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Abstract

We address instance-based learning from a perceptualipagjan standpoint and present methods
for dimensionality estimation, manifold learning and ftion approximation. Under our approach,
manifolds in high-dimensional spaces are inferred by esting geometric relationships among the
input instances. Unlike conventional manifold learning, @o not perform dimensionality reduc-
tion, but instead perform all operations in the originaluihppace. For this purpose we employ
a novel formulation of tensor voting, which allows &kD implementation. Tensor voting is a
perceptual organization framework that has mostly beetieapf computer vision problems. An-
alyzing the estimated local structure at the inputs, we hte # obtain reliable dimensionality
estimates at each instance, instead of a global estimathdoentire data set. Moreover, these
local dimensionality and structure estimates enable usdasnre geodesic distances and perform
nonlinear interpolation for data sets with varying densiytliers, perturbation and intersections,
that cannot be handled by state-of-the-art methods. Qa#awmi results on the estimation of local
manifold structure using ground truth data are presenteddtlition, we compare our approach
with several leading methods for manifold learning at thek taf measuring geodesic distances.
Finally, we show competitive function approximation réswn real data.

Keywords: dimensionality estimation, manifold learning, geodesstahce, function approxima-
tion, high-dimensional processing, tensor voting

1. Introduction

In this paper, we address a subfield of machine learning that operatestinunbus domains and
learns from observations that are represented as points in a Eucljplsea g his type of learning
is termedinstance-basedr memory-basetkarning (Mitchell, 1997). The goal of instance-based
learning is to learn the underlying relationships between observationsh ahécpoints in anN-

D continuous space, under the assumption that they lie in a limited part of the, sgpically a
manifold, the dimensionality of which is an indication of the degrees of freeafaime underlying
system.
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Instance-based learning has recently received renewed intenestife machine learning com-
munity, due to its many applications in the fields of pattern recognition, data minimgmktics,
function approximation and visualization, among others. This interest veakexpby a wave of
new algorithms that advanced the state of the art and are capable of ¢eaamitinear manifolds
in spaces of very high dimensionality. These include kernel PCAdBopf et al., 1998), locally
linear embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaat, 000) and charting
(Brand, 2003), which are reviewed in Section 2. They aim at reduciaglitmensionality of the
input space in a way that preserves certain geometric or statistical pespefrthe data. Isomap,
for instance, attempts to preserve the geodesic distances between all pairesraanifold is “un-
folded” and mapped to a space of lower dimension.

Our research focuses on data presented as large sets of observatissibly containing out-
liers, in high dimensions. We view the problem of learning an unknown fumdiased on these
observations as equivalent to learning a manifold, or manifolds, formeddey of points. Having
a good estimate of the manifold’s structure, one is able to predict the posifiatises points on
it. The first task is to determine the intrinsic dimensionality of the data. This canderinsights
on the complexity of the system that generates the data, the type of modetrteatkscribe it, as
well as the actual degrees of freedom of the system, which are ndtteqba dimensionality of the
input space, in general. We also estimate the orientation of a potential mandblzbi$ses through
each point. Dimensionality estimation and structure inference are accompdishigithneously by
encoding the observations as symmetric, second order, non-negeiiviéedtensors and analyzing
the outputs of tensor voting (Medioni et al., 2000). Since the processsliatates dimensionality
and orientation is performed on the inputs, our approach falls under dgefdearning” category,
according to Mitchell (1997). Unlike other eager approaches, haweues is not global. This of-
fers considerable advantages when the data become more complexnaherhember of instances
is large.

We take a different path to manifold learning than Roweis and Saul (2086gnbaum et al.
(2000) and Brand (2003). Whereas these methods address thenprablene of dimensionality
reduction, we propose an approach that does not embed the data irr dilm&asional space. Pre-
liminary versions of this approach were published in Mordohai and Me@2&®5) and Mordohai
(2005). A similar methodology was also presented by &rodit al. (2007a). We compute local
dimensionality estimates, but instead of performing dimensionality reductionerferm all oper-
ations in the original input space, taking into account the estimated dimensiorfality data. We
also estimate the orientation of the manifold locally and are able to approximateicriggodesic
distance$ and perform nonlinear interpolation. Since we perform all processitiggiimput space
we are able to process data sets that are not manifolds globally, or onegawijihg intrinsic di-
mensionality. The latter pose no additional difficulties, since we do not usebalgestimate for
the dimensionality of the data. Moreover, outliers, boundaries, interssatiodisconnected com-
ponents are handled naturally as in 2-D and 3-D (Medioni et al., 200@ aad Medioni, 1998).
Quantitative results for the robustness to outliers that outnumber the inlemesented in Sec-
tions 5 and 6. Once processing under our approach has been comglatedsionality reduction

1. The requirements for a distance to be geodesic are stricter than trdseirig intrinsic. Intrinsic distances are
computed on the manifold, while geodesics are based on the gradiestdiEtance function. For the manifolds we
examine in this paper, these two almost always coincide. Ssedil and Sapiro (2005) and references therein for
more details.
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can be performed using any of the approaches described in the wérhs® reduce the storage
requirements, if appropriate and desirable.

Manifold learning serves as the basis for the last part of our work, lwaitdresses function
approximation. As suggested by Poggio and Girosi (1990), functioroappation from samples
and hypersurface inference are equivalent. The main assumption gthatform of smoothness
exists in the data and unobserved outputs can be predicted from previdnssgved outputs for
similar inputs. The distinction between low and high-dimensional spaces issaygesince highly
specialized methods for low-dimensional cases exist in the literature. @uvagh is local, non-
parametric and has a weak prior model of smoothness, which is implementedfamrthef votes
that communicate a point’s preferred orientation to its neighbors. Thisigemer and the absence
of global computations allow us to address a large class of functions aasadlta sets comprising
very large numbers of observations. As most of the local methods redigwidne next section,
our algorithm is memory-based. This increases flexibility, since we caregsadata that do not
conform to pre-specified models, but also increases storage reqoisesiace all samples are kept
in memory.

All processing in our method is performed using tensor voting, which is a atatipnal frame-
work for perceptual organization based on the Gestalt principles gimity and good continuation
(Medioni et al., 2000). It has mainly been applied to organize generidpiito coherent groups
and for computer vision problems that were formulated as perceptualipagian tasks. For in-
stance, the problem of stereo vision can be formulated as the organizifioteatial pixel corre-
spondences into salient surfaces, under the assumption that comespondences form coherent
surfaces and wrong ones do not (Mordohai and Medioni, 200@ieratructures are inferred based
on the support potential correspondences receive from their rarigibthe form of votes, which
are also second order tensors that are cast from each point to allpoihés within its neighbor-
hood. Each vote conveys the orientation the receiver would have if teeaad receiver were in the
same structure. In Section 3, we present a new implementation of tensor thatrig not limited
to low-dimensional spaces as the original one of Medioni et al. (2000).

The paper is organized as follows: an overview of related work incluiti@glgorithms that are
compared with ours is given in the next section; a new implementation of teangapplicable
to N-D data is described in Section 3; results in dimensionality estimation are preége@ection
4, while results in local structure estimation are presented in Section 5; auitlig for estimating
geodesic distances and a quantitative comparison with state of the art mathetswan in Section
6; function approximation is described in Section 7; finally, Section 8 coesltitke paper.

2. Related Work

In this section, we present related work in the domains of dimensionality estimatianifold
learning and multivariate function approximation.

2.1 Dimensionality Estimation

Bruske and Sommer (1998) present an approach for dimensionality estiméi@re an optimally
topology preserving map (OTPM) is constructed for a subset of the whiah is produced after
vector quantization. Principal Component Analysis (PCA) is then perforimeeach node of the
OTPM under the assumption that the underlying structure of the data is locely.lihhe average of
the number of significant singular values at the nodes is the estimate of theimtlimensionality.
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Kégl (2003) estimates the capacity dimension of a manifold, which is equal togbkgical
dimension and does not depend on the distribution of the data, using dergfpproximation
based on packing numbers. The algorithm takes into account dimensiorsaléyions with scale
and is based on a geometric property of the data, rather than sucqasgaations to increasingly
higher-dimensional subspaces until a certain percentage of the datplained. Raginsky and
Lazebnik (2006) present a family of dimensionality estimators based on tleegbof quantization
dimension. The family is parameterized by the distortion exponent and indlelesethod of kgl
(2003) when the distortion exponent tends to infinity. The authors shawsthall values of the
distortion exponent yield estimators that are more robust to noise.

Costa and Hero (2004) estimate the intrinsic dimension of the manifold and thepemf
the samples using geodesic-minimal-spanning trees. The method, similarly tgl§tan@nbaum
et al., 2000), considers global properties of the adjacency grapthasgroduces a single global
estimate.

Levina and Bickel (2005) compute maximum likelihood estimates of dimensionaligxamn-
ining the number of neighbors included in spheres, the radii of whichedeeted in such a way
that they contain enough points and that the density of the data containeanicéimebe assumed
constant. These requirements cause an underestimation of the dimensiohalitit 8 very high.

The difference between our approach and those of Bruske and Sofh@®8), kegl (2003),
Brand (2003), Weinberger and Saul (2004), Costa and Hero J20@4Levina and Bickel (2005) is
that it produces reliable dimensionality estimates at the point level. While this impottant for
data sets with constant dimensionality, the ability to estimate local dimensionality rdiedxdynes
a key factor when dealing with data generated by different unknowregees. Given reliable local
estimates, the data set can be segmented in components with constant dintignsiona

2.2 Manifold Learning

Here, we briefly present recent approaches for learning low dimegiséanbeddings from points
in high dimensional spaces. Most of them are inspired by linear technigueb as Principal
Component Analysis (PCA) (Jolliffe, 1986) and Multi-Dimensional ScalMipE) (Cox and Cox,
1994), based on the assumption that nonlinear manifolds can be apprakibyatecally linear
parts.

Scholkopf et al. (1998) propose kernel PCA that extends linear PCA by iitlplimapping
the inputs to a higher-dimensional space via kernels. Conceptually, appgNA in the high-
dimensional space allows the extraction of principal components that eaptoire information
than their counterparts in the original space. The mapping to the high-dimahsjace does not
need to carried out explicitly, since dot product computations suffice. chieice of kernel is still
an open problem. Weinberger et al. (2004) describe an approacimigute the kernel matrix by
maximizing variance in feature space in the context of dimensionality reduction.

Locally Linear Embedding (LLE) was presented by Roweis and SaulOz@fAd Saul and
Roweis (2003). The underlying assumption is that if data lie on a locally lit@srdimensional
manifold, then each point can be reconstructed from its neighbors witlopqgte weights. These
weights should be the same in a low-dimensional space, the dimensionality ¢f istgoeater or
equal to the intrinsic dimensionality of the manifold. The LLE algorithm computedéses of
such a low-dimensional space. The dimensionality of the embedding, howeagdo be given as a
parameter, since it cannot always be estimated from the data (Saul amisRB003). Moreover,

414



DIMENSIONALITY ESTIMATION, MANIFOLD LEARNING AND FUNCTION APPROXIMATION

the output is an embedding of the given data, but not a mapping from therartibtbe embedding

space. Global coordination of the local embeddings, and thus a mappmbgecomputed accord-
ing to Teh and Roweis (2003). LLE is not isometric and often fails by mappstgmt points close

to each other.

Tenenbaum et al. (2000) propose Isomap, which is an extension of tM&Suses geodesic
instead of Euclidean distances and thus can be applied to nonlinear manifbkelgeodesic dis-
tances between points are approximated by graph distances. Then, MpSiél on the geodesic
distances to compute an embedding that preserves the property of poimt<losb or far away
from each other. Isomap can handle points not in the original data sepesfatm interpolation.
C-Isomap, a variant of Isomap applicable to data with intrinsic curvatutekrimwn distribution,
and L-lsomap, a faster alternative that only uses a few landmark paididtance computations,
have also been proposed by de Silva and Tenenbaum (2003). Isoch#p @ariants are limited to
convex data sets.

The Laplacian Eigenmaps algorithm was developed by Belkin and Niyo@Bj20t computes
the normalized graph Laplacian of the adjacency graph of the input dhitzh V8 an approximation
of the Laplace-Beltrami operator on the manifold. It exploits locality présgrproperties that
were first observed in the field of clustering. The Laplacian Eigenmapsitign can be viewed as
a generalization of LLE, since the two become identical when the weights grépd are chosen
according to the criteria of the latter. Much like LLE, the dimensionality of the notthdlso has to
be provided, the computed embeddings are not isometric and a mapping thétedeo spaces is
not produced. The latter is addressed by He and Niyogi (2004) veheagiation of the algorithm
is proposed.

Donoho and Grimes (2003) propose Hessian LLE (HLLE), an appreawilar to the above,
which computes the Hessian instead of the Laplacian of the graph. Thersagthim that the
Hessian is better suited than the Laplacian in detecting linear patches on theldhahife major
contribution of this approach is that it proposes a global, isometric methodhwiitike Isomap,
can be applied to non-convex data sets. The requirement to estimate decivatives from possi-
bly noisy, discrete data makes the algorithm more sensitive to noise than the retfiewed here.

Semidefinite Embedding (SDE) was proposed by Weinberger and S&4,(2006) who ad-
dress the problem of manifold learning by enforcing local isometry. Thgtlenof the sides of
triangles formed by neighboring points are preserved during the emlgediiese constraints can
be expressed in terms of pairwise distances and the optimal embeddingfoanthby semidefinite
programming. The method is among the most computationally demanding revievegdbliecan
reliably estimate the underlying dimensionality of the inputs by locating the largpsigfween the
eigenvalues of the Gram matrix of the outputs. Similarly to our approach, diomeatity estimation
does not require a threshold.

Other research related to ours includes the charting algorithm of Br&@3)2It computes a
pseudo-invertible mapping of the data, as well as the intrinsic dimensionalitg afdimifold, which
is estimated by examining the rate of growth of the number of points containeg@r-spheres as
a function of the radius. Linear patches, areas of curvature and cenidee distinguished using the
proposed measure. At a subsequent stage a global coordinate fysteenembedding is defined.
This produces a mapping between the input space and the embedding space

Wang et al. (2005) propose an adaptive version of the local tangantsalignment (LTSA)
of Zhang and Zha (2004), a local dimensionality reduction method that isanvaf LLE. Wang
et al. address a limitation of most of the approaches presented in this sedtioh,is the use of
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a fixed number of neighbor&)for all points in the data. Inappropriate selectionkafan cause
problems at points near boundaries, or if the density of the data is nabaptely constant. The
authors propose a method to adapt the neighborhood size accordingltoritazia and demonstrate
its effectiveness on data sets of varying distribution. Using an appteptddue fork at each point
is important for graph-based methods, since the contributions of eachbioeigre typically not
weighted, making the algorithms very sensitive to the selectidn of

In a more recent paper, Sha and Saul (2005) propose Conformeaimaaps, an algorithm that
operates on the output of LEE or Laplacian Eigenmaps to produce aromifembedding, which
preserves angles between edges in the original input space, withouatimigca large increase in
computational cost. A similar approach that “stiffens” the inferred manifetldploying a multi-
resolution strategy was proposed by Brand (2005). Both these pagérsss the limitation of
some of the early algorithms which preserve graph connectivity, but nat &ructure, during the
embedding.

The most similar method to ours is that of Bolket al. (2007a) and Ddlf et al. (2007b) in which
the data are not embedded in a lower dimensional space. Instead, thedoctire of a manifold at
a point is learned from neighboring observations and representeddityod radial basis functions
(RBFs) centered oK points discovered bi{-means clustering. The manifold can then be traversed
by “walking” on its tangent space between and beyond the observafRepesentation by RBFs
without dimensionality reduction allows the algorithm to be robust to outliers arapplicable to
non-isometric manifolds. An evaluation of manifold learning using geodediardie preservation
as a metric, similar to the one of Section 6.1, is presented iréDetlal. (2007b).

A different approach for intrinsic distance estimation that bypassesmeggtine structure of the
manifold has been proposed byéekholi and Sapiro (2005). It approximates intrinsic distances and
geodesics by computing extrinsic Euclidean distances in a thin band thatisdsrthe points. The
algorithm can handle manifolds in any dimension and of any co-dimension andr&robust to
noise than graph-based methods, such as Isomap, since in the latter ths autlimcluded in the
graph and perturb the approximation of geodesics.

Souvenir and Pless (2005) present an approach capable of leanultigle, potentially inter-
secting, manifolds of different dimensionality using an expectation maximizabt) algorithm
with a variant of MDS as the M step. Unlike our approach, however, theben and dimensionality
of the manifolds have to be provided externally.

2.3 Function Approximation

Here we review previous research on function approximation focusingethods that are appli-
cable to large data sets in high-dimensional spaces. Neural networaeareemployed as global
methods for function approximation. Poggio and Girosi (1990) addidasetion approximation in
a regularization framework implemented as a three-layer neural netwely. view the problem as
hypersurface reconstruction, where the main assumption is that of sregsthrhe emphasis is on
the selection of the appropriate approximating functions and optimization algoi@ther research
based on neural networks includes the work of Sanger (1991) vdpmped a tree-structured neural
network, which does not suffer from the exponential growth with dimevadity of the number of
models and parameters that plagued previous approaches. It daevehorequire the selection
of an appropriate set of basis functions to approximate a given funchi®wural network based
approaches with pre-specified types of models are also proposedaosonB1993) who derived
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the bounds for approximation using a superposition of sigmoidal funct®resman (1993) who
proposed a simpler and faster model based on hinging hyperplaneSabactt al. (1993) who used
RBFs.

Xu et al. (1995) modified the training scheme for the mixture of experts acthigeso that
a single-loop EM algorithm is sufficient for optimization. Mitaim and Kosko (208pproached
the problem within the fuzzy systems framework. They investigated the selaftibhe shape of
fuzzy sets for an adaptive fuzzy system and concluded that no €mapryes as the best choice.
These approaches, as well as the ones based on neural netweddspal and model-based. They
can achieve good performance, but they require all the inputs to beldgadiathe same time for
training and the selection of an appropriate model that matches the unkooetioh. If the latter
is complex, the resulting model may have an impractically large number of paramete

Support Vector Machines (SVMs), besides classification, have atsodaensively applied for
regression based on the work of Vapnik (1995). Collobert and B4R@id1) address a limitation of
the SVM algorithm for regression, which is its increased computational caitpbes the number
of samples grows, with a decomposition algorithm. It operates on a workingf ffee variables,
while keeping fixed variables that are less likely to change.

All the above methods are deterministic and make hard decisions. On the atitiBayesian
learning brings the advantages of probabilistic predictions and a signiflearease in the number
of basis functions. Tresp (2000) introduced the Bayesian Committee Matttahis able to handle
large data sets by splitting them in subsets and training an estimator for eaebe &stimators
are combined with appropriate weights to generate the prediction. What isarttg about this
approach is the fact that the positions of query points are taken into racicothe design of the
estimator and that performance improves when multiple query points arespeatcsimultaneously.
Tipping (2001) proposed a sparse Bayesian learning approacHh) muiduces probabilistic predic-
tions and automatically detects nuisance parameters, and the RelevanecéWadime that can be
viewed as stochastic formulation of an SVM. A Bayesian treatment of SVaédaegression can
also be found in the work of Chu et al. (2004). Its advantages inclutleeesl computational com-
plexity over Gaussian Process Regression (GPR), reviewed beldwpbnstness against outliers.
Inspired by Factor Analysis Regression, Ting et al. (2006) prop&seyasian regression algorithm
that is robust to ill-conditioned data, detects relevant features and ideimifiet and output noise.

An approach that has attracted a lot of attention is the use of Gaussiaes®ee GPs) for
regression. Williams and Rasmussen (1996) observed that Bayesigsisuoé neural networks
is difficult due to complex prior distributions over functions resulting evemfsimple priors over
weights. Instead, if one uses Gaussian processes as priors owandtieris, then Bayesian analysis
can be carried out exactly. Despite the speed up due to GPs, faster imf@éorerwere still needed
for practical applications. A sparse greedy GP regression algorithempresented by Smola and
Bartlett (2001) who approximate the MAP estimate by expanding in terms of a setalf kernels.
Csab and Opper (2002) described an alternative sparse representat®R fegression models. It
operates in an online fashion and maintains a sparse basis which is dynamjdkgd as more
data become available.

Lawrence et al. (1996) compared a global approach using a multi-layeegtron with a linear
local approximation model. They found that the local model performed helten the density of
the input data deviated a lot from being uniform. Furthermore, the local hadideved for incre-
mental learning and cross-validation. On the other hand, it showedrpgeneralization, slower
performance after training and required more memory, since all input datéochbe stored. The
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global model performed better in higher dimensions, where data sparsitynies a serious prob-
lem for the local alternative. Wedge et al. (2006) bring together therddgas of global and local
approaches using a hybrid network architecture that combines RBFs8gndid neural networks.
It first identifies global features of the system before adding localldeta the RBFs.

Schaal and Atkeson (1998) proposed a nonparametric, local, incr@nhearning approach
based on receptive field weighted regression. The approach is tralydimce the parameters for
each model and the size and shape of each receptive field are leaiepdridently. The provided
mechanisms for the addition and pruning of local models enable incrementahipas new data
points become available.

Atkeson et al. (1997) survey local weighted learning methods and idehéfissues that must
be taken into account. These include the selection of the distance metric, idtdimge function,
prediction assessment and robustness to noise. The authors argnec#réin cases no values of
the parameters of a global model can provide a good approximation of éhéutration. In these
cases, a local approximation using a simpler, even linear model, is a betteaelphan increasing
the complexity of the global model. Along these lines, Vijayakumar and Sck@@0j proposed lo-
cally weighted projection regression, an algorithm based on successwagiate regressions along
projections of the data in directions given by the gradient of the underfyimgtion.

We opt for a local approach and address the problem as an exterisioandold learning.
Note, however, that we are not limited to functions that are strictly manifoldsigtensor voting,
we are able to reliably estimate the normal and tangent space at each sargasciabed in the
following section. These estimates allow us to perform nonlinear interpolatidgenerate outputs
for unobserved inputs, even under severe noise corruption.

3. Tensor Voting in High-Dimensional Spaces

The tensor voting framework, in its preliminary version (Guy and Medion®6)9is an imple-
mentation of two Gestalt principles, namely proximity and good continuation réuping generic
tokens in 2-D. The 2-D domain has always been the main focus of réseaperceptual organi-
zation, beginning with the research obHler (1920), Wertheimer (1923) and Koffka (1935). The
generalization of perceptual organization to 3-D is relatively straighHoawsince salient group-
ings can be detected by the human visual system in 3-D based on the saoiglgsinGuy and
Medioni (1997) extended tensor voting to three dimensions. The term caliene refers tetruc-
tural saliency which, according to Shashua and Ullman (1988) is the property of stasdini stand
out due to the configuration of local elements. That is, the local elementg atriicture are not
salient in isolation, but instead the arrangement of the elements is what malstautture salient.
The saliency of each element is estimated by accumulaigscast from its neighbors. Tensor
voting is a pairwise operation in which elements cast and collect votes in leicdilvorhoods. Each
vote is a tensor and encodes the orientation the receiver would haveliagcto the voter, if the
voter and receiver belonged in the same structure. According to theliGhetay, simple figures
are preferable to complex alternatives, if no evidence favors the latteredlidence in tensor voting
are the position and preferred orientation, if available, of the voter anpadsiéion of the receiver.
Given this information, we show examples of votes cast by an orientediuddD in Figure 1. The
voterV is a point on a horizontal curve and its normal is represented by themeangv. (Details
on the representation can be found in Section 3.1). The other pBiafR,, act as receivers. The
simplest curve, the one with minimum total curvature, that passes throughested voter and
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Figure 1: lllustration of tensor voting in 2-D. The voter is an oriented cefeenentv on a hori-
zontal curve whose normal is represented by the orange arrow.olihegiceiverdl;-Ry
collect votes fronV. (In practice, they would also cast votest@nd among themselves,
but this is omitted here.) Each receiver is connected tay a circular arc which is the
simplest structure that can be inferred from two points, one of which initeidle The
gray votes at the receivers indicate the curve normal the receiveutddimave according
to the voter.

a receiver is a circular arc, for which curvature is constant. Thexefwe connect the voter and
receiver by a circular arc which is tangent at the voter and passagyththe receiver and define
the vote cast as the normal to this arc at the location of the receiver. Té®slown as gray arrows
in Figure 1 represent the orientations the receivers would have @cgdadthe votelV. The mag-
nitude of the votes decays with distance and curvature. It will be deforedally in Section 3.2.
Voting from all possible types of voters, such as surface or curve elesnire 3-D, can be derived
from the fundamental case of a curve element voter in 2-D (Medioni €@00). Tensor voting is
based on strictly local computations in the neighborhoods of the inputs.iZz¢hef¢hese neighbor-
hoods is controlled by the only critical parameter in the framework: the s€at#tiog 0. The scale
parameter is introduced in Eqg. 3. By determining the size of the neighbashscale regulates the
amount of smoothness and provides a knob to the user for balancing fidelitg data and noise
reduction.

Regardless of the computational feasibility of an implementation, the same ggqupiciples
apply to spaces with even higher dimensions. For instance, Tang et @l)(@0served that pixel
correspondences can be viewed as points in the 8-D space of fimagiars of the fundamental
matrix. Correct correspondences align to form a hyperplane in thaespdile wrong correspon-
dences are randomly distributed. By applying tensor voting in 8-D, Taad) etere able to infer
the dominant hyperplane and the desired parameters of the fundamental ®tarage and com-
putation requirements, however, soon become prohibitively high as the simnality of the space
increases. Even though the applicability of tensor voting as a manifold lgaethnique seems to
have merit, the generalization of the implementation of Medioni et al. (2000} jgractical, mostly
due to computational complexity and storage requirementsdimensions. The bottleneck is the
generation and storage of voting fields, the number of which is equal tartfendionality of the
space.

In this section, we describe the tensor voting framework beginning with éat@sentation
and proceeding to the voting mechanism and vote analysis. The repteseatad vote analysis
schemes arbl-D extensions of the original implementation (Medioni et al., 2000). Thelhooeé
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(a) Oriented osticktensor (b) Unoriented drall tensor (c) Generic tensor

Figure 2: Examples of tensors in 3-D. The tensor on the left has only ameero eigenvalue and
encodes a preference for an orientation parallel to the eigenvectesponding to that
eigenvalue. The eigenvalues of the tensor in the middle are all equal, anthéhtensor
does not encode a preference for a particular orientation. The tensie right is a
generic 3-D tensor.

our work is a new formulation of the voting process that is practical focespaf dimensionality up
to a few hundreds. Efficiency is considerably higher than the prelimirensian of this formulation
presented in Mordohai and Medioni (2005), where we focused onrdiimeality estimation.

3.1 Data Representation

The representation of a token (a generic data point) is a second oydenedric, non-negative
definite tensor, which is equivalent to Ainx N matrix and an ellipsoid in aN-D space. All tensors
in this paper are second order, symmetric and non-negative definiteysefarence to a tensor
automatically implies these properties. Three examples of tensors, in 3-Decsen in Figure 2.
A tensor represents the structure of a manifold going through the poimdndang the normals to
the manifold as eigenvectors of the tensor that correspond to nonigerwvalues, and the tangents
as eigenvectors that correspond to zero eigenvalues. (Note thatesitms and vectors in general
in this paper are column vectors.) For example, a point ifNdh hyperplane has one normal and
N — 1 tangents, and thus is represented by a tensor with one non-zeroadigeassociated with
an eigenvector parallel to the hyperplane’s normal. The remaiiadl eigenvalues are zero. A
point belonging to a 2-D manifold iN-D is represented by two tangents add- 2 normals, and
thus is represented by a tensor with two zero eigenvalues associated vatgeheectors that span
the tangent space of the manifold. The tensor alsoNa2 non-zero, equal eigenvalues whose
corresponding eigenvectors span the manifold’s normal space. Beabpases of tensors are: the
sticktensor that has only one non-zero eigenvalue and representst pertamty for a hyperplane
normal to the eigenvector that corresponds to the non-zero eigenaaldéheball tensor that has
all eigenvalues equal and non-zero which represents perfecttaimtg in orientation, or, in other
words, just the presence of an unoriented point.

The tensors can be formed by the summation of the direct prodiitty ¢f the eigenvectors
that span the normal space of the manifold. The tensor at a point on a idasfitimensionality
d, with fi; being the unit vectors that span the normal space, can be computed asfollow

T:iﬁﬂ. 1)
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An unoriented point can be represented blyadl tensor which contains all possible normals and
is encoded as thd x N identity matrix. Any point on a manifold of known dimensionality and
orientation can be encoded in this representation by appropriately cttesttensors, according to
Eqg. 1.

On the other hand, given D second order, symmetric, non-negative definite tensor, the type
of structure encoded in it can be inferred by examining its eigensystem.siéaty tensor can be
decomposed as in the following equation:

N
T=T9 Aéyé] =
2
= (A1 —A2)818] + (A2 —A3)(E16] + &8 ) + ... + AN(B1E] + 8] + ... + EnE)) )

N-1 d
= 3 (a-hor) 5 &8 E1]+AN(&E] + ... +&né])
=1 k=1

whereAq are the eigenvalues in descending order of magnitudeaack the corresponding eigen-
vectors. The tensor simultaneously encodbgossible types of structure. The confidence, or
saliencyin perceptual organization terms, of the type that thamrmals is encoded in the differ-
encelyg — Agr1, or Ay for the ball tensor. If only one of these eigenvalue differences is et, z
then the tensor encodes a single type of structure. Otherwise, more théypercan be present at
the location of the tensor, each having a saliency value given by the@pgisodifference between
consecutive eigenvalues df. An illustration of tensor decomposition in 3-D can be seen in Figure

3.
. ‘4- 7
1

_____________ 7‘1' 7"2 7‘2 '7*’3 7L3

(a) Generlc 3 D tensor (b) Elementary 3-D tensors

Figure 3: Tensor decomposition in 3-D. A generic tensor can be decaupo® the stick, plate
and ball components that have a normal subspace of rank one, tworaadebpectively.

3.2 The Voting Process

After the inputs have been encoded with tensors, the information they cimaivpagated to their
neighbors via a voting operation. Given a tensoAaind a tensor &, the vote the token & (the
voter) casts toB (the receive) has the orientation the receiver would have, if both the voter and
receiver belong to the same structure. The magnitude of the vote is a fuottlemconfidence we
have that the voter and receiver indeed belong to the same structure.
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3.2.1 SICK VOTING

We first examine the case of a voter associated witicktensor, that is the normal space is a single
vector in N-D. We claim that, in the absence of other information, the arc ofshelating circle
(the circle that shares the same normal as a curve at the given pokthat goes throug is
the most likely smooth path betwed&mandB, since it minimizes total curvature. The center of the
circle is denoted by in Figure 4(a). (For visualization purposes, the illustrations are for tbe 2-
and 3-D cases.) In case of straight continuation frdo B, the osculating circle degenerates to
a straight line. Similar use of circular arcs can also be found in Parenfackkr (1989), Saund
(1992), Sarkar and Boyer (1994) and Yen and Finkel (1998).vbltke is also a stick tensor and is
generated as described in Section 3 according to the following equation:

Sl 5.6,K) = e<3225K2>[ o } [ sin(20) cog26)), 3)
e,
e arcsir( I )
e
Sin(8)’
~ 2sin@)
v

In the above equatioms,is the length of the arc between the voter and receiverkasds curvature
(which can be computed from the radi&€ of the osculating circle in Figure 4(a)),is the scale
of voting, andc is a constant, which controls the degree of decay with curvature. Trstagtn
is a function of the scale and is optimized to make the extension of two ortholjomalegments
to from a right angle equally likely to the completion of the contour with a rouraeder (Guy
and Medioni, 1996). Its value is given bg:= w. The scales essentially controls
the range within which tokens can influence other tokens. It can also ivediias a measure of
smoothness that regulates the inevitable trade-off between over-smoatidrayer-fitting. Small
values preserve details better, but are more vulnerable to noise anfitiingr Large values pro-
duce smoother approximations that are more robust to noise. As showatiorSg, the results are
very stable with respect to the scale. Note thé the only free parameter in the framework.

The vote as defined above is on the plane defined, iy and the normal af. Regardless of
the dimensionality of the space, stick vote generation always takes placelnsal@space defined
by the position of the voter and the receiver and the orientation of the V@this explains why
Eq. 3 is defined in a 2-D space.) Stick vote computation is identical in any fjedeeen 2 and
N dimensions. After the vote has been computed, it has to be transformedNsDRhgpace and
aligned to the voter by a rotation and translation. For simplicity, we also use tagam

Svote(A, B, ) = S(s(A, B, ), 0(A,B, 1), K(A,B,i)) 4
to denote the stick vote fromto B with i being the normal &. s(A, B, 1), 8(A, B, i) andk (A, B, )
are the resulting values of the parameters of Eq. 3 giv&andn.

According to the Gestalt principles we wish to enforce, the magnitude of tigeshould be a
function of proximity and smooth continuation. Thus the influence from a goiahother attenu-
ates with distance, to minimize interference from unrelated points; and crey&iuavor straight
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continuation over curved alternatives. Moreover, no votes are dastii€ceiver is at an angle larger
than 45 with respect to the tangent of the osculating circle at the voter. Similar restisabio re-
gions of influence also appear in Heitger and von der Heydt (1998) avid Finkel (1998) and Li
(1998) to prevent high-curvature connections without support filerdata. Votes corresponding
to such connections would have been very weak regardless of thietrestsince their magni-
tude is attenuated due to curvature. The saliency decay function (Gauskiag. 3 has infinite
support, but for practical purposes the field is truncated so that ndgligiltes do not have to be
computed. For all experiments shown here, we limited voting neighborhodtke &xtent in which
the magnitude of a vote is more than 3% of the magnitude of the voter. Both trumtetyond
45° and truncation beyond a certain distance are not critical choices, éutaate to eliminate the
computation of insignificant votes.

3.2.2 N-D FORMULATION OF TENSORVOTING

We have shown that stick vote computation is identical up to a simple transforniedgion2-D
to N-D. Now we turn our attention to votes generated by voters that are nottstiskrs. In the
original formulation (Medioni et al., 2000) these votes can be computedtbgrating the votes
cast by a rotating stick tensor that spans the normal space of the votirg. t8ivsce the resulting
integral has no closed form solution, the integration is approximated nurihebyaaking sample
positions of the rotating stick tensor and adding the votes it generateshgi@atwithin the voting
neighborhood. As a result, votes that cover the voting neighborhegarercomputed and stored in
voting fields. The advantage of this scheme is that all votes are geneested dn the stick voting
field. Its computational complexity, however, makes its application in high-dilmealsspaces
prohibitive. Voting fields are used as look-up tables to retrieve votes vigoitgion between the
pre-computed samples. For instance, a voting field in 10-D kaiimples per axis, requires storage
for k0 10 x 10 tensors, which need to be computed via numerical integration over tEbbes:
Thus, the use of pre-computed voting fields becomes impractical as dimalitgignows. At the
same time, the probability of using a pre-computed vote decreases.

Here, we present a simplified vote generation scheme that allows the diraputation of
votes from arbitrary tensors in arbitrary dimensions. Storage requiteraenlimited to storing the
tensors at each sample, since explicit voting fields are not used any mioeeadVantage of the
novel vote generation scheme is that it does not require integration. As oritfinal formulation,
the eigenstructure of the vote represents the normal and tangent #pstdbe receiver would have,
if the voter and receiver belong in the same smooth structure.

3.2.3 BALL VOTING

For the generation of ball votes, we propose the following direct computatids based on the
observation that the vote generated by a ball voter propagates thesvriehierence for a straight
line that connects it to the receiver (Figure 4(b)). The straight line isithplest and smoothest
continuation from a point to another point in the absence of other informafigrus, the vote
generated by a ball voter is a tensor that spangihe 1)-D normal space of the line and has one
zero eigenvalue associated with the eigenvector that is parallel to the lineadtstude is a function
of only the distance between the two points, since curvature is zero. Tdidag observations into
account, the ball vote can be constructed by subtracting the directgirofithe unit vector in
the direction from the voter to the receiver from a full rank tensor withaégigenvalues (i.e., the
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identity matrix). The resulting tensor is attenuated by the same Gaussian weighdiag to the
distance between the voter and the receiver.

(2 w'
Buote(s) =€ o) (1 —— 5
s =€ 3 (1 ©)
wherev is a unit vector parallel to the line connecting the voter and the receiver &theN-D
identity matrix. In this cases= |V| and we omi® andk since they do not affect the computation.
Along the lines of Equation 4, we define a simpler notation:

Buote(A, B) = Byote(S(A, B)) (6)
wheres(A,B) = |V].

3.2.4 VOTING BY ELEMENTARY TENSORS

To complete the description of vote generation, we need to describe thefcatensor that has

d equal eigenvalues, whetkis not equal to 1 oN. (An example of such a tensor would be a
curve element in 3-D, which has a rank-two normal subspace and sorentangent subspace.)
The description in this section also applies to ball and stick tensors, butevthesbove direct
computations, which are faster. Lébe the vector connecting the voting and receiving points. It
can be decomposed inth andVj, in the tangent and normal spaces of the voter respectively. The
new vote generation process is based on the observation that cuivcigre3 is not a factor when

0 is zero, or, in other words, if the voting stick is orthogonalito We can exploit this by defining

a new basis for the normal space of the voter that inclwges'he new basis is computed using
the Gramm-Schmidt procedure. The vote is then constructed as the tediimmaaf the votes cast

by stick tensors parallel to the new basis vectors. Among those votes, enbnéhgenerated by
the stick tensor parallel 1@, is not parallel to the normal space of the voter and curvature has to be
considered. All other votes are a function of the lengtiW;adnly. See Figure 5 for an illustration

in 3-D. Analytically, the vote is computed as the summation sfick votes cast by the new basis

of the normal space. Léds denote the normal space of the voter andjgte [1,d] be a basis for

it with by being parallel to/,. If Syote(A, B,B) is the function that generates the stick vote from a

(a) Stick voting (b) Ball voting

Figure 4: Vote generation for a stick and a ball voter. The votes ardifunscof the position of the
voter A and receiver B and the tensor of the voter.
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Figure 5: Vote generation for generic tensors. The voter here is arteith@ 2-D normal subspace
in 3-D. The vector connecting the voter and receiver is decomposed,iatdy; that lie
in the normal and tangent space of the voter. A new basis that inciydeslefined for
the normal space and each basis component casts a stick vote. Only tlyewvetated
by the orientation parallel t@, is not parallel to the normal space. Tensor addition of the
stick votes produces the combined vote.

unit stick tensor af parallel tob to the receiveB, then the vote from a generic tensor with normal
spaceN is given by:

Vvote(A, B,Te,d) = S/ote(Aa BaBl) + ; S/ote(A> BaBi)' (7)
i€[2,d]

In the above equatiof,e 4 denotes the elementary voting tensor witagual non-zero eigenvalues.
On the right-hand side, all the terms are pure stick tensors parallel to thes,vexeept the first
one which is affected by the curvature of the path connecting the voteremeiver. Therefore,
the computation of the last— 1 terms is equivalent to applying the Gaussian weight to the voting
sticks and adding them at the position of the receiver. Only one vote escaiiull computation of
orientation and magnitude. This makes the proposed scheme computationgilsriniee.

3.2.5 THE VOTING PROCESS

During the voting process (Algorithm 1), each point casts a vote to all itshheig within the
voting neighborhood. If the voters are not pure elementary tensotss thenore than one saliency
value is non-zero, they are decomposed before voting according t8.EBen, each component
votes separately and the vote is weighted\@y- Ag. 1, except the ball component whose vote is
weighted byA\y. Besides the voting tensar, points also have a receiving ten$that acts as vote
accumulator. Votes are accumulated at each point by tensor addition, ist@ghivalent to matrix
addition.

3.3 Vote Analysis

Vote analysis takes place after voting to determine the most likely type of stetentgrthe orienta-
tion at each point. There ai¢+ 1 types of structure in aN-D space ranging from 0-D points to
N-D hypervolumes.

The eigensystem of the receiving tenBois computed once at the end of the voting process and
the tensor is decomposed as in Eq. 2. The estimate of local intrinsic dimensidsgiitgn by the
maximum gap in the eigenvalues. Quantitative results on dimensionality estimatipreaemted
in Section 4. In general, if the maximum eigenvalue galyis Aq. 1, the estimated local intrinsic
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Algorithm 1 The Voting Process
1. Initialization
ReadM input pointsP, and initial conditions, if available.
forall i € [1,M] do
Initialize T; according to initial conditions or set equal to the identity

ComputeT;’s eigensysten@)\g), ég)).

Set vote accumulatd®; < 0
end for
Initialize Approximate Nearest Neighbor (ANN) k-d tree (Arya et al., 1088 fast neighbor
retrieval.

2. Voting
forall i € [1,M] do
for all Pj in B’s neighborhoodio
if A1 —A2>0 then _
Compute stick vot&,ote( R, P}, é(l')) from R, to P; according to Eq. 4.
end if
if ANy > 0 then
Compute ball votd,qte( P, P;) from B, to P; according to Eq. 6.
end if
ford=2toN—-1do
if Aq—Ag+1 >0 then _
Compute vote/\,ote(P.,Pj,T(e'.)d) according to Eq. 7.
end if
end for
Add votes to Ps accumulator

Rj «Rj+ (A1 —A2)Siote(P, Py, 1) + (An)Buote( P, Pj)

+ 5 (Ad—Ads1)VuorelR, Py Tew)
de[2N-1]

end for
end for

3. Vote Analysis

forall i € [1,M] do
Compute eigensystem &% (Eq. 2) to determine dimensionality and orientation.
Ti —R;

end for

dimensionality isN — d, and the manifold had normals andN — d tangents. Moreover, the first
d eigenvectors that correspond to the largest eigenvalues are the ntwrtteésmanifold, and the
remaining eigenvectors are the tangents. Outliers can be detected sinaradighnvalues are
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small and no preferred structure type emerges. This happens be¢baysee more isolated than
inliers, thus they do not receive votes that consistently support anysatrecture. Our past and
current research has demonstrated that tensor voting is very rgaussgoutliers.

This vote accumulation and analysis method does not optimize any explicit gbjéatiction,
especially not a global one. Dimensionality emerges from the accumulationtes$,vbut it is
not a equal to the average, nor the median, nor the majority of the dimensianafitiee voters.
For instance, the accumulation of votes from elements of two or more inteigectives in 2-D
results in a rank-two normal space at the junction. If one restricts thesasmiadythe estimates of
orientation, tensor voting can be viewed as a method for maximizing an objettea&ch point.
The weighted (tensor) sum of all votes received is up to a constantadepoi to the weighted mean
in the space of symmetric, non-negative definite, second-order ten$bis can be thought of
as the tensor that maximizes the consensus among the incoming votes. Imgetassuming
dimensionality is provided by some other process, the estimated orientationhapeat is the
maximum likelihood estimate given the incoming votes. It should be pointed outthatéhe sum
is used for all subsequent computations, since the magnitude of the digenaad the of the gaps
between them are measures of saliency.

In all subsequent sections, the eigensystem of the accumulator tensediasithe voter during
subsequent processing steps described in the following sections.

Figure 6: 20,000 points sampled from the “Swiss Roll” data set in 3-D.

4. Dimensionality Estimation

In this section, we present experimental results in dimensionality estimationrdiag to Section
3.3, the intrinsic dimensionality at each point can be found as the maximum gapeéigémvalues
of the tensor after votes from its neighboring points have been collectdidnpits consist of
unoriented points since no orientation information is provided and are edasball tensors.

4.1 Swiss Roll

The first experiment is on the “Swiss Roll” data set, which is frequently irsttk literature and is
available atittp://isomap.stanford.edu/ . It contains 20000 points on a 2-D manifold in 3-D
(Figure 6). We sample two random variables from independent uniféstritaitions to generate
Swiss rolls with as many as 2000 points, as in Tenenbaum et al. (2000), and as few, 2501
points. We present quantitative results for 10 different instances2&0l 5000 and 20000 points

in Table 1 as a function af. The first column for each set of results shows the percentage of points

with correct dimensionality estimates, that is for whigh- A is the maximal eigenvalue gap. The
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Points 1250 5000 20000
o DE NN Time | DE NN Time| DE NN Time
1 0.5% 1.6 0.2 | 4.3% 3.6 0.4 | 22.3% 11.2 3.8
2 4.2% 3.7 0.2|223% 11.1 0.8| 67.9% 40.8 5.4
4 21.5% 11.0 0.2| 70.0%  40.7 0.8 98.0%  156.3 12.3
8 64.5% 38.3 0.2] 96.9% 148.9 2.6/ 99.9% 587.2 36.9
12 87.4% 83.4 0.4] 99.3% 324.7 5.0/ 99.9% 12854 77.4
16 94.3% 1824 0.7 99.5% 715.7 10.1 99.8% 2838.0 164.8
20 94.9% 302.6 1.0] 99.2% 1179.4 16.5 99.5% 4700.9 268.7
30 91.0% 703.6 23| 97.0% 2750.8 37.4 97.6% 10966.5 615.2
40 83.6% 1071.7 3.6|86.7% 42715 57.7 87.7% 16998.2 947.3

Table 1: Rate of correct dimensionality estimation (DE), average numbeigiiloors per point and
execution times (in seconds) as functionsoand the number of samples for the “Swiss
Roll” data set. All experiments have been repeated 10 times on random sasryflitinge
Swiss Roll function. Note that the range of scales includes extreme vaumsdenced
by the very high and very low numbers of neighbors in several cases.

second column shows the average number of nearest neighbors ahiriube voting neighborhood

of each point. The third column shows processing times of a single-thré&aeleimplementation
running on an Intell Pentium 4 processor at ZZ5{z. We have also repeated the experiment on 10
instances of 500 points from the Swiss Roll using the same values of the Btdaingful results
are obtained foo > 8. The peak of correct dimensionality estimation is aB80for o = 20.

A conclusion that can be drawn from Table 1 is that the accuracy is higistable for a large
range of values af, as long as a few neighbors are included in each neighborhood. Thatgnajo
neighborhoods being empty is an indication of inappropriate scale seleegdiormance degrades
as scale increases and the neighborhoods become too large to captumvalere of the manifold.
This robustness to large variations in parameter selection are due to theimgighthe votes
according to Egs. 3, 5 and 7 and alleviates the need for extensive gardaomng.

4.2 Structures with Varying Dimensionality

The second data set is in 4-D and contains points sampled from three tsuctdine, a 2-D cone
and a 3-D hyper-sphere. The hyper-sphere is a structure with tageeas of freedom. It cannot be
unfolded unless we remove a small part from it. Figure 7(a) shows théhiiese dimensions of the
data. The data set contains a total J8®} points, which are encoded as ball tensors. Tensor voting
is performed witho = 200. Figures 7(b-d) show the points classified according to their dimension
ality. Methods based on dimensionality reduction or methods that estimate a smgles@nality
estimate for the data set would fail for this data set because of the peesksituctures with dif-
ferent dimensionalities and because the hyper-sphere cannot béashfo
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(b) 1-D points

(c) 2-D points (d) 3-D points

Figure 7: Data of varying dimensionality in 4-D. (The first three dimensidrith@input and the
classified points are shown.) Note that the hyper-sphere is empty in 4:Bppears as a
full sphere when visualized in 3-D.

4.3 Data in High Dimensions

The data sets for this experiment were generated by sampling a few thopsiats from a low-
dimensional space (3- or 4-D) and mapping them to a medium dimensiona €p&cto 16-D)
using linear and quadratic functions. The generated points were theedaiad embedded in a
50- to 150-D space. Outliers drawn from a uniform distribution inside thenbimg box of the
data were added to the data set. The percentage of correct point-wisesitinadity estimates after
tensor voting can be seen in Table 2.

Intrinsic Linear | Quadratic Space Dimensionality
Dimensionality| Mappings| Mappings| Dimensions| Estimation (%)
4 10 6 50 93.6
3 8 6 100 97.4
4 10 6 100 93.9
3 8 6 150 97.3

Table 2: Rate of correct dimensionality estimation for high dimensional data.
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5. Manifold Learning

In this section we show quantitative results on estimating manifold orientatiomfimus data sets.

Points 1250 5000 20000
o Orientation Error| Orientation Error| Orientation Error
1 47.2 28.1 3.1
2 28.7 3.5 0.4
4 4.9 0.9 0.5
8 2.0 1.3 1.1
12 25 2.0 1.9
16 3.5 3.1 3.0
20 5.4 4.8 4.7
30 16.9 15.0 14.9
40 28.3 26.2 25.9

Table 3: Error (in degrees) in surface normal orientation estimation asdaidn of o and the
number of samples for the “Swiss Roll” data set. The error reported is timghed)
angle between the eigenvector corresponding to the largest eigenyate estimated
tensor at each point and the ground truth surface normal. See alsolTallprocessing
times and the average number of points in each neighborhood.

5.1 Swiss Roll

We begin this section by completing the presentation of our experiments on tbe Boll data sets
described in the previous section. Here we show the accuracy of nestiaation, regardless of
whether the dimensionality was estimated correctly, for the experiments of Talllable 3 is a
complement to Table 1, which contains information on the average numbeimt$ pothe voting
neighborhoods and processing time that is not repeated here. Theepooted is the (unsigned)
angle between the eigenvector corresponding to the largest eigenvahe estimated tensor at
each point and the ground truth surface normal. These results aré@défferent samplings for
each number of points reported in the table.

For comparison, we also estimated the orientation at each point of the SwisssRg local
PCA computed on the pointlsnearest neighbors. We performed an exhaustive searcltkolvet
only report the best results here. As for tensor voting, orientationracgwas measured on 10
instances of each data set. The lowest errors f8bQ, 5000 and 20000 points are %51°, 1.16°
and 056° for values ofk equal to 9, 10 and 13 respectively. These errors are approximat&y 20
larger than the lowest errors achieved by tensor voting, which arersirowold in Table 3. It
should be noted, that, unlike tensor voting, local PCA cannot be usedirie these estimates or
take advantage of existing orientation estimates that may be available at the inputs

We observe that accuracy using tensor voting is very high for a larggeraf scales and im-
proves, as expected, with higher data density. Random values (a4&tineksult when the neigh-
borhood does not contain enough points for normal estimation. See Méla(2004) and Lalonde
et al. (2005) for an analysis of the 3-D case based oiG#rshgorin Circle Theorerthat provides
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(a) Cylinder (b) Sphere (c) Noisy sphere
Figure 8: Data sets used in Sections 5 and 6.

bounds for the eigenvalues of square matrices. The authors showdisevand curvature affect
the estimation of curve and surface normals under some assumptions abdigtiipution of the
points. The conclusions are that for large neighborhood sizessamased by curvature dominate,
while for small neighborhood sizes, errors due to noise dominate. (Thacenoise in the data for
this experiment.)

5.2 Spherical and Cylindrical Sections

Here, we present quantitative results on simple data sets in 3-D for whichngjrtruth can be
analytically computed. In Section 6, we process the same data with state dfrirendfold learning
algorithms and compare their results against ours. The two data sets atma ska cylinder and
a section of a sphere shown in Figure 8. The cylindrical section spdfisab®l consists of 1000
points. The spherical section spans 9®0° and consists of 900 points. Both are approximately
uniformly sampled. The points are represented by ball tensors, assumimjonmation about
their orientation. In the first part of the experiment, we compute local dimealsip and normal
orientation as a function of scale. The results are presented in Tablels54 @he results show that
if the scale is not too small, dimensionality estimation is very reliable. For all scalexigmtation
errors are below @°.

The same experiments were performed for the spherical section in thenpeesf outliers.
Quantitative results are shown in the following tables for a number of outliatsdhges from 900
(equal to the inliers) to 5000. The latter data set is shown in Figure 8(®.oltliers are drawn
from a uniform distribution inside an extended bounding box of the datde Nat performance
was evaluated only on the points that belong to the sphere and not the outkeger values of
the scale prove to be more robust to noise, as expected. The smallest ehthe scale result
in voting neighborhoods that include less than 10 points, which are insufficTaking this into
account, performance is still good even with wrong parameter selection.nake that one could
reject the outliers by thresholding, since they have smaller eigenvalueththamiers, and perform
tensor voting again to obtain even better estimates of structure and dimensioBaéty a single
pass of tensor voting, however, turns out to be very effective,cipeconsidering that no other
method can handle such a large number of outliers. Foregoing the low-dimahembedding is
a main reason that allows our method to perform well in the presence of, istise embedding
random outliers in a low-dimensional space would make their influence mimdetal. This is
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o Average | Orientation| Dimensionality
Neighbors| Error(°) | Estimation (%)
10 5 0.06 4
20 9 0.07 90
30 9 0.08 90
40 12 0.09 90
50 20 0.10 100
60 20 0.11 100
70 23 0.12 100
80 25 0.12 100
90 30 0.13 100
100 34 0.14 100

Table 4: Results on the cylinder data set. Shown in the first columrimsthe second is the average
number of neighbors that cast votes to each point, in the third the averagéedegrees
of the estimated normals, and in the fourth the accuracy of dimensionality estimation

o Average | Orientation| Dimensionality

Neighbors| Error(°) | Estimation (%)
10 5 0.20 44
20 9 0.23 65
30 11 0.24 93
40 20 0.26 94
50 21 0.27 94
60 23 0.29 94
70 26 0.31 94
80 32 0.34 94
90 36 0.36 94
100 39 0.38 97

Table 5: Results on the sphere data set. The columns are the same as in Table 4

due to the structure imposed to them by the mapping, which makes the outlierandssn;, and
due to the increase in their density in the low-dimensional space compared to tha original
high-dimensional space.

5.3 Data with Non-uniform Density

We also conducted two experiments on functions proposed in Wang ed@h)(ZI'he key difficulty
with these functions is the non-uniform density of the data. In the first ebeamip attempt to
estimate the tangent at the samples of:

X = [cogt;) sin(ti)]T ti € [0,10, ti; 1 —t = 0.1(0.001+ |cogt;)|) (8)
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Outliers 900 3000 5000
o OE DE OE DE OE DE
10 1.15 44 3.68 41 6.04 39
20 0.93 65 295 52 4.73 59
30 0.88 92 2.63 88 415 85
40 0.88 93 249 90 3.85 88
50 0.90 93 241 92 3.63 91
60 093 94 2.38 93 3.50 93
70 097 94 2.38 93 3.43 93
80 1.00 94 2.38 94 3.38 94
90 1.04 95 2.38 95 3.34 94
100 1.07 97 239 95 331 95

Table 6: Results on the sphere data set contaminated by noise. OE: eroomial estimation in
degrees, DE: percentage of correct dimensionality estimation.

(a) Samples from Eqg. 8 (b) Samples from Eq. 9

Figure 9: Input data for the two experiments proposed by Wang et &5§20

where the distance between consecutive samples is far from unifornkigige 9(a) for the inputs
and the second column of Table 7 for quantitative results on tangent estirf@tib®2 points as a
function of scale.

In the second example, which is also taken from Wang et al. (2005), momsniformly sam-
pled on the-axis from the [-6, 6] interval. The output is produced by the followingdiion:

X = [t 10e*‘i2]. 9)

The points, as can be seen in Figure 9(b), are not uniformly spacesl.gqUdmtitative results on
tangent estimation accuracy for 180 and 360 samples from the same iatervaported in the last
two columns of Table 7. Naturally, as the sampling becomes denser, the gitiigyepproximation
improves. What should be emphasized here is the stability of the results astafiuofo. Even
with as few as 5 or 6 neighbors included in the voting neighborhood, thetarg each point is
estimated quite accurately.
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o Eg. 8 Eg. 9 Eqg. 9
152 points | 180 points | 360 points
10 0.60 4.52 2.45
20 0.32 3.37 1.89
30 0.36 2.92 1.61
40 0.40 2.68 1.43
50 0.44 2.48 1.22
60 0.48 2.48 1.08
70 0.51 2.18 0.95
80 0.54 2.18 0.83
90 0.58 2.02 0.68
100 0.61 2.03 0.57

Table 7: Error in degrees for tangent estimation for the functions of Eqd&Eq. 9.

6. Geodesic Distances and Nonlinear Interpolation

In this section, we present an algorithm that can interpolate, and thusqarogw points, on the
manifold and is also able to evaluate geodesic distances between points.f Batheocapabilities
are useful tools for many applications. The key concept is that the intrirgnde between any
two points on a manifold can be approximated by taking small steps on the maibdie;ting
votes, estimating the local tangent space and advancing on it until the diestisaeached. Such
processes have been reported in Mordohai (2005) ADetlal. (2007a) and Ddit et al. (2007b).

Processing begins by learning the manifold structure, as in the previdiensesually starting
from unoriented points that are represented by ball tensors. Thesele& a starting point that has
to be on the manifold and a target point or a desired direction from the stading At each step,
we can project the desired direction on the tangent space of the cpoiehaind create a new point
at a small distance. The tangent space of the new point is computed bytioglleates from the
neighboring points, as in regular tensor voting. Note that the tensorshesedre no longer balls,
but the ones resulting from the previous pass of tensor voting, acgotaiAlgorithm 1, step 3.
The desired direction is then projected on the tangent space of the netapdiso forth until the
destination is reached. The process is illustrated in Figure 10, wheremvi@tapointA and wish
to reachB. We project, the vector fromA to B, on the estimated tangent spaceAadnd obtain its
projectionp. Then, we take a small step alofigo pointA;, on which we collect votes to obtain
an estimate of its tangent space. The desired direction is then projected mgeait space of
each new point until the destination is reached withiiThe geodesic distance betweandB is
approximated by measuring the length of the path. In the process, welbaxgeaerated a number
of new points on the manifold, which may be a desirable by-product for sqpkcations.

There are certain configurations that cannot be handled by the algatéhonibed above with-
out additional precautions. One such configuration is when the soudEstination point or both
are in deep concavities which attract the desired direction if the stepAttorA; is not large enough
to move the path outside the concave region. A multi-scale implementation of the atioeme
can overcome this problem. A few intermediate points can be marked usingeaviug for the
step and then used as intermediate destinations with a finer step size. Undeh#nse, the path
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Figure 10: Nonlinear interpolation on the tangent space of a manifold.

converges to the destination and the geodesic distance is approximatestelgaising a small step
size. A second failure mode of the simple algorithm is for cases where tiredidérection may
vanish. This may occur in a manifold such as the “Swiss Roll” (Figure 6) if tetidation lies on
the normal space of the current point. Adding memory or inertia to the systen the desired
direction vanishes, effectively addresses this situation. It should teel tloat our algorithm does
not handle holes and boundaries properly at its current stage dbgevent.

6.1 Comparison with State-of-the-Art algorithms

The first experiment on manifold distance estimation is a quantitative evalugf#nsa some of
the most widely used algorithms of the literature. For the results reported ia atve learn the
local structure of the cylinder and sphere manifolds of the previous segfimg tensor voting.
We also compute embeddings using LLE (Roweis and Saul, 2000), Isoreapr{daum et al.,
2000), Laplacian eigenmaps (Belkin and Niyogi, 2003), HLLE (Donohd &rimes, 2003) and
SDE (Weinberger and Saul, 2004). Matlab implementations for these methodeadownloaded
from the following internet locations.

e LLE from http://www.cs.toronto.edu/ ~ roweis/lle/code.html

e Isomap fromhttp://isomap.stanford.edu/

e Laplacian Eigenmaps frohitp://people.cs.uchicago.edu/ ~ misha/ManifoldLearning/
index.html

e HLLE from http://basis.stanford.edu/HLLE and

e SDE fromhttp://www.seas.upenn.edu/ ~ kilianw/sde/download.htm

We are grateful to the authors for making the code for their methods avaitatile community.
We have also made our software publicly available at:

http:/firis.usc.edu/ ~ medioni/download/download.htm

The experiment is performed as follows. We randomly select 5000 paipgiofs on each
manifold and attempt to measure the geodesic distance between the points paeac the input
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space using tensor voting and in the embedding space using the other figmethe estimated
distances are compared to the ground trutkf for the sphere ang/(rA8)2 + (Az)? for the cylin-
der. Among the above approaches, only Isomap and SDE produce ignemelreddings, and only
Isomap preserves the absolute distances between the input and the egplspdde. To make the
evaluation fair, we compute a uniform scale that minimizes the error betwearothputed dis-
tances and the ground truth for all methods, except Isomap for which dgtisetessary. Thus,
perfect distance ratios would be awarded a perfect rating in the evalpatien if the absolute
magnitudes of the distances are meaningless in the embedding space. Feraddloffithms, we
tried a wide range for the number of neighbdfs, In some cases, we were not able to produce
good embeddings of the data for any valuekof This occurred more frequently for the cylinder,
probably due to its data density not being perfectly uniform. Errors aB0%& indicate very poor
performance, which is also confirmed by visual inspection of the embesiding

Even though among the other approaches only Isomap and SDE prodonetris embeddings,
while the rest produce embeddings that only preserve local structarhink that the evaluation of
the quality of manifold learning based on the computation of pairwise distanadairaneasure for
the performance of all algorithms, since high quality manifold learning shoulamze distortions.
The distances on which we evaluate the different algorithms are both ladgsaaall, with the latter
measuring the presence of local distortions. Quantitative results, in theofdhe average absolute
difference between the estimated and the ground truth distances as atpgecef the latter, are
presented in Tables 8-10, along with the parameter that achieves theebiestiance for each
method. In the case of tensor voting, the same scale was used for boihdeue manifold and
computing distances.

We also apply our method in the presence of 900, 3000 and 5000 outlieils, tive inliers
for the sphere and the cylinder data sets are 900 and 1000 respectikelputliers are generated
according to a uniform distribution. The error rates using tensor votinthesphere are 0.39%,
0.47% and 0.53% respectively. The rates for the cylinder are 0.77%0lahd 1.22%. Compared
with the noise free case, these results demonstrate that our approeatiadegjowly in the presence
of outliers. The best performance achieved by any other method is 3.5418 sphere data set with
900 outliers by Isomap. Complete results are shown in Table 9. In many, ease@gere unable to
achieve useful embeddings for data sets with outliers. We were not aldeftorn this experiment

Data Set Sphere Cylinder

K Err(%) | K Err(%)
LLE 18 5.08 6 26.52
Isomap 6 1.98 30 0.35
Laplacian Eigenmaps| 16 11.03 | 10 29.36
HLLE 12 3.89 40 26.81
SDE 2 5.14 6 25.57
TV (0) 60 0.34 50 0.62

Table 8: Error rates in distance measurement between pairs of pointsioarifelds. The best re-
sult of each method is reported along with the number of neighbors useefemibedding
(K), or the scala in the case of tensor voting (TV).
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Data Set Sphere Cylinder
900 outliers 900 outliers

K Err(%) | K Err(%)
LLE 40 60.74 | 6 15.40
Isomap 18 3.54 14 11.41
Laplacian Eigenmaps| 6 13.97 14 27.98
HLLE 30 8.73 30 23.67
SDE N/A N/A
TV (0) 70 0.39 100 0.77

Table 9: Error rates in distance measurement between pairs of pointsroatifelds under outlier
corruption. The best result of each method is reported along with the mwhbeighbors
used for the embeddind{, or the scales in the case of tensor voting (TV). Note that
HLLE fails to compute an embedding for small valueskaf while SDE fails at both
examples for all choices d¢f.

Data Set o Error rate
Sphere (3000 outliers) 80 0.47
Sphere (5000 outliers) 100 0.53
Cylinder (3000 outliers) 100 1.17
Cylinder (5000 outliers) 100 1.22

Table 10: Error rates for our approach for the experiment of Sectibinghe presence of 3000
and 5000 outliers.

in the presence of more than 3000 outliers with any graph-based methd@dbprdecause the
graph structure is severely corrupted by the outliers.

6.2 Data Sets with Varying Dimensionality and Intersections

For the final experiment of this section, we create synthetic data in 3-D thia @mbedded in
higher dimensions. The first data set consists of a line and a cone. Trite pre embedded in
50-D by three orthonormal 50-D vectors and initialized as ball tensorssorFeroting is performed
in the 50-D space and a path from point A on the line to point B on the cone ipaked as
in the previous experiment, making sure that it belongs to the local tangace,sywhich changes
dimensionality from one to two. The data is re-projected back to 3-D for Wisi@n in Figure
11(a).

In the second part of the experiment, we generate an intersecting 8dstiaface and a plane
(atotal of 11,000 points) and 30,000 outliers from a uniform distributiod ,eanbed them in a 30-D
space. Without explicitly removing the noise, we interpolate between two pairttedS (A and B)
and a point on the S and a point on the plane (C and D) and create thehlmathmsis Figure 11(b) re-
projected in 3-D. The first path is curved, while the second jumps from widrd manifold without
deviating from the optimal path. (The outliers are not shown for clarity.p&ssing time for 41,000
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i

(a) Line and cone (b) S and plane

Figure 11: Nonlinear interpolation in 50-D with varying dimensionality (a) a@eD3with inter-
secting manifolds under noise corruption (b).

points in 30-D is 2 min. and 40 sec. on a Pentium 4 aGH& using voting neighborhoods that
included an average of 44 points.

7. Generation of Unobserved Samples and Nonparametric Fution Approximation

In this section, we build upon the results of the previous section to addnestsan approximation.
A common practice is to treat functions with multiple outputs as multiple single-outpatifuns.
We adopt this scheme here, even though nothing prohibits us from dirpptlgxdamating multiple-
input multiple-output functions. We assume that observations-d that include values for the
input and output variables are available for training. The difference tiviéthexamples of the pre-
vious sections is that the queries are given as input vectors with unkootpat values, and thus
are of lower dimensionality than the voting space. The required module tertdhis problem to
that of Section 6 is one that can find a point on the manifold that correspormasinput similar to
the query. Then, in order to predict the outguif the function for an unknown inp& under the
assumption of local smoothness, we move on the manifold formed by the traammges until we
reach the point corresponding to the given input coordinates. Taetisat we always remain on
the manifold, we need to start from a point on it and proceed as in the peeséxtion.

One way to find a suitable starting point is to find the nearest neighbbdmothe input space,
which has fewer dimensions than the joint input-output (voting) spacen, Wxe can compute the
desired direction in the low dimensional space and project it to the input-ospiace. If many
outputs are possible for a given input (if the data have not been deddss a function in the
strict sense), we have to either find neighbors at each branch ofribedin and produce multiple
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»
>

Xy

Figure 12: Interpolation to obtain output value for unknown input p&jnB; is the nearest neigh-
bor in the input space and correspondBtin the joint input-output space. We can
march fromB on the manifold to arrive at the desired solutidathat projects o in
the input space.

outputs, or use other information, such as the previous state of the systaumst@ only one of the
alternatives. One could find multiple nearest neighbors, run the pro@dgerithm starting from
each of them and produce a multi-valued answer with a probability assowdtedach potential
output value.

Figure 12 provides a simple illustration. We begin with a pdintin the input space. We
proceed by finding its nearest neighbor among the projections of the tyalata on the input space
B;. (Even ifB; is not the nearest neighbor the scheme still works but possibly requinessteps.)
The sampleB in the input-output space that correspondBites the starting point on the manifold.
The desired direction is the projection of tAd; vector on the tangent space Bf Now, we are
in the case described in Section 6, where the starting point and the deseetiod are known.
Processing stops when the input coordinates of the point on the pattBfasenwithine of A;. The
corresponding poind in the input-output space is the desired interpolated sample.

As in all the experiments presented in this paper, the input points are ehaedmll tensors,
since we assume that we have no knowledge of their orientation. We finsipatie approximate
the following function, proposed by Schaal and Atkeson (1998):

y=maxe 104 g50% 1 25504 +%)) (10)

1681 samples of are generated by uniformly sampling thel, 1] x [—1,1] square. We perform
four experiments with increasing degree of difficulty. In all cases, &figng on the given inputs,
we generate new samples by interpolating between the input points. Thedioligurations and
noise conditions were:

¢ In the first experiment, we performed all operations with noise free datdin 3

e For the second experiment, we added 8405 outliers (five times more than the) idfi&wn
from a uniform distribution in a Z 2 x 2 cube containing the data.

e For the third experiment, we added Gaussian noise with variai®©det6 the coordinates of
all points while adding the same number of outliers as above.
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(a) Noise free inputs (b) Inputs with outliers

(c) Interpolated points with (d) Interpolated points with
outliers and perturbation outliers and perturbation in 60-D

Figure 13: Inputs and interpolated points for Eq. 10. The top row shosvadise-free inputs and
the noisy input set where only 20% of the points are inliers. The bottom howsthe
points generated in 3-D and 60-D respectively. In both cases the ingutscontami-
nated with outliers and Gaussian noise.

¢ Finally, we embedded the perturbed data (and the outliers) in a 60-D $mdoes voting and
nonlinear interpolation.

The noise-free and noisy input, as well as the generated points carénseigure 13. We
computed the mean square error between the outputs generated by oud @redh&q. 10 nor-
malized by the variance of the noise-free data. The NMSE for all casepdsted in Table 11.
Robustness against outliers is due to the fact that the inliers form a consistéace and thus re-
ceive votes that support the correct local structure from other inl@@tgliers, on the other hand,
are random and do not form any structure. They cast and receaigasistent votes and therefore
neither develop a preference for a certain manifold nor significantlyishe structure estimates
at the inliers. They can be removed by simple thresholding since all theineiges are small and
almost equal, but this is not done here. Note that performance in 60-Duisllgdoetter since the
interference by outliers is reduced as the dimensionality of the spacesasreensor voting is also
robust against perturbation of the coordinates as long as it is not bim$amebr a certain direction.
If the perturbation is zero-mean, its effects on individual votes arettallg canceled out, because
they only contribute to the ball component of the accumulated tensor at eatth gausing small
errors in orientation estimation.
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Experiment NMSE
Noise-free 0.0041
Outliers 0.0170
Outliers & N(0, 0.01) 0.0349
Outliers & N(0, 0.01) in 60-D 0.0241

Table 11: Normalized MSE for the interpolated points of Eq. 10 under diffemoise conditions.

7.1 Results on Real Data

The final experiments are on real data taken from the University of Caiif@t Irvine Machine

Learning Repository (Newman et al., 1998) available online at
http://lwww.ics.uci.edu/ ~ mlearn/MLRepository.html and the University of Toronto DELVE
archive {ttp://www.cs.toronto.edu/ ~delve )(Rasmussen et al., 1996). We used the “abalone”,

“Boston housing” and “Computer activity” data sets. These data sets seégeted because they
contain data from a single class in spaces of 9, 14 and 22 dimensionstiesigeln each case one
variable is treated as the output and all others as inputs. Most of the iapables are continu-
ous, but vary widely in magnitude. Since our method is based on distantienskips between
the samples, we re-scaled the data so that the ratio of maximum to minimum staedattbd of
the variables was approximately 10 : 1, instead of the original, which farabgases exceeded
1000 : 1. We split the data in training and test sets and perform tensor autitige training data to
learn the structure of the manifold. For each test sample, we begin by findirayénage position
of a few nearest neighbors in thil — 1)-D input space and then follow a path on the estimated
manifold in N-D until the desired input coordinates are reached. The value of thetotagable
when the input variables are equal to the query is the estimate returned imethod.

In the case of the “abalone” data, we follow common practice and map thedirable from M
for male, F for female and | for infant to (1, 0, 0), (0, 1, 0) and (O, Jxebpectively. The resulting
space is 12-D, with the last variable being the one we attempt to estimate. Agascale the data
so that the variances of different variables are comparable. Followingant®ors, we divide the
4177 samples in training and test sets containing 3000 and 1177 sampladtivesp Our results
after 10 runs of the experiment with randomly selected training and testrebss@mparison with
a number of other published results on the same data can be seen in Tallle &&o applied our
algorithm to the “Boston housing” data set, which has been extensivetyasa benchmark. It
contains 506 samples of house prices as a function of 13 variables. &\eairéing and test sets
containing 481 and 25 points respectively. Due to the small size of the testeseepeated the
experiment 20 times always using as queries points that had not been thislute test set before,
thus using virtually all points for queries. Error rates can be seen in T2bl€inally, we used the
“computer activity” data set from the DELVE archive (Rasmussen et 8861 It contains 8192
observations in a 22-D space. We used 2000 samples for training arebtherrtesting.

In summary, our algorithm achieves what we think is satisfactory perfarendaspite the fact
that the data sets contain insufficient samples to describe complex manifblispdrseness of the
data under-uses the capability of our approach to handle complex nomiaeédolds. We observed
that for certain query points there are very few similar samples in the traieingnsthe absence of
enough samples, our algorithm may not improve the initial solution given byeaeest neighbors
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of the point. These errors cause the ranking of our results in terms oftBBSworse than in terms
of mean absolute error (MAE) in Table 12.

Abalone Housing Computer

MAE RMS | MAE RMS | MAE RMS
BCM (Tresp, 2000) - - - 3.100 | - -
GPRL1 (Tresp, 2000) - - - 3.013 | - -
RVM (Tipping, 2001) - - - 8.04 |- -
SVM (Tipping, 2001) - - - 7.46 | - -
Sparse GPR (Smola and Bartlett]l.785 - - - - -
2001)
GPR2 (Smola and Bartlett, 2001) | 1.782 - - - - -
Online GPR (Schwaighofer and- 2111 - - - -
Tresp, 2003)
BCM2 (Schwaighofer and Tresp,- 2111 - - - -
2003)
Inductive SRM (Schwaighofer and- 2.109] - - - -
Tresp, 2003)
Transductive SRM (Schwaighofer- 2.109 | - - - -
and Tresp, 2003)
SVR (Chu et al., 2004) 1.421 2.141 | 2.13 3.205| 2.28 3.715
BSVR (Chu et al., 2004) 1.464 2.134| 2.19 3.513| 2.33 4.194
GPR-ARD (Chu et al., 2004) 1.493 2.134| 2.01 2.884 | 1.686 2.362
BSVR-ARD (Chu et al., 2004) 1.454 2.119| 1.86 2.645| 1.687 2.408
Tensor voting 1.630 2.500 | 1.272 1.860 | 1.970 2.815

Table 12: Mean Absolute Error (MAE) and Root Mean squared ERMS) for benchmark data
sets. Unless otherwise noted, training and testing is performed with 30Q0L&Adsam-
ples for “abalone”, 481 and 25 for “Boston housing” and 2000 ar@R&br “computer
activity”, respectively. Results by other methods were not generated bBCM is the
Bayesian committee machine of Tresp (2000) and GPR1 is Gaussian pregesssion
implemented by Tresp. 400 samples are used for training for “Boston lyfuemBCM
and GPR1. RVM is the relevance vector machine of Tipping (2001) and &\dksup-
port vector machine implemented by Tipping. Sparse GPR is the algorithm of Smbla
Bartlett (2001) and GPR2 is their implementation of Gaussian process segred4000
samples are used for training for the “abalone” data set for Sparse@GiPE&PR2. Online
GPR is the algorithm of Csatand Opper (2002), BCM2 is the Bayesian committee ma-
chine implemented by Schwaighofer and Tresp (2003), while inductivérandductive
SRM are algorithms from the same paper. The number of training and testimjesa
is not provided by the authors for Online GPR, BCM2, inductive and thactive SRM.
SVR is the support vector regression of Vapnik (1995), BSVR is Bayesipport vector
regression of Chu et al. (2004), GPR-ARD is Gaussian processssgn using the ARD
Gaussian covariance function and BSVR-ARD is BSVR using the ARDtiom¢Chu
et al., 2004).
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8. Discussion

We have presented an approach for dimensionality estimation, manifold lgamihfunction ap-
proximation that offers certain advantages over the state of the art. riesm may on the surface
look similar to other local, instance-based learning algorithms that propaf@ateation from point
to point, but the fact that the votes are tensors and not scalars allowsdhamvey considerably
more information. The properties of the tensor representation, whicharatiénthe simultaneous
presence of multiple orientations and structure types, allow the reliablernctew the normal and
tangent space at each point. In addition, tensor voting is very robastsagutliers, as demon-
strated for the 2-D and 3-D case in numerous publications including Tahlyladioni (1998) and
Medioni et al. (2000). This property holds in higher dimensions, whemdam noise is even more
scattered. See for instance the results presented in Table 11.

It should also be noted that the votes attenuate with distance and curvatieeis a more
intuitive formulation than using thi nearest neighbors with equal weights, since some of them
may be too far, or belong to a different part of the manifold. For both terdng and the methods
presented in Section 2, however, the distance metric in the input space @asneaningful. Our
method is less sensitive to a somewhat incorrect selection of the distancesimeteiall neighbors
do not contribute equally. After this choice has been made, the only fraeneger in our approach
is 0, the scale of voting. Small values tend to preserve details better, while lalgesvare more
robust to noise. The scale can be selected automatically by randomly samf#imgpaints before
voting and making sure that enough points are included in their voting neigbbds. Our results
show that sensitivity with respect to scale is small, as shown in Tables B &d-7. The number of
points that can be considered sufficient is a function of the dimensionalifeeapace, the intrinsic
dimensionality of the data, as well as noise and curvature. The two latterddetee been analyzed
by Mitra et al. (2004) and Lalonde et al. (2005), using the GershgdraieCTheorem, for the case
of curves in 2-D and surfaces in 3-D under mild restrictions on data distibulo the best of our
knowledge no similar analysis has been done for manifolds with co-dimensientban one or in
high-dimensional spaces. A thorough investigation of these issues is ahmgjectives of our
future research.

Our algorithms fail when the available observations do not suffice to septehe manifold,
as for instance in the face with varying pose and illumination data set of hanenet al. (2000),
where 698 instances represent a manifold in 4096-D. Global methods enaypte successful in
such situations. The number of sufficient samples for tensor voting tdmneasily predicted
from the dimensionality of the space, since it also depends on the complexityaliare) of the
underlying manifolds. (See also the discussion above.) For instancea#§ties in 14-D turn out
to be sufficient for the “Boston housing” function approximation experimievertheless, in many
practical cases the challenges are the over-abundance of data arethior efficient processing
of large data sets. Tensor voting is a well suited framework for suclscasee it can efficiently
process hundreds of thousands of points in spaces of up to a fewgdldichensions.

Another important advantage of tensor voting is the absence of globalutatigms, which
makes time complexityD(NMlogM), whereN is the dimensionality of the space amlis the
number of points. This property enables us to process data sets with kgeynlamber of points.
Computation time does not become impractical as the number of points gromsiagghat more
points are added to the data set in such a way that the density remains torst#nis case,
the number of votes cast per point remains constant and time requiremewtéirgrarly. Com-
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plexity is adversely affected by the dimensionality of the spd¢caince eigen-decomposition of
N x N tensors has to be performed resulting in a complexity that is cubic with respiatue to

the eigensystem computations that @@?3). For most practical purposes, however, the number
of points has to be considerably largeéhan the dimensionality of the spa¢®l > N) to allow
structure inference. The complexity for a nearest neighbor querg uséANN k-d tree (Arya

et al., 1998) iSO(NlogM) and one query is required for each voter. Thus the total complexity is
O(NMlogM+ MN?3) ~ O(NMlogM). Computational complexity, therefore, is reasonable with re-
spect to the largest parameter, which for our methods to work hashb Bable 1 shows the effect
of data set and neighborhood size on processing time. Notice that time is Witharespect to
the average number of points in each neighborhood, as expectea @gadements fo N x N
tensors ar®©(MN?).

In terms of dimensionality estimation, we are able to obtain accurate estimates airtHeyel.
Moreover, since the dimensionality is found as the maximum gap in the eigesv@ltiee tensor
at each point, no thresholds are needed. Under most other appsptiEhdimensionality has to be
provided, or, at best, an average intrinsic dimensionality is estimated fonthie data set, as in
Bruske and Sommer (1998), Brand (2003&dK(2003), Weinberger and Saul (2004) and Costa and
Hero (2004).

The novelty of our approach regarding manifold learning is that it is ns¢th@n dimension-
ality reduction. Instead, we perform tasks such as geodesic distansein@e@nt and nonlinear
interpolation in the input space. Experimental results show that we caorpettiese tasks in the
presence of outlier noise at high accuracy, even without explicitly rergavia outliers from the
data. This choice also broadens the range of data sets we can prédeds.isometric embed-
dings can be achieved for a certain class of manifolds, we are able #®sgroon-flat manifolds and
even non-manifolds. The last experiment of Section 6 demonstrates itityr mbwork with data
sets of varying dimensionality or with intersecting manifolds. To the best okonawledge, this
is impossible with any other method. If dimensionality reduction is desired due toritsderable
reduction in storage requirements, a dimensionality reduction method, siRbvass and Saul
(2000), Tenenbaum et al. (2000), Belkin and Niyogi (2003), Br&@D3), Donoho and Grimes
(2003) and Weinberger and Saul (2006), can be used after teotiog.vThe benefits of this pro-
cess are in the form of noise robustness and smooth component identifigétio respect to both
dimensionality and orientation, via tensor voting followed by memory savingsimiargionality
reduction.

We have also presented, in Section 7, a local nonparametric approfchdton approximation
that combines the advantages of local methods with the efficient représerdad information
propagation of tensor voting. Local function approximation methods are fiexible in the type of
functions they can approximate, since the properties of the function avesdllm vary throughout
the space. Our approach, in particular, has no parameters that havedietted, such as the number
and type of local models to be used, besides the scale of voting. Its driawbdine with other
local methods, is higher memory requirements. We have shown that we @egsprchallenging
examples from the literature under very adverse noise conditions. Asmshdhe example of Eq.
10, even when more than 80% of the samples are outliers and the inliersrangted by noise in
the form of perturbation, we are still able to correctly predict unobstotdputs. We have also
shown in Table 12 promising results on publicly available data sets, despitecttiibdt they are not

2. While in principal three points are sufficient to define a surface, Itpare sufficient to define a 9-D manifold and
so forth, one or two orders of magnitude more points are requiredéatipal applications in our experience.

444



DIMENSIONALITY ESTIMATION, MANIFOLD LEARNING AND FUNCTION APPROXIMATION

well suited for our approach, since the number of observations thegioas hardly sufficient to
define the manifold.

As mentioned above, an issue we do not fully address here is that oflfatiee of an appro-
priate distance metric. We assume that the Euclidean distance in the inpuinet®slystem is a
meaningful distance metric. This is not the case if the coordinates are tiwt sdme type. On the
other hand, a metric such as the Mahalanobis distance is not necesspardprégde in all cases,
since the data typically lie in a limited part of the input space and scaling all dinenysicluding
the redundant ones, to achieve equal variance would be detrimentdaheFexperiments shown in
Section 7, we apply heuristic scaling of the coordinates when neceds@rintend to develop a
systematic way based on cross-validation that automatically scales the @esdiy maximizing
prediction performance for the observations that have been left out.

Our future research will focus on addressing the limitations of our ctiatgorithm and extend-
ing its capabilities. An interpolation mechanism that takes into account holdsoamndaries during
geodesic distance approximation should be implemented. Additionally, in thefah@action ap-
proximation, the issue of approximating functions with multiple branches foraimesnput value,
which often appear in practical applications, has to be handled more ugjgrowe also intend
to develop an online, incremental version of our approach, possiblydimgjwa forgetting and an
updating module, that will be able to process data as they are collecteddin$teguiring the en-
tire data set to proceed. Potential applications of our work include challgngal problems, such
as the study of direct and inverse kinematics where there are typicallynargbers of samples
in spaces of up to a few hundred dimensions. Function approximation figple® functions, for
which global models would become very complicated, is another area wheneathods could be
effective. Finally, one can view the proposed approach as learntagiden a single class, which
can serve as the groundwork for an approach for pattern recogni@a mining, supervised and
unsupervised classification.
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