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Abstract
We show how a preselection of hidden variables can be used to efficiently train generative models
with binary hidden variables. The approach is based on Expectation Maximization (EM) and uses
an efficiently computable approximation to the sufficient statistics of a given model. The com-
putational cost to compute the sufficient statistics is strongly reduced by selecting, for each data
point, the relevant hidden causes. The approximation is applicable to a wide range of generative
models and provides an interpretation of the benefits of preselection in terms of a variational EM
approximation. To empirically show that the method maximizes the data likelihood, it is applied
to different types of generative models including: a version of non-negative matrix factorization
(NMF), a model for non-linear component extraction (MCA), and a linear generative model similar
to sparse coding. The derived algorithms are applied to bothartificial and realistic data, and are
compared to other models in the literature. We find that the training scheme can reduce computa-
tional costs by orders of magnitude and allows for a reliableextraction of hidden causes.

Keywords: maximum likelihood, deterministic approximations, variational EM, generative mod-
els, component extraction, multiple-cause models

1. Introduction

In many applications of artificial and biological systems, data interpretation is challenging because
of noise, the complexity of the input and because of its ambiguity. Optimal inference based on
probabilistic generative models is in general intractable in such situations because it involves the
evaluation of all potential interpretations of the input. To approximate optimal inference, a fast
initial stage of processing has therefore long since been suggested. Inapplications to visual data,
a first processing stage can select candidate objects or components thatare potential causes of the
given input (see, e.g., Yuille and Kersten, 2006). Based on these candidates the meaning of a data
point is subsequently inferred in a second recurrent stage. The strategy of candidate preselection
has indeed been suggested and applied in different contexts (e.g., Körner et al., 1999; Lee and
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Mumford, 2003; Yuille and Kersten, 2006; Westphal and Würtz, 2009) and prominent systems
of feed-forward processing (such as Riesenhuber and Poggio, 1999, and van Rullen and Thorpe,
2001) are sometimes interpreted as sophisticated preprocessing stages for a subsequent recurrent
stage. The general idea of candidate preselection followed by recurrent recognition will in this
paper be formulated in terms of a variational approximation that allows for an efficient training of
probabilistic generative models.

In Section 2 the approximation scheme will be introduced as an approximation to Expectation
Maximization (EM). In Section 3 we systematically derive it as a variational EM approach. In
Section 4 the training scheme is applied to a number of different generative models and a number of
different data types. Section 5 discusses the features of the novel approach and the obtained results.

2. Expectation Maximization and Expectation Truncation

Our approach is based on Expectation Maximization (EM; Dempster et al., 1977) which is used to
maximize the data likelihood under a given generative model:

Θ∗ = argmaxΘ{L(Θ)} with L(Θ) = log
(

p(~y(1), . . . ,~y(N) |Θ)
)

, (1)

whereΘ are the parameters of a given generative model and where theN data points,{~y(n)}n=1,...,N,
will be taken to be generated independently from a stationary process.

To find the parametersΘ∗ at least approximately, we use the EM approach as it was formalized,
for example, by Neal and Hinton (1998) and introduce the free-energyfunctionF (q,Θ) which is a
function ofΘ and an unknown distributionq(~s(1), . . . ,~s(N)) over the hidden variables.F (q,Θ) can
be shown to be a lower bound of the likelihood evaluated at the same parametervalues. For our
purposes we assume independently generated data vectors~y(n) and use (without loss of generality)
a distributionq which is factored over the data points,q(~s(1), . . . ,~s(N)) = ∏nq(n)(~s(n);Θold). Note
that we takeq to be parameterized byΘold. The free-energy can thus be written as:

F (q,Θ) =
N

∑
n=1

[

∑
~s

q(n)(~s;Θold)
[

log
(

p(~y(n) |~s,Θ)
)

+ log(p(~s|Θ))
]]

+H(q) , (2)

whereH(q) = −∑n ∑~sq(n)(~s;Θold) log(q(n)(~s;Θold)) is a function (the Shannon entropy) that is
independent ofΘ. The sum over all states of~sbecomes an integral if the values of~sare continuous.
In the EM schemeF (q,Θ) is maximized alternately with respect toq in the E-step (whileΘ is
kept fixed) and with respect toΘ in the M-step (whileq is kept fixed). It can be shown that the
EM iterations increase the likelihood or keep it constant. In practical applications EM is found to
increase the likelihood to (at least local) likelihood maxima.

The free-energy function (2) can be used to derive update rules forthe parametersΘ of a given
model. Such a derivation can in some cases be challenging but one usually arrives at expressions in
which the new set of parametersΘ is a function of the old setΘold and the data{~y(n)}n=1,...,N. The
update rules derived contain what is often referred to as thesufficient statisticsof the model, that is,
they contain expressions of the form

〈g(~s)〉q(n) = ∑
~s

q(n)(~s;Θold)g(~s) , (3)

whereg(~s) is a function of the hidden variables. The functionsg(~s) are often relatively simple, for
example,g(~s) = si or g(~s) = sisj , but can for some models be more elaborate and may also include
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parameter dependencies. For an exact E-step in the EM scheme the functionsq(n)(~s;Θold) are given
by

q(n)(~s;Θold) = p(~s|~y(n),Θold) =
p(~s,~y(n) |Θold)

∑
~s′

p(~s′,~y(n) |Θold)
, (4)

wherep(~s,~y(n) |Θold) = p(~s|Θold) p(~y(n) |~s,Θold) with the latter distributions being defined by the
used generative model. To train models with multiple causes, the computation of theexact sufficient
statistics is usually avoided because it involves summing or integrating over a large space of hidden
states in (3) and (4). To reduce computational costs, training schemes therefore use approximations
to these intractable sums (or integrals) or approximations to the exact posterior p(~s|~y(n),Θold).
The approximation method discussed in this paper will be introduced as an approximation to the
sufficient statistics.

Let us consider the sufficient statistics of a functiong given by the combination of (3) and (4):

〈g(~s)〉q(n) =
∑
~s

p(~s,~y(n) |Θold) g(~s)

∑
~s′

p(~s′,~y(n) |Θold)
. (5)

Again, we have to sum over a very large space of hidden states. Let us for instance assume that
we have already found the optimal or approximately optimal parametersΘold ≈ Θ∗, that is, let us
assume that any given input vector is well represented by a distribution over hidden states. A given
~y(n) is in this case usually well represented by a distribution over just a small set of hidden vectors.
For the sums in (5) this means that just some summands contribute significantly whilethe others
are negligible. Thus, if we could find the right summands for a given~y(n), we could expect a good
approximation of〈g(~s)〉q(n) in (5) without having to sum over the entire state space of~s.

More formally, if K n denotes the set of all states that contain significant contributions to the
sums in (5), it applies:

〈g(~s)〉q(n) ≈

∑
~s∈K n

p(~s,~y(n) |Θold) g(~s)

∑
~s′∈K n

p(~s′,~y(n) |Θold)
. (6)

A potential subset containing the relevant summands could be found by exploiting specific data
properties. If the data was generated by few hidden units on average, for instance, most data points
are well approximated by only considering combinations of few active causes. A subset for the
approximation in (6) for binary causessj could thus be given byK = {~s | ∑ j sj ≤ γ}, whereγ is
the maximal number of active causes. Such a choice can significantly reduce the number of states
that have to be evaluated. Depending onγ the combinatorics can still be considerable, however, and
still, just a few of the summands might contribute.

To further constrain the state space, let us suppose that we can in some way find functions
Sh :RD→R that give estimates of how likely it is for the hidden causesh = 1, . . . ,H to have
contributed to the generation of a specific input~y(n). If we had such functions, we could approximate
the sufficient statistics (5) by neglecting all causes that are unlikely to havecontributed. In other
words, we could just sum over a subsetK n ⊆ K that contains the combinations of all hidden
variables that are likely to have caused the input~y(n). To define such a setK n more formally,
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consider theh = 1, . . . ,H valuesSh(~y(n)) for a given data point~y(n). To selectH ′ candidates, we
define the index setI to contain those latent indicesh with theH ′ largest valuesSh(~y(n)). The set
K n is then given by:

K n = {~s | ∑ j sj ≤ γ and(∀i 6∈ I : si = 0)}. (7)

Equation 6 represents a good approximation if the contributions of the states not in K n are indeed
negligible compared to the contributions of the states inK n. Much depends, of course, on the func-
tionsSh. From these functions, which we will termselection functions, we demand the following
properties: (A) they have to be efficiently computable and (B) they have to give high values for
hidden variables that actually are responsible for a given~y(n). Note that for the selection functions
it is merely important to select candidates that canpotentiallyexplain the input. Neither are their
exact values used in (6) nor is it disadvantageous for the accuracy ofthe approximation if some
candidates are selected that turn out to contribute very little. We will see examples of such selection
functions for different generative models in Section 4. Before let us summarize the approximation
discussed above in the form of the pseudo-code given in Algorithm 1. Asthe approximation scheme
resides on a truncation of the sums in the expectation value computations in (5),we will refer to it
asExpectation Truncation(ET).

Algorithm 1 : Expectation Truncation - Pseudo Code

Choose approximation parametersH ′ andγ (γ≤ H ′ ≤ H) and randomly initialize the1

parameters of the generative model.

while parameters have not convergeddo2

for all data points n= 1, . . . ,N do3

Compute the selection function valueSh for eachh= 1, . . . ,H and determine the4

index setI of theH ′ hidden variables with theH ′ highest values forSh.

Compute the set of binary vectorsK n = {~s | ∑ j sj ≤ γ and(∀i 6∈ I : si = 0)}5

Compute the approximate sufficient statistics (6).6

Update the parameters in the M-step using the approximate sufficient statistics.7

The two parametersH ′ and γ control the size ofK n. H ′ determines how many candidates are
selected andγ fixes the maximal number of non-zero hidden unitssh. For instance, if we choose
H ′ = 4 andγ = 2, the summation over~s considers four candidates of which either none, one, or

two are simultaneously active (compare Figure 2). The size ofK n is thus given by∑γ
γ ′=0

(
H ′

γ ′

)

.

The approximation’s accuracy increases with increasing values ofH ′ andγ but its computational
demand increases as well. For the highest possible values,H ′ = γ = H, we drop, for any selection
functionSh, back to the case of the exact sufficient statistics (5).

Note that while the approximation scheme presumably results in good approximations for many
data points it can be expected to give poor results for data points generated by more thanγ hidden
causes (i.e., for data points not inK ). To avoid learning from such data points with inappropri-
ately estimated sufficient statistics let us again assume that we have already found close to optimal
parametersΘ∗. In such a situation and for any data point~y(n) generated by less or equalγ hidden
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causes we get:
p(~y(n) |Θ∗) = ∑

~s

p(~s,~y(n) |Θ∗) ≈ ∑
~s∈K n

p(~s,~y(n) |Θ∗) , (8)

where we have assumed appropriate selection functions and relatively lownoise levels. In the same
situation but for data points~y(n) which were generated by more thanγ hidden causes we obtain:

p(~y(n) |Θ∗) = ∑
~s

p(~s,~y(n) |Θ∗) ≈ ∑
~s6∈K n

p(~s,~y(n) |Θ∗) ⇒ ∑
~s∈K n

p(~s,~y(n) |Θ∗)≈ 0. (9)

The values of the sums∑~s∈K n
p(~s,~y(n) |Θ∗) for the different data points can thus serve as indicators

for finding data points that were presumably generated by less thanγ causes. For learning we aim
to include only those data points that are approximated well. We therefore define a setM of the
Ncut≤ N data points with largest sums. In the beginning of learning, the estimation of such data
points is too imprecise, however. We therefore start by taking all data pointsinto accountNcut = N
and decreaseNcut to values close toN≤γ within the last third of the iterations.N≤γ is hereby
the expected number of data points generated by less or equalγ causes. For a given generative
model, this number can usually be computed tractably. The number of data pointsgenerated by
≤ γ causes can, for a given data set, be smaller thanN≤γ because of finitely many data points.
It can therefore be beneficial to finally use anNcut slightly smaller thanN≤γ. This potentially
avoids the consideration of data points that are not well approximated. In numerical experiments
in Section 4 we will therefore use final values ofNcut = 0.9N≤γ althoughNcut = N≤γ gives similar
results especially for largeN.

Considering Algorithm 1 what is still left to specify are concrete expressions for the selection
functionsSh and expressions for parameter update rules (M-step equations). These equations do,
however, depend on the particular generative model the method is applied to. We will therefore
discuss selection functions and update rules individually for the different generative models we
investigate in Section 4. Given selection functions and update rules, Algorithm 1 describes an ap-
proximation scheme applicable to generative models with binary hidden variables. The scheme has
been introduced and defined as an approximation to the sufficient statistics (5). In the next section it
will be systematically derived as a variational EM approach. The assumptions used for the approx-
imation will thus become explicit, allowing a generalization of the scheme and a specification of its
potential limitations. The computational complexity of the method will be discussed in Appendix C.

3. Expectation Truncation and Variational EM

In this section we will show that Expectation Truncation corresponds to a variational EM approxi-
mation. The approximation, as introduced in Section 2, consists of two parts: (A) an approximation
to the sufficient statistics in Equation 6, and (B) a selection of data points that are well approximated
by Equation 6. Both of these parts can be formulated as variational EM steps. For the derivation
we will start with (B), that is, with the selection of data points. The selection will take the form of
a classification of data points into two classes: one class that contains the datapoints that can be
well approximated, and another class that contains the remaining points. Thecorresponding varia-
tional step will be referred to as the first variational step (Section 3.1). The step (A) corresponding
to approximation (6) will only be the second variational step (Section 3.2). Both steps combine
to form the approximation scheme of Expectation Truncation. The scheme is compactly summa-
rized in Section 3.3, and the basic procedural steps are listed in Algorithm 2 which represents a
generalization of Algorithm 1.
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Extracted basis functions W

Truncated
data, c= 1

Truncated
data, c= 0

generates generates

n∈M n 6∈M

Original dataTruncated generative model c= 1

{~y(n)}n=1,...,N

Truncated generative model c= 0

data point

p̃(~s|c= 1,π) =
{

1
κ̃ p(~s|π) if ~s∈K

0 if ~s 6∈K
p̃(~s|c= 0,π) =

{
0 if ~s∈K

1
1−κ̃ p(~s|π) if ~s 6∈K

{~y(n)}n6∈M{~y(n)}n∈M

classification

p(~y|~s,W, σ) = N (~y; W~s,σ21)p(~y|~s,W, σ) = N (~y; W~s,σ21)

p(~s|π) = ∏h Bernoulli(sh; π) p(~s|π) = ∏hBernoulli(sh; π)

Figure 1: First variational approximation: data classification. The figure shows Expectation Trun-
cation (without preselection) for a concrete generative model. In this example, the gen-
erative model generates data by linearly superimposing basis functions in the form of
horizontal and vertical bars. Data generated by the original model contains up to ten
bars chosen with a Bernoulli prior (example data points are shown in the center). Data
generated by the truncated generative model withc= 1 contains up to two bars (we set
K = {~s | ∑ j sj ≤ γ} with γ = 2). Data generated by the truncated generative model with
c= 0 contains at least three bars. If we train the truncated generative modelwith c= 1 on
data from which data points with∑ j sj > γ were removed, we can expect to approximately
recover the true generating basis functionsW of the original model.

3.1 First Variational Approximation: Data Classification

As in Section 2, let us consider a generative model with a set of hidden variables denoted by~s, a set
of observed variables denoted by~y, and a set of parameters denoted byΘ. Let us denote the prior
distribution of the model by the (not further specified) functionp(~s|Θ), and the noise distribution
by the (not further specified) functionp(~y|~s, Θ). To distinguish this generative model from models
introduced later, it will from now on be referred to as theoriginal generative model.

We will formalize the classification of data points by introducing two new generative models
defined based on the original model. The two models will correspond to two classes of data points:
one class of those points that can be well approximated, and one class of points that can not. LetK
be a subset of the space of all possible values of~s. Given such a set, we define the two generative
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models by introducing two new prior distributions that are based on the original prior:

p(~s|c= 1,Θ) =

{ 1
κ̃ p(~s|Θ) if ~s∈K

0 if ~s 6∈K
and p(~s|c= 0,Θ) =

{
0 if ~s∈K

1
1−κ̃ p(~s|Θ) if ~s 6∈K

(10)

whereκ̃ = ∑~s∈K p(~s|Θ). We take the noise distributionp(~y|~s,Θ) of the new models to be identical
to the original noise distribution. We will refer to the new generative models astruncatedmodels
because their prior distributions are truncated to be zero outside of specific subsets. Note that the
generation of data according to the truncated model withc= 1 corresponds to generating data ac-
cording to the original model while only accepting data points generated by~s∈ K . Analogously,
generating data according to the truncated model withc= 0 is equivalent to generating data accord-
ing to the original model while accepting only data points generated by~s 6∈ K . Figure 1 shows the
truncated generative models and data they generate for a concrete example (a model that linearly
combines bar-like generative fields; compare Section 4.1). For the example, K is the set of binary
states~s with less or equalγ non-zero entries. In general,K can be any subset, however.

Let us now mix the two truncated models in Equation 10 by introducingc∈ {0,1} as additional
hidden variable and by drawingc= 1 with probabilityκ. The prior distribution of this mixed model
is thus given by:

p(c|κ) = κc (1−κ)1−c , (11)

p(~s|c,Θ) =
( c

κ̃
δ(~s∈K ) +

1−c
1− κ̃

δ(~s 6∈K )
)

p(~s|Θ) . (12)

where we have introducedδ(~s∈ K ) = 1 if ~s∈ K and zero otherwise, andδ(~s 6∈ K ) = 1 if ~s 6∈ K
and zero otherwise. We will refer to this model as themixedgenerative model. Note that the mixed
model is identical to the original generative model if we chooseκ = κ̃ = ∑~s∈K p(~s|Θ) as mixing
proportion. The mixed model thus contains the original model as a special case.

Now, consider a set ofN data points{~y(n)}n=1,...,N generated according to the original generative
model. Let us maximize the likelihood of the data under the mixed model (11) and (12). If we use
EM for optimization (compare Section 2), we obtain the free-energy

F̃ (q,Θ,κ) = ∑
n

∑
c

q(n)(c;Θold) log
(
p(~y(n) |c,Θ)

)

+ log(κ)∑
n

q(n)(c= 1;Θold)+ log(1−κ)∑
n

q(n)(c= 0;Θold)+H(q) , (13)

whereH(q) is the entropy w.r.t.q(n)(c;Θold) (summed over alln andc). The free-energy (13) can be
optimized iteratively by maximizingq in the E-step and(Θ,κ) in the M-step. For the E-step, choos-
ing the exact posterior,q(n)(c; Θold) = p(c|~y(n),Θold), represents the optimal choice. Unfortunately,
it is computationally intractable in general because

p(c= 1|~y(n),Θold) =
∑~s∈K p(~y(n),~s|Θ)

∑~s p(~y(n),~s|Θ)
(14)

requires a summation over the entire state space of~s (similarly for c= 0). We thus choose a varia-
tional approximation to the true posterior by settingq(n)(c;Θold) to zero or one. This approximation
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reduces the free-energy (13) to:

F̃ (q,Θ) =

≈L1(Θ)
︷ ︸︸ ︷

∑
n∈M

log
(
p(~y(n) |c= 1,Θ)

)
+

≈L0(Θ)
︷ ︸︸ ︷

∑
n6∈M

log
(
p(~y(n) |c= 0,Θ)

)

+ log(κ)|M |+ log(1−κ)(N−|M |)+H(q) . (15)

whereM = {n|q(n)(c= 1; Θold) = 1}. Note thatκ can be optimized independently ofΘ because
the first two summands in (15) only depend onΘ. As we also know its final optimal value (κ = κ̃),
we will treat the mixing proportion as implicitly known.κ can thus be omitted as a parameter of the
free-energy (15) and will not play a role for our further considerations.

For the data setM note that the best choice forq(n)(c; Θold) under the constraintq(n)(c; Θold)∈
{0,1} is given by the assignmentq(n)(c = 1; Θold) = 1 if ~y(n) was generated by classc = 1 (and
zero otherwise). This would amount to settingM to

M opt = {n|~y(n) generated by classc= 1} . (16)

In general this best choice can not be computed exactly. We can, however, derive tractable ap-
proximations toM opt. Choosing a setM is equivalent to choosing a distributionq(n)(c; Θold) with
binary values (as an approximation to Equation 14). Any choice ofM thus represents a variational
approximation. In Appendix A.2 it is shown that one such approximation is obtained via sorting
according to the denominator values in Equation 6. The selection ofNcut data points obtained in
this way is thus equivalent to a variational E-step.

An interesting aspect of Equation 15 is that the first two summands take the form of two log-
likelihoods. The first summand is the likelihoodL1(Θ) of the truncated generative model withc= 1,
and the second is the likelihoodL0(Θ) of the model withc= 0. If M =M opt, both likelihoods are
evaluated on the set of data points they can generate (see Figure 1). Considering these properties of
Equation 15 the question arises how the maximum ofF̃ (q,Θ) and the maxima ofL1(Θ) andL0(Θ)
are related. It could, for instance, be asked if all three functions havea maximum for the same
parameter values. From the structure of the equation this can not be concluded, and, indeed, the
question must be answered negatively because it can be shown that in general the maxima do not
coincide. However, under assumptions that are usually fulfilled at least approximately, we can show
that any global maximum of̃F (q,Θ) is an approximate global maximum ofL1(Θ) and ofL0(Θ).
A necessary condition for an approximate global maximum ofL(Θ) (the likelihood of the original
model) is thus a global likelihood maximum ofL1(Θ) (or of L0(Θ)). The technical derivation of
this observation is given in Appendix A.1.

Note that, intuitively, it makes sense that the maximization of the likelihoodL1(Θ) results in
parameters that can approximately maximizeL(Θ). To see this consider the example of Figure 1.
If the truncated generative model withc = 1 is optimized on the truncated data classc = 1, the
displayed generative fieldsW are learned. These parameter values can be expected to also result in
close to maximum likelihood values for the generative model withc = 0 on data classc = 0, and
also correspond to approximately optimal likelihood values of the original generative model on the
original data. The approximation improves with increasingly many data points. For this example,
all parameters to approximately maximizeL(Θ) can be recovered based on the necessary condition
of maximizingL1(Θ). The example of Figure 1 also demonstrates that the first variational step
already significantly reduces computational costs. The truncated model withc= 1 only requires the
evaluation of 56 states per data point instead of 210 = 1024 evaluations for the original model.
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3.2 Second Variational Approximation: Preselection

Starting point for the second variational approximation will be the likelihoodL1(Θ) of the truncated
generative modelc = 1. We have seen in the previous section (and Appendix A.1) that a global
maximum inL1(Θ) is a necessary condition for an approximate global maximum of the likelihood
L(Θ) of the original model. To find the maximum ofL1(Θ) we optimize the lower boundF1(q,Θ)
given by:

F1(q,Θ) =

Q1(q,Θ)
︷ ︸︸ ︷

∑
n∈M

∑
~s∈K

q(n)(~s;Θold) log
(

p(~y(n) |~s,Θ)
1
κ̃

p(~s|Θ)
)

+ H(q) , (17)

with ∑~s∈K q(n)(~s;Θold) = 1. F1(q,Θ) is derived by a variational approximation, this time w.r.t. the
hidden variables~s. The free-energy equals the likelihoodL1(Θ) after each E-step if the distributions
q(n)(~s;Θold) are given by:

q(n)(~s;Θold) = p(~s|~y(n),c= 1,Θold) =
p(~s|~y(n),Θold)

∑~s′∈K p(~s′ |~y(n),Θold)
δ(~s∈K ). (18)

M-step rules can be derived by setting the derivatives ofF1(q,Θ) w.r.t. all parameters to zero. As
the entropy term in (17) is independent ofΘ if q is held fixed, we obtain

d
dΘ

F1(q,Θ) =
d

dΘ
Q1(q,Θ) = 0 (19)

as necessary condition. The derivativeddΘ hereby stands for derivatives w.r.t. all the individual
parameters.

Based on condition (19) we can now introduce candidate preselection as avariational approxi-
mation. As described in Section 2, preselection amounts to selecting, for a given~y(n), a subsetK n

of the state space. Section 2 gives an example of how to define the setK and how to construct
subsetsK n using selection functions. Figure 2 shows a concrete example of how a setK n is con-
structed using selection function valuesSh(~y(n)). In Section 4 and Appendix B different instances
of selection functions can be found. More generally, we here require from the setsK n that for all
data points generated by~s∈K , they finally contain most of the posterior mass inK . If this applies,
we obtain an approximation to the posteriorq(n) in (18) given by:

q̃(n)(~s;Θold) =
p(~s|~y(n),Θold)

∑~s′∈K n
p(~s′ |~y(n),Θold)

δ(~s∈K n) =
p(~s,~y(n) |Θold)

∑~s′∈K n
p(~s′,~y(n) |Θold)

δ(~s∈K n). (20)

Note that ˜q(n)(~s;Θold) sums to one inK asK n⊆K . It thus fulfils the condition onq(n) required for
(17). If preselection finds, at least finally, appropriate setsK n, we obtain with (20) the necessary
condition: d

dΘQ1(q̃,Θ)≈ d
dΘQ1(q,Θ) = 0. Parameter update rules derived fromddΘQ1(q̃,Θ) = 0

can therefore be expected to (at least approximately) optimize the free-energy (15) and thusL1(Θ).
The update rules derived will contain expectation values (the sufficient statistics) of the form〈g(~s)〉q̃(n) .
If we use (20) for these expectations we obtain:

〈g(~s)〉q̃(n) = ∑
~s

q̃(n)(~s;Θold)g(~s) =

∑
~s∈K n

p(~s,~y(n) |Θold) g(~s)

∑
~s′∈K n

p(~s′,~y(n) |Θold)
,
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Figure 2: Second variational approximation: preselection. The figure illustrates how the variational
approximation ˜q(n)(~s;Θold) in Equation 20 is computed. The selection of hidden states
~s∈Kn and the computation of ˜q(n)(~s;Θold) are shown for the example of Figure 1 close
to the optimal parametersW. Given the data point~y(n) a selection function valueSh for
each hidden variableh is computed. TheH ′ largest values are selected (H ′ = 4 for this
example). The approximation ˜q(n)(~s;Θold) is then computed based on the combinatorics
of theseH ′ candidates (with∑ j sj ≤ γ = 2). For the displayed data point and parameters
all values of ˜q(n)(~s;Θold) except for one lie close to zero. For visualization purposes these
values have been increase in the figure.

that is, precisely expression (6) in Section 2. Expectation Truncation, introduced as an approx-
imation to Equation 5, can thus been derived as a variational approximation. Importantly, this
approximation is tractable ifK n is small. The computational gain of preselection compared to
an approximation without preselection is reflected by the reduced size ofK n compared toK (see
Figure 2 for an example and Appendix C for a detailed complexity analysis).

3.3 Summary and Numerical Controls

We have seen that the approximation procedure introduced in Section 2 canbe derived as a vari-
ational EM approach. This approach consists of two variational approximation steps: First, an
approximation that assigns the data points to two classes (Section 3.1). Second, a variational step
that approximates the posterior (18) by an approximate posterior (20) defined through preselection
(Section 3.2). Although the derivation of ET as a variational approach requires in parts rather tech-
nical steps, the final result is intuitive (see Figure 1 and Figure 2) and can be stated very compactly.
Algorithm 2 summarizes all required steps of the approximation scheme.

Note that also with preselection, the ET approximation still requires a summation over K ,
namely∑~s∈K p(~s|Θ). This sum has to be computed to determineNcut, Ncut = N∑~s∈K p(~s|Θ),
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Algorithm 2 : Expectation Truncation

Preselection: select a state space volumeK n for each data point~y(n)

Data classification: find a data setM that approximatesM opt in Equation 16

E-step: compute ˜q(n)(~s;Θold) =
p(~s,~y(n) |Θold)

∑~s∈K n
p(~s,~y(n) |Θold)

for all~y(n) and~s∈K n

M-step: find parametersΘ such that
d

dΘ ∑
n∈M

∑
~s∈K n

q̃(n)(~s;Θold) log
(

p(~y(n) |~s,Θ)
p(~s|Θ)

∑~s′∈K p(~s′ |Θ)

)

= 0

and it appears in the M-step equation (Algorithm 2). Because of symmetries inthe usual priors for
generative models, this sum can, however, be computed without summing over all ~s explicitly (an
example is given in the next section). Even if symmetries can not be exploited,note that the sum
over~s∈ K has to be computed at most once per EM iteration and not once per data pointand per
EM iteration (as it is the case for the sums overK n).

Algorithm 2 summarizes ET as a variational approximation and represents a generalization of
Algorithm 1. Algorithm 1 in Section 2 contains, for example, one specific way of how to select
an appropriate setK and appropriate setsK n: we definedK based on sparseness and selected
K n using selection functionsSh. In the variational derivation of ET we, however, only specified
the properties required fromK andK n. In general,K does not have to be defined based on a
sparseness assumption and there are potentially alternative ways to definethe setsK n. Importantly,
the variational derivation of ET allows for a comparison with other variational approaches. We
can thus observe that ET is qualitatively different from the standard variational approach. Concrete
instances of variational EM usually approximate the exact posteriors by fully or partly factored
distributions over the hidden variables (compare Jordan et al., 1999; Jaakkola, 2000; MacKay, 2003;
Bishop, 2006). Such approximations become the more severe the strongerdependencies between
the hidden variables in the posterior are. In the derivation of the ET approximation, no independence
assumption for the posterior has been used. Strong dependencies are therefore not expected to
negatively affect the approximation quality of ET. On the other hand, the ETapproximations can
get more severe if the approximate classification of data points becomes imprecise (first variational
step), if the preselection step does not include the relevant candidates (second variational step), or
if too few data points are used.

ET has in common with all variational EM approaches that there is no guarantee for the like-
lihood to finally increase to values close to the global optimum. This can in general be due to the
approximations being too severe or due to many local optima in the likelihood landscape. Varia-
tional approximations therefore have to be verified numerically. In the following section, ET will
be evaluated based on different generative models and different datasets. During likelihood max-
imization we will monitor different values relevant for the approximation. We willthus control if
the likelihood is indeed increased during learning and, given ground-truth, if it approaches values
close to the global likelihood maximum. Ground-truth data will also allow us to quantify how well
the generating parameters are recovered by the derived algorithm. Furthermore, we will monitor
values that give evidence about the quality of the specific approximations used by ET. We will thus
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monitor the quality of the data point classification (first variational approximation) and the quality
of the approximation by preselection (second variational approximation). For the first approxima-
tion we compare the obtained classification with ground-truth of all data points.For the second
approximation, we will monitor the differences between the exact posteriorp(~s|~y(n), Θ) and the
approximate posterior ˜q(n)(~s; Θ) in (20). If we evaluate the differences between these distributions
using the Kullback-Leibler divergence, we obtain:

DKL(q̃
(n), p) = − log(Q(n)) with Q(n) =

∑~s∈K n
p(~s,~y(n) |Θ)

∑~s′ p(~s
′,~y(n) |Θ)

. (21)

The preselection approximation has a high quality if for the data points inM the valuesDKL(q̃(n), p)
are close to zero. For data points not inM the differences between the distributions should be large.
For practical reasons, we have introduced the quality valuesQ(n) in (21). The valuesQ(n) measure
the percentage of the posterior probability mass concentrated inK n. In terms of these values the
approximation quality is high ifQ(n) is close to one for data points inM , and close to zero for data
points not inM .

4. Training Generative Models

The approximation scheme defined and discussed in the previous sections isso far independent of
the specific choice of a generative model except for the assumption of binary hidden variables. To
demonstrate the applicability of the method and to investigate its properties, in this section we will
apply it to a number of different generative models. The investigated models are all multiple-cause
models that require tractable approximations. The three major classes investigated here are non-
negative matrix factorization (NMF; Section 4.1), maximal causes analysis (MCA; Section 4.2),
and a sparse-coding-like model termed LinCA (Section 4.3). For all these models we will assume
independent hidden variables distributed according to a Bernoulli prior:

p(~s|π) =
H

∏
h=1

p(sh |π), p(sh |π) = πsh (1−π)1−sh , (22)

whereπ ∈ [0,1] parameterizes the sparseness of the distribution. For binary hidden variables the
Bernoulli prior represents the most straightforward choice (compare, e.g., Berkes et al., 2009; L̈ucke
and Sahani, 2008). Given the prior (22) the expected number of data points generated by less or
equalγ causes is given by:

N≤γ = N ∑
~s, |~s|≤γ

p(~s|π) = N
γ

∑
γ ′=0

(
H
γ ′

)

πγ ′ (1−π)H−γ ′ . (23)

N≤γ is required to find the set ofNcut data pointsM considered for a parameter update, and Equa-
tion 23 shows that this number is tractably computable. For all generative models we will use ET
as described in Section 2 and Algorithm 1. That is, we will use a setK that constrains the number
of simultaneously active causes, and use selection functionsSh to obtain setsK n.

4.1 Non-negative Matrix Factorization (NMF)

The first generative model considered uses prior (22) and combines the generative fields
~Wh = (W1h, . . . ,WDh)

T of all latents withsh = 1 linearly. We use a Gaussian noise model such
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that the probability of a data vector~y given~s is defined by:

p(~y|~s,Θ) =
D

∏
d=1

p(yd |Wd(~s,W),σ), p(yd |w,σ) = N (yd;w,σ2) (24)

with Wd(~s,W) = ∑
h

Wdhsh , (25)

with W ∈RD×H . N (yd;w,σ2) is a scalar Gaussian density function with meanw and varianceσ2.
The introduction ofW will turn out to be convenient for the analytical treatment below. Note that
we otherwise could have writtenp(~y|~s,Θ) = N (~y;W~s,σ21).

We then use (24) to compute the update equation (the M-step) for the weight matrix W as
described in Section 2. The update equation is gained from the necessarycondition for an optimum
of the free-energy in (2). TheW-update is consequently a function of the sufficient statistics〈~s〉Tq(n)
and

〈
~s~sT

〉

q(n) . Following Section 2, these expectation values are approximated by using (6) instead
of the exact sufficient statistics (5), that is, we use a subset of cause combinations as selected by the
truncation approach. Furthermore, we sum only over theNcut data points inM as explained at the
end of Section 2. The update equation is then given by:

W =

(

∑
n∈M

~y(n) 〈~s〉Tq(n)

) (

∑
n′∈M

〈
~s~sT〉

q(n′)

)−1

. (26)

Note that the equation can consistently be gained from the necessary condition for a free-energy
optimum in Equation 19 (see M-step of Algorithm 2).

Equations 24 to 26 are valid irrespective of the sign of the entries of the generative fields and
the input data. Generative models corresponding to the class of non-negative Matrix Factorization
(NMF) methods are based on a linear combination of generative fields but rely on non-negative data
points and generative fields. In Equation 26, non-negativity can be ensured for the generative fields
by clamping small appearing weights at zero.

A more direct way to ensure non-negativity for the parameters of the modeldefined by (22)
and (24) is to rely on convergence proofs similar to those used for classical NMF (Lee and Seung,
2001), that is, to ensure non-negativity by deriving a multiplicative updaterule for the generative
fields. For the EM algorithm used as a basis for ET, it can be shown that theparameter-free update
rule

~Wh← ~Wh⊙
〈~ysh〉ET

∑h′
~Wh′ 〈sh′ sh〉ET

(27)

provides monotonic convergence towards the M-step solution of the generative fields, where we
have introduced the ET-averaging

〈 f (~y,sh)〉ET := ∑
n∈M

∑
~s∈K n

p(~s|~y(n),W) f (~y(n),sh) = ∑
n∈M

〈

f (~y(n),sh)
〉

q(n)
.

Equation 27 corresponds to a partial M-step of ET-NMF (‘Expectation-Truncation-NMF’). In sim-
ulations, it is therefore applied iteratively with 20 partial M-steps after eachE-step.

For the introduced generative model, Equation 27 converges towards theM-step solutions of the
EM algorithm under non-negativity constraints. The update rule can be understood as a diagonally
rescaled gradient descent derived from the EM algorithm, with a rescaling factor that is “optimally
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chosen to ensure convergence” (Lee and Seung, 2001). A thorough derivation of the update Equa-
tion 27 and its relation to the classical NMF algorithm known from the literature can be found in
Appendix D.

The E-step of ET-NMF is based on the truncated expectation values (6) to calculate the averaged
quantities in theW update equations according to

〈~ysh〉ET = ∑
n∈M

~y(n) 〈sh〉q(n) and 〈sh′ sh〉ET = ∑
n∈M

〈sh′ sh〉q(n)

so that the sufficient statistics of the ET-NMF model that have to be computed for the M-step will be
given by the first and second order moments〈sh〉q(n) and〈sh′ sh〉q(n) of the (approximate) posterior.

For our generatively formulated version of NMF with M-step equations (26) or (27) we can
now apply ET as described in Section 2. We ran the ET-NMF algorithm with bothM-step versions
(26) and (27) and observed, at least for the data used, a qualitativelyand quantitatively comparable
behavior. Note that the probability densityp(~y|Θ) of the model is invariant under the exchange of
any two generative fields (or basis functions),~Wh→ ~Wh′ , because of symmetric priors. By the def-
inition of the truncated generative models (Section 3), it can instantly be seenthat their probability
densitiesp(~y|c= 1,Θ) andp(~y|c= 0,Θ) are also invariant under these transformations (the same
will apply for the other models considered).

As indicated, the sufficient statistics for ET-NMF are given by the first and second order mo-
ments,〈sh〉q(n) and〈sh′ sh〉q(n) , of the exact posterior; to find approximations to these intractable ex-
pectation values we first have to find appropriate selection functionsSh. A natural starting point for
finding such functions is to consider the joint probabilityp(sh = 1,~y(n) |Θ) =∑~s(sh=1) p(~s,~y(n) |Θ).
If we knew that the joint probability was small for a givenh, we would know that the sum over all~s
in (6) which contains~swith sh = 1 is small as well. Furthermore, note that for a given data point the

joint represents the part ofp(sh = 1|~y(n),Θ) which depends onh, p(sh = 1|~y(n),Θ) = p(sh=1,~y(n) |Θ)

p(~y(n) |Θ)
.

p(sh = 1|~y(n),Θ), on the other hand, directly reports the probability of unith to have contributed
to the data point. It could thus be regarded as the optimal selection function. Unfortunately, neither
p(sh = 1,~y(n) |Θ) nor p(sh = 1|~y(n),Θ) are computationally tractable and, thus, neither function
fulfils one of the properties demanded from a selection function. Therefore, we will compute an
upper bound ofp(sh = 1,~y(n) |Θ) which is tractable and still serves well in selecting a subset of
hidden units that can explain a given~y(n). Let us for this purpose consider the data point dependent
weight matrix defined by:Wub

dh := Wub
dh(~y

(n),W) = max{y(n)d ,Wdh} and ~Wub
h :=

(
Wub

1h , . . . ,W
ub
Dh

)T
,

where ‘ub’ refers to ‘upper bound’. This formal definition ofWub allows for a compact notation
of an upper bound ofp(sh = 1,~y(n) |Θ). Because of the non-negativity of the entries inW and
the mono-modality of the Gaussian distribution w.r.t. the mean, we can show (see Appendix B for
details):

p(sh = 1,~y(n) |Θ) = ∑
~s(sh=1)

p(~y(n) |Wd(~s,W),σ) p(~s|π) ≤ π p(~y(n) |~Wub
h ,σ) =: Sh(~y

(n)) . (28)

The upper boundSh is tractable (also compare Appendix C) because we have removed the summa-
tion over the~s. The price we pay is that the selection functionSh can be a relatively coarse estimate
in some cases. Importantly, however, we know that ifSh is sufficiently small, then the contribu-
tion of all joint probabilitiesp(~s,~y(n) |Θ) with sh = 1 can be neglected. The E-step given by the
approximation of the sufficient statistics in Section 2 with (28) as selection function together with
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the M-step in (27) or (26) represents the learning algorithm for the NMF generative model defined
by (22), (24) and (25) with non-negativity constraint.

In addition we add after each M-step a small parameter noise to the basis vectorsW (iid Gaus-
sian, standard deviation 0.05) and we use a standard relaxation scheme in order to avoid local optima
of the potentially multi-modal likelihood landscape. Annealing (see, e.g., Ueda and Nakano, 1998;
Sahani, 1999) amounts to the replacements:(1/σ2)→ (β/σ2), π→ πβ and(1−π)→ (1−π)β. The
constantβ is an inverse ‘temperature’,β = 1/T, whereT is decreased from a high valueT init to a
valueTfinal equal or close to one.

4.1.1 EXPERIMENTS - ARTIFICIAL DATA

Let us consider data as displayed in Figure 3A. That is, we consider hidden causes in the form of
horizontal and vertical bars (five pixels each) on a 5×5 grid. Each bar appears with probability210
such that there are on average two bars per data point. We useN = 500 data points. The grey-value
of a bar is taken to be 10, background pixels are zero. The bars superimpose linearly (pixel values in
regions of overlap are 20) and are subject to Gaussian noise with standard deviationσ = 2.0. Data
as in Figure 3A are well-suited to study the functioning of the approximation scheme because we
know the underlying generating process and have ground-truth for each data point. We will later use
this knowledge to illustrate the influence of each data point on the update of themodel parameters.
For this reason data points such as displayed in Figure 3A or versions without noise are frequently
used in the recent literature (see, e.g., Hinton et al., 1995; Hoyer, 2002;Spratling, 2006).

The model which is applied to the data usesH = 10 hidden units andD = 25 observed units.
The entries ofW are initialized by drawing iid from a Gaussian distribution with a mean of 4 and
a standard deviation of43. The standard deviation of the generative model is set toσ = 2.0 and the
value ofπ is set to 2

10. Small deviations from these values did not have significantly negative effects
on the algorithms performance in extracting data components. Figure 4B shows the cooling sched-
ule for annealing. We linearly decreaseT from T init = 13 to Tfinal = 1 during 100 EM-iterations
(including ten initial iterations atT init and twenty final iterations atTfinal). Figure 3B shows a
typical time-course of the parametersW if trained as described above. As approximation param-
eters we usedH ′ = 5 andγ = 3. Although approximate EM schemes do in general not guarantee
the increase of the data likelihood, we find that the learning algorithm increases the likelihood to
values close to the one for the generating parameters (dashed horizontalline in Figure 4A). This
behavior is reflected by the convergence of the model parameters to values close to the generating
ones (compare Figure 3). In most trials the parameters converged to approximately optimal values
relatively early but in some trials they converged relatively late during learning (compare likelihood
values in Figure 4A). We ran 50 trials with 50 different sets of data points generated as described
above. The algorithm extracted all bars in all of the trials (see Appendix E for measurement de-
tails). To quantify the quality of parameter reconstruction we computed, for each trial, the mean
absolute error (MAE) between the obtained generative fields,~Wh, and the corresponding generating
causes: MAE= 1

HD ∑hd |Wdh−Wgen
dh′ | whereWgen

dh′ denotes the cause represented by~Wh (compare
Appendix E). For all trials the MAE was smaller than 0.24 with a mean of 0.20 (note that pixels of
bars were set to 10.0 and background to zero).

In a second series of measurements we used the model with the same parameters and the same
data as above except that the generating noise variance was set to zero. In 50 trials on this non-noisy
data the algorithm extracted all bars in 46 of the trials (92% reliability) and extracted nine of the ten
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Figure 3: A 14 data points of the linear bars test with Gaussian noise.B Time course of the gen-
erative fieldsW of the NMF-like generative model if Expectation Truncation is used for
learning.

single bars in the four remaining cases. All successful trials had a MAE ofbelow 0.20 with a mean
MAE of 0.05. Parameter recovery was more precise than in the previous trial seriesbecause of the
non-noisy data. A higher initial temperature or a longer cooling increased reliability to values close
to 100% for this data. E.g., when we usedT init = 15 and stretched the cooling schedule in Figure 4B
to 200 iterations, the algorithm found all bars in all of 50 trials. Likewise, increasing the number of
data points increased reliability (> 94% reliability forN > 1000 data points withT = 13 and 100
iterations cooling).

High reliability (i.e., a high probability to extract all causes) in this linear bars testhas also been
observed for other learning algorithms (see, e.g., algorithms investigated in Spratling, 2006). Note,
however, that the standard bars benchmark test (Földiák, 1990) uses non-linearly overlapping bars
(we will come to the standard version of the bars test in the next section). For the presented NMF
algorithms we have (as is usual in the literature) only inferred the parametersW. In our generative
setting it is in principle also possible to learn the model parametersσ andπ (compare L̈ucke and
Sahani, 2008). However, for comparison with other approaches and for brevity, we focused onW.

To investigate the quality of the ET approximation more directly, the valuesQ(n) (Equation 21)
were computed for 40 data points during learning. Figure 4C shows time courses ofQ(n) during a
trial on the noisy linear bars test using the parameters given above. The data points were randomly
selected but it was made sure that twenty of them were generated by less orequalγ causes (bright
green lines) and the other twenty by more thanγ causes (dark red lines). As can be observed, the
approximation quality of the twenty data points generated by≤ γ causes quickly increases whereas
the approximation for the other twenty data points approaches zero. From the used approximation
this could have been expected as we have restricted the summation in (6) to hidden states with less

2870



EXPECTATION TRUNCATION

iterations iterations

data pointsiterations

20 40 60

20 40 60 1 200100

D

-100

-60

-40

-20

-80

log Z̃
zo

1

Q(n)

C

1

B
T

1

A

-5

L
104

-7

-6

-4 10

5

0 50

0.5

0.0

Likelihood values Cooling schedule

Data point classificationApproximation quality

T init

Tfinal

data points generated
by ≤ γ causes

data points generated
by ≤ γ causes

data points generated
by > γ causes

data points generated
by > γ causes

Ncut

Figure 4: A Data likelihood during ten trials using the same set ofN = 500 data points but dif-
ferent random initializations. The likelihood value that results from using thegenerating
parameters is marked by the dashed horizontal line.B Cooling schedule during learning.
C Approximation qualitiesQ(n) of 40 data points during learning. Twenty of the data
points were generated by≤ γ causes (bright green lines) and the other twenty by more
thanγ causes (dark red lines).D Sorted values of the sums̃Z = ∑~s∈Kn

p(~s,~y(n) |Θ) at the
end of learning. Bright green bars were used to mark the data points generated by≤ γ
causes, dark red bars to mark data points generated by more thanγ causes. TheNcut data
points left of the black vertical line were used in the final M-steps.

or equalγ = 3 active causes. For other trials, the valuesQ(n) show the same qualitative behavior.
However, the exact time-courses can differ quantitatively from trial to trial.

Note that the poorly approximated data points do finally not negatively affect the parameter
updates because they are not taken into account for the M-step. This is illustrated in Figure 4D
which shows the logarithms of the sum̃Z = ∑~s∈K n

p(~s,~y(n) |Θ) at the end of learning and for each
of the N = 500 data points used (divided by a common factorzo). Bright green bars display the
values of all data points generated by less or equalγ causes, dark red bars display the values of all
other data points. The data points are ordered descendingly. Accordingto the approximation used
(see Section 2 resp. Equation 23), we only consider theNcut data points left of the black bar, that
is, we finally only use data points with quality valuesQ(n) close to one. The relation of the quality
values to the KL-divergence in (21) directly shows that the ET approximation for these data points
is virtually optimal in this case.
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4.1.2 EXPERIMENTS - MORE REALISTIC DATA

As a second example, we applied the learning algorithm to gray-valued imagesof the postal digits
database MNIST (http://yann.lecun.com/exdb/mnist/). This data is frequently usedin the NMF
literature, which makes it well suited as a means for comparison of our algorithm to standard NMF
approaches. Note that we do not have ground-truth about the hidden components in this case.

t = 0 t = 5 t = 10

...

t = 50 t = 120

Figure 5: Resulting basis vectors~Wh for the MNIST database. The probabilistic version of NMF
trained with ET converges to a parts-based decomposition.

Figure 5 shows the application of the algorithm usingH = 12 hidden variables and approxi-
mation parameters for ET set toH ′ = 10 andγ = 5. The prior parameter was set toπ = 0.3 such
that three to four of the 12 latent variables do explain a data point on average. The noise parameter
σ in (24) was set toσ = 0.73 after screening through values between zero and one. The dimen-
sionality of each data point isD = 28×28 and we used a subset ofN = 1000 data points, some of
which are shown in Figure 6A. We linearly decreased the temperature as in Figure 4B but used a
slightly longer learning time (120 iterations) to provide more time for convergence. In Figure 5 the
time course ofW displayed as basis vector sets is shown. As can be observed, the parametersW
converge to basis vectors that represent digit parts.

To assess the quality of the basis vectors and for comparison with standardNMF, we show
average reconstructions of probabilistic NMF and standard NMF in Figure6. In Figure 6B it can
be observed that already for the small subset of 12 basis vectors in Figure 5 the reconstructions
match the inputs in Figure 6A relatively well. Despite the constraint to binary hidden variables in
our generative version of NMF, the resulting reconstructions are verysimilar to those of standard
NMF as shown in Figure 6C. For these data, the overall average reconstruction error, 1

ND ∑n ||~y
(n)−

∑h
~Wh〈sh〉q(n) ||

2, of the generative version is less than 5% larger than the reconstruction error of
standard NMF.

4.2 Maximal Causes Analysis (MCA)

The second generative model we consider was suggested to extract thehidden causes from data
whose components combine non-linearly. It uses a maximum rule in the place where NMF, sparse
coding (Olshausen and Field, 1996), independent component analysis(ICA; Comon, 1994) and
many other methods assume a linear superposition of hidden components:

p(~y|~s,W) =
D

∏
d=1

p(yd |Wd(~s,W),σ), p(yd |w) = N (yd;w,σ2) (29)

with Wd(~s,W) = max
h
{shWdh} ,
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A Digit data used for testing the ET-version of NMF

B ET-NMF average reconstruction

C Standard NMF reconstruction

Figure 6: Reconstruction of data points representing hand-written digits.A Subset of theN = 1000
data points used for the application of probabilistic and standard NMF to the MNIST data
base.B Average reconstruction of the digit data inA on the basis of the basis vectors in
Figure 5. C Reconstruction of the digit data inA using standard NMF with the same
number of basis vectors.
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where we have used a Gaussian noise model withw as a place-hoder forWd(~s,W) (note the dif-
ference to Poisson noise used by Lücke and Sahani, 2008). For the activities of the binary hidden
variablessh we use the same prior as for the NMF model in Section 4.1 (see Equation 22). As in the
previous model, the weight matrixW ∈RD×H parameterizes the influence of the hidden causes on
the distribution of~y. The functionWd(~s,W) in (29) gives theeffective weighton yd, resulting from
a particular instance of the state vector~s. An update rule for the weight matrixW of this model was
derived in L̈ucke and Sahani (2008) and is given by:

Wdh =

∑
n∈M

〈
A

ρ
dh(~s,W)

〉

q(n) y
(n)
d

∑
n∈M

〈
A

ρ
dh(~s,W)

〉

q(n)
, where

A
ρ
dh(~s,W) =

(
∂

∂Wdh
W

ρ
d(~s,W)

)

(30)

W
ρ
d(~s,W) =

(
H

∑
h=1

(shWdh)
ρ

) 1
ρ

. (31)

The parameterρ controls the nonlinearity and is increased to large values during learning. Again,
the entries inW are non-negative. To derive a selection function we can therefore apply the same
arguments as for NMF and thus arrive at the very same functionsSh as given in Equation 28. The
selection function (28), M-step equations (30) and (31), and the E-stepapproximation described in
Section 2 represent a full learning algorithm for the extraction of non-linearly combining compo-
nents, which will be referred to as MCAET.

4.2.1 EXPERIMENTS - ARTIFICIAL DATA

To study the properties of MCAET let us first apply it to data with ground-truth. A well-suited
type of data for the algorithm is the so-called bars test introduced by Földiák (1990). The bars
test has become a standard benchmark for component extraction algorithms(see, e.g., Saund, 1995;
Dayan and Zemel, 1995; Hochreiter and Schmidhuber, 1999; Charles etal., 2002; L̈ucke and von der
Malsburg, 2004; Spratling, 2006; Butko and Triesch, 2007; Lücke and Sahani, 2008) and thus allows
for quantitative comparison with other systems. To generate data accordingto the bars test we use
the same parameter settings as for the artificial data in Figure 3A, that is,D = 5×5, bars pixel value
10 and other pixels zero, Gaussian generating noise with standard deviation 2.0, and the probability
for each bar to occur is210. In contrast to the data used in the experiment of Figure 3, however, the
standard form of the bars test uses a non-linear superposition of the causes (overlapping bar regions
have pixel values 10 instead of 20 for NMF). Figure 7A shows a randomselection of 12 of the
N = 500 data points used.

We apply MCAET to the data using the same model parameters and the same approximation
parameters (H ′ = 5 andγ = 3) as for the linear bars test in Section 4.1.1. Annealing for MCAET

amounts to the same replacements as for NMF:(1/σ2)→ (β/σ2), π→ πβ and(1−π)→ (1−π)β.
Additionally, ρ in (30) and (31) is increased from a relatively small value atT init to a large value at
Tfinal by makingρ temperature dependent:ρ = 1

1−β = T
T−1. As cooling schedule we use the same

one as in Section 4.1.1 (see Figure 4B) but withTfinal = 1.05 to avoid a singularity forρ. For MCA
we found it beneficial to add to the setK n (Equation 7), the set of all vectors with just one non-zero
entry: K n = K n∪{~s| ∑i si = 1}. MakingK n larger can in general only increase the accuracy of
the approximation. At the same time, usingK n instead ofK n does not change the scaling behavior
with H of the algorithm (see Appendix C for a discussion).
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Figure 7: A Example data of a bars test withD = 5×5 and additive Gaussian noise.B Time course
of W for the MCA model trained with ET.C Likelihood values for ten trials with the same
set of training patterns and different initial conditions for each trial.D Time course of the
quality values of 40 data points during one trial. Values are plotted for twenty randomly
selected data points generated by less or equalγ causes (bright green lines) and twenty
randomly selected data points generated by greater thanγ causes (dark red lines).

Figure 7B shows a typical time course ofW during learning. Figure 7C shows time courses
of the data likelihood for ten different runs using the same data set. The behavior of the likeli-
hood values results from the specific form of annealing which includes theannealed nonlinearity
in Equation 31. In Figure 7D typical time courses for the quality valuesQ(n) (Equation 21) for 40
data points are shown. For the 20 data points which were generated by≤ γ causes (bright green
lines) the quality values increased to one. For the data points generated by> γ causes (dark red
lines) the quality values finally decreased to zero. As for NMF, only the datapoints which were
well approximated were finally taken into account for learning.

To probe the reliability of MCAET, we ran 50 trials of the bars test with the bars test parameters
as given above. In each trial we used a new set ofN = 500 data points. In 46 of the 50 trials
MCAET extracted all bars (92% reliability), and in four of the trials 9 of 10 bars were extracted.
Reconstruction of the generating parameters was high with a maximal MAE of 0.35 and a mean
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MAE of 0.29 (bars had value 10). We observed that the convergence to local optima in 8% of
the trials was mainly due to effects of finite sample size. When we ran 100 trials using the same
parameters butN= 2000 data points instead ofN= 500, the algorithm extracted all bars in all trials.

For comparison with other methods, we ran additional trials using the same parameters for bars
generation but with Gaussian noise for data pixels set to variance zero. This version of the bars
test is presumably the one most commonly used in the literature (e.g., Saund, 1995; Dayan and
Zemel, 1995; Hochreiter and Schmidhuber, 1999; Lücke and Sahani, 2008). In 41 of the 50 trials
MCAET extracted all bars (82% reliability) and found 9 of 10 bars in the other nine trials. Again,
reconstruction of the generating parameters in the successful trials was high with a maximal MAE
of 0.14 and a mean MAE of 0.05. Also for the non-noisy bars test, reliability of the algorithm
increased when we increased the sample size. For instance, we obtained reliabilities of more than
90% for N larger than about 2000. WithN = 10000 and slower cooling (same cooling schedule
as in Figure 4B but stretched to 200 iterations), the algorithm found all barsin all of the 50 trials.
Achieving close to 100% reliability is thus more difficult for non-noisy bars.1

In earlier work, generative modelling approaches to the bars test merely achieved relatively low
reliability values. For instance, the model of Saund (1995) achieved 27% reliability, and the model
of Dayan and Zemel (1995) (although trained without overlapping bars)achieved 69%. Approaches
such as PCA or ICA that assume linear superposition have been reportedto fail in this task (see
Hochreiter and Schmidhuber, 1999). Other objective function approaches and different types of
neural network approaches (e.g., Charles et al., 2002; Lücke and von der Malsburg, 2004; Spratling,
2006, and references therein) have been more successful in terms ofreliability. They do, however,
often use hidden assumptions and constraints which make an objective comparison difficult (see,
e.g., Spratling, 2006, or L̈ucke and Sahani, 2008, for discussions). The more recently suggested
approach of MCA (L̈ucke and Sahani, 2008) represents a fully generatively interpretable approach
which achieves high reliability values. The unrestricted version of MCA3 extracts all bars in 90%
of the trials with noisy bars (with Poisson noise) and in 81% of the cases for the noiseless bars.
MCAET slightly improves on these results with 92% vs. 90% for noisy bars and 82% vs. 81% in the
non-noisy case (experiments withN = 500). If more data points are used, MCAET shows close to
100% reliability (50 of 50 trials successful, see above).

Other than the standard bars test, there has recently been an increasing interest in bars with more
pronounced overlap. We therefore used a version of the bars test assuggested by L̈ucke (2004). For
this data, bars of the same orientation can overlap (two neighboring verticalbars are not disjoint but
overlap). For the test we adopted the same parameter setting for such inputas used by Spratling
(2006) and L̈ucke and Sahani (2008), that is,N = 400 example patterns, 16 bars,D = 9×9, bars
appear with probability2

16, and number of hidden units isH = 32. Bars are two pixels wide such
that parallel neighboring bars have a one pixel wide region of overlap.Figure 8A shows some
examples of the data points used. We applied MCAET to the data using the same parameters as for
the standard bars test except of a higher initial temperature (T = 23) and longer cooling time (the
cooling schedule in Figure 4B was stretched by a factor four to 400 iterations). In 21 of the 25 trials
the system extracted all bars (see Figure 8B). In four trials 15 of the 16 bars were represented. The
average number of extracted bars was thus 15.84. In all the successful trials, reconstruction of the
generating parameters was high with a maximal MAE of 0.05 and a mean MAE of 0.04 (bars have

1. Note that alternatively to usingN = 10000 and 200 iterations, we could, for non-noisy data, simply add Gaussian
pixel noise. This would take us back to the noisy-bars test and we would obtain close to 100% reliability with
N = 1000 data points.
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A

B

Figure 8: A Selection of 14 data points of a bars test with increased overlap.B Typical parameters
W after learning if twice as many hidden units as bars are used. The supernumerous units
are used to represent composite patterns.

value 10). As for the standard bars test we found that convergence tolocal optima was caused by
effects of the finite sample size. When we repeated the experiment with the samegenerating and
model parameters but withN = 800 instead ofN = 400 data points, the algorithm extracted all bars
in all of 50 trials (mean number of bars extracted equal to 16.0). In work by Spratling (2006) state-
of-the-art systems were quantitatively compared using the mean number of extracted bars. From the
evaluated systems only few achieved values close or equal to the optimal value of 16 forN = 400.
From the systems with high values, many required additional constraints on theparameters (e.g.,
constrained forms of NMF) that had to be set by hand (see Spratling, 2006; Lücke and Sahani, 2008,
for discussions).

In general, the component extraction performance of MCAET on the different bars test tasks is
similar to the performance of MCA3 suggested by L̈ucke and Sahani, 2008. In terms of computa-
tional cost, MCAET represents a substantial improvement, however (even compared to R-MCA2, a
constrained form of MCA; see L̈ucke and Sahani, 2008). This allows for applications with largeH
as demonstrated, for example, in the following section.

4.2.2 EXPERIMENTS - MORE REALISTIC DATA

As an example for an application to more realistic data, we applied MCAET to visual data in the
form of image patches. We used the same image, Figure 9A, as in work by Lücke and Sahani (2008)
to allow for a comparison. We randomly selectedN= 40000 patches of 10×10 pixels as data points
(see Figure 9D for ten examples). The data points were globally scaled to lie inthe interval[0,10].
However, just very few pixels had values close to 10 after scaling. The mean pixel value was 1.6
and thus smaller than for the bars test. We therefore used a smaller assumed Gaussian noise for the
model (standard deviationσ = 1.0 instead ofσ = 2.0) and started cooling at a lower temperature
of T init = 4.0. Also the small noise term on the model parameters was scaled down (0.01 instead
of 0.05). During learning, we cooled for 400 iterations (cooling schedule of Figure 4B stretched
by a factor four) and allowed for additional 400 iterations atTfinal to guarantee full convergence
(although changes after iteration 400 were small).

Figures 9B and 9C show the resulting parametersW after applying MCAET with H = 50 and
H = 100 hidden units, respectively. For the approximations we again usedH ′ = 5 andγ = 3.
As can be observed, the extracted generative fields represent typical components of the training
patches (compare Figure 9B-D). Data generated according to the MCA generative model using the
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Original imageA

E Generated patchesD Training patches

B Learned W for H = 50

C Learned W for H = 100

Figure 9: Application to visual data.A The 250-by-250 pixel image used as basis for the experi-
ment. The image is taken from the van Hateren database of natural images (brightened for
visualization). B Parameters~Wh = (Wh1, . . . ,WhD)

T of the MCA generative model with
H = 50 trained by ET withH ′ = 5 andγ = 3. C Parameters~Wh of MCA with H = 100
(H ′ = 5 andγ = 3). D A selection of 10 typical training patches.E Ten examples of
patches generated according to the MCA generative model using the generative fields
in C. To reduce the apparent noise level, the patches were generated with a smallerσ than
for training.

extracted generative fields thus resemble the structure of the training patches (Figure 9E). Note that
the components of the data (e.g., images of grass blades and stems) superimpose non-linearly which
motivated the application of MCA.

Due to impractically long computation times, no previous version of MCA could be applied to
numbers of hidden units much larger than 50. The maximum achievable so far,was the application
of the constrained MCA version (R-MCA2) with H = 50 to N = 5000 patches of 10×10 pixels.
As shown in the examples of Figure 9, Expectation Truncation allows for larger scale applications
of unconstrained MCA withH = 100 and beyond. Compared to MCA3 the number of states that
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have to be evaluated by MCAET for H = 100 is reduced by more than three orders of magnitude
(see Section 5.2 and Appendix C for discussions).

4.3 Linear Components Analysis (LinCA)

As third and final example let us discuss a generative model whose components can be negative as
well as positive. Consider, therefore, the model given by (22), (24)and (25) without the restriction
to non-negative weights. For smallπ in (22) such a generative model is reminiscent of sparse
coding (SC; Olshausen and Field, 1996): its hidden variables are sparsely active, its basis functions
are combined linearly, and its observed variables are, given the latents, independently drawn from
standard Gaussian distributions. Instead of defining explicit prior and noise distributions, SC-like
models are often, more informally, written in the form:

~y =
H

∑
h=1

sh~Wh + σ~η = W~s+ σ~η , (32)

where the entries of~η are independently and identically drawn from a Gaussian distribution with
zero mean and unit variance.

The model (32) with binary factorssh distributed according to the Bernoulli prior (22) can be
trained with Expectation Truncation. As M-step we can directly use Equation 26. However, in
contrast to the previous generative models, we can not use Equation 28 as a selection function be-
cause it was derived assuming non-negative entriesWdh. To find appropriate selection functions, let
us first consider a special case: let us assume the number of observedand hidden variables to be
identical,H = D, and let us assume zero observation noise (σ = 0 in Equation 32; also compare
Teh et al., 2003). For continuous factorssh with non-Gaussian priors this special case represents
the standard version of ICA (see, e.g., Comon, 1994; Hyvärinen et al., 2009). ICA is deterministic
in the sense that for any given data point~y(n) the generating hidden vector~s(n) is known exactly.
If W is invertible, the generating hidden vector is given by~s(n) = W−1~y(n) (as can directly be de-
duced from Equation 32 withσ = 0). ICA is most frequently applied to (PCA-)whitened data
(compare, e.g., Bishop, 2006; Hyvärinen et al., 2009), in which caseW is an orthogonal matrix
(W−1 = WT). For ICA on whitened data, the generating hidden units of a data point~y(n) are thus
given by~s(n) =WT~y(n). In other words, the conditional distributionp(~y|~s,Θ) and thus the poste-
rior p(~s|~y(n),Θ) become equal to the delta functionδ(~s−WT~y(n)). For σ > 0 in Equation 32, the
conditional distributionp(~y|~s,Θ) is, in hidden space, a Gaussian function with meanWT~y(n), and
the posterior is proportional to the product of this function with the prior. A multiplication with a
sparse prior has the effect of moving the Gaussian function closer to those axesh with large values
~WT

h ~y(n). The scalar products~WT
h ~y(n) can thus serve to select those hidden dimensions which span

the space most posterior mass lies near to.
Knowing where most posterior mass is concentrated is the crucial prerequisite for finding se-

lection functions for ET. In the binary case of model (32) with Bernoulli prior (22), selecting the
hidden dimensions corresponds to selecting the hidden variables which aremost likely to have non-
zero entries. In analogy to the ICA case, we thus use the scalar productto define selection functions:

Sh(~y
(n)) =

~WT
h ~y

(n)

|~Wh| |~y(n)|
, with |~v|=

√

∑D
i=1(vi)2 and ~WT

h = (W1h, . . . ,WDh). (33)

We use normalized scalar products because we are not constrained to anorthogonal matrixW and
want to prevent the lengths of|~Wh| from having a strong influence on the selections. Note, however,
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that if the matrixW is orthogonal, the selection is equivalent to one based on non-normalized scalar
products. The normalization by|~y(n)| does not affect the selection because~y(n) is independent ofh.

Selection functions (33), M-step equation (26), and the ET approximation of the E-step represent
a learning algorithm that will be referred to as Linear Components Analysis (LinCA).

4.3.1 EXPERIMENTS - ARTIFICIAL DATA

To study the LinCA learning algorithm it is first applied to artificial bars data. We use the same
linear bars test setup as for the noisy bars test in Section 4.1.1 (compare Figure 3A) but invert five
of the ten bars to negative values. Figure 10A shows 12 examples of theN = 500 data points used.
The observed variables (or ‘pixels’) of positive bars have value 10.0, observed variables of negative
bars have value−10.0, and all other observed variables have value zero. Consequently, we initialize
the parametersW with positive and negative values by drawing iid from a Gaussian with zero mean
and standard deviation 2.0. All other parameters (for initialization, approximation, annealing, and
data generation) are chosen as in Section 4.1.1 for the NMF model. Figure 10B shows a typical
time course of the parametersW for noisy data points. As can be observed, the parameters converge
to the true generating causes relatively early. Figure 10C shows the likelihood values of ten trials
with the same set ofN = 500 data points. In most trials, likelihoods converged quickly to values
close to the likelihood values of the generating parameters (dashed horizontal line). In some trials
convergence took longer, however. Figure 10D shows the quality values Q(n) (Equation 21) during
a typical trial. After an initially relatively low approximation quality, the quality values of the data
points generated by less or equalγ causes (bright green lines) quickly increase. As previously, only
these data points are finally used for learning. Data points generated by greater thanγ causes (dark
red lines) are finally discarded.

To measure the reliability of the system, we ran 50 trials with 50 different data sets of N = 500
data points. In all trials all bars were extracted. Parameter reconstructionin all the trials was high
with all MAE smaller than 0.28 and a mean MAE of 0.21. For bars without noise we extract all
bars in 49 trials (98%) and nine of ten bars in one trial. Due to the non-noisy data, parameter
reconstruction was higher than for noisy data. The MAE of all successful trials was smaller than
0.09 and the mean MAE was 0.04. The reliability for non-noisy data increased to still higher
reliability values when we cooled longer. If the cooling schedule in Figure 4Bwas stretched to
200 iterations, all bars were found in all of 100 trials. Alternatively, reliability increased when we
increased the sample size: all bars were found in 100 of 100 trials ifN = 1000 data points were
used.

4.3.2 EXPERIMENTS - MORE REALISTIC DATA

As an example of more realistic data, we applied LinCA to sound waveforms. Sound waves have
positive and negative parts and their components superimpose linearly, which is consistent with the
assumptions of the LinCA model. As data we used short sound intervals obtained from recordings
of ten different male voices uttering the sentence: “Don’t ask me to carry an oily rag like that”.
Data was taken from the TIMIT database with voices sampled at 16kHz. To only learn from the
spoken text, we cut off the silent initial part and the silent final part of each recorded sentence.
Furthermore, we multiplied each voice recording by a different factor such that each recording
filled the interval[−5,5] (maximal absolute amplitude of each recording 5.0). This compensated
for different sound levels of the different speakers and made the datarange comparable to those of
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Figure 10: A Example data of a bars test with components of positive and negative values, D = 5×5,
and additive Gaussian noise.B Time course ofW for the LinCA model trained with ET.
C Likelihood values for ten trials with the same set of training patterns and different
initial conditions for each trial.D Time course of the quality values of 40 data points
during one trial. Values are plotted for twenty randomly selected data points generated
by less or equalγ causes (bright green lines) and twenty randomly selected data points
generated by greater thanγ causes (dark red lines).

previous experiments. After the multiplication only few data values lay close to−5 or 5. As in
Section 4.2.2 we therefore assumed a lower data noise than for the bars data(σ = 0.5 in this case).
As data points we used all possible segments of 12.5ms length. This amounts toN = 389510 data
points withD = 200 observed variables.

We applied LinCA withH = 200 hidden units to the data and used a prior parameter ofπ = 0.01
(on averageπH = 2.0 causes per data point as in previous experiments). The approximation param-
eters for ET we set toγ = 4 andH ′ = 10 (as in Section 4.2, we found it beneficial to useK n, which
increases robustness of learning without changing the complexity; compare Appendix C). During
training we annealed according to the cooling schedule in Figure 4B stretched by a factor two to 200
iterations. The initial temperature was set toT init = 5.0 and the final temperature toTfinal = 1.0. An
additional 200 iterations atTfinal = 1 were used to guarantee full parameter convergence (although
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c
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Figure 11: ParametersW after training LinCA on acoustic data. Data points were 12.5ms long
intervals of voice recordings. For visualization, theH = 200 generative fields were
individually scaled. Fieldsa-care examples of different types of generative fields.
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changes after 200 iterations were small; compare Section 4.2.2). Figure 11 shows the learnt param-
etersW after a typical run. Many of the generative fields (or basis functions)~Wh are localized in
time and frequency space (e.g., fielda). Others are only localized in frequency space (e.g., fieldb).
Still others resemble amplitude modulated waveforms (e.g., fieldc) or represent combinations of
low and very high frequencies. We thus recover generative field properties similar to those obtained
by other approaches (compare Teh et al., 2003, or Köster and Hyv̈arinen, 2007). Note, however,
that we applied the algorithm to the data without preprocessing such as whitening. As for the pre-
vious experiments, no preprocessing except for data scaling was used. This is unlike SC or ICA
approaches that usually require specifically preprocessed data. We also ran LinCA on a subset of
theN = 389510 data points. Results with, for example,N = 100000 showed no significant differ-
ences. Similarly, a run of LinCA withH = 400 andπH = 2.0 showed comparable results (although
we observed a tendency towards more generative fields with low absolute amplitudes in this case).

The experiments on acoustic data show that LinCA can be trained with ET also for large-scale
applications. As the number of preselected candidatesH ′ can be much smaller than the total number
of hidden units, ET scales very favorably with H (see discussion in Section5.2 and Appendix C).
For the experiment of Figure 11, ET evaluates just a couple of hundredsof hidden states per data
point instead of 2200 required for an exact E-step. Without preselection (i.e.,H ′ = H) and same
γ, the number of hidden states per data point is still larger than 200×106 (compare Appendix C),
which would by far exceed currently available computational resources.

5. Discussion

We have studied an approximation to EM to train multiple-cause generative modelswith binary
hidden variables. Training in the scheme is based on a candidate preselection to reduce the compu-
tational cost of intractable exact EM learning.

5.1 Properties of Expectation Truncation

The approximation scheme introduced in Section 2 and systematically derived inSection 3 is an
example of a deterministic approximation to EM. In contrast to exact EM, there isno guarantee that
the data likelihood under a given generative model is always increased or remains unchanged. In
numerical experiments on a number of different generative models, we recovered, however, very
close to optimal parameters for different types of data. This reflects the property of the approxima-
tion to become increasingly optimal the more it approaches the likelihood optimum. To quantify
the approximation quality, we have, in different applications, monitored qualityvalues,Q(n), for a
selection of data points (see Section 4.1.1, Section 4.2.1, and Section 4.3.1). The quality values are
themselves measures for the KL-divergence between the exact posterior (given a data pointn) and
its approximation (compare Section 3). The values forQ(n) as monitored during the experiments
show that the KL-divergence for those data points, which are finally taken into account for learning,
becomes virtually zero. Further away from the optimum, the approximation of ETis usually poorer
than close to the optimum. However, when measured, also the initial iteration stepsdid increase the
data likelihood in numerical experiments.
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5.2 Applicability and Complexity

For the ET approximation to work, different requirements for the generative model and the data
have to be fulfilled. These requirements have been made explicit in Section 3. For practical reasons,
hidden variables with a small number of discrete values are the most salient requirement. In our
formulation and in the experiments, we have used binary values, but ET canbe applied without
modifications to hidden variables with more than two discrete states. For hidden variables with
continuous values the E-step can, however, not be evaluated directly (compare Equation 6 or Al-
gorithm 2). Thus, generative models with latents of continuous values cannot be trained by the
presented method. By combining ET with other approximation schemes, it could,however, be gen-
eralized to latents with continuous values. For this note that the derivation of ET in Section 3 in
large parts does not rely on the assumption of discrete latents. Indeed, thederivations would still
hold when all sums over~s in Section 3 were replaced by integrals over the corresponding states. We
are then, however, left with integrals over~s (see Algorithm 2) that have to be evaluated. By applying
approximation methods to these integrals over relatively small state spaces, learning algorithms for
generative models with latents of continuous values could be derived.

As shown in Section 4, ET can be applied directly to data that can be generated well by com-
binations of binary causes. In numerical experiments we have seen examples of its application to
NMF, to non-linear component superpositions (MCA), and to a form of sparse coding (LinCA).
But also the applicability of ET to generative models with binary hidden variables is not without
limits. From the inspection of the methods’ functioning (compare Section 3) it becomes clear that
it is based on the following assumption: for a sufficiently large number of datapoints the posterior
probability mass has to be concentrated in a relatively small subset of the latents’ state space. In
other words, a large number of data points must be well-explicable by considering few configura-
tions of the potential latent states. If this assumption is not fulfilled, good approximations can only
be achieved by considering sums over large sets of states. We could still apply ET but the required
approximation parameters would result in computational costs comparable to theones for exact EM.
Models with large numbers of hidden variables would thus not be computationally tractable in such
cases. Even if the probability mass of most posteriors is finally concentratedwithin small regions of
the state space, the applicability of ET may still be limited as it additionally requires a mechanism
to locate these regions. For the generative models discussed in Section 4, the tractable selection
functions (28) and (33) perform well in this respect, and successfullymaximize the likelihood and
recover close to optimal parameter values. However, for more complicated models the definition of
tractable selection functions (or more generally of setsK n) may be challenging and can limit the
applicability of ET. Again, the summation over more states would reduce the problem. For instance,
by choosingK n = K (no second variational step) ET could be applied without a preselection pro-
cess. However, without this crucial reduction of states, the application scale would be much more
limited. In summary, applicability of ET for models with binary latents is thus not a question of
principal nature but a question about the trade-off between computational cost and approximation
quality.

Note that the space of models ET can be applied to is much larger than the spaceof models
with sparsely active binary latents. ET only requires that, on average, few states can represent
a data point well. These states do not have to be sparse nor do the hidden variables have to be
independent. Examples are, for instance, the generative models discussed in Section 4 but with
priors that fix the number of active causes (e.g., always five causes active). The requirements for ET
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can still be satisfied in such situations. In preliminary numerical experiments using such non-sparse
and dependent priors, ET still efficiently increased the likelihood to approximately optimal values.

In general, a reduction of the computational cost using ET is paid for by a reduction of the
approximation’s quality. Hereby, ET benefits from the fact that the reduction in quality is very
limited compared to a vast reduction in required computations (compare Section 4). For the data
considered, the computational cost can be reduced by many orders of magnitude with only mini-
mal losses for the approximation’s accuracy. For a given set of data, agood approximation setting
for ET usually arises naturally. The Bernoulli prior (22), for instance,results in many data points
requiring the consideration of at mostπH components for good approximations. The overall com-
putational complexity of ET thus depends on the complexity of the data and the generative model
used. More specifically, it depends on how the subsetsK n in (6) are selected. For the generative
models and data considered in this paper, a detailed discussion of ET’s computational complexity
can be found in Appendix C. The crucial advantage of preselection is that the computational cost is
split up into essentially two parts (see Equation 38). Importantly, only the preselection part depends
hereby on the total number of hidden variablesH. The second and computationally more intensive
part becomes independent of the total number of latents, depending only on the number of selected
candidates. The preselection part is computationally much less costly: for theexamples considered
here, its complexity scales just linearly withH (also compare Figure 13). ET thus becomes espe-
cially efficient for large numbers of hidden variables. An example is the application of MCAET to
the data of Section 4.2.2. Another example is the application of LinCA to the data ofSection 4.3.2.
In the latter case ET computes approximations by evaluating less than 1000 states for H = 200
instead of 2200 required for an exact E-step.

5.3 Relations to Other Approximation Schemes

A central role for optimal learning and inference in probabilistic models is played by the poste-
rior probability p(~s|~y(n),Θ). Computing expectation values w.r.t. to the posterior or computing the
posterior directly is usually intractable for multiple-cause models. Approximationschemes find
computationally tractable approximations to expectation values w.r.t.p(~s|~y(n),Θ) or they approxi-
mate the posterior directly. Many examples of such approximations can be found in the literature,
and they usually fall into two major classes: sampling methods and deterministic approaches.

Sampling methods are in a sense more general because they usually rely on fewer assumptions
than deterministic approaches. Furthermore, there are no principled limits to most of them. In gen-
eral, the approximations obtained recover the exact solutions in the limit of infinite computational
resources. However, sampling methods can be computationally very demanding and may limit ap-
plications to relatively small scale problems. In contrast to sampling, deterministicapproaches are
based on analytical approximations to the posterior or its expectations computed w.r.t. it. By defini-
tion, they do in general not find the exact solutions and often rely on particular assumptions about
the model they are applied to. However, if these assumptions are fulfilled, they are often computa-
tionally much less demanding. For these reasons, deterministic and sampling approaches are often
regarded as complementary (see, e.g., MacKay, 2003, or Bishop, 2006, for discussions).

Major and frequently applied examples of deterministic approaches arevariational EM ap-
proaches (e.g., Jordan et al., 1999; Jaakkola, 2000; MacKay, 2003; Bishop, 2006) andexpectation
propagation(EP) approaches (e.g., Minka, 2001; Bishop, 2006). The method of Expectation Trun-
cation discussed in this paper is an example of a variational EM approach. Although introduced
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as an approximation to expectation values (see Equation 6), we have shownin Section 3 that ET
can be derived from variational approximations to exact posterior distributions. Thus, much of the
typical properties of variational approaches and their differences to other approximation methods
(discussed, e.g., by MacKay, 2003; Bishop, 2006) such as expectation propagation carry over to
ET. A crucial difference between ET and standard variational EM is thatET does not use factor-
izing distributions to approximate the exact posterior. Instead ET uses two variational steps: one
that takes the form of a data point selection, and a second that is based ona preselection of hidden
variables (see Section 3 for more details). A consequence, for example,for the data discussed in
this paper, was that we finally only learned from data points whose KL-divergence between exact
and approximated posterior was virtually zero. In numerical simulations this resulted in a virtually
optimal parameter recovery. At the same time, the preselection of relevant hidden variables per data
point allowed a massive reduction of the computational cost.

Expectation Truncation was motivated by earlier approaches which were developed in the con-
text of non-linear component extraction models (Lücke and Sahani, 2008; Lücke et al., 2009). For
efficient learning truncated sums were used to optimize the model parameters (also see L̈ucke and
Sahani, 2007). Optimization was partly performed under additional constraints to correct for impre-
cise approximations. Furthermore, the approach was developed for specific non-linear generative
models and no explicit data point selection was used. As a consequence noclean relation to vari-
ational EM could be derived (but see discussion in Lücke and Sahani, 2008). Most significantly,
however, no candidate preselection was used. This could result in impractically long computation
times already for relatively small numbers of hidden variables. With the ET framework developed
in this paper we can interpret the earlier approaches as approximations to special cases of ET. The
approximations for MCA3 (Lücke and Sahani, 2008) can thus be regarded as ET approximation
without the second variational step, that is, without selecting subsetsK n of K (no preselection).
Without preselection, the computational cost of learning algorithms can scaleunfavorably with the
number of hidden unitsH (cubically in the case of MCA3; compare casesH ′ = H in Appendix C).
Data point selection in MCA3 can be seen as implicitly accomplished by an E-step that considers
more terms in the denominator than in the numerator. Likewise, the approximation for occlusive
components analysis (OCA; Lücke et al., 2009) can be seen as ET without preselection (instead
of implicit data point selection more terms of the truncated sums were used here). Note that in-
stead of omitting the second variational approximation, another special caseof ET is obtained if the
first variational step is omitted (no data point classification). This amounts to settingK equal to the
whole state space (the sums overK in Algorithm 2 equal one in this case). Efficient approximations
can still be obtained if proper subsetsK n are selected. On different generative models preliminary
experiments showed results similar to the ones reported in Section 4. Depending on the model, the
approximations can be much less efficient or much less accurate, however.

An extreme case for selecting subsetsK n is to select them to contain just one element,
K n = {~s(n)}. In this case the approximated expectation value of a functiong in (6) becomes equal to
the functions value at~s(n): 〈g(~s)〉q(n) = g(~s(n)). This choice relates ET to energy models (compare,
e.g., Teh et al., 2003, or Hyvärinen et al., 2009) and maximum a posteriori (MAP) approximations
as, for example, used in the original sparse coding model (Olshausen and Field, 1996). Indeed,
if we setK to be the entire state space and chooseK n = {~s(n)} with ~s(n) being the MAP esti-
mate of the posterior, we obtain an update rule for basis functionsW proportional to∑n~y

(n) (~s(n))T

(compare Equation 26). That is, a learning rule forW as used in sparse coding can be obtained
(compare Olshausen and Field, 1996, or Olshausen, 2002). If insteadof a MAP estimate the scalar
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product~s(n) = ~WT
h ~y

(n) is used to select~s(n), ET for linear generative models can be related to ICA
approaches (also compare Section 4.3). Note that MAP estimate and scalar product play the role of
the selection functionsSh in the case of SC and ICA, respectively.

More generally, MAP estimates or scalar products can be starting points to derive less basic
selection functions for a generative model. Regarding a MAP estimate, it is likely that a significant
amount of posterior mass is located in the vicinity of the MAP state. If the posterior is additionally
known to be monomodal,K n can be chosen as a region around the MAP estimate. For multi-modal
posteriors, generalizations of MAP estimates could be used (see, e.g., Fromer and Globerson, 2009,
and references therein). Alternatively, selection functions can be derived by considering the limit of
no observation noise for a given model. For data with relatively low amounts of noise, most of the
posterior mass will be located close to the estimated state for zero noise (compare the ICA case).

In numerical experiments we have compared the tractable selection functions(28) and (33) with
the respective optimal selection function given byS

opt
h (~y(n)) = p(sh = 1|~y(n),Θ) (see Section 4.1).

For low numbers of hidden variables,p(sh = 1|~y(n),Θ) can still be computed. Numerical experi-
ments using the tractable selection functions, experiments using the optimal selection function, and
experiments using exact EM hereby resulted in virtually identical final parameter values close to the
optimum. We observed some differences in the convergence behavior. However, these differences
were small compared, for example, to differences in using different annealing schemes or annealing
parameters.

5.4 Results on Different Data Sets

In numerical experiments we have applied ET to three types of generative models: NMF, MCA,
and LinCA. The experiments were aimed at demonstrating the method itself. However, as a by-
product, we obtained some results that are closely related to recent developments in component
extraction algorithms: The application of the probabilistic NMF algorithm to the MNIST data base
showed that, for this data, potentially only very little is gained by considering continuous hidden
units instead of binary ones. As could be observed by comparing reconstruction errors obtained
for standard vs. probabilistic NMF, continuous hidden variables improvedreconstructions by less
than 5%. Regarding MCA, we showed that the algorithm derived with ET is competitive to the
best performing systems in standard benchmarks. We applied the algorithm tothe standard bars
test with 10 bars and to a more recent benchmark with 16 bars and larger overlap. In both cases the
algorithm extracted all causes with close to 100% reliability (50 successful trials out of 50) provided
that we used sufficiently many data points. For fewer data points the algorithmwas still competitive
but reliability was lower. Applications of the algorithm to image patches and acoustic data showed
robust applicability to large scale problems.

For all experiments in the paper we have used deterministic annealing (e.g., Ueda and Nakano,
1998; Sahani, 1999) to avoid the convergence to local optima (compare Section 4). The initial
temperature for annealing can be chosen by observing that for a givenmodel and application a
critical temperature exists above which all generative fields converge to the same average field (no
differentiation to different components). The initial temperature is then chosen to lie below this
critical temperature. Note that for Gaussian noise, the annealing temperature changes the standard
deviationσ. It is thus closely connected to the noise parameter. For many types of data,component
extraction is robust to different values ofσ. For instance, for the noiseless bars tests in Section 4.1,
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Section 4.2, or Section 4.3,σ = 2.0 was used while the ground-truth would beσ = 0.0. For some
data/model combinations the dependency onσ can be more sensitive, however.

In addition to the data and models discussed in Section 4 we also ran experimentson models
with Poisson instead of Gaussian noise, used other types of data including, for example, sound
spectrograms instead of sound waveforms, and used data and models in different combinations
with different priors. The obtained results were all comparable to the onesreported for the other
experiments: the likelihood (when computationally tractable) usually increasedto close to optimal
values, the generating parameters in successful trials were well recovered, and the reliability to
recover the generating causes was high.

In general, the derivation of new learning algorithms based on ET is straightforward. If the data
is well-explicable by combinations of binary hidden causes, a generative model should be chosen
that appropriately reflects the data generation process. Once the parameter update rules for such a
model are derived, the E-step can be computed with ET. This involves the definition of selection
functions, the choice of an appropriate constraint forK n (compare Equation 7), and the choice of
approximation parameters. Depending on the data, a preselection function can take the form of an
upper-bound on the joint probability as shown, for example, for NMF in Section 4.1, or it can take
the form of a scalar product as for LinCA in Section 4.3. More generally,any discriminative method
represents a potential choice for a selection function.

5.5 Conclusion

Motivated by earlier work that discusses the benefits of a candidate preselection (e.g., K̈orner et al.,
1999; Lee and Mumford, 2003; Yuille and Kersten, 2006), we have defined and studied a novel
approximation scheme for probabilistic generative models. This scheme is formulated as a deter-
ministic variational EM approximation to maximize the data likelihood under a given generative
model. The formulation in terms of a grounded probabilistic approach allowed us to quantify the
gain in efficiency that is achievable by preselection. To study the approximation scheme empiri-
cally, it has been applied to different types of generative models with different combination rules.
In standard benchmarks on artificial data we found that the derived algorithms increased the likeli-
hood to values very close to the optimum, extracted hidden causes with high reliability, and reduced
the computational cost potentially by orders of magnitude. We reported quantitative results on data
with ground-truth and, where standard benchmarks were available, showed that the derived learning
algorithms are competitive with the best performing systems so far. Applicationsto more realistic
data demonstrated robustness and applicability to larger scale problems.

In conclusion, the contribution of the novel method is thus two-fold: (1) it relates the intuitive
and frequently discussed benefits of preselection to the grounded framework of an EM-based ap-
proximation, and (2) it defines an approximation scheme that allows to efficiently train standard and
novel types of generative models.
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Appendix A. ET as Variational EM: Detailed Derivations

In Appendix A.1 we discuss the consistency of maximum likelihood parameters of original and
truncated generative models. Appendix A.2 discusses details about the classification of data points.

A.1 Necessary Conditions for Global Likelihood Maxima

In Section 3.1 we have seen thatF̃(q,Θ) in (15) is a lower bound of the likelihoodL(Θ) in (1).
If the used variational distributionsq(n)(c; Θ) are good approximations to the exact posteriors
p(c|~y(n),Θ) in (14), thenL(Θ) ≈ F̃(q,Θ) after each E-step. Because of the variational approxi-
mation in Section 3.1 the equalitỹF(q,Θ) = L(Θ) holds ifM is equal toM opt (16) and if the true
posterior values in (14) are equal to zero or one for alln. Although the latter condition is fulfilled
only in boundary cases, we will, in this section, assume the equality to hold (whilekeeping in mind
that it is almost always an approximation). If the equality holds,F̃(q,Θ) in (15) is in its global
maximum equal to the likelihoodL(Θ).

Let us, further, assume that there exist parametersΘ∗ such that the original generative model re-
produces the underlying distribution of the data points,p(~y) = p(~y|Θ∗). From Section 3.1 we then
know that the mixed model with prior (11) and (12) andκ = κ̃ also reproduces the original distribu-
tion for these parameters. Using the mixed model, the data points{~y(n)}n=1,...,N can thus be taken
to have been generated by the truncated generative models. That is, the data set can be subdivided
into the two disjoint sets{~y(n)}n∈M opt and{~y(n)}n6∈M opt. If p(~y|Θ∗) is the underlying distribution of
the whole data set, thenp(~y|c= 1,Θ∗) and p(~y|c= 0,Θ∗) are the underlying distributions of the
two disjoint parts (compare Figure 1).

We can approximately recover the distributionp(~y|Θ∗) by (globally) maximizing the data like-
lihood under the mixed generative model on{~y(n)}n=1,...,N. Furthermore, we can recover the dis-
tributionsp(~y|c= 1,Θ∗) andp(~y|c= 0,Θ∗) by (globally) maximizing the data likelihoods of the
truncated generative models on{~y(n)}n∈M opt and{~y(n)}n6∈M opt, respectively. Let us denote the pa-

underlying
distributions

generated
data points

recovered
distributions

p(~y(n) |c= 1, Θ∗)p(~y(n) |Θ∗) p(~y(n) |c= 0, Θ∗)

{~y(n)}n∈M opt {~y(n)}n6∈M opt

p(~y(n) |Θ†) p(~y(n) |c= 1, Θ†1) p(~y(n) |c= 0, Θ†0)

maximum likelihood
recovery

generation

{~y(n)}n=1,...,N

Figure 12: Recovery of the generating distributions through the original and the truncated gen-
erative models. The original distributions can be recovered from the datasets if the
corresponding likelihoods are maximized.

rameters recovered by maximizingL(Θ) by Θ†, and the parameters recovered by maximizingL1(Θ)
andL0(Θ) by Θ†1 andΘ†0, respectively (compare Figure 12). In general,Θ†, Θ†1, andΘ†0 are dif-
ferent. If the variational approximationM =M opt is exact, we know, however, that in the limit of
infinitely many data points (and by still assumingp(~y) = p(~y|Θ∗)) applies:

p(~y|Θ∗) = p(~y|Θ†), p(~y|c=1,Θ∗) = p(~y|c=1,Θ†1), andp(~y|c=0,Θ∗) = p(~y|c=0,Θ†0). (34)

The equalities hold because forN→ ∞ and p(~y) = p(~y|Θ∗) it follows from L(Θ∗) = L(Θ†) that
DKL(p(~y|Θ∗), p(~y|Θ†)) = 0. As the Kullback-Leibler divergence between two distributionsq and
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p is zero if and only if the distributions are identical, (34) has to hold. Note, however, that the
recovered parameters can still be different fromΘ∗. For instance, if there exist transformationsT of
Θ∗ that do not change the distribution, then anyΘ obtained fromΘ∗ through such a transformation,
Θ = T (Θ∗), is a likelihood maximum as well. Such multiple global maxima are the norm rather
than the exception. Global maxima of models such as sparse coding (Olshausen and Field, 1996) or
independent component analysis (e.g., Comon, 1994) remain global maxima under the exchange of
any two basis functions or the negation of any of them.

Let all transformationsT that map the global maxima ofL(Θ) onto itself define a set that we
will refer to as thetransformation set. We say that the set of global maxima isinvariant under the
transformation set. For any two global maximaΘ∗ andΘ† of L(Θ), there now exists a memberT of
the transformation set such thatΘ∗ = T (Θ†). Let us now demand that all global maxima ofL1(Θ)
andL0(Θ) are also invariant under the transformation set. Although this will usually be the case,
for example, for the exchange of any two basis functions, it is important to state this requirement
explicitly as it is not fulfilled in general. If this property is fulfilled, however,we can infer:

Θ† is maximum likelihood solution onL(Θ)

⇒ There existsT such thatΘ† = T (Θ∗) with Θ∗ being the generating parameters.

⇒ p(~y|c= 1,Θ∗) is the actual generating distribution of{~y(n)}n∈M opt

⇒ Θ∗ is maximum likelihood solution ofL1(Θ)

⇒ p(~y|c= 1,Θ∗) = p(~y|c= 1,T (Θ∗)) = p(~y|c= 1,Θ†)

⇒ Θ† is maximum likelihood solution ofL1(Θ).

Analogously,Θ† is also a maximum likelihood solution ofL0(Θ) if it is a maximum likelihood solu-
tion of L(Θ). For the free-energy (15) this means that at a global maximum ofL(Θ) bothL1(Θ) and
L0(Θ) also have a global maximum (under the stated assumptions). A global maximum, for exam-
ple, inL1(Θ) is thus anecessarycondition for a global maximum inL(Θ). We havenotshown that
a maximum inL1(Θ) is a sufficient condition for a maximum inL(Θ). Theoretically,L1(Θ) might,
for instance, not depend on all parameters, or it might have additional global maxima. Finally, note
again that the necessary condition only holds under the introduced assumptions. While, for exam-
ple, the assumption on invariance under transformationsT can exactly be fulfilled (depending on
the generative model), the assumptions that the true data distribution can exactly be matched or that
the variational approximation in Section 3.1 is exact are in practice almost never fulfilled. The same
applies for the assumption of infinitely many data points. All these assumptions can, however, be
fulfilled approximately. By (globally) maximizingL1(Θ) we can thus expect to recover parameters
that maximizeL(Θ) approximately.

A.2 Details of Data Classification

Starting point for choosingM is the setM opt in Equation 16. SettingM =M opt would represent
the best choice but without ground-truth information,M opt can not be computed exactly. We can,
however, try to approximateM opt. To do so, first note that we can compute an expectation value
for the size ofM opt. It is given byN(K ) = N ∑~s∈K p(~s|Θ). We can now find an approximation
to M opt by computing the valuesq(n)(c= 1; Θold) for all data points, sort them, and take the data
points with theN(K ) highest values. This would represent a good approximation toM opt but
it seems that we have gained very little, since we still have to compute the intractable posteriors
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q(n)(c= 1; Θold) = p(c= 1|~y(n),Θold) for all n data points. Note, however, that with this procedure,
the absolute values ofq(n)(c = 1; Θold) are not used for the approximation anymore. All that is
required is a pairwise comparison of the data points based on their valuesq(n)(c= 1; Θold).

To derive a tractable approximation of the pairwise comparison, consider two data points,~y(n)

and~y(n
′), that are neighbors after a sorting according toq(n)(c= 1; Θold). For arbitrarily many data

points and for non-zero noise, the differences between the two data points become arbitrarily small.
In particular, it applies for neighboring data points that the difference between the denominators
of q(n)(c= 1; Θold) become arbitrarily small:∑~s p(~y(n),~s|Θ)≈ ∑~s p(~y(n

′),~s|Θ). The same applies
for differences between the numerators. However, as the numerators contain just small sums over
~s, their values for neighboring data points can be expected to vary more strongly than those of the
denominators. We can thus replace the comparison betweenq(n)(c= 1; Θold) by a comparison of
their numerators∑~s∈K p(~y(n),~s|Θ). This is an approximation to the pairwise comparison required
for exact sorting. In the limit of infinitely many data points this procedure can be expected to result
in setsM that represent good approximations toM opt.

If we now take preselection into account (compare Section 3.2), the comparison for sorting can
be reduced further. For this note that the posterior in (14) is approximatedby q(n)(c= 1; Θold) ≈
∑~s∈K n

p(~y(n),~s|Θ)

∑~s p(~y(n),~s|Θ)
. Following the same arguments as above, an approximation of the sorting by com-

paring the valuesq(n)(c= 1; Θold) is given by sorting based on the values∑~s∈K n
p(~y(n),~s|Θ) for all

n. This shows that the selection ofNcut data points as introduced in Section 2 (Equations 8 and 9)
corresponds to defining a setM as an approximation toM opt.

Appendix B. Selection Function for NMF and MCA

We show thatp(sh = 1,~y(n) |Θ) is bounded bySh(~y(n)) in (28) from above. This implies that

p(sh = 1|~y(n),Θ) is bounded by Sh(~y(n))
p(~y(n) |Θ)

from above. Asp(~y(n) |Θ) is independent ofh, candi-
date selection based on the one bound is equivalent to selection based on the other bound. Now,
consider the setδh := {d ∈ {1, . . . ,D}|y(n)d < Wdh} and note that ify(n)d < Wdh andsh = 1 then

p(y(n)d |Wdh,σ) < p(y(n)d |Wd(~s,W),σ). This is becauseWd(~s,W) can only be larger thanWdh for

non-negativeW and therefore the mono-modal Gaussian distributionp(y(n)d |Wd(~s,W),σ) is further

away from the maximum value.p(y(n)d |w,σ) with w= y(n)d is on the other hand larger or equal to
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p(y(n)d |w
′,σ) for any other valuew′. It follows:

p(sh = 1,~y(n) |Θ) = ∑
~s

sh = 1

p(~y(n) |~s,Θ) p(~s|π)

= ∑
~s

sh = 1

(
D

∏
d=1

p(y(n)d |Wd(~s,W),σ)

)

p(~s|π)

= ∑
~s

sh = 1

(

∏
d∈δh

p(y(n)d |Wd(~s,W),σ)

)(

∏
d6∈δh

p(y(n)d |Wd(~s,W),σ)

)

p(~s|π)

≤

(

∏
d∈δh

p(y(n)d |Wdh,σ)

)(

∏
d6∈δh

p(y(n)d |y
(n)
d ,σ)

)

∑
~s

sh = 1

p(~s|π)

=

(

∏
d∈δh

p(y(n)d |W
ub
dh ,σ)

)(

∏
d6∈δh

p(y(n)d |W
ub
dh ,σ)

)

π

= π p(~y(n) |~Wub
h ,σ) =: Sh(~y

(n)) ,

whereWub
dh = max{y(n)d ,Wdh} as in Equation 28.

Appendix C. Computational Complexity

The computational cost of an E-step in the ET approximation scheme results from the computation
of the selection functionsSh (Section 2 and Section 4) and the computation of the approximate suffi-
cient statistics (6). For the sufficient statistics we have to compute the joint probabilitiesp(~s,~y(n) |Θ)
for different arguments. For the generative models of NMF, MCA and LinCA (Section 4.1, Sec-
tion 4.2, and Section 4.3, respectively) the joint probabilities take the form:

p(~s,~y(n) |Θ) =

(
D

∏
d=1

p(y(n)d |Wd(~s,W),σ)

) (
H

∏
h=1

p(sh |π)

)

. (35)

For the first factor we have to computeD terms. Each term involves the computation ofWd(~s,W)
which is equal to∑hWdhsh in the cases of NMF and LinCA, and equal to maxh{Wdhsh} in the
case of MCA. In either caseWd(~s,W) can be computed with a cost proportional to the number of
non-zero entries in a given vector~s, γ ′ = |~s|. The first factor in (35) is thus computable in times
proportional toDγ ′. The computational cost of the second factor can be neglected becausejust two
terms (occurringγ ′ and(H− γ ′) times) have to be computed.

The complexity of the selection functions,Sh, used for NMF and MCA results from comput-
ing D times the conditional probabilitiesp

(
y(n)d |W

ub
dh ,σ

)
. The functionsSh have to be computedH

times, which amounts to a computational cost proportional toDH (per data point). The selection
functions used for the LinCA generative model (33) have the same computational cost. After pre-
selection, the selection function values are used to determine theH ′ hidden units with the largest
values, a computation that can be executed in times proportional to

(
H + H ′ log(H)

)
(see, e.g., Lam

and Ting, 2000, for references).
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In the approximate sufficient statistics (6) we sum over|K n| different state vectors~s. If K n is

given as in Equation 7, it contains∑γ
γ ′=0

(
H ′

γ ′

)

different states with

(
H ′

γ ′

)

counting the states

with γ ′ non-zero entries. The denominator in (6) can therefore be computed in times proportional
to DC (H ′,γ), where

C (H ′,γ) :=
γ

∑
γ ′=0

(
H ′

γ ′

)

γ ′ .

For NMF, MCA, and LinCA the numerator can in both cases also be computed intimes proportional
to DC (H ′,γ) due to the special forms of the sufficient statistics. For NMF and LinCA the sufficient
statistics〈si〉q(n) and

〈
si sj
〉

q(n) do not require the computation of additional terms. For MCA the

termsAρ
di(~s,W) (see Equation 30) are of the form:

A
ρ
di(~s,W) = (si Wdi)

ρ−1(∑
h

(shWdh)
ρ)

1−ρ
ρ . (36)

The last term in (36) can be computed together withWd(~s,W). Further, the computation of theD
termsp(~s,~y(n) |Θ)Adi(~s,W) in the denominator is required justγ ′ times for a given~s. The numera-
tor, like the denominator, is thus computable in times proportional toDγ ′.

Selection functions and sufficient statistics have to be computed for each data point (see Algo-
rithm 1), which results in a computational time proportional to:

α1N DH + α2N(H + H ′ log(H)) + α3N DC (H ′,γ) , (37)

whereα1, α2, andα3 are constants that describe potentially different weightings of the three terms.
Note that if the size ofK n is increased by adding unit vectors,K n = K n∪{~s| ∑i si = 1} (as was
done for MCA and LinCA) the scaling behavior (37) remains unchanged (also note thatK n remains
a subset ofK as defined in Section 3.2). The usage ofK n instead ofK n adds another(H−H ′)≤H
terms toC (H ′,γ) and consequently a cost ofα4N D(H−H ′) ≤ α4N DH to the whole expression.
With a change of factorα1, the additional cost thus gets absorbed into the first term in (37).

Considering expression (37) note that in our applications,D is always much larger than log(H).
We can therefore neglect the second term such that the computational cost is approximately:2

CET(H ′,γ)(N,D,H) := α1N DH + α3N DC (H ′,γ) . (38)

The constantsα1 andα3 depend on the generative model and the specific implementation of the
algorithm. The principle scaling behavior remains the same, however. In Figure 13 we have plotted
the scaling behavior for ET withα1 = α3 = 1

2. The different graphs show theH dependence of
CET(H ′,γ)(N,D,H) for different values ofH ′ and γ, D = 100 andN = 1000. Note that different
choices ofD andN would just globally shift the curves in the double-log plot. The steepest curve
in Figure 13 is the one for ET(H,H), that is, if we chooseH ′ = H andγ ′ = H. In this case we
drop back to the exact sufficient statistics with exponential computational cost. Note that for this

2. Note that ET also involves partial sorting of the data points once after each E-step. In a typical experiment (and in all
of the experiments discussed in the paper), log(N) is much smaller thanDH. The computational cost of discarding
data points can therefore be neglected.
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Figure 13: Scaling behavior of ET with (7) for different settings of the parametersH ′ andγ. The
plots show the function (38) and its dependence onH.

and for all other plots withH ′ = H, we set the first term in (38) to zero because no preselection
is required. The three dashed grey lines describe the computational costsof ET(H,1), ET(H,2),
and ET(H,3). They resemble straight lines because for largeH their scaling is proportional to
H, H2, andH3, respectively. Note that these three approximations are further examplesfor ET
without preselection (H ′ = H). Their scaling behavior relative to the scaling with other parameters
can therefore serve as a comparison for the computational gain of candidate preselection. The
three solid black lines describe the computational time required for the parameter settings ET(5,3),
ET(7,5), and ET(9,7). These curves are flat initially because the first term in (13) (the preselection
term) is small compared to the second term which is independent ofH. For largeH, the preselection
term becomes increasingly dominant, however. The three black dashed lines describe the scaling
with H for ET( H

10,3), ET( H
10,4), and ET( H

10,
H
10−2). The computational cost of ET( H

10,3) is orders
of magnitude smaller than the cost for ET(H,3) but finally scales with the same slope. ET( H

10,4) is
computational less expensive than ET(H,3) for H ≤ 1000 but will finally become computationally
more intensive. If the parametersH ′ andγ ′ are both scaled up withH as for ET( H

10,
H
10− 2), we

finally get a scaling behavior similar to that of an exact E-step. Note, however, that even in this case
the computational cost remains smaller than that of ET(H,3) for values ofH smaller that about
H = 180.

As discussed earlier, the computational gain achievable by ET depends onthe data and the
generative model used. If the data contains sufficiently many data points that are well represented
by few active causes, the computational gain is potentially very substantial. For instance for the data
used in this paper it was sufficient to use small values forH ′ andγ. Compared to systems without
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preselection or an exact E-step, the gain amounts to several orders of magnitude (as, e.g., discussed
for H = 100 in Section 4.2.2, or forH = 200 in Section 4.3.2).

Note that there are usually secondary effects that make learning slower ifH increases. E.g., a
large numbers of hidden variables usually requires large sets of data points to avoid overfitting. We
also observed that longer cooling times are often beneficial for large values ofD and/orH. However,
ET scales essentially linearly with the number of data points, and the cooling schedule usually has
to be increased merely by a factor of 2−8. The secondary effects do, therefore, only play a role
because ET has reduced the potentially exponential cost to a scaling whichis close to linear inH.

Appendix D. Classical NMF vs. ET-NMF

The classical NMF belongs to the class of non-negative matrix factorization(NMF) methods, which
makes use of non-negative data points, generative fields and sources. In this appendix, we first
summarize the classical NMF and then derive the probabilistic version (ET-NMF) using Expectation
Truncation.

D.1 Classical NMF

The standard NMF was proposed originally in Lee and Seung (1999) as aparameter-free method for
the factorization of data into non-negative generative fields (or ‘basis vectors’) and source activities.
Starting with generative fields~Wh = (W1h, . . . ,WDh)

T for each source (or cause)sh contained in the
rows of a matrixW ∈RD×H , N data points~y(n) contained in the columns of a matrixY ∈RD×N,
and the corresponding source activity vectors~s(n) for each data point contained in the columns of a
matrixS∈RH×N, the NMF factorization tries to find an approximation

Y ≈WS resp., in vector form ~y(n) ≈W~s(n) (39)

with non-negative entries forY, W and S, meaning that the generative fields~Wh are combined
linearly using the source activationss(n)h to approximate the data vectors~y(n).

Different cost functionsE(W,S) have been proposed for this factorization; here we will consider
an Euclidean cost function which we will compare in the next section to a Gaussian-based gener-
ative version of NMF used for Expectation Truncation (ET-NMF). To factorize (39), we therefore
minimize

E(W,S) = ||Y−WS||2 (40)

with respect toW andS. Introducing

〈 f (~y,sh)〉 :=
1
N

N

∑
n=1

f (~y(n),s(n)h )

for a more compact notation and using the vectorial form of (40), the task isto minimize

E(W,S) =
〈
||~y−W~s||2

〉
, (41)

that is, the average Euclidean reconstruction error over all data points~y(n).
In Lee and Seung (2001), it could be shown that the following parameter-free multiplicative

update rules converge to local minima of the cost function (41),

s(n)h ← s(n)h
(~Wh)

T~y(n)

(~Wh)T(∑h′
~Wh′s

(n)
h′ )

and ~Wh← ~Wh⊙
〈~ysh〉

∑h′
~Wh′ 〈sh′ sh〉

, (42)
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(the multiplication⊙ and division in the second equation of (42) are applied component-wise on
vectors). At start, the generative fields and the source activities are initialized randomly with positive
values, and then the two equations (42) are applied in alternation until convergence.

The update rules (42) conserve non-negativity and, interestingly, provide a good compromise
between speed and ease of implementation. This can be seen by consideringdirectly the gradient
descent update equations derived for~Wh from the minimization of Equation 41,

~Wh← ~Wh+~α⊙ (〈~ysh〉−∑
h′

~Wh′ 〈sh′ sh〉) , (43)

with a stepsize vector~α, and modifying an argument from Lee and Seung (2001), diagonally rescal-
ing the variables using a stepsize

~α =
~Wh

∑h′
~Wh′ 〈sh′ sh〉

. (44)

Inserting (44) into (43) yields the second, multiplicative update rule from (42), so that in conjunction
with the convergence proof of the multiplicative NMF equations from Lee andSeung (2001) we can
interprete NMF as a gradient-descent optimization of (41) with~α from (44) being a good choice of
the gradient descent stepsize for the update of the generative fields~Wh.

D.2 ET-NMF

For the generative version of NMF, the choice of the source activities occurs according to the
Bernoulli prior (22) from Section 4. As for the classical NMF, we combinethe generative fields
~Wh linearly with the source activitiessh usingW(~s,W) :=W~s, with the difference that the activities
are now binary and constitute the hidden variables of the system (remark that now we writesh in-
stead ofs(n)h ). In addition, we use a Gaussian noise model such that the probability of a data vector
~y given~s is defined byp(~y|~s,Θ) given by Equation 24 from Section 4.1.

At this point we apply the Expectation Maximization formalism introduced in Section2. From
the data likelihood of the generative model resp. the free energy (2) we then get for theW-relevant
terms (‘+...’ denotes terms that do not depend onW) an expression similar to Equation 41,

E(W) =
〈
||~y−W~s||2

〉

ET
+ ... , (45)

so that again the average Euclidean reconstruction error should be minimized. The difference is
that now the averaging〈...〉 runs not only over all data points, but also over all possible source
combinations~s used to generate each data point. Here we wrote〈...〉ET, to express that in addition,
we use the Expectation Truncation formalism for the computation of averages. That is, the averaging
runs over the subset of data vectorsn∈M and the set of source vectors~s∈K n gained by the source
preselection and sparseness assumptions:

〈 f (~y,sh)〉ET := ∑
n∈M

∑
~s∈K n

p(~s|~y(n),Θ) f (~y(n),sh) = ∑
n∈M

〈

f (~y(n),sh)
〉

q(n)
. (46)

From here on, all following steps can be considered in analogy to the classical NMF, by replac-
ing 〈...〉 → 〈...〉ET. The task of ET-NMF is therefore to minimize (45) with respect toW, using the
preselected causes and all possible source activation vectors~s generated by those causes.
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It can be easily seen now that the gradient-descent minimization of W and a diagonal rescaling
of the stepsize according to

~α =
~Wh

∑h′
~Wh′ 〈sh′sh〉ET

can also be done in analogy to the classical NMF, leading to the multiplicative update equation for
the generative fields of ET-NMF,

~Wh← ~Wh⊙
〈~ysh〉ET

∑h′
~Wh′ 〈sh′ sh〉ET

. (47)

The multiplicative, parameter-free equation 47 therefore leads to a near-to-optimal decrease of the
ET-NMF model resp. the energy function (45) for positive data points, positive generative fields and
Bernoulli-prior-distributed source activations. Since the convergenceproof of the original NMF as
presented by Lee and Seung (2001) considers convergence ofW andSseparately, it is straightfor-
ward to apply it to the ET-NMF by considering the selected source activations~s∈ K n in (46) as
given, and applying the classical NMF to an expanded data set which incorporates the given acti-
vation vectors together with the data vectors and the probabilities as occurrence frequencies. For a
fixed set of~s’s, (47) can then be applied until convergence.

The differences and similarities between the classical NMF and ET-NMF canthen be shortly
stated as follows. The classical NMF uses data points in fixed association withtheir corresponding
continuous activation vectors and minimizes the Euclidean cost function (41)for both the source
activationsand the generative fields, the latter according to the multiplicative update rule (42). ET-
NMF explores a subset of allowed binary source activations for each data point and minimizes in its
M-step the Euclidean cost function (45) for the generative fields only, according to the multiplicative
update rule (47). The E-step of ET-NMF is based on the truncated expectation values (6) to calculate
the averaged quantities in theW update equations according to

〈~ysh〉ET = ∑
n∈M

~y(n) 〈sh〉q(n) and 〈sh′ sh〉ET = ∑
n∈M

〈sh′ sh〉q(n) (48)

so that the sufficient statistics of the ET-NMF model that have to be computed for the M-step will
be given by the first and second order moments〈sh〉q(n) and〈sh′ sh〉q(n) of the approximate posterior.
The full Expectation Truncation formalism then comprises the calculation of theexpectation val-
ues〈sh〉q(n) and〈sh′ sh〉q(n) (needed for (48)), and afterwards the adjustment of the generative fields
according to (47).

Appendix E. Details of Measurements

For the measurements in Section 4, we here give details about the procedure we used to determine
if a cause is represented by the parameters of a hidden variable.

Let ~ycause
h′ denote a data point showing causeh′ without noise (e.g., one noiseless bar). Let

further~sh denote a hidden state with just one non-zero entry at positionh. To determine if causeh′

is represented, we compute the approximate posterior probabilities ˜p(~sh |~ycause
h′ ,Θ) for each vector

~sh using the approximation provided by ET. The hidden unith with the highest posterior value
p̃(~sh |~ycause

h′ ,Θ) is taken as the unit representing causeh′. We only take all causes to be represented
if the mapping from the causes to the representing latents is injective. Additionally, we demand
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that the mean average error (MAE) between the generating cause parameters~ycause
h′ and the model

parameters~Wh of the representing unit is smaller than 1.0 for each cause. For the data used in this
paper, the threshold discounted any generative fields~Wh with significant traces of more than one
cause.
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U. Köster and A. Hyv̈arinen. A two-layer ICA-like model estimated by score matching. InProc.
International Conference on Artificial Neural Networks, LNCS 4669, pages 798–807. Springer,
2007.

T. W. Lam and H.-F. Ting. Selecting the k largest elements with parity tests.Discrete Appl. Math.,
101(1-3):187–196, 2000.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–91, 1999.

D. D. Lee and H. S. Seung. Algorithm for non-negative matrix factorization. In Advances in Neural
Information Processing Systems, volume 13, 2001.

T. S. Lee and D. Mumford. Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A
Opt Image Sci Vis, 20(7):1434–1448, 2003.
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