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Abstract
We introduce a simple order-based greedy heuristic for learning discriminative structure within
generative Bayesian network classifiers. We propose two methods for establishing an order ofN
features. They are based on the conditional mutual information and classification rate (i.e., risk),
respectively. Given an ordering, we can find a discriminative structure withO

(

Nk+1
)

score evalu-
ations (where constantk is the tree-width of the sub-graph over the attributes). We present results
on 25 data sets from the UCI repository, for phonetic classification using the TIMIT database,
for a visual surface inspection task, and for two handwritten digit recognition tasks. We provide
classification performance forbothdiscriminativeandgenerative parameter learning onbothdis-
criminativelyandgeneratively structured networks. The discriminative structure found by our new
procedures significantly outperforms generatively produced structures, and achieves a classifica-
tion accuracy on par with the best discriminative (greedy) Bayesian network learning approach, but
does so with a factor of∼10-40 speedup. We also show that the advantages of generative discrim-
inatively structured Bayesian network classifiers still hold in the case of missing features, a case
where generative classifiers have an advantage over discriminative classifiers.

Keywords: Bayesian networks, classification, discriminative learning, structure learning, graphi-
cal model, missing feature

1. Introduction

Bayesian networks (Pearl, 1988; Cowell et al., 1999) have been widelyused as a space within
which to search for high performing statistical pattern classifiers. Such networks can be produced
in a number of ways, and ideally the structure of such networks will be learned discriminatively. By
“discriminative learning” of Bayesian network structure, we mean simply thatthe process of learn-
ing corresponds to optimizing an objective function that is highly representative of classification
error, such as maximizing class conditional likelihood, or minimizing classificationerror under the
0/1-loss function or some smooth convex upper-bound surrogate (Bartlett et al., 2006).

Unfortunately, learning the structure of Bayesian networks is hard. There have been a number
of negative results over the past years, showing that optimally learning various forms of constrained
Bayesian networks is NP-complete even in the “generative” sense. For example, it has been shown
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that learning paths (Meek, 1995), polytrees (Dasgupta, 1997),k-trees (Arnborg et al., 1987) or
bounded tree-width graphs (Karger and Srebro, 2001; Srebro, 2003), and general Bayesian networks
(Geiger and Heckerman, 1996) are all instances of NP-complete optimizationproblems. Learning
the best “discriminative structure” is no less difficult, largely because the cost functions that are
needed to be optimized do not in general decompose (Lauritzen, 1996), but there has as of yet not
been any formal hardness results in the discriminative case.

Discriminative optimization of a Bayesian network structure for the purposesof classification
does have its advantages, however. For example, the resulting networksare amenable to interpre-
tation compared to a purely discriminative model (the structure specifies conditional independen-
cies between variables that may indicate distinctive aspects of how best to discern between objects
Bilmes et al., 2001), it is simple to work with missing features and latent variables (as we show
in this paper), and to incorporate prior knowledge (see below for further details). Since discrimi-
native learning of such networks optimizes for only one inference scenario (e.g., classification) the
resulting networks might be simpler or more parsimonious than generatively derived networks, may
better abide Occam’s razor, and may restore some of the benefits mentioned inVapnik (1998).

Many heuristic methods have been produced in the past to learn the structure of Bayesian net-
work classifiers. For example, Friedman et al. (1997) introduced the tree-augmented naive (TAN)
Bayes approach, where a naive Bayes (NB) classifier is augmented withedges according to various
conditional mutual information criteria. Bilmes (1999, 2000) introduced theexplaining away resid-
ual (EAR) for discriminative structure learning of dynamic Bayesian networksfor speech recogni-
tion applications, which also happens to correspond to “synergy” in the neural code (Brenner et al.,
2000). The EAR measure is in fact an approximation to the expected class conditional distribution,
and so improving EAR is likely to decrease the KL-divergence between the true class posterior and
the resultant approximate class posterior. A procedure for providing a local optimum of the EAR
measure was outlined in Narasimhan and Bilmes (2005) but it may be computationally expensive.
Greiner and Zhou (2002); Greiner et al. (2005) express general Bayesian networks as standard lo-
gistic regression—they optimize parameters with respect to the conditional likelihood (CL) using a
conjugate gradient method. Similarly, Roos et al. (2005) provide conditionsfor general Bayesian
networks under which the correspondence to logistic regression holds.In Grossman and Domin-
gos (2004) the conditional log likelihood (CLL) function is used to learn a discriminative structure.
The parameters are set using maximum likelihood (ML) learning. They use a greedy hill climbing
search with the CLL function as a scoring measure, where at each iterationone edge is added to the
structure which conforms with the restrictions of the network topology (e.g., TAN) and the acyclic-
ity property of Bayesian networks. In a similar algorithm, the classification rate(CR)1 has also
been used for discriminative structure learning (Keogh and Pazzani, 1999; Pernkopf, 2005). The
hill climbing search is terminated when there is no edge which further improves the CR. The CR is
the discriminative criterion with the fewest approximations, so it is expected to perform well given
sufficient data. The problem, however, is that this approach is extremely computationally expensive,
as a complete re-evaluation of the training set is needed for each considered edge. Many generative
structure learning algorithms have been proposed and are reviewed in Heckerman (1995), Murphy
(2002), Jordan (1999) and Cooper and Herskovits (1992). Independence tests may also be used for
generative structure learning using, say, mutual information (de Campos,2006) while other recent

1. Maximizing CR is equivalent to minimizing classification error which is identical to empirical risk (Vapnik, 1998)
under the 0/1-loss function. We use the CR terminology in this paper since it issomewhat more consistent with
previous Bayesian network discriminative structure learning literature.
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independence test work includes Gretton and Gÿorfi (2008) and Zhang et al. (2009). An experimen-
tal comparison of discriminative and generative parameter training on both discriminatively and
generatively structured Bayesian network classifiers has been performed in Pernkopf and Bilmes
(2005). An empirical and theoretical comparison of certain discriminative and generative classifiers
(specifically logistic regression and NB) is given in Ng and Jordan (2002). It is shown that for small
sample sizes the generative NB classifier can outperform the discriminativemodel.

This work contains the following offerings. First, a new case is made for why and when dis-
criminatively structured generative models can be usefully used to solve multi-class classification
problems.

Second, we introduce a new order-based greedy search heuristic for finding discriminative struc-
tures in generative Bayesian network classifiers that is computationally efficient and that matches
the performance of the currently top-performing but computationally expensive greedy “classifi-
cation rate” approach. Our resulting classifiers are restricted to TAN 1-tree and TAN 2-trees, and
so our method is a form of search within a complexity-constrained model space. The approach
we employ looks first for an ordering of theN features according to classification based informa-
tion measures. Given the resulting ordering, the algorithm efficiently discovers high-performing
discriminative network structure with no more thanO

(

Nk+1
)

score evaluations wherek indicates
the tree-width of the sub-graph over the attributes, and where a score evaluation can either be a
mutual-information or a classification error-rate query. Our order-based structure learning is based
on the observations in Buntine (1991) and the framework is similar to the K2 algorithm proposed
in Cooper and Herskovits (1992). We use, however, a discriminative scoring metric and suggest
approaches for establishing the variable ordering based on conditionalmutual information (CMI)
(Cover and Thomas, 1991) and CR.

Lastly, we provide a wide variety of empirical results on a diverse collectionof data sets show-
ing that the order-based heuristic provides comparable classification results to the best procedure -
the greedy heuristic using the CR score, but our approach is computationally much cheaper. Fur-
thermore, we empirically show that the chosen approaches for ordering the variables improve the
classification performance compared to simple random orderings. We experimentally compare both
discriminative and generative parameter training onbothdiscriminativeandgeneratively structured
Bayesian network classifiers. Moreover, one of the key advantages of generative models over dis-
criminative ones is that it is still possible to marginalize away any missing features. If it is not
known at training time which features might be missing, a typical discriminative model is rendered
unusable. We provide empirical results showing that discriminatively learned generative models are
reasonably insensitive to such missing features and retain their advantages over generative models
in such case.

The organization of the paper is as follows: In Section 2, Bayesian networks are reviewed
and our notation is introduced. We briefly present the NB, TAN, and 2-tree network structures. In
Section 3, a practical case is made for why discriminative structure can be desirable. The most com-
monly used approaches for generative and discriminative structure andparameter learning are sum-
marized in Section 4. Section 5 introduces our order-based greedy heuristic. In Section 6, we report
classification results on 25 data sets from the UCI repository (Merz et al., 1997) and from Kohavi
and John (1997) using all combinations of generative/discriminative structure/parameter learning.
Additionally, we present classification experiments for synthetic data, for frame- and segment-based
phonetic classification using the TIMIT speech corpus (Lamel et al., 1986), for a visual surface in-
spection task (Pernkopf, 2004), and for handwritten digit recognition using the MNIST (LeCun
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et al., 1998) and USPS data set. Last, Section 7 concludes. We note that a preliminary version of a
subset of our results appeared in Pernkopf and Bilmes (2008b).

2. Bayesian Network Classifiers

A Bayesian network (BN) (Pearl, 1988; Cowell et al., 1999)B = 〈G ,Θ〉 is a directed acyclic graph
G = (Z,E) consisting of a set of nodesZ and a set of directed edgesE =

{

EZi ,Z j ,EZi ,Zk, . . .
}

con-
necting the nodes whereEZi ,Z j is an edge directed fromZi to Z j . This graph represents factorization
properties of the distribution of a set of random variablesZ = {Z1, . . . ,ZN+1}. Each variable in
Z has values denoted by lower case letters{z1,z2, . . . ,zN+1}. We use boldface capital letters, for
example,Z, to denote a set of random variables and correspondingly boldface lower case letters
denote a set of instantiations (values). Without loss of generality, in Bayesian network classifiers
the random variableZ1 represents the class variableC ∈ {1, . . . , |C|}, |C| is the cardinality ofC or
equivalently the number of classes,X1:N = {X1, . . . ,XN}= {Z2, . . . ,ZN+1} denote the set of random
variables of theN attributes of the classifier. Each graph node represents a random variable, while
the lack of edges in a graph specifies some conditional independence relationships. Specifically, in
a Bayesian network each node is independent of its non-descendants given its parents (Lauritzen,
1996). A Bayesian network’s conditional independence relationships arise due to missing parents
in the graph. Moreover, conditional independence can reduce computation for exact inference on
such a graph. The set of parameters which quantify the network are represented byΘ. Each node
Z j is represented as a local conditional probability distribution given its parents ZΠ j . We useθ j

i|h to
denote a specific conditional probability table entry (assuming discrete variables), the probability
that variableZ j takes on itsith value assignment given that its parentsZΠ j take theirhth (lexico-

graphically ordered) assignment, that is,θ j
i|h = PΘ

(

Z j = i|ZΠ j = h
)

. Hence,h contains the parent
configuration assuming that the first element ofh, that is,h1, relates to the conditioning class and
the remaining elementsh\h1 denote the conditioning on parent attribute values. The training data
consists ofM independent and identically distributed samplesS = {zm}Mm=1 =

{(

cm,xm
1:N

)}M
m=1.

For most of this work, we assume a complete data set with no missing values (the exception being
Section 6.6 where input features are missing at test time). The joint probabilitydistribution of the
network is determined by the local conditional probability distributions as

PΘ (Z) =
N+1

∏
j=1

PΘ
(

Z j |ZΠ j

)

and the probability of a samplezm is

PΘ (Z = zm) =
N+1

∏
j=1

|Z j |

∏
i=1

∏
h

(

θ j
i|h

)u j,m
i|h
,

where we introduced an indicator functionu j,m
i|h of themth sample

u j,m
i|h =

{

1, if zm
j = i andzm

Π j
= h

0, otherwise
.

In this paper, we restrict our experiments to NB, TAN 1-tree (Friedman et al., 1997), and TAN
2-tree classifier structures (defined in the next several paragraphs). The NB network assumes that
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all the attributes are conditionally independent given the class label. This means that, givenC, any
subset ofX is independent of any other disjoint subset ofX. As reported in the literature (Friedman
et al., 1997; Domingos and Pazzani, 1997), the performance of the NB classifier is surprisingly
good even if the conditional independence assumption between attributes is unrealistic or even false
in most of the data. Reasons for the utility of the NB classifier range between benefits from the
bias/variance tradeoff perspective (Friedman et al., 1997) to structures that are inherently poor from
a generative perspective but good from a discriminative perspective(Bilmes, 2000). The structure
of the naive Bayes classifier represented as a Bayesian network is illustrated in Figure 1a.

(a)

C

X1 X2 X3 XN

(b)

C

X1 X2 X3 XN

Figure 1: Bayesian Network: (a) NB, (b) TAN.

In order to correct some of the limitations of the NB classifier, Friedman et al. (1997) intro-
duced the TAN classifier. A TAN is based on structural augmentations of theNB network, where
additional edges are added between attributes in order to relax some of the most flagrant conditional
independence properties of NB. Each attribute may have at most one otherattribute as an additional
parent which means that the tree-width of the attribute induced sub-graph isunity, that is, we have to
learn a 1-tree over the attributes. The maximum number of edges added to relax the independence
assumption between the attributes isN−1. Thus, two attributes might not be conditionally inde-
pendent given the class label in a TAN. An example of a TAN 1-tree network is shown in Figure 1b.
A TAN network is typically initialized as a NB network and additional edges between attributes are
determined through structure learning. An extension of the TAN network is touse ak-tree, that is,
each attribute can have a maximum ofk attribute nodes as parents. In this work, TAN andk-tree
structures are restricted such that the class node remains parent-less, that is,CΠ = /0. While many
other network topologies have been suggested in the past (and a good overview is provided in Acid
et al., 2005), in this work we keep the class variable parent-less since it allows us to achieve one of
our goals, which is to concentrating on generative models and their structures.

3. Discriminative Learning in Generative Models

A dichotomy exists between the two primary approaches to statistical pattern classifiers,generative
anddiscriminative(Bishop and Lasserre, 2007; Jebara, 2001; Ng and Jordan, 2002; Bishop, 2006;
Raina et al., 2004; Juang et al., 1997; Juang and Katagiri, 1992; Bahl et al., 1986). Under generative
models, what is learned is a model of the joint probability of the featuresX and the corresponding
class random variablesC. Complexity penalized likelihood of the data is often the objective used for
optimization, leading to standard maximum likelihood (ML) learning. Prediction with such a model
is then performed either by using Bayes rule to form the class posterior probability or equivalently
by forming class-prior penalized likelihood. Generative models have beenwidely studied, and are
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desirable because they are amenable to interpretation (e.g., the structure ofa generative Bayesian
network specifies conditional independencies between variables that might have a useful high-level
explanation). Additionally, they are amenable to a variety of probabilistic inference scenarios ow-
ing to the fact that they often decompose (Lauritzen, 1996)—the decomposition (or factorization)
properties of a model are often crucial to their efficient computation.

Discriminative approaches, on the other hand, more directly represent aspects of the distribution
that are important for classification accuracy, and there are a number ofways this can be done. For
example, some approaches model only the class posterior probability (the conditional probability
of the class given the features) orp(C|X). Other approaches, such as support vector machines
(SVMs) (Scḧolkopf and Smola, 2001; Burges, 1998) or neural networks (Bishop,2006, 1995),
directly model information about decision boundary sometimes without needingto concentrate on
obtaining an accurate conditional distribution (neural networks, however, are also used to produce
conditional distributions above and beyond just getting the class ranks correct Bishop, 1995). In
each case, the objective function that is optimized is one whose minima occur not necessarily when
the joint distributionp(C,X) is accurate, but rather when the classification error rate on a training
set is small. Discriminative models are usually restricted to one particular inference scenario, that
is, the mapping from observed input featuresX to the unknown class output variableC, and not the
other way around.

There are several reasons for using discriminative rather than generative classifiers, one of which
is that the classification problem should be solved most simply and directly, andnever via a more
general problem such as the intermediate step of estimating the joint distribution (Vapnik, 1998).
The superior performance of discriminative classifiers has been reported in many application do-
mains (Ng and Jordan, 2002; Raina et al., 2004; Juang et al., 1997; Juang and Katagiri, 1992; Bahl
et al., 1986).

Why then should we have an interest in generative models for discrimination?We address this
question in the next several paragraphs. The distinction between generative and discriminative mod-
els becomes somewhat blurred when one considers that there are both generative and discriminative
methods to learn a generative model, and within a generative model one may make a distinction
between learning model structure and learning its parameters. In fact, in thispaper, we make a clear
distinction between learning the parameters of a generative model and learning the structure of a
generative model. When using Bayesian networks to describe factorization properties of generative
models, the structure of the model corresponds to the graph: fixing the graph, the parameters of
the model are such that they must respect the factorization properties expressed by that graph. The
structure of the model, however, can be independently learned, and different structures correspond
to different families of graph (each family is spanned by the parameters respecting a particular
structure). A given structure is then evaluated under a particular “best”set of parameter values, one
possibility being the maximum likelihood settings. Of course, one could consideroptimizing both
parameters and structure simultaneously. Indeed, both structure and parameters are “parameters”
of the model, and it is possible to learn the structure along with the parameters when a complexity
penalty is applied that encourages sparse solutions, such asℓ1-regularization (Tibshirani, 1996) in
linear regression and other models. We, however, find it useful to maintainthis distinction between
structure and parameters for the reason that parameter learning is inherently a continuous optimiza-
tion procedure, while structure learning is inherently a combinatorial optimization problem. In our
case, moreover, it is possible to stay within a given fixed-complexity model family—if we wish to
stay within the family of sayk-trees for fixedk, ℓ1 regularization is not guaranteed to oblige.
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Moreover, both parameters and structure of a generative model can belearned either genera-
tively or discriminatively. Discriminative parameter learning of generative models, such as hidden
Markov models (HMMs) has occurred for many years in the speech recognition community (Bahl
et al., 1986; Ephraim et al., 1989; Ephraim and Rabiner, 1990; Juang and Katagiri, 1992; Juang
et al., 1997; Heigold et al., 2008), and more recently in the machine learning community (Greiner
and Zhou, 2002; Greiner et al., 2005; Roos et al., 2005; Ng and Jordan, 2002; Bishop and Lasserre,
2007; Pernkopf and Wohlmayr, 2009). Discriminative structure learninghas also more recently re-
ceived some attention (Bilmes, 1999, 2000; Pernkopf and Bilmes, 2005; Keogh and Pazzani, 1999;
Grossman and Domingos, 2004). In fact, there are four possible casesof learning a generative
model as depicted in Figure 2. Case A is when both structure and parameter learning is generative.
Case B is when the structure is learned generatively, but the parameters are learned discriminatively.
Case C is the mirror image of case B. Case D, potentially the most preferable case for classification,
is where both the structure and parameters are discriminatively learned.

Parameter Learning
Generative Discriminative

Structure
Learning

Generative Case A Case B
Discriminative Case C Case D

Figure 2: Learning generative-model based classifiers: Cases for each possible combination of gen-
erative and discriminative learning of either the parameters or the structureof Bayesian
network classifiers.

In this paper, we are particularly interested in learning the discriminative structure of a gener-
ative model. With a generative model, even discriminatively structured, some aspect of the joint
distribution p(C,X) is still being represented. Of course, a discriminatively structured generative
model needs only represent that aspect of the joint distribution that is beneficial from a classifica-
tion error rate perspective, and need not “generate” well (Bilmes et al.,2001). For this reason, it is
likely that a discriminatively trained generative model will not need to be as complex as an accurate
generatively trained model. In other words, the advantage of parsimony of a discriminative model
over a generative model will likely be partially if not mostly recovered when one trains a generative
model discriminatively. Moreover, there are a number of reasons why one might, in certain contexts,
prefer a generative to a discriminative model including: parameter tying anddomain knowledge-
based hierarchical decomposition is facilitated; it is easy to work with structured data; there is less
sensitivity to training data class skew; generative models can still be trained and structured discrim-
inatively (as mentioned above); and it is easy to work with missing features bymarginalizing over
the unknown variables. This last point is particularly important: a discriminatively structured gen-
erative model still has the ability to go fromp(C,X) to p(C,X′) whereX′ is a subset of the features
in X. This amounts to performing the marginalizationp(C,X′) = ∑X\X′ p(C,X), something that
can be tractable if the complexity class ofp(C,X) is limited (e.g.,k-trees) and the variable order
in the summation is chosen appropriately. In this work, we verify that a discriminatively structured
model retains its advantages in the missing feature case (see Section 6.6). A discriminative model,
however, is inherently conditional and it is not possible in general when some of the features are
missing to go fromp(C|X) to p(C|X′). This problem is also true for SVMs, logistic regression, and
multi-layered perceptrons.
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Learning a discriminatively structured generative model is inherently a combinatorial optimiza-
tion problem on a “discriminative” objective function. This means that there isan algorithm that
operates by tending to prefer structures that perform better on some measure that is related to clas-
sification error. Assuming sufficient training data, the ideal objective function is empirical risk
under the 0/1-loss (what we call CR, or the average error rate over training data), which can be im-
plicitly regularized by constraining the optimization process to consider only a limited complexity
model family (e.g.,k-trees for fixedk). In the case of discriminative parameter learning, CR can be
used, but typically alternative continuous and differentiable cost functions, which may upper-bound
CR and might be convex (Bartlett et al., 2006), are used and include conditional (log) likelihood
CLL(B|S) = log∏M

m=1PΘ
(

C= cm|X1:N = xm
1:N

)

—this last objective function in fact corresponds to
maximizing the mutual information between the class variable and the features (Bilmes, 2000), and
can easily be augmented by a regularization term as well.

One may ask, given discriminative parameter learning, is discriminative structure still neces-
sary? In the following, we present a simple synthetic example (similar to Narasimhan and Bilmes,
2005) and actual training and test results that indicate when a discriminative structure would be
necessary for good classification performance in a generative model. The model consists of 3 bi-
nary valued attributesX1,X2,X3 and a binary uniformly distributed class variableC. X̄1 denotes the
negation ofX1. For both classes,X1 is uniformly distributed andX2 = X1 with probability 0.5 and a
uniformly distributed random number with probability 0.5. So we have the following probabilities
for both classes:

X1 :=

{

0 with probability 0.5
1 with probability 0.5

X2 :=







X1 with probability 0.5
0 with probability 0.25
1 with probability 0.25

For class 1,X3 is determined according to the following:

X3 :=















X1 with probability 0.3
X2 with probability 0.5
0 with probability 0.1
1 with probability 0.1

.

For class 2,X3 is given by:

X3 :=















X̄1 with probability 0.3
X2 with probability 0.5
0 with probability 0.1
1 with probability 0.1

.

For both classes, the dependence betweenX1−X2 is strong. The dependenceX2−X3 is stronger
thanX1−X3, but only from a generative perspective (i.e.,I (X2;X3) > I (X1;X3) andI (X2;X3|C) >
I (X1;X3|C)). Hence, if we were to use the strength of mutual information, or conditionalmutual
information, to choose the edge, we would chooseX2−X3. However, it is theX1−X3 dependency
that enables discrimination between the classes. Sampling from this distribution,we first learn
structures using generative and discriminative methods, and then we perform parameter training
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on these structures using either ML or CL (Greiner et al., 2005). For learning a generative TAN
structure, we use the algorithm proposed by Friedman et al. (1997) whichis based on optimizing
the CMI between attributes given the class variable. For learning a discriminative structure, we
apply our order-based algorithm proposed in Section 5 (we note that optimizing the EAR measure
(Pernkopf and Bilmes, 2005) leads to similar results in this case).
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TAN−Discriminative Structure−ML
TAN−Discriminative Structure−CL
SVM
TAN−Generative Structure−ML
TAN−Generative Structure−CL
NB−ML
NB−CL

Figure 3: Generative and discriminative learning of Bayesian network classifiers on synthetic data.

Figure 3 compares the classification performance of these various cases, and in addition we
show results for a NB classifier, which resorts to random guessing between both classes due to the
lack of any feature dependency. Additionally, we provide the classification performance achieved
with SVMs using a radial basis function (RBF) kernel.2 On thex-axis, the training setsample size
varies according to{20,50,100,200,500,1000} and the test data set contains 1000 samples. Plots
are averaged over 100 independent simulations. The solid line is the performance of the classifiers
using ML parameter learning, whereas, the dashed line corresponds to CL parameter training.

(a)

X1 X2 X3

(b)

X1 X3 X2

Figure 4: (a) Generatively learned 1-tree, (b) Discriminatively learned1-tree.

Figure 4 shows (a) the generative (b) the discriminative 1-tree over the attributes of the resulting
TAN network (the class variable which is the parent of each feature is notshown in this figure).
A generative model prefers edges betweenX1−X2 andX2−X3 which do not help discrimination.

2. The SVM uses two parametersC∗ andσ, whereC∗ is the penalty parameter for the errors of the non-separable case
andσ is the variance parameter for the RBF kernel. We set the values for theseparameters toC∗ = 3 andσ = 1.
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The dependency betweenX1 andX3 enables discrimination to occur. Note that for this example
the difference between ML and CL parameter learning is insignificant and for the generative model,
only a discriminative structure enables correct classification. The performance of the non-generative
SVM is similar to our discriminatively structured Bayesian network classifier. Therefore, when a
generative model is desirable (see the reasons why this might be the case above), there is clearly a
need for good discriminative structure learning.

In this paper, we show that the loss of a “generative meaning” of a generative model (when
it is structured discriminatively) does not impair the generative model’s ability toeasily deal with
missing features (Figure 11).

4. Learning Bayesian Networks

In the following sections, we briefly summarize state-of-the-art generative and discriminative struc-
ture and parameter learning procedures that are used to compare our order-based discriminative
structure learning heuristics (which will be described in Section 5 and evaluated in Section 6).

4.1 Generative Parameter Learning

The parameters of the generative model are learned by maximizing the log likelihood of the data
which leads to the ML estimation ofθ j

i|h. The log likelihood function of a fixed structure ofB is

LL(B|S) =
M

∑
m=1

logPΘ (Z = zm) =
M

∑
m=1

N+1

∑
j=1

logPΘ

(

Z j = zm
j |ZΠ j = zm

Π j

)

=

M

∑
m=1

N+1

∑
j=1

|Z j |

∑
i=1

∑
h

u j,m
i|h log

(

θ j
i|h

)

.

(1)

It is easy to show that the ML estimate of the parameters is

θ j
i|h =

∑M
m=1u j,m

i|h

∑M
m=1 ∑|Z j |

l=1u j,m
l |h

,

using Lagrange multipliers to constrain the parameters to a valid normalized probability distribution.
Since we are optimizing over constrained BN structures (k-trees), we do not perform any further
regularization during training other than simple smoothing to remove zero-probability entries (see
Section 6.1).

4.2 Discriminative Parameter Learning

As mentioned above, for classification purposes, having a good approximation to the posterior prob-
ability is sufficient. Hence, we want to learn parameters so that CL is maximized.Unfortunately,
CL does not decompose as ML does. Consequently, there is no closed-form solution and we have to
resort to iterative optimization techniques. The objective function of the conditional log likelihood
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is

CLL(B|S) = log
M

∏
m=1

PΘ (C= cm|X1:N = xm
1:N) =

M

∑
m=1

log
PΘ

(

C= cm,X1:N = xm
1:N

)

|C|

∑
c=1

PΘ
(

C= c,X1:N = xm
1:N

)

=

M

∑
m=1

[

logPΘ (C= cm,X1:N = xm
1:N)− log

|C|

∑
c=1

PΘ (C= c,X1:N = xm
1:N)

]

.

Similar to Greiner and Zhou (2002) we use a conjugate gradient algorithm withline-search (Press
et al., 1992). In particular, thePolak-Ribieremethod is used (Bishop, 1995). The derivative of the
objective function is

∂CLL(B|S)

∂θ j
i|h

=
M

∑
m=1

[

∂
∂θ j

i|h

logPΘ (C= cm,X1:N = xm
1:N)−

1
|C|

∑
c=1

PΘ
(

C= c,X1:N = xm
1:N

)

∂
∂θ j

i|h

|C|

∑
c=1

PΘ (C= c,X1:N = xm
1:N)

]

.

Further, we distinguish two cases for deriving∂CLL(B|S)

∂θ j
i|h

. For TAN, NB, or 2-tree structures each

parameterθ j
i|h involves the class node value, eitherC = i for j = 1 (Case A) orC = h1 for j > 1

(Case B) whereh1 denotes the class instantiationh1 ∈ h.

4.2.1 CASE A

For the class variable, that is,j = 1 andh= /0, we get

∂CLL(B|S)

∂θ1
i

=
M

∑
m=1

[

u1,m
i

θ1
i

−
Wm

i

θ1
i

]

,

where we use Equation 1 for deriving the first term (omitting the sum overj andh) and we intro-
duced the posterior

Wm
i = PΘ (C= i|X1:N = xm

1:N) =
PΘ

(

C= i,X1:N = xm
1:N

)

|C|

∑
c=1

PΘ
(

C= c,X1:N = xm
1:N

)

.

4.2.2 CASE B

For the attribute variables, that is,j > 1, we derive correspondingly and have

∂CLL(B|S)

∂θ j
i|h

=
M

∑
m=1

[

u j,m
i|h

θ j
i|h

−Wm
h1

v j,m
i|h\h1

θ j
i|h

]

,

whereWm
h1
= PΘ

(

C= h1|X1:N = xm
1:N

)

is the posterior for classh1 and samplem, and

v j,m
i|h\h1

=

{

1, if zm
j = i andzm

Π j
= h\h1

0, otherwise
.
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The probabilityθ j
i|h is constrained toθ j

i|h ≥ 0 and∑|Z j |
i=1 θ j

i|h = 1. We re-parameterize the problem

to incorporate the constraints ofθ j
i|h in the conjugate gradient algorithm. Thus, we use different

parametersβ j
i|h as follows

θ j
i|h =

exp
(

β j
i|h

)

∑|Z j |
l=1exp

(

β j
l |h

) .

This requires the gradient∂CLL(B|S)

∂β j
i|h

which is computed after some modifications as

∂CLL(B|S)

∂β j
i|h

=
|Z j |

∑
k=1

∂CLL(B|S)

∂θ j
k|h

∂θ j
k|h

∂β j
i|h

=
M

∑
m=1

[

u1,m
i −Wm

i

]

−θ1
i

M

∑
m=1

|C|

∑
c=1

[

u1,m
c −Wm

c

]

for Case A and similarly for Case B we get the gradient

∂CLL(B|S)

∂β j
i|h

=
M

∑
m=1

[

u j,m
i|h −Wm

h1
v j,m

i|h\h1

]

−θ j
i|h

M

∑
m=1

|Z j |

∑
l=1

[

u j,m
l |h −Wm

h1
v j,m

l |h\h1

]

.

4.3 Generative Structure Learning

The conditional mutual information between the attributes given the class variable is computed as:

I (Xi ;Xj |C) = EP(Xi ,Xj ,C) log
P(Xi ,Xj |C)

P(Xi |C)P(Xj |C)
.

This measures the information betweenXi andXj in the context ofC. Friedman et al. (1997) gives
an algorithm for constructing a TAN network using this measure. This algorithm is an extension of
the approach in Chow and Liu (1968). We briefly review this algorithm in the following:

1. Compute the pairwise CMII (Xi ;Xj |C) ∀ 1≤ i ≤ N andi < j ≤ N.

2. Build an undirected 1-tree using the maximal weighted spanning tree algorithm (Kruskal,
1956) where each edge connectingXi andXj is weighted byI (Xi ;Xj |C).

3. Transform the undirected 1-tree to a directed tree. That is, select a root variable and direct
all edges away from this root. Add to this tree the class nodeC and the edges fromC to all
attributesX1, . . . ,XN.

4.4 Discriminative Structure Learning

As a baseline discriminative structure learning method, we use a greedy edge augmentation method
and also theSuperParentalgorithm (Keogh and Pazzani, 1999).

4.4.1 GREEDY HEURISTICS

While this method is expected to perform well, it is much more computationally costly thenthe
method we propose below. The method proceeds as follows: a network is initialized to NB and at
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each iteration we add the edge that, while maintaining a partial 1-tree, gives thelargest improve-
ment of the scoring function (defined below). This process is terminated when there is no edge
which further improves the score. This process might thus result in a partial 1-tree (forest) over the
attributes. This approach is computationally expensive since each time an edge is added, the scores
for all O

(

N2
)

edges need to be re-evaluated due to the discriminative non-decomposablescoring
functions we employ. This method overall has costO

(

N3
)

score evaluations to produce a 1-tree,
which in the case of anO (NM)) score evaluation cost (such as the below), has an overall complexity
of O

(

N4
)

. There are two score functions we consider: the CR (Keogh and Pazzani, 1999; Pernkopf,
2005)

CR(BS |S) =
1
M

M

∑
m=1

δ(BS (xm
1:N) ,c

m)

and the CL (Grossman and Domingos, 2004)

CL(B|S) =
M

∏
m=1

PΘ (C= cm|X1:N = xm
1:N) ,

where the expressionδ
(

BS

(

xm
1:N

)

,cm
)

= 1 if the Bayesian network classifierBS

(

xm
1:N

)

trained with
samples inS assigns the correct class labelcm to the attribute valuesxm

1:N, and is equal to 0 other-
wise.3 In our experiments, we consider the CR score which is directly related to the empirical risk
in Vapnik (1998). The CR is the discriminative criterion that, given sufficient training data, most
directly judges what we wish to optimize (error rate), while an alternative would be to use a convex
upper-bound on the 0/1-loss function (Bartlett et al., 2006). Like in the generative case above, since
we are optimizing over a constrained model space (k-trees), and are performing simple parameter
smoothing, again regularization is implicit. This approach has in the literature been shown to be
the algorithm that produces the best performing discriminative structure (Keogh and Pazzani, 1999;
Pernkopf, 2005) but at the cost of a very expensive optimization procedure. To accelerate this algo-
rithm in our implementation of this procedure (which we use as a baseline to compare against our
still to-be-defined proposed approach), we apply two techniques:

1. The data samples are reordered during structure learning so that misclassified samples from
previous evaluations are classified first. The classification is terminated as soon as the perfor-
mance drops below the currently best network score (Pazzani, 1996).

2. During structure learning the parameters are set to the ML values. Whenlearning the structure
we only have to update the parameters of those nodes where the set of parentsZΠ j changes.
This observation can be also used for computing the joint probability during classification.
We can memorize the joint probability and exchange only the probabilities of those nodes
where the set of parents changed to get the new joint probability (Keogh and Pazzani, 1999).

In the experiments this greedy heuristic is labeled as TAN-CR and 2-tree-CRfor 1-tree and 2-tree
structures, respectively.

4.4.2 SUPERPARENT AND ITS k-TREE GENERALIZATION

Keogh and Pazzani (1999) introduced theSuperParentalgorithm to efficiently learn a discriminative
TAN structure. The algorithm starts with a NB network and the edges pointing from the class

3. Note that the CR scoring measure is determined from a classifier trainedand tested on the same dataS .
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variable to each attribute remain fixed throughout the algorithm. In the first step, each attribute in
turn is considered as a parent of all other parentless attributes (exceptthe class variable). If there
are no parentless attributes left, the algorithm terminates. The parent which improves the CR the
most is selected and designated the current superparent. The second step fixes the most recently
chosen superparent and keeps only the single best child attribute of thatsuperparent. The single
edge between superparent and best child is then kept and the processof selecting a new superparent
is repeated, unless no improvement is found at which point the algorithm terminates. The number of
CR evaluations therefore in a complete run of the algorithm isO

(

N2
)

. Moreover, CR determination
can be accelerated as mentioned above.

We can extend this heuristic to learn 2-trees by simply modifying the first step accordingly:
consider each attribute as an additional parent of all parentless or single-parented attributes (while
ensuring acyclicity), and choose as the superparent the one that evaluates best, requiringO (N)
CR evaluations. Next, we retain the pair of edges between superparent and (parentless or single-
parented) children that evaluates best using CR, requiringO

(

N2
)

CR evaluations. The process
repeats if successful and otherwise terminates. The obviousk-tree generalization modifies the first
step to choose an additional parent of all attributes with fewer thank parents, and then selects the
best children for edge retention, leading overall to a process withO

(

Nk+1
)

score evaluations. In
this paper, we compare against this heuristic in the case ofk = 1 andk = 2, abbreviating them,
respectively, asTAN-SuperParentand2-tree-SuperParent.

5. New Heuristics: Order-based Greedy Algorithms

It was first noticed in Buntine (1991); Cooper and Herskovits (1992) that the best network consis-
tent with a given variable ordering can be found withO (Nq+c) score evaluations whereq is the
maximum number of parents per node in a Bayesian network, and wherec is a small fixed constant.
These facts were recently exploited in Teyssier and Koller (2005) wheregenerative structures were
learned. Here, we are inspired by these ideas and apply them to the case of learning discriminative
structures. Also, unlike Teyssier and Koller (2005), we establish only one ordering, and since our
scoring cost is discriminative, it does not decompose and the learned discriminative structure is not
guaranteed to be optimal. However, experiments show good results at relatively low computational
learning costs.

Our procedure looks first for a total ordering≺ of the variablesX1:N according to certain criteria
which are outlined below. The parents of each node are chosen in such away that the ordering is
respected, and that the procedure results in at most ak-tree. We note here, ak-tree is typically
defined on an undirected graphical model as one that has a tree-width ofk—equivalently, there
exists an elimination order in the graph such that at each elimination step, the node being eliminated
has no more thank neighbors at the time of elimination. When we speak of a Bayesian network
being ak-tree, what we really mean is that the moralized version of the Bayesian network is ak-tree.
As a reminder, our approach is to learn ak-tree (i.e., a computationally and parameter constrained
Bayesian network) over the featuresX1:N. We still assume, as is done with a naive Bayes model,
thatC is a parent of eachXi and this additional is not counted ink—thus, a 1-tree would have two
parents for eachXi , bothC and one additional feature. As mentioned above, in order to stay strictly
within the realm of generative models, we do not consider the case whereC has any parents.
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5.1 Step 1: Establishing an Order≺

We propose three separate heuristics for establishing an ordering≺ of the attribute nodes prior to
parent selection. In each case as we will see later, we use the resulting ordering such that later
features may only have earlier features as parents—this limit placed on the set of parents leads to
reduced computational complexity. Two of the heuristics are based on the conditional mutual infor-
mation I (C;XA|XB) between the class variableC and some subset of the featuresXA given some
disjoint subset of variablesXB (soA∩B= /0). The conditional mutual information (CMI) measures
the degree of dependence between the class variable andXA given XB and it may be expressed
entirely in terms of entropy viaI(C;XA|XB) = −H(C,XA,XB)+H(XA,XB)+H(C,XB)−H(XB),
where entropy ofX is defined asH(X) = −∑x p(x) logp(x). WhenB = /0, we of course obtain
(unconditional) mutual information. A structure that maximizes the mutual information betweenC
andX is one that will lead to the best approximation of the posterior probability. In other words, an
ideal form of optimization would do the following:

B∗ ∈ argmax
B∈FB

IB(X1:N;C),

whereFB is a complexity constrained class of BNs (e.g.,k-trees), andB∗ is an optimum network. Of
course, this procedure being intractable, we use mutual information to produce efficient heuristics
but that we show work well in practice on a wide variety of tasks (Section 6). The third heuristic
we describe is similar to the first two except that it is based directly on CR (i.e., empirical error
or 0/1-loss) itself. The heuristics detailed in the following are compared against random orderings
(RO) of the attributes in Section 6 to show that they are doing better than chance.

1: OMI: Our initial approach to finding an order is a greedy algorithm that first chooses the
attribute node that is most informative aboutC. The next attribute in the order is the attribute node
that is most informative aboutC conditioned on the first attribute, and subsequent nodes are chosen
to be most informative aboutC conditioned on previously chosen attribute nodes. More specifically,
our algorithm forms an ordered sequence of attribute nodesX1:N

≺ =
{

X1
≺,X

2
≺, . . . ,X

N
≺

}

according to

X j
≺← argmax

X∈X1:N\X
1: j−1
≺

[

I
(

C;X|X1: j−1
≺

)]

, (2)

where j ∈ {1, . . . ,N}.
It is not possible to describe the motivation for this approach without considering at least the

general way parents of each attribute node are ultimately selected—more details are given below,
but for now it is sufficient to say that each node’s set of potential parents is restricted to come from
nodes earlier in the ordering. LetXΠ j ⊆ X1: j−1

≺ be the set of chosen parents forXj in an ordering.
There are several reasons why the above ordering should be useful. First, suppose we consider two
potential next variablesXj1 andXj2 as the j th variable in the ordering, whereI(Xj1;C|X1: j−1)≪
I(Xj2;C|X1: j−1). ChoosingXj1 could potentially lead to the case that no additional variable within
the allowable set of parentsX1: j−1 could be beneficially added to the model as a parent ofXj1. The
reason is that, conditioning on all of the potential parents ofXj1, the variableXj1 is less informative
aboutC. If Xj2 is chosen, however, then there is a possibility that some edge augmentation as
parents ofXj2 will renderXj2 residually informative aboutC—the reason for this is thatXj2 chosen
to have this property, and one set of parents that rendersXj2 residually informative aboutC is the set
X1: j−1
≺ . Stated more concisely, we wish to choose as a next variable in the orderingone that has the
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potential to be strongly and residually predictive ofC when choosing earlier variables as parents.

When choosingXj such thatI
(

C;Xj |X
1: j−1
≺

)

is large, this is possible at least in the case whenX

may have up toj−1 additional parents.
Of course, only a subset of these nodes will ultimately be chosen to ensurethat the model is

a k-tree and remains tractable and just becauseI(Xj ;C|X1: j−1) is large does not necessarily mean
that I(Xj ;C|XB) is also large for someB⊂ {1, . . . ,( j −1)}. The strict sub-set relationship, where
|B| < ( j − 1), is necessary to restrict the complexity class of our models, but this goal involves
an accuracy-computation tradeoff. Our approach, therefore, is onlya heuristic. Nevertheless, one
justification for our ordering heuristic is based on the aspect of our algorithm that achieves compu-
tational tractability, namely the parent-selection strategy where variables areonly allowed to have
previously ordered variables as their parents (as we describe in more detail below). Moreover, we
have empirically found this property to be the case in both real and artificial random data (see be-
low). Loosely speaking, we see our ordering as somewhat analogous toAda-boost but applied to
feature selection, where later decisions on the ordering are chosen to correct for the deficiencies of
earlier decisions.

A second reason our ordering may be beneficial stems from the reason that a naive Bayes model
is itself useful. In a NB, we have that eachXi is independent ofXj givenC. This has beneficial
properties both from the bias-variance (Friedman et al., 1997) and fromthe discriminative structure
perspective (Bilmes, 2000). In any given ordering, variables chosen earlier in the order have more
of a chancein the resulting modelto render later variables conditionally independent of each other
conditioned on bothC and the earlier variable. For example, if two later variables both ask for
the same earlier single parent, the two later variables are modeled as independent givenC and that
earlier parent. This normally would not be useful, but in our ordering, since the earlier variables
are in general more correlated withC, this mimics the situation in NB:C and variables similar toC
render conditionally independent other variables that are less similar toC (with NB alone,C renders
all other variables conditionally independent). For reasons similar to NB (Friedman et al., 1997),
such an ordering will tend to work well.

Our approach rests on being able to compute CMI queries over a large number of variables,
something that requires both solving a potentially difficult inference problemand also is sensitive
to training-data sparsity. In our case, however, a conditional mutual information query can be
computed efficiently by making only one pass over the training data, albeit with apotential problem
with bias and variance of the mutual information estimate. As mentioned above, each CMI query
can be represented as a sum of signed entropy terms. Moreover, sinceall variables are discrete in
our studies, an entropy query can be obtained in one pass over the data by computing an empirical
histogram of random variable values only that exist in the data, then summing over only the resulting
non-zero values. Let us assume, for simplicity, that integer variableY represents the Cartesian
product of all possible values of the vector random variable for we wishto obtain an entropy value.
Normally, H(Y) = −∑y p(y) logp(y) would require an exponential number of terms, but we avoid
this by computingH(Y) = −∑y∈Ty

p(y) logp(y)−|Dy \Ty|ε logε, whereTy are the set ofy values
that occur in the training data, andDy is the set of all possibley values, andε is any smoothing value
that we might use to fill in zeros in the empirical histogram. Therefore, if our algorithm requires only
a polynomial number of CMI queries, then the complexity of the algorithm is still only polynomial
in the size of the training data. Of course, as the number of actual variablesincreases, the quality
of this estimate decreases. To mitigate these problems, we can restrict the number of variables in
X1: j−1
≺ for a CMI query, leading to the following second heuristic based on CMI.
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2: OMISP: For a 1-tree each variableX j
≺ has one single parent (SP)XΠ j which is selected from

the variablesX1: j−1
≺ appearing beforeX j

≺ in the ordering (i.e.,|Π j | = 1,∀ j). This leads to a simple
variant of the above, where CMI conditions only on a single variable withinX1: j−1

≺ . Under this
heuristic, an ordered sequence is determined by

X j
≺← argmax

X∈X1:N\X
1: j−1
≺

[

max
X≺∈X1: j−1

≺

[I (C;X|X≺)]

]

.

Note, in this work, we do not present results using OMISP since the resultswere not significantly
different than OMI. We refer the interested reader to Pernkopf and Bilmes (2008a) which gives the
results for this heuristic, and more, in their full glory.

3: OCR: Here, CR on the training data is used in a way similar to the aforementioned greedy
OMI approach. The ordered sequence of nodesX1:N

≺ is determined according to

X j
≺← argmax

X∈X1:N\X
1: j−1
≺

CR(BS |S) ,

where j ∈ {1, . . . ,N} and the graph ofBS at each evaluation is a fully connected sub-graph only
over the nodesC,X, andX1: j−1

≺ , that is, we have asaturatedsub-graph (note, hereBS depends on
the currentX and the previously chosen attribute nodes in the order, but this is not indicated for
notational simplicity). This can of course lead to very large local conditionalprobability tables. We
thus perform this computation by using sparse probability tables that have been slightly smoothed

as described above. We then compute CR on the basis ofP
(

C|X,X1: j−1
≺

)

∝ P
(

X,X1: j−1
≺ |C

)

P(C).

The justification for this approach is that it produces an ordering based not on mutual information
but on a measure more directly related to classification accuracy.

5.2 Step 2: Heuristic for Selecting Parents w.r.t. a Given Order to Form ak-tree

Once we have the orderingX1:N
≺ , we selectXΠ j ⊆ X1: j−1

≺ for eachX j
≺, with j ∈ {2, . . . ,N}. When

the size ofXΠ j (i.e.,N) and ofk are small we can use even a computational costly scoring function
to find XΠ j . In case of a largeN, we can restrict the size of the parent setXΠ j similar to thesparse
candidate algorithm(Friedman et al., 1999). While either the CL or the CR can be used as a cost
function for selecting parents, we in this work restrict our experiments to CRfor parent selection
(empirical results show it performed better). The parent selection proceeds as follows. For each

j ∈ {2, . . . ,N}, we choose the bestk parentsXΠ j ⊆ X1: j−1
≺ for X j

≺ by scoring each of theO
(

(N
k

)

)

possibilities with CR. We note that forj ∈ {2, . . . ,N−1} there will be a set of variables that have
not yet had their parents chosen, namely variablesX j+1:N

≺ —for these variables, we simply use the
NB assumption. That is, those variables have no parents other thanC for the selection of parents for
X j
≺ (we relax this property in Pernkopf and Bilmes, 2008a). Note that the set of parents is judged

using CR, but the model parameters for any given candidate set of parents selected are trained using
ML (we did not find further advantages, in addition to using CR for parentselection, in also using
discriminative parameter training). We also note that the parents for each attribute node are retained
in the model only when CR is improved, and otherwise the nodeX j

≺ is left parent-less. This therefore
might result in a partialk-tree (forest) over the attributes. We evaluate our algorithm fork = 1 and
k= 2, but is defined above to learnk-trees (k≥ 1), and thus usesO

(

Nk+1
)

score evaluations where,
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due to ML training, each CR evaluation isO (NM). Overall, for learning a 1-tree, the ordering and
the parent selection costsO

(

N2
)

score evaluations. We see that the computation is comparable to
that of theSuperParentalgorithm and itsk-tree generalization.

Algorithm 1 OMI-CR
Input: X 1:N,C,S
Output: set of edgesE for TAN network
X1
≺,X

2
≺← argmaxX,X′∈X1:N [I (C;X,X′)]

if I
(

C;X1
≺

)

< I
(

C;X2
≺

)

then
X2
≺↔ X1

≺

end if
E←

{

ENaive Bayes∪EX1
≺,X

2
≺

}

j ← 2
CRold← 0
repeat

j ← j +1

X j
≺← argmaxX∈X1:N\X

1: j−1
≺

[

I
(

C;X|X1: j−1
≺

)]

X∗≺← argmaxX∈X1: j−1
≺

CR(BS |S) where edges ofBS are
{

E∪EX,X j
≺

}

CRnew←CR(BS |S) where edges ofBS are
{

E∪EX∗≺,X
j
≺

}

if CRnew>CRold then
CRold←CRnew

E←
{

E∪EX∗≺,X
j
≺

}

end if
until j = N

5.3 OMI-CR Algorithm

Recapitulating, we have introduced three order-based greedy heuristics for producing discriminative
structures in Bayesian network classifiers: First, there is OMI-CR (Order based on Mutual Infor-
mation with CR used for parent selection); Second, there is OMISP-CR (Order based on Mutual
Information conditioned on a Single Parent, with CR used for parent selection); and third OCR-CR
(Order based on Classification Rate, with CR used for parent selection).For evaluation purposes,
we also consider random orderings in step 1 and CR for parent selection(RO-CR). The OMI-CR
procedure is summarized in Algorithm 1 where both steps (order and parent selection) are merged
at each loop iteration (which is of course equivalent to considering both steps separately). The
different algorithmic variants are obtained by modifying the ordering criterion.

6. Experiments

We present classification results on 25 data sets from the UCI repository (Merz et al., 1997) and from
Kohavi and John (1997), for frame- and segment-based phonetic classification experiments using
the TIMIT database (Lamel et al., 1986), for a visual surface inspectiontask (Pernkopf, 2004),
and for handwritten digit recognition using the MNIST (LeCun et al., 1998)and USPS data set.

2340



DISCRIMINATIVE LEARNING FORBAYESIAN NETWORK CLASSIFIERS

Additionally, we show performance results on synthetic data. We use NB, TAN, and 2-tree network
structures. Different combinations of the following parameter/structure learning approaches are
used to learn the classifiers:

• Generative (ML) (Pearl, 1988) and discriminative (CL) (Greiner et al.,2005) parameter learn-
ing.
• CMI: Generative structure learning using CMI as proposed in Friedman et al. (1997).
• CR: Discriminative structure learning with greedy heuristic using CR as scoring function

(Keogh and Pazzani, 1999; Pernkopf, 2005) (see Section 4.4).
• RO-CR: Discriminative structure learning using random ordering (RO) in step 1 and CR for

parent selection in step 2 of the order-based heuristic.
• SuperParentk-tree: Discriminative structure learning using the SuperParent algorithm (Keogh

and Pazzani, 1999) withk= 1,2 (see Section 4.4).
• OMI-CR: Discriminative structure learning using CMI for ordering the variables (step 1) and

CR for parent selection in step 2 of the order-based heuristic.
• For OMI-CR, we also evaluate discriminative parameter learning by optimizing CL during

the selection of the parent in step 2. We call this OMI-CRCL. Discriminative parameter
learning while optimizing discriminative structure is computationally feasible only onrather
small data sets due to the cost of the conjugate gradient parameter optimization.

We do not include experimental results for OMISP-CR and OCR-CR for space reasons. The
results, however, show similar performance to OMI-CR, and can be found in an extended technical-
report version of this paper (Pernkopf and Bilmes, 2008a).

While we have attempted to avoid a proliferation of algorithm names, some name abundance
has unavoidably occurred in this paper. We therefore have attempted to use a simple 2-, 3-, or even
4-tag naming scheme where A-B-C-D is such that “A” (if given) refers toeither TAN (1-tree) or 2-
tree, “B” and “C” refer to the structure learning approach, and “D” (ifgiven) refers to the parameter
training method of thefinal resultant model structure. For the ordering heuristics “B” refers to the
ordering method, “C” refers to the parent selection and internal parameter learning strategy. For
the remaining structure learning heuristics only “B” is present. Thus, TAN-OMI-CRML-CL would
be the OMI procedure for ordering, parent selection evaluated using CR (with ML training used at
that time), and with CL used to train the final model which would be a 1-tree (notemoreover that
TAN-OMI-CR-CL is equivalent since ML is the default training method).

6.1 Experimental Setup

Any continuous features were discretized using recursive minimal entropy partitioning (Fayyad and
Irani, 1993) where the codebook is produced using only the training data. This discretization method
uses the class entropy of candidate partitions to determine the bin boundaries. The candidate parti-
tion with the minimal entropy is selected. This is applied recursively on the established partitions
and the minimum description length approach is used as stopping criteria for therecursive parti-
tioning. In Dougherty et al. (1995), an empirical comparison of different discretization methods
has been performed and the best results have been achieved with this entropy-based discretization.
Throughout our experiments, we use exactly the same data partitioning for each training procedure.
We performed simple smoothing, where zero probabilities in the conditional probability tables are
replaced with small values (ε = 0.00001). For discriminative parameter learning, the parameters are
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initialized to the values obtained by the ML approach (Greiner et al., 2005). The gradient descent
parameter optimization is terminated usingcross tuningas suggested in Greiner et al. (2005).

6.2 Data Characteristics

In the following, we introduce several data sets used in the experiments.

6.2.1 UCI DATA

We use 25 data sets from the UCI repository (Merz et al., 1997) and fromKohavi and John (1997).
The same data sets, 5-fold cross-validation, and train/test learning schemes as in Friedman et al.
(1997) are employed. The characteristics of the data sets are summarized inTable 7 in the Ap-
pendix A.

6.2.2 TIMIT-4/6 DATA

This data set is extracted from the TIMIT speech corpus using the dialectspeaking region 4 which
consists of 320 utterances from 16 male and 16 female speakers. The speech is sampled at 16
kHz. Speech frames are classified into the following classes, voiced (V),unvoiced (U), silence (S),
mixed sounds (M), voiced closure (VC), and release (R) of plosives.We therefore are performing
frame-by-frame phone classification (contrasted with phonerecognitionusing, say, a hidden Markov
model). We perform experiments with only four classes V/U/S/M and all six classes V/U/S/M/VC/R
using 110134 and 121629 samples, respectively. The class distribution of the four class experiment
V/U/S/M is 23.08%, 60.37%, 13.54%, 3.01% and of the six class case V/U/S/M/VC/Ris 20.9%,
54.66%, 12.26%, 2.74%, 6.08%, 3.36%. Additionally, we perform classification experiments on
data of male speakers (Ma), female speakers (Fe), and both genders (Ma+Fe). For each gender we
have approximately the same number of samples. The data have been split into 2mutually exclusive
subsets ofD ∈ {S1,S2} where the size of the training dataS1 is 70% and of the test dataS2 is 30%
of D. The classification experiments have been performed with 8 wavelet-basedfeatures combined
with 12 mel-frequency cepstral coefficients (MFCC) features, that is, 20 features. More details
about the features can be found in Pernkopf et al. (2008). We have 6different classification tasks
for each classifier, that is, Ma+Fe, Ma, Fe× 4 or 6 Classes.

6.2.3 TIMIT-39 DATA

This again is a phone classification test but with a larger number of classes.In accordance with
Halberstadt and Glass (1997) we cluster the 61 phonetic labels into 39 classes, ignoring glottal
stops. For training, 462 speakers from the standard NIST training set have been used. For testing
the remaining 168 speakers from the overall 630 speakers were employed. Each speaker speaks
10 sentences including two sentences which are the same among all speakers (labeled assa), five
sentences which were read from a list of phonetically balanced sentences (labeled assx), and 3
randomly selected sentences (labeled assi). In the experiments, we only use thesxandsi sentences
since thesasentences introduce a bias for certain phonemes in a particular context. This means that
we have 3696 and 1344 utterances in the training and test set, respectively. We derive from each
phonetic segment one feature vector which results in 140173 training samples and 50735 testing
samples. The features are derived similarly as proposed in Halberstadt and Glass (1997). First, 12
MFCC + log-energy feature (13 MFCC’s) and their derivatives (13 Derivatives) are calculated for
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Figure 5: Acquired surface data with an embedded crack.

every 10ms of the utterance with a window size of 25ms. A phonetic segment, which can be variable
length, is split at a 3:4:3 ratio into 3 parts. The fixed-length feature vector is composed of: 1) three
averages of the 13 MFCC’s calculated from the 3 portions (39 features); 2) the 13 Derivatives of the
beginning of the first and the end of the third segment part (26 features); and 3) the log duration of
the segment (1 feature). Hence, each phonetic segment is representedby 66 features.

6.2.4 SURFACE INSPECTIONDATA (SURFINSP)

This data set was acquired from a surface inspection task. Surface defects with three-dimensional
characteristics on scale-covered steel blocks have to be classified into 3classes. The 3-dimensional
raw data showing the case of an embedded surface crack is given in Figure 5. The data set consists
of 450 surface segments uniformly distributed into three classes. Each sample (surface segment) is
represented by 40 features. More details on the inspection task and the features used can be found
elsewhere (Pernkopf, 2004).

6.2.5 MNIST DATA

We evaluate our classifiers on the MNIST data set of handwritten digits (LeCun et al., 1998) which
contains 60000 samples for training and 10000 digits for testing. The digits are centered in a 28×28
gray-level image. We re-sample these images at a resolution of 14× 14 pixels. This gives 196
features where the gray-levels are discretized using the procedure from Fayyad and Irani (1993).
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Figure 6: USPS data.

6.2.6 USPS DATA

This data set contains 11000 handwritten digit images (uniformly distributed) collected from zip
codes of mail envelopes. Each digit is represented as a 16×16 grayscale image, where each pixel
is considered as individual feature. Figure 6 shows a random sample ofthe data set. We use 8000
digits for training and the remaining images as a test set.

6.3 Conditional Likelihood and Maximum Mutual Information Orderings

In the following, we evaluate the ordering heuristics using 31 different classification scenarios (from
the UCI and the TIMIT-4/6 data sets) comprising differing input features and differing numbers of
classes. We compare our ordering procedure (i.e., OMI, where we maximize the mutual informa-
tion as in Equation 2) with several other possible orderings in an attempt to empirically show that
our aforementioned intuition regarding order (see Section 5.1) is sound in the majority of cases. In
particular, we compare against an ordering produced by minimizing the mutualinformation (replac-
ing argmax with argmin in Equation 2). Additionally, we also compare against 100uniformly-at-
random orderings. For the selection of the conditioning variables (see Section 5.2) the CL score is
used in each case. ML parameter estimation is used for all examples in this section.

Figure 7 and Figure 8 show the resulting conditional log likelihoods (CLL) ofthe model scoring
the training data after the TAN network structures (1-trees in this case) have been determined for
the various data sets. As can be seen, our ordering heuristic performs better than both the random
and the minimum mutual information orderings on 28 of the 31 cases. The random case shows the
mean and± one standard deviation out of 100 orderings. ForCorral, Glass, andHeartthere is no
benefit, but the data sets are on the smaller side where it is less unexpected that generative structure
learning would perform better (Ng and Jordan, 2002).

To further verify that our ordering tends to produce better conditional likelihood values on train-
ing data, we also evaluate on random data. For each number of variables (from 10 up to 14) we
generate 1000 random distributions and draw 100000 samples from eachone. Using these samples,
we learn generative and discriminative TAN structures by the following heuristics and report the
resulting conditional log likelihood on the training data: (i) order variables bymaximizing mutual
information (TAN-OMI-CL), (ii) order variables by minimizing mutual information, (iii) random
ordering of variables and CL parent selection (TAN-RO-CL), (iv) optimal generative 1-tree, that
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Figure 7: Resulting CLL on the UCI data sets for a maximum mutual information (i.e.,OMI), a
minimum mutual information, and a random based ordering scheme.

is, TAN-CMI (Friedman et al., 1997), (v) the computationally expensive greedy heuristic using CL
(see Section 4.4.1), what we call TAN-CL. In addition we show CLL resultsfor the NB classifier.

Figure 9 shows the CLL values for various algorithms. The CLL is still high even with the
much less computationally costly OMI-CL procedure. Additionally, the generative 1-tree method
improves likelihood but it does not necessarily produce good conditionallikelihood results. We
performed a one-sided paired t-test (Mitchell, 1997) for all different structure learning approaches.
This test indicates that the CLL differences among the methods are significant at a level of 0.05 for
each number of variables. This figure shows that the CLL gets smaller whenmore attributes are
involved. With increasing the number of variables the random distribution becomes morecomplex
(i.e., the number of dependencies among variables increases). However, we approximate the true
distribution in any case with a 1-tree.

While we have shown empirically that our ordering heuristic tends to producemodels that score
the training data highly in the conditional likelihood sense, a higher conditionallikelihood does not
guarantee a higher accuracy, and training data results do not guarantee good generalization. In the

2345



PERNKOPF ANDBILMES

−1.08

−1.06

−1.04

−1.02

−1

−0.98

−0.96

−0.94

−0.92
x 10

4
C

L
L

Ma+Fe−4Class

−5000

−4800

−4600

−4400

−4200

−4000

−3800

C
L
L

Ma−4Class

−5300

−5200

−5100

−5000

−4900

−4800

−4700

−4600

−4500

−4400

C
L
L

Fe−4Class

−2.3

−2.25

−2.2

−2.15

−2.1

−2.05

−2

−1.95
x 10

4

C
L
L

Ma+Fe−6Class

−10200

−10000

−9800

−9600

−9400

−9200

−9000

−8800

−8600

C
L
L

Ma−6Class

−1.14

−1.12

−1.1

−1.08

−1.06

−1.04

−1.02

−1
x 10

4

C
L
L

Fe−6Class

Order Variables by Maximizing Mutual Information

Order Variables by Minimizing Mutual Information

Random Variable Ordering (with standard deviation)

Figure 8: Resulting CLL on the TIMIT-4/6 data sets for a maximum mutual information (i.e., OMI),
a minimum mutual information, and a random based ordering scheme.

10 11 12 13 14
−3.01

−3.005

−3

−2.995

−2.99

−2.985
x 10

4

# Variables

C
LL

 

 
TAN−CL
TAN−OMI−CL: Order Variables by Maximizing Mutual Information
TAN−RO−CL: Random Variable Ordering
TAN−CMI (Friedman et al.(1997), Chow and Liu (1968))
TAN: Order Variables by Minimizing Mutual Information
Naive Bayes

Figure 9: Optimized CLL of TAN structures learned by various algorithms. For each number of
variables (x-axis) we generated 1000 random distributions.

next sections, however, we show that on balance, accuracy on test data using our ordering procedure
is on par with the expensive greedy procedure, but with significantly lesscomputation.

6.4 Synthetic Data

We show the benefit of the structure learning algorithms for the case wherethe class-dependent data
are sampled from different 1-tree structures. In particular, we randomly determine for each class
a 1-tree. The probabilities for each attribute variable are sampled from an uniform distribution,
whereas the cardinality is set to 10, that is,|Xi | = 10. We use five classes. From the tree forC = 1
we draw 25000 samples. Additionally, we sample 6250 samples for each of theremaining four
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classes from the same structure for confusion. For the remaining classeswe draw 6250 samples
from the corresponding random trees. This gives in total 75000 samplesfor training. The test set
also consists of 75000 samples generated likewise. We perform this experiment for varying number
of attributes, that is,N ∈ {5,10,15,20,25,30}. The recognition results are shown in Figure 10,
whereas the performance of each algorithm is averaged over 20 independent runs with randomly
selected conditional probability distributions and trees. In each run, all algorithms have exactly the
same data available.
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Figure 10: Synthetic data: Recognition performance is averaged over 20runs.

We compare our OMI-CR heuristic to greedy discriminative structure learning. Additionally, we
provide results for NB and generatively optimized TAN structures using CMI. To give a flavor about
the data, the classification rates achieved with the true model used to generatethe data are reported.
This figure indicates that OMI-CR performs slightly worse than the greedy heuristic. However, the
one-sided paired t-test (Mitchell, 1997) indicates that TAN-OMI-CR performs significantly better
than TAN-CMI for more than 5 attributes at a level of 0.05. Generally, discriminative parameter
optimization (i.e., CL) does not help for this data.

6.5 Classification Results and Discussion

Table 1 presents the averaged classification rates over the 25 UCI and 6 TIMIT-4/6 data sets.4 Addi-
tionally, we report the CR on TIMIT-39, SurfInsp, MNIST, and USPS.The individual classification
performance of all classification approaches on the 25 UCI data sets aresummarized in Pernkopf

4. The average CR is determined by first weighting the CR of each data setwith the number of samples in the test set.
These values are accumulated and normalized by the total amount of samples in all test sets.
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DATA SET UCI TIMIT-4/6 TIMIT-39 SURFINSP MNIST USPS
CLASSIFIER

NB-ML 81.50 84.85 61.70± 0.22 89.11± 1.47 83.73± 0.37 87.10± 0.61
NB-CL 85.18 88.69 70.33± 0.20 92.67± 0.90 91.70± 0.28 93.67± 0.44

TAN-CMI-ML 84.82 86.18 65.40± 0.21 92.44± 0.96 91.28± 0.28 91.90± 0.50
TAN-CMI-CL 85.47 87.22 66.31± 0.21 92.44± 0.96 93.80± 0.24 94.87± 0.40

TAN-RO-CR-ML (M EAN) 85.04 87.43 - 93.13± 0.70 - -
TAN-RO-CR-ML (M IN ) 85.00 87.57 - 92.67 - -
TAN-RO-CR-ML (M AX ) 84.82 87.43 - 92.67 - -
TAN-SUPERPARENT-ML 84.80 87.54 66.53± 0.21 92.22±0.78 91.80± 0.27 90.67± 0.53
TAN-SUPERPARENT-CL 85.70 87.76 66.56± 0.21 92.44± 0.96 93.50± 0.25 94.70± 0.41

TAN-OMI-CR-ML 85.11 87.52 66.61± 0.21 94.00±1.14 92.01± 0.27 92.40± 0.48
TAN-OMI-CR-CL 85.82 87.54 66.87± 0.21 94.00±1.14 93.39± 0.25 94.90± 0.40

TAN-OMI-CRCL-ML 85.16 87.46 - 94.22±1.13 - -
TAN-OMI-CRCL-CL 85.78 87.62 - 94.22±1.13 - -

TAN-CR-ML 85.38 87.62 66.78± 0.21 92.89± 0.57 92.58± 0.26 92.57± 0.48
TAN-CR-CL 86.00 87.48 67.23± 0.21 92.89± 0.57 93.94± 0.24 95.83± 0.36

2-TREE-RO-CR-ML (MEAN) - 87.86 - - - -
2-TREE-RO-CR-ML (MIN) - 87.87 - - - -
2-TREE-RO-CR-ML (MAX ) - 87.87 - - -
2-TREE-SUPERPARENT-ML 84.77 87.33 64.78± 0.21 92.67±1.63 90.56± 0.29 90.67± 0.53
2-TREE-SUPERPARENT-CL 85.90 87.14 67.38± 0.21 92.67±1.63 92.47± 0.26 94.13± 0.43

2-TREE-OMI-CR-ML 85.50 88.01 66.94± 0.21 94.22± 0.82 92.69± 0.26 94.03± 0.41
2-TREE-OMI-CR-CL 85.81 87.27 67.06± 0.21 94.88± 0.90 93.09± 0.25 94.76± 0.41

2-TREE-CR-ML 85.53 87.94 66.71± 0.21 94.22± 1.07 - -
2-TREE-CR-CL 85.73 86.95 67.36± 0.21 94.22± 1.07 - -

Table 1: Averaged classification results for 25 UCI and 6 TIMIT-4/6 datasets and classification
results for TIMIT-39, SurfInsp, MNIST, and USPS with standard deviations. Best results
use bold font. ML and CL denote generative and discriminative parameter learning, re-
spectively. The order-based greedy heuristics are OMI-CR (ordermutual information-CR)
and RO-CR (random order-CR). CRCL refers to using discriminative parameter learning
during structure learning. The generative structure learning algorithm isabbreviated as
CMI and the greedy discriminative structure learning is TAN-CR and 2-tree-CR.

and Bilmes (2008a), whereas the random order experiment is presentedin Table 8 (see Appendix A).
For the TIMIT-4/6 data sets the individual classification performances for various classifier learning
methods can be found in Table 9 (see Appendix B). The random order experiment for these data
sets using a 2-tree is summarized in Appendix B in Table 10.

6.5.1 DISCUSSION: DISCRIMINATIVE VERSUS GENERATIVE PARAMETER LEARNING

Discriminative parameter learning produces mostly a significantly better classification performance
than ML parameter learning on the same classifier structure. Especially, forcases where the struc-
ture of the underlying model is not optimized for classification (Greiner et al.,2005)—the average
improvement of discriminative parameter learning over ML estimation on NB and generative TAN-
CMI structures is large. In particular, for TIMIT-4/6 and TIMIT-39 thediscriminatively optimized
NB classifier (i.e., NB-CL) achieves the overall best classification performance. One reason is that
the final step of MFCC features extraction includes a discrete cosine transform, that is, the features
are decorrelated. Hence, the independence assumptions of the NB structure might be a good choice
for these data sets. A second reason is that CL parameter learning for theTAN and 2-tree structures
overfit the data (even with cross tuning)—the NB structure implicitly keeps the number of param-
eters low. Analyzing the results of CL parameter learning over various structures (especially for
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2-trees) reveal thatcross tuningis for some cases too restrictive concerning the number of conjugate
gradient iterations—an alternative regularization method is required. CL parameter learning of NB
classifiers is known to be equivalent to logistic regression. It can be shown that the CLL is con-
cave when using logθ j

i|h, that is, the global maximum can be found during discriminative parameter
learning. Roos et al. (2005) showed that this also holds for more general network structures, for
example, TAN.

In Section 6.6, we show that the classification performance of a discriminatively structured
model may be superior to discriminatively parameterized models in the case of missing features.

6.5.2 DISCUSSION: DISCRIMINATIVE VERSUS GENERATIVE STRUCTURELEARNING USING

ML PARAMETER LEARNING

The CR objective function produces the best performing network structures. Evaluation of the CR
measure is computationally expensive as mentioned above. However, due tothe ordering of the
variables in the order-based heuristics, we can reduce the number of CRevaluations fromO

(

N3
)

to
O
(

N2
)

for TAN structures. Hence, TAN-CR and 2-tree-CR are restricted to rather small data sets.
The order-based heuristic OMI-CR achieve a similar performance at a much lower computational
cost. Discriminative parameter learning during discriminative structure learning using our order-
based heuristics can slightly improve the performance. This is possible only on small data sets due
to the computational burden for the conjugate gradient parameter optimization.

The discriminative SuperParent algorithm performs slightly but not significantly worse com-
pared to the other discriminative structure learning algorithms OMI-CR, OMI-CRCL, and greedy
heuristic using CR on the UCI data set—similarly, the performance of SuperParent on TIMIT-4/6
for learning TAN structures, however, the performance using 2-tree structures is low. In summary,
SuperParent achieves a lower classification rate compared to other discriminative structure learning
algorithms on most of the data sets. The main reason for the degraded performance is an early
termination of the algorithm.

For RO-CR we summarize the performance over 1000 random orderings using the mean (Mean),
minimum (Min), and maximum (Max) CR (we use only 100 random orders for TIMIT-4/6 though).
Min (Max) reports the classification rate on the test set using the structure which achieves the mini-
mum (maximum) performance over 1000 random orderings (resp. 100 orders for TIMIT-4/6) on the
training data. In some cases, the average over the data sets show that the worst RO-CR structures
scored on the training sets perform better on the test sets than the best structures on the training
sets, presumably due to overfitting. These results do show, however, that choosing from a collection
of arbitrary orders and judging them based on the training set performance is not likely to perform
well on the test set. Our heuristics do improve over these orders.

The TIMIT-39, MNIST, and USPS experiments show that we can perform discriminative struc-
ture learning for relatively large classification problems (∼140000 samples, 66 features, 39 classes,
∼60000 samples, 196 features, 10 classes, and∼8000 samples, 256 features, 10 classes, resp.). For
these data sets, OMI-CR significantly outperform NB and TAN-CMI.

On MNIST we achieve a classification performance of∼92.58% with the discriminative TAN
classifier. A number of state-of-the-art algorithms, that is, convolutionalnet and virtual SVM,
achieve an error rate below 1% (LeCun and Cortes). Due to resampling weuse only 196 features
in contrast to the 784 features of the original data set which might explain some of the loss in
classification rate. Another reason why the convolutional neural net and virtual SVM perform better
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CLASSIFIER TAN TAN TAN TAN TAN 2-TREE 2-TREE 2-TREE

STRUCTURELEARNING RO-CR SUPERPARENT OMI-CR OMI-CRCL CR SUPERPARENT OMI-CR CR
PARAMETER LEARNING ML ML ML ML ML ML ML ML

MAX

NB-ML ⇑0.0300 ⇑0.0232 ⇑0.0242 ⇑0.0203 ⇑0.0154 ⇑0.0103 ⇑0.0316 ⇑0.0317
TAN-CMI-ML ↑0.120 ←0.122 ⇑0.0154 ⇑0.0094 ⇑0.0141 ←0.0705 ⇑0.0271 ⇑0.0159

TAN-RO-CR-ML ←0.197 ↑0.144 ↑0.0945 ⇑0.0446 ←0.131 ↑0.148 ↑0.140
TAN-SUPERPARENT-ML ↑0.136 ↑0.0848 ↑0.0917 ←0.189 ↑0.149 ↑0.139

TAN-OMI-CR-ML ↑0.182 ↑0.190 ←0.194 ↑0.197 ↑0.196
TAN-OMI-CRCL-ML ↑0.197 ←0.182 ↑0.196 ↑0.197

TAN-CR-ML ←0.178 ↑0.194 ↑0.197
2-TREE-SUPERPARENT-ML ↑0.195 ↑0.192

2-TREE-OMI-CR-ML ↑0.195

Table 2: Comparison of different classifiers using the one-sided pairedt-test for the 25 UCI data
sets: Each entry of the table gives the significance of the difference of the classification rate
of two classifiers over the data sets. The arrow points to the superior learning algorithm.
We use a double arrow if the difference is significant at the level of 0.05.The order-based
greedy heuristics are OMI-CR (order mutual information-CR) and RO-CR(random order-
CR). CRCL refers to algorithms using discriminative parameter learning during structure
learning. The generative structure learning algorithm is abbreviated as CMI and the naive
greedy discriminative structure learning is TAN-CR and 2-tree-CR.

CLASSIFIER 2-TREE TAN TAN TAN TAN 2-TREE 2-TREE 2-TREE

STRUCTURELEARN. RO-CR SUPERPARENT OMI-CR OMI-CRCL CR SUPERPARENT OMI-CR CR
PARAMETER LEARN. ML ML ML ML ML ML ML ML

MAX

NB-ML ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001
TAN-CMI-ML ⇑0.00032 ⇑0.0012 ⇑0.0016 ⇑0.0019 ⇑0.0012 ⇑0.0027 ⇑0.0002 ⇑0.0002

2-TREE-RO-CR-ML ⇐0.0007 ⇐0.0024 ⇐0.0011 ⇐0.0011 ⇐0.0010 ⇑0.0011 ⇑0.0092
TAN-SUPERPARENT-ML ←0.189 ←0.151 ↑0.147 ⇐0.0187 ⇑0.0002 ⇑0.0006

TAN-OMI-CR-ML ←0.078 ↑0.140 ⇐0.0078 ⇑0.0004 ⇑0.0013
TAN-OMI-CRCL-ML ⇑0.038 ←0.054 ⇑0.0002 ⇑0.0007

TAN-CR-ML ⇐0.013 ⇑0.0002 ⇑0.0010
2-TREE-SUPERPARENT-ML ⇑0.0004 ⇑0.0005

2-TREE-OMI-CR-ML ←0.069

Table 3: Comparison of different classifiers using the one-sided pairedt-test for the 6 TIMIT-4/6
data sets: Each entry of the table gives the significance of the differenceof the classifi-
cation rate of two classifiers over the data sets. The arrow points to the superior learning
algorithm. We use a double arrow if the difference is significant at the levelof 0.05. The
order-based greedy heuristics are OMI-CR (order mutual information-CR) and RO-CR
(random order-CR). CRCL refers to algorithms using discriminative parameter learning
during structure learning. The generative structure learning algorithm isabbreviated as
CMI and the naive greedy discriminative structure learning is TAN-CR and2-tree-CR.

on digit recognition is probably that images are not treated as unstructuredfeature vectors, that is,
the convolutional neural net has built-in parts that look at particular areas of the image, and the
virtual SVM is trained on augmented data that reflects invariance to small translations and rotations.

For the SurfInsp data the standard deviation of the five-fold cross-validation classification accu-
racy estimate is relatively large. Unfortunately, the size of the data set is limited to450 samples.

The structure of Bayesian networks is implicitly regularized when we restrictthe optimization
over a model structure (e.g., 1-trees) assuming sufficient training data. For 2-trees we noticed that
the data tended to overfit without further regularization. Therefore, weintroduce 5-fold cross vali-
dation on thetrainingdata to find the optimal classifier structure.

Table 2 and Table 6.5.2 present a summary of the classification results over all structure learning
experiments using ML parameter learning of the UCI and TIMIT-4/6 data sets.
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We compare all pairs of classifiers using the one-sided paired t-test (Mitchell, 1997). The t-test
determines whether the classifiers differ significantly under the assumption that the classification
differences over the data set are independent and identically normally distributed. In these tables,
each entry gives the significance of the difference in classification rate of two classification ap-
proaches. The arrow points to the superior learning algorithm and a double arrow indicates whether
the difference is significant at a level of 0.05.

These tables show that TAN-OMI-CR, TAN-OMI-CRCL-CR, and TAN-CR significantly out-
perform the generative structure learning approach TAN-CMI (similar for 2-trees). However, the
computationally expensive greedy heuristic TAN-CR and 2-tree-CR do not significantly outperform
our discriminative order-based heuristics TAN-OMI-CR and 2-tree-OMI-CR, respectively.

6.5.3 DISCUSSION: COMPUTATIONAL REQUIREMENTS FORSTRUCTURELEARNING

The running time of the TAN-CMI, TAN-OMI-CR, and TAN-CR structure learning algorithms for
the UCI, TIMIT-4/6, TIMIT-39, and the MNIST data sets is summarized in Table 4. The numbers
represent the percentage of time that is needed for a particular algorithm compared to TAN-CR.
TAN-CMI is roughly 3-10 times faster than TAN-OMI-CR and TAN-CR takesabout 10-40 times
longer for establishing the discriminative structure than TAN-OMI-CR.

Data set TAN-CMI TAN-OMI-CR TAN-CR
UCI 0.649% 3.155% 100.00%

TIMIT-4/6 3.56% 11.47% 100.00%
TIMIT-39 0.11% 2.08% 100.00%
MNIST 0.21% 2.23% 100.00%

Table 4: Running time of structure learning algorithms relative to TAN-CR.

6.6 Results with Randomly Missing Input Features

As mentioned in Section 3, generative models can easily deal with missing features simply by
marginalizing out from the model the missing feature. We are particularly interested in a testing
context which has arbitrary sets of missing features for each classification sample. In such a case, it
is not possible to re-train the model for each potential set of missing features without also memoriz-
ing the training set. Due to the local-normalization property of Bayesian networks and the structure
of any model with a parent-less class node, marginalization is as easy as anO(rk+1) operation for a
k-tree, wherer is the domain size of each feature.
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Figure 11: Classification performance of different structure learning methods assuming missing
features using Ma+Fe data of TIMIT-4/6.

In Figure 11, we present the classification performance of discriminativeand generative struc-
tures assuming missing features using the Ma+Fe data of TIMIT-4/6. Thex-axis denotes the number
of missing features. The curves are averaged over 100 classificationsof the test data with uniformly
at random selected missing features. We use exactly the same missing features for each classifier.
Variance bars are omitted to improve readability, but indicate that the resulting differences are signif-
icant between NB-ML, TAN-CMI-ML, and discriminatively structured classifiers for a low number
of missing features. Hence, discriminatively structured Bayesian networkclassifiers outperform
TAN-CMI-ML even in the case of missing features. This demonstrates, at least empirically, that
discriminatively structured generative models do not lose their ability to impute missing features.

Figure 12: Classification performance of NB-ML, NB-CL, and TAN-CR-ML assuming missing
features using Ma+Fe data of TIMIT-4/6. The shaded region corresponds to the standard
deviation over 100 classifications.

In Figure 12, we show for the same data sets and experimental setup that theclassification per-
formance of a discriminatively structured model may be superior to discriminatively parameterized
models in the case of missing features. In particular, for more than three missing features TAN-CR-
ML outperforms NB-CL. Similar results can be shown for MNIST in Figure 13.
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Figure 13: Classification performance using MNIST. The shaded regioncorresponds to the standard
deviation over 100 classifications: (a) Different structure learning methods, (b) NB-ML,
NB-CL, and TAN-CR-ML.

6.7 Results with SVMs

In Table 6, we compare classification performances between the best performing Bayesian network
classifiers (in Table 1) and SVMs using RBF kernels. SVMs outperform our discriminative Bayesian
network classifier. For TIMIT-4/6 one reason might be that SVMs are applied to the continuous fea-
ture domain. In Table 5 we compare the model complexity (i.e., number of parameters) between
both SVMs and Bayesian network classifiers. This table reveals that the Bayesian network uses
∼108,∼66,∼212, and∼259 times fewer parameters for MNIST, USPS, Ma+Fe-4, and Ma+Fe-
6 than the SVM. This might also explain the loss in classification performance of discriminative
Bayesian networks. Furthermore, Bayesian network classifiers can bedirectly applied to prob-
lems with more than two classes, whereas SVMs in its traditional formulation are limitedto binary
problems—the multiclass problem is decomposed into binary problems. Additionally, for SVMs
we have to selectC∗ andσ. A substantial difference is that SVMs determine the number of support
vectors automatically while in the case of Bayesian networks the number of parameters is specified
by the structure. A limited complexity class (e.g., 1-tree) restricts the number of parameters which
might be advantageous. In contrast to SVMs, a Bayesian network might bepreferred since it is easy
to work with missing features (see Section 6.6), parameter tying and knowledge-based hierarchical
decomposition is facilitated, and it is easy to work with structured data.

DATA SET TIMIT-4/6 MNIST USPS
CLASSIFIER

NB-CL 88.69
TAN-CR-CL 93.94± 0.24 95.83± 0.36

SVM 89.38 96.40± 0.19 97.86± 0.26
PARAMETERS C∗ = 1,σ = 0.05 C∗ = 1,σ = 0.01 C∗ = 1,σ = 0.005

Table 5: Model complexity for best Bayesian network (BN) and SVM.

7. Conclusion

We introduced a simple order-based heuristic for learning discriminative network structure. The
metric for establishing the ordering ofN features is based on either the conditional mutual infor-
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DATA SET N NUMBER OF SVS NUMBER OF SVM PARAMETERS NUMBER OF BN PARAMETERS

MNIST 196 17201 3371396 31149
USPS 256 3837 982272 14689

TIMIT-4/6 (M A+FE-4) 20 13146 262920 1239
TIMIT-4/6 (M A+FE-6) 20 24350 487000 1877

Table 6: Classification results for TIMIT-4/6 data sets (averaged), MNIST, and USPS using best
performing Bayesian network classifier (see Table 1) and SVMs.

mation or the classification rate. Given an ordering, we can find a discriminative classifier struc-
ture usingO

(

Nk+1
)

score evaluations (where constantk is the tree-width of the sub-graph over
the attributes). We empirically compare the performance of our algorithms to state-of-the-art dis-
criminative and generative parameter and structure learning algorithms using real data from the
TIMIT speech corpus, the UCI repository, a visual surface inspection task, and from handwrit-
ten digit recognition tasks. The experiments show that the discriminative structures found by our
order-based heuristics achieve on average a significantly better classification performance than the
generative approach. Our obtained classification performance is verysimilar to the greedy search
using CR. Our order-based heuristics however, are about 10-40 timesfaster. Additionally, we show
that discriminatively structured Bayesian network classifiers are superior even in the case of missing
features.
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Appendix A. UCI data

DATA SET # FEATURES # CLASSES # SAMPLES TRAIN # SAMPLES TEST

1 AUSTRALIAN 14 2 690 CV-5
2 BREAST 10 2 683 CV-5
3 CHESS 36 2 2130 1066
4 CLEVE 13 2 296 CV-5
5 CORRAL 6 2 128 CV-5
6 CRX 15 2 653 CV-5
7 DIABETES 8 2 768 CV-5
8 FLARE 10 2 1066 CV-5
9 GERMAN 20 2 1000 CV-5
10 GLASS 9 7 214 CV-5
11 GLASS2 9 2 163 CV-5
12 HEART 13 2 270 CV-5
13 HEPATITIS 19 2 80 CV-5
14 IRIS 4 3 150 CV-5
15 LETTER 16 26 15000 5000
16 LYMPHOGRAPHY 18 4 148 CV-5
17 MOFN-3-7-10 10 2 300 1024
18 PIMA 8 2 768 CV-5
19 SHUTTLE-SMALL 9 7 3866 1934
20 VOTE 16 2 435 CV-5
21 SATIMAGE 36 6 4435 2000
22 SEGMENT 19 7 1540 770
23 SOYBEAN-LARGE 35 19 562 CV-5
24 VEHICLE 18 4 846 CV-5
25 WAVEFORM-21 21 3 300 4700

Table 7: 25 UCI data sets
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CLASSIFIER OMI-CR RO-CR
DATA SET MEAN ± STD MEDIAN M IN MAX

AUSTRALIAN 82.04 84.58± 0.77 84.62 84.63 83.60
BREAST 97.40 97.19± 0.26 97.23 97.39 96.95
CHESS 94.93 94.70± 0.76 94.75 95.22 93.90
CLEVE 81.76 81.42± 0.97 81.42 82.76 82.76

CORRAL 99.20 95.79± 2.55 96.17 96.80 95.20
CRX 84.07 84.21± 0.82 84.23 84.07 84.22

DIABETES 74.36 75.23± 0.52 75.26 75.53 75.01
FLARE 82.74 82.38± 0.50 82.44 81.80 81.98

GERMAN 73.20 72.83± 0.87 72.80 71.50 71.50
GLASS 70.70 71.74± 1.13 71.81 70.20 73.44

GLASS2 82.20 81.94± 0.73 82.14 82.14 82.20
HEART 81.85 82.83± 0.85 82.96 82.59 83.33

HEPATITIS 90.67 89.25± 1.69 89.00 90.33 90.33
IRIS 93.33 93.58± 0.55 93.33 92.67 93.33

LETTER 87.00 86.53± 0.60 86.54 86.70 86.50
LYMPHOGRAPHY 88.30 85.83± 1.72 85.92 87.12 81.27

MOFN-3-7-10 91.41 90.11± 1.01 90.14 89.55 89.75
PIMA 75.26 75.70± 0.49 75.65 75.78 76.56

SHUTTLE-SMALL 99.17 99.33± 0.13 99.33 99.22 99.17
VOTE 94.29 93.90± 0.69 93.84 93.36 94.06

SATIMAGE 88.25 87.47± 0.44 87.45 87.05 87.20
SEGMENT 94.42 94.63± 0.59 94.68 92.99 95.45

SOYBEAN-LARGE 91.11 92.29± 0.78 92.34 92.14 91.74
VEHICLE 67.38 68.18± 0.90 68.13 67.42 68.20

WAVEFORM-21 78.02 78.19± 0.51 78.21 78.77 77.79
AVERAGE 85.11 85.04 85.06 85.00 84.82

Table 8: Classification results in[%] with RO-CR compared to OMI-CR for the UCI data. Min
(Max) reports the CR on the test set using the structure which achieves theminimum
(maximum) performance over 1000 random orderings on the training data.
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Appendix B. TIMIT-4/6 Data

DATA SET MA+FE MA FE MA+FE MA FE

NUMBER OF CLASSES 4 4 4 6 6 6
CLASSIFIER AVERAGE

NB-ML 87.90± 0.18 88.69± 0.25 87.67± 0.25 81.82± 0.20 82.26± 0.28 81.93± 0.28 84.85
NB-CL 92.12± 0.15 92.81± 0.20 91.57± 0.22 85.41± 0.18 86.28± 0.26 85.12± 0.26 88.69

TAN-CMI-ML 89.83± 0.17 90.20± 0.23 90.36± 0.23 82.23± 0.20 83.20± 0.28 82.99± 0.28 86.18
TAN-CMI-CL 90.96± 0.16 91.39± 0.22 90.92± 0.22 83.06± 0.20 84.85± 0.27 84.05± 0.27 87.22

TAN-SUPERPARENT-ML 91.31± 0.15 91.84± 0.21 90.71± 0.23 84.12± 0.19 84.84± 0.27 83.51± 0.27 87.54
TAN-SUPERPARENT-CL 91.56± 0.15 92.29± 0.21 90.74± 0.22 84.36± 0.19 84.84± 0.27 83.83± 0.27 87.76

TAN-OMI-CR-ML 91.19± 0.16 92.15± 0.21 90.51± 0.23 84.07± 0.19 84.68± 0.27 83.71± 0.27 87.52
TAN-OMI-CR-CL 91.37± 0.15 92.28± 0.21 90.51± 0.23 84.00± 0.19 84.49± 0.27 83.75± 0.27 87.54

TAN-OMI-CRCL-ML 91.09± 0.16 91.99± 0.21 90.35± 0.23 84.05± 0.19 84.59± 0.27 83.87± 0.27 87.46
TAN-OMI-CRCL-CL 91.41± 0.15 92.55± 0.21 90.54± 0.23 83.88± 0.19 84.71± 0.27 84.08± 0.27 87.62

TAN-CR-ML 91.29± 0.16 91.81± 0.21 90.52± 0.23 84.35± 0.19 84.80± 0.27 83.93± 0.27 87.62
TAN-CR-CL 91.29± 0.16 92.04± 0.21 90.52± 0.23 83.69± 0.19 84.83± 0.27 83.91± 0.27 87.48

2-TREE-SUPERPARENT-ML 91.02± 0.16 91.84± 0.21 90.52± 0.23 84.01± 0.19 84.22± 0.27 83.42± 0.27 87.33
2-TREE-SUPERPARENT-CL 90.39± 0.16 91.51± 0.22 90.62± 0.23 83.17± 0.20 85.30± 0.26 83.96± 0.27 87.14

2-TREE-OMI-CR-ML 91.68± 0.15 92.28± 0.21 91.03± 0.22 84.52± 0.19 85.43± 0.26 84.31± 0.27 88.01
2-TREE-OMI-CR-CL 91.28± 0.16 91.79± 0.21 90.53± 0.23 83.46± 0.19 84.48± 0.27 83.42± 0.27 87.27

2-TREE-CR-ML 91.45± 0.15 92.22± 0.21 91.11± 0.22 84.53± 0.19 85.36± 0.26 84.22± 0.27 87.94
2-TREE-CR-CL 91.00± 0.16 91.41± 0.22 90.52± 0.23 82.79± 0.20 84.46± 0.27 83.19± 0.28 86.95

Table 9: Classification results in[%] for 4 and 6 classes with standard deviation. Best results use
bold font. ML and CL denote generative and discriminative parameter learning, respec-
tively. OMI-CR (order mutual information-CR) refers to the order-based greedy heuristic.
OMI-CRCL refers to OMI-CR using discriminative parameter learning during structure
learning. The generative structure learning algorithm is abbreviated as CMI and the greedy
discriminative structure learning is TAN-CR and 2-tree-CR.

CLASSIFIER 2-TREE-OMI-CR 2-TREE-RO-CR
DATA SET NUMBER OF CLASSES MEAN ± STD MEDIAN M IN MAX

MA+FE 4 91.68 91.50± 0.10 91.49 91.44 91.46
MA 4 92.28 92.23± 0.10 92.23 92.35 92.14
FE 4 91.03 90.95± 0.13 90.94 90.77 90.94

MA+FE 6 84.52 84.44± 0.13 84.45 84.64 84.49
MA 6 85.43 85.17± 0.17 85.18 85.06 85.30
FE 6 84.31 84.04± 0.16 84.05 83.96 84.11

AVERAGE 88.01 87.86 87.86 87.87 87.87

Table 10: Classification results in[%] with 2-tree-RO-CR compared to 2-tree-OMI-CR for 4 and 6
classes. Min (Max) reports the CR on the test set using the structure whichachieves the
minimum (maximum) performance over 100 random orderings on the training data.
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