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Abstract

We use convex relaxation techniques to provide a sequenesyofarized low-rank solutions for
large-scale matrix completion problems. Using the nuateam as a regularizer, we provide a sim-
ple and very efficient convex algorithm for minimizing theoastruction error subject to a bound
on the nuclear norm. Our algorithno8T1-IMPUTE iteratively replaces the missing elements with
those obtained from a soft-thresholded SVD. With warm stidit allows us to efficiently compute
an entire regularization path of solutions on a grid of valo&the regularization parameter. The
computationally intensive part of our algorithm is in cortipg a low-rank SVD of a dense matrix.
Exploiting the problem structure, we show that the task eapdrformed with a complexity of or-
der linear in the matrix dimensions. Our semidefinite-pangming algorithm is readily scalable to
large matrices; for exampledsT-IMPUTE takes a few hours to compute low-rank approximations
of a 16 x 1P incomplete matrix with 10observed entries, and fits a rank-95 approximation to the
full Netflix training set in 33 hours. Our methods achieve good training and test errarsxmibit
superior timings when compared to other competitive sbétidre-art techniques.

Keywords: collaborative filtering, nuclear norm, spectral regulafian, netflix prize, large scale
convex optimization

1. Introduction

In many applications measured data can be represented in a iaisixfor which only a rela-
tively small number of entries are observed. The problem is to “completefntiteix based on

the observed entries, and has been dubbed the matrix completion probéemieg$Gind Recht,
2008; Cands and Tao, 2009; Rennie and Srebro, 2005). The “Netflix” competit@rekample,
SIGKDD and Netflix, 2007) is a popular example, where the data is the asisrecommender
system. The rows correspond to viewers and the columns to movies, withttlyeXgrbeing the
rating € {1,...,5} by vieweri for movie j. There are about 480K viewers and 18K movies, and
hence 8.6 billion (8 x 10°) potential entries. However, on average each viewer rates about 200

x. Also in the Department of Health, Research and Policy.
t. Also in the Department of Statistics.
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movies, so only 1.2% or fOentries are observed. The task is to predict the ratings that viewers
would give to movies they have not yet rated.

These problems can be phrased as learning an unknown parameterikadqat) with very
high dimensionality, based on very few observations. In order for Biehence to be meaningful,
we assume that the paramekelies in a much lower dimensional manifold. In this paper, as is
relevant in many real life applications, we assume thean be well represented by a matrix of low
rank, that isZ ~ VimxkGkxn, Wherek < min(n,m). In this recommender-system example, low rank
structure suggests that movies can be grouped into a small number céStjenith G,; the relative
score for movig in genrel. Vieweri on the other hand has an affiniy for genre/, and hence the
modeled score for vieweron moviej is the sumy&_; Vi/Gy; of genre affinities times genre scores.
Typically we view the observed entriesXihas the corresponding entries frahtontaminated with
noise.

Srebro et al. (2005a) studied generalization error bounds for leptoimrank matrices. Re-
cently Canés and Recht (2008), Caisland Tao (2009), and Keshavan et al. (2009) showed the-
oretically that under certain assumptions on the entries of the matrix, locatiodgroportion of
unobserved entries, the true underlying matrix can be recovered withjitnigh accuracy.

For a matrixXmxn let Q  {1,...,m} x {1,...,n} denote the indices of observed entries. We
consider the following optimization problem:

minimize  rankZ)

subjectto 5 (Xj—Zj)* <8, (1)
i.fea

whered > 0 is a regularization parameter controlling the tolerance in training errorrartecon-
straint in (1) makes the problem for gene€alcombinatorially hard (Srebro and Jaakkola, 2003).
For a fully-observe on the other hand, the solution is given by a truncated singular value decom-
position (SVD) ofX. The following seemingly small modification to (1),

minimize  ||Z||.

subject to S (% - Zij)* <3, 2)
e

makes the problem convex (Fazel, 2002). Hg£g. is the nuclear norm, or the sum of the singular
values ofZ. Under many situations the nuclear norm is an effective convex relaxatitire rank
constraint (Fazel, 2002; Cagesl and Recht, 2008; Caesland Tao, 2009; Recht et al., 2007). Op-
timization of (2) is a semi-definite programming problem (Boyd and Vandehlee2004) and can
be solved efficiently for small problems, using modern convex optimizatidwace like SeDuMi
and SDPT3 (Grant and Boyd., 2009). However, since these algorittertsased on second order
methods (Liu and Vandenberghe, 2009), they can become prohibitiednsive if the dimensions
of the matrix get large (Cai et al., 2008). Equivalently we can reformuBtan(Lagrangeform

.1
minimize> Y (X —Zj)? + A1 Z]. (3)
z (i.heQ

HereA > 0 is a regularization parameter controlling the nuclear norm of the minirdizef (3);
there is a 1-1 mapping betwedn> 0 andA > 0 over their active domains.
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In this paper we propose an algorithnoS-IMPUTE for the nuclear norm regularized least-
squares problem (3) that scales to large problemsmijtir 10°—1 with around 16-1° or more
observed entries. At every iteratioroS-IMPUTE decreases the value of the objective function
towards its minimum, and at the same time gets closer to the set of optimal solutionspoblthe
lem (2). We study the convergence properties of this algorithm and disave it can be extended
to other more sophisticated forms of spectral regularization.

To summarize some performance results

e We obtain a rank-40 solution to (2) for a problem of sizé £A0° and|Q| = 5x 10° observed
entries in less than 18 minutes.

e For the same sized matrix wit| = 10’ we obtain a rank-5 solution in less than 21 minutes.

e For a 18 x 10° sized matrix with|Q| = 1% a rank-5 solution is obtained in approximately
4.3 hours.

¢ We fit a rank-66 solution for the Netflix data in 2.2 hours. Here there dtelferved entries
in a matrix with 48 x 10° rows and 18 x 10* columns. A rank 95 solution takes 3.27 hours.

The paper is organized as follows. In Section 2, we discuss relatedamdrirovide some context
for this paper. In Section 3 we introduce therS-IMPUTE algorithm and study its convergence
properties in Section 4. The computational aspects of the algorithm argbdgsin Section 5,
and Section 6 discusses how nuclear norm regularization can be lgggtbta more aggressive
and general types of spectral regularization. Section 7 describepqpagssing of “selectors” and
initialization. We discuss comparisons with related work, simulations and expeahstudies in
Section 9 and application to the Netflix data in Section 10.

2. Context and Related Work
Candks and Tao (2009), Cai et al. (2008), and Gandnd Recht (2008) consider the criterion

minimize  ||Z]|.
subjectto  Zj; = X;j, V(i,j) € Q. 4)

With & = 0, the criterion (1) is equivalent to (4), in that it requires the trainingrelwde zero.
Cai et al. (2008) propose a first-order singular-value-thresholaigrithm SVT scalable to large
matrices for the problem (4). They comment on the problem (2) &th0, but dismiss it as being
computationally prohibitive for large problems.

We believe that (4) will almost always be too rigid and will result in over-fittiigninimization
of prediction error is an important goal, then the optimal soluflowill typically lie somewhere in
the interior of the path indexed y(Figures 2, 3 and 4).

In this paper we provide an algorithnro$T-1MPUTE for computing solutions of (3) on a grid of
A values, based on warm restarts. The algorithm is inspired by S\W®TE (Troyanskaya et al.,

1. For large problems data transfer, access and reading take quitefatiloe and is dependent upon the platform
and machine. Over here we report the times taken for the computatiottia-beck, that is, the SVD computations
over all iterations. All times are reported based on computations donentelaXleon Linux 3GHz processor using
MATLAB, with no C or Fortran interlacing.
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2001)—an EM-type (Dempster et al., 1977) iterative algorithm that alteshetisveen imputing the
missing values from a current SVD, and updating the SVD using the “conijplata matrix. In its
very motivation, ®FT-IMPUTE is different from generic first order algorithms (Cai et al., 2008; Ma
et al.; Ji and Ye, 2009). The latter require the specification of a stepaside;an be quite sensitive
to the chosen value. Our algorithm does not require a step-size, ouemyparameter.

The iterative algorithms proposed in Ma et al. and Ji and Ye (2009) eetjuer computation
of a SVD of a dense matrix (with dimensions equal to the size of the méjrat every iteration,
as the bottleneck. This makes the algorithms prohibitive for large scale caibpstaMa et al.
use randomized algorithms for the SVD computation. Our algoritrTS MPUTE also requires
an SVD computation at every iteration, but by exploiting gineblem structurecan easily handle
matrices of very large dimensions. At each iteration the non-sparse madritkdatructure:

Y =Ysp (Spars¢ + Yr (Low Rank. (5)

In (5) Ysp has the same sparsity structure as the obseXyeahdY, r has rank <« m,n, wherer”™
is very close ta < m,n the rank of the estimated matr& (upon convergence of the algorithm).
For large scale problems, we use iterative methods based on Lanczgohaliaation with partial
re-orthogonalization (as in the PROPACK algorithm, Larsen, 1998),dorpaiting the first Sin-
gular vectors/values of. Due to the specific structure of (5), multiplication WyandY’ can both
be achieved in a cost-efficient way. In decomposition (5), the computdtidnadensome work
in computing a low-rank SVD is of an order that depends linearly on the matngrsions. More
precisely, evaluating each singular vector requires computation of tee@f@((m+n)f) +O(|Q|)
flops and evaluating of them require©((m+n)fr’) + O(|Q|r’) flops. Exploiting warm-starts, we
observe that ~ r—hence every SVD step of our algorithm computesgular vectors, with com-
plexity of the orderO((m+ n)r?) + O(|Q|r) flops. This computation is performed for the number
of iterations FT-IMPUTE requires to run till convergence or a certain tolerance.

In this paper we show asymptotic convergence oF&IMPUTE and further derive its non-
asymptotic rate of convergence which scale®8E/k) (k denotes the iteration number). However,
in our experimental studies on low-rank matrix completion, we have obsénataur algorithm
is faster (based on timing comparisons) than the accelerated versiontefdNedi and Ye, 2009;
Nesterov, 2007), having a provable (worst case) convergete:eﬁ@(k—lz) . With warm-starts SFT1-
IMPUTE computes the entire regularization path very efficiently along a dense séxeahies for
A.

Although the nuclear norm is motivated here as a convex relaxation to acoasfraint, we
believe in many situations it will outperform the rank-restricted estimator (s i supported by
our experimental studies. We draw the natural analogy with model selectineédn regression, and
compare best-subset regressignregularization) with the Asso (¢1 regularization, Tibshirani,
1996; Hastie et al., 2009). There too thepenalty can be viewed as a convex relaxation of the
{p penalty. But in many situations with moderate sparsity, theso will outperform best subset
in terms of prediction accuracy (Friedman, 2008; Hastie et al., 2009; Mdeuet al., 2009). By
shrinking the parameters in the model (and hence reducing their varidineddsso permits more
parameters to be included. The nuclear norm isfthgenalty in matrix completion, as compared
to the/y rank. By shrinking the singular values, we allow more dimensions to be inthwitbout
incurring undue estimation variance.

Another class of techniques used in collaborative filtering problems ase ahospirit to (2).
These are known amaximum margin matrix factorizatiomethods—in short MMMF—and use
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a factor model for the matri¥ (Srebro et al., 2005b). Let = UV’ whereUn, andV., and
consider the following problem

o1 S . \2 é 2 2
minimize . %Q(Xu (UVij)*+ 5 U1IE + V). (6)

It turns out that (6) is intimately related to (3), since (see Lemma 6)

1
Z|l.= min Z(U[E+[VIE).
12l =, min 5 (IVIIE +IVIE)

For example, i’ = min(m, n), the solution to (6) coincides with the solution to g3However, (6)
is not convex in its arguments, while (3) is. We compare these two criteria iil thefection 8,
and the relative performance of their respective algorithms in Section 9.2.

3. SOFT-IMPUTE—an Algorithm for Nuclear Norm Regularization

We first introduce some notation that will be used for the rest of this article.

3.1 Notation
We adopt the notation of Cai et al. (2008). Define a magXY) (with dimensionm x n)

P i ={ o i se Y

which is a projection of the matriXmxn onto the observed entries. In the same spirit, define the
complementary projectioRs (Y) via P3 (Y) +Pa(Y) =Y. Using (7) we can rewritg i jyea(Xj —

Zij)? as||Pa(X) — Pa(Z)II?.

3.2 Nuclear Norm Regularization

We present the following lemma, which forms a basic ingredient in our algorithm.

Lemma 1 Suppose the matrix MV, has rank r. The solution to the optimization problem
S 1
minimize  S|IW - Z[[ +A[1Z]]. (8)

is given byZ = S, (W) where
S\(W)=UD,V"  with Dy =diag[(di —A)s,...,(dr —A)+], )
UDV’ is the SVD of W, D= diag[ds, . ..,d;], and t. = maxt,0).

The notationS, (W) refers tosoft-thresholdingDonoho et al., 1995). Lemma 1 appears in Cai
et al. (2008) and Ma et al. where the proof uses the sub-gradierdatBezation of the nuclear
norm. In Appendix A.1 we present an entirely different proof, which lsa extended in a relatively
straightforward way to other complicated forms of spectral regularizatiscudsed in Section 6.
Our proof is followed by a remark that covers these more general.cases

2. We note here that the original MMMF formulation usés- min{m, n}. In this paper we will consider it for a family
of r’ values.
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3.3 Algorithm

Using the notation in 3.1, we rewrite (3) as:
L 1
minimize ~ ,(2) := 5 |[Pa(X) — Pa(2) [ +A/1Z]]. - (10)

We now present Algorithm 1—&T-IMPUTE—for computing a series of solutions to (10) for
different values ok using warm starts.

Algorithm 1 SOFT-IMPUTE

1. Initialize z°d = 0.

2. DoforAy > Ao > ... > Ak

(a) Repeat:

i. ComputeZ"™« S, (Po(X) + Pa(Z°9)).
i 1 1z
' [ZovjE

iii. Assignzeld  znew,
(b) Assign,, < Z"W.

< € exit.

3. Output the sequence of solutiahyg, . . ., 2, -

The algorithm repeatedly replaces the missing entries with the current, guesthen updates
the guess by solving (8). Figures 2, 3 and 4 show some examples of sslusimgy SFT-IMPUTE
(blue continuous curves). We see test and training error in the top ma$umction of the nuclear
norm, obtained from a grid of valugs. These error curves show a smooth and very competitive
performance.

4. Convergence Analysis

In this section we study the convergence properties of Algorithm 1. Unliddeerc first-order
methods (Nesterov, 2003) including competitive first-order methods fdeaunorm regularized
problems (Cai et al., 2008; Ma et al.)p8T-IMPUTE does not involve the choice of any additional
step-size. Most importantly our algorithm is readily scalable for solving laogde semidefinite
programming problems (2) and (10) as will be explained later in Section 5.

For an arbitrary matri¥Z, define

QA(ZIZ)Z%HF’Q(XHP&(Z)—ZIIEH\IIZII* (11)

as a surrogate of the objective functify{z). Note thatf, (Z) = Q) (Z|Z) for anyZ.

In Section 4.1, we show that the sequeﬁ%@enerated VIi&OFTFIMPUTE convergegsymptot-
ically, that is, ak — o to a minimizer of the objective functiofy(Z). SOFFIMPUTE produces a
sequence of solutions for which the criterion decreases to the optimal solutio every iteration
and the successive iterates get closer to the optimal set of solutions abtlerp 10. Section 4.2
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derives the non-asymptotic convergence rate of the algorithm. The lattiseEnconcentrates on
the objective vaIuesz(Z'A‘). Due to computational resources if one wishes to stop the algorithm
afterK iterations, then Theorem 2 provides a certificate of IfmmZK is from the solution. Though
Section 4.1 alone establishes the convergend@(@f) to the minimum off) (Z), this does not, in
general, settle theonvergencef Zf unless further conditions (like strong convexity) are imposed
on f(-).

4.1 Asymptotic Convergence

Lemma 2 For every fixed\ > 0, define a sequencé;by
Zy™ = argminQ, (2/2))
with any starting point Z The sequence}f&atisfies
K2 < QEHZY) < K(Z))

Proof Note that
ZE = S, (Pa(X) +Pa (2Y). (12)

By Lemma 1 and the definition (11) @ (Z|ZY), we have:
hZ) = AEZIZ)
1
= SIPa(X) +Pa(Z)) — Z{[IE + MIZY].-
1
> minz {|IPa(X) + P& (Z) - ZIIE } + NIl
= QEZZY)
— } Ps(X) —P Zk+1 pL Zk _pt Zk+1 2 A Zk+1
= 3l PaX)=Pa(5) ; +Pal(Zy) —Pa(57) 1 lIE +AIZ -

1
= 5 {IPaX) = Pa(@ ) 2 + P& (Z) —P&(ZEH R +AIZ Y. (@13)

1
2 5HPQ(X)—PQ(Z'A‘“)H%HHZ‘A‘“H* (14)
= QZHYZEY
= f(Z1).

]

Lemma 3 The nuclear norm shrinkage operat8x(-) satisfies the following for any MWW (with
matching dimensions)

ISL(Wa) — Sy (W) (13 < W —Wo|2.

In particular this implies thas, (W) is a continuous map in W.
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Lemma 3 is proved in Ma et al.; their proof is complex and based on trace iitezgidVe give a
concise proof based on elementary convex analysis in Appendix A.2.

Lemma 4 The successive differenc|4a§A< - Z'A‘*IHF of the sequenceAane monotone decreasing:
I1ZX = ZNE < 1ZX—Z5 MR vk (15)
Moreover the difference sequence converges to zero. That is
Z - 7K — 0as k— oo
The proof of Lemma 4 is given in Appendix A.3.

Lemma 5 Every limit point of the sequencé{ defined in Lemma 2 is a stationary point of

2IPa(X) —Pa(2) B +A[Z]..
Hence it is a solution to the fixed point equation
Z=S,(Pa(X) +Pg(2)). (16)
The proof of Lemma 5 is given in Appendix A.4.

Theorem 1 The sequenceAZdeflned in Lemma 2 converges to a limjt that solves
minimize f||PQ(X)—PQ(Z)H,2:+)\||ZH*. (17)

Proof It suffices to prove thzaZk converges; the theorem then follows from Lemma 5.

Let Z, be a limit point of the sequen@f There exists a subsequenogsuch thatZ"“ — 7.
By Lemma 5,7y, solves the problem (17) and satisfies the fixed point equation (16).

Hence

12y -Z[IE = [S\(Pa(X) +Pa(Z) = Sa(Pa(X) +Pa (ZX )| (18)

1(Pa(X) +Pa(Z3)) — (Pa(X) +Pa (Zy )
= [IPs@—-Z Y
< H-ZY 2 (19)

IN

In (18) two substitutions were made; the left one using (16) in Lemma 5, theaighusing (12).
Inequality (19) implies that the sequenigé, — Zk 12 converges ak — c. To show the conver-
gence of the sequen it suffices to prove that the sequente— ZK converges to zero. We prove
this by contradiction.

Suppose the sequenzk has another limit poinZA+ +£7,. Thenz, — Z)'f has two distinct limit
points 0 andZ{ —2), #0. This contradicts the convergence of the sequéjize- Z<*||2. Hence
the sequencg; converges t@, = Zy. n

The inequality in (19) implies that at every iteratifz)t‘j gets closer to an optimal solution for the
problem (17)® This property holds in addition to the decrease of the objective functiomifhze 2)
at every iteration.

3. In fact this statement can be strengthened further—at every itethatistance of the estimate decreases from the
set of optimal solutions.
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4.2 Convergence Rate

In this section we derive the worst case convergence ras@pf-IMPUTE.

Theorem 2 For every fixed\ > 0, the sequence'f& > 0 defined in Lemma 2 has the following
non-asymptotic (worst) rate of convergence:

2|1Z2 - Z3 |

k+1 (20)

i(ZY) - h(ZY) <
The proof of this theorem is in Appendix A.6.
In light of Theorem 2, & > 0 accurate solution of,(Z) is obtained after a maximum of
%HZQ — Z||2 iterations. Using warm-startsoF FIMPUTE traces out the path of solutions on a grid
of A valuesh; > A, > ... > Ag with a total of*

K 2 )
_ZSHZN—l -2y |l (21)
i=

iterations. Her(ZAA0 =0 andZAi denotes the output FOFFIMPUTE (upon convergence) for = A,
(ie{1,...,K—=1}). The solutionsZ;‘? andZ;’\‘jﬁl are likely to becloseto each other, especially on a
dense grid of\j’'s. Hence every summand of (21) and the total number of iterations is &xptxr
be significantly smaller than that obtained via arbitrary cold-starts.

5. Computational Complexity

The computationally demanding part of Algorithm 1 is3q(Po (X) + P (ZK)). This requires cal-
culating a low-rank SVD of a matrix, since the underlying model assumption igah&(Z) <
min{m,n}. In Algorithm 1, for fixedA, the entire sequence of matridéﬁ have explicit low-rank
representations of the forthDyV,, corresponding t&, (Po(X) + Pé(z)‘f‘l)).

In addition, observe th&q (X) + Pé(Z'A‘) can be rewritten as

Po(X)+Pg(Z) = {PaX)-Pa(Z))} +  Z

= Sparse + Low Rank (22)

In the numerical linear algebra literature, there are very efficient dinattix factorization methods
for calculating the SVD of matrices of moderate size (at most a few thous@fthn the matrix is
sparse, larger problems can be solved but the computational costdepeavily upon the sparsity
structure of the matrix. In general however, for large matrices one hasadot to indirect iterative
methods for calculating the leading singular vectors/values of a matrix. Theartot research in
numerical linear algebra for developing sophisticated algorithms for thigogar In this paper we
will use the PROPACK algorithm (Larsen, 2004, 1998) because of its torage requirements,
effective flop count and its well documented MATLAB version. The alpon for calculating the
truncated SVD for a matri¥V (say), becomes efficient if multiplication operatiofdy andW’b,
(with by € 0", by € O™ can be done with minimal cost.

4. We assume the solutiafy at every\ € {\y,..., Ak} is computed to an accuracy &> 0.

5. Though we cannot prove theoretically that every iterate of the seqﬂén/vill be of low-rank; this observation is
rather practical based on the manner in which we trace out the entire fosthutions based on warm-starts. Our
simulation results support this observation as well.
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Algorithm SOFT-IMPUTE requires repeated computation of a truncated SVD for a medrix
with structure as in (22). Assume that at the current iterate, the rr%ftﬂi»as rankr” Note that in
(22) the ternPqo (ZX) can be computed i®(|Q|F) flops using only the required outer products (i.e.,
our algorithm does not compute the matrix explicitly).

The cost of computing the truncated SVD will depend upon the cost in thatq@esW by and
W'b, (which are equal). For the sparse part these multiplications@@st|). Although it costs
O(|Q|F) to create the matrig (ZY), this is used for each of thestich multiplications (which also
costO(|Q|f)), so we need not include that cost here. The Low Rank part €g$ts+ n)f) for the
multiplication byb;. Hence the cost i©(|Q|) + O((m+ n)f) per vector multiplication. Supposing
we want ar Tank SVD of the matrix (22), the cost will be of the order®f|Q|f) + O((m+ n)(F)?)
(for that iteration, that is, to obtam)'f+1 from Z)'f). Suppose the rank of the solutifzgj isr, thenin
light of our above observationsr < min{m,n} and the order i©(|Q|r) +O((m-n)r?).

For the reconstruction problem to be theoretically meaningful in the senSaraks and Tao
(2009) we require thdQ)| ~ nr - poly(logn). In practice ofterQ| is very small. Hence introducing
the Low Rankpart does not add any further complexity in the multiplicatiolyandW’. So the
dominant cost in calculating the truncated SVD in our algorithr®(2|). The SVT algorithm
(Cai et al., 2008) for exact matrix completion (4) involves calculating the $¥B sparse matrix
with costO(|Q|). This implies that the computational order adSr-IMPUTE and that of SVT is the
same. This order computation does not include the number of iterationsa@fiiiconvergence. In
our experimental studies we use warm-starts for efficiently computing the eegiularization path.
On small scale examples, based on comparisons with the accelerated naetieod of Nesterov
(see Section 9.3; Ji and Ye, 2009; Nesterov, 2007) we find that oarithlloqn converges faster
than the latter in terms of run-time and number of SVD computations/ iterations. slipfgorts
the computational effectiveness obSr-IMPUTE. In addition, since the true rank of the matrix
r < min{m,n}, the computational cost of evaluating the truncated SVD (with ramkis linear in
matrix dimensions. This justifies the large-scale computational feasibility oflgaritom.

The above discussions focus on the computational complexity for obtaidwg-eank SVD,
which is to be performed at every iterationsF FIMPUTE. Similar to the total iteration complexity
bound ofsoFFIMPUTE (21), the total cost to compute the regularization path on a gridveflues
is given by:

K _ 2 . -
5,000+ men) 512, .~ 27l ).

Herer), denotes the rafi{on an average) of the iteratfé)$ generated bgOFFIMPUTE for fixed A.

The PROPACK package does not allow one to request (and hence @rmoply the singular
values larger than a threshold—one has to specify the number in advance. So once all the com-
puted singular values fall above the current thresigldur algorithm increases the number to be
computed until the smallest is smaller thanin large scale problems, we put an absolute limit on
the maximum number.

6. We assume, above that the grid of valdgs> ... Ak is such thagall the solutionsZy,A € {A1,...,Ak } are ofsmall
rank, as they appear in Section 5.
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6. Generalized Spectral Regularization: From Soft to Hard Thresholding

In Section 1 we discussed the role of the nuclear norm as a convegateffor the rank of a matrix,

and drew the analogy withasso regression versus best-subset selection. We argued that in many

problems/; regularization gives better prediction accuracy. However, if the Uyidgrmodel is

very sparse, then theansso with its uniform shrinkage can both overestimate the number of non-

zero coefficients (Friedman, 2008) in the model, and overly shrink (thasg included toward zero.

In this section we propose a natural generalization@f SIMPUTE to overcome these problems.
Consider again the problem

.1
minimize =||Pq(X) —Pq(2)||2,
rankz)<k 2

a rephrasing of (1). This best ratksolution also solves
o1
m|n|m|ze§HPQ(X) —Pa(2)]I2 +A Z [(yj(Z) > 0),
]

wherey;(Z) is the jth singular value o, and for a suitable choice @f that produces a solution
with rankk.

The “fully observed” matrix version of the above problem is given by#éheersion of (8) as
follows:

o1
minimize §||W—ZH,2:+)\||ZH0, (23)

where||Z||o = rank(Z). The solution of (23) is given by a reduced-rank SVDV¥f for everyA
there is a corresponding= q(A) number of singular-values to be retained in the SVD decompo-
sition. Problem (23) is non-convex W but its global minimizer can be evaluated. As in (9) the
thresholding operator resulting from (23) is

S} (W) =UDgV' where Dq=diag(dy,...,dq,0,...,0).

Similar to SOFT-IMPUTE (Algorithm 1), we present below ARD-IMPUTE (Algorithm 2) for the

fo penalty. The continuous parameterization Xi@oes not appear to offer obvious advantages
over rank-truncation methods. We note that it does allow for a continuunaoh starts, and is a
natural post-processor for the output @rS-IMPUTE (next section). But it also allows for further
generalizations that bridge the gap between hard and soft regularizagihods.

In penalized regression there have been recent developments di@etrds “bridging” the
gap between thé; and/y penalties (Friedman, 2008; Zhang, 2010; Mazumder et al., 2009). This
is done via using non-convex penalties that are a better surrogate (ientbe af approximating the
penalty) toy over thel;. They also produce less biased estimates than those produced &y the
penalized solutions. When the underlying model is very sparse they cftéorm very well, and
enjoy superior prediction accuracy when compared to softer penaltie, likehese methods still
shrink, but are less aggressive than the best-subset selection.

By analogy, we propose using a more sophisticated version of spegtaérization. This goes
beyond nuclear norm regularization by using slightly more aggressivaltpes that bridge the gap
betweery; (nuclear norm) andg(rank constraint). We propose minimizing

@) = IPalX)~Pa@IR +AY P2, (24)
J
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Algorithm 2 HARD-IMPUTE

1. InitializeZAk k=1,...,K (for example, using S8FT-IMPUTE; see Section 7).
2. DoforAy > Ao > ... > Ak

(a) Repeat:
i. Computez"® « Sf! (P (X) + Pg (2°9)).

” |f HZHEW,ZOMH'Z:
' [ze4]E

jii. AssignZ0d «— znew,
(b) AssignZ ,, « 2.

< € exit.

3. Output the sequence of solutialig,, , - .-, 2y a, -

wherep(|t|;p) is concave injt|. The parametept € [Hint, Usug coONtrols the degree of concavity.
We may think ofp(|t|;pinf) = [t| (¢1 penalty) on one end anpl([t|; usup) = [|t[jo (Yo penalty) on
the other. In particular for théy penalty denotef, »(Z) by fy 5 (Z) for “hard” thresholding. See
Friedman (2008), Mazumder et al. (2009) and Zhang (2010) for ebesnop such penalties.

In Remark 1 in Appendix A.1 we argue how the proof can be modified for rgemygpes of
spectral regularization. Hence for minimizing the objective (24) we will lobkha analogous
version of (8, 23) which is

1 5 _
minize 5|~ ZIE +A 3 p( (2)

The solution is given by a thresholded SVDWi{
Q(W) =U Dp,)\vl>

whereDy, ,, is a entry-wise thresholding of the diagonal entries of the m&tgonsisting of singular
values of the matrixV. The exact form of the thresholding depends upon the form of thdtgena
functionp(-;-), as discussed in Remark 1. Algorithm 1 and Algorithm 2 can be modified for the
penaltyp(-; ) by using a more general thresholding funct@r@-) in Step 2(a)i. The corresponding
step becomes:

2" S (Pa(X) + Pg (2°9)).

However these types of spectral regularization make the criterion (24mavex and hence it
becomes difficult to optimize globally. Recht et al. (2007) and Bach (28B®) consider the rank
estimation problem from a theoretical standpoint.

7. Post-processing of “Selectors” and Initialization

Because th&, norm regularizes by shrinking the singular values, the number of singalaes
retained (through cross-validation, say) may exceed the actual réh& ofatrix. In such cases it is
reasonable tandothe shrinkage of the chosen models, which might permit a lower-rank salution
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If Z) is the solution to (10), then itgost-processedersionZy obtained by “unshrinking” the
eigen-values of the matrig, is obtained by

1)

a = argmin HPQ(X)—ZGiPQ(Ui\/i)”Z (25)
0i>0,i=1,...,r\ i=
ZY = UDgV',

whereDqy = diag(ay, ..., qy, ). Herer, is the rank oZ, andz, =UD,V' is its SVD. The estimation
in (25) can be done via ordinary least squares, which is feasible becdthe sparsity dPo (u;V/)
and thatr, is small’ If the least squares solutionsdo not meet the positivity constraints, then the
negative sign can be absorbed into the corresponding singular vector.

Rather than estimating a diagonal mafix as above, one can insert a matklx, ., between
U andV above to obtain better training error for the same rank. Hence gly&h(each of rank,)
from the FT-IMPUTE algorithm, we solve

~

M = argmin ||Po(X)—Po(UMV')|?, (26)
M
where, 7z, = UMV’

The objective function in (26) is the Frobenius norm of an affine funatiokl and hence can be
optimized very efficiently. Scalability issues pertaining to the optimization prob2gh ¢an be
handled fairly efficiently via conjugate gradients. Criterion (26) will defigilead to a decrease
in training error as that attained /= UD,V’ for the same rank and is potentially an attractive
proposal for the original problem (1). However this heuristic canmotdste as a (jointly) convex
problem in(U,M,V). In addition, this requires the estimation of uprﬁoparameters, and has the
potential for over-fitting. In this paper we report experiments base@®n (

In many simulated examples we have observed that this post-processimgivetep good es-
timate of the underlying true rank of the matrix (based on prediction errangeSixed points of
Algorithm 2 correspond to local minima of the function (24), well-chosemwsiartsZ, are help-
ful. A reasonable prescription for warms-starts is the nuclear norm selviZo(SOFT-IMPUTE),
or the post processed version (25). The latter appears to significaedyd sup convergence for
HARD-IMPUTE. This observation is based on our simulation studies.

8. Soft-Impute and Maximum-Margin Matrix Factorization

In this section we compare in detail the MMMF criterion (6) with ther$-1MPUTE criterion (3).
For ease of comparison here, we put down these criteria again usitg owtation.
MMMF solves

o1 A
minimize EHF’Q(X—UV)IIE+§(IIUHE+HVH§), (27)

whereUnmy andVy - are arbitrary (non-orthogonal) matrices. This problem formulation and re
lated optimization methods have been explored by Srebro et al. (200503emmde and Srebro
(2005).

7. Observe that thBy (uiVf), i = 1,...,r) are not orthogonal, though they are.
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SOFT-IMPUTE solves 1
minimize EHPQ(X—Z)HE—H\HZH*. (28)

For each given maximum rank, MMMF produces an estimate by doing fustirerkage with its
guadratic regularization. &T-IMPUTE performs rank reduction and shrinkage at the same time,
in one smooth convex operation. The following theorem shows that thisliomensional ®F1-
IMPUTE family lies exactly in the two-dimensional MMMF family.

Theorem 3 Let X be mx n with observed entries indexed @y
1. Letr =min(m,n). Then the solutions to (27) and (28) coincide for)alb O.

2. Suppos€* is a solution to (28) foi\* > 0, and let r* be its rank. Then for any solution
U,V to (27) with f = r* andA = A*, UV is a solution to (28). The SVD factorization&f
provides one such solution to (27). This implies that the solution spac&)s(2ontained in
that of (27).

Remarks:
1. Part 1 of this theorem appears in a slightly different form in Srebab. €2005b).

2. In part 1, we could usg > min(m,n) and get the same equivalence. While this might seem
unnecessary, there may be computational advantages; searching logger space might
protect against local minima. Likewise in part 2, we could tse r* and achieve the same
equivalence. In either case, no matter wHate use, the solution matricesandV have the
same rank ag.

3. LetZ(\) be a solution to (28) at. We conjecture that rafk ()] is monotone non-increasing
in A. If this is the case, then Theorem 3, part 2 can be further strengtheseg that for all
A > A* andr’ = r* the solutions of (27) coincide with that of (28).

The MMMF criterion (27) defines a two-dimensional family of models indexe@bA), while the
SOFT-IMPUTE criterion (28) defines a one-dimensional family. In light of Theorem 3,fémsly is

a special path in the two-dimensional grid of solutic[ia§/7m,\7(r/7x)]. Figure 1 depicts the situation.
Any MMMF model at parameter combinations above the red squares aredaut, since their fit
is the same at the red square. However, in practice the red squarast &rmwn to MMMF, nor
is the actual rank of the solution. Further orthogonalizatiod @ndV would be required to reveal
the rank, which would only be approximate (depending on the conveggeiterion of the MMMF
algorithm).

Despite the equivalence of (27) and (28) whér- min(m,n), the criteria are quite different.
While (28) is a convex optimization problem & (27) is a non-convex problem in the variables
U,V and has possibly several local minima; see also Abernethy et al. (200@)s been observed
empirically and theoretically (Burer and Monteiro, 2005; Rennie and 8r&fi05) that bi-convex
methods used in the optimization of (27) can get stuck in sub-optimal local minimassfoall value
of r’ or a poorly chosen starting point. For a large number of faatoasd large dimensions,n
the computational cost may be quite high (See also experimental studies im3egjio

Criterion (28) is convex irZ for every value ofA, and it outputs the solutiod in the form of
its soft-thresholded SVD, implying that the “factond”’V are already orthogonal and the rank is
known.
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Figure 1: Comparison of the parameter space for MMMF (grey and blagokg), and ®FT-
IMPUTE (red squares) for a simple example. Since all MMMF solutions with parameters
above the red squares are identical to tkee®IMPUTE solutions at the red squares, all
the grey points are redundant.

MMMF has two different tuning parametersandA, both of which are related to the rank
or spectral properties of the matriddsV. SOFT-IMPUTE has only one tuning paramet®r The
presence of two tuning parameters is problematic:

e It results in a significant increase in computational burden, since foy g#een value oft’,
one needs to compute an entire system of solutions by valyisge Section 9 for illustra-
tions).

e In practice when neither the optimal valuesrbndA are known, a two-dimensional search
(for example, by cross validation) is required to select suitable values.

Further discussions and connections between the tuning parametenseatdlisproperties of the
matrices can be found in Burer and Monteiro (2005) and Abernethy €G19).
The proof of Theorem 3 requires a lemma.

Lemma 6 For any matrix Z, the following holds:

1
Zll,= min = (||JUl2 +[[V]3). 29
l1Z|| u7\/:Z:U\/T2(H IE+IIVIE) (29)

If rank(Z) = k < min{m,n}, then the minimum above is attained at a factor decompositien Z
UkaVr;rxk'

Note that in the decompositicgh= UV in (29) there is no constraint on the number of columns
of the factor matricebm«; andV,«;. Lemma 6 is stronger than similar results appearing in Rennie
and Srebro (2005) and Abernethy et al. (2009) which establish (29)= min{m,n}—we give a
tighter estimate of the rarikof the underlying matrices. The proof is given in Appendix A.5.
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8.1 Proof of Theorem 3

Part 1. For = min(m,n), any matrixZm., can be written in the form o = UVT. The criterion
(27) can be written as

min 3lPa(X =UVT)|E+3(UIE + V() (30)
= min H[Pa(X —UVT)| |2 + AUV, (by Lemma 6
=min 3| IPa(X =2Z)[[E + 2] (31)

z

The equivalence of the criteria in (30) and (31) completes the proofrofipa
Part 2. Note that if we know that the soluti@h to (28) withA = A* has rank*, thenZ* also solves

min 3Pa(X=2)|[E  +AZ].
z,rankz)=r

We now repeat the steps (30)—(31), restricting the ndrdé U andV to ber’ = r*, and the result
follows. u

9. Numerical Experiments and Comparisons

In this section we study the performance @rS-IMPUTE, its post-processed variants, andrkb-
IMPUTE for noisy matrix completion problems. The examples assert our claim that thexmatr
reconstruction criterion (4) (Cai et al., 2008) is too rigid if one seeksigwedictive models. We
include the related procedures of Rennie and Srebro (2005) andwaskt al. (2009) in our com-
parisons.

The reconstruction algorithm €&¥SPACE, described in Keshavan et al. (2009) considers crite-
rion (1) (in the presence of noise). It uses the representatiot SV (which need not correspond
to the SVD). QPTSPACE alternates between estimatiB@ndU,V (in a Grassmann manifold) for
computing a rank-decompositior? = USV'. It starts with a sparse SVD onckeanversion of the
observed matri¥g (X). This is similar to the formulation of MMMF (27) as detailed in Section 8,
without the squared Frobenius norm regularization on the compode¥ts

To summarize, we study the following methods:

1. SoFT-IMPUTE-Algorithm 1;

2. SOFT-IMPUTE+—post-processing on the output abSr-IMPUTE, as in Section 7;
3. HARD-IMPUTE-Algorithm 2, starting with the output of &TIMPUTE+;

4. SVT-algorithm by Cai et al. (2008);

5. OPTSPACE-reconstruction algorithm by Keshavan et al. (2009);

6. MMMF-algorithm for (6) as in Rennie and Srebro (2005).
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In all our simulation studies we use the underlying magigl, = Uy V/ .., + €, whereU andV are
random matrices with standard normal Gaussian entriesg édi.d. GaussianQ is uniformly
random over the indices of the matrix wip®6 percent of missing entries. These are the models
under which the coherence conditions hold true for the matrix completiomgondio be meaningful
(Cancks and Tao, 2009; Keshavan et al., 2009). The signal to noise ratteefanodel and the test-
error (standardized) are defined as

varUv) oo PEUV - 2))

SNR= :
var(e) 1P (UV)IE

Training error (standardized) is defined as

IPa(Z-2)|2
IPa(2)]?

the fraction of the error explained on the observed entries by the estinfattee¢o a zero estimate.

Figures 2, 3 and 4 show training and test error for all of the algorithms nmattiabove—both
as a function of nuclear norm and rank—for the three problem instarnties results displayed
in the figures are averaged over 50 simulations, and also show oneustaerdor bands (hardly
visible). In all example$m, n) = (100,100). For MMMF we user’ = min(m,n) = 100, the number
of columns inU andV. The performance of MMMF is displayed only in the plots with the nuclear
norm along the horizontal axis, since the algorithm does not delivercispreank. SNR, true rank
and percentage of missing entries are indicated in the figures. There igue worrespondence
betweem and nuclear norm. The plots versus rank indicate how effective thearuabem is as a
rank approximation—that is whether it recovers the true rank while minimiziadigtion error.

For routines not our own we use the MATLAB code as supplied on wedsphy the authors.
For SVT second author of Cai et al. (2008), fortBPACE third author of Keshavan et al. (2009),
and for MMMF first author of Rennie and Srebro (2005).

Training Error=

9.1 Observations

The captions of each of Figures 2—4 detail the results, which we summaiize For the first two
figures, the noise is quite high with SNRL, and 50% of the entries are missing. In Figure 2 the
true rank is 10, while in Figure 3 itis 6. T-IMPUTE, MMMF and SOFT-IMPUTE+ have the best
prediction performance, while&T-IMPUTE+ is better at estimating the correct rank. The other
procedures perform poorly here, although1SPACE improves somewhat in Figure 3. SVT has
very poor prediction error, suggesting once again that exactly fittingdinerig data is far too rigid.
SOFT-IMPUTE+ has the best performance in Figure 3 (smaller rank—more aggressivg) fiand
HARD-IMPUTE starts recovering here. In both figures the training error forsIMPUTE (and
hence MMMF) wins as a function of nuclear norm (as it must, by constmigtiout the more
aggressive fitters & T-IMPUTE+ and HARD-IMPUTE have better training error as a function of
rank.

Though the nuclear norm is often viewed as a surrogate for the rankaftax, we see in
these examples that it can provide a superior mechanism for regularizatiisis similar to the
performance of Assoin the context of regression. Although thesso penalty can be viewed as a
convex surrogate for th& penalty in model selection, itg penalty provides a smoother and often
better basis for regularization.
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50% missing entries with SNR=1, true rank =10
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Figure 2: SFTIMP+ refers to the post-processing afterrS-IMPUTE; HARD-IMPUTE USES ®FT-
IMP+ as starting values. Bothd&T-IMPUTE and FT-IMPUTE+ perform well (predic-
tion error) in the presence of noise; the latter estimates the actual rank ofattnix.
MMME (with full rank 100 factor matrices) has performance similar tF$-IMPUTE.
HARD-IMPUTE and QPTSPACE show poor prediction error. SVT also has poor predic-
tion error, confirming our claim in this example that criterion (4) can resulverfdating;
it recovers a matrix with high nuclear norm and ranlé0 where the true rank is only 10.
Values of test error larger than one are not shown in the figurerSBACE is evaluated
for a series of ranks. 30.
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50% missing entries with SNR=1, true rank =6
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Figure 3: FT-IMPUTE+ has the best prediction error, closely followed bgF$-IMPUTE and
MMMF. Both HARD-IMPUTE and QPTSPACE have poor prediction error apart from
near the true rank 6 of the matrix, where they show reasonable perfoem&VT has
very poor prediction error; it recovers a matrix with high nuclear norh i@mk > 60,
where the true rank is only 6. &¥SPACE is evaluated for a series of ranks35.
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80% missing entries with SNR=10, true rank =5
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Figure 4: With low noise the performance ofARD-IMPUTE improves. It gets the correct rank
whereas ®TSPACE slightly overestimates the rank. ARD-IMPUTE has the best pre-
diction error, followed by ®@TSPACE. Here MMMF has slightly better prediction error
than SFTIMPUTE. Although the noise is low here, SVT recovers a matrix with high
rank (approximately 30) and has poor prediction error as well. The test@&f SVT is
found to be different from the limiting solution ofc&T-IMPUTE; although in theory the
limiting solution of (10) should coincide with that of SVT, in practice we nevetathe
limit.
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In Figure 4 with SNR= 10 the noise is relatively small compared to the other two cases. The
true underlying rank is 5, but the proportion of missing entries is much haghedghty percent. Test
errors of both ®FT-IMPUTE+ and FT-IMPUTE are found to decrease till a large nuclear norm
after which they become roughly the same, suggesting no further impagjuwarization. MMMF
has slightly better test error tharoST™IMPUTE around a nuclear norm of 350, while in theory
they should be identical. Notice, however, that the training error is slightlsev@everywhere),
suggesting that MMMF is sometimes trapped in local minima. The fact that this sligihdegrfit
solution does better in test error is a quirk of this particular exampkerSBACE performs well in
this high-SNR example, achieving a sharp minima at the true rank of the matirRDHIMPUTE
performs the best in this example. The better performance of bpttseACE and HARD-IMPUTE
over FT-IMPUTE can be attributed both to the low-rank truth and the high SNR. This is reminis-
cent of the better predictive performance of best-subset or copemadized regression often seen
overLASSOIn setups where the underlying model is very sparse (Friedman, 2008).

9.2 Comparison with Fast MMMF (Rennie and Srebro, 2005)

In this section we comparecd®T-IMPUTE with MMMF in terms of computational efficiency. We
also examine the consequences of two regularization paranieters for MMMF over one for
SOFT-IMPUTE.

Rennie and Srebro (2005) describes a fast algorithm based on atmjgiadient descent for
minimization of the MMMF criterion (6). With (6) being non-convex, it is hard t@yde theo-
retical optimality guarantees for the algorithm for arbitraty\—that is, what type of solution it
converges to or how far it is from the global minimizer.

In Table 1 we summarize the performance results of the two algorithms. FoBbethlMPUTE
and MMMF we consider a equi-spaced grid of 26& [Amin, Amax], With Amin corresponding to a
full-rank solution of FT-IMPUTE andAmax the zero solution. For MMMF, three different values
of r’ were used, and for eacl),V) were solved for over the grid of values. A separate held-out
validation set with twenty percent of the missing entries sampled f2onwere used to train the
tuning parametek (for each value of’) for MMMF and SoFT-IMPUTE. Finally we evaluate the
standardized prediction errors on a test set consisting of the remainhriy p&ycent of the missing
entries inQ. In all cases we report the training errors and test errors on the optituakd
A. SOFT-IMPUTE was run till a tolerance of 1@ was achieved (fraction of decrease of objective
value). Likewise for MMMF we set the tolerance of the conjugate gragiesthod to 10%.

In Table 1, for every algorithm total time indicates the time required for evalyaitutions
over the entire grid ok values. In these examples, we used direct SVD factorization based rmethod
for the SVD computation, since the size of the problems were quite small. In a#t tseamples
we observe that &FT-IMPUTE performs very favorably in terms of total times. For MMMF the
time to train the models increase with increasing rdnknd in case the underlying matrix has rank
which is larger than’, the computational cost will be large in order to get competitive predictive
accuracy. This point is supported in the examples of Table 1. It is impadidanbte that, the
prediction error of ®FT-IMPUTE as obtained on the validation set is actually within standard error
of the best prediction error produced by all the MMMF models. In additienalgo performed
some medium-scale examples increasing the dimensions of the matrices. To malagisons fair,
SoFT-IMPUTE made use oflirect SVD computations (in MATLAB) instead of iterative algorithms
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Data Method (rank) Test error Training error| Time (secs)
(mn) = (10%,10°) | SoFT-ImPUTE(39) | 0.7238(0.0027) 0.0720 4.1745
Q| = 5x 10°(50%) | MMMF (20) 0.7318(0.0031) 0.2875 48.1090
SNR=3 MMMF (60) 0.7236(0.0027) 0.1730 62.0230
rank (R)= 30 MMMF (100) 0.7237(0.0027) 0.1784 96.2750
(mn) = (10%,10°) | SorFT-ImpuTE (37) | 0.5877(0.0047) 0.0017 4.0976
Q| =2 x 10°(20%) | MMMF (20) 0.5807(0.0049 0.0186 53.7533
SNR=10 MMMF (60) 0.5823(0.0049 0.0197 62.0230
rank(R)= 10 MMMF (100) 0.5823(0.0049 0.0197 84.0375
(mn) = (10%,10°) | SoFT-ImPUTE(59) | 0.6008(0.0028) 0.0086 3.8447
|Q| = 8 x 10°(80%) | MMMF (20) 0.6880(0.0029 0.4037 33.8685
SNR=10 MMMF (60) 0.5999(0.0028) 0.0275 57.3488
rank(R)= 45 MMMF (100) 0.5999(0.0028) 0.0275 89.4525

Table 1: Performances ofd&T-IMPUTE and MMMF for different problem instances, in terms of
test error (with standard errors in parentheses), training error and fonéearning the
models. ®FT-IMPUTE,“rank” denotes the rank of the recovered matrix, at the optimally
chosen value of. For the MMMF, “rank” indicates the value ofin Uy, Vaxr. Results
are averaged over 50 simulations.

exploiting the specialize@parse+Low-Ranistructure (22). We report our findings on one such
simulation example:

e For (m,n) = (20001000, |Q|/(m-n) = 0.2, rank= 500 and SNR=10; SFT-IMPUTE takes
1.29 hours to compute solutions on a grid of 20@alues. The test error on the validation set
and training error are.0630 and ®375 with the recovered solution having a rank of 225.

For the same problem, MMMF witH = 200 takes 87 hours returning a solution with test-
error 09678 and training error.6624. Withr’ = 400 it takes 189 hrs with test and training
errors 09659 and 6564 respectively.

We will like to note that DeCoste (2006) proposed an efficient implementatidtMdMF via an
ensemble based approach, which is quite different in spirit from the logtitmization algorithms
we are studying in this paper. Hence we do not compare it @GAFIMPUTE.

9.3 Comparison with Nesterov’'s Accelerated Gradient Method

Ji and Ye (2009) proposed a first-order algorithm based on Ne&earoveleration scheme (Nes-
terov, 2007), for nuclear norm minimization for a generic multi-task learniafplpm (Argyriou

et al., 2008, 2007). Their algorithm (Liu et al., 2009; Ji and Ye, 20@9)le adapted to theo®T-
IMPUTE problem (10); hereafter we refer to it agBITEROV. It requires one to compute the SVD of
a dense matrix having the dimensions@fwhich makes it prohibitive for large-scale problems. We
instead would make use of the structure (22) for the SVD computation, #bkpbkaracteristic of
matrix completion which is not present in a generic multi-task learning probleme \WMe compare
the performances of &T-IMPUTE and NESTEROVoON small scale examples, where direct SVDs
can be computed easily.
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Since both algorithms solve the same criterion, the quality of the solutions—objeetiues,
training and test errors—will be the same (within tolerance). We hence certipgar performances
based on the times taken by the algorithms to converge to the optimal solution) @in(&Qyrid of
values ofA. Both algorithms compute a path of solutions using warm starts. Results are ghow
Figure 5, for four different scenarios described in Table 2.

Example (m,n) |Q|/(m-n) | Rank | Test Error
i | (100,100 0.5 5 0.4757
i | (100100 0.2 5 0.0668
i | (100,100) 0.8 5 0.0022
iv | (1000500 0.5 30 0.0028

Table 2: Four different examples used for timing comparisonsafi 9 MPUTE and NESTEROV
(accelerated Nesterov algorithm of Ji and Ye 2009). In all cases the=SIN.

Figure 5 shows the time to convergence for the two algorithms. Their regpaeatmber of
iterations are not comparable. This is becaussNROVUses a line-search to compute an adaptive
step-size (approximate the Lipschitz constant) at every iteration, wh8cgasIMPUTE does not.

SOFT-IMPUTE has a rate of convergence given by Theorem 2, which for laigavorse than
the accelerated versionB$TEROV with rate O(1/k?). However, timing comparisons in Figure 5
show thatsoFFIMPUTE performs very favorably. We do not know the exact reason behingdahis
mention some possibilities. Firstly the rateswamst caseonvergence rates. On particular problem
instances of the form (10), the rates of convergengeractice of SOFFIMPUTE and NESTEROV
may be quite similar. Since Ji and Ye (2009) uses an adaptive step-siteg)gtithe choice of a
step-size may be time consumirgpFFIMPUTE on the other hand, uses a constant step size.

Additionally, it appears that the use of tromentunterm in NEsTEROVaffects theSparse+Low-
rank decomposition (22). This may prevent the algorithm to be adapted for sdarye problems,
due to costly SVD computations.

9.4 Large Scale Simulations for ®FT-IMPUTE

Table 3 reports the performance cbSr-IMPUTE on some large-scale problems. All computations
are performed in MATLAB and the MATLAB implementation of PROPACK is usBdia input,
access and transfer in MATLAB take a sizable portion of the total computdtione, given the
size of these problems. However, the main computational bottle neck in ouitlahgds the struc-
tured SVD computation. In order to focus more on the essential computatshkalable 3 displays
the total time required to perform the SVD computations over all iterations ofigjoeitam. Note
that for all the examples considered in Table 3, the implementations of algoritEsiseERov (Liu
et al., 2009; Ji and Ye, 2009) and MMMF (Rennie and Srebro, 20@5peohibitively expensive
both in terms of computational time and memory requirements, and hence couid nat. We
used the valud = ||Pa(X)||2/K with SOFT-IMPUTE, with K = 1.5 for all examples but the last,
whereK = 2. Ao = ||Pa(X)]]2 is the largest singular value of the input matdx(padded with ze-
ros); this is the smallest value dffor which S, (P (X)) = 0 in the first iteration of 8FT-IMPUTE
(Section 3).
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Figure 5: Timing comparisons ofc&T-IMPUTE and NESTEROV (accelerated Nesterov algorithm
of Ji and Ye 2009). The horizontal axis corresponds to the stanéardizclear norm,
with C = max, |2, ||.. Shown are the times till convergence for the two algorithms over
an entire grid ofA values for examples i-iv (in the last the matrix dimensions are much
larger). The overall time differences between Examples i—iii and Examjsdelive to the
increased cost of the SVD computations. Results are averaged oviendl@t®ons. The
times for NESTEROVchange far more erratically withthan they do for 8FT-IMPUTE.

The prediction performance is awful for all but one of the models, mEaumost cases the
fraction of observed data is very small. These simulations were mainly to skogothputational
capabilities of ®FT-IMPUTE on very large problems.

10. Application to the Netflix Data Set

The Netflix training data consists of the ratings of 17,770 movies by 480,18%\ertftomers. The
resulting data matrix is extremely sparse, with 100,480,507 or 1% of the erfisesved. The task
was to predict the unseen ratings for a qualifying set and a test sevoff &4 million ratings each,
with the true ratings in these data sets held in secret by Netflix. A probe sdioot 1.4 million
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(m,n) |Q] |Q|/(m-n) | Recovered Time (mins)| Test error| Training error
x100% rank
(104,104 | 10° 0.1 40° 0.2754 0.9946 0.6160
(104,104 10° 0.1 40° 0.3770 0.9959 0.6217
(104 10%) 10° 0.1 50 0.4292 0.9962 0.3862
(104,104 100 1.0 5 1.6664 0.6930 0.6600
(10°,10°) | 5x 10° 0.05 40° 17.2518 0.9887 0.8156
(10°,10°) 10 0.1 5 20.3142 0.9803 0.9761
(108, 10°) 108 0.1 5 2599620 0.9913 0.9901
(10°,10P) 10 0.001 20 99.6780 0.9998 0.5834

Table 3: Performance of&T-IMPUTE on different problem instances. All models are generated
with SNR=10 and underlying rank=5. Recovered rank is the rank ofdhgign matrix
Z at the value oh used in (10). Those with stars reached the “maximum rank” threshold,
and option in our algorithm. Convergence criterion is taken as “fraction afdugment of
objective value” less than 18 or a maximum of 15 iterations for the last four examples.
All implementations are done in MATLAB including the MATLAB implementation of
PROPACK on a Intel Xeon Linux 3GHz processor.

ratings was distributed to participants, for calibration purposes. The mamgsustomers in the
qualifying, test and probe sets are all subsets of those in the training set.

The ratings are integers from 1 (poor) to 5 (best). Netflix's own algoritta® an RMSE of
0.9525, and the contest goal was to improve this by 10%, or an RMSE of D @5better. The
contest ran for about 3 years, and the winning team was “Bellkor'grRaéic Chaos”, a merger
of three earlier teams (séét p: / / www. net f | i xpri ze. com for details). They claimed the grand
prize of $1M on September 21, 2009.

Many of the competitive algorithms build on a regularized low-rank factor risidelar to (6)
using randomization schemes like mini-batch, stochastic gradient dessei-sampling to reduce
the computational cost over making several passes over the entireetiéseesSalakhutdinov et al.,
2007; Bell and Koren., 2007; Takacs et al., 2009, for example). Inpdaer, our focus is not on
using randomized or sub-sampling schemes. Here we demonstrate thaictaarmorm regular-
ization algorithm can be applied in batch mode on the entire Netflix training set witasanable
computation time. We note however that the conditions under which the numearregulariza-
tion is theoretically meaningful (Cagd and Tao, 2009; Srebro et al., 2005a) are not met on the
Netflix data set.

We applied 9FT-IMPUTE to the training data matrix and then performed a least-squares un-
shrinking on the singular values with the singular vectors and the trainingrolatand column
means as the bases. The latter was performed on a data-set of Sized6mly drawn from the
probe set. The prediction error (RMSE) is obtained on a left out portidgheoprobe set. Table 4
reports the performance of the procedure for different choiceseofuhing parametex (and the
corresponding rank); times indicate the total time taken for the SVD computati@rsall itera-
tions. A maximum of 10 iterations were performed for each of the exampleainAthese results
are not competitive with those of the competition leaders, but rather denmentesfeasibility of
applying SFT-IMPUTE to such a large data set.
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A Rank | Time (hrs)| RMSE

Ao/250 | 42 1.36 0.9622
Ao/300 | 66 2.21 0.9572
Ao/500 | 81 2.83 0.9543
Ao/600| 95 3.27 0.9497

Table 4: Results of applying@T-IMPUTE to the Netflix data.Ao = ||Pq(X)||2; see Section 9.4.
The computations were done on a Intel Xeon Linux 3GHz processor; timimgeported
based on MATLAB implementations of PROPACK and our algorithm. RMSE is root-
mean squared error, as defined in the text.
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Appendix A. Proofs

We begin with the proof of Lemma 1.

A.1 Proof of Lemma 1

Proof LetZ = UnmunDnxnVL., be the SVD ofZ. Assume without loss of generality) > n. We will
explicitly evaluate the closed form solution of the problem (8). Note that

1 1 no_ n no_
ZNZ-WIE+N|Z]l, = 24 (|1ZI2 -2 ditdwWe + S d? b +A S d (32)
512~ Wle 2| [#lF =22, 400+ 2 Ay rh 2 d

where

D = diag[dy,...,dn], U = [ta,...,0], V = [{,...,%)].

Minimizing (32) is equivalent to minimizing
n - n = n - -
=2V diGWVi + § df+ S 2Adi; wrt. (Gi, %, di), i=1,...,n,
i; 14 | i; | i; | 15 VI |

under the constraintd’U = I,,, V'V = I, andd; > 0 Vi. o o
Observe the above is equivalent to minimizing (wli.tV) the functionQ(U,V):

b>0 2

Q(U,V) = min 1 {—2_ida{w\7i +_id?} +7\id~i. (33)
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Since the objective (33) to be minimized w.r.D, is separable irdi,i = 1,...,n; it suffices to
minimize it w.r.t. eacld; separately.
The problem
o1 ~ ~
minimize= { —2diGiW¥; +d?} +Ad (34)
di>0 2

can be solved looking at the stationary conditions of the function using itgsadient (Nes-
terov, 2003). The solution of the above problem is giverSpffiwWv;) = (GWV; — A) 4, the soft-
thresholding ofuW¥V; (without loss of generality, we can tak®\V; to be non-negative). More
generally the soft-thresholding operator (Friedman et al., 2007; Hastk, 2009) is given by
S\(X) = sgnx)(|x| —A)+. See Friedman et al. (2007) for more elaborate discussions on how the
soft-thresholding operator arises in univariate penalized least-syperblems with the&;, penal-
ization.

Plugging the values of optimél,i =1,...,n; obtained from (34) in (33) we get

QU V) = % {HZ\,Z: — Z.Zl(‘]ilwvi — ) (QWT — A) + (0 XT; —A)i} : (35)
Minimizing Q(U,V) w.r.t. (U,V) is equivalent to maximizing

i{zm{wvi =N (GWG —N) = ([GWG-A)Z )= 5 (GWE - M) (36)

i VT >

It is a standard fact that for everghe problem

maximize UWV, such thatu L {0y,...,Gi_1}, v L {V1,...,Vi_1}
lulz<1,vi3<1
is solved by, Vi, the left and right singular vectors of the matvkcorresponding to itg" largest
singular value. The maximum value equals the singular value. It is easy thaemaximizing
the expression to the right of (36) wid;, v;),i = 1,...,nis equivalent to maximizing the individual
termsuW¥;. If r(A) denotes the number of singular valuediarger tham then the(Gi, V) ,i =
1,... that maximize the expression (36) corresponfliQ. .., Uy ] and|vi, ..., vy ] ; ther(A) left
and right singular vectors &% corresponding to the largest singular values. From (34) the optimal
D = diag|dy, ..., dn] is given byD, = diag[(cdh —A)+,..., (A —A)].
Since the rank ofV is r, the minimizerZ of (8) is given byUD,V’ as in (9). |

Remark 1 For a more general spectral regularization of the foMy;p(yi(Z)) (as compared to
YiAVi(Z) used above) the optimization problem (34) will be modified accordinglye sbfution
of the resultant univariate minimization problem will be given By8\;) for some generalized
“thresholding operator” §(-), where

S (GWi) = arg min% {20 dWe + d2) + Ap(dh).
di>0

The optimization problem analogous to (35) will be

. . . 1 2 n A_"‘/ ~ n "2 )
m|rl1j|r\1/1|ze > {||ZHF _Zi;dluiWV|+i;di +AY p(di), (37)
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whered; = s'g(u;wvi), Vi. Any spectral function for which the above (37) is monotonically increas-
ing in G’WY; for every i can be solved by a similar argument as given in the abové. pfbe solution

will correspond to the first few largest left and right singular vectors efittatrix W. The optimal
singular values will correspond to the relevant shrinkage/ threshoktatpr Sf(-) operated on the
singular values of W. In particular for the indicator functipiit) = A 1(t # 0), the top few singular
values (un-shrunk) and the corresponding singular vectors is theigolu

A.2 Proof of Lemma 3

This proof is based on sub-gradient characterizations and is inspiredme techniques used in
Cai et al. (2008).
Proof From Lemma 1, we know that & solves the problem (8), then it satisfies the sub-gradient
stationary conditions:

0e —(W—2)+A3||Z],. (38)

S\(Wy) andSAg\Nz) solve the problem (8) withV =W, andW =W, respectively, hence (38) holds
withW = Wy, Z1 = S)\ (Wl) andW = Wb, Zo = S)\(W]_).
The sub-gradients of the nuclear noj#|.. are given by

9)|Z][« = {UV'+®: mxn, U'w=0, oV =0, [|o|2 < 1}, (39)

whereZ =UDV' is the SVD ofZ.
Let p(Z) denote an element #|Z||.. Then

Z—W +Ap(Z)=0,i=1,2

The above gives
(Z1—2Z2) — (WL —Wb) +A(p(Z1) — p(Z2)) =0, (40)
from which we obtain
(21— 25,21 — Zp) — (Wh — Wb, 21 — Z5) + N(p(Z4) — p(Z2), 21 — Z5) = O,

where(a,b) = tracda’b).
Now observe that

A~ ~ ~ ~ A~

(P(Z1) = P(Z2), 21— Z2) = (P(21), Z1) — (P(Z1), Z2) — (P(Z2), 21) + (P(Z2), Z2).  (41)
By the characterization of subgradients as in (39), we have
(P(Z),Z) = |Z]. and |[p(Z)]2 <1, i=1,2.

This implies o A A A
[(p(Zi),Z)| < [[p(Z)l211Zjll+ < 1[Zj]]+ fori # j € {1,2}.
Using the above inequalities in (41) we obtain:

2ol +1122]. (42)
=2zl = |2l (43)

/l\ —~
T O
—~
N> N>
=
S~—
N> N>
N
S~ ~
I+
o~ o~
T T
—~
N> N>
NN
S~—
'_[‘\b I\l)\b
S~ ~
AV
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Using (42,43) we see that the r.h.s. of (41) is non-negative. Hence

(P(Z1) = P(Z2), 21~ 22) > 0.
Using the above in (40), we obtain:
121 — 25| = (Za— 22,21 — Z2) < (Wo —W\b, 21 — 7). (44)

Using the Cauchy-Schwarz InequalitZs — Zo||r Wi —Wb||r > (Z1 — Zo,Wh — W) in (44) we
get
121 Za|[f < (21— 22, Wa = Wo) < [|Z1— Zo|r [ Wo — W |

and in particular
121 — 22| < |21 — Zal|F W2 — W |-

The above further simplifies to

IWe —Wb||2 > [|Zy — Z5]12 = ||Sy(Wa) — Sy (W) ||2.

[
A.3 Proof of Lemma 4
Proof We will first show (15) by observing the following inequalities:
IZXH=ZNE = IS\(Pa(X)+Pg(Z) — Si(Pa(X) +Pg (Z5 )[R
(byLemma3 < ||(Pa(X)+Pa(Z)) - (PalX)+P&(Z) |12
= [Pz - I (45)
< |Z-Z2. (46)

The above implies that the sequer{qé'; - Z)'f‘1||é} converges (since it is decreasing and bounded
below). We still require to show thdt|ZX — Z'A‘*lué} converges to zero.
The convergence c{f||Z)'f - Z'A“1||F2:} implies that:

I1ZX* —ZIE — 12X~ Z5 [ — 0 ask — .
The above observation along with the inequality in (45,46) gives
IPa(ZX =2y HIE — 12X =2\ Y =0 = Pa(Z{—Z{) =0, (47)

ask — oo,

Lemma 2 shows that the non-negative sequefm@)'f) is decreasing itk. So ask — o the
sequencd) (ZX) converges.

Furthermore from (13,14) we have

QA (ZYZE) — QuZEHZE) — 0 ask — oo,
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which implies that
IPS (ZX) — P (Z 112 — 0 ask — w.

The above along with (47) gives
Z¥ -7t~ 0ask— o.

This completes the proof. |

A.4 Proof of Lemma 5

Proof The sub-gradients of the nuclear nofiy|.. are given by
9| Z||« = {UV' +W : Winyn, UW =0, WV =0, |W|| < 1}, (48)
whereZ =UDV' is the SVD ofZ. SinceZ'A‘ minimizesQ)\(Z|Z)'f‘1), it satisfies:
0€ —(Po(X)+P3(Z) —Z¥) +0)|Z¥|+ k. (49)

Suppos&* is a limit point of the sequemﬁ;. Then there exists a subsequefiogt € {1,2,...}
such thaZyx — Z* ask — oo.
By Lemma 4 this subsequenzg satisfies

Zx -zt -0
implying
PS(Z¥ Y —Z% — Pg(Z}) — Z; = —Pa(ZY).
Hence,
(Pa(X)+Pg(Z¥ ) =Z1) — (Pa(X) —Pa(Z)). (50)

For everyk, a sub—gradienp(Z'{) € 6|]Z'{H* corresponds to a tuplel, Vi, W) satisfying the proper-
ties of the sed||Z¥||.. (48).
Considerp(Z;“‘) along the sub-sequenog As ngx — o, Z;k — Z.
Let
Z¥ = UnDnVp,, Z* = UsD™V,

denote the SVD’s. The product of the singular vectors convejgs, — U,Ve. Furthermore due
to boundedness (passing on to a further subsequence if neceggaryW.. The limit UV, + Weo
clearly satisfies the criterion of being a sub-gradier'ofHence this limit corresponds {@(Z;) €
9/|Z;]I-.

Furthermore from (49, 50), passing on to the limits along the subsequgnee have

0€ —(Po(X) —Pa(Z)) +0(1Z;]]

Hence the limit poinZ; is a stationary point of (Z).
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We shall now prove (16). We know that for evamy
Zy = S\(Pa(X) +Pa(Z¥7 ). (51)
From Lemma 4, we knO\Z;'k — Z;k_l — 0. This observation along with the continuity 8f(-) gives
S\ (Pa(X) +Pg(Z¥ ™)) = Su(Pa(X) +Pg (Z)).
Thus passing over to the limits on both sides of (51) we get
Z; = S\(Pa(X) +Pa(2))),

therefore completing the proof. |

A.5 Proof of Lemma 6

The proof is motivated by the principle of embedding an arbitrary matrix intséipe semidefinite
matrix (Fazel, 2002). We require the following proposition, which we pusiag techniques used
in the same reference.

Proposition 1 Suppose matricesWm, Whxn, Zmxn satisfy the following:

ThentracgW) + traceW) > 2|/ Z||...

Proof LetZmn= merzrxrR;X, denote the SVD of, wherer is the rank of the matri¥. Observe
that the trace of the product of two positive semidefinite matrices is alwaysiegative. Hence we
have the following inequality:

trace< _LlFiT _RL;T)T ) ( Z\-/r V~\Z/ ) = 0.

Simplifying the above expression we get:
tracgLL"W) —tracgLR"Z") — tracgRL" Z) + tracd RR'W) > 0. (52)
Due to the orthogonality of the columns lofR we have the following inequalities:
tracgLL"W) < tracgW) and tracéRR'W) < tracgW).

Furthermore, using the SVD &

tracgLR'Z") = tracgX) = tracg LR Z").
Using the above in (52), we have:

tracgW) + tracgW) > 2tracé) = 2||Z| ...
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Proof [Proof of Lemma 6.] For the matriX, consider any decomposition of the fods= L]W,\N/,]TXr
and construct the following matrix

( wr z )= ( v )@, (53)

which is positive semidefinite. Applying Proposition 1 to the left hand matrix if), (@8 have:
tracgUUT) +tracgVVT) > 2| Z]..

Minimizing both sides above w.r.t. the decompositi@ns Un,.V,,; we have

) ~m|n {trace(UU ) +tracgVV 1)} > 2]|Z]].. (54)

4.V; z=0

Through the SVD ofZ we now show that equality is attained in (54). Suppe‘ises of rank

k < min(m,n), and denote its SVD b¥n.n = mekzkkanxk Then forU = mekzkxk andV =

1
RaxkZiy the equality in (54) is attained.
Hence, we have:

1z, = min {tracqUUT) +tracgVVT)}
= in {trace(UUT) +tracgVVT)}.

V:Z=Um VT

Cz

Cr

Note that the minimum can also be attained for matrices wittk or evenr > min(m, n); however,
it suffices to consider matrices with= k. Also itis easily seen that the minimum cannot be attained
for anyr < k; hence the minimal rankfor which (29) holds true is = k. |

A.6 Proof of Theorem 2

There is a close resemblance betwsar+IMPUTE and Nesterov’s gradient method (Nesterov,
2007, Section 3). However, as mentioned earlier the original motivatiommoélgorithm is very
different.
The techniques used in this proof are adapted from Nesterov (2007).
Proof PluggingZX = Z in (11), we have
1
Q@IZ) = K@) +5IPaE -2 (55)
> Hh(ZY).

Let Z¥(6) denote a convex combination of the optimal solutig{i)Xand thek™ iterate £5):
ZK(@) =0z7 + (1-0)Z%. (56)
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Using the convexity of, (-) we get:
fA(Z3(9)) < (1-8)fr(Z}) +BfA(Z7)- (57)

Expandingzk(6) using (56), and simplifyingg (ZX — Z(6)) we have:

IPa(ZX-ZX@)IF = €IIPa(ZX—2Z)|?
0%|Z\ - Zy |12 (58)

<
< eIR-ZIR (59)
Line 59 follows from (58) by observing th§Z" — Z°||2 < ||Z)r\‘“‘1 —Z||2, Ym—a consequence of
the inequalities (19) and (18), established in Theorem 1.

Using (55), the value of, (Z) at the(k+ 1)™" iterate satisfies the following chain of inequalities:

. 1
6@ < mn{ 6@+ IR - 21}
. 1
< mm{mzk(em\Pé(z;—zﬂem\%} (60)
8<[0,1] 2
H 00 1 00
< min {fA(ZI)f)+e(fA(ZA )—((Z)+ 5612 -2, IIE}- (61)
8<[0,1] 2

Line 61 follows from Line 60, by using (57) anAd (59).
The r.h.s. expression in (61), is minimizeddék + 1) given by

~

B8(k+1) = min{1,6} € [0,1], where,
fh(ZY) — ©(Z)
120 - Z3IIR

B =

If |22 —Z||2 = 0, then we takeéy = co.
Note thatfy is a decreasing sequence. This implies thajf< 1 thenBy, < 1 for allm> k.
Supposedp > 1. ThenB(1) = 1. Hence using (61) we have:
1 00 1 0 00|12 1
fA(Zy) — A (ZY) < EHZ)\ —Z4lg = 6. < >
Thus we get back to the former case.
Hencedy < 1 for allk > 1.
In addition, observe the previous deductions show th@bA'rf» 1 then (20) holds true fdt= 1.
Combining the above observations, plugging in the valugiof(61) and simplifying, we get:

(A (ZX) = fA(Z7))?
2|z - z7|2

(2 — i (Z) < - (62)

For the sake of notational convenience, we define the sequaneefy (ZK) — f,(Z7). It is easily
seen thatiy is a non-negative decreasing sequence.
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Using this notation in (62) we get:
2
Z OCXK 0|2
2|z -zy|¢

. OkOlk+1
(Sinceax]) > ——=5——So5 T 0kl (63)
2|zy - Zy|I3

Ok + Ok+1

Dividing both sides of the inequality in (63), mgay. 1 we have:

-1 -1
O, 12 == —o5 1O, . 64
1=z 4

Summing both sides of (64) overdk < (k— 1) we get:

k—1

1 1

al> —tagt. (65)
Tz Y

SinceB; < 1, we observens/(2||Z) — Z?||2) < 1/2—using this in (65) and rearranging terms we
get, the desired inequality (20)—completing the proof of the Theorem. |
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