel
is considered as individual feature. Figure 6 shows a random samile data set. We use 8000
digits for training and the remaining images as a test set.

6.3 Conditional Likelihood and Maximum Mutual Information Orderings

In the following, we evaluate the ordering heuristics using 31 differessdiaation scenarios (from
the UCI and the TIMIT-4/6 data sets) comprising differing input featuresdiffering numbers of
classes. We compare our ordering procedure (i.e., OMI, where we maxihézmutual informa-
tion as in Equation 2) with several other possible orderings in an attempt toieatigishow that
our aforementioned intuition regarding order (see Section 5.1) is sound majority of cases. In
particular, we compare against an ordering produced by minimizing the niofothation (replac-
ing argmax with argmin in Equation 2). Additionally, we also compare againsub@drmly-at-
random orderings. For the selection of the conditioning variables (s#®®$&.2) the CL score is
used in each case. ML parameter estimation is used for all examples in thisisectio

Figure 7 and Figure 8 show the resulting conditional log likelihoods (CLIthefmodel scoring
the training data after the TAN network structures (1-trees in this case)been determined for
the various data sets. As can be seen, our ordering heuristic perfettas than both the random
and the minimum mutual information orderings on 28 of the 31 cases. Themarake shows the
mean andt one standard deviation out of 100 orderings. Borral Glass and Heartthere is no
benefit, but the data sets are on the smaller side where it is less unexpatigehidrative structure
learning would perform better (Ng and Jordan, 2002).

To further verify that our ordering tends to produce better conditionalilikod values on train-
ing data, we also evaluate on random data. For each number of variibles1Q up to 14) we
generate 1000 random distributions and draw 100000 samples fronoeacblsing these samples,
we learn generative and discriminative TAN structures by the followingisis and report the
resulting conditional log likelihood on the training data: (i) order variablesnbyximizing mutual
information (TAN-OMI-CL), (ii) order variables by minimizing mutual informatiofiii) random
ordering of variables and CL parent selection (TAN-RO-CL), (ivjim@l generative 1-tree, that
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Figure 7: Resulting CLL on the UCI data sets for a maximum mutual information QMl), a
minimum mutual information, and a random based ordering scheme.

is, TAN-CMI (Friedman et al., 1997), (v) the computationally expensieedy heuristic using CL
(see Section 4.4.1), what we call TAN-CL. In addition we show CLL redualtshe NB classifier.

Figure 9 shows the CLL values for various algorithms. The CLL is still higanewith the
much less computationally costly OMI-CL procedure. Additionally, the gdivera-tree method
improves likelihood but it does not necessarily produce good conditiikedihood results. We
performed a one-sided paired t-test (Mitchell, 1997) for all differémntcsure learning approaches.
This test indicates that the CLL differences among the methods are sigh#icafevel of 0.05 for
each number of variables. This figure shows that the CLL gets smaller mbes attributes are
involved. With increasing the number of variables the random distributionnbesonorecomplex
(i.e., the number of dependencies among variables increases). Howevapproximate the true
distribution in any case with a 1-tree.

While we have shown empirically that our ordering heuristic tends to prochackels that score
the training data highly in the conditional likelihood sense, a higher conditiiwedihood does not
guarantee a higher accuracy, and training data results do not guagaae generalization. In the
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Figure 9: Optimized CLL of TAN structures learned by various algorithms. de@h number of
variables x-axis) we generated 1000 random distributions.

next sections, however, we show that on balance, accuracy oratastsing our ordering procedure
is on par with the expensive greedy procedure, but with significantlyclesputation.

6.4 Synthetic Data

We show the benefit of the structure learning algorithms for the case Wieeckass-dependent data
are sampled from different 1-tree structures. In particular, we rahddetermine for each class
a 1-tree. The probabilities for each attribute variable are sampled frommiforra distribution,
whereas the cardinality is set to 10, that|}§] = 10. We use five classes. From the treeGor 1
we draw 25000 samples. Additionally, we sample 6250 samples for each dérttening four
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classes from the same structure for confusion. For the remaining classeisaw 6250 samples
from the corresponding random trees. This gives in total 75000 sarfgplésining. The test set
also consists of 75000 samples generated likewise. We perform thisragpéfor varying number
of attributes, that isN € {5,10,15,20,25,30}. The recognition results are shown in Figure 10,
whereas the performance of each algorithm is averaged over 20 mdkrpieruns with randomly

selected conditional probability distributions and trees. In each run, alfitigs have exactly the
same data availahle

T

—©O6— True model

—+H— TAN-CR-ML
— H — TAN-CR-CL
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Figure 10: Synthetic data: Recognition performance is averaged ovan20

We compare our OMI-CR heuristic to greedy discriminative structure legridditionally, we
provide results for NB and generatively optimized TAN structures usingd. T¥give a flavor about
the data, the classification rates achieved with the true model used to geherdéta are reported.
This figure indicates that OMI-CR performs slightly worse than the greedyistic. However, the
one-sided paired t-test (Mitchell, 1997) indicates that TAN-OMI-CR qguenk significantly better
than TAN-CMI for more than 5 attributes at a level of 0.05. Generally, tisoative parameter
optimization (i.e., CL) does not help for this data.

6.5 Classification Results and Discussion

Table 1 presents the averaged classification rates over the 25 UC| dNdBA/6 data set$. Addi-
tionally, we report the CR on TIMIT-39, Surflnsp, MNIST, and USHS8e individual classification
performance of all classification approaches on the 25 UCI data setsimmarized in Pernkopf

4. The average CR is determined by first weighting the CR of each datdteéhe number of samples in the test set.
These values are accumulated and normalized by the total amountgiesamall test sets.
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DATA SET UCI TIMIT-4/6 TIMIT-39 SURFINSP MNIST USPS
CLASSIFIER
NB-ML 81.50 84.85 61.70+ 0.22 | 89.11+1.47 | 83.73+0.37 | 87.10+0.61
NB-CL 85.18 88.69 70.33+0.20 | 92.67+0.90 | 91.70+ 0.28 | 93.67+ 0.44
TAN-CMI-ML 84.82 86.18 65.40+ 0.21 | 92.44+0.96 | 91.28+ 0.28 | 91.90+ 0.50
TAN-CMI-CL 85.47 87.22 66.31+0.21 | 92.44+0.96 | 93.80+ 0.24 | 94.87+ 0.40
TAN-RO-CR-ML (MEAN) 85.04 87.43 - 93.13+ 0.70 - -
TAN-RO-CR-ML (MIN) 85.00 87.57 - 92.67 - -
TAN-RO-CR-ML (MAX) 84.82 87.43 - 92.67 - -
TAN-SUPERPARENT-ML 84.80 87.54 66.53+0.21 | 92.22+0.78 | 91.80+ 0.27 | 90.67+ 0.53
TAN-SUPERPARENT-CL 85.70 87.76 66.56+ 0.21 | 92.44+0.96 | 93.50+ 0.25 | 94.70+ 0.41
TAN-OMI-CR-ML 85.11 87.52 66.61+ 0.21 | 94.00+1.14 | 92.01+ 0.27 | 92.40+ 0.48
TAN-OMI-CR-CL 85.82 87.54 66.87+0.21 | 94.00+1.14 | 93.39+ 0.25 | 94.90+ 0.40
TAN-OMI-CRCL-ML 85.16 87.46 - 94.22+1.13 - -
TAN-OMI-CRCL-CL 85.78 87.62 - 94.22+1.13 - -
TAN-CR-ML 85.38 87.62 66.78+0.21 | 92.89+ 0.57 | 92.58+ 0.26 | 92.57+ 0.48
TAN-CR-CL 86.00 87.48 67.23+0.21 | 92.89+ 0.57 | 93.94+ 0.24 | 95.83+0.36
2-TREE-RO-CR-ML (MEAN) - 87.86 - - - -
2-TREE-RO-CR-ML (MIN) - 87.87 - - - -
2-TREE-RO-CR-ML (MAX) - 87.87 - - -
2-TREE-SUPERPARENT-ML 84.77 87.33 64.78+0.21 | 92.67+1.63 | 90.56+0.29 | 90.67+ 0.53
2-TREE-SUPERPARENT-CL 85.90 87.14 67.38+£0.21 | 92.67+1.63 | 92.47+0.26 | 94.13+ 0.43
2-TREE-OMI-CR-ML 85.50 88.01 66.94+ 0.21 | 94.22+0.82 | 92.69+ 0.26 | 94.03+ 0.41
2-TREE-OMI-CR-CL 85.81 87.27 67.06+0.21 | 94.88+0.90 | 93.09+ 0.25 | 94.76+ 0.41
2-TREE-CR-ML 85.53 87.94 66.71+0.21 | 94.22+ 1.07 - -
2-TREE-CR-CL 85.73 86.95 67.36+0.21 | 94.22+ 1.07 - -

Table 1: Averaged classification results for 25 UCI and 6 TIMIT-4/6 d&ts and classification
results for TIMIT-39, Surfinsp, MNIST, and USPS with standardideéens. Best results
use bold font. ML and CL denote generative and discriminative parametening, re-
spectively. The order-based greedy heuristics are OMI-CR (ondéxral information-CR)
and RO-CR (random order-CR). CRCL refers to using discriminativarpater learning
during structure learning. The generative structure learning algoritrablbseviated as
CMI and the greedy discriminative structure learning is TAN-CR and 2@Re

and Bilmes (2008a), whereas the random order experiment is pregefitdie 8 (see Appendix A).
For the TIMIT-4/6 data sets the individual classification performancegdidous classifier learning
methods can be found in Table 9 (see Appendix B). The random orgeriment for these data
sets using a 2-tree is summarized in Appendix B in Table 10.

6.5.1 DscussION DISCRIMINATIVE VERSUS GENERATIVE PARAMETER LEARNING

Discriminative parameter learning produces mostly a significantly better atadiifi performance
than ML parameter learning on the same classifier structure. Especialbgades where the struc-
ture of the underlying model is not optimized for classification (Greiner e2@05)—the average
improvement of discriminative parameter learning over ML estimation on NB andrgtive TAN-
CMI structures is large. In particular, for TIMIT-4/6 and TIMIT-39 tHescriminatively optimized
NB classifier (i.e., NB-CL) achieves the overall best classification padace. One reason is that
the final step of MFCC features extraction includes a discrete cosindédramgshat is, the features
are decorrelated. Hence, the independence assumptions of the NBretmght be a good choice
for these data sets. A second reason is that CL parameter learning TéxNhend 2-tree structures
overfit the data (even with cross tuning)—the NB structure implicitly keeps ahaber of param-
eters low. Analyzing the results of CL parameter learning over variouststes (especially for
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2-trees) reveal thatross tunings for some cases too restrictive concerning the number of conjugate
gradient iterations—an alternative regularization method is required. €loeder learning of NB
classifiers is known to be equivalent to logistic regression. It can berskimat the CLL is con-
cave when using Io@‘m, that is, the global maximum can be found during discriminative parameter
learning. Roos et al. (2005) showed that this also holds for more deredveork structures, for
example, TAN.

In Section 6.6, we show that the classification performance of a discringhatiructured
model may be superior to discriminatively parameterized models in the case ofgrfsstures.

6.5.2 DScuUSSION DISCRIMINATIVE VERSUS GENERATIVE STRUCTURELEARNING USING
ML PARAMETER LEARNING

The CR objective function produces the best performing network stestiEvaluation of the CR
measure is computationally expensive as mentioned above. However, thesdodering of the
variables in the order-based heuristics, we can reduce the numberefaliRtions fronO (N3) to
O (N?) for TAN structures. Hence, TAN-CR and 2-tree-CR are restrictedtteramall data sets.
The order-based heuristic OMI-CR achieve a similar performance at b fower computational
cost. Discriminative parameter learning during discriminative structureiteausing our order-
based heuristics can slightly improve the performance. This is possible osiyall data sets due
to the computational burden for the conjugate gradient parameter optimization.

The discriminative SuperParent algorithm performs slightly but not sigmifi¢ worse com-
pared to the other discriminative structure learning algorithms OMI-CR, ORIGL, and greedy
heuristic using CR on the UCI data set—similarly, the performance of SutRan TIMIT-4/6
for learning TAN structures, however, the performance using 2-treetares is low. In summary,
SuperParent achieves a lower classification rate compared to othéméistive structure learning
algorithms on most of the data sets. The main reason for the degradedzerte is an early
termination of the algorithm.

For RO-CR we summarize the performance over 1000 random ordesitgstbe mean (Mean),
minimum (Min), and maximum (Max) CR (we use only 100 random orders fiti T44/6 though).
Min (Max) reports the classification rate on the test set using the struchichachieves the mini-
mum (maximum) performance over 1000 random orderings (resp. 1@@sdat TIMIT-4/6) on the
training data. In some cases, the average over the data sets show thatsh@-CR structures
scored on the training sets perform better on the test sets than the besiregon the training
sets, presumably due to overfitting. These results do show, howeuarhtiasing from a collection
of arbitrary orders and judging them based on the training set perfasmamot likely to perform
well on the test set. Our heuristics do improve over these orders.

The TIMIT-39, MNIST, and USPS experiments show that we can perfitiscriminative struc-
ture learning for relatively large classification problems.40000 samples, 66 features, 39 classes,
~60000 samples, 196 features, 10 classes~B@D0 samples, 256 features, 10 classes, resp.). For
these data sets, OMI-CR significantly outperform NB and TAN-CMI.

On MNIST we achieve a classification performance~a2.58% with the discriminative TAN
classifier. A number of state-of-the-art algorithms, that is, convolutioeéland virtual SVM,
achieve an error rate below 1% (LeCun and Cortes). Due to resamplingavenly 196 features
in contrast to the 784 features of the original data set which might explaie s the loss in
classification rate. Another reason why the convolutional neural metigiial SVM perform better
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CLASSIFIER TAN TAN TAN TAN TAN 2-TREE 2-TREE 2-TREE
STRUCTURE LEARNING RO-CR SUPERPARENT OMI-CR OMI-CRCL CR SUPERPARENT OMI-CR CR
PARAMETER LEARNING ML ML ML ML ML ML ML ML

MAX
NB-ML 110.0300 f10.0232 f10.0242 0.0203 0.0154 fl0.0103 f0.0316 fl0.0317
TAN-CMI-ML T0.120 0122 f0.0154 0.0094 0.0141 $-0.0705 f0.0271 110.0159
TAN-RO-CR-ML 0197 T0.144 0.0945 00446 0131 To.148 To.140
TAN-SUPERPARENT-ML T0.136 To.0848 To.0917 <0.189 T0.149 To.139
TAN-OMI-CR-ML To.182 T0.190 <0194 To.197 T0.196
TAN-OMI-CRCL-ML T0.197 0.182 T0.196 To.197
TAN-CR-ML 40178 To.194 Toa97
2-TREE-SUPERPARENT-ML 10.195 To.192
2-TREE-OMI-CR-ML 10.195

Table 2: Comparison of different classifiers using the one-sided pabesd for the 25 UCI data
sets: Each entry of the table gives the significance of the difference ofdhsification rate
of two classifiers over the data sets. The arrow points to the superiomgaaigorithm.
We use a double arrow if the difference is significant at the level of 0iB.order-based
greedy heuristics are OMI-CR (order mutual information-CR) and RO¥@Rdom order-
CR). CRCL refers to algorithms using discriminative parameter learningglstincture
learning. The generative structure learning algorithm is abbreviatetasu@ the naive
greedy discriminative structure learning is TAN-CR and 2-tree-CR.

CLASSIFIER 2-TREE TAN TAN TAN TAN 2-TREE 2-TREE 2-TREE
STRUCTURELEARN. RO-CR SUPERPARENT OMI-CR OMI-CRCL CR SUPERPARENT OMI-CR CR
PARAMETER LEARN. ML ML ML ML ML ML ML ML

MAX
NB-ML f1<0.0001 1r<0.0001 f<0.0001 f1<0.0001 f<0.0001 1r<0.0001 fr<0.0001 | f<0.0001
TAN-CMI-ML 10.00032 fr0.0012 10.0016 fr0.0019 f0.0012 110.0027 10.0002 110.0002
2-TREE-RO-CR-ML 00007 <0.0024 <0.0011 <0.0011 <0.0010 f0.0011 10.0092
TAN-SUPERPARENT-ML -0.189 $0.151 T0.147 0.0187 110.0002 110.0006
TAN-OMI-CR-ML 0,078 t0.140 <0.0078 110.0004 10.0013
TAN-OMI-CRCL-ML fro.038 <-0.054 flo.0002 flo.0007
TAN-CR-ML <0013 10.0002 fl0.0010
2-TREE-SUPERPARENT-ML 10.0004 10.0005
2-TREE-OMI-CR-ML $70.069

Table 3: Comparison of different classifiers using the one-sided ptaiesd for the 6 TIMIT-4/6
data sets: Each entry of the table gives the significance of the diffecdribe classifi-
cation rate of two classifiers over the data sets. The arrow points to thesuparning
algorithm. We use a double arrow if the difference is significant at the Eh@l05. The
order-based greedy heuristics are OMI-CR (order mutual inform&Rh-and RO-CR
(random order-CR). CRCL refers to algorithms using discriminative paeanhearning
during structure learning. The generative structure learning algoritrabbigeviated as
CMI and the naive greedy discriminative structure learning is TAN-CRZatrde-CR.

on digit recognition is probably that images are not treated as unstrudaatde vectors, that is,
the convolutional neural net has built-in parts that look at particularsaséshe image, and the
virtual SVM is trained on augmented data that reflects invariance to smalkttians and rotations.

For the Surflnsp data the standard deviation of the five-fold crossataiclassification accu-
racy estimate is relatively large. Unfortunately, the size of the data set is limigaDteamples.

The structure of Bayesian networks is implicitly regularized when we regitigcoptimization
over a model structure (e.g., 1-trees) assuming sufficient training dat&-tFees we noticed that
the data tended to overfit without further regularization. Thereforantweduce 5-fold cross vali-
dation on thdrainingdata to find the optimal classifier structure.

Table 2 and Table 6.5.2 present a summary of the classification resultdletaraure learning
experiments using ML parameter learning of the UCI and TIMIT-4/6 data sets
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We compare all pairs of classifiers using the one-sided paired t-test @ljttB97). The t-test
determines whether the classifiers differ significantly under the assumptothth classification
differences over the data set are independent and identically normatlijpuatisd. In these tables,
each entry gives the significance of the difference in classification fat®coclassification ap-
proaches. The arrow points to the superior learning algorithm and dedaubw indicates whether
the difference is significant at a level of 0.05.

These tables show that TAN-OMI-CR, TAN-OMI-CRCL-CR, and TANRGignificantly out-
perform the generative structure learning approach TAN-CMI (simda2ftrees). However, the
computationally expensive greedy heuristic TAN-CR and 2-tree-CR tsigwificantly outperform
our discriminative order-based heuristics TAN-OMI-CR and 2-treeHQR, respectively.

6.5.3 DscussiON COMPUTATIONAL REQUIREMENTS FORSTRUCTURELEARNING

The running time of the TAN-CMI, TAN-OMI-CR, and TAN-CR structure teang algorithms for
the UCI, TIMIT-4/6, TIMIT-39, and the MNIST data sets is summarized ibl&éat. The numbers
represent the percentage of time that is needed for a particular algoritmmpaced to TAN-CR.
TAN-CMI is roughly 3-10 times faster than TAN-OMI-CR and TAN-CR talasout 10-40 times
longer for establishing the discriminative structure than TAN-OMI-CR.

Data set | TAN-CMI | TAN-OMI-CR | TAN-CR
ucCl 0.649% 3.155% 100.00%
TIMIT-4/6 3.56% 11.47% 100.00%
TIMIT-39 0.11% 2.08% 100.00%
MNIST 0.21% 2.23% 100.00%

Table 4: Running time of structure learning algorithms relative to TAN-CR.

6.6 Results with Randomly Missing Input Features

As mentioned in Section 3, generative models can easily deal with missingdeaiunply by
marginalizing out from the model the missing feature. We are particularly steztén a testing
context which has arbitrary sets of missing features for each classifiGatiople. In such a case, it
is not possible to re-train the model for each potential set of missing fsatttigout also memoriz-
ing the training set. Due to the local-normalization property of Bayesian nkéveard the structure
of any model with a parent-less class node, marginalization is as easyO4s‘ah) operation for a
k-tree, where is the domain size of each feature.
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Figure 11: Classification performance of different structure learninthogs assuming missing
features using Ma+Fe data of TIMIT-4/6.
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In Figure 11, we present the classification performance of discriminatidegenerative struc-
tures assuming missing features using the Ma+Fe data of TIMIT-4/6x-8Blés denotes the number
of missing features. The curves are averaged over 100 classificatithrestest data with uniformly
at random selected missing features. We use exactly the same missingsféatuwach classifier.
Variance bars are omitted to improve readability, but indicate that the resdiltieigedces are signif-
icant between NB-ML, TAN-CMI-ML, and discriminatively structured dédeers for a low number
of missing features. Hence, discriminatively structured Bayesian netelassifiers outperform
TAN-CMI-ML even in the case of missing features. This demonstratesaat Empirically, that
discriminatively structured generative models do not lose their ability to imputengifsatures.
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Figure 12: Classification performance of NB-ML, NB-CL, and TAN-GR- assuming missing
features using Ma+Fe data of TIMIT-4/6. The shaded region cooretspto the standard
deviation over 100 classifications.

In Figure 12, we show for the same data sets and experimental setup thitssiéication per-
formance of a discriminatively structured model may be superior to discrimahaiparameterized
models in the case of missing features. In particular, for more than three giieainres TAN-CR-
ML outperforms NB-CL. Similar results can be shown for MNIST in Figure 13
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Figure 13: Classification performance using MNIST. The shaded regiwsasponds to the standard
deviation over 100 classifications: (a) Different structure learning naistid) NB-ML,
NB-CL, and TAN-CR-ML.

6.7 Results with SVMs

In Table 6, we compare classification performances between the bstpieg Bayesian network
classifiers (in Table 1) and SVMs using RBF kernels. SVMs outperfanndiscriminative Bayesian
network classifier. For TIMIT-4/6 one reason might be that SVMs apdieghto the continuous fea-
ture domain. In Table 5 we compare the model complexity (i.e., number of parajnestween
both SVMs and Bayesian network classifiers. This table reveals that $yesi@a network uses
~108, ~66, ~212, and~259 times fewer parameters for MNIST, USPS, Ma+Fe-4, and Ma+Fe-
6 than the SVM. This might also explain the loss in classification performancesairdinative
Bayesian networks. Furthermore, Bayesian network classifiers calirduly applied to prob-
lems with more than two classes, whereas SVMs in its traditional formulation are litoitgdary
problems—the multiclass problem is decomposed into binary problems. AdditiofallgVMs

we have to selec@* ando. A substantial difference is that SVMs determine the number of support
vectors automatically while in the case of Bayesian networks the numberarhpters is specified

by the structure. A limited complexity class (e.g., 1-tree) restricts the numberaimeters which
might be advantageous. In contrast to SVMs, a Bayesian network miginef@red since it is easy

to work with missing features (see Section 6.6), parameter tying and knasvizated hierarchical
decomposition is facilitated, and it is easy to work with structured data.

DATA SET TIMIT-4/6 MNIST USPS
CLASSIFIER
NB-CL 88.69
TAN-CR-CL 93.94+ 0.24 95.83+ 0.36
SVM 89.38 96.40+ 0.19 97.86+ 0.26
PARAMETERS || C*=1,0=005| C*=1,0=0.01 | C*=1,0=0.005

Table 5: Model complexity for best Bayesian network (BN) and SVM.
7. Conclusion

We introduced a simple order-based heuristic for learning discriminatitweonle structure. The
metric for establishing the ordering df features is based on either the conditional mutual infor-
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DATA SET N NUMBER OF SVS | NUMBER OF SVM PARAMETERS || NUMBER OF BN PARAMETERS
MNIST 196 17201 3371396 31149
USPS 256 3837 982272 14689
TIMIT-4/6 (MA+FE-4) 20 13146 262920 1239
TIMIT-4/6 (MA+FE-6) 20 24350 487000 1877

Table 6: Classification results for TIMIT-4/6 data sets (averaged), 3MNand USPS using best
performing Bayesian network classifier (see Table 1) and SVMs.

mation or the classification rate. Given an ordering, we can find a discrivenafssifier struc-
ture usingO (N*1) score evaluations (where constanis the tree-width of the sub-graph over
the attributes). We empirically compare the performance of our algorithms tecfttte-art dis-
criminative and generative parameter and structure learning algorithng resihdata from the
TIMIT speech corpus, the UCI repository, a visual surface inspedtsk, and from handwrit-
ten digit recognition tasks. The experiments show that the discriminativelgtesdound by our
order-based heuristics achieve on average a significantly better clat$sifiperformance than the
generative approach. Our obtained classification performance isieitar to the greedy search
using CR. Our order-based heuristics however, are about 10-40fastes. Additionally, we show
that discriminatively structured Bayesian network classifiers are sug#eéa in the case of missing
features.
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Appendix A. UCI data

DATA SET # FEATURES # CLASSES # SAMPLESTRAIN  # SAMPLES TEST
1 AUSTRALIAN 14 2 690 CV-5
2 BREAST 10 2 683 CV-5
3 CHESS 36 2 2130 1066
4 CLEVE 13 2 296 CV-5
5 CORRAL 6 2 128 CV-5
6 CRX 15 2 653 CV-5
7 DIABETES 8 2 768 CV-5
8 FLARE 10 2 1066 CV-5
9 GERMAN 20 2 1000 CV-5
10 GLASS 9 7 214 CV-5
11 GLASS2 9 2 163 CV-5
12 HEART 13 2 270 CV-5
13 HEPATITIS 19 2 80 CV-5
14 IRIS 4 3 150 CV-5
15 LETTER 16 26 15000 5000
16 LYMPHOGRAPHY 18 4 148 CV-5
17 MOFN-3-7-10 10 2 300 1024
18 PIMA 8 2 768 CV-5
19 SHUTTLE-SMALL 9 7 3866 1934
20 VOTE 16 2 435 CV-5
21 SATIMAGE 36 6 4435 2000
22 SEGMENT 19 7 1540 770
23 SOYBEAN-LARGE 35 19 562 CV-5
24 VEHICLE 18 4 846 CV-5
25 WAVEFORM-21 21 3 300 4700

Table 7; 25 UCI data sets
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CLASSIFIER OMI-CR RO-CR

DATA SET MEAN £ STD | MEDIAN | MIN [ MAX
AUSTRALIAN 82.04 84.58+ 0.77 84.62 84.63 | 83.60
BREAST 97.40 97.19+ 0.26 97.23 97.39 | 96.95
CHESS 94.93 94.70+ 0.76 94.75 95.22 | 93.90
CLEVE 81.76 81.42+ 0.97 81.42 82.76 | 82.76
CORRAL 99.20 95.79+ 2.55 96.17 96.80 | 95.20
CRX 84.07 84.21+ 0.82 84.23 84.07 | 84.22
DIABETES 74.36 75.23+ 0.52 75.26 75.53 | 75.01
FLARE 82.74 82.38+ 0.50 82.44 81.80 | 81.98
GERMAN 73.20 72.83+ 0.87 72.80 71.50 | 71.50
GLASS 70.70 71.74+1.13 71.81 70.20 | 73.44
GLASS2 82.20 81.94+ 0.73 82.14 82.14 | 82.20
HEART 81.85 82.83+ 0.85 82.96 82.59 | 83.33
HEPATITIS 90.67 89.25+ 1.69 89.00 90.33 | 90.33
IRIS 93.33 93.58+ 0.55 93.33 92.67 | 93.33
LETTER 87.00 86.53+ 0.60 86.54 86.70 | 86.50
LYMPHOGRAPHY 88.30 85.83+1.72 85.92 87.12 | 81.27
MOFN-3-7-10 91.41 90.11+ 1.01 90.14 89.55 | 89.75
PIMA 75.26 75.70+ 0.49 75.65 75.78 | 76.56
SHUTTLE-SMALL 99.17 99.33+ 0.13 99.33 99.22 | 99.17
VOTE 94.29 93.90+ 0.69 93.84 93.36 | 94.06
SATIMAGE 88.25 87.47+ 0.44 87.45 87.05 | 87.20
SEGMENT 94.42 94.63+ 0.59 94.68 92.99 | 95.45
SOYBEAN-LARGE 91.11 92.29+ 0.78 92.34 92.14 | 91.74
VEHICLE 67.38 68.18+ 0.90 68.13 67.42 | 68.20
WAVEFORM-21 78.02 78.19+ 0.51 78.21 78.77 | 77.79
AVERAGE 85.11 85.04 85.06 85.00 | 84.82

Table 8: Classification results {#] with RO-CR compared to OMI-CR for the UCI data. Min
(Max) reports the CR on the test set using the structure which achievemitirmum
(maximum) performance over 1000 random orderings on the training data.
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DATA SET MA+FE MA FE MA+FE MA FE
NUMBER OF CLASSES 4 4 4 6 6 6
CLASSIFIER AVERAGE

NB-ML 87.90+ 0.18 88.69+ 0.25 87.67+0.25 81.82+ 0.20 82.26+ 0.28 81.93+0.28 84.85
NB-CL H 92.12+ 0.15 92.81+ 0.20 91.57+ 0.22 H 85.41+0.18 86.28+ 0.26 85.12+ 0.26 H 88.69
TAN-CMI-ML 89.83+0.17 90.20+ 0.23 90.36+ 0.23 82.23+0.20 83.20+ 0.28 82.99+0.28 86.18
TAN-CMI-CL 90.96+ 0.16 91.39+ 0.22 90.92+ 0.22 83.06+ 0.20 84.85+ 0.27 84.05+ 0.27 87.22
TAN-SUPERPARENT-ML 91.31+0.15 91.84+0.21 90.71+0.23 84.12+0.19 84.84+ 0.27 83.51+ 0.27 87.54
TAN-SUPERPARENT-CL 91.56+ 0.15 92.29+0.21 90.74+ 0.22 84.36+ 0.19 84.84+ 0.27 83.83+ 0.27 87.76
TAN-OMI-CR-ML 91.19+0.16 | 92.15+0.21 | 90.51+0.23 84.07+0.19 | 84.68+0.27 | 83.71+0.27 87.52
TAN-OMI-CR-CL 91.37+0.15 | 92.28+0.21 | 90.51+0.23 84.00+0.19 | 84.49+0.27 | 83.75+0.27 87.54
TAN-OMI-CRCL-ML 91.09+0.16 | 91.99+0.21 | 90.35+0.23 84.05+ 0.19 | 84.59+0.27 | 83.87+0.27 87.46
TAN-OMI-CRCL-CL 91.41+0.15 | 92.55+0.21 | 90.54+0.23 83.88+0.19 | 84.71+0.27 | 84.08+0.27 87.62
TAN-CR-ML 91.29+0.16 91.81+0.21 90.52+0.23 84.35+0.19 84.80+0.27 83.93+0.27 87.62
TAN-CR-CL 91.29+ 0.16 92.04+0.21 90.52+ 0.23 83.69+ 0.19 84.83+ 0.27 83.91+ 0.27 87.48
2-TREE-SUPERPARENT-ML 91.02+0.16 91.84+0.21 90.52+0.23 84.01+0.19 84.22+0.27 83.42+0.27 87.33
2-TREE-SUPERPARENT-CL 90.39+0.16 | 91.51+0.22 | 90.62+0.23 83.17+0.20 | 85.30+0.26 | 83.96+ 0.27 87.14
2-TREE-OMI-CR-ML 91.68+ 0.15 92.28+0.21 91.03+0.22 84.52+0.19 85.43+ 0.26 84.31+0.27 88.01
2-TREE-OMI-CR-CL 91.28+ 0.16 91.79+ 0.21 90.53+ 0.23 83.46+ 0.19 84.48+ 0.27 83.42+ 0.27 87.27
2-TREE-CR-ML 91.45+ 0.15 92.22+0.21 91.11+0.22 84.53+0.19 85.36+ 0.26 84.22+0.27 87.94
2-TREE-CR-CL 91.00+ 0.16 91.41+0.22 90.52+ 0.23 82.79+ 0.20 84.46+ 0.27 83.19+ 0.28 86.95

Table 9: Classification results [f] for 4 and 6 classes with standard deviation
bold font. ML and CL denote generative and discriminative parameteriteprrespec-
tively. OMI-CR (order mutual information-CR) refers to the order-luibgeeedy heuristic.
OMI-CRCL refers to OMI-CR using discriminative parameter learning dustructure
learning. The generative structure learning algorithm is abbreviateiaar the greedy
discriminative structure learning is TAN-CR and 2-tree-CR.

. Best results use

CLASSIFIER 2-TREE-OMI-CR 2-TREE-RO-CR
DATA SET NUMBER OF CLASSES MEAN £ STD | MEDIAN | MIN [ MAX
MA+FE 4 91.68 91.50+0.10 91.49 91.44 | 91.46
MA 4 92.28 92.23+0.10 92.23 92.35| 92.14
FE 4 91.03 90.95+ 0.13 90.94 90.77 | 90.94
MA+FE 6 84.52 84.44+ 0.13 84.45 84.64 | 84.49
MA 6 85.43 85.17+ 0.17 85.18 85.06 | 85.30
FE 6 84.31 84.04+ 0.16 84.05 83.96 | 84.11
AVERAGE 88.01 87.86 87.86 87.87 | 87.87

Table 10: Classification results j#0] with 2-tree-RO-CR compared to 2-tree-OMI-CR for 4 and 6
classes. Min (Max) reports the CR on the test set using the structure attigves the
minimum (maximum) performance over 100 random orderings on the training data
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