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Abstract
We consider the problem of high-dimensional variable selection: given n noisy observations of
a k-sparse vectorβ∗ ∈ R

p, estimate the subset of non-zero entries ofβ∗. A significant body of
work has studied behavior ofℓ1-relaxations when applied to random measurement matrices that
are dense (e.g., Gaussian, Bernoulli). In this paper, we analyzesparsifiedmeasurement ensembles,
and consider the trade-off between measurement sparsity, as measured by the fractionγ of non-
zero entries, and the statistical efficiency, as measured bythe minimal number of observations
n required for correct variable selection with probability converging to one. Our main result is
to prove that it is possible to let the fraction on non-zero entries γ → 0 at some rate, yielding
measurement matrices with a vanishing fraction of non-zeros per row, while retaining the same
statistical efficiency as dense ensembles. A variety of simulation results confirm the sharpness of
our theoretical predictions.
Keywords: variable selection, sparse random projections, high-dimensional statistics, Lasso, con-
sistency,ℓ1-regularization

1. Introduction

Recent years have witnessed a flurry of research on the recovery of high-dimensional models satis-
fying some type of sparsity constraint. These types of sparse recoveryproblems arise in a variety
of domains, including variable selection in regression (Tibshirani, 1996), graphical model selec-
tion (Meinshausen and Buhlmann, 2006; Ravikumar et al., 2010), sparseprincipal components anal-
ysis (Johnstone and Lu, 2009; Paul, 2007), sparse approximation (Tropp, 2006), and compressed
sensing (Candes and Tao, 2005; Donoho, 2006). In all of these settings, the basic problem is to
recover information about a high-dimensional signalβ∗ ∈R

p, based on a set ofn observations. The
signalβ∗ is assumeda priori to be sparse: either exactlyk-sparse, or lying within someℓq-ball with
q< 1.

A particular instance of high-dimensional sparse recovery involves the linear regression model
Y = Xβ∗+W, whereY ∈ R

n is the observation vector,W ∈ R
n is observation noise, andX ∈ R

n×p

is the measurement matrix. In this context, high-dimensional scaling means that the sample sizen
can be of the same order of magnitude, or substantially smaller than the ambient dimensionp. A
particularly simple version of this model, studied extensively within the compressed sensing com-
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munity (Candes and Tao, 2005; Donoho, 2006), is thenoiseless versionin whichW = 0, so that the
model reduces to the under-determined linear systemY = Xβ∗. Here the model is only interesting
whenn≪ p, so that the linear system is not fully determined. Other work in machine learning and
statistics (e.g., Meinshausen and Buhlmann, 2006; Zhao and Yu, 2006; Wainwright, 2009; Zhou
et al., 2007) has focused on the noisy version of the model, say withW ∼ N(0,σ2Ip) for some
noise varianceσ2. The problem of high-dimensional regression can be studied either for determin-
istic designs, for which the measurement matrixX is fixed, or for random designs in whichX is
drawn randomly from some ensemble. Past work on random designs has focused on the behavior
of variousℓ1-relaxations when applied to measurement matrices drawn from the standardGaussian
ensemble (e.g., Donoho, 2006; Candes and Tao, 2005), or more general random ensembles satis-
fying mutual incoherence conditions (Meinshausen and Buhlmann, 2006; Wainwright, 2009). A
measurement matrixX drawn from such a standard random ensemble is dense, in that each row
of X hasp non-zero entries with high probability. In various applications of the sparse regression
problem, the measurement matrix is itself a design variable, and dense measurement matrices are
undesirable. For instance, in applications such as sensor networks (Wang et al., 2007), digital imag-
ing (Wakin et al., 2006) or database management (Achlioptas, 2001; Li etal., 2006), it would be
preferable to take measurements of the signalβ∗ based on sparse inner products, using measure-
ment matricesX in which each row has a relatively small fraction of non-zero entries. Furthermore,
sparse measurement matrices require significantly less storage space, and have the potential for re-
duced algorithmic complexity for signal recovery, since many algorithms for linear programming
and conic programming more generally (Boyd and Vandenberghe, 2004), can be accelerated by ex-
ploiting problem structure.

In the noiseless instance of the regression problem (withn≪ p), the standard approach to esti-
matingβ∗ is by solving the basis pursuit linear program (Chen et al., 1998). Recent work by Bara-
niuk et al. (2007) has established connections between the success of this method and the behavior
of random projections, as characterized by the Johnson-Lindenstrauss lemma (Johnson and Linden-
strauss, 1984; Dasgupta and Gupta, 2003). Random projections and their applications have been
studied extensively in machine learning and related fields, with applications to dimensionality re-
duction (Dasgupta, 1999; Li et al., 2007), data stream processing (Alon et al., 1996; Indyk, 2006),
databases (Achlioptas, 2001; Li et al., 2006) and compressed sensing(Wang et al., 2007; Baraniuk
et al., 2007). One standard proof of the Johnson-Lindenstrauss lemma isbased on random Gaus-
sian matrices. Achlioptas (2001) was the first to apply sparse random projections, with each entry
distributed on{−1,0,1} with probabilities[1

6,
2
3,

1
6], to the Johnson-Lindenstrauss problem setting,

and to provide the same guarantees as dense projections. Unfortunately,his proof technique does
not allow the non-zero mass to be decreased much beyond1

3. Other recent work (Li et al., 2006)
provides theoretical and experimental justification for scaling the non-zero mass aggressively to
zero. Stemming from different sources than the random projection literature, another line of recent
work (e.g., Cormode and Muthukrishnan, 2005; Gilbert et al., 2006; Sarvotham et al., 2006; Xu and
Hassibi, 2007) has studied compressed sensing methods based on sparse measurement matrices,
using constructions motivated by group testing and coding theory.

Whereas this past work focuses on the noiseless recovery problem, our primary interest in this
paper is the noisy linear observation model which, as we show, exhibits qualitatively different be-
havior than the noiseless case. At a high level, our primary goal in this paper is not to design sparse
measurement matrices, but rather to gain a theoretical understanding of thetrade-off between the
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degree of measurement sparsity, and statistical efficiency. We assess measurement sparsity in terms
of the fractionγ of non-zero entries in any particular row of the measurement matrix, and wedefine
statistical efficiency in terms of the minimal number of measurementsn required to recover the cor-
rect support with probability converging to one. Our interest can be viewed in terms of experimental
design: more precisely we ask, what degree of measurement sparsity can be permitted without in-
creasing the number of observations required for correct variable selection or subset recovery?

To bring sharp focus to the issue, we analyze this question for exact subset recovery usingℓ1-
constrained quadratic programming, also known as the Lasso in the statistics literature (Chen et al.,
1998; Tibshirani, 1996), where past work on dense Gaussian measurement ensembles (Wainwright,
2009) provides a precise characterization of its success/failure. We characterize the density of our
measurement ensembles with a positive parameterγ ∈ (0,1], corresponding to the fraction of non-
zero entries per row. We first show that for all fixedγ ∈ (0,1], the statistical efficiency of the
Lasso remains the same as with dense measurement matrices. We then prove that it is possible
to let γ → 0 at some rate, as a function of the sample sizen, signal lengthp and signal sparsity
k, yielding measurement matrices with a vanishing fraction of non-zeroes perrow while requiring
exactly the same number of observations as dense measurement ensembles.In general, in contrast
to the noiseless setting (Xu and Hassibi, 2007), our theory still requires that the average number
of non-zeroes per column of the measurement matrix (i.e.,γn) tend to infinity, however, under the
loss function considered here (exact signed support recovery), we prove that no method can succeed
with probability one if this condition does not hold.

The remainder of this paper is organized as follows. In Section 2, we set up the problem more
precisely, state our main result, and discuss some of its implications. In Section 3, we provide a high-
level outline of the proof with more technical aspects of the argument deferred to the appendices.
We provide some illustrative simulations in Section 4 that illustrate the sharpness of our theoretical
predictions. Work in this paper was presented in part at the InternationalSymposium on Information
Theory in Toronto, Canada (July, 2008). We note that concurrent and complementary work (Wang
et al., 2010) analyzes the information-theoretic limitations of sparse measurement matrices for exact
support recovery.

1.1 Notation

Throughout this paper, we use the following standard asymptotic notation:f (n)=O(g(n)) if f (n)≤
Cg(n) for some constantC < +∞; f (n) = Ω(g(n)) if f (n) ≥ cg(n) for some constantc > 0; and
f (n) = Θ(g(n)) if f (n) = O(g(n)) and f (n) = Ω(g(n)). In addition, we use log(x) to denote the
natural logarithm ofx.

2. Problem Set-up and Main Result

We begin by setting up the problem, stating our main result, and discussing some of its conse-
quences.

2.1 Observation Model

Define thesupport setof a signalβ ∈ R
p

S(β) := {i ∈ {1, . . . , p} | βi 6= 0},

2363



OMIDIRAN AND WAINWRIGHT

and consider the class ofk-sparse signals of lengthp:

C (p,k,β∗
min) :=

{
β ∈ R

p | |S(β)|= k≤ p
2
,min

i∈S
|βi | ≥ β∗

min

}
. (1)

Let β∗ ∈ R
p be a fixed but unknown vector inC (p,k,β∗

min), and suppose that we make a set
{Y1, . . . ,Yn} of n independent and identically distributed (i.i.d.) observations of the unknown vector
β∗, each of the form

Yi := xT
i β∗+Wi , (2)

whereWi ∼ N (0,1) is observation noise, andxi ∈ R
p is a measurement vector. Note that there is

no loss in generality in assuming that the noise variance is one, since the observation model with
signal classC (p,k,β∗

min) andWi ∼N (0,1) is equivalent to the observation model with signal class

C (p,k, β∗
min
σ ) with noise varianceWi ∼N (0,σ2).

It is convenient to useY =
[
Y1 Y2 . . . Yn

]T
to denote then-vector of measurements, with

similar notation for the noise vectorW ∈ R
n, and

X =




xT
1

xT
2
...

xT
n


 =

[
X1 X2 . . . Xp

]
.

to denote then× p measurement matrix. With this notation, the observation model can be written
compactly asY = Xβ∗+W.

2.2 Sign Consistency and Statistical Efficiency

Given some estimatêβ, its error relative to the trueβ∗ can be assessed in various ways, depending
on the underlying application of interest. For applications in compressed sensing, various types of
ℓr norms (i.e.,E‖β̂−β∗‖r

r ) are well-motivated, whereas for statistical prediction, it is most natural
to study a predictive loss (e.g.,‖X(β̂−β∗)‖2

2/n). For reasons of scientific interpretation or for model
selection purposes, the object of primary interest is the supportSof β∗. In this paper, we consider
a slightly stronger notion of model selection: in particular, our goal is to recover thesigned support
of the unknownβ∗, as defined by thep-vectorS+(β∗) with elements

[S+(β∗)]i :=

{
sign(β∗

i ) if β∗
i 6= 0

0 otherwise.

Given some estimatêβ, we study the probabilityP[S+(β̂) = S+(β∗)] that it correctly specifies the
signed support. In particular, a sequence of estimatesβ̂n,p,k is sign consistentif

P[S+(β̂n,p,k) = S+(β∗)]→ 1, asn, p,k→ ∞. (3)

The estimator that we analyze isℓ1-constrained quadratic programming (QP), also known as the
Lasso (Tibshirani, 1996) in the statistics literature. The Lasso generates an estimatêβ by solving
the regularized QP

β̂ = arg min
β∈Rp

{
1
2n

‖Y−Xβ‖2
2+ρn‖β‖1

}
, (4)
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whereρn > 0 is a user-defined regularization parameter. A large body of past workhas focused on
the model selection behavior of the Lasso for both deterministic and random measurement matrices
(e.g., Tropp, 2006; Zhao and Yu, 2006; Wainwright, 2009).

Tropp (2006) demonstrates that under some technical conditions the Lasso produces an estimate
with support contained in the true support set, while Zhao and Yu (2006) prove the sign consistency
of the Lasso for certain sequences(n,kn, pn) and measurement ensemble covariances. The main
contribution of Wainwright (2009) is to identify the smallestn required for sign consistency of the
Lasso when applied to measurement matricesX drawn randomly from Gaussian ensembles, with the
standard Gaussian ensemble (i.e., each elementXi j ∼N (0,1) i.i.d.) being one special case. Define
the functionncrit (p,k) := 2k log(p−k). The paper (Wainwright, 2009) shows the Lasso undergoes
a phase transition as a function of the control parameter

θ(n, p,k) :=
n

ncrit (p,k)
. (5)

In more detail, for the special case of the standard Gaussian ensemble, for any sequence(n, p,k)
such thatθ(n, p,k) > 1+ ε for someε > 0, the Lasso (with an appropriate choice of regulariza-
tion parameterρn) is sign consistent with probability converging to one. In contrast, it fails to be
sign consistent with high probability, regardless of the choice ofρn, for any sequences such that
θ(n, p,k)< 1− ε.

The main contribution of this paper is to show that sparse measurement ensembles arestatisti-
cally efficient: the same sharp threshold (5) holds forγ-sparsified measurement ensembles, including
a subset for whichγ → 0, so that each row of the measurement matrix has a vanishing fraction of
non-zero entries.

2.3 Statement of Main Result

A measurement matrixX ∈ R
n×p drawn randomly from a Gaussian ensemble is dense, in that each

row hasΘ(p) non-zero entries. The main focus of this paper is the observation model (2), using
measurement ensembles that are designed to be sparse. To formalize the notion of sparsity, we let
γ ∈ (0,1] represent ameasurement sparsity parameter, corresponding to the (average) fraction of
non-zero entries per row. Our analysis allows the sparsity parameterγ(n, p,k) to be a function of
the triple(n, p,k), but we typically suppress this explicit dependence so as to simplify notation.For
a given choice ofγ, we consider measurement matricesX with i.i.d. entries of the form

Xi j
d
=

{
Z ∼N (0,1) with probabilityγ
0 with probability 1− γ.

(6)

By construction, the expected number of non-zero entries in each row ofX is γp. In fact, the analysis
of this paper establishes exactly the same control parameter threshold (5) for γ-sparsified measure-
ment ensembles, for any fixedγ ∈ (0,1), as the completely dense case (γ = 1). In particular, we
state the following result on conditions under which the Lasso applied to sparsified ensembles has
the samesample complexityas when applied to the dense (standard Gaussian) ensemble:

Theorem 1 Suppose that the measurement matrix X∈ R
n×p is drawn with i.i.d. entries according

to theγ-sparsified distribution(6). Then for anyε > 0, if the sample size satisfies

n > (2+ ε)k log(p−k), (7)
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then the Lasso is sign consistent as(n, p,k)→+∞ so long as

nρ2
nγ

log(p−k)
→ ∞, (8)

ρn

β∗
min

max
{

1,

√
k

γ

√
log log(p−k)

log(p−k)

}
→ 0, (9)

γ3min
{

k,
log(p−k)

log log(p−k)

}
→ ∞. (10)

Remark 2 (a) Note that the sample complexity(7) is identical to the Lasso threshold proven in past
work (Wainwright, 2009). To gain intuition on the remaining conditions, it is helpful to consider
various special cases of the sparsity parameterγ. If γ is a constant fixed to some value in(0,1],
then it plays no role in the scaling, and condition(10) is always satisfied. Conditions(8) and (9)
are slightly weaker than the corresponding condition from previous work,in that they require that
ρn be slightly larger, and hence thatβ∗

min must approach zero more slowly than the requirement of
this previous work. Depending on the exact behavior ofβ∗

min, choosingρ2
n to decay slightly more

slowly thanlogp/n is sufficient to guarantee exact recovery with n= Θ(k log(p−k)), meaning that
we recover exactly the same statistical efficiency as the dense case (γ = 1) for all constant mea-
surement sparsitiesγ ∈ (0,1). At least initially, one might think that reducingγ should increase the
required number of observations, since it effectively reduces the signal-to-noise ratio by a factor of
γ. However, under high-dimensional scaling (p→ +∞), a major effect limiting the Lasso perfor-
mance is the number (p−k) of irrelevant factors, and under the scaling considered here, this effect
is dominant.

(b) However, Theorem 1 also allows for general scalings of the measurement sparsityγ along
with the triplet(n, p,k). More concretely, let us suppose for simplicity thatβ∗

min = Θ(1). Then over
a range of signal sparsities—say k= αp, k= Θ(

√
p) or k= Θ(log(p−k)), corresponding respec-

tively to linear sparsity, polynomial sparsity, and exponential sparsity—wecan choose a decaying
measurement sparsity, for instance

γ =
[ log log(p−k)

log(p−k)

] 1
6 → 0 (11)

along with the regularization parameterρ2
n =

log(p−k)
n

√
log(p−k)

log log(p−k) while maintaining the same sam-

ple complexity (required number of observations for support recovery) as the Lasso with dense mea-
surement matrices.

(c) Of course, the conditions of Theorem 1 do not allow the measurement sparsityγ to approach
zero arbitrarily quickly. Rather, for anyγ guaranteeing exact recovery, condition(8) implies that the
average number of non-zero entries per column of X (namely,γn) must tend to infinity. (Indeed, with
n= Ω(k log(p−k)), our specific choice(11) certainly satisfies this constraint.) A natural question
is whether exact recovery is possible using measurement matrices, either randomly drawn or de-
terministically designed, with the average number of non-zeros per column (namelyγn) remaining
bounded. In fact, under the criterion of exactly recovering the signed support (3), as shown by the
following result, ifβ∗

min = O(1), then no method can succeed with probability converging to one
unlessγn tends to infinity.
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Proposition 1 If γn[β∗
min]

2 does not tend to infinity, then no method can recover the signed support
with probability one.

Proof We construct a sub-problem that must be solvable by any method capable ofperforming
exact signed support recovery. Suppose thatβ∗

1 = β∗
min 6= 0 and that the columnX1 hasn1 non-zero

entries, say without loss of generality indicesi = 1, . . . ,n1. Now consider the problem of recovering
the sign ofβ∗

1. Let us extract the observationsi = 1, . . . ,n1 that explicitly involveβ∗
1, writing

Yi = Xi1β∗
1+ ∑

j∈T(i)

Xi j β∗
j +Wi , i = 1, . . . ,n1 (12)

whereT(i) denotes the set of indices in rowi for which Xi j is non-zero, excluding index 1. Even
assuming that{β∗

j , j ∈ T(i)} were perfectly known, this observation model (12) is at best equiv-
alent to observingβ∗

1 contaminated by constant variance additive Gaussian noise, and our taskis
to distinguish whetherβ∗

1 = β∗
min or β∗

1 = −β∗
min. The averageY = 1

n1
∑n1

i=1[Yi −∑ j∈T(i)Xi j β∗
j ] is a

sufficient statistic, following the distributionY ∼ N (β∗
min,

1
n1
). Unless the effective signal-to-noise

ratio, which is of the ordern1[β∗
min]

2, goes to infinity, there will always be a constant probability of
error in distinguishingβ∗

1 = β∗
min from β∗

1 = −β∗
min. Under theγ-sparsified random ensemble, we

haven1 ≤ (1+o(1))γn with high probability, so that no method can succeed unlessγn[β∗
min]

2 goes
to infinity, as claimed.

Note that the conditions in Theorem 1 imply thatnγ[β∗
min]

2 → +∞. In particular, condition (9) im-
plies thatρ2

n = o([β∗
min]

2), and condition (8) implies thatnγρ2
n → +∞, which verifies the condition

of Proposition 1.

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We begin with a high-leveloutline of the proof;
as with previous work on dense Gaussian ensembles (Wainwright, 2009),the key is the notion of
a primal-dual witnessfor exact signed support recovery. The proof itself involves a number of
additional steps not needed in this past work, in order to gain good control on sparse matrices as
opposed to generic Gaussian matrices (see Appendix D). The proof is divided into a sequence of
separate lemmas, with some of the more technical results deferred to the appendices.

3.1 High-level Overview of Proof

For the purposes of our proof, it is convenient to consider matricesX ∈ R
n×p with i.i.d. entries of

the form

Xi j
d
=

{
Z ∼N (0, 1

γ ) with probabilityγ
0 with probability 1− γ.

So as to obtain an equivalent observation model, we also reset the variance of each noise termWi to
be 1

γ . Finally, we can assume without loss of generality thatS+(β∗
S) =

~1∈ R
k.

Define thesample covariance matrix

Σ̂ :=
1
n

XTX =
1
n

n

∑
i=1

xix
T
i .
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Of particular importance to our analysis is thek× k sub-matrixΣ̂SS. For future reference, we state
the following claim, proved in Appendix D:

Lemma 1 Under the conditions of Theorem 1, the submatrixΣ̂SS is invertible with probability
greater than1−O( 1

(p−k)2 ).

The foundation of our proof is the following lemma: it provides sufficient conditions for the
Lasso (4) to recover the signed support set.

Lemma 2 (Primal-dual conditions for support recovery) Suppose that̂ΣSS≻ 0, and that we can
find a primal vector̂β ∈ R

p, and a subgradient vector̂z∈ R
p that satisfy thezero-subgradient

condition

Σ̂
(
β̂−β∗)− 1

n
XTW+ρnẑ = 0, (13)

and thesigned-support-recovery conditions

ẑi = sign(β∗
i ) for all i ∈ S, (14)

β̂ j = 0 for all j ∈ Sc, (15)

|ẑj | < 1 for all j ∈ Sc, and (16)

sign(β̂i) = sign(β∗
i ) for all i ∈ S. (17)

Thenβ̂ is the unique optimal solution to the Lasso(4), and recovers the correct signed support.

See Appendix B.1 for the proof of this claim.
On the basis of Lemmas 1 and 2, it suffices to show that under the specified scaling of(n, p,k),

there exists a primal-dual pair(β̂, ẑ) satisfying the conditions of Lemma 2. We establish the exis-
tence of such a pair with the following constructive procedure:

(a) We begin by settinĝβSc = 0, and̂zS= sign(β∗
S).

(b) Next we determinêβS by solving the linear system

Σ̂SS
(
β̂S−β∗

S

)
− 1

n
XT

S W+ρnsign(β∗
S) = 0.

(c) Finally, we determinêzSc by solving the linear system:

−ρnẑSc = Σ̂ScS
(
β̂S−β∗

S

)
− 1

n
XT

ScW.

By construction, this procedure satisfies the zero sub-gradient condition (13), as well as auxiliary
conditions (14) and (15); it remains to verify conditions (16) and (17).

In order to complete these final two steps, it is helpful to define fori ∈Sand j ∈Sc the following
random variables:

Va
j := Xj

T[1
n

XS(Σ̂SS)
−1~1
]
ρn, (18)

Vb
j := Xj

T[In×n−
1
n

XS(Σ̂SS)
−1XT

S

]W
n
, and (19)

Ui := eT
i Σ̂−1

SS

[1
n

XT
S W−ρn~1

]
, (20)
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whereei ∈ R
k is the unit vector with one in positioni, and~1∈ R

k is the all-ones vector.
A little bit of algebra (see Appendix B.2 for details) shows thatρnẑj =Va

j +Vb
j , and thatUi =

β̂i −β∗
i . Consequently, if we define the events

E(V) :=
{

max
j∈Sc

|Va
j +Vb

j |< ρn
}
, (21)

E(U) :=
{

max
i∈S

|Ui | ≤ β∗
min

}
, (22)

whereβ∗
min was defined previously as the minimum value of|β∗| on its support, then in order to

establish that the Lasso succeeds in recovering the exact signed support, it suffices to show that
P[E(V)∩E(U)]→ 1,

We decompose the proof of this final claim in the following three lemmas. As in the statement
of Theorem 1, suppose thatn> (2+ ε)k log(p−k), for some fixedε > 0.

Lemma 3 (Control of Va) Under the conditions of Theorem 1, there exists a fixed positive valueδ
(dependent onε) such that

P[max
j∈Sc

|Va
j | ≥ (1−δ)ρn] → 0.

Lemma 4 (Control of Vb) Under the conditions of Theorem 1, there exists a fixed positive valueδ
(dependent onε)

P[max
j∈Sc

|Vb
j | ≥ δρn] → 0.

Lemma 5 (Control of U) Under the conditions of Theorem 1, we have

P[(E(U))c] = P[max
i∈S

|Ui |> β∗
min] → 0.

3.2 Proof of Lemma 3

We assume throughout thatΣ̂SSis invertible, an event which occurs with probability 1−o(1) under
the stated assumptions (see Lemma 1). If we define then-dimensional vector

h := XS(Σ̂SS)
−1~1, (23)

then the variableVa
j can be written compactly as

Va
j

ρn
= XT

j h =
n

∑
ℓ=1

hℓXℓ j .

Note that each termXℓ j in this sum is distributed as a mixture variable, taking the value 0 with
probability 1− γ, and distributed asN (0, 1

γ ) variable with probabilityγ. For ℓ = 1, . . . ,n and each

j, define the random vectorH j , with entries

H j
ℓ

d
=

{
hℓ with probabilityγ
0 with probability 1− γ.
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For each indexℓ= 1, . . . ,n, let Zℓ j ∼N (0, 1
γ ). With these definitions, by construction, we have that

Va
j

ρn

d
=

n

∑
ℓ=1

H j
ℓ Zℓ j .

To gain some intuition for the behavior of this sum, note that the variables{Zℓ j , ℓ = 1, . . . ,n} are
independent of the vectorH j . (In particular,H j is a function ofXS, whereasZℓ j is a function ofXℓ j ,
with j /∈S.) Consequently, we may condition onH j without affectingZ, and sinceZ is Gaussian, we

have(
Va

j

ρn
| H j) ∼ N (0, ‖H j‖2

2
γ ). Therefore, if we can obtain good control on the norm‖H j‖2, then

we can use standard Gaussian tail bounds (see Appendix A) to control the maximum maxj∈Sc Va
j /ρn.

The following lemma is proved in Appendix C:

Lemma 6 Under condition(10), then for any fixedδ > 0, we have

P
[
‖H j ‖2

2 ≤
γk(1+δ)

n

]
≥ 1−O

[
exp(−min{2log(p−k),

n
2k

})
]
.

The primary implication of the above bound is that eachVa
j /ρn variable is (essentially) no larger

than aN (0, k
n) variable. We can then use standard techniques for bounding the tails of Gaussian

variables to obtain good control over the random variable maxj∈Sc |Va
j |/ρn. In particular, by the

union bound, we have

P[max
j∈Sc

|Va
j | ≥ (1−δ)ρn] ≤ (p−k) P[

n

∑
ℓ=1

H j
ℓ Zℓ j ≥ (1−δ)].

For anyδ > 0, define the eventT j(δ) := {‖H j ‖2
2 ≤

kγ(1+δ)
n }. With this definition, we have

P[max
j∈Sc

|Va
j | ≥ (1−δ)ρn] ≤ (p−k)

{
P[

n

∑
ℓ=1

H j
ℓ Zℓ j ≥ (1−δ) | T j(δ)]+P[(T j(δ)c)]

}

≤ (p−k) {2exp(−n(1−δ)2

2k(1+δ)
)+c1exp

(
−min(2log(p−k),

n
2k

)
)
},

where the second inequality uses a standard Gaussian tail bound (see Appendix A), and Lemma 6.
Finally, let us assume the conditionn> (2+ ε)k log(p−k) for some fixedε > 0. Then there exists
a numerical constantc1 such that

P[max
j∈Sc

|Va
j | ≥ (1−δ)ρn] ≤ (p−k)

{
2exp

(
− n(1−δ)2

2k(1+δ)
)
+c1exp(−min(2log(p−k),

n
2k

))
}

= (p−k)
{

2exp
(
− n(1−δ)2

2k(1+δ)
)
+c1exp(−2log(p−k))

}

≤ (p−k)
{

2exp
(
− (2+ ε) log(p−k)

(1−δ)2

2(1+δ)
)

+ c1exp(−2log(p−k))
}
.

Note that the above inequality holds for all values ofε. Sinceε > 0 is fixed, we can choose a

fixed value ofδ such that(1−δ)2

1+δ > 2
2+ε/2. With this choice, we then have

P[max
j∈Sc

|Va
j | ≥ (1−δ)ρn] ≤ (p−k)

{
2exp

(
− (2+ ε)

(2+ ε/2)
log(p−k)

)
+c1exp(−2log(p−k))

}

≤ (p−k)

{
(2+c1)exp

(
− (2+ ε)

(2+ ε/2)
log(p−k)

)}
,
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thereby establishing thatP[maxj∈Sc |Va
j | ≥ (1−δ)ρn]→ 0, as claimed.

3.3 Proof of Lemma 4

Defining the orthogonal projection matrixΠ⊥
S := In×n−XS(XT

S XS)
−1XT

S , we then have

P[max
j∈Sc

|Vb
j | ≥ δρn] = P[max

j∈Sc

∣∣XT
j Π⊥

S (
W
n
)
∣∣≥ δρn]

≤ (p−k) P
[∣∣XT

j Π⊥
S (

W
n
)
∣∣≥ δρn

]
. (24)

Now sinceΠ⊥
S is an orthogonal projection matrix, and the column vectorXj , noise vectorW and

randomness inΠ⊥
S are all independent, we have the bound

P
[∣∣XT

j Π⊥
S (W/n)

∣∣≥ δρn
]

≤ P
[∣∣XT

j (W/n)
∣∣≥ δρn

]
, (25)

For eachℓ = 1, . . . ,n and j = 1, . . . , p, let Bℓ j be a Bernoulli variable with parameterγ, and let
Zℓ j ∼ N (0, 1

γ ). In terms of these random variables, we have the representationXℓ j = Bℓ jZℓ j . Note
moreover that the the sum∑n

ℓ=1Bℓ j is a binomial random variable, and define the event

T :=
{1

n

∣∣
n

∑
ℓ=1

Bℓ j − γn
∣∣≤ 1

2
√

k

}
.

From the Hoeffding bound (see Lemma 7), we haveP[T c]≤ 2exp(− n
2k). Using the representation

Xℓ j = Bℓ jZℓ j and conditioning onT , we obtain

P
[∣∣XT

j W/n
∣∣≥ δρn

]
≤ P

[∣∣1
n

n

∑
ℓ=1

Bℓ jZℓ jWℓ

∣∣≥ δρn | T
]
+P[T c]

≤ P
[∣∣1

n

n(γ+ 1
2
√

k
)

∑
ℓ=1

Zℓ jWℓ

∣∣≥ δρn
]
+2exp(− n

2k
),

where we have assumed without loss of generality that the firstn(γ+ 1
2
√

k
) variables in the collection

{Bℓ j}n
ℓ=1 are non-zero.

Conditioned onW, the random variableM j := 1
n ∑

n(γ+ 1
2
√

k
)

ℓ=1 Zℓ jWℓ is zero-mean Gaussian with

varianceν(W;γ) := 1
n2γ ∑

n(γ+ 1
2
√

k
)

ℓ=1 W2
ℓ . For someδ1 > 0, define the event

T2(δ1) :=

{
ν(W;γ)≤ (1+δ1)

1
nγ2 (γ+

1

2
√

k
)

}
.

In order to bound the probability of this event, we begin by observing that sinceWℓ ∼ N(0,1/γ), the
variablen2γ2ν(W;γ) is chi-squared withd = n(γ+ 1

2
√

k
) degrees of freedom. Consequently, using

χ2-tail bounds (see Appendix A), we have

P[(T2(δ1))
c] ≤ exp

(
−n(γ+

1

2
√

k
)
3δ2

1

16

)
.
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Now, by conditioning onT2(δ1) and its complement and using tail bounds on Gaussian variates (see
Appendix A), we obtain

P
[∣∣1

n

n(γ+ 1
2
√

k
)

∑
ℓ=1

Zℓ jWℓ

∣∣≥ δρn
]

≤ P
[∣∣1

n

n(γ+ 1
2
√

k
)

∑
ℓ=1

Zℓ jWℓ

∣∣≥ δρn | T2(δ1)
]
+P[(T2(δ1))

c]

≤ 2 exp
(
− nγ2(δ2ρ2

n)

2(1+δ1)(γ+ 1
2
√

k
)

)
+

exp
(
−n(γ+

1

2
√

k
)
3δ2

1

16

)
. (26)

Finally, putting together the pieces from Equations (26), (25), and (24) we obtain that
P[maxj∈Sc |Vb

j | ≥ δρn] is upper bounded by

(p−k)
{

2exp(− n
2k

)+2 exp
(
− nγ2(δ2ρ2

n)

2(1+δ1)(γ+ 1
2
√

k
)

)
+exp

(
−n(γ+

1

2
√

k
)
3δ2

1

16

)}
. (27)

The first term in Equation (27) goes to zero sincen> (2+ ε)k log(p− k). Condition (10) implies
that γ

√
k → ∞. In particular, this means that eventually 1≤ 2γ

√
k. Once this occurs, we have the

inequality γ2

γ+ 1
2
√

k

> γ
2, and hence

(p−k)exp
(
− nγ2(δ2ρ2

n)

2(1+δ1)(γ+ 1
2
√

k
)

)
≤ (p−k)exp

(
− nγδ2ρ2

n

4(1+δ1)

)

= (p−k)exp
(
− log(p−k)

nγδ2ρ2
n

4(1+δ1) log(p−k)

)
.

Recalling that the termsδ andδ1 are fixed constants, condition (10) implies that eventually

(p−k)exp
(
− log(p−k)

nγδ2ρ2
n

4(1+δ1) log(p−k)

)
≤ (p−k)exp

(
−3log(p−k)

)
,

showing that the middle term of Equation (27) goes to zero. Finally, using the conditionn≥ (2+
ε)k log(p−k), we obtain

(p−k)exp
(
−n(γ+

1

2
√

k
)
3δ2

1

16

)
≤ (p−k)exp

(
−n(

1

2
√

k
)
3δ2

1

16

)

≤ (p−k)exp
(
−
[(2+ ε)

√
k

2

]
log(p−k)

3δ2
1

16

)
.

This quantity tends to zero, becauseε and δ1 are fixed constants and
√

k tends to infinity. We
conclude that the last term in Equation (27) goes to zero, thereby concluding the proof.

3.4 Proof of Lemma 5

We first observe that conditioned onXS, eachUi is Gaussian with mean and variance

mi := E[Ui | XS] = eT
i

(1
n

XT
S XS

)−1[−ρn~1
]
, and

ψi := var[Ui | XS] =
1
γn

eT
i

(1
n

XT
S XS

)−1
ei ,

2372



HIGH-DIMENSIONAL VARIABLE SELECTION

respectively. Let us define the function

T(γ,k, p,θ, t) :=
1
γ

√
max

{ log(t)
θk log(p−k)

,
log[θ log(p−k)]

θ log(p−k)

}
, (28)

as well as the the upper bounds

m∗ := ρn(1+C
√

kT(γ,k, p,1,k)), and ψ∗ :=
1
γn

(1+CT(γ,k, p,1,k)).

Now consider the event

T (m∗,ψ∗) := {max
i∈S

|mi | ≤ m∗ and max
i∈S

|ψi | ≤ ψ∗}.

Conditioning onT and its complement, we have

P[(E(U))c] = P[
1

β∗
min

max
i∈S

Ui |> 1]

≤ P[
1

β∗
min

max
i∈S

|Ui |> 1 | T (m∗,ψ∗)]+P[(T (m∗,ψ∗))c]. (29)

In order to upper boundP[(T (m∗,ψ∗))c], we first upper bound the termsP(|mi |> m∗) and
P(|ψi |> ψ∗), and then apply the union bound. Beginning with the mean, we have

∣∣mi
∣∣ := ρn

∣∣eT
i

(1
n

XT
S XS

)−1~1
∣∣

= ρn
∣∣eT

i

[(1
n

XT
S XS

)−1− Ik,k
]
~1+eT

i Ik,k~1
∣∣

≤ ρn
∣∣eT

i

[(1
n

XT
S XS

)−1− Ik,k

}
~1
∣∣+ρn.

Our next step is to upper bound the operator norm of the matrix within curly braces, which we do
by applying Lemma 10 from Section D, with the parametersθ = 1 andt = k. We conclude there
is an universal constantC such that|||(1

nXT
S XS)

−1− Ik,k|||2 ≤CT(γ,k, p,1,k) with probability at least
1−O(k−2). Consequently, if we definem∗ := ρn

[√
kCT(γ,k, p,1,k)

]
+ρn, then we have the bound

P
[
|mi | ≥ m∗] = O(1/k2).

A similar argument can be used to bound each termψi , thereby obtaining

P[
∣∣ψi
∣∣> ψ∗] = O(k−2).

Since there arek versions of each ofmi andψi , the union bound implies that

P[(T (m∗,ψ∗))c]≤ 2kO(k−2) = O(k−1).
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We now turn to the first term of Equation (29). LettingYi ∼N (0,ψi), and usingT as shorthand
for the eventT (m∗,ψ∗), we have

P[
1

β∗
min

max
i∈S

|Ui |> 1 | T ] = E
{
P
[
max
i∈S

|Ui |> β∗
min | XS,T

]}

≤ E
{
P
[
max
i∈S

(
|mi |+ |Yi |

)
> β∗

min | XS,T
]}

≤ E
{
P
[
m∗+max

i∈S
|Yi |> β∗

min | XS,T
]}

= E
{
P
[ 1

β∗
min

max
i∈S

|Yi |> 1− m∗

β∗
min

| XS,T
]}
.

For sufficiently largep andk, we have

T(γ,k, p,1,k) =
1
γ

√
max

{ log(k)
k log(p−k)

,
log[log(p−k)]

log(p−k)

}

≤ 1
γ

√
{ log[log(p−k)]

log(p−k)

}
,

using the facts thatlog(k)
k → 0 and log[log(p− k)]→ ∞, so that the maximum is dominated by the

second term. As a result, applying condition (9) yields thatm∗
β∗

min
→ 0. LettingY∗ ∼ N (0,ψ∗), we

have

E
{
P
[ 1

β∗
min

max
i∈S

|Yi |>
1
2

| XS,T
]}

≤ E
{

kP[|Y∗| ≥ β∗
min

2
| XS,T ]

}

≤ 2k exp
(
− [β∗

min]
2

8ψ∗
)
,

where the last inequality follows from Gaussian tail bounds (see AppendixA). It remains to verify
that this final term converges to zero. Taking logarithms and ignoring constant terms, we have

log(k)(1− [β∗
min]

2

log(k) 8ψ∗ ) = log(k)
(
1− [β∗

min]
2γn

8log(k) (1+CT(γ,k, p,1,k))
)
.

Our goal is to show that that this quantity diverges to−∞. Condition (10) implies that

T(γ,k, p,1,k) =
1
γ

√
max

{ log(k)
k log(p−k)

,
log log(p−k)

log(p−k)

}
→ 0.

Hence, it suffices to show that logk
(
1− [β∗

min]
2γn

16logk

)
diverges to−∞. We have

log(k)
(
1− [β∗

min]
2γn

16log(k)

)
= log(k) (1− [β∗

min]
2

ρ2
n

γnρ2
n

16log(k)
)

= log(k) (1− [β∗
min]

2

ρ2
n

γnρ2
n

16log(p−k)
log(p−k)

log(k)
).

Condition (9) implies that[β
∗
min]

2

ρ2
n

→ ∞, whereas condition (8) ensures thatγnρ2
n

log(p−k) → ∞. The signal

classC (p,k,β∗
min), as previously defined (1), ensures thatk≤ p

2 , so that the third term is greater than
one. Putting together the pieces, we conclude thatP[E(U)c] tends to zero.
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4. Experimental Results

In this section, we provide some experimental results to illustrate the claims of Theorem 1. We
consider two different sparsity regimes, namely linear sparsity (k = αp) and polynomial sparsity
(k =

√
p), and we show simulations in which the fractionγ of non-zero entries in each row of the

measurement matrixX converges to zero. For all experiments, the additive noise standard deviation
is set toσ = 0.25 and we fix the vectorβ∗ by setting the firstk entries are set to one, and the
remaining entries to zero. There is no loss of generality in fixing the supportin this way, since the
ensemble of models is invariant under permutations.

Although it is possible to solve the Lasso using a variety of methods, our theory (in particular,
Lemma 2) shows that it suffices to simulate the random variables{Va

j ,V
b
j , j ∈ Sc} and{Ui , i ∈ S},

and then check the equivalent conditions (21) and (22). (These necessary and sufficient conditions
give the same result for support recovery as solving the Lasso; however, they are much faster to
simulate.) In all cases, we plot the success probabilityP[S(β̂) =S(β∗)] versus thecontrol parameter
θ(n, p,k) = n

2k log(p−k) . Note that Theorem 1 predicts that the Lasso should transition from failureto
success atθ ≈ 1.

In Figure 1, the empirical success rate of the Lasso is plotted against the control parameter
θ(n, p,k) = n

2k log(p−k) . Each panel shows three curves, corresponding to the problem sizesp ∈
{512,1024,2048}, and each point on the curve represents the average of 100 trials. Forall trials
shown, we setγ = 0.5 log(p−k)√

p−k
, which converges to zero at a rate slightly faster than that guaranteed

by Theorem 1. Nonetheless, we still observe the ”stacking” behavior around the predicted threshold
θ∗ = 1.
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Figure 1: Plots of the success probabilityP[Ŝ=S] versus the control parameterθ(n, p,k)= n
k log(p−k)

for γ-sparsified ensembles, with decaying measurement sparsityγ = .5log(p−k)√
p−k

. (a) Poly-

nomial signal sparsityk= O(
√

p). (b) Linear signal sparsityk= Θ(p).
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5. Discussion

In this paper, we have studied the problem of recovery the support setof a sparse vectorβ∗ based on
noisy observations. The main result is to show that it is possible to “sparsify” standard dense mea-
surement matrices, so that they have a vanishing fraction of non-zeroesper row, while retaining the
same sample complexity (number of observationsn) required for exact recovery. We also showed
that under the support recovery metric and in the presence of noise, nomethod can succeed without
the number of non-zeroes per column tending to infinity, so that our results cannot be improved
substantially. Thus, our results show that it is possible to use sparse measurement matrices while
retaining the same guarantees regarding the recovery of the support. Note that our sparsification
scheme is the simplest one, and requires no additional overhead to implement. Although this paper
focused on sparsified Gaussian measurement matrices, it is possible to obtain qualitatively simi-
lar results for sparsified sub-Gaussian ensembles (for instance, the discrete uniform distribution on
{−1,1}).

The approach taken in this paper is to find rates whichγ (as a function ofn, p, k) can safely tend
towards zero while maintaining the same statistical efficiency as dense randommatrices. In various
practical settings (Wakin et al., 2006), it may be preferable to make the measurement ensembles
even sparser at the cost of taking more measurementsn, thereby decreasing statistical efficiency
relative to dense random matrices. A natural question is the sample complexityn(γ, p,k) in this
regime as well. Finally, this work has focused only on a randomly sparsified matrices, as opposed
to particular sparse designs (e.g., based on LDPC or expander-type constructions Feldman et al.,
2007; Sarvotham et al., 2006; Xu and Hassibi, 2007). Although our results imply that exact support
recovery with noisy observations is impossible with bounded degree designs, it would be interest-
ing to examine the trade-off between other loss functions (e.g.,ℓ2 reconstruction error) and sparse
measurement matrices.
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Appendix A. Standard Concentration Results

In this appendix, we collect some tail bounds used repeatedly throughoutthis paper.

Lemma 7 (Hoeffding bound—Hoeffding, 1963)Given a binomial variate Z∼Bin(n,γ), we have
for anyδ > 0

P[|Z− γn| ≥ δn] ≤ 2exp
(
−2nδ2).

Lemma 8 (χ2-concentration—Johnstone, 2001)Let X∼ χ2
m be a chi-squared variate with m de-

grees of freedom. Then for all1
2 > δ ≥ 0, we have

P[X−m≥ δm] ≤ exp
(
− 3

16
mδ2).
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We will also find the following standard Gaussian tail bound (e.g., Ledoux and Talagrand, 1991)
useful:

Lemma 9 (Gaussian tail behavior) Let V∼N (0,σ2) be a zero-mean Gaussian with varianceσ2.
Then for allδ > 0, we have

P[|V|> δ] ≤ 2 exp
(
− δ2

2σ2

)
.

Appendix B. Convex Optimality Conditions

In this section we discuss the optimality conditions that the Lasso must satisfy andsome implica-
tions that follow.

B.1 Proof of Lemma 2

Let f (β) := 1
2n‖Y−Xβ‖2

2 + ρn‖β‖1 denote the objective function of the Lasso (4). By standard

convex optimality conditions (Rockafellar, 1970), a vectorβ̂ ∈ R
p is a solution to the Lasso if and

only if 0 ∈ R
p is an element of the subdifferential off (β) at β̂. These conditions lead to

1
n

XT(Xβ̂−Y)+ρnẑ = 0,

where the dual vector̂z∈ R
p is an element of the subdifferential of theℓ1-norm, given by

∂‖β̂‖1 =
{

z∈ R
p | zi = sign(β̂i) if β̂i 6= 0, zi ∈ [−1,1] otherwise

}
.

Now suppose that we are given a pair(β̂, ẑ)∈R
p×R

p that satisfy the assumptions of Lemma 2.
Condition (13) is equivalent to(β̂, ẑ) satisfying the zero subgradient condition. Conditions (14), (16)
and (17) ensure that̂z is an element of the subdifferential of theℓ1-norm at̂β. Finally, conditions (15)
and (17) ensure that̂β correctly specifies the signed support.

It remains to verify that̂β is theuniqueoptimal solution. By Lagrangian duality, the Lasso
problem (4) (given in penalized form) can be written as an equivalent constrained optimization
problem over the ball‖β‖1 ≤C(ρn), for some constantC(ρn)<+∞. Equivalently, we can express
this singleℓ1-constraint as a set of 2p linear constraints~vTβ ≤ C, one for each sign vector~v ∈
{−1,+1}p. The vector̂z can be written as a convex combinationẑ= ∑~v α∗

~v~v, where the weights

α∗
~v are non-negative and sum to one. By construction ofβ̂ and ẑ, the weightsα∗ form an optimal

Lagrange multiplier vector for the problem. Consequently, any other optimal solution—sayβ̃—
must also minimize the associated Lagrangian

L(β;α∗) = f (β)+∑
~v

α∗
~v

[
~vTβ−C

]
,

and satisfy the complementary slackness conditionsα∗
~v

(
~vT β̃−C

)
= 0 for every~v.

Note that these complementary slackness conditions imply thatẑT β̃ = C. But this can only
happen if̃β j = 0 for all indices where|ẑj |< 1. Therefore, any optimal solutioñβ satisfies̃βSc = 0.
Finally, given that all optimal solutions satisfyβSc = 0, we may consider the restricted optimization
problem subject to this set of constraints. If the Hessian submatrixΣ̂SS is strictly positive definite,
then this sub-problem is strictly convex, so thatβ̂ must be the unique optimal solution, as claimed.
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B.2 Derivation of {Va
j ,V

b
j ,Ui}

In this appendix, we derive the form of the{Va
j ,V

b
j } and{Ui} variables defined in Equations (18)

through (20). We begin by writing the zero sub-gradient condition in a block-form, and substituting
the relations specified in conditions (14) and (15):

[
Σ̂SS Σ̂SSc

Σ̂ScS Σ̂ScSc

][
β̂S−β∗

S
0

]
−
[ 1

nXT
S W

1
nXT

ScW

]
+ρn

[
sign(β∗

S)
ẑSc

]
= 0.

By solving the top block, we obtain

U := β̂S−β∗
S = Σ̂−1

SS

{1
n

XT
S W−ρnsign(β∗

S)
}
.

By back-substituting this relation into the lower block, we can solve explicitly forẑSc; doing so
yields thatρnẑSc =Va+Vb, where the(p−k)-vectors are defined in Equations (18) and (19).

Appendix C. Proof of Lemma 6

Let Z ∈ R
n×n denote an×n matrix, for which the off-diagonal elementsZi j = 0 for all i 6= j, and

the diagonal elementsZii ∼ Ber(γ) are i.i.d. With this notation, we can writeH
d
= Zh. Using the

definition (23) ofh, we have

‖H ‖2
2 = ‖Zh‖2

2

= ‖Z
XS

n
(Σ̂SS)

−1~1‖2
2

= ~1T(Σ̂SS)
−1(Z

XS

n
)T(Z

XS

n
)(Σ̂SS)

−1~1

=
γ
n
~1T(Σ̂SS)

−1{ 1
γn

n

∑
i=1

I [Zii = 1] xix
T
i

}

︸ ︷︷ ︸
(Σ̂SS)

−1~1,

Γ(Z)

wherexi is theith row of the matrixXS. We can apply Lemma 10 from Appendix D with parameters
θ = 1 andt = (p−k) yielding

P
[
|||Σ̂−1

SS|||2 ≥ f1(p,k,γ)
]

≤ O
( 1
(p−k)2

)
, (30)

where f1(p,k,γ) := 1+ T(γ,k, p,1, p−k), and the functionT(γ,k, p,θ, t) was defined in Equa-
tion (28).

Next we control the spectral norm of the random matrixΓ(Z), conditioned on the total number
∑n

i=1Zii of non-zero entries. In particular, applying Lemma 10 witht = p−k, andθ = z
n, we have

P
[
‖Γ(Z)‖2 ≥

z
nγ
[
1+T(γ,k, p,

z
n
, p−k)

]
|

n

∑
i=1

Zii = z
]

≤ 1
(p−k)2 , (31)

as long ask z
n → ∞.
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The next step is to deal with the conditioning. Define the event

T (k,γ) :=
{

Z | γ− 1

2
√

k
≤ 1

n

n

∑
i=1

Zii ≤ γ+
1

2
√

k

}
.

We need to find an upper bound on‖Γ(Z)‖2 that will hold with high probability for allZ that satisfy
the above property. One function that suffices is

f2(p,k,γ) :=

(
1+

1

2
√

kγ

) [
1+C

(1
γ

√√√√max

{
1

k(γ− 1
2
√

k
)
,
log[(γ+ 1

2
√

k
) log(p−k)]

(γ− 1
2
√

k
) log(p−k)

})]
.

We then have that

P[|||Γ(Z)|||2 ≥ f2(p,k,γ)] ≤ P[|||Γ(Z)|||2 ≥ f2(p,k,γ) | T (k,γ)]+P[(T (k,γ))c]

≤ exp(−2log(p−k))+2exp(− n
2k

)

≤ 3exp(−min{2log(p−k),
n
2k

}), (32)

where we have used the bound (31), and the Hoeffding bound (see Lemma 7).
Combining the bounds (30) and (32), we conclude that as long asγk→ ∞, then:

P
[
|||Σ̂−1Γ(Z)Σ̂−1|||2 ≥ f 2

1 f2
]

≤ 4exp(−min{2log(p−k),
n
2k

}).

Since‖~1‖2 =
√

k, we have

P[‖H‖2
2 ≥

γk
n

f 2
1 f2] ≤ 4exp(−min{2log(p−k),

n
2k

}).

To conclude the proof, we must show that bothf1(p,k,γ) and f2(p,k,γ) converge to 1 as(p,k,γ)
scale. The termf1(p,k,γ) = 1+T(γ,k, p,1, p−k) converges to one, since the quantity

T(γ,k, p,1, p−k) =
1
γ

√
max

{1
k
,
log[log(p−k)]

log(p−k)

}

converges1 to zero under assumption (10). Next, we need to demonstrate thatf2(p,k,γ) converge
to 1 as(p,k,γ) scale. Since assumption (10) ensures thatγ

√
k→ ∞, it suffices to study the simpler

function

f3(p,k,γ) := 1+C
(1

γ

√
max

{
1
kγ
,
log[γ log(p−k)]

γ log(p−k)

})
,

which has the same asymptotic behavior asf2(p,k,γ). Observe thatf3(p,k,γ) satisfies the sandwich
relation

1 ≤ f3(p,k,γ) ≤ 1+C
(√

max
{ 1

kγ3 ,
log[log(p−k)]

γ3 log(p−k)

})
,

By assumption (10), this upper bound converges to one, showing thatf3 and hencef2 converge to
one, as desired. In particular, for any fixedδ > 0, we havef 2

1 f2 < (1+δ) for p,k sufficiently large,
thereby completing the proof of Lemma 6.

1. In particular, the left-hand side of the expression (10) satisfies γ
[T(γ,k,p,1,p−k)]2 ≤ 1

[T(γ,k,p,1,p−k)]2 .
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Appendix D. Singular Values of Sparsified Matrices

Let θ(p,k) ∈ (0,1] andt(p,k) ∈ {1,2,3, . . .} be functions. LetX be anθn×k random matrix with
i.i.d. entriesXi j distributed according to theγ-sparsified ensemble (6). Recall the definition of the
functionT(γ,k, p,θ, t) defined in Equation (28), and lett > 0 be arbitrary.

Lemma 10 Suppose that n≥ (2+ν)k log(p−k) for someν > 0. If as k and p− k → ∞, we have
T(γ,k, p,θ, t)−→ 0, then there are universal positive constants Ci such that

P
[

sup
‖u‖2=1

∣∣ 1√
θn

‖Xu‖2−1
∣∣≥C1T(γ,k, p,θ, t)

]
= O(

1
t2), and (33)

P
[
|‖( 1

θn
XTX)

−1

− Ik×k‖2 ≥C2T(γ,k, p,θ, t)
]

= O(
1
t2). (34)

Remark 3 (a) Note that Equation(33) implies that the eigenvalues of the matrix1
θnXTX are con-

tained in the interval(1−C1T(γ,k, p,θ, t),1+C1T(γ,k, p,θ, t)). Since T(γ,k, p,θ, t) = o(1) by
assumption, we can always find a constant C2 such that the eigenvalues of the inverted matrix

( 1
θnXTX)

−1
are contained in the interval(1−C2T(γ,k, p,θ, t),1+C2T(γ,k, p,θ, t)). Consequently,

Equation(34) is a consequence of the assumptions of Lemma 10 and Equation(33).

(b) In addition, observe that Lemma 10 withθ = 1 and t= p− k implies thatΣ̂ = 1
nXT

S XS is
invertible with probability greater than1−O( 1

(p−k)2 ), there establishing Lemma 1. Other settings

in which this lemma is applied are(θ, t) = (γ, p−k) and(θ, t) = (1,k).

The remainder of this section is devoted to the proof of Lemma 10.

D.1 Bounds on Expected Values

Let X ∈ R
θn×k be a random matrix with i.i.d. entries from theγ-sparsified ensemble

Xi j ∼ (1− γ)δX(0)+ γN (0,
1
γ
).

Note thatE[Xi j ] = 0 and var(Xi j ) = 1 by construction.
We follow the proof technique outlined in the lecture notes (Vershynin, 2006). We first note the

tail bound:

Lemma 11 Let Q1, . . . ,Qd be i.i.d. samples of theγ-sparsified Gaussian ensemble. Given any

vector a∈ R
d and t> 0, we haveP[∑d

i=1aiQi > t]≤ exp
(
− γt2

2‖a‖2
2

)
.

To establish this bound, note that eachYi is dominated (stochastically) by the random variable
Z ∼N (0, 1

γ ). In particular, for anyλ > 0 we have

MQi (λ) = E[exp(λQi)] = (1− γ)+ γE[exp(λZ)]≤ exp(λ2/2γ),

from which the claim follows by optimizing the Chernoff bound.

2380



HIGH-DIMENSIONAL VARIABLE SELECTION

Now let us bound the maximum singular valuesmax(X) of the random matrixX. Letting Sd−1

denote theℓ2 unit ball ind dimensions, we begin with the variational representation

smax(X) = max
u∈Sk−1

‖Xu‖

= max
v∈Sθn−1

max
u∈Sk−1

vTXu.

For an arbitraryε∈ (0,1), we can findε-covers (inℓ2 norm) ofSθn−1 andSk−1 with Mθn(ε) = (3/ε)θn

andMk(ε) = (3/ε)k points respectively (Matousek, 2002). Denote these covers byCθn(ε) andCk(ε)
respectively. A standard argument shows that for allε ∈ (0,1), we have

‖X‖2 ≤ 1
(1− ε)2 max

uα∈Ck(ε)
max

vβ∈Cθn(ε)
vT

β Xuα.

Let us analyze the maximum on the RHS: for a fixed pair(u,v) in our covers, we have

uTXv =
k

∑
i=1

θn

∑
j=1

Xi j uiv j .

Let us apply Lemma 11 withd = θnk, and weightsai j = uiv j . Note that we have

‖a‖2
2 = ∑

i, j

a2
i j = ∑

i

u2
i (∑

j

v2
j ) = 1,

since eachu andv are unit norm. Consequently, for any fixedu,v in the covers, we have

P[uTXv> t] ≤ exp
(
− γt2

2

)
.

By the union bound, we have

P
[

max
uα∈Ck(ε)

max
vβ∈Cθn(ε)

vT
β Xuα > t

]
≤ Mk(ε)Mθn(ε)exp

(
− γt2

2

)

≤ exp
(
(k+θn) log(3/ε)− γt2

2

)
.

By choosingε = 1
2 andt =

√
4
γ (k+θn) log6, we can conclude that

smax(X)/
√

θn = ‖X‖2/
√

θn ≤ C

√
1
γ

√
1+

k
θn

,

with probability at least 1−exp(−(k+θn) log6). Note that

k
θn

= O
( 1
(2+ν)θ log(p−k)

)
→ 0,

since log[θ log(p−k)]
θ log(p−k) → 0, which implies thatθ log(p−k)→ ∞.

Consequently, we can conclude that

‖X‖2/
√

θn ≤ O(1/
√

γ),

w.p. one asθn,k → ∞. Although this bound is essentially correct for aN (0, 1
γ ) ensemble withγ

fixed, it is very crude for the sparsified case withγ → 0, but will useful in obtaining tighter control
onsmax(X) andsmin(X) := minu∈Sk−1 ‖Xu‖ in the sequel.
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D.2 Tightening the Bound

For a givenu∈ Sk−1, consider the random variable‖Xu‖2
2 := ∑θn

i=1(Xu)2
i . We first claim that each

variateZi = (Xu)2
i is subexponential, or more precisely:

Lemma 12 For any s> 0, we haveP[Zi > s]≤ 2exp
(
− γs

2

)
.

Proof We can write(Xu)i = ∑k
j=1Xi j u j where‖u‖2 = 1. Consequently, Lemma 11 implies that

P[∑k
j=1Xi j u j > δ]≤ exp(− γδ2

2 ). By symmetry, we have

P[Zi > s] = P[|
k

∑
j=1

Xi j u j |>
√

s] ≤ 2exp(−γs
2
),

from which the claim follows.

Now consider the event

{∣∣‖Xu‖2
2

θn
−1
∣∣> δ

}
=

{∣∣
θn

∑
i=1

Zi −E[
θn

∑
i=1

Zi ]
∣∣> δθn

}
.

Let us apply Theorem 1.4 from Vershynin (2000) witha= 2, b= 8θn/γ2 andd = 2/γ. With these
choices, we have 4b/d = 16θn/γ, which grows at least linearly inθn. Consequently, for anyδ > 0
less than 16/γ (we will in fact takeδ → 0), we have

P
[∣∣‖Xu‖2

2

θn
−1
∣∣> δ

]
≤ 2exp

(
− δ2(θn)2

256θn/γ2

)
= 2exp

(
− γ2 δ2θn

256

)
.

Now take anε-cover of thek-dimensionalℓ2 ball, say withN(ε) = (3/ε)k elements. By the union
bound, we have

P
[

inf
i=1,...,N(ε)

‖Xui‖2
2

θn
< 1−δ

]
≤ exp

(
− γ2 δ2θn

256
+k log(3/ε)

)
.

Now set

δ =

√
2

γ

√
256f (k, p)k log(3/ε)

θn
,

where f (k, p)≥ 1 is a function to be specified. Doing so yields that the infimum is bounded by 1+δ
with probability 1−exp(−k f(k, p) log(3/ε)). (Note that the choice off (k, p) influences the rate of
convergence, hence its utility.)

For any elementu∈ Sk−1, we have someui in the cover, and moreover

∣∣‖Xu‖2−‖Xui‖2
∣∣ =

∣∣{‖Xu‖−‖Xui‖
} {

‖Xu‖+‖Xui‖
}∣∣

≤
∣∣{‖Xu‖−‖Xui‖

}∣∣ (2‖X‖)
≤ (‖X‖ ‖u−ui‖) (2‖X‖) ≤ 2‖X‖2ε.
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From our earlier result, we know that‖X‖2 = O(θn/γ) with probability 1− exp(log6(k+ θn)).
Putting together the pieces, we have there is a universal constantC2 > 0, independent of((θn),k,γ),
such that the bound

1
θn

inf
u∈Sk−1

‖Xu‖2 ≥ 1−δ−C3ε/γ = 1− 2
γ

√
32f (k, p)k log(3/ε)

θn
− C2

γ
ε,

holds with probability at least

1−exp(−k f(k, p) log(3/ε))−exp(− log6(k+θn)). (35)

Settingε = 3k/θn yields the bound

1
θn

inf
u∈Sk−1

‖Xu‖2 ≥ 1− C3

γ

√
f (k, p)

k
θn

log(
θn
k
),

where we have used the fact thatk
θn = o

(√
f (k, p) k

θn log(θn
k )
)
. To understand how to choose the

function f (k, p), let us consider the rate of convergence (35). To establish the claim (33), we need
rates fast enough to dominate a 2log(t) term in the exponent, which guides our choice off (k, p).
Recall that we are seeking to prove a scaling of the formn=Θ(k log(p−k)), so that this requirement
(with ε = 3k/θn= 3

θ log(p−k) ) is equivalent to the quantity

k f(k, p) log(3/ε)−2log(t) = k f(k, p) log[θ log(p−k)]−2log(t) (36)

tending to infinity.

D.2.1 CASE 1

If k > log(t)
log[θ log(p−k)] , then we may setf (k, p) = 4. With this choice, the condition (36) is satisfied,

and we have

f (k, p)
k

θn
log(

θn
k
) = 4

log[θ log(p−k)]
θ log(p−k)

→ 0,

where we have used the assumption thatT(γ,k, p,θ, t) = o(1).

D.2.2 CASE 2

Otherwise, ifk≤ log(t)
logθ log(p−k) , then we may set

f (k, p) = 4
log(t)

k logθ log(p−k)
≥ 4,

so that condition (36) is satisfied, and we have

f (k, p)
k

θn
log(

θn
k
) ≤ 4

log(t)
k logθ log(p−k)

1
θ log(p−k)

logθ log(p−k) =
4
k

logt
θ log(p−k)

→ 0,

where we have again used the assumptionT(γ,k, p,θ, t) = o(1) from Lemma 10.
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Recalling the definition ofT(γ,k, p,θ, t) from Equation (28), we can summarize both cases
cleanly as

P

[
1

θn
inf

u∈Sk−1
‖Xu‖2 ≤ 1−CT(γ,k, p,θ, t)

]
= O(1/t2).

For (p,k) sufficiently large, we haveCT(γ,k, p,θ, t) < 1, so that we can take square roots. Using
the expansion

√
1+x= 1+ x

2 +o(x) for x small, we conclude that

1√
θn

inf
u∈Sk−1

‖Xu‖ ≥ 1− C
2

T(γ,k, p,θ, t)−o(T(γ,k, p,θ, t)),

with probability greater than 1−O(1/t2). For (k, p) sufficiently large, the second term is smaller
thanC

4T(γ,k, p,θ, t), so that we conclude that

P

[
1√
θn

inf
u∈Sk−1

‖Xu‖ ≥ 1− 3C
4

T(γ,k, p,θ, t)
]

≥ 1−O(1/t2)

for (k, p) sufficiently large.
This same process can be repeated to bound the maximum singular value, yielding the bound

P

[
1√
θn

sup
u∈Sk−1

‖Xu‖ ≤ 1+
3C
4

T(γ,k, p,θ, t)
]

≥ 1−O(1/t2)

for (k, p) sufficiently large. Combining these two bounds yields the claim of Lemma 10.
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