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Abstract
We consider the problem of high-dimensional variable $glac givenn noisy observations of
a k-sparse vectop* € RP, estimate the subset of non-zero entrieaf A significant body of
work has studied behavior d@f-relaxations when applied to random measurement matiicgs t
are dense (e.g., Gaussian, Bernoulli). In this paper, wiyzmsparsifiedmeasurement ensembles,
and consider the trade-off between measurement sparsityeasured by the fractionof non-
zero entries, and the statistical efficiency, as measurethdyninimal number of observations
n required for correct variable selection with probabilityneerging to one. Our main result is
to prove that it is possible to let the fraction on non-zertrieay — O at some rate, yielding
measurement matrices with a vanishing fraction of nons@er row, while retaining the same
statistical efficiency as dense ensembles. A variety of kitiwn results confirm the sharpness of
our theoretical predictions.
Keywords: variable selection, sparse random projections, high-dgiomal statistics, Lasso, con-
sistency/;-regularization

1. Introduction

Recent years have witnessed a flurry of research on the recaveighedimensional models satis-
fying some type of sparsity constraint. These types of sparse recpxaniems arise in a variety
of domains, including variable selection in regression (Tibshirani, 199@phical model selec-
tion (Meinshausen and Buhlmann, 2006; Ravikumar et al., 2010), gp@ns@al components anal-
ysis (Johnstone and Lu, 2009; Paul, 2007), sparse approximatiopp;T2006), and compressed
sensing (Candes and Tao, 2005; Donoho, 2006). In all of thesegsetthre basic problem is to
recover information about a high-dimensional sigsiaE RP, based on a set ofobservations. The
signalB* is assumeda priori to be sparse: either exackysparse, or lying within somé-ball with
g< 1.

A patrticular instance of high-dimensional sparse recovery involves tharliregression model
Y = XB*+W, whereY € R" is the observation vectdly € R" is observation noise, anl € R"*P
is the measurement matrix. In this context, high-dimensional scaling meansdlsartiple size
can be of the same order of magnitude, or substantially smaller than the ambiensibnp. A
particularly simple version of this model, studied extensively within the compdessnsing com-
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munity (Candes and Tao, 2005; Donoho, 2006), isthieeless versiom whichW = 0, so that the
model reduces to the under-determined linear sydemX*. Here the model is only interesting
whenn < p, so that the linear system is not fully determined. Other work in machine |epanic
statistics (e.g., Meinshausen and Buhimann, 2006; Zhao and Yu, 200@ywki¢dnt, 2009; Zhou
et al., 2007) has focused on the noisy version of the model, sayWith N(0,02l) for some
noise variance?. The problem of high-dimensional regression can be studied eitheeferrdin-
istic designs, for which the measurement ma¥ixs fixed, or for random designs in whick is
drawn randomly from some ensemble. Past work on random designeteefl on the behavior
of various/;-relaxations when applied to measurement matrices drawn from the stabaasdian
ensemble (e.g., Donoho, 2006; Candes and Tao, 2005), or moreabearetom ensembles satis-
fying mutual incoherence conditions (Meinshausen and Buhlmann, 208éwght, 2009). A
measurement matriX drawn from such a standard random ensemble is dense, in that each row
of X hasp non-zero entries with high probability. In various applications of the gp@agression
problem, the measurement matrix is itself a design variable, and dense nme@isuneatrices are
undesirable. For instance, in applications such as sensor networkg @al., 2007), digital imag-
ing (Wakin et al., 2006) or database management (Achlioptas, 2001;dlLi, &006), it would be
preferable to take measurements of the sifdidbased on sparse inner products, using measure-
ment matriceX in which each row has a relatively small fraction of non-zero entriegshEumore,
sparse measurement matrices require significantly less storage spghbayarthe potential for re-
duced algorithmic complexity for signal recovery, since many algorithms featiprogramming
and conic programming more generally (Boyd and Vandenberghe, 280#4be accelerated by ex-
ploiting problem structure.

In the noiseless instance of the regression problem (uith p), the standard approach to esti-
matingf* is by solving the basis pursuit linear program (Chen et al., 1998). Rea#k by Bara-
niuk et al. (2007) has established connections between the succeissréthod and the behavior
of random projections, as characterized by the Johnson-Lindessferama (Johnson and Linden-
strauss, 1984; Dasgupta and Gupta, 2003). Random projectionsendgplications have been
studied extensively in machine learning and related fields, with applicationsgndionality re-
duction (Dasgupta, 1999; Li et al., 2007), data stream processing @lal., 1996; Indyk, 2006),
databases (Achlioptas, 2001; Li et al., 2006) and compressed s¢Wéng et al., 2007; Baraniuk
et al., 2007). One standard proof of the Johnson-Lindenstrauss lentraadd on random Gaus-
sian matrices. Achlioptas (2001) was the first to apply sparse randdactions, with each entry
distributed on{—1,0, 1} with probabilities[%, 3, 2], to the Johnson-Lindenstrauss problem setting,
and to provide the same guarantees as dense projections. Unfortuhatgsoof technique does
not allow the non-zero mass to be decreased much be%or@iher recent work (Li et al., 2006)
provides theoretical and experimental justification for scaling the nam4zess aggressively to
zero. Stemming from different sources than the random projection literanother line of recent
work (e.g., Cormode and Muthukrishnan, 2005; Gilbert et al., 200&08zam et al., 2006; Xu and
Hassibi, 2007) has studied compressed sensing methods based @rspassirement matrices,
using constructions motivated by group testing and coding theory.

Whereas this past work focuses on the noiseless recovery problemrimary interest in this
paper is the noisy linear observation model which, as we show, exhibilisagjuealy different be-
havior than the noiseless case. At a high level, our primary goal in thig [sapet to design sparse
measurement matrices, but rather to gain a theoretical understandingtddbeoff between the
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degree of measurement sparsity, and statistical efficieeyassess measurement sparsity in terms
of the fractiony of non-zero entries in any particular row of the measurement matrix, arefiree
statistical efficiency in terms of the minimal number of measuremergguired to recover the cor-
rect support with probability converging to one. Our interest can beadawterms of experimental
design: more precisely we ask, what degree of measurement sparsite germitted without in-
creasing the number of observations required for correct varialdetiss or subset recovery?

To bring sharp focus to the issue, we analyze this question for exas¢tsidrovery using; -
constrained quadratic programming, also known as the Lasso in the statistatsiteggChen et al.,
1998; Tibshirani, 1996), where past work on dense Gaussian ne@asatr ensembles (Wainwright,
2009) provides a precise characterization of its success/failure. aathrize the density of our
measurement ensembles with a positive paranyete(0, 1], corresponding to the fraction of non-
zero entries per row. We first show that for all fixgdt (0,1], the statistical efficiency of the
Lasso remains the same as with dense measurement matrices. We then pravis ihassible
to lety — O at some rate, as a function of the sample sizsignal lengthp and signal sparsity
k, yielding measurement matrices with a vanishing fraction of non-zeroa®wewrhile requiring
exactly the same number of observations as dense measurement ensangsdesral, in contrast
to the noiseless setting (Xu and Hassibi, 2007), our theory still requiréshthaverage number
of non-zeroes per column of the measurement matrix (¢ tend to infinity, however, under the
loss function considered here (exact signed support recovegyrove that no method can succeed
with probability one if this condition does not hold.

The remainder of this paper is organized as follows. In Section 2, wepsbewproblem more
precisely, state our main result, and discuss some of its implications. In Sectierp8vide a high-
level outline of the proof with more technical aspects of the argumentreefén the appendices.
We provide some illustrative simulations in Section 4 that illustrate the sharphesstbeoretical
predictions. Work in this paper was presented in part at the Internaggnabosium on Information
Theory in Toronto, Canada (July, 2008). We note that concurrehtamplementary work (Wang
et al., 2010) analyzes the information-theoretic limitations of sparse measuneragices for exact
support recovery.

1.1 Notation

Throughout this paper, we use the following standard asymptotic notdtjah= O(g(n)) if f(n) <
Cg(n) for some constant < +oo; f(n) = Q(g(n)) if f(n) > cg(n) for some constant > 0; and
f(n) =0(g(n)) if f(n) = 0(g(n)) andf(n) =Q(g(n)). In addition, we use log) to denote the
natural logarithm ok.

2. Problem Set-up and Main Result

We begin by setting up the problem, stating our main result, and discussing $dtaeconse-
quences.

2.1 Observation Model

Define thesupport sebf a signalf € RP
SB) = {ie{l....p} | Bi #0},
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and consider the class kfsparse signals of lengih

C(pkBn) = {BERP | [SB)|=k< 2. min|Bi| > B} ®
Let B* € RP be a fixed but unknown vector id(p,k,Br,;,), and suppose that we make a set

{Y1,...,Yn} of nindependent and identically distributed (i.i.d.) observations of the unkneestor
[3*, each of the form

Y = X BT+W, (2

whereW ~ A((0,1) is observation noise, ang € RP is a measurement vector. Note that there is
no loss in generality in assuming that the noise variance is one, since theailsemodel with
signal clasg”(p, k,B:.) andW ~ A(0,1) is equivalent to the observation model with signal class

min
C(p,k, Bg‘“) with noise varianc®\ ~ A((0,0?).
It is convenient to us¥ = [Yl Y, ... Yn]T to denote then-vector of measurements, with

similar notation for the noise vectdy € R", and

X

X3

X = . :[Xl Xo ... Xp].
X

to denote then x p measurement matrix. With this notation, the observation model can be written
compactly ay = Xp* +W.

2.2 Sign Consistency and Statistical Efficiency

Given some estimatﬁ, its error relative to the trup* can be assessed in various ways, depending
on the underlying application of interest. For applications in compressaihgewarious types of

¢y norms (i.e.,IE||ﬁ— B*||}) are well-motivated, whereas for statistical prediction, it is most natural
to study a predictive loss (e.q;p,((B— B*)||3/n). For reasons of scientific interpretation or for model
selection purposes, the object of primary interest is the sui@aif3*. In this paper, we consider

a slightly stronger notion of model selection: in particular, our goal is tovarciinesigned support

of the unknowr3*, as defined by the-vectorS, (3*) with elements

sign(B;) if B #0

0 otherwise.

[St(B)]i = {

Given some estima@, we study the probabilitﬂ”[&(ﬁ) = S; (B*)] that it correctly specifies the

~

signed support. In particular, a sequence of estinfa{gg is sign consistenif

P[S: (Bnpk) = S+ (B)] — 1, asn, p,k — . 3)

The estimator that we analyzefisconstrained quadratic programming (QP), aAIso known as the
Lasso (Tibshirani, 1996) in the statistics literature. The Lasso generagestienate3 by solving
the regularized QP

B~ argmin{ 5oV~ XBIZ+ palBla . @
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wherep, > 0 is a user-defined regularization parameter. A large body of pastheskocused on
the model selection behavior of the Lasso for both deterministic and randasuneenent matrices
(e.g., Tropp, 2006; Zhao and Yu, 2006; Wainwright, 2009).

Tropp (2006) demonstrates that under some technical conditions the fraskices an estimate
with support contained in the true support set, while Zhao and Yu (2006¥he sign consistency
of the Lasso for certain sequendgsk,, pn) and measurement ensemble covariances. The main
contribution of Wainwright (2009) is to identify the smallestequired for sign consistency of the
Lasso when applied to measurement matriesawn randomly from Gaussian ensembles, with the
standard Gaussian ensemble (i.e., each eleMent A((0,1) i.i.d.) being one special case. Define
the functionngit (p, k) := 2klog(p— k). The paper (Wainwright, 2009) shows the Lasso undergoes
a phase transition as a function of the control parameter

n
e(n, p,k) o (PR (5)
In more detail, for the special case of the standard Gaussian ensentdeyfeequenceén, p, k)
such that9(n, p,k) > 1+ ¢ for somee > 0, the Lasso (with an appropriate choice of regulariza-
tion parametepy) is sign consistent with probability converging to one. In contrast, it failseto b
sign consistent with high probability, regardless of the choicpnoffor any sequences such that
B(n,p,k) <1—¢.

The main contribution of this paper is to show that sparse measurement desangstatisti-
cally efficient the same sharp threshold (5) holdsyeparsified measurement ensembles, including
a subset for whicty — 0, so that each row of the measurement matrix has a vanishing fraction of
non-zero entries.

2.3 Statement of Main Result

A measurement matriX € R"P drawn randomly from a Gaussian ensemble is dense, in that each
row has©(p) non-zero entries. The main focus of this paper is the observation modeis{2g
measurement ensembles that are designed to be sparse. To formalizéah@hsparsity, we let

y € (0,1] represent aneasurement sparsity parameteorresponding to the (average) fraction of
non-zero entries per row. Our analysis allows the sparsity parary(etgy, k) to be a function of

the triple(n, p, k), but we typically suppress this explicit dependence so as to simplify not&aon.

a given choice of, we consider measurement matrieewith i.i.d. entries of the form

x; 9 {ZNN(O,l) with probabilityy
;2

. I, (6)
0 with probability 1—.

By construction, the expected number of non-zero entries in each r§wsgfp. In fact, the analysis
of this paper establishes exactly the same control parameter threshabd yspfarsified measure-
ment ensembles, for any fixgde (0,1), as the completely dense cage<(1). In particular, we
state the following result on conditions under which the Lasso applied tsipdrensembles has
the samesample complexitgs when applied to the dense (standard Gaussian) ensemble:

Theorem 1 Suppose that the measurement matrig R"*P is drawn with i.i.d. entries according
to they-sparsified distributior{6). Then for any > 0, if the sample size satisfies

n > (2+4¢)klog(p—k), (7)
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then the Lasso is sign consistent(asp,k) — 4+ so long as

npy -
fog(p—K ’ ®)
Pn vk [loglog(p—k)
F‘n.nm L y log(p—k) } = 5 ®)
. log(p—Kk)
fmm{k,W} — o, (10)

Remark 2 (a) Note that the sample complex{®) is identical to the Lasso threshold proven in past
work (Wainwright, 2009). To gain intuition on the remaining conditions, it iptut to consider
various special cases of the sparsity paramateff y is a constant fixed to some value (i, 1],
then it plays no role in the scaling, and conditi¢tD) is always satisfied. Conditior(8) and (9)
are slightly weaker than the corresponding condition from previous worthat they require that
pn be slightly larger, and hence th@.,, must approach zero more slowly than the requirement of
this previous work. Depending on the exact behavioBjpf,, choosingp3 to decay slightly more
slowly thanlog p/n is sufficient to guarantee exact recovery witk ®(klog(p — k)), meaning that
we recover exactly the same statistical efficiency as the dense\casg) (for all constant mea-
surement sparsitiege (0,1). At least initially, one might think that reducingshould increase the
required number of observations, since it effectively reduces theldigimmise ratio by a factor of

y. However, under high-dimensional scaling-{p+), a major effect limiting the Lasso perfor-
mance is the number (pk) of irrelevant factors, and under the scaling considered here, tfestef
is dominant.

(b) However, Theorem 1 also allows for general scalings of the measent sparsity along
with the triplet(n, p,k). More concretely, let us suppose for simplicity tBaf, = ©(1). Then over
a range of signal sparsities—saykap, k= O(,/p) or k = ©(log(p—k)), corresponding respec-
tively to linear sparsity, polynomial sparsity, and exponential sparsity-eamechoose a decaying
measurement sparsity, for instance

[Ioglog(p—k)

log(p_K) |e—=0 (11)

along with the regularization parametpf = '3 B k) |0§%§Z},E)k> while maintaining the same sam-
ple complexity (required number of observations for support rego\eesthe Lasso with dense mea-

surement matrices.

(c) Of course, the conditions of Theorem 1 do not allow the measutesparsityy to approach
zero arbitrarily quickly. Rather, for anyguaranteeing exact recovery, conditi(8) implies that the
average number of non-zero entries per column of X (ham@lynust tend to infinity. (Indeed, with

= Q(klog(p—K)), our specific choic€l1) certainly satisfies this constraint.) A natural question
is whether exact recovery is possible using measurement matrices, gittdomly drawn or de-
terministically designed, with the average number of non-zeros per colnamelyyn) remaining
bounded. In fact, under the criterion of exactly recovering the signpgati(3), as shown by the
following result, ifB:,, = O(1), then no method can succeed with probability converging to one
unlessyn tends to infinity.
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Proposition 1 If yn[B:,,]2 does not tend to infinity, then no method can recover the signed support

with probability one.

Proof We construct a sub-problem that must be solvable by any method capgéefofming
exact signed support recovery. Suppose fjat 3, 7 0 and that the columK; hasn; non-zero
entries, say without loss of generality indiges 1, ..., n;. Now consider the problem of recovering
the sign of3;. Let us extract the observations- 1,...,n; that explicitly involvef3], writing

Yi = XaBit+ Y XBj+W, i=1...m (12)
jeT(i)
whereT (i) denotes the set of indices in rawor which X;; is non-zero, excluding index 1. Even
assuming tha{pj, j € T(i)} were perfectly known, this observation model (12) is at best equiv-
alent to observing; contaminated by constant variance additive Gaussian noise, and ous task
to distinguish whethef; = By, or B; = —Br,,- The averagd = n—ll SitalYi— S ieri) XiBil is a

min
sufficient statistic, following the distributiort ~ A’(B%.., ). Unless the effective signal-to-noise

min’ ny
ratio, which is of the orden; [B;;,,]2, goes to infinity, there will always be a constant probability of
error in distinguishind3; = B, from B; = —B,;,,- Under they-sparsified random ensemble, we

haven; < (1+ o(1)) yn with high probability, so that no method can succeed unfef,]> goes
to infinity, as claimed. [ |

Note that the conditions in Theorem 1 imply tmy{B;;m]Z — 400, In particular, condition (9) im-
plies thatpZ = o([B,..]%), and condition (8) implies thatypZ — o0, which verifies the condition

min
of Proposition 1.

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We begin with a high-teuéhe of the proof;
as with previous work on dense Gaussian ensembles (Wainwright, 288%Rey is the notion of
a primal-dual witnesgor exact signed support recovery. The proof itself involves a nurobe
additional steps not needed in this past work, in order to gain good ta@mirgparse matrices as
opposed to generic Gaussian matrices (see Appendix D). The proeidediinto a sequence of
separate lemmas, with some of the more technical results deferred to theli@ppen

3.1 High-level Overview of Proof

For the purposes of our proof, it is convenient to consider matXcesR"*P with i.i.d. entries of
the form

x 4 Z ~ N(0, \—1/) with probabilityy
. 0 with probability 1.

So as to obtain an equivalent observation model, we also reset the eapiaeach noise terf to
be%. Finally, we can assume without loss of generality ®afBs) = 1 € RX.
Define thesample covariance matrix

o 1 10
> o= XX =S5 xx.
n ni;X'X'
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Of particular importance to our analysis is the k sub-matrixfss For future reference, we state
the following claim, proved in Appendix D:

Lemma 1 Under the conditions of Theorem 1, the submaktig is invertible with probability

greater thanl — O(ﬁ).

The foundation of our proof is the following lemma: it provides sufficienhditons for the
Lasso (4) to recover the signed support set.

Lemma 2 (Primal-dual conditions for support recovery) Suppose thafss> 0, and that we can
find a primal vector3 € RP, and a subgradient vecta € RP that satisfy thezero-subgradient
condition

E(E—B*)—%XTWMQ = 0, (13)
and thesigned-support-recovery conditions
z = signB) foralli € S, (14)
B = 0 foralljeS, (15)
Zj] < 1 forall j € &, and (16)
signBi) = signp’) forallieS (17)

Thenﬁ is the unique optimal solution to the Lasih), and recovers the correct signed support.

See Appendix B.1 for the proof of this claim.

On the basis of Lemmas 1 and 2, it suffices to show that under the spec#igtf (n, p, k),
there exists a primal-dual paﬂ@,?) satisfying the conditions of Lemma 2. We establish the exis-
tence of such a pair with the following constructive procedure:

(&) We begin by settinﬁgc = 0, andzs = sign(f33).
(b) Nextwe determinég by solving the linear system
Sss(Bs—BY) ~ DXIW+ posignBy) = O
(c) Finally, we determing&s: by solving the linear system:
—pnZs = 2gs(Bs—BE) — %XsTcW-

By construction, this procedure satisfies the zero sub-gradient candit®), as well as auxiliary
conditions (14) and (15); it remains to verify conditions (16) and (17).

In order to complete these final two steps, it is helpful to definefoBandj € S° the following
random variables:

1. ~ 4=
Vja = XJT [HXS(ZSS) 11} pl’h (18)
1, = 1uT W
VP o= ij[|nxn—ﬁxS(zSS) 1x5T]F, and (19)
~ .1 -
U = QTZSé[ﬁXSTW—pnl], (20)
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whereg e RK is the unit vector with one in positicinandi e R¥ is the all-ones vector.
A little bit of algebra (see Appendix B.2 for details) shows thai; :Vja+ij, and thatJ; =

Bi — Bi. Consequently, if we define the events
ENV) = {rjg%cx|vja+vjb| <pn}, (21)

{max|Ui| < B} (22)

i}
C
I

wheref;,, was defined previously as the minimum value|f| on its support, then in order to
establish that the Lasso succeeds in recovering the exact signedtsuippuaffices to show that
P[E(V)NEU)] — 1,

We decompose the proof of this final claim in the following three lemmas. As intétersent
of Theorem 1, suppose that> (24 €)klog(p — k), for some fixect > 0.

Lemma 3 (Control of V&) Under the conditions of Theorem 1, there exists a fixed positive dalue
(dependent om) such that

PlmaxV#| > (1-8)pn] — O.
JES

Lemma 4 (Control of VP) Under the conditions of Theorem 1, there exists a fixed positive Balue
(dependent on)

Plmax|V?| > 8p,] — O.
€S

Lemma 5 (Control of U) Under the conditions of Theorem 1, we have

PI(Z(V))T = PImaxUi| > Brin] — 0.

3.2 Proof of Lemma 3

We assume throughout th&gsis invertible, an event which occurs with probability-(1) under
the stated assumptions (see Lemma 1). If we define-tienensional vector

h = Xs(Zs9 ', (23)

then the variablésa’ja can be written compactly as

Vva n
L = X'h=S hX;.
pn =

Note that each ternX,; in this sum is distributed as a mixture variable, taking the value 0 with
probability 1—y, and distributed as\( (0, \—1/) variable with probabilityy. For/ =1,...,n and each

j, define the random vectdt!, with entries

i h, with probabilityy
¢ 0  with probability 1.
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Foreachindex=1,...,n, letZ, ~ A/(O, \—1/). With these definitions, by construction, we have that

n .
[Z H;Z;.
=1

To gain some intuition for the behavior of this sum, note that the variglgs/ = 1,...,n} are
independent of the vectdt!. (In particularH! is a function ofXs, whereasZ,; is a function ofXy;,
with j gé S.) Consequently, we may condition &t without affectingZ, and sinceZ is Gaussian, we

have(V’n | HI) ~ a((0, ”HVHZ) Therefore, if we can obtain good control on the ndp |2, then

we can use standard Gaussian tail bounds (see Appendix A) to coretrobtximum ma;gscvja/pn.
The following lemma is proved in Appendix C:

Lemma 6 Under condition(10), then for any fixe® > 0, we have
, 1
P[||H1 |5 < Vk(n“s)] > 1—0[exp(—min{2log(p—k), Zk})]

The primary implication of the above bound is that e\iﬁhpn variable is (essentially) no larger

than aA((0, ) variable. We can then use standard techniques for bounding the tails s§i@au
variables to obtain good control over the random varlableJ@@aik/f‘|/pn In particular, by the
union bound, we have

PirjgchIV,-aIZ(l—é)pni < (p_k)P[ngjZZjZ(l—&].

For anyd > 0, define the everlT }(8) := {||H/ ||3 < <k ”5 } With this definition, we have

PlmaxVf| > (1-8)pn] < (p—K) {P[/z H/Zj > (1-9) | 71(5)]+P[(Tj(5)°)i}

jes
2
< (p-K 2o~y s

where the second inequality uses a standard Gaussian tail bound (@eedipA), and Lemma 6.
Finally, let us assume the condition> (2+ ¢)klog(p— k) for some fixect > 0. Then there exists
a numerical constarmy such that

)+ crexp(—min(2log(p— k), 2k))}

2
PmaxVi > (1-8)p < (p—k) {2exp( M)Jrclexp( min(2log(p—K), 1))}

2
21((?6)6))+clexp( 2log(p—k)) }

(1-3)?
2(1+5))

= (p—k) {2exp(—

< (p—k) {2exp(—(2+¢)log(p—k)

+ crexp(—2log(p—Kk))}.
Note that the above inequality holds for all valuesofSincee > 0 is fixed, we can choose a

fixed value ofd such thatt=3" 1+E'2 > 2+8/2 With this choice, we then have

PImax > (1=3)pn] < (p—K) {20Xp(— oy s loa(p—K) + crexp(~2log p—K)}

< (p—k) {(2+cl)e><p( (2+e)

e P}

2370



HIGH-DIMENSIONAL VARIABLE SELECTION

thereby establishing th&{maxes [V > (1—98)pn] — 0, as claimed.

3.3 Proof of Lemma 4

Defining the orthogonal projection matiis := In.n — Xs(Xd Xs) "1Xd, we then have

W
Plmax\VPl > Spn] = Plmax|X[Ng(1)] > dpn
W
< (PR P[XM5(~)| > 8pn]. (24)

Now sincellg is an orthogonal projection matrix, and the column veetgrnoise vectokV and
randomness iflg are all independent, we have the bound

P[|X[N&W/n)| >3pn] < P[|X] (W/n)| > 3py], (25)

Foreach/ =1,....nandj =1,...,p, let B;; be a Bernoulli variable with parametgr and let
Zy; ~ N (O, \—1/). In terms of these random variables, we have the represen¥tienB,jZ,;. Note
moreover that the the sulff_, B is a binomial random variable, and define the event

Clyeg-w< ).
n /Zl : —2vk

From the Hoeffding bound (see Lemma 7), we h&{/#°¢] < 2exp— 5 ). Using the representation
X¢j = ByjZyj and conditioning orZ’, we obtain

1 n
P[IXW/n| > 8pn] < IP’H—[Z ByiZejWi| > 8pn | 7] +P[T°]

n(y+50%)

1
SRR +2exp— ).

IN

where we have assumed without loss of generality that thenfiyst >
{Byj}}_, are non-zero.

f) variables in the collection

. : n(v+ 50k : . .
Conditioned oW, the random variabl®/;j := %Zé(:l M)Zgjvvg is zero-mean Gaussian with

(V+57)

_ n(y-+ ,
variancev(W;y) := 5 5, **"W?. For somed; > 0, define the event

T(Ey) = {(Wv) (1+80) = (v +21¢R>}.

In order to bound the probability of this event, we begin by observing the¢®V, ~ N(0,1/y), the
variablen?y?v(W;y) is chi-squared wittd = n(y+ 2f) degrees of freedom. Consequently, using

x?-tail bounds (see Appendix A), we have

1 3%

PIR@)T < exp(=n(y+ =) 70)-
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Now, by conditioning orZz(d;1) and its complement and using tail bounds on Gaussian variates (see
Appendix A), we obtain

1 n(y+5o7) 1 n(y+50%)
P[|= /Z ZiWi| > 8pn] < JP’HH /z Zij\Wi| > 8pn | T2(81)] +P[(T2(81))°]
=1 =1
ny*(3°p7)
< 2 —
= Zexp( 2(1+61)(y+ 2f))

1 3%
exp( —
P(=n(v+ 357076
Finally, putting together the pieces from Equations (26), (25), and (24)obtain that
P[maxes: [V}| > 3pn] is upper bounded by

ny’(5%pf) 1 38
2<1+61><v+m>)+exp(‘( i) @D

The first term in Equation (27) goes to zero simce (2+ €)klog(p — k). Condition (10) implies
thatyvk — o. In particular, this means that eventuall<12yv/k. Once this occurs, we have the

inequality V21 > lz’,and hence
Y+ok

(26)

(p—kK) {2exp(——)+2 exp( —

ny*(&°p3) )

ny3’p; YO
2(1+81) (Y + 57)

< (p—k)exp(- 2011 5)

(p—k)exp(—

&p3
_ (p—k)exp(—'og(p_k)4(1+€?1\;|02n(p—k))

Recalling that the term8andd; are fixed constants, condition (10) implies that eventually
ny&*ph
4(1+01)log(p—K)

showing that the middle term of Equation (27) goes to zero. Finally, usingath@itionn > (2+
¢)klog(p— k), we obtain

(p—K)exp(—log(p—K) ) < (p—k)exp(—3log(p—k)),

2 2
(p—K)exp( - (v+2$R)3166) = <P—k>eXp(‘”(zlﬁ<)i%>
2
< (p—k)exp(—[(2+§)\/R]| og(p— k)i{;)

This quantity tends to zero, becausand &, are fixed constants andk tends to infinity. We
conclude that the last term in Equation (27) goes to zero, thereby camglt proof.

3.4 Proof of Lemma 5

We first observe that conditioned @, eachU; is Gaussian with mean and variance
1 _ .
m = E[U | Xg = QT(7X§X ) ‘[~ pni], and

g = varUi | Xg = el( XSXS) e,
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respectively. Let us define the function

1 log(t)  log[Blog(p—K)]
as well as the the upper bounds
1
m* = pn(1+CVKT(y,k p,1,k)), and ¢ := %(1+CT(y,k, p,1,k)).
Now consider the event
T(m', @) = {maxim| <m"and maxyi| <y*}.
€S €S
Conditioning on7 and its complement, we have
c 1
P(EWV))T = Plg—maxUi| > 1]
min €S
1
< Plg—maxUi| > 1 | T (m",g")] +P[(T(m", 47))°]. (29)
min

In order to upper bound[(Z (m",*))¢|, we first upper bound the termB(|m| > m*) and
P(|yi| > @*), and then apply the union bound. Beginning with the mean, we have

1 1=
m[ = pale (DXdXs) ]
1 _ - o
= pn’qT[(ﬁXgX) l—|k,k]l+QT|k7kl‘
1 - R
< Pn\e‘.T[(ﬁXsTXs) 1—|k,k}1]+pn~

Our next step is to upper bound the operator norm of the matrix within cualgds; which we do
by applying Lemma 10 from Section D, with the paramefies 1 andt = k. We conclude there
is an universal consta@tsuch thaf||(£Xd Xs) 1 — k|2 < CT(y,k, p, 1,k) with probability at least
1— 0(k~2). Consequently, if we defina := pp, [\/RCT(y, kp,1, k)} + pn, then we have the bound

Pllm|>m] = 0(1/k).
A similar argument can be used to bound each #@rnthereby obtaining
Py >y = ok?).
Since there ark versions of each afy andyy;, the union bound implies that
P[(T (", ")) < 2kO(k %) = O(k™Y).
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We now turn to the first term of Equation (29). LettiMg~ A(O, i), and usingZ” as shorthand
for the eventZ (m*, y*), we have

IP[l

max]U]>1 | T

E{P[max|Ui| > B | Xs 7]}

min
< E{P[max(Im|+ %) > Brin | Xs 7]}
< E{P[m" +max¥i| > B | Xs, 7]}
= ([ maxv>1- T | X 7]}
min €S min
For sufficiently largep andk, we have
_ Iog log[log( P—K)
log[log(p—K)]
= \/{ log(p—k) }’

using the facts tha% — 0 and lodlog(p — k)] — oo, so that the maximum is dominated by the
second term. As a result applying condition (9) yields %5;5(—} 0. LettingY* ~ A (0,w*), w
have "

E{P| 1 maxY; >% | X% 7]} < E{KP[Y'|> =00 | X, 7]}
min
[Brinl”
< 2k exp(— =)
CE

where the last inequality follows from Gaussian tail bounds (see App&xdilt remains to verify
that this final term converges to zero. Taking logarithms and ignoring@ohi®rms, we have

log(k)(1— [ Ffmn]2 )= o (k)(l— [ :}“n]zyn )
’ log(k) 8y~ g 8log(k) (1+CT(y,k,p,1,k))”"

Our goal is to show that that this quantity divergesw. Condition (10) implies that

— 0.

log(k)  loglog(p—k)
T(v:k,p.1k) = \/m {klogp k)" log(p—K) /

Hence, it suffices to show that lag1 — [i“g';‘c],gk ) diverges to—c. We have

x 12 x 12 2
R &l

_ ~ Brin/® PR log(p—k)
= 10 Telogp ) Tog(
Condition (9) implies tha{B*"‘;—i%”]2 — oo, Whereas condition (8) ensures t% — oo, The signal

classC(p,k, Brin), as previously defined (1), ensures that §p so that the third term is greater than
one. Putting together the pieces, we concludeByatU )€] tends to zero.
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4. Experimental Results

In this section, we provide some experimental results to illustrate the claims ofdrhel. We
consider two different sparsity regimes, namely linear sparkity ¢p) and polynomial sparsity
(k= /p), and we show simulations in which the fractipof non-zero entries in each row of the
measurement matrix converges to zero. For all experiments, the additive noise standaedidev
is set too = 0.25 and we fix the vectop* by setting the firsk entries are set to one, and the
remaining entries to zero. There is no loss of generality in fixing the suppthts way, since the
ensemble of models is invariant under permutations.

Although it is possible to solve the Lasso using a variety of methods, ountlfiegparticular,
Lemma 2) shows that it suffices to simulate the random varia{b]ﬁs\/jb,j € &} and{U;,i € S},
and then check the equivalent conditions (21) and (22). (Thesssamgeand sufficient conditions
give the same result for support recovery as soIvingAthe Lasso;veowley are much faster to
simulate.) In all cases, we plot the success probalilig/3) = S(3*)] versus theontrol parameter
o(n, p,k) = WM Note that Theorem 1 predicts that the Lasso should transition from faiure
success & ~ 1.

In Figure 1, the empirical success rate of the Lasso is plotted against nt@Igearameter
o(n, p,k) = m Each panel shows three curves, corresponding to the problemsizes
{512,1024 2048}, and each point on the curve represents the average of 100 trialsll Fidels
shown, we sey = 0.5%, which converges to zero at a rate slightly faster than that guaranteed

by Theorem 1. Nonetheless, we still observe the "stacking” behawonarthe predicted threshold
0" =1.

Polynomial signal sparsity; Decayingy

Linear signal sparsity; Decayingy
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Figure 1: Plots of the success probabilfts= § versus the control parame®&in, p, k) = m

for y-sparsified ensembles, with decaying measurement spwﬁsi@%. (a) Poly-
nomial signal sparsiti = O(,/p). (b) Linear signal sparsity = O(p).
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5. Discussion

In this paper, we have studied the problem of recovery the suppat aaiparse vectd* based on
noisy observations. The main result is to show that it is possible to “spasséfgdard dense mea-
surement matrices, so that they have a vanishing fraction of non-zegoesw, while retaining the
same sample complexity (number of observationsequired for exact recovery. We also showed
that under the support recovery metric and in the presence of noiseeth@d can succeed without
the number of non-zeroes per column tending to infinity, so that our resuitsot be improved
substantially. Thus, our results show that it is possible to use sparse nereasti matrices while
retaining the same guarantees regarding the recovery of the suppdé.tido our sparsification
scheme is the simplest one, and requires no additional overhead to implertieatigh this paper
focused on sparsified Gaussian measurement matrices, it is possibleitocplzthtatively simi-
lar results for sparsified sub-Gaussian ensembles (for instance, theteigniform distribution on
{_13 1})

The approach taken in this paper is to find rates whi@s a function oh, p, k) can safely tend
towards zero while maintaining the same statistical efficiency as dense ramdwoioes. In various
practical settings (Wakin et al., 2006), it may be preferable to make the neeasot ensembles
even sparser at the cost of taking more measurenmertereby decreasing statistical efficiency
relative to dense random matrices. A natural question is the sample compigxipyk) in this
regime as well. Finally, this work has focused only on a randomly sparsifi¢dces as opposed
to particular sparse designs (e.g., based on LDPC or expander-tgpgumtions Feldman et al.,
2007; Sarvotham et al., 2006; Xu and Hassibi, 2007). Although ouitsgasnply that exact support
recovery with noisy observations is impossible with bounded degree dedigvould be interest-
ing to examine the trade-off between other loss functions (&.geconstruction error) and sparse
measurement matrices.
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Appendix A. Standard Concentration Results

In this appendix, we collect some tail bounds used repeatedly throutthepiaper.

Lemma 7 (Hoeffding bound—Hoeffding, 1963) Given a binomial variate Z Bin(n,y), we have
foranyd >0

P[|Z—yn|>8n < 2exp(—2n&?).

Lemma 8 (x-concentration—Johnstone, 2001)Let X ~ x2, be a chi-squared variate with m de-
grees of freedom. Then for &I> &> 0, we have

PX—m>3dm < exp(—l%rrﬁz).
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We will also find the following standard Gaussian tail bound (e.g., LedodXatagrand, 1991)
useful:

Lemma 9 (Gaussian tail behavior) LetV ~ A((0,0?) be a zero-mean Gaussian with variance
Then for alld > 0, we have
2

P[V| >8] < 2exp(—ﬁ).

Appendix B. Convex Optimality Conditions

In this section we discuss the optimality conditions that the Lasso must satisfoamelimplica-
tions that follow.

B.1 Proof of Lemma 2

Let f(B) := 5||Y — XB||3 + pnl|B|l2 denote the objectlve function of the Lasso (4). By standard
convex optimality conditions (Rockafellar, 1970), a vecﬁof RP is a solution to the Lasso if and
only if 0 € RP is an element of the subdifferential 6p) at. These conditions lead to

1 ~
XT(XB-Y)+pZ = O,

where the dual vect@ e RP is an element of the subdifferential of thenorm, given by
Bl = {zeRP | z = sign(B;) if B 0, z € [-1,1] otherwisg-.

Now suppose that we are given a p@ri) € RP x RP that satisfy the assumptions of Lemma 2.
Condition (13) is equivalent t(ﬁ,i) satisfying the zero subgradient condition. Conditions (14), (16)
and (17) ensure thais an element of the subdifferential of thenorm atﬁ. Finally, conditions (15)
and (17) ensure th&correctly specifies the signed support.

It remains to verify thaﬁ is the uniqueoptimal solution. By Lagrangian duality, the Lasso
problem (4) (given in penalized form) can be written as an equivalemstcained optimization
problem over the ballf3||1 < C(pn), for some constar@(p,) < +. Equivalently, we can express
this single/s-constraint as a set ofP2inear constraint&'B < C, one for each sign vectadr €
{—=1,+1}P. The vectorz can be written as a convex combinatide- 3oV, where the weights
aj are non-negative and sum to one. By constructioﬁ ahdZz the weightsa* form an optimal
Lagrange multiplier vector for the problem. Consequently, any other optinlvaﬂlim—sayﬁ—
must also minimize the associated Lagrangian

LBa) = f(B)+ Y as[i'p—Cl.
v

and satisfy the complementary slackness conditm;(s‘ﬂﬁ C) = 0 for everyv.

Note that these complementary slackness conditions mply?ﬂﬁht: C. But this can only
happen |f[3J = 0 for all indices whergz;| < 1. Therefore, any optimal solut|q31sat|sf|eq3sc 0.
Finally, given that all optimal solutions satisBg = 0, we may consider the restricted optimization
problem subject to this set of constraints. If the Hessian submBggis strictly positive definite,
then this sub-problem is strictly convex, so tﬁa‘nust be the unique optimal solution, as claimed.
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B.2 Derivation of {V?,VP,U;}

In this appendix, we derive the form of tr{yja,vjb} and{U;} variables defined in Equations (18)
through (20). We begin by writing the zero sub-gradient condition in adloan, and substituting
the relations specified in conditions (14) and (15):

20 2| oo [ w5 - o

By solving the top block, we obtain
n * o1l : *
U:=Bs—Bs = zsé{ﬁng_Pn&gr(Bs)}-

By back-substituting this relation into the lower block, we can solve explicitlyzéar doing so
yields thatpnZs = V@4 VP, where thg p— k)-vectors are defined in Equations (18) and (19).

Appendix C. Proof of Lemma 6

Let Z € R™" denote an x n matrix, for which the off-diagonal elemenfs = 0 for alli # j, and

the diagonal element; ~ Ber(y) are i.i.d. With this notation, we can write 4 zh. Using the
definition (23) ofh, we have

IHI3 = |zh|3
_ 1258591712
= ||z ?(ZSS) 115
Xs

= 1789 M2 %) (B9 1

- ZiT(iSS)_l{ylni_iH[Z" = 1) xx }(Zs9 711,

r(2)

wherex; is theith row of the matrixXs. We can apply Lemma 10 from Appendix D with parameters
6 =1andt = (p—K) yielding

1

K7 0

Pl|Zssllz > fu(p.ky)] < Of
where f1(p,k,y) := 1+ T(y,k,p,1, p—k), and the functionT (y,k, p,6,t) was defined in Equa-
tion (28).

Next we control the spectral norm of the random malfriX), conditioned on the total number
>iL1Zi of non-zero entries. In particular, applying Lemma 10 with p—k, and® = £, we have

1

(b K2’ 1)

z z n
> _ _ L <
]P)[Hr(z) Hz— ny[1+T(Y7k, pvn’p k)] | i:E ZII Z] =
as long akZ — o.
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The next step is to deal with the conditioning. Define the event

1n
{Z‘ 2\[ Zi ||_V+2\/E}

We need to find an upper bound ph(Z) || that will hold with high probability for alZ that satisfy
the above property. One function that suffices is

a 1 1 1 logl(y+577)log(p—K)]
fa(pky) = <1+2\/Ry> 1+C<y\lmax{k(yl), v 2 log(p—1 })]

2vk
We then have that
PIT(2)ll2 > f2(p,k,Y)]

PlIF(2)l2 = f2(p. k) i‘T(k VI +PI(T (k)]
< exp(—2log(p— k))+2exp(——)

< 3expg—min{2log(p— k),

ANVAN

b (32)

where we have used the bound (31), and the Hoeffding bound (sema&).
Combining the bounds (30) and (32), we conclude that as lopg-asw, then:

P[IZ Y (2)Z Y2 > f2f2] < 4exg(—min{2log(p— k), Zk})
Since||1» = vk, we have
PlHIE> % 12r) < aexp-min{zlogp—k). 5 ).

To conclude the proof, we must show that bétbp, k,y) and f2(p, k,y) converge to 1 agp,k,y)
scale. The ternf1(p,k,y) = 14+ T(y,k, p,1, p— k) converges to one, since the quantity

convergesto zero under assumption (10). Next, we need to demonstratétiyak,y) converge
to 1 as(p,k,y) scale. Since assumption (10) ensures W& — oo, it suffices to study the simpler

function
fa(p,ky) = 1+C(\1/\/max{l |og[Y|Og(p—k)]})7

ky’ ylog(p—k)

which has the same asymptotic behaviof &P, k,y). Observe thafz(p, k,y) satisfies the sandwich
relation

yélog(p—k)

By assumption (10), this upper bound converges to one, showindilaaid hencef, converge to
one, as desired. In particular, for any fix@d 0, we havefl2 fo < (1+9) for p,k sufficiently large,
thereby completing the proof of Lemma 6.

1< fa(pky < 1+C(\/max{k$3,|09“09(p_k)]}>’

LInpaMcManﬂmIeﬁhandgdeoﬂheexpmsﬁon(uDsaﬁﬁﬁﬁ$%5;@FE;WW?ﬁ%ﬁjﬂF.
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Appendix D. Singular Values of Sparsified Matrices

LetB(p,k) € (0,1] andt(p,k) € {1,2,3,...} be functions. LeX be anbn x k random matrix with
i.i.d. entriesX;; distributed according to thesparsified ensemble (6). Recall the definition of the
functionT (v, k, p,6,t) defined in Equation (28), and let> 0 be arbitrary.

Lemma 10 Suppose that & (24 v)klog(p— k) for somev > 0. If as k and p- k — o, we have
T(y,k, p,6,t) — 0, then there are universal positive constantsach that

1 1

P| sup Xull2—1| >CiT(y,k, p,6,t)] = O(-), and (33)
[Hquzl}\/einH HZ ‘ 1 ( )] (tz)
1 oro ! 1

Remark 3 (a) Note that Equatiori33) implies that the eigenvalues of the matghO(TX are con-
tained in the interval(1 — CiT(y,k, p,6,t),1+CiT(y,k, p,6,t)). Since Ty,k, p,0,t) =0(1) by
assumption, we can always find a constaptd0ch that the eigenvalues of the inverted matrix
(e—lnxTX)_1 are contained in the intervdll — C,T (y,k, p,6,t),1+CoT (v, Kk, p,6,t)). Consequently,
Equation(34)is a consequence of the assumptions of Lemma 10 and Eq@a&pn

(b) In addition, observe that Lemma 10 wih= 1 and t= p— k implies thats = %ngs is
invertible with probability greater thad — O(ﬁ), there establishing Lemma 1. Other settings

in which this lemma is applied a®,t) = (y, p— k) and(6,t) = (1,k).

The remainder of this section is devoted to the proof of Lemma 10.

D.1 Bounds on Expected Values

Let X € R%K be a random matrix with i.i.d. entries from thesparsified ensemble
1
Xij ~ (1-y)dx(0)+ YN (O, \7)-

Note thatE[X;;| = 0 and va(X;;) = 1 by construction.
We follow the proof technique outlined in the lecture notes (Vershynin, 2006)first note the
tail bound:

Lemma 11 Let Qy,...,Qq be i.i.d. samples of thg-sparsified Gaussian ensemble. Given any
2
vector ac R% and t> 0, we haveP[3?  aQ >t] < exp(— ﬁ)
2

To establish this bound, note that ea¢his dominated (stochastically) by the random variable
Z ~ N\ (0, \—1/). In particular, for anyA > 0 we have

Mq () = E[expAQ)] = (1-v)+VE[exp(AZ)] < exp(?/2y),

from which the claim follows by optimizing the Chernoff bound.
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Now let us bound the maximum singular vaksg(X) of the random matrix. Letting S
denote thée>, unit ball ind dimensions, we begin with the variational representation

Smax(X) = max||Xu

ax(X) ues«l” |
= max maxVv'Xu.

vePn-1 yeg-1

For an arbitrang € (0, 1), we can finct-covers (in¢z norm) of "1 andS<* with Mgn(g) = (3/¢)®"
andMy() = (3/¢)¥ points respectively (Matousek, 2002). Denote these cove@fg) andCy(¢)
respectively. A standard argument shows that foe all(0, 1), we have

1
X[l < —— max max ViXu.
Xz =< (12 weGule) vyelamte) P
Let us analyze the maximum on the RHS: for a fixed pajv) in our covers, we have
- k 6n
uXxv = Xijuivj.

Let us apply Lemma 11 witd = Onk, and weights; = ujv;. Note that we have
laJ} = Yai = TW¥(TV) =1
] [ ]
since eaclu andv are unit norm. Consequently, for any fixads in the covers, we have

yt2
Pu'™Xv>1t] < exp(—?).

By the union bound, we have

P[ max max ViXus >t] < My(€)Mgn(e)exp( — =
[Uaeck(‘d) Vp€Cen(€) pte ] = k(€)Men(€) p( )

< exp((k+6n)log(3/e) — -=-).
By choosinge = % andt = | /$(k+ Bn)log 6, we can conclude that
1 k
Smax(X)/VBn = [[X|2/vBn < C v 1+ on’

with probability at least 3 exp(—(k+ 6n)log6). Note that
k 1
_ — O
((2+v)elog(p— K)

since% — 0, which implies thaBlog(p— k) — .

Consequently, we can conclude that
IX[l/von < O(1/vYy),

w.p. one adin,k — . Although this bound is essentially correct for\§0, \—1/) ensemble withy
fixed it is very crude for the sparsified case with= 0, but will useful in obtaining tighter control
0N Smax(X) andsmin(X) := miny.g-1 || Xul| in the sequel.

) =0,

2381



OMIDIRAN AND WAINWRIGHT

D.2 Tightening the Bound

For a givenu ¢ <1, consider the random variab u|3 := T (Xu)2. We first claim that each
variateZ; = (Xu)? is subexponential, or more precisely:

Lemma 12 For any s> 0, we haveP[Z; > s < 2exp(—%).
Proof We can write(Xu); = z';zlxiju,- where||ul]2 = 1. Consequently, Lemma 11 implies that

p[z'llexijuj >3] < exp(—ng). By symmetry, we have

Pz > s =P Jixijujl >/ < ZGXK*%S)?

from which the claim follows. [ |

Now consider the event
{\M—ﬂ >3} = {| S Zi —E[en Z]| > 36n}.
on i; i;

Let us apply Theorem 1.4 from Vershynin (2000) wétk- 2, b = 88n/y? andd = 2/y. With these
choices, we havel¥d = 166n/y, which grows at least linearly iBn. Consequently, for any > 0
less than 16y (we will in fact taked — 0), we have

[IXull3
On

Fon)® v 326N
2500n/y2) — 2&P(— 556 )

P|| —-1]>3] < 2exp(-—

Now take are-cover of thek-dimensiona¥; ball, say withN(g) = (3/¢)X elements. By the union
bound, we have

V2 5%6n
256

IXu]3
i=1..Ne& On

<1-8] < exp(- +klog(3/¢)).

Now set

V2 |256f (k, p)klog(3/e)
0= y\/ fn :

wheref (k, p) > 1 is a function to be specified. Doing so yields that the infimum is boundedHdy 1
with probability 1— exp(—k f(k, p)log(3/¢€)). (Note that the choice df(k, p) influences the rate of
convergence, hence its utility.)

For any element € 31 we have some; in the cover, and moreover

XUl = IXulf?] = [l = [Xu } Xl Xl
< [{IXull = [IXul }] 2lX])
< (X u=uil) @)1 < 2)1X][%.
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From our earlier result, we know thdX||? = O(8n/y) with probability 1— exp(log6(k + 6n)).
Putting together the pieces, we have there is a universal co@stand, independent of(6n), k,y),
such that the bound

1 . ) 2 \/32f (k,p)klog(3/e) G,

7 > 5 —1_= _ =

en uelrslil IXu* = 1-8-Ceefy = 1 y en y &
holds with probability at least

1—exp(—kf(k, p)log(3/€)) —exp(—log6(k+6n)). (35)
Settinge = 3k/0n yields the bound
_ > _ = — -
onof IIXUlT = 1= 28y Tk P grlog(R ),

where we have used the fact thgt= o(\/f(k, P)eslog()). To understand how to choose the

function f(k, p), let us consider the rate of convergence (35). To establish the clajyw83eed
rates fast enough to dominate a 2ggerm in the exponent, which guides our choicef ¢k, p).
Recall that we are seeking to prove a scaling of the forr®(klog(p—K)), so that this requirement

(with € = 3k/0n = ng—k)) is equivalent to the quantity

kf(k,p)log(3/e) —2log(t) = kf(k,p)log[Blog(p—Kk)] —2log(t) (36)

tending to infinity.

D.2.1 Casel

If k> % then we may sef (k, p) = 4. With this choice, the condition (36) is satisfied,

and we have

k en log[8log(p—K)]
fkpgploa) = 4 Blog(p— k)

where we have used the assumption thatk, p,0,t) = o(1).

— 0,

D.2.2 CAsSE?2

Otherwise, ifk < % then we may set

_ log(t)
flkp) = 4hogelog(p— k) = 7

so that condition (36) is satisfied, and we have

k on log(t) 1 4  logt

fPgn 190 < 4isasiog(p—k 8iogp—K 999K = L 5ioarp g

where we have again used the assumplionk, p,6,t) = o(1) from Lemma 10.
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Recalling the definition ofT (y,k, p,6,t) from Equation (28), we can summarize both cases
cleanly as

<1-— = .
P on uelrslilHXuH <1-CT(y,k, p,6,t) 0o(1/t9)

For (p,Kk) sufficiently large, we hav€T(y,k, p,6,t) < 1, so that we can take square roots. Using
the expansioR/1+x= 1+ 3 + o(x) for x small, we conclude that

— > 1-—=T —o(T
\/7 Bn uelnf’l ||XU” > 1 2 (yv ka P, evt) 0( (ya ka Ps evt))a

with probability greater than 4 O(1/t?). For (k, p) sufficiently large, the second term is smaller
than%T(y, k,p,6,t), so that we conclude that

1 3C
P|—— inf |[Xul|>1-=T(y,kp,6,t)| > 1—0(1/t?
ot = 1- FTkpn| > 1- o)

for (k, p) sufficiently large.
This same process can be repeated to bound the maximum singular valuagyieédbound

1 3C
P|—— sup |[Xul| <1+ =T(y,k p,6,t)| > 1—0(1/t?
{ ﬁenuegfl!\ | < 7 (Y, k. p )] (1/t)

for (k, p) sufficiently large. Combining these two bounds yields the claim of Lemma 10.
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