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Abstract

This paper presents a statistical model for expressingpetes through rankings, when the num-
ber of alternatives (items to rank) is large. A human rankidirtihen typically rank only the most
preferred items, and may not even examine the whole setrokjter know how many they are.
Similarly, a user presented with the ranked output of a $eamgine, will only consider the highest
ranked items. We model such situations by introducing aestesg ranking model that operates
with finite ordered lists called toperderings over an infinite space of items. We give algoritbons
estimate this model from data, and demonstrate that it Héisisnt statistics, being thus an expo-
nential family model with continuous and discrete paramseté/e describe its conjugate prior and
other statistical properties. Then, we extend the estongiroblem to multimodal data by intro-
ducing anExponential-Blurring-Mean-Shifionparametric clustering algorithm. The experiments
highlight the properties of our model and demonstrate thffitite models over permutations can
be simple, elegant and practical.

Keywords: permutations, partial orderings, Mallows model, distalpased ranking model, expo-
nential family, non-parametric clustering, branch-armdxid

1. Introduction

The stagewise ranking model of Fligner and Verducci (1986), alswikrasgeneralized Mallows
(GM), has been recognized as particularly appropriate for modeling the hummeegsp of ranking.
This model assigns a permutatiommover n items a probability that decays exponentially with its
distance to aentral permutatioro. Here we study this class of models in the limit> o, with
the assumption that out of the infinitely many items ordered, one only obgbossoccupying the
firstt ranks.

Ordering an infinite number of items is common in retrieval tasks: search engimgrams that
match a face, or a fingerprint, or a biological sequence against a dafatheoutput the firdtitems
in a ordering over virtually infinitely many objects. We shall call this outpisiat ordering. Unlike
machines, people can only reliably rank a small number of items. The GM masiélden success-
fully used to model human ranking decisions. We can view the differentecka the standard
GM model and thénfinite GM modethat we introduce here as the difference between an election
where each voter returns an ordering of a small number of preselentditiates (nominees) and a
“grassroots” election process, where everyone can nominate aadtbedr own favourites from a
virtually unlimited population. For instance, the difference between “Ordefdliowing issues by
how much you care about them” vs. “List in order the issues that yournast about” illustrates
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the difference between the standard and the Infinite GM models. By thesgkss, we argue that
the Infinite GM corresponds to realistic scenarios. An even more realist@aso, that we will not
tackle for now, is one where a voter (ranker) does not have acc#ss wehole population of items
(e.g., a search engine only orders a subset of the web, or a revialyesvaluates a subset of the
submissions to a conference).

After defining the infinite GM model, we show that it has sufficient statisticggwelalgorithms
for estimating its parameters from data in the Maximum Likelihood (ML) framew®dkbe noted
that our model will have an infinite number of parameters, of which only a fmitaber will be
constrained by the data from any finite sample.

Then, we consider the non-parametric clustering ofttogmking data. Non-parametric cluster-
ing is motivated by the fact that in many real applications the number of clistecs known and
outliers are possible. Outliers are known to throw off estimation in an expahemodel, unless
the tails are very heavy. We introduce an adapted version of the wellrk@aussian Blurring
Mean-Shift algorithm (Carreira-Pefjgin, 2006) (GBMS) that we call exponential blurring Mean
Shift (EBMS).

2. The Infinite Generalized Mallows Model

In this section, we give definitions of key terms used in the article and inteothetnfinite Gener-
alized Mallowg(IGM) model.

2.1 Permutations, Infinite Permutations and topt Orderings

A permutationo is a function from a set otems{iy, i2,...in} to the set ofranks1 :n. W.l.o.g.
the set of items can be considered to be the set Thereforeo(i) denotes theank of itemi and
o~1(j) denotes the item at ranjkin o.

There are many other ways to represent permutations, of which we withuse, theranked
list, thematrix and theinversion tablerepresentation; all three will be defined shortly.

In this paper, we consider permutations over a countable set of itemsed$or convenience
to be the the set of positive natural numb@rs: {1,2,...,i...}. Itis easy to see that the notations
a(i),0(j) extend immediately to countable items. This will be the case with the other definitions;
hence, from now on, we will always consider that the set of iten#s is

Any permutationo can be represented by the (infinitepked list(c=1(1)|c=%(2)]...|o7%(})|
...). For example, let = (2|3|1/|5|6/4|...|3n—1|3n|3n—2|...). Thena(1) = 3 means that item 1
has rank 3 in this permutationf2) = 1 means that item 2 has rank 1, etc. Conversely(1) = 2
ando~1(3j) = 3j — 2 mean that the first in the list representatiorwa$ item 2, and that at rank;j3
is to be found item B— 2, respectively. Often we will call the list representation of a permutation
anordering

A top- orderingmtis the prefix(rt(1)[rr1(2)|...|mL(t)) of some infinite ordering. For in-
stance, the top-3 ordering of the abaves (2|3|1).

A top-t ordering can be seen as defining a set consisting of those infinite ayglevhrich start
with the prefixmt If we denote bySp the set of all permutations ov@ and bySp ¢ = {0 €
Sp|o(i) =i, fori = 1:t} the subgroup of all permutations that leave the ttopnks unchanged,
then a topt orderingrt corresponds to a unique element of the right cOsétp ;.

We will use Greek letters liket and o for both full permutations and for toperderings to
keep the notation light. But we will distinguish almost always between “cep&ahutations”
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ideal infinite objects denoted ly, and observed orderings, denotedrhyvhich by virtue of being
observed, are always tdp- that is, truncated. Hence, unless otherwise statedill denote a
top+ ordering, whileo will denote an infinite permutation.

2.2 The Permutation Matrix Representation and the Inversion Table

Now we introduce the two other ways use to represent permutations ah@tderings.

For anyo, the permutation matrixz corresponding t@ hasZ;j; = 1 iff o(i) = j andZj; =0
otherwise. Ifg is an infinite permutationy. will be an infinite matrix with exactly one 1 in every
row and column. For two permutatioms o’ over P, the matrix producEZ’ corresponds to the
function compositiorn’ o a.

The matrixIN of a topt orderingrtis a truncation of some infinite permutation mateixIt has
t columns, each with a single 11r(j), for j = 1:t.

For example, io = (2/3|1/7/4|...) andTt= (2|3|1) is its top-3 ordering, then

0 0o ... 0

and N = 1)

™M

I
coor o
coor
oooo
or oo
coor

0
1
0

= OO
(oo

For a permutatiow and a topt orderingr, the matrix=" I corresponds to the list of ranks dnof
the items inrt In this context, one can consideras a one-to-one relabeling of the Bet
Theinversion tableof a permutatioro, with respect to the identity permutation id is an infinite
sequence of non-negative integéss, s, ...) which are best defined algorithmically and recur-
sively. We consider the ranked li&t|2(3]...). In it, we findo~%(1) the first item ofo, and count
how many positions past the head of the list it lies. Thig j@nd it always equals—(1) — 1. Then
we delete the entrg—1(1) from the list, and look uw—(2); s is the number of positions past the
head of this list where we find~%(2). We then delete—1(2) as well and proceed to fina~1(3),
which will give ussg, etc. By induction, it follows that an infinite permutation can be represented
uniquely by the lis{(s, s,...). Hencesj € {0,1,2,...}, and, denoting by} the function which is
1 if the predicate is true and is 0 otherwise, we have

sj(0) = o7 1(j)—1- 2 L)< (i)
i'<j

Itis also easy to see that,ifis a topt ordering, it can be uniquely represented by an inversion table
of the form(sy,...s). If Ttis the topt ordering of an infinite permutatiom, then the inversion table
of 1tis thet-prefix of the inversion table af. This property makes the inversion table particularly
convenient for our purposes.

For example, ib = (2|3|1|7|4|...) andmt= (2|3|1), thens; (0) = s1(TT) = 1, $(0) = S(10) =1,
$3(0) = s3(10) = 0, 54(0) = 3, 55(0) =0, etc.

The inversion table has a particularly simple interpretation in the matrix refedssnofo or
Tt 1 equals the number of zeros preceding 1 in column 1; we delete the row dogtdiis 1, then
count the number of zeros in column 2 preceding the 1 to olstaiwe delete the row containing
this 1, then go to column 3 to count the zeros preceding the 1 in column 3 intordetainss, and
so on. The reader can verify thats(m) = (1, 1, 0) from the matrix'1 in Equation (1) above.
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Another property of the inversion table is that it can be defined with régpeany infinite
permutationoy, by letting the ordered list corresponding dg replace the lis{1/2/3]...) in the
above definition of the inversion table as follows:

sj(0log) = go(071(j)) —1— _Z1[oo<crl(j'))<oo(crl(j))]- 2
i'<i
In other words, %-s; is the rank ofo~*(j) in G0 |p\ (5-1(1),..0-2(j—1)} -
In matrix representatiors; (o|op) is the number of 0’'s preceding the 1 in the first column of
50 %; after we delete the row containing thissk(a|ay) is the number of 0’s preceding the 1 in the
second column, and so on. For a toprderingT, this operation is done on the mati} M.
For example, fort= (3|2|1) andop = (3|4/2|1]...) the matrix representation is

Or OO
= O OO

ands; (Top) = 0, sp(1M0p) = 1, s3(1M0p) = 1.

If oo is given,Ttis completely determined by the inversion table(mo). Equation (2) can
be interpreted as a recursive algorithm to construtbm o, which we briefly describe here. We
imagineo to be an ordered list of available items. From it, we choose the first rambkynskipping
the firsts; ranks ino and pickingrr (1) = 0~ 1(s; + 1). Oncert1(1) is picked, this item is deleted
from the orderingo. From this new list of available items, the second rankrtiis picked by
skipping the firsts, ranks, and chosing the item in tli® + 1)-th rank. This item is also deleted,
and one proceeds to choase'(3), T 1(4),... 1 L(t), etc. in a similar manner. This reconstruction
algorithm proves that the representatisi:) uniquely determinesl It is also easy to see thatrif
is a prefix ofg, that is, ifrr2(j) = o~ 1(j) for j =1:t, thens; =, = ... =5 = 0.

For an example we now show how to reconstmet (3|2|1) usingo = (3|4|2[1|...). Recall
that the inversion table afis given bys; (o) = 0, s;(TM0) = 1, s3(110) = 1.

Stage ™ o Comments

Initial () (314211]...)

i=1 (3 (3|421]...)  Skips; = 0 ranks fromo, then assign the current itemto?(1)
i=2 (32 (34/2/1]...) Skips; = 1 ranks fromo, then assign the current itemto?(2)

i=3 (3]2]1) (B|4|2|A|...) Skipsz= 1ranks fromo, then assign the current itemto?(3)

The definition of the inversion tabkis identical to the first equation of Section 3 from Fligner
and Verducci (1986). A reciprocal definition of the inversion table msdulsy Meik et al. (2007)
and Stanley (1997) and is typically denoted(®y, V>, ...). The “V” form of the inversion table is
closely related to the inversion table we use here. We discuss this relatiam&gption 7.

2.3 Kendall Type Divergences

For finite permutations af itemsmando,
n—-1 n—-1
de (o) = 3 sj(mo) = 3 sj(a[m
=1 =1
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denotes thékendall distancgMallows, 1957) (orinversion distancewhich is a metric. In the
above, the index runs only ton — 1 because for a finite permutatiaqn,= 0. The Kendall distance
represents the number of adjacent transpositions needed tattnto 0. An extension of the
Kendall distance which has been found very useful for modeling paeswas introduced by Fligner
and Verducci (1986). Itis

n-1
de(TLO) = z 0jsj(1o),
=1

with 8 = (01, ...6,_1) a vector of real parameters, typically non-negative. Notedhét in general
not symmetric, nor does it always satisfy the triangle inequality.
For the case of countable items, we introduce the divergence

t
do(T0) =  6;sj(M0), 3)
=

whereTtis a topt ordering,o is a permutation inSp, and® = (611) a vector ofstrictly positive
parameters.

When6; are all equatlg(1t,0) is proportional to the Kendall distance betweeand the set of
orderings compatible wititand counts the number of inversions needed to nsad@mpatible with
Tt In general, this “distance” between a tbprdering and an infinite ordering isset distance

2.4 A Probability Model over top-t Rankings of Infinite Permutations

Now we are ready to introduce thefinite Generalized MallowfGM) model. We start with the
observation that as any taprdering can be represented uniquely by a sequenteatfiral num-
bers, defining a distribution over the former is equivalent to defining alalition over the latter,
which is a more intuitive task. In keeping with the GM paradigm of Fligner andiMeci (1986),
eachs; is sampled independently from a discrete exponential with parafgete0.

1
P(si) = e®si, s5=0012... (4)
V(e ’
The normalization constant is
TCI D ©)
= 1-e?®
and the expectation o is E[sj|6j] = :?ej = eeil—l the well known expectation of the discrete

geometric distribution. Now we fix a permutatian Since anyr is uniquely defined by and
the inversion tables; +(110), Equations (4) and (5) define a distribution over toprderings, by
Po () = |‘|tj:l P(sj(mio)). This is equivalent to

Pog(T) = € 541185 (100)+Inw(8;)] ©)

1. Definition 3 can be easily extended to a pmio’ € Sp, but in this case the divergence will often take infinite values.

2. A set distance, often called “distance” between two sets, is the minimuamdésbetween elements in different sets,
that is,8(A, B) = minyca yep 8(X,y) for a metric or divergencd. The set distance is not a metric, as it can easily be
shown by counterexample.
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The aboveP (1) has a@-dimensional real paramet@rand an infinite-dimensional discrete param-
etero. The normalization constamJ 1W(8j) ensures that

Pog(mm) = 1.

TEtop+ orderings of?

In contrast with the finite GM, the paramet&ismust be strictly positive for the probability distri-
bution to exist. The most probabtefor any givent hass; (o) = ... = s(mo) = 0. This is the
top+ prefix of o.

The permutatiow is called thecentral permutatiorof Py ;. The parameter@ control the spread
around the mode. Larger6; correspond to more concentrated distributions. These facts are direct
extensions of statements about the GM model from Fligner and Verdw@86)®and therefore the
detailed proofs are omitted.

What is different about the IGM model definition w.r.t its finite counterpattié the parameter
o is now an infinite sequence instead of a finite one. Another difference adifed condition that
8; > 0 which ensures thap(6;) is finite. This condition is not necessary in the finite case, which
leads to the non- |dent|f|ab|I|?y0f the parameteo.

If 60 =6, =... =0 the IGM model is called @ingle parametetGM model. In this case
Equation (6) simplifies to

Pe,o(T[) _ fez‘j:lsj(mo)ftlnw(e).

2.5 The IGM Model is a Marginal Distribution

Any top+ orderingrtstands for a set of infinite sequences starting wiirio). ThereforePy (1)
can be viewed as the marginalsf; in the infinite product space defined by the distribution

Pog(s) = e ZmBisiHnb@)l  se NxNx....

Because every infinite sequereaniquely determines an infinite permutation, the distribution (6)
also represents the probability of tiieelement of the right cosel / Sp_t, that is, the set of infinite
permutations that havetr 1(1)|r2(2)|...|rr1(t)) as a prefix. This fact was noted by Fligner and
Verducci (1986) in the context of finite number of items. Thus, the IGM rm@@&)eis the infinite
counter part of the GM model.

Note also that the expected valuespis the mean of the geometric distributiBifs;] = eejlil

&;j. Thus, the mean value parametrization of the IGM can be easily deriveof @mitted):

ESJ (o)

t
= [l g rpemon (7)

It is clear by now that the IGMPy s is an exponential family model over the sample space
(s1,S,...) (note that here plays no role). It is also evidently an exponential family mode®in
over complete or toppermutations. The next section will demonstrate that, less evidently, the IGM
is in fact in the exponential family with respect to the discrete paransegsrwell.

3. The non-identifiability of the GM model is however not a severe proltanestimation, and can be removed by
imposing8; > 0 (Meila et al., 2007).
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3. Estimating the Model From Data

We are given a set dfl topt orderingsSy. Eachtte Sy can have a different length; all tare
sampled independently fromR s with unknown parameters. We propose to estintate from
this data in the ML paradigm. We will start by rewriting the log-likelihood of the moihed way
that will uncover a set of sufficient statistics. Then we will show how to egértee model based
on the sufficient statistics.

3.1 Sufficient Statistics

For any square (infinite) matri&k € R*F, denote byt (A) = Yi>jAj the sum of the elements below
the diagonal ofA. Let Ls(A) = L(ZTAZ), and letl be a vector of all 1's. For any, lett be its
length and denotgax = maxs, tn, T = 5 g, tr, and byn the number of distinct items observed in
the data. As we shall sei,ax is the dimension of the concentration paraméten is the order of
the estimated central permutationandT counts the total number of items in the data, playing a
role akin to the sample size.

Proposition 1 Let{Nj,q;j,Q; }j>o represent the following statistics:j the number oftc Sy that
have length4 > j (in other words, that contain rank j); ds the vectorg; jicp, with g ; being the
number of times i is observed in rank j in the d&ta Q; = [Qi j]i icp IS @ matrix whose element
Qi counts how many timegi) = j and i(i’) < j. Then,

INPoo(Sh) = Z [6jLs(Rj) +NjIny(8;)] withRj = q;1" —Qj, )
21

To prove this result, we first introduce an alternative expression fantieesion tables; (o).
Let the data sefy consist of a single permutatiamand definey; (1), Q; (1) andR; (1) similar to
0j,Qj,R;j above. Then we have

Proposition 2
5i(10) = Lo(j()1" — Q;(1). (9)
Proof Let Qp be the infinite matrix that has 1 above the main diagonal and 0 elsewkigig, = 1
iff j > i and letl.; denote thg-th column off1. Itis then obvious that(A) = trace(QoA) for any
A
By definition, s; represents the number of 0’s preceding 1 in colymminus all the 1’s in the
submatrix(ZTI‘I)l:c(rrl(j))_lvl:j_l. In other words,
si(Mo) = 3 (QZ Mj)i(1-Z"My—Z M —...Z M)y,
=1
= (1- Z STN.) Q="M j,
i'<i
= 1TQoz"M;j— Y MiZQoz' My,
<]
= traceQoX ' M:j1" — Z trace ;1 ZQox ",
I
= traceQo'[M;j1" - > n,;nkz,

I'<i

= L(=ZT[M17 — Z N,;nkz) = Le(N;1' - Z ).
i<ij i'<i
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We use the fact that multiplying left b§, counts the zeros preceding 1 in a column in the first
equality, tracé\B = traceBA in the fourth and fifth equations, and the identityz = 17 in the last
equation. We now note thét;; = g;(r) andy ;; M:;NY, = Q;(1) and the result follows. 0

Proof of Proposition 1. The log-likelihood ofSy is given by

INPag(Sn) = — ZS !ilT[eij(TdO')%-qu(ej)],
TESN | I=
= - lej ZS sj(1Mo) +N; |nl]J(9j)].
]> TIESN

Becausd g is a linear operator, the sum ovee Sy equals

Lol( S a1~ 5 Qi(m)).

TIESN TIESN

Itis easy to verify now that the first sum represetand the second one represe@s
O

The sufficient statistics for the single parameter IGM model are descripetebfollowing
corollary.

Corollary 3 Denote

g=Ya, Q=3Q; R=dl'-Q (10)
] ]
If 81 = 6, = ... = B then the log-likelihood of the datg can be written as
INPog(Sn) = —BLg(R) —TIny(O). (11)

Note thatq;, Q;i represent respectively the number of times iieisiobserved in the data and
the number of times iteri precedes in the data.

Proposition 1 and Corollary 3 show that the infinite moBgé hassufficient statistics The
result is obtained without any assumptions on the lengths of the obsersadtptions. The data
T € Sy can have different lengthsg, t; may be unbounded, and may even be infinite.

As the parameter8, o of the model are infinite, the sufficient statistigs (or R) are infinite
matrices. However, for any practically observed datatggs,will be finite and the total number
of items observed will be finite. Thuslj, R; will be 0 for any j > tnaxandR = ¥ ;cp Rj will have
non-zero entries only for the items observed in somesy. Moreover, with a suitable relabeling of
the observed items, one can rediigeo a matrix of dimensiom, the number of distinct observed
items. The rest of the rows and columnsRyfwill be 0 and can be discarded. So in what follows
we will assume thaR; and the other sufficient statistics have dimension

3.2 ML Estimation: The Case of a Singled

We now go on to estimat@ ando starting with the case of equ@y, that is,0; =6, = ... =6. In
this case, Equation (11) shows that the estimatiod afido decouple. For any fixed, Equation
(11) attains its maximum ovérat

0 =In(1+T/Ls(R)). (12)
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In contrast to the above explicit formula, for the finite GM, the likelihood hasumalytic solution
for © (Fligner and Verducci, 1986). The estimated valu® afcreases whehs(R) decreases. This
has an intuitive interpretation. The lower triangleXfR> counts the “out of order” events w.r.t.
the chosen moded. Thus,Ls(R) can be seen as a residual, which is normalized by the “sample
size” T. Equation (12) can be re-written &s(R)/T = 1/(e® — 1) = . In other words, the mean
value parametet equals the average residual. This recovers a well-known fact akpabential
family models. In particular, if the residual is small, thatigR) has low counts, we conclude that
the distribution is concentrated, hence has a Bigh

EstimatingaM" amounts to minimizind.¢(R) w.r.t g, independently of the value & The
optimal o according to Corollary 3 is the permutation that minimizes the lower triangulaopart
>TR>. To find it we exploit an idea first introduced in M&iét al. (2007). This idea is to search for
o = (i1]iz]ig|...) in a stepwise fashion, starting from the top itenand continuing down.

Assuming for a moment that= (i1]i2|i3|...) is known, the cost to be minimizdg;(R) can be
decomposed columnwise as

LO(R) - R|i1+ R|i2+ Z R|i3+-~'7

|11 I£1,in I #i,12,i3

where the number of non-trivial terms is one less than the dimensinltis on this decomposition
that the search algorithm is based. Reading the above algorithmically, wegutel;(R), for
any giveno by the following steps

1. zero out the diagonal &
2. sum over columiy of the resulting matrix
3. remove row and columiR
4. repeat recursively from step 2 fiot is, .. ..

If now G is not known, the above steps 2, 3 become the components of a seanéthadgerhich
works by trying evenyi; in turn, saving the partial sums, then continuing down for a promising
value to try alli>’s that could follow it, etc. This type of search is represented lsgarch tree
whose nodes are candidate prefixesdor

The search tree has nodes, one for each possible ordering of the observed items. Finding
the lowest cost path through the tree is equivalent to minimikigid?). Branch-and-bound (BB)
(Pearl, 1984) algorithms are methods to explore the tree nodes in a wayudrantges that the
optimum is found, even though the algorithm may not visit all the nodes in the Tiee number
of nodes explored in the search Y- depends on the individual sufficient statistics maRixit
was shown by Med et al. (2007) that in the worst case, the number of nodes searchdikca
significant fraction oh! and as such intractable for all but smallHowever, if the data distribution
is concentrated around a mode, then the search becomes tractable. €monuantrated the data,
the more effective the search.

We call the BB algorithm for estimating the SGmA*, by analogy with the namé* under
which such algorithms are sometimes known. The algorithm is outlined in Figunethis figure,
A is anadmissible heuristicPearl (1984) explains their role. By default, one can Ase 0. A
higher bound than 0 will accelerate the search; some of the admissibletisswfdViandhani and
Meila (2009) can be used for this purpose.

In addition to this slow but exact algorithm, various heuristic search techsiqan be used
to explore the search tree of the problem. Two of them which showed gerdddrmance for the
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standard GM model and which transfer immediately to the infinite model are thdygsearch
(GREEDYR) and the the SRTR heuristic of Fligner and Verducci (1988), both described in Figure
2. The RTR computes the costs of the first step of BB, then outputs the permutatiat sorts
these costs in increasing order. The algorithm as proposed by Fligdeveaiducci (1988) also
performs limited search around ttas For simplicity, this was not included in the pseudocode, but
can be implemented easily.

The GREeEDYR replaces BB with greedy search on the same sufficient statistics matrix. This
algorithm was used by Cohen et al. (1999), where a factor of 2 appation bound w.r.t. the cost
was also shown to hold.

A third heuristic is related to the special case 1, when eachrt contains only 1 element. This
is the situation of, for example, a search engine returning just the best toa@cjuery. Fot =1, as
Qs 0, the optimal ordering is the one minimizihg(ql™) =[01...n—1]="q. This is obviously
the ordering that sorts the items in descending order of their frequency

In conclusion, to estimate the parameters from data in a single parameterreafest computes
the sufficient statistics, then a prefixafs estimated by exact or heuristic methods, and finally, with
the obtained ordering of the observed items, one can compute the estirfate of

3.3 ML Estimation: The Case of Generald
Maximizing the likelihood of the datdy is equivalent, by Proposition 1, with minimizing

J6,0) = > [6jLo(Ry)+NjInp(6))] = Lo(} 6jR;)+function of6. (13)
]

J
——

Re

This estimation equation does not decouple W.ahdo. Minimization is however possible, due to
the following two observations. First, for any fixed seBpfvalues, minimization w.r¢ is possible
by the algorithms described in the previous section. Second, for dixéte optimal®; parameters
can be found analytically by
8j =In(1+N;/Ls(Ry)). (14)

The two observations immediately suggest an alternating minimization approabtetniing
eML oML, The algorithm is given in Figure 3. For the optimization woréxact minimization can
be replaced with any algorithm that decreases the r.h.s of (13). As bpthisteease the likelihood,
the algorithm will stop in a finite number of steps at a local optinfum.

3.4 Identifiability and Consistency Results

One remarkable property of the IGM, which is easily noted by examining the ldadihin (8)

or (11), is that the data will only constrain a finite number of parameters aintiiéel. The log-
likelihood (8) depends only on the parametersg,,.. Maximizing likelihood will determined.y,,

leaving the otheB; parameters undetermined.

4. The reader may have noted tifg; is an exponential family model. For exponential family models withtinuous
parameters over a convex set, the likelihood is log-concave and an itdikéidhe one presented here would end at
the global optimum. For our model, however, the parameterdiscrete; moreover, the set@$ forms the vertices
of a convex polytope. One can show theoretically and practically that oftigniz; (R) can have multiple optima
and hence one cannot expect to always find a global maximum for giblod. However, we suspect that under the
conditions that make optimization tractable, that is, a concentrated datawdistritexistence of a global optimum
may be proved.
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Algorithm SIGMA*
Input matrix R € R™" of sufficient statistics
Initialize
S={0p}, 0p =the empty orderingj = 0, C(0p) = B(0p) =0
Do

removeo € argminB(g) from S
ocS

if length(@) = n (Return)
Output o, B(o) = C(0) andStop.
else(Expando)

forijrie{l:n}\o
1. create node’ = (i1]...,ijlij+1)
2. vj11(0) = Jicpunpa Rija
3. calculateC(a’) = C(0) + vj1, calculateA(d)
4. B(@) =C(0) +A@)
5. store nod¢d’, j+1,C(0’),B(0")) in S

Figure 1: Algorithm $GMA* outline. Sis the set of nodes to be expanded= (iy|...,|ij) des-
ignates a top ordering, that is, a node in the tree at leyelThe cost of the patl is
given byC(0) = Z}’:l S i¢ iy} Rirs andA(o) is a lower bound on the cost to go from
possibly 0. The total estimated cost of naglés B(o) = C(0) + A(0), which is used to
predict which is the most promising path through the tree. In an implementatidagno
stores:o = (i1]...,lij), j = |o], C(0), B(0).

Let n be the number of distinct items observed in the data. Fspme can estimate at most its
restriction to the items observed, that is, the restriction ¢6 the selU g, {r1(1),m%(2),...,
T (ty)}. The next proposition shows that the ML estimate will always be a permutatiarhyputs
the observed items before any unobserved items.

Proposition 4 LetSy be a sample of top-t orderings, and ebe a permutation oveP that ranks
at least one unobserved itegtiefore an item observed 8. Then there exists another permutation
0 which ranks all observed items before any unobserved items, so thanygoarameter vector

(011), Po.o(Sn) < Pog(Sn).

Proof For an itemig not observed in the date, j, Qi,i,j andR;, j are 0, for anyj =1 :t and any
observed iten. Hence rowig in anyR; is zero. Also note that if we switch among each other items
that were not observed, there is no effect in the likelihood. Hence, wike.gssume thap has
rank jo in o and is followed by an itemwhich is observed.
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Algorithm SORTR

Input matrix R e R™" of sufficient statistics with 0 diagonal
1. compute the column sumsBfr = SxRa,l =1:n
2. sortr;, | =1:ninincreasing order

Output o the sorting permutation

Algorithm GREEDYR

Input matrix R € R™" of sufficient statistics with 0 diagonal
1. setV =1 :nthe set of unused items
2. Repeatfoj=1:n—-1

(a) compute| = Yoy Ra, | €V the column sums of a submatrix Bf
(b) letl* = argmingyr
(c) seto~1(j) =1*,V < V\{I*}

3. seto~1(n) to the last remaining item i

Output o

Figure 2: Heuristic algorithms to estimate a central permutatiooRT® and GREEDYR. The

elementsR; are never part of ang;, hence to simplify the code we assume they are set
to 0.

Algorithm ESTIMATESIGMATHETA

Input Sufficient statisticR;j,N;, j = 1 : tmax
Initial parameter value8, y,,,, > 0

Iterate until convergence:

1. CalculateRy = 3 BjR;
2. Find the ordering = argmin;Ls(Rg) (exactly by SGMA* or by heuristics)
3. Estimatedj = In(1+N;/Ls(R;))

Output o, 814,

Figure 3: Algorithm ESTIMATESIGMATHETA.
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The idea of the proof is to show that if we switch iteipsindi the lower triangle of anR; will
not increase, and for at least oRgit will strictly decrease.

For this, we examine rowof someR;. We haveQ;, ; = 0 andQji, j = ¢ j. Sincei is observed
then for at least on¢ we haveR;, j > 0. Denote byo’ the permutation which is equal tbexcept
for switchingi andip. The effect of switching andip on R; is to switch element&;, j andR; j.
Since the latter is always 0 and the former is greater or equal to O, it follats4hHR;) < Ls(R;)
for any j, and that the inequality is strict for at least oheBy examining the likelihood expression
in Equation (8), we can see that for any positive paramé&gysve have 1P 5(Sn) < INPa o7 (Sn).

By successive switches like the one described here, we can move elvebdstems before the
unobserved items in a finite number of steps. Let the resulting permutatinlbéhis process, the
likelihood will be strictly increasing at each step, therefore the likelihood will be higher than
that of 0. a.

In other wordsoM" is a permutation of the observed items, followed by the unobserved items
in any order. Hence the ordering of the unobserved items is completelideatifiable (naturally
s0). But not even the restriction ofto the observed items is always completely determined. This
can be seen by the following example. Assume the data consists of the the tivortgrings
(alblc), (albld). Then(alb|c|d) and(a|b|d|c) are both ML estimates far; hence, it would be more
accurate to say that the ML estimatecois thepartial ordering (alb|{c,d}). The reasow™M" is not
unigue overa, b, c,d in this example is that the data has no information about the relative ranking
c,d, neither directly by observing,d together in the samm, nor indirectly, via a third item. This
situation is likely to occur for the rarely observed items, situated near theoéias observedrs.
Thus this kind of inderterminacy will affect predominantly the last ranke"3f. Another kind of
indeterminacy can occur when the data is ambiguous w.r.t the ranking of two déteinthat is,
whenR.q = Ryc > 0. This situation can occur at any rank, and will occur more often foregabf
the 8; parameters near 0. However, observing more data mitigates this problem siis® more
observations typically increase the counts more for the first iterastimis type of indeterminacy is
also more likely to occur for the later ranks@'f'-.

Thus, in general, there is a finite set of permutations of the observed iteiols hdwve equal
likelihood. We expect that these permutations will agree more on their fimksrand less in the
last ranks. The exact ML estimation algorithmc®A* described here will return one of these
permutations.

We now discuss the convergence of the parameter estimates to their trus. vale IGM
model hast real parameter§;, j =1 :t and a discrete and infinite dimensional parameter, the
central permutatiow. We give partial results on the consistency of the ML estimators, under the
assumption that the true model is an IGM model andtttia¢ length of the observed permutations
is fixed or bounded.

Before we present the results, we need to make some changes in notatibis dection we
will denote byd, R, etc the statistics obtained from a sample, normalized by the sampli sizle
useq, R, etc for the asymptotic, population based expectation of a statistic undere¢haddelP g
(single parameter or multiple parameters as will be the case). For insignees ., di,j(1)/N
represents the frequency ioappearing in position in the sample, while; j is the probability of
this event undePgq g. For simplicity of notation, the dependenceMfs omitted.

We will show that under weak conditions, the statistics of the typ®, R converge to their
expectations, which in turn will entail convergence of the estimates basteon The proofs are
in Appendix A.1.
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Proposition 5 Let o be any iqfinite permutation. If the true model ig &(multiple parameters)
and t is fixed, thelimy_. Lg(Rj) = Ls(R;) forany j=1:t.

Since we can assume w.l.0.g. that the central permutation of the true model isrtigy idermu-
tation, this proposition implies that for any IGM, with single or multiple parameted far anyo,
the statisticd ;(R;) are consistent whenis constant.

Proposition 6 If the true model is ¢ (multiple or single parameter) and t is fixed, then for any
infinite permutatioro, denote b}GJ( ) (or B(0)) the ML estimate d; (or 6) given that the estimate
of the central permutation is. Then for j=1:t

im 8j(0) = 8;(0),

N—o0

lim 8(c) = 6(o),

N—oc0

where the limits should be taken in the sense of convergence in probability.

Proposition 7 Assume that the true model i@vE,At is fixedA, andj > 0j,q for j=1:t— 1. Let
0 # id be an infinite permutation. Then,[IR(R;) < Ls(R;)] — 1. Consequently, Ri4(R) <
Lo(R)] — 1.

The consequences of these results are as follows. Assume the truehaedeaingle parameter, and
we are estlmatlng a smgle parameter IGM model. Then, the likelihood of an infemiteytationo

is given byR = z 1RJ By Proposition 7, for ang other than the true one, the likelihood will be
lower than the Ilkel|hood of the true permutation, except in a vanishingly smatifsmses. This
result is weaker than ideal, since ideally we would like to prove that the likdlifdddhe trueo

is higher than that of all other permutations simultaneously. We intend to pthisupic, but to
leave the derivation of stronger and results for a further publication.

Proposition 6 shows that, if the correxis known, then th®; parameters, or alternatively the
single® parameter, are consistent.

In the multiple parameter IGM case, for any fix8d the likelihood ofo is given byR =
ztj:lejfij. Hence, by Proposition 7, in this case too, for any gigetifferent from the true central
permutation, the likelihood af will be lower than the likelihood of the true model permutation.

The reader will note that these results can be easily extended to the damended.

4. Non-parametric Clustering

The above estimation algorithms can be thought of as findiogresensus orderinfpr the ob-
served data. When the data have multiple modes, the natural extension to opficoizsensus is
clustering, that is, finding the groups of the population that exhibit causen

Having defined a distance and a method for estimating ML parameters gvesosss to a large
number of the existing clustering paradigms originally defined for Euclideda. d=or instance,
the extensions of the K-means and EM algorithms to infinite orderings is immediatescaare
extensions to other distance-based clustering methods. Here we wilhpoedg one clustering
method, a théexponential Blurring Mean-Shift (EBMShut which illustrates well the issues of
clustering in the space of taperderings. The EBMS is a nonparametric clustering method.
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Algorithm EBMS
Input Top+ orderingsSy = {T% }i—1.n, With lengtht;; optionally, a scale paramet@r

1. Fortg € Sy computeg;, Qi, R the sufficient statistics of a single data point.

2. Reduce data set by counting only the distinct permutations to obtain tefycnd
countsN; > 1 for each orderingg € Sn.

3. Form, T € Sy calculate Kendall distanaj = dg (T3, T5)).

4. (Optional, if6 not given in input) Se by solving the equation

'9
Eold(Sn)] 1ef zl e 9

where we seEg[d(Sy)] to be the average of pairwise distances in step 3.

5. Form € Sy (Compute weights and shift)
= & . _ exp(—8d;)
(b) CalculateR; = 2meda N;aijR; -
(c) Estimateo; the “central” permutation that optimizé$
(exactly or by heuristics)
(d) Setr < 0i(1:ty)
6. Go to step 2, until nog changes.
Output Sy

Figure 4: The EBMS algorithm.

Nonparametric clustering is motivated by the fact that in many real applicatiensumber of
clusters is unknown and outliers exist. We consider an adapted versibe ofell known blur-
ring mean-shift algorithm for ranked data (Fukunaga and Hostetleh; X&7eng, 1995; Carreira-
Perpfian, 2006). We choose the exponential kernel with bandwédth 0: Kg(T,0) = e—lz(zg;m.
Under the Kendall distanad (11, 0) the kernel has the same form as the one parameter Mallows’
model. The kernel estimator of is given by

n KS(TE T[] e—edK(Tr. )

F(m) = Z

- —'r[-’
£ 3 k1 Ke(Ts, T[k Z L S i e 0k (g

which does not depend on the normalizing constgi®) in Mallows’ model.
The EBMS algorithm is summarized in Figure 4. It shift the “points” (i.e., tapderings)
to new locations obtained by a locally weighted combination of all the data. Twesy 11 is
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“attracted” towards its closest neighbors; as the shifting is iterated the déda@se into one or
more clusters. The algorithm hasseale parametef. The scale influences the size of the local
neighborhood of a top-ordering, and thereby controls the granularity of the final clustering: fo
small @ values (large neighborhoods), points will coalesce more and few ldugtecs will form;

for large®’s the orderings will cluster into small clusters and singletons. In the EBM $riéthgn,

we estimate the scale paramdiaat each iteration by solving the equation in step (d).

Practical experience shows that blurring mean-shift merges the pointsamtpact clusters in
a few iterations and then these clusters do not change but simply appraeleiother until they
eventually merge into a single point (Carreira-Piapi, 2006). Therefore, to obtain a meaningful
clustering, a proper stopping criterion should be proposed in adv&wceaanked data, this is not
the case: since at each iteration step we round the local estimator into testn@amutation, the
algorithm will stop in a finite number of steps, when no ordering moves fromuitent position.
Moreover, because ranked data is in a discrete set, we can alsaparf@ccelerating process. As
soon as two or more orderings become identical, we replaceltisterwith a single ordering with
a weight proportional to the cluster’'s number of members. The total nunfiliéerations remains
the same as for the original exponential blurring mean-shift but eachidienases a data set with
fewer elements and is thus faster.

In the algorithm one evaluates distances betweern tamglerings. There are several ways in
which to turndk (11, 0) into ad(my, ), where both terms are tdperderings, containing different
sets of items. Critchlow (1985) studied them, and here we adopl{fat o) what is called the set
distance, that is, the distance between the sets of infinite orderings compatibfe respectively
TD.

We chose this formulation rather than others because this distance equads fhw= 10, and
this is good, one could even argue necessary, for clustering. In agditican be calculated by a
relatively simple formula, inspired by Critchlow (1985). Let

A the setintersection of orderings, T  t1,to  lengths ofry, Tk

B 1 \A, theitemsinmy notinTy nagc the number of items i, B,C

C mm\A theitemsinmmp notinty ki the index inmy of the j-th item not inA
[; the index intp of the j-th item not inA

Then
Mg ng(ng — 1 ne nc(nc —1
d(m, 1) = dk((Ta)a, (TR)ja) +MBNc +Nats — 5 Kj— ¥+nct2— D li- ne(ne—1)
“ 2 “ 2
(15)
N [Bi] [Bo]| | — T [Bi| [Bo] [Ci[GC|GCs[Cuf
T CilC[ [G] [C] — T ClC[ [G] [Ca[B1] B,

Figure 5: An example of obtaining two partial orderingsit, compatible respectively withy, T
that achieve the set distance. Empty spaces represent the common item$ &hde
C symbols mark the items iB, respectivelyC. The distancel(my, ) is the Kendall
distance betweery andTo.
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The intuitive interpretation of this distance is given in Figure 5. We extendnd o to two
longer orderingsu, T, so that: (i), T have identical sets of items, (i}, is the closest ordering
to T, which is compatible withmy, and (iii) reciprocally,7 is the closest ordering tmy which
is compatible withrp. We obtaini by taking all items inrp but not inTy and appending them
at the end ofmy while preserving their relative order. A similar operation givesigs Then,
d(my, ™) = dk (T, Tw), and Equation (15) expresses this value.

5. The Conjugate Prior

The existence of sufficient statistics implies the existence of a conjugate (péd3root, 1975)
for the parameters of model (6). Here we introduce the general fortmioprior and show that
computing with the conjugate prior (or posterior), is significantly harder timanputing with the
likelihood (6).

We shall assume for simplicity that all tap-ankings have the sante Consequently, our pa-
rameter space consists of the real positive ve@igiand the discrete infinite parameter

We define the prior parameters as a set of “fictitious sufficient statistigsdnblogy with the
sufficient statistics for model (6). For this we first make a few straightiodwobservations about
the sufficient statisticgj, Qj, j = 1 :t as follows:

Qi = 0,

Qij > 0 foralli,i’,j,

Sdj = N forallj,

|

Qjl = (j—1)q; forallj>1.

Therefore

(44T _ :
il forj=1

Now we letv denote theprior strength representing the equivalent sample size,ana\j, j =2 :t
be the prior parameters corresponding to the sufficient statggti€3, normalized as follows.

Proposition 8 Letv > 0, A1 be a vector and\j, j = 2 :t denote a set of possibly infinite matrices
satisfying

A= 0,
Nirj > 0 for alli,i’, j,

Nl = (j—1)A; forall j>1 (by definition)
1"\ = 1 forallj.

DenoteA = {v, A1, A\2¢} and
o /\jgj_lllfl) forj>1
: Ml forj=1

Define the distribution
PA(0,0) O e VZi-albLETRZ)Hn(e))] (16)
which is a conjugate prior for the mode$ R() defined in (6).
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Proof Given observed permutatioms.y with sufficient statistic®;, j = 1 :t, the posterior distri-
bution of (0, 0) is updated by
P0,0|A,Tan) O e Zi-il(VLo(R)+Lo(Ri))8 +(N+v)Inu(8;)]

Y

VRO4R;
_(N+V)ztj_1[ejL0<M)Hnw(ej)]
= e :
If the hyperparametess A1, A\ satisfy the conditions of the proposition, then the new hyperparam-
etersA’ = {Vv+N, (VA1+0a1)/(V+N), (VA;+Q;j)/(v+N), j = 2:t} satisfy the same conditions.
O.

The conjugate prior is defined in (16) only up to a normalization constastit will be shown
below, this normalization constant is not always computable in closed formthAnaspect of con-
jugacy is that one prefers the conjugate hyperparameters to repegpestations of the sufficient
statistics under sont& ;. The conditions in Proposition 8 are necessary, but not sufficienstaren
this fact.

To simplify the notations, we write

S = Le(VR'+Ry). (17)

This notation reflects the fact th&f is the counterpart in the posterior of tsgin the distribution

Poo(T). If N=0, thenS/ = vLo(R‘j)). The value ofS} depends oro and the hyperparameters,
but does not depend dh The following result shows that for any fixegj, the posterior can be
integrated ove®; in closed form.

Proposition 9 Let Py (0,6) be defined as in (16) and $e defined by (17). Then,
PA(8j|0) = Betas vi1(e7%),
where Betg g denotes the Beta distribution.
Proof sketchReplacing(6;) with its value (5) yields
PA(8j|0) O e 5% (1—e ),
from which the desired result follows by a change of variable. O

As a consequence, we have that
t
Pa(o) O rlBeta(S’{(o), 1+v). (18)
=

In the above, the notatidBetax, y) is used to denote the special function Beta defindkag x,y) =
Fr(?)r(sg)
X+y) *
We have shown thus that closed form integration over the continuouspteesd; is possible.

The summation over the discrete parameters poses much harder problefiss tiWeéen here.

5. The general form of a conjugate prior may include factors and® which do not depend oh. For simplicity of
the exposition, we do not consider such a form here.
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A first unsolved question is the range of the varial8gsWhile thes; variables in the infinite
GM model are always integers ranging from 0 to infinity, 8fevariables can have non-integer
values ifv or Aj are non-integer. The latter is almost always the case, since under tti&ausof
Proposition 8\ is not integer unless all its elements are 0 or 1. SecApanust have an infinite
number of non-null entries, which may create problems for its numericadseptation. And finally,
there can be dependencies betw8gnalues for differeng’s. Hence, the factored expression (18)
should not be interpreteas implying the independence of tBfs.

We illustrate these points by a simple example. Assume that the conjugate prophsgmeters
are equivalent to the fictitious samgle; = (1/2(3|...), e = (2|13|...)}. Then,

0.5 ~ 05 0 - 00

V=2 A= |05| A,=|05 — 0|, As=]0 — 0],
0 0 0 - 1 1 —

- 05 05 - 0 05 - 00
R=|05 — 05|, RR=|0 — 05|, BR=]0 - 0
0 0 - 0 0 - 0 0 —

For this example, there are two central rankiogs= (1/2|3|...) andoz = (2|1/3|...) which have
the sames; 3 = (1, 0, 0), but noc with S; = 0. Assume now that we are given j’¢, v=2and
S;(0) = 1 for someo. BecauseS; + 2 is the sum of ranks af 11 3(1) in o, we can easily infer that
the first two items ino must be eithef1|2) or (2|1) since any otheo will have S; # 1. But, for
either of these possibilities, the computatiorSyfo) from RS givesS;(a) = 0. Hence, knowings;
informs abous; (in fact determines it completely), showing tI&jtS; are not independent.

Due to the above difficulties, computing the normalization constant of the mrstean open
problem. However, under some restrictive conditions, we are able to dentipai normalization
constant of the posterior in closed form.

Proposition 10 If v and A1y are all integer, the §variables are independent, and the range of
values of $is P then
P(S =k) = (N+v)Betak+1,N+1+v),
and consequently
Pav(011,S;;) = (N+Vv)te ZimaliS+(N+v)Inw(8;)]

The proof is given in Appendix A.1.
Now we examine the case of a single parameter IGM. The conjugate prieeisigyv > 0 and
a single matrixR° corresponding to the normalized sufficient statistics marix

P, Ro(e’ o-) 0 e—eL(ZTVROZ)-H\)m W(o) (19)

9

The posterior is
P, ro(8,0]|mN) O e LT (VROHR)Z)+t(v-+N)Iny(6)]

Denote for simplicityN’ = N+v, R = (R+VR®) /(N +V), S'(0) = Ls(N'R). Then, the parameter
0 again follows a Beta distribution givem

Pvr(8|o) O Betasvi1(e®).
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After integratingd out, we obtain
Pvr(0) O BetaS'(o),tN' +1).

Finally, let us note that that the priors in (16) and (19) are both informatitte respect tao.
By replacing the ternis(R?) (respectivelylq(R%)) with somer; > O (respectivelyr > 0) one can
obtain a prior that is independent@f hence uninformative. However, this prior is improper.

6. Experiments

In this section, we conduct experiments on sirfgjkestimation, generd estimation, real data sets,
and clustering.

6.1 Estimation Experiments, Singled

In these experiments we generated data from an infinite GM model with cogtanin2,In4
and estimated the central permutation and the pararfietéo illustrate the influence df t; was
constant over each data set. The results are summarized in Table 1.

Note that whiled appears to converge, the distanggéa™", o) remains approximately the same.
This is due to the fact that, as eith¢ror t increasen, the number of items to be ranked, increases.
Thus the distancdg will be computed between ever longer permutations. The least frequent items
will have less support from the data and will be those misranked. We hav@roed this by
computing the distance between the tcuand our estimate, restricted to the firganks. This was
always 0, with the exception of= 200,6 = 0.69,t = 2 when it averaged 0.04 (2 cases in 50 runs)
(A more detailed analysis of the ordering errors will be presented in thesnbgection.)

Even so the table shows that most ordering errors are no larger thae hls@/note that the
sufficient statistidR is an unbiased estimate of the exped&dHence, for any fixed lengthof gVt
the o estimated fronR should converge to the true (see also Fligner and Verducci, 1988). The
BML based on the true is also unbiased and asymptotically normal.

6.2 Estimation Experiments, Generab

We now generated data from an Infinite GM model viih= In2 or In4 andd; = 2-U~1)/2g, for
j > 1. As beforet; was fixed in each experiment at the valued,B. We first look at the results for
t = 8 in more detail. As the estimation algorithm has local optima, we initialize® therameters
multiple times. The initial values were (i) the constant value 0.1 (chosen to be shatethe
correct values of alh;), (ii) the constant values 1 and respectively 2 depending wheihein 2 or
01 =In4 and (iii) the trued parameters. The case (ii) ensured that the initial point is higher than all
correct values for all the estimatégl

Figure 6 shows the estimated valuesBpffor different sample sizebl ranging in{200, 500,
100Q 2000;. By comparing the respective (i) and (ii) panels, one sees that the &salt was
insensitive to the initial values and always close to the &uéhe results were also identical to the
results for the initialization (iii), and this was true for all the experiments weoperéd. Therefore,
in the subsequent plots, we only display results for one initialization, (i).

Qualitatively, the results are similar to those for singlewith the main difference stemming
from the fact that, with decreasirtly values, the sampling distribution of the data is spread more,
especially w.r.t the lower ranks.
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Table 1. Results of estimation experiments, single parameter IGM. Top: meastardard devi-
ation of 8ML for two values of the tru® and for differentt values and sample sizés

Middle: the proportion of cases when the ordering error, that is, the aumbersions
w.r.t the truec—! was 0, respectively 1. Bottom: number of observed iterimean and

This figure allows us to observe the “asymmetry” of the erro@tt. The estimates seem to
biased towards larger values, especially for highand less data. There is a theoretical reason for
this. Recall that by Equation (1B)is a decreasing function &f;(R). If the trueo is not optimal
for the givenR, due to sample variance, theM" will tend to overestimat®. HencedM' is abiased
estimate o®. If however, due to imperfect optimization, the estimat@tt is not optimal and has
higher cost thaw, thendMb will err towards underestimation. In Figures 6 and 7 the bias is always
positive, indicating that the minimization overis done well (even though it is not guaranteed to
reach optimality).

Estimates of6 (mean stdev)
0 N 200 500 1000 2000
mean std | mean std | mean std | mean std
t=2| 0.68 0.04] 0.68 0.03] 0.68 0.03] 0.68 0.024
069 || t=4| 0.67 0.03] 0.69 0.02/ 0.69 0.01| 0.69 0.01
t=8| 0.68 0.02] 0.69 0.01] 0.69 0.01| 0.69 0.007
t=2] 1.34 0.13] 1.37 0.09] 1.39 0.05| 1.37 0.04
138 t=4| 140 0.06|] 1.38 0.05/ 1.39 0.03| 1.38 0.03
t=8] 1.37 0.03] 1.38 0.03] 1.38 0.02| 1.38 0.01
Ordering error
0 N 200 500 1000 2000
dk =0 dx= k=0 d¢«=1|dk=0 dk=1|dk=0 dx=1
t=2 0.42 0.36 0.28 0.36 0.40 0.38
069 | t=4 0.36 0.36 0.40 44 0.32 0.30
t=28 0.32 0.34 0.44 0.40 0.38 0.32
t=2 0.82 0.18 0.92 0.08 0.76 0.24 0.90 0.08
138 t=4 0.92 0.08 0.92 0.08 0.88 0.12 0.88 0.10
t=28 0.84 0.16 0.92 0.08 0.76 0.20 0.16 0.88
Number observed itemsn
0 N 200 500 1000 2000
mean std | mean std | mean std | mean std
t=2| 9.24 0.92| 10.76 0.66| 11.88 1.16| 12.68 1.07
069 | t=4|11.92 0.81] 12.92 1.04| 14.32 1.10| 14.88 1.01
t=8|16.04 0.89 17.36 0.99| 18.16 1.07| 19.40 0.91
t=2| 568 0.74 6.04 0.79| 6.76 0.78/ 7.32 0.55
138 t=4| 7.72 0.84| 816 0.74| 8.68 0.75| 9.48 0.82
t=8| 11.52 0.65/ 12.52 0.58| 13.24 0.66| 13.40 0.71

standard deviation). Each estimation was replicated 25 or more times.
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Now we consider the recovery of the central permutatiorFrom our previous remarks, we
expect to see more ordering errors in the bottom ranke’sf where the distribution is less concen-
trated (smalleB;) and there is less data available. To visualize these effects easier, it éstirigr
to look at rankings with smatl. Whent is small, 2, 4 or 8, the total number of items to be ranked
(Figure 8) is several times larger thigior our experiments. Thus the estimation algorithm has to put
together an ordering over this many items, when only groups=a2, 4, ... were observed together.
As an additional confounding effect, the top elements will be oversampi¢desnformation about
the lower ranks will have to be inferred indirectly by pooling the informatiamfithe whole data
set. This is what the algorithm is doing, and Figure 9 shows how well it saiscia that.

The figure displays the ordering error betwes- and the trueos for each rank, which is
measured byg; (cV"|o). Recall that the total number of inversions betwedth anda is the sum
of all s;; similarly, the total number of errors o™ up to rankr is given byy’_; sj(cM-|o). All
plots illustrate the same general tendency ofghealues to increasslowlywith j. The increase is
slower when there are more observations per rank, that is Wreerdt are larger, and when titg
are larger (thus the data distribution is more concentrated).

6.3 Experiments on Real Data Sets, With Generd, Tied Parameters

The next experiment was conducted with the data collected by Cohen¥12®)( The data consists
of a list of 157 universities, the queries, and a set of 21 search engive“experts”. Each search
engine outputs a list of up tigax = 30 URL's when queried with the name of the university. The
data set provides also a “target” output for each query, which is thergiiy’s home page.

Hence, we have 147 estimation problems (10 universities with no data), wihlsaizeN < 21
(as some experts return empty lists) and with variable length data ranging ftdmot = 30. Fig-
ure 10 gives a summary view of number of samples for eachMank= 1 :t, the number of distinct
itemsn and the cumulative number of ranks observed (fes Y j<30N;j). These values suggest
that estimating a fully parameterized model with distiBgcgg may lead to overfitting and therefore
we estimate several parameterizations, all having the @ (01,62,...6,-1,6,6,...6;). In
other words, ranks 1r:— 1 have distinct parameters, while the following ranks share parafeter
We call81_1 thefreeparameters an@ thetied parameter. Far = 1 we have the single parameter
model, and for = tnx= 30 we have the fully parameterized model.

Estimating a model witlh parameters is done by a simple modification of tler mMATE SIG-
MATHETA algorithm which is left to the reader.

The estimation algorithm was started from the fixed valpe- 0.1 for all runs. The number of
iterations to convergence range between 10 and 50, with typical valu&HErunning time was
around per model estimated.

In Figure 11 we give a synopsis of the values of thgarameters under different models. The
single parameter models yiel@svalues in the range [0.007, 0.104] with the 10%, 50% and 90%
guantiles being respectively 0.009, 0.018,and 0.032. The pararfetsgn average decreasing in
all models, with the free parameters higher than the tied parameters for thairegmanks. This is
true on average only, while for individual samples some of the free paeasmaay be smaller than
the tied parameter.

Notice also that for the models with fewer parameters the values of the framegers tend to
be higher than the corresponding values in models with more parametersaf@oimpinstance the
values of8; in the two-parameter model with in the 30 parameter model.
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Figure 6: Estimation of the parameter8;; for t = 8, different sample sizesN =
200, 500, 1000 2000, different true parameteis and different initializations: (ip;j <
0.1, (ii) 8; <= 1 or 2. For each experimental condition, the corresponding graph gspla
box plots of the obtained estimatestf j = 1 : 8 for 50 random samples, with theon
the horizontal axis. The continuous line crossing the box plots marks thedhues of
the parameterB;.g (exponential decay starting from the givey).

For each query and each model size, we computed the rank of the tugsityi home page,
that is, thetarget, under the estimated central permutat@ft. Assuming the search engines are
reasonably good, this rank is an indirect indicator of the goodness of alrmodddition, for each
guery, we selected one model by BIC and calculated the target rankef® models. Table 2 gives
the mean and median of the target rank for each model, as well as for theeRi@ion. The rank
is assigned tthax+ 1 = 31 if the target is not among the items returned by the search engines.

It is evident that while BIC’s performance is better than selecting a orenpeter model, it is
not optimal w.r.t the ranking of the target home page.

We used a modified form of the BIC criterion, that takes into account thatahgnuous pa-
rameters are not all estimated from the same sample size. We have 8i¢nizédllowing formula

6. The derivation is omitted, being outside the scope of this paper.
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Figure 7: Same as Figure 6 for= 2 andt = 4 and a single initial poin®; = 0.1.
for BIC:

BIC(r) = InPsg(Sn) — % i InN; (20)
=1

whereNj = N; for j <randN/ = ztj,:r N;. This expression approximates the marginal distribution
of the model w.r.t the continuous parameter. The discrete paramé&terot marginalized out. This
parameter has always the same dimension, dictated by the observed datalegrendent of. In

any finite data situation, the parameter will be finite. Therefore we can semdtel selection
problem as a model selection oveand a very large but finite set of discrad&s. Maximizing

the BIC in (20) is equivalent with maximizing the BIC over this much larger sehofiels, if one
assumes that the ML estimation procedure attains a global optimum.

Next, we tested the E'IMATESIGMATHETA algorithm on the Jester data of Goldberg et al.
(2001)! This data set represents a set of 100 jokes, which were scored hyxapately 25,000
people. From the numerical scores, we obtained a partial orderingtlozgokes rated by each
individual. Mao and Lebanon (2008) also analyzed this data set and fibat it was multimodal.
To obtain data sets closer to unimodality, we picked a person at random (gessizn 945 in the
data) and extracted tHe nearest neighbors of this ranking, fir= 200 andN = 12,000. The
smaller data set was expected to be more concentrated than the larget.data se

7. Available atht t p: / / gol dber g. ber kel ey. edu.
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Figure 8: Number of items observed fidr= 200, 500 100Q 2000, different parametefsandt =
2,4,8. Each box plot represents the distribution of the number of items ovembidma
samples.

We ran the BTIMATESIGMATHETA on this data set with different values of The log-
likelihoods obtained on the training set and the BIC values are shown ind=1gur

As expected, the likelihood is highest or nearly so for the model with maximunbeuof free
parameters (fol = 12,000 the likelihood is not monotonic due to imperfect optimization ajer
However, the BIC is hot monotonic. For the lafyecase, where the data is dispersed, it chooses a
model withr = 76 parameters. The estimatedvalues range if0.05, 0.07] for j = 1: 30 (nearly
all ranks that havél; = 12000) but become higher, up ta2(for the ranks that have smallisi’s.

For the smaller and more concentrated data set, BIC has equal valuegéodifferent models: the
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Figure 9: Ordering errors fal = 200, 500, 100Q 2000, different paramete , andt = 2,4,8.
The error for a rank is given bys;(c™t|a'™"®). Each box plot represents the distribution
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Figure 10: Summaries of the universities data: boxplots of the number oflsauper rank, (a),

histogram of total items observéd (b), histogram of the numbaer of distinct items
observed (c), over all 147 queries.

r=2 r=7 r=30

Figure 11: Boxplots of th® estimates over all queries for model with 2, 7, and 30 parameters. The
vertical axis of the scale isgarithmic, base 10that is, O corresponds ) = 1 and—2
to 8 = 0.01. For clarity, the distribution of the tied parameter (which is always the last

parameter) is replicated fgr=r : tmax The horizontal line marks the mean valuefof
in the single parameter model.

Model size /1. 2 3 4 5 6 7 8 9 10 30BIC
Meanrank (good) | 53 57 42 42 41 41 44 45 50 52 51 55
Median rank (good 3 3 15 2 2 2 2 2 2 3 3 3
Mean rank (all) 165 16.1 154 155 155 156 158 157 159 16.0 16.47.5
Medianrank (all) | 13 15 11 11 12 9 10 10 11 11 11 18

Table 2: Mean and median of the rank of the target web page under ealeh, miod under the BIC
selected model. These statistics are computed once over all 147 univensitieace over

a subset of 41 universities where the target is always ranked in th&0irshe subset is
labeled as “good”.
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Figure 12: Log likelihood and BIC values per data point on two subsampes the Jester data
set. The circles mark the maxima of the log-likelihood, respectively BIC.

single parameter model, the full parameter model, and an intermediate model-wB6. This is
not so suprising as it may appear, sifje= N for j > 36, and the estimate} values in this range
are all very close to Q. Thus, the three models will effectively differ only in the way they model
ranks 37 :43.

This finding suggests that the single parameter (infinite) Mallows model is argodell locally,
in the space of theest er data. The largdN experiment indicates otherwise, which agrees both
with our common sense assumption that this data is multimodal, and with the findingoohmdia
Lebanon (2008). In Mao and Lebanon (2008) a non-parametric Malloadel was used (more
about this model in Section 7.3); our experiment supports their use of la@ giagameter model.

6.4 Clustering Experiments

The first experiment was with artificial data. We generated sample ordewity 3 clusters of

150 rankings each. Each clustewas sampled from an Infinite GM model with a single spread
parameter®y, with 61, 8-, 83 equal to 1.5, 1.0, 0.7 respectively. The cluster centers are random
permutations of infinitely many objects. In addition, each data set containstbre. In each data

set all data had the same lengtiWe experimented with, = 4,6, 8.

We ran the Exponential Blurring Mean-Shift, K-means, and EM Modetbdadustering algo-
rithms 10 times on samples from this distribution. For EBMS, the scale parametesivmated
based on the average of pairwise distances. In step 5c of the algorithmewheanking can be
much longer than the original partial ranking. As seen above, the ldst eaia subject to noise and
overfitting. Therefore we truncated the new ranking to the length of nuoflmbserved items.

For the K-means and model-based algorithms, we experiment with diffesembers of clus-
ters, and report the best classification error with respect to the truemhgs This puts these two
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algorithms at an advantage w.r.t EBMS, but as Table 3 shows, even sortharametric algorithm
achieves the best performance.

Note that the error rate in Table 3 is computed including the outliers, that ispmpared a
true clustering with 53 clusters (3 clusters and 50 singletons) to the clustdstaged when the
algorithm converged.

For EM and K-means the number of clusters associated with the lowest clat$sifierrors was
between 3 and 5. From the table we see that the K-means and model bpsegichpdentified
three primary clusters correctly. K-means did not have the ability of idengjfthe outliers, so it
just assigned each outlier into one of those primary clusters. The modsd-bpproach assigned
outliers into primary clusters too, but it also gave more uncertainty on the auties probabili-
ties of outliers belonging to their assigned cluster were relatively smaller th@nfiom primary
clusters).

The running time per data set of EBMS was under a minute, and the humberatibits to
convergence followed the pattern typical of mean-shift algorithms andheszes larger than 10.

Next, we examine data on college course preferences in the Republéarfdr Each prospec-
tive student applies by ranking up to 10 degree course in order aérprefe. Extensive details of
the college applications system are availablet &p: / / ww. cao. i e.

The data used in our analysis was previously studied by Gormley and M{2pB6). They
found that the geographical positions of the institution had a significanteméi on choice of
courses which complicated the interpretation of the vocational callings. Qalysas focuses on
the subset of students who applied to Trinity College Dublin (TR) and Usitye€ollege Dublin
(DN), both located in the capital of Ireland. These two universities effar= 228 degree courses.
There were 1095 female and 862 male applicants who only put TR and DiSesoim their top-5
preferences. The EBMS algorithm is applied to top-5 rankings for theléearal male applicants
separately.

Table 4 shows these clustering results. For the female applicants the fitstrchostly consists
of Art, Law and Business courses. Since the largest cluster containsthbee quarters of the data,
we run the EBMS clustering again for the applicants within this cluster and dadrhajor sub-
groups in term of vocational callings: Law, Business, Drama, and Englibe clustering results
for male applicants show 5 clusters, plus a singleton. We run EBMS agahmeftargest cluster, and
find three major sub-groups in term of vocational callings: Finance, aad/History. As Gormley
and Murphy (2006) discovered in their experiments, for the subseubfibapplicants, there are
differences between the clustering of females and males in the centraltpoms, but similarities
too. The main similarity is that the grouping is vocational. Each group contaimse® in both
universities, with no strong preference for one versus the othean8ea large proportion of both
genders opt for business, economics and law disciplines. For the feraelsrts courses are also
highly favored. As Gormley and Murphy (2006) explains, the Arts oeussa broad liberal arts

| Top-t rankings| EBMS |  Kmeans | EM \
t=4 0.0030 (0.0001) 0.1014 (0.0038) 0.1008 (0.0025
t=6 0.0014 (0.0001) 0.0986 (0.0010) 0.1000 (0.0000
t=28 0.0002 (0.0001) 0.0972 (0.0010) 0.1000 (0.0000

Table 3: Classification Errors: mean and standard deviation of 10 rasdomples.
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course which can be followed with many different specializations later @mcel its high ranking
in several clusters is an indication that female candidates want to leave ptamesocopen later. In
general, the central rankings of each cluster are very clearly seqptiae pool of candidates into
various profiles.

Males

cluster size 657 143 35 13 13
1st choice BESS (TR) Engineering (TR) Science (DN) Science (DN) Medicine (TR)
2nd choice Commerce (DN) Science (DN) Science (TR) Science (TR) Medicine (DN)
3rd choice Business and Law (DN) Engineering (DN) Mathematics (TR) Medicine (TR) Pharmacy (TR)
4th choice Arts (DN) Computer Science (DN) Theoretical Physics (TR Medicine (DN) Dental Science (TR)
5th choice | Economics and Finance (DN) Computer Science (TR) Theoretical Physics (DN Pharmacy (TR) Veterinary Medicine (DN)

Females
cluster size 725 162 141 41 26
1st choice Arts (DN) Arts (DN) Arts (DN) Physiotherapy (DN) Physiotherapy (TR)
2nd choice Law (DN) Psychology (DN) Psychology (DN) Physiotherapy (TR) Physiotherapy (DN)
3rd choice BESS (TR) Psychology (TR) Psychology (TR) Radiation Therapy (TR) Science (DN)
4th choice Business and Law (DN) Science (DN) Law (DN) Radiography (DN) Medicine (DN)
5th choice Law (TR) Science (TR) Social Science (DN) | Occupational Therapy (TR) Medicine (TR)

Table 4;: EBMS Clustering of female and male applicants. BESS stands fard8gs Economic
and Social Science, TR for Trinity College Dublin and DN for Universityl&@ge Dublin.

7. Discussion and Related Work

In this section, we discuss the relation between IGM and GM, other relatedlsmmud algorithms,
and draw the brief conclusion.

7.1 Relation to the GM Model

It is useful to compare the various aspects of the IGM presented heréheitkspective aspects of
the standard GM. We do so now, highlighting also which of them were alnealoljshed and which
are new.

e srepresentation. This was introduced by Fligner and Verducci (1986) for the GM model.
For finite number of items, j rangesin1n—1ands;in0:n—j+1.

e marginal distributions, Py g, over top+ orderings. It is also introduced by Fligner and
Verducci (1986). The main difference with the IGM model is in the normalipationstant,
which has the expression

1— e (M—j+1)8;

t
J]ltbj(ej) with  ;(8;) = —— 5 (21)

Also, for the GM model, the underlying spaégis finite, while for the IGM,Sp is uncount-
able.

¢ sufficient statistics as in Proposition 1 Proposition 1 represents a new result for the GM as
well. The only difference is in the replacementysfd;) with ;(6;) from (21) in (8). The

3510



AN EXPONENTIAL MODEL FORINFINITE RANKINGS

nearest previous result is that of Meiét al. (2007) which establishes sufficient statistics for
the GM model over complete permutations.

If we have a single parameter GM model and complete permutations, then ¥ iDeae that

¥ ; Qj represents the sufficient statistics talone. In computer science estimatimgn this
context is called theonsensus rankingroblem, or thaninimum feedback arc sptoblem.

In this case, by setting= n for all permutations, the sufficient statistics defined in (8) reduce
to the previously knowry ; Q;. Thus, our main contribution in this respect is to prove that
not knowing®, and not observing complete permutations still results in an exponential family
model with sufficient statistics.

e O estimation. In the GM case, this is a convex unidimensional optimization solved numeri-
cally (Fligner and Verducci, 1986; Mailet al., 2007).

e 0 estimation by SIGMA* The SIGMA* and ESTIMATESIGMATHETA algorithms can be
used for the GM model as well, with the estimatiorBgberformed numerically. The closed
form Equation (12) can serve as a very good initial point for the iteratpténization algo-
rithm. Note that while the heuristicSSRTR and GREEDYR are simple, they could not have
been applied before to the GM model over taprderings because it was not known that this
model has sufficient statistics for

e conjugate prior Fligner and Verducci (1990) introduced an informative prior @pmvhich
had a single “sufficient statistics” parameter. They used it with a uniforan pvero, noting
that this prior cannot be normalized or integrated analytically. The informa&ibnjugate
prior for 6 and o introduced in Section 5 applies also to the standard GM. Again, the main
formal change is replacing(8;) by W;(6;). With this change, we lose the elegant closed
form integration ove® proved in Proposition 9. The GM conjugate prior will not be in
general integrable in closed form ov@r The uninformative prior for the IGM becomes of
course a proper prior in the GM case. If we set all thparameters to the same value, we
obtain exactly the same prior as Fligner and Verducci (1990).

Often a non-informative prior is used as a regularizer for the ML estimatoming it into

a Maximum A-Posteriori (MAPgstimator. This is possible for the IGM and GM too. All
one needs to do is to replace, in the inputs to the estimation algorithms, the dateesuffi
statistics with the posterior sufficient statistics.

e EBMS clustering The algorithm adapts seamlessly to finite number of items.

7.2 Other Models and Algorithms for Finite Permutations

This work acknowledges its roots in the work of Fligner and Verducd§) ®n stagewise ordering
models and in the recent paper Me#t al. (2007). The latter shows for the first time that GM
models have sufficient statistics, and describes an exact but nomepublralgorithm to find the
central permutation. While similarities exist between the algorithm of #eilal. (2007) and the
SIGMA* algorithm presented here, we stress that our representation (bagkd mversion table
(sj)j=11) is differentfrom the representation (denotég in Meila et al. (2007).

In fact, the two representations could be called reciprocal, as for &ey gomplete permuta-
tion 1, finite or infinite,s; (1id) = V; (r-1|id). This difference is trivial if complete permutations are
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observed, but not for missing data. In particular, the distributiov; dbr top+t orderings does not
seem to have sufficient statistics for- 2 even in the case of finite permutations. Eheepresenta-
tion has another advantage thahas not: for any finite data set, a paramstas either completely
determined or completely undetermined the data, whereas in the recigjoegresentatioall V;
are weakly constrained by data.

While both our $cmMA* and the algorithm of Med et al. (2007) perform branch-and-bound
search on a matrix of sufficient statistics, the sufficient statistics in this mapederived by an
entirely different method, and cannot be obtained by naively replacegtifficient statistics of
Meila et al. (2007).

It may be noted that the co&i;(R) bears a striking similarity to the cost function used by
Quadrianto et al. (2010) in the context of matching by the method of kerdediaing. The latter
cost function can be expressed as tHEELY, to be minimized oveE. The authors show that
this problem is quadratic in the matrxwhenK,L are symmetric, positive definite matrices and
use a quadratic relaxation algorithm to optimize it efficiently. The £géR) can be rewritten as
traceQoX" R> whereQy is the upper triangular matrix defined in the proof of Proposition 2. The
main difference between our cost function and the one of Quadrianio (@040) is the fact that
ours involves the non-symmetric matrid®@g, R and is not a quadratic problem in

An interesting application of the GM model to multimodal data is Lebanon andra{t2003),
where theo’s play the role of the data, so the parameter estimation is done entirely diferen
In an early work Critchlow (1985) examines several classes of (Hawdsdistances for partial
orderings. Murphy and Martin (2003) cluster ranking data by the EMrdlgo and in Gormley
and Murphy (2005, 2006) the EM is used for the purpose of analyzis Voting patterns and
college applications. The base model used by the latter papers is is not lbe$laodel but the
Plackett-Luce model (Plackett, 1975; Luce, 1959). The estimation of thignfroan data is much
more difficult and, as Gormley and Murphy (2005) show, can be onledmproximately. Busse
et al. (2007) use ths; representation in the context of EM clustering of partial orderings, withou
however recognizing the existence of sufficient statistics.

A greedy algorithm for consensus ordering with partially observed datéregluced in Cohen
et al. (1999). Me# et al. (2007) show that their cost function optimized is closely related to the
log-likelihood of the Mallows’ model, using a modified form of tiRematrix defined in (10). This
algorithm, like GREEDYR, does not estimatethparameter. Cohen et al. (1999) introduce a compu-
tational improvement based on interpreting a vaye> 0.5 as an arc frommto i’. They note that
it is sufficient to search for the optimal permutation in eatlongly connected componeuoitthe
resulting directed graph, which can sometimes greatly reduce the dimenshens#arch space.

If a permutationtt is not complete, Cohen et al. (1999) replaces the unobsépydd) with
the value (6. This ad-hoc procedure allows theRE&EDYR to run on topt rankings, but it is not
statistically correct, since the optimized cost will not be a likelihood. If we usedthrect matrix of
sufficient statistic®, then the reduction procedure based on strongly connected compdoests
not apply any more.

7.3 Other Models and Algorithms For Infinite Permutations

All the above works deal with permutations on finite sets. In fairness to iICehal. (1999) we
remark that their work, although non-rigorous with respect to incompletaygations, is motivated
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by the same problem as ours, that is, dealing with a very large set of itemhjaf only some are
ranked by the “voters”.

The paper of Thoma (1964) studies the space of infinite permutations whfeh fidm the
identity in a finite number of positions. In the vocabulary of the presentrpépese would be
the infinite permutations at finite distandg from o. In a single parameter infinite GM, these
infinite permutations are the only ones which have non-zero probability. Wbitea probabilistic
perspective the two views are equivalent, from a practical perspeitt®y are not. We prefer to
consider in our sample space all possibile orderings, including those witbhvag probability. It
is the latter who are more representative of real experiments. For insiartbe university web
sites ranking experiment, our model assumed that there is a “true” ceetralation from which
the observations were generated as random perturbations. This dyahre&ealization. But we
also have the liberty to assume that the observations are very long osletiich are close to the
central permutation only in their highest ranks, and which can divetg&aily far from it in the
latter ranks. We consider this a more faithful scenario than assuming in adthigitthe observation
must be identical to the central permutation (and hence to each other!) lmrt alfinite number of
ranks.

Recently Mao and Lebanon (2008) introduced a kernel density estimadagstimation algo-
rithm, that elegantly allows partial orderings of a large varietfypesto be modeled together. The
kernel is the single parameter Mallows’ model, wilas kernel width. One of the interesting con-
tributions of this paper is an algorithm for averaging théy, ) over all (infinite) permutations
T4, T compatible with given partial orderings, ™. The relation with EBMS s evident. Itis also
evident that within EBMS one could incorporate the average distancd@adatad by Mao and
Lebanon (2008) instead of the current set distance, with everythiegsedyging the same. Since
the average distance is always larger than the set (minimum) distance ftopéomutations, and in
particular it is not 0, the optimal kernel widéhwill have different values.

7.4 Conclusion

We have introduced a natural extension of stagewise ordering to the sheotanfinitely many
items. The new probabilistic model preserves the elegant properties oftiéscunterpart: it has
sufficient statistics, an exact estimation algorithm (albeit intractable in the wase) and tractable
heuristics that work well when the data come from a unimodal distribution. Bagnpglistance
computations, clustering extend to this class of models in a natural way.

We have paid particular attention to non-parametric clustering by mean-khifinly, showing
by experiments that the algorithm is practical and effective. This illustratesiew of the utility
of the IGM model. The IGM, an exponential model with a simple, intuitive distribyt&mould
be seen as a building block for more complex distributions, as needed bwtheatdhand. For
instance, the extension to finite mixtures (that is, parametric clustering and mulidisulibutions)
is immediate. Itis also an open problem to extend the kernel density estimat@oofivdl Lebanon
(2008) to infinite models and GM models with multiple parameters.

We are not aware of any statistical work on estimating parametric models Gingeiorderings.
There are also no previous results on sufficient statistics for finite partakings, so the present
paper can be said be first in this respect as well.

One important advantage of having a model with multiple parameters nvittite or infinite,
is that each rank can be modeled by a separate parafetdre standard GM/IGM) or one can
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tie the parameters of different ranks (the way we did in Section 6). This evey/can use larger
8; values to penalize the errors in the first ranks more, and sntjliealues for the lower ranks,
where presumably more noise in the orderings is permissible. This progehy model fits well
with human perception of “distance” between orderings, or with the noisaayeexpect in human
generated data.

Tying the parameters for the lower ranks is also important for reducingnee. If the observed
data have different lengths then necessarilN; > Ny for ' > j. In other words, for largey’s
we may have less data available to estin@gte Tying the parameters has the benefic effect of
smoothing thed; values, as it was shown in all the experiments with real data. Another way to
smooth the parameters is to use an uninformative prior as a regularizewdyitoo, eacld; can
be regularized separately by the hyperparamgteihis hyperparameter has a clear meaning—it
is the expectation dd; in the fictitious sample; therefore, a user can easily tune the strength of the
prior using Equation (7) with; in place of¢;. This equation will give for any; a valuee? towards
which the; value will be shrunk. Shrinkage via the conjugate prior can be doneédirthe GM
as well, except that the relation (7) will be implicit instead of closed form.

Beyond its mathematical elegance and simplicity of use, we believe that an infinitel tnas
practical importance as well. In many instances the number of items to rankyitavge. Search
engines come immediately to mind, understood as algorithms for retrieval byctmeagching from
a large database. Under this umbrella fall not only the well-known welglseagines, but also the
various specialized algorithms for finding matches in biological data baseSdi§uest (Eng et al.,
1994) and Blast (Altschul et al., 1990). These algorithms output raligtsdfrom which the human
user interprets only the tapentries. The data base, that is, the set of items, is usually not fixed:;
typically it is growing as more proteins, genes, web pages are discovitrischatural under this
scenario to assume thatis potentially infinite. As we have shown, this does not make working
with the data more difficult, and occasionally makes it faster.
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Appendix A. Proofs

We give the proofs for the asymptotic results in the following subsection.

A.1 Proofs for the Asymptotic Results

Proof of Proposition 5We start with the observation that und&yg any observed toprankingrtis

a function of the variables;+ who are independently distributed according to discrete exponential
laws. For eacls; the empirical CDF converges to the true CDF and, as we know, this entaibscthe f
that for any functionf overN, the sample expectation dfconverges to the true expectationfof

see for example, van der Vaart (1998). This also holds for the jointlalititsn of s, and functions

of s11. In other words, the sample expectation of any functién) is consistent, whem ranges
over all topt permutations.
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Now considerLq(R;) for a fixeda. By definition, Ls(R;(1)) = sj({o) and Lg(R;) is the
sample expectation ofj(1o). According to the definition okj(mjo) in (2), this is a function
of 1(1),...101(j) and the fixedo. It follows by the argument above thag(R;) converges to
Ls(R;) for any j and anyo.

Note that foro = id the argument is simpler, sint¢R;) =s;. O

We now refer to a property of the Mallows model introduced by Fligner asdiveci (1988).
An IGM P; ¢ hascomplete consensifsfor any two itemsi, i’ with i < i, we have thaP[i <xi'] >
P[i’ <xi]. The following result is a modified form of Theorem 2 of Fligner and Verd(1988) that
applies to truncated infinite permutations.

Proposition 11 (Complete consensus]he IGM model Pg with
ej > ej+1, (22)

has complete consensus. Moreover, condition (22) entails that foned/tiiany j=1:t, and any
items ii’ with o(i) < a(i’)
Rij < Riij.

Proof Fix i, i’ as above. Lettbe a (complete) permutation where:;i’. Let us denote byt the
permutation obtained by transposingndi’ in T; denoter(i) =k, m(i’) = K, k' > k.

We want to show that under the condition of the propositiRm,(1) > Py o(17). We first observe
that

sj(m) for j<korj>K
5 (1) = Sj(m+i"—i—r for j=kandr=[{x|i <o(x) <i, 1(x) <k}
) si(morsj(m+1 for k<j<Kk
sj(m) —r’ for j=Kandr' = |{x|i <o(x) <i,1(x) > K}
Note also that +r’ <i’—i—1 or, in other wordsi’ —i —r > r’. Now, we look at the likelihood
ratio P g(T1) /Ps o (TT):

"
In[Ps.6(1)/Pop(T)] = Zkei [sj(10) —sj(10)],
£

Bk[Sk(TT) — s(T9)] + B[S (1) — s ()],
= O(i"—i—r)—08pr’,
> O’ —0r’ = (ek—ek/)r’ > 0.

v

It follows thatPs ¢(11) > P 6(17). Moreover, ifri(i) = j, i(i") = j + 1 for somej then this inequality
is strict. Now letA = {1t|i <;i’} be the set of all permutatiomsas defined above; its complement
B equals{tl |i’ <y i}. Itis immediate that from the above tha§g(A) = Py (i < 1') > Psg(B) =
Ps.e(i’ < i), which proves the first claim of the proposition.

For the second claim, fiki’ with o(i) < o(i’), a rankj and another ran’ > j. TakeTtsuch
thatm(i) = j andm(i’) = j, and letrt be the permutation obtained by transposirandi’ in 1T
Then obviouslyPs o(T) > Pse(Tt). Rij, by definition, is the total probability of permutations of
the formmwith j = j+1,j+2,..., while Ry j is the total probability of permutations of the form
(. ThereforeRi j > Ryij. O
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Proof of Proposition 5 From Proposition 11 it follows that if the true central permutation is the

identity, thenLig(Rj) < Lg(R;) for anyo # id. Lete = Ls(R;j) —Lia(Rj) > 0. Then, because of
the consistency dfs(R;) for anyag, it follows thatPq e[Lid(Rj) — Lo(R;j) > Lid(Rj) — Lo(Rj) + € =
0] — O. O

Proof of Proposition 6 This proof follows from the consistency of(R;). Since the ML esti-
mate off; is a continuous function dfs(R;) it will be consistent as well. Similarly, for the single
parameter IGM, the ML estimate 6fis a continuous function ofLs(R;), j = 1 :t), and therefore
it is consistent as well. O

Proof of Proposition 10 Given the observed rankindsu.n} and the hyperparametevsAs+
the marginal distribution of the central permutatmean be expressed in terms$jt

[ (k+1)F(N+1+V)

P(Sj =k) OBetak+1,N+1+v) = FKEN+2+v) = f(k),
f(k+1) FMk+2)r(N+14+v) (k+1)r(N+1+v) k+1
f(kk = T(ktN+3+v) ~ T[(ktN+2+v)  N+k+2+v’
k! k!
flk) = (N+2+4Vv)---(N+1+Vv+Kk) < 10) = (N+14v)---(N+1+Vv+k)
We prove in Lemma 12 thgty_, f (k) = ﬁ Therefore, the normalization constantR{S;) is
1/(N+v) and the conclusion of the Proposition follows. O

k!
N+v+1)-(N+v+1+k)

o 1
Lemmal2 5., 0 N

Proof of Lemma 12We write the general term of the series as a difference

11 B 1!
N+v (N+v+1)  (N+V)(N+v+1)’
1! 1! B 21
(NFV)(N+V+1) (N+V+L)(N+v+2)  (NFV)(N+V+1)(N+v+2)

Through mathematical induction we can prove that
K k! (K+1)! 1

gaN+v+n~(N+v+1+m*XN+va+v+m~(N+K+v+D (N+v)’

Moreover, for fixed\, v,

(K+1)! _ (K+DYN+v-—1)!
(N+V)(N+v+1)---(N+K+v+1)  (N+K+v+1)! 7
B (N+v—1)!
(K+2)(K+3)---(N+K+v+1)’
— O(k_(N+V)).
From this the desired result follows. O
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