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Abstract

We show how a preselection of hidden variables can be usefidieetly train generative models
with binary hidden variables. The approach is based on Eapen Maximization (EM) and uses
an efficiently computable approximation to the sufficierttistics of a given model. The com-
putational cost to compute the sufficient statistics israjhp reduced by selecting, for each data
point, the relevant hidden causes. The approximation ificagye to a wide range of generative
models and provides an interpretation of the benefits ofgbeeson in terms of a variational EM
approximation. To empirically show that the method maxesithe data likelihood, it is applied
to different types of generative models including: a versib non-negative matrix factorization
(NMF), a model for non-linear component extraction (MCA)daa linear generative model similar
to sparse coding. The derived algorithms are applied to dificial and realistic data, and are
compared to other models in the literature. We find that thieitng scheme can reduce computa-
tional costs by orders of magnitude and allows for a religsteaction of hidden causes.
Keywords: maximum likelihood, deterministic approximations, véinaal EM, generative mod-
els, component extraction, multiple-cause models

1. Introduction

In many applications of artificial and biological systems, data interpretatidmailéeniging because
of noise, the complexity of the input and because of its ambiguity. Optimal mferbased on
probabilistic generative models is in general intractable in such situatiomsi$ed involves the
evaluation of all potential interpretations of the input. To approximate optimaténte, a fast
initial stage of processing has therefore long since been suggestagplloations to visual data,
a first processing stage can select candidate objects or componeragetpatential causes of the
given input (see, e.g., Yuille and Kersten, 2006). Based on thesédedeslthe meaning of a data
point is subsequently inferred in a second recurrent stage. Thegstiaiteandidate preselection
has indeed been suggested and applied in different contexts (émperket al., 1999; Lee and
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Mumford, 2003; Yuille and Kersten, 2006; Westphal andirt¥, 2009) and prominent systems
of feed-forward processing (such as Riesenhuber and Pog®, 48d van Rullen and Thorpe,
2001) are sometimes interpreted as sophisticated preprocessing stagesifisequent recurrent
stage. The general idea of candidate preselection followed by retuaeognition will in this
paper be formulated in terms of a variational approximation that allows foff@reat training of
probabilistic generative models.

In Section 2 the approximation scheme will be introduced as an approximatiotpaxation
Maximization (EM). In Section 3 we systematically derive it as a variational Bidreach. In
Section 4 the training scheme is applied to a number of different generatielsramd a number of
different data types. Section 5 discusses the features of the novebapmnd the obtained results.

2. Expectation Maximization and Expectation Truncation

Our approach is based on Expectation Maximization (EM; Dempster et alf) ¥8¥ch is used to
maximize the data likelihood under a given generative model:

O = argmap{L(©®)} with L(e):log(p(y<l>,...,y<N>ye)), 1)

where® are the parameters of a given generative model and whe diaga points{ym)}n:lm,\,,
will be taken to be generated independently from a stationary process.

To find the parametei®* at least approximately, we use the EM approach as it was formalized,
for example, by Neal and Hinton (1998) and introduce the free-erfargyion 7 (g, ©) which is a
function of © and an unknown distributiog(s%,...,5N)) over the hidden variablegF (g, ®) can
be shown to be a lower bound of the likelihood evaluated at the same parasmletes. For our
purposes we assume independently generated data vgttaasd use (Without Ioss of generality)
a distributionq which is factored over the data pointgs'V), ..., V) = ,q™ (3W;©°9). Note
that we takey to be parameterized B§°!9. The free-energy can thus be written as:

7@0) = 3 |5 a"s0%) [oa(py"120)) +og(psio)]| +H@. @

whereH(q) = — 5, 5<9™(8;0°%) log(q" (8;©°9)) is a function (the Shannon entropy) that is
independent o®. The sum over all states 8becomes an integral if the values3xre continuous.
In the EM schemef (q,©) is maximized alternately with respect tpin the E-step (whiled is
kept fixed) and with respect © in the M-step (whileq is kept fixed). It can be shown that the
EM iterations increase the likelihood or keep it constant. In practical apigitsaEM is found to
increase the likelihood to (at least local) likelihood maxima.

The free-energy function (2) can be used to derive update rulekdqgrarameter® of a given
model Such a derivation can in some cases be challenging but one ustiedly at expressions in
update rules derived contain what is often referred to asuffecient statisticef the model that is,
they contain expressions of the form

n)—zq (8:0°%9(9), 3)

whereg(s) is a function of the hidden variables. The functi@is) are often relatively simple, for
exampleg(s) = s or g(S) = ssj, but can for some models be more elaborate and may also include
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parameter dependencies. For an exact E-step in the EM scheme therfsiq®ti; ©°'9) are given
by

psy™ 0%
S p(E,y" e’

§/

q"(5;0%) = p(s|y™,0%) = (4)

wherep(s, ¥ |@°9) = p(5|@°9) p(y( | g ©°) with the latter distributions being defined by the
used generative model. To train models with multiple causes, the computatiores&ittesufficient
statistics is usually avoided because it involves summing or integrating oveyessiaace of hidden
states in (3) and (4). To reduce computational costs, training schemefotiearse approximations
to these intractable sums (or integrals) or approximations to the exact pogiggjg(™,@°!d).
The approximation method discussed in this paper will be introduced as aoxapation to the
sufficient statistics.

Let us consider the sufficient statistics of a functipgiven by the combination of (3) and (4):

S pEy" (0% g9
S

<g(§)>q(”) = Z p(§,7y<n) |60|d) : (5)
T

Again, we have to sum over a very large space of hidden states. Let ussfance assume that
we have already found the optimal or approximately optimal param@®ts< 0, that is, let us
assume that any given input vector is well represented by a distributerhiden states. A given
¥ is in this case usually well represented by a distribution over just a small bitden vectors.
For the sums in (5) this means that just some summands contribute significantlytiehdéhers
are negligible. Thus, if we could find the right summands for a gi/&h we could expect a good
approximation of(g(s))qw in (5) without having to sum over the entire state space of

More formally, if K, denotes the set of all states that contain significant contributions to the
sums in (5), it applies:

S pEy™ 0% g
(O()qn ~ MZ 5

¥EKn
A potential subset containing the relevant summands could be found byiteag specific data
properties. If the data was generated by few hidden units on avemagestance, most data points
are well approximated by only considering combinations of few activeesaué subset for the
approximation in (6) for binary causeg could thus be given by = {S| ¥;sj <Y}, wherey s

the maximal number of active causes. Such a choice can significantlyeréaRioumber of states
that have to be evaluated. Dependingydhe combinatorics can still be considerable, however, and
still, just a few of the summands might contribute.

To further constrain the state space, let us suppose that we can in sonfengvéunctions
Sh:RP — R that give estimates of how likely it is for the hidden causes 1,...,H to have
contributed to the generation of a specific inpti. If we had such functions, we could approximate
the sufficient statistics (5) by neglecting all causes that are unlikely to ¢@vieibuted. In other
words, we could just sum over a subsgh C K that contains the combinations of all hidden
variables that are likely to have caused the inpiit. To define such a seX, more formally,

(6)

(§’,7(n) ’@old)
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consider theh = 1,...,H values$,(y("™) for a given data poiny". To selectH’ candidates, we
define the index sdtto contain those latent indicdswith the H’ largest valuessy(¥(™). The set
Kn is then given by:

Kn=1{S] ¥jsj<yand(Vigl:5=0)}. (7

Equation 6 represents a good approximation if the contributions of the states &, are indeed
negligible compared to the contributions of the stateg’in Much depends, of course, on the func-
tions $y. From these functions, which we will tergelection functionswe demand the following
properties: (A) they have to be efficiently computable and (B) they havévéolggh values for
hidden variables that actually are responsible for a gjif8h Note that for the selection functions
it is merely important to select candidates that patentiallyexplain the input. Neither are their
exact values used in (6) nor is it disadvantageous for the accuraty @pproximation if some
candidates are selected that turn out to contribute very little. We will see éaawisuch selection
functions for different generative models in Section 4. Before let nssarize the approximation
discussed above in the form of the pseudo-code given in Algorithm theAapproximation scheme
resides on a truncation of the sums in the expectation value computationswe(®jll refer to it
asExpectation TruncatiofET).

Algorithm 1 : Expectation Truncation - Pseudo Code

1 Choose approximation parametétsandy (y < H < H) and randomly initialize the
parameters of the generative model.

2 while parameters have not convergdd
3 for all data points n=1,...,N do

4 Compute the selection function valggfor eachh =1,... H and determine the
index setl of theH’ hidden variables with thel’ highest values fos.

5 Compute the set of binary vectof§, = {S| ¥;sj <yand(Vi¢Zl:s=0)}

6 Compute the approximate sufficient statistics (6).

7 Update the parameters in the M-step using the approximate sufficient statistics.

The two parametersl’ andy control the size ofK,. H’ determines how many candidates are
selected ang fixes the maximal number of non-zero hidden uisits For instance, if we choose
H' = 4 andy = 2, the summation oves considers four candidates of which either none, one, or

/
two are simultaneously active (compare Figure 2). The siz& ofs thus given byzz,zo ( c, )
The approximation’s accuracy increases with increasing valués ahdy but its computational
demand increases as well. For the highest possible vaflies,y = H, we drop, for any selection
function Sy, back to the case of the exact sufficient statistics (5).

Note that while the approximation scheme presumably results in good approxisfionany
data points it can be expected to give poor results for data points gehbegateore thary hidden
causes (i.e., for data points not #j). To avoid learning from such data points with inappropri-
ately estimated sufficient statistics let us again assume that we have alreadycfose to optimal
parameter®*. In such a situation and for any data pojift’ generated by less or equghidden
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causes we get:
py" |0 = S pEy"Ve) ~ Y pEY"|eY), (8)
5 SEKn
where we have assumed appropriate selection functions and relativatplsg/levels. In the same
situation but for data poinf™ which were generated by more thahidden causes we obtain:

Py e =S pEy"Ve) ~ § pEyVe) = 5 pEy"Y|e) 0. (9)
S SZKn SeXn

The values of the sungs. «, p(S, " |©) for the different data points can thus serve as indicators
for finding data points that were presumably generated by lessytbanses. For learning we aim
to include only those data points that are approximated well. We therefore defiatM of the
NCUt < N data points with largest sums. In the beginning of learning, the estimation bfdsia
points is too imprecise, however. We therefore start by taking all data pototaccountN®Ut = N
and decreas®l® to values close tdN<Y within the last third of the iterationsN<=Y is hereby
the expected number of data points generated by less or gagaalses. For a given generative
model, this number can usually be computed tractably. The number of data geirgsated by
<y causes can, for a given data set, be smaller tahbecause of finitely many data points.
It can therefore be beneficial to finally use BA“ slightly smaller thanN=Y. This potentially
avoids the consideration of data points that are not well approximatedunhemcal experiments
in Section 4 we will therefore use final valuesNf't = 0.9N=Y althoughN®"t = N=Y gives similar
results especially for largd.

Considering Algorithm 1 what is still left to specify are concrete expressfor the selection
functions Sy, and expressions for parameter update rules (M-step equations)e &feations do,
however, depend on the particular generative model the method is applidtietavill therefore
discuss selection functions and update rules individually for the diffegenerative models we
investigate in Section 4. Given selection functions and update rules, Algotitdescribes an ap-
proximation scheme applicable to generative models with binary hidden varidlile scheme has
been introduced and defined as an approximation to the sufficient statigtitis {he next section it
will be systematically derived as a variational EM approach. The assurspigsd for the approx-
imation will thus become explicit, allowing a generalization of the scheme and disggon of its
potential limitations. The computational complexity of the method will be discussedperdix C.

3. Expectation Truncation and Variational EM

In this section we will show that Expectation Truncation corresponds toiatiamal EM approxi-

mation. The approximation, as introduced in Section 2, consists of two pajtan(@pproximation
to the sufficient statistics in Equation 6, and (B) a selection of data pointsréhaiedl approximated
by Equation 6. Both of these parts can be formulated as variational EM gtepshe derivation
we will start with (B), that is, with the selection of data points. The selection wk# the form of

a classification of data points into two classes: one class that contains theodatathat can be
well approximated, and another class that contains the remaining pointgoiifiesponding varia-
tional step will be referred to as the first variational step (Section 3.19.stép (A) corresponding
to approximation (6) will only be the second variational step (Section 3.2th B@ps combine
to form the approximation scheme of Expectation Truncation. The schemenjgactly summa-
rized in Section 3.3, and the basic procedural steps are listed in Algorithimichwepresents a
generalization of Algorithm 1.
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Truncated generative model c=1 Original data Truncated generative model c=0

p(3| ) = [1nBernoulli(s,; )

1 .
~ _ | zpEIMm ifse K
p(§|°_17")_{ 0 ifs¢x

D(V\ 5 W, 0) = N(y WS, 021)

p(s|m) = [nBernoulli(sy; 1)

o 0 ifsex
psjc=0m) = {% p(S|T) if ¢ K

P(Y|S W, o) = A((¥; WS,0%1)

‘generates

Truncated
H..wm ..... data, =0

data point E
classification

Extracted basis functions W E
— HIINE N B
B V" bngar

{y(n)}neM . - - . -

Figure 1: First variational approximation: data classification. The figiogvs Expectation Trun-
cation (without preselection) for a concrete generative model. In thimgbea the gen-
erative model generates data by linearly superimposing basis functions forth of
horizontal and vertical bars. Data generated by the original modeliosnt@ to ten
bars chosen with a Bernoulli prior (example data points are shown in thergeData
generated by the truncated generative model with1 contains up to two bars (we set
K ={S]| yjsj <y} with y= 2). Data generated by the truncated generative model with
¢ = 0 contains at least three bars. If we train the truncated generative mibklel= 1 on
data from which data points witfy; sj > ywere removed, we can expect to approximately
recover the true generating basis functigvsf the original model.

generates

|

Truncated
data, c=1

3.1 First Variational Approximation: Data Classification

As in Section 2, let us consider a generative model with a set of hidd@bles denoted bg, a set

of observed variables denoted fyand a set of parameters denoteddylLet us denote the prior
distribution of the model by the (not further specified) functig| ©), and the noise distribution
by the (not further specified) functiga(y|S, ©). To distinguish this generative model from models
introduced later, it will from now on be referred to as trgginal generative model.

We will formalize the classification of data points by introducing two new geiveranodels
defined based on the original model. The two models will correspond to twsedaf data points:
one class of those points that can be well approximated, and one clasistsfthat can not. Lek
be a subset of the space of all possible values @iven such a set, we define the two generative
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models by introducing two new prior distributions that are based on the orjgiioa:

Zp(8/O) ifs 0 if
p(§’C: 1,0) = { « p(0| ) lﬁgé% and p(§|0:0,6) = { 11 Teck
K

Lpse) ifsgx 10

wherek = Y« 4 p(S|©). We take the noise distributiqn(y| s, ©) of the new models to be identical
to the original noise distribution. We will refer to the new generative modetsuasatedmodels
because their prior distributions are truncated to be zero outside of sprdiets. Note that the
generation of data according to the truncated model withl corresponds to generating data ac-
cording to the original model while only accepting data points generateths. Analogously,
generating data according to the truncated model @40 is equivalent to generating data accord-
ing to the original model while accepting only data points generategkb. Figure 1 shows the
truncated generative models and data they generate for a concretel@Xammdel that linearly
combines bar-like generative fields; compare Section 4.1). For the exafijdethe set of binary
statess with less or equay non-zero entries. In generd; can be any subset, however.

Let us now mix the two truncated models in Equation 10 by introduciad 0,1} as additional
hidden variable and by drawing= 1 with probabilityk. The prior distribution of this mixed model
is thus given by:

p(clk) = K (1-Kk)*°, (11)

1-c
1-K

p(s|c,0) = (; B(SE K) + ;¢ 8(S¢ %)) p(S]©). (12)
where we have introducaliS € X)) =1 if S€ X and zero otherwise, afiiS¢ X) =1if S¢ X
and zero otherwise. We will refer to this model as thizkedgenerative model. Note that the mixed
model is identical to the original generative model if we chowsek = S « p(S|©) as mixing
proportion. The mixed model thus contains the original model as a spes@l ca

Now, consider a set il data pointqy(”)}nzlw,\, generated according to the original generative
model. Let us maximize the likelihood of the data under the mixed model (11) 2)diflve use
EM for optimization (compare Section 2), we obtain the free-energy

F(9,0,K) ZZq (c; 0% log (p(y™ | c,0))

+log(k) § g (c=1;0") +log(1-k) § " (c=0;0"") +H(g),  (13)

n n

whereH (q) is the entropy w.r.tg" (c; ©°9) (summed over alh andc). The free-energy (13) can be

optimized iteratively by maximizing in the E-step an@®, k) in the M-step. For the E-step, choos-
ing the exact posteriog™ (c; @°9) = p(c|y(™,@°9), represents the optimal choice. Unfortunately,
it is computationally intractable in general because

n) eold) _ 25617( p(y(n)7§| @)

requires a summation over the entire state spaggsimilarly for c = 0). We thus choose a varia-
tional approximation to the true posterior by settit) (c;©°9) to zero or one. This approximation

p(c=1[y!

(14)
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reduces the free-energy (13) to:

~L1(©) ~Lo(©)
F(@0) = Y log(py"|c=10))+ 3 log(py"|c=0,0))

nem ng M

+log(Kk) || +log(1— K)(N — |]) + H (). (15)

wherea = {n|q"(c=1;0°%) = 1}. Note that can be optimized independently &fbecause
the first two summands in (15) only depend®nAs we also know its final optimal valu & K),
we will treat the mixing proportion as implicitly knowm. can thus be omitted as a parameter of the
free-energy (15) and will not play a role for our further consideregio

For the data seM note that the best choice fqf" (c; @°'9) under the constraim™ (c; @°9) ¢
{0,1} is given by the assignment” (c = 1;0°9) = 1 if y(" was generated by class= 1 (and
zero otherwise). This would amount to settififjto

MOP = {n|y" generated by clags=1}. (16)

In general this best choice can not be computed exactly. We can, bowrive tractable ap-
proximations taM°P', Choosing a sed is equivalent to choosing a distributigf” (c; ©°'%) with
binary values (as an approximation to Equation 14). Any choic& dhus represents a variational
approximation. In Appendix A.2 it is shown that one such approximation isroddavia sorting
according to the denominator values in Equation 6. The selectidif'bidata points obtained in
this way is thus equivalent to a variational E-step.

An interesting aspect of Equation 15 is that the first two summands take theofamwo log-
likelihoods. The first summand is the likelihobgl©) of the truncated generative model witk- 1,
and the second is the likelihodg(©) of the model withc = 0. If 4 = M P, both likelihoods are
evaluated on the set of data points they can generate (see Figure &)d&y these properties of
Equation 15 the question arises how the maximunf ¢d, ©) and the maxima off 1 (®) andLo(©)
are related. It could, for instance, be asked if all three functions hawaximum for the same
parameter values. From the structure of the equation this can not be dedchnd, indeed, the
guestion must be answered negatively because it can be shown thaehalghe maxima do not
coincide. However, under assumptions that are usually fulfilled at Ipasbeimately, we can show
that any global maximum of (g, ©) is an approximate global maximum bf(©) and ofLy(©).

A necessary condition for an approximate global maximurh(&@) (the likelihood of the original
model) is thus a global likelihood maximum bf(®) (or of Lo(®)). The technical derivation of
this observation is given in Appendix A.1.

Note that, intuitively, it makes sense that the maximization of the likelinog®) results in
parameters that can approximately maximiz®). To see this consider the example of Figure 1.
If the truncated generative model with= 1 is optimized on the truncated data class 1, the
displayed generative fieldd are learned. These parameter values can be expected to also result in
close to maximum likelihood values for the generative model withO on data class = 0, and
also correspond to approximately optimal likelihood values of the origina e model on the
original data. The approximation improves with increasingly many data poiotsthis example,
all parameters to approximately maximizg®) can be recovered based on the necessary condition
of maximizingL1(®). The example of Figure 1 also demonstrates that the first variational step
already significantly reduces computational costs. The truncated moded withonly requires the
evaluation of 56 states per data point instead'821024 evaluations for the original model.

2862



EXPECTATION TRUNCATION

3.2 Second Variational Approximation: Preselection

Starting point for the second variational approximation will be the likelinod®) of the truncated
generative modet = 1. We have seen in the previous section (and Appendix A.1) that a global
maximum inL;(®) is a necessary condition for an approximate global maximum of the likelihood
L(®) of the original model. To find the maximum bf(©) we optimize the lower boungi(q,®)
given by:

Q1(9,0)

q" (3;0°9) Iog(( |§G))
neM Se X

p(s|©)) +H(a), (7)

K

with 3 4 W (5;0°9) = 1. #1(q,0) is derived by a variational approximation, this time w.r.t. the
hidden variables. The free-energy equals the likelihobg(©) after each E-step if the distributions
g (g; ©°) are given by:

p(s[y"” ®°'d)
Z§’E7( p(§/ | y GOId)
M-step rules can be derived by setting the derivativegigf}, ©) w.r.t. all parameters to zero. As
the entropy term in (17) is independent®if qis held fixed, we obtain

q"(s:0°) = p(sy".c=1,0") =

5(E€ X). (18)

d d

as necessary condition. The derivati@% hereby stands for derivatives w.r.t. all the individual
parameters.

Based on condition (19) we can now introduce candidate preselectiovagsimtonal approxi-
mation. As described in Section 2, preselection amounts to selecting, foeray§¥, a subsetk,,
of the state space. Section 2 gives an example of how to define th# aatd how to construct
subsetsK, using selection functions. Figure 2 shows a concrete example of howZg,sstcon-
structed using selection function valuggy™). In Section 4 and Appendix B different instances
of selection functions can be found. More generally, we here requine the setsk,, that for all
data points generated By X, they finally contain most of the posterior masgn If this applies,
we obtain an approximation to the posterg? in (18) given by:

p(s|y"™ @°'d) p(s ¥ |©°)
Yyex, P(S'|Y",00) Ysex, P(S, Y |00)

Note thatf™ (s; ©°9) sums to one ik as X, C X. It thus fulfils the condition o™ required for
(17). If preselection finds, at least finally, appropriate ¥ts we obtain with (20) the necessary
condition: ;5Q1(G,0) ~ 5Q1(q,©) = 0. Parameter update rules derived frgfpQ,(6,0) =0
can therefore be expected to (at least approximately) optimize the feegye(15) and thuk1(O©).
The update rules derived will contain expectation values (the suffidiitics) of the formg(s)) 4 -
If we use (20) for these expectations we obtain:

" (s;0%) = 3(5€ Kn) = 5(5€ Kn). (20)

S pEy™ (0% g

o ~(n) (z- oold _ S%Kn
<g(§)>q(”) ;q (§1e )g(g) z p(§’,y(n)|@°|d) 3

§eXn
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comparlson

q(n) (§; eold) I
g
spmm © 1L 0 0 0 1 1 1.0 00
<sfl o o 1 0o 01 0 01 10
<Hl o o 0o 1 0 0 1 01 01 :az)efirifoﬁ?h
s7ﬁl o 0 0 0 1 0 0 1 0 1 1
e LTI ECEL T LES

computation of y
selection functions

Figure 2: Second variational approximation: preselection. The figurérdbes how the variational
approximationg™ (; ©°9) in Equation 20 is computed. The selection of hidden states
Se %, and the computation af™(s;©°9) are shown for the example of Figure 1 close
to the optimal parametel. Given the data poing™ a selection function valug, for
each hidden variablk is computed. Théd’ largest values are selectdd’ (= 4 for this
example). The approximatiayi™(s; @°9) is then computed based on the combinatorics
of theseH’ candidates (witly j s; < y= 2). For the displayed data point and parameters

all values ofgf™ (; ©°!9) except for one lie close to zero. For visualization purposes these
values have been increase in the figure.

that is, precisely expression (6) in Section 2. Expectation Truncatiomdinted as an approx-
imation to Equation 5, can thus been derived as a variational approximatimoportantly, this
approximation is tractable i, is small. The computational gain of preselection compared to
an approximation without preselection is reflected by the reduced siZg, @ompared tax (see
Figure 2 for an example and Appendix C for a detailed complexity analysis).

3.3 Summary and Numerical Controls

We have seen that the approximation procedure introduced in Sectionl#& aerived as a vari-
ational EM approach. This approach consists of two variational appeton steps: First, an
approximation that assigns the data points to two classes (Section 3.1).dSac@miational step
that approximates the posterior (18) by an approximate posterior (2@eddfirough preselection
(Section 3.2). Although the derivation of ET as a variational approaghines in parts rather tech-
nical steps, the final result is intuitive (see Figure 1 and Figure 2) ambeatated very compactly.
Algorithm 2 summarizes all required steps of the approximation scheme.

Note that also with preselection, the ET approximation still requires a summatem%gyv
namely Y« 4 P(3/©). This sum has to be computed to determif&’, N°“' = Ny« 4 p(S]©),
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Algorithm 2 : Expectation Truncation

Preselection: select a state space volukiefor each data poirg"
Data classification: find a data s&f that approximated/°Pin Equation 16
g V(n) | eold)
E-step: computg™ (3: @24y — P(s, for all y(™ andg
M-step: find paramete/® such that
d N p(8|©)
e (n) (2. old (n) Lt Sl e A
G (s;0°) log( p(y\'"V|S,© =0
do nezmﬁez?(n ( ) ( v1s8) Ssex P(S'|O) )

and it appears in the M-step equation (Algorithm 2). Because of symmetriles ursual priors for
generative models, this sum can, however, be computed without summinglbsexplicitly (an
example is given in the next section). Even if symmetries can not be exploitéslthat the sum
overse K has to be computed at most once per EM iteration and not once per datapoiper
EM iteration (as it is the case for the sums o%gy).

Algorithm 2 summarizes ET as a variational approximation and representsegatjgation of
Algorithm 1. Algorithm 1 in Section 2 contains, for example, one specific widyow to select
an appropriate sek and appropriate setX,: we definedX based on sparseness and selected
XK n using selection functionsy. In the variational derivation of ET we, however, only specified
the properties required frork’ and X,. In general, X does not have to be defined based on a
sparseness assumption and there are potentially alternative ways tallefse¢sk ,. Importantly,
the variational derivation of ET allows for a comparison with other variatiapproaches. We
can thus observe that ET is qualitatively different from the standaidti@ral approach. Concrete
instances of variational EM usually approximate the exact posteriorsllyydupartly factored
distributions over the hidden variables (compare Jordan et al., 19%&aJag2000; MacKay, 2003;
Bishop, 2006). Such approximations become the more severe the stdmmmrdencies between
the hidden variables in the posterior are. In the derivation of the ET gjppation, no independence
assumption for the posterior has been used. Strong dependenciegraferthnot expected to
negatively affect the approximation quality of ET. On the other hand, thegproximations can
get more severe if the approximate classification of data points becomes isegffest variational
step), if the preselection step does not include the relevant candidetesi@svariational step), or
if too few data points are used.

ET has in common with all variational EM approaches that there is no guaréottéhe like-
lihood to finally increase to values close to the global optimum. This can in ddrerdhue to the
approximations being too severe or due to many local optima in the likelihoodciapels Varia-
tional approximations therefore have to be verified numerically. In the follpwection, ET will
be evaluated based on different generative models and differensetataDuring likelihood max-
imization we will monitor different values relevant for the approximation. We thills control if
the likelihood is indeed increased during learning and, given grounld:fifuit approaches values
close to the global likelihood maximum. Ground-truth data will also allow us to quambiv well
the generating parameters are recovered by the derived algorithm. rimwtiee we will monitor
values that give evidence about the quality of the specific approximatsatshy ET. We will thus
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monitor the quality of the data point classification (first variational approximaaod the quality
of the approximation by preselection (second variational approximatiam)thi first approxima-
tion we compare the obtained classification with ground-truth of all data pokus.the second
approximation, we will monitor the differences between the exact postp(ﬁw(”), O©) and the
approximate posteriag™ (g, ©) in (20). If we evaluate the differences between these distributions
using the Kullback-Leibler divergence, we obtain:
) oy My e ) sk, PEY™[O)

DKL(q ) p) IOg(Q ) with Q Z§/ p(§/,y(n) ‘e) . (21)
The preselection approximation has a high quality if for the data poirité the valueDy (", p)
are close to zero. For data points nofithe differences between the distributions should be large.
For practical reasons, we have introduced the quality vaQi®sin (21). The value®" measure
the percentage of the posterior probability mass concentratég,inin terms of these values the
approximation quality is high (™ is close to one for data points i, and close to zero for data
points not in/.

4. Training Generative Models

The approximation scheme defined and discussed in the previous secsonfaisndependent of
the specific choice of a generative model except for the assumptionafydirdden variables. To
demonstrate the applicability of the method and to investigate its properties, indtimsge will
apply it to a number of different generative models. The investigated moaedd|anultiple-cause
models that require tractable approximations. The three major classes iategstigere are non-
negative matrix factorization (NMF; Section 4.1), maximal causes analySBA{Mbection 4.2),
and a sparse-coding-like model termed LinCA (Section 4.3). For all thedelsnwe will assume
independent hidden variables distributed according to a Bernoulli prior:

H
p(3|m = Dl p(sn|T0), p(sa|m) =T (1—m)* >, (22)

wherert € [0, 1] parameterizes the sparseness of the distribution. For binary hiddeblearihe
Bernoulli prior represents the most straightforward choice (compaye Berkes et al., 2009;lcke
and Sahani, 2008). Given the prior (22) the expected number of daits generated by less or
equaly causes is given by:

N =N Y p(s/m =N % (\';)rf/’(l—n)HV’. (23)
5 [s|<y y'=0

N<=Y is required to find the set ®i“! data pointsM considered for a parameter update, and Equa-
tion 23 shows that this number is tractably computable. For all generativelsnodevill use ET

as described in Section 2 and Algorithm 1. That is, we will use &&#iat constrains the number
of simultaneously active causes, and use selection funcipttsobtain setsKp,.

4.1 Non-negative Matrix Factorization (NMF)

The first generative model considered uses prior (22) and combiregyeherative fields
W, = (Wlh,...,V\/Dh)T of all latents withs, = 1 linearly. We use a Gaussian noise model such
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that the probability of a data vectgigivensis defined by:

D

p(y[s,0) = le p(ya|Wa(§W),0), p(yd|w,0) = N (Ya;w,0%) (24)

with Wy (W) = dehsh, (25)

with W € RP*H., a\((yq;w,0?) is a scalar Gaussian density function with meaand variances?.
The introduction ofV will turn out to be convenient for the analytical treatment below. Note that
we otherwise could have writte(y|§, ©) = A(V; WS, ¢21).

We then use (24) to compute the update equation (the M-step) for the weigfit Maas
described in Section 2. The update equation is gained from the necessdition for an optimum
of the free-energy in (2). Thé&/-update is consequently a function of the sufficient stati$§§:§n)
and(ss") o Following Section 2, these expectation values are approximated by u3imgtEad
of the exact sufficient statistics (5), that is, we use a subset of causgmrations as selected by the
truncation approach. Furthermore, we sum only oveNftédata points i\ as explained at the
end of Section 2. The update equation is then given by:

-1
W= @ﬁW%Q(zﬁﬁw>. (26)

nem nem

Note that the equation can consistently be gained from the necessaitiarofat a free-energy
optimum in Equation 19 (see M-step of Algorithm 2).

Equations 24 to 26 are valid irrespective of the sign of the entries of theragare fields and
the input data. Generative models corresponding to the class of nativeelylatrix Factorization
(NMF) methods are based on a linear combination of generative fieldsliguir non-negative data
points and generative fields. In Equation 26, non-negativity can heeshéor the generative fields
by clamping small appearing weights at zero.

A more direct way to ensure non-negativity for the parameters of the nutedisled by (22)
and (24) is to rely on convergence proofs similar to those used for chddidF (Lee and Seung,
2001), that is, to ensure non-negativity by deriving a multiplicative upddeefor the generative
fields. For the EM algorithm used as a basis for ET, it can be shown thpatiaeneter-free update

rule

(Yh)er
Zh’\mﬁ’ <Sh/Sh>ET
provides monotonic convergence towards the M-step solution of the ajeseefields, where we
have introduced the ET-averaging

(GsNa=3 5 pEY W ITV5)= 5 (f7".)

neM SeKn nem

Wi, < VWh © (27)

Equation 27 corresponds to a partial M-step of ET-NMF (‘Expectatiamdation-NMF’). In sim-
ulations, it is therefore applied iteratively with 20 partial M-steps after &astep.

For the introduced generative model, Equation 27 converges towarliss$kep solutions of the
EM algorithm under non-negativity constraints. The update rule can terstood as a diagonally
rescaled gradient descent derived from the EM algorithm, with a regdalator that is “optimally
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chosen to ensure convergence” (Lee and Seung, 2001). A tHodwmriyation of the update Equa-
tion 27 and its relation to the classical NMF algorithm known from the literatunebeafound in
Appendix D.

The E-step of ET-NMF is based on the truncated expectation values @jytdate the averaged
guantities in th&V update equations according to

<y5h> ET — z Y(n) <3”|>q(n) and <Sh’ Sh>ET = Z <5h’ Sh>q(n)
nemM neM

so that the sufficient statistics of the ET-NMF model that have to be computétefM-step will be
given by the first and second order mome<r$§$q<n) and(sh/sh>q<n) of the (approximate) posterior.

For our generatively formulated version of NMF with M-step equationg (2627) we can
now apply ET as described in Section 2. We ran the ET-NMF algorithm with lMestep versions
(26) and (27) and observed, at least for the data used, a qualitaivélguantitatively comparable
behavior. Note that the probability densjpyy|©) of the model is invariant under the exchange of
any two generative fields (or basis functiona), — Wy, because of symmetric priors. By the def-
inition of the truncated generative models (Section 3), it can instantly betlsattheir probability
densitiesp(y|c = 1,0) andp(Y|c = 0,0) are also invariant under these transformations (the same
will apply for the other models considered).

As indicated, the sufficient statistics for ET-NMF are given by the first second order mo-
ments,(sh)qm and(Sy sh)qm, of the exact posterior; to find approximations to these intractable ex-
pectation values we first have to find appropriate selection functign& natural starting point for
finding such functions is to consider the joint probabiftis, = 1,y |©) =y 551, P(5,Y" |©).

If we knew that the joint probability was small for a givenwe would know that the sum over &l|
in (6) which containgwith s, = 1 is small as well. Furthermore, note that for a given data point the

joint represents the part @{s, = 1|y(", ©) which depends oh, p(s, = 1|y",0) = %ﬁg@'

p(sh = 1|y™.®), on the other hand, directly reports the probability of umib have contributed

to the data point. It could thus be regarded as the optimal selection functidortithately, neither
p(sh = 1,y |O) nor p(s, = 1|y, 0) are computationally tractable and, thus, neither function
fulfils one of the properties demanded from a selection function. Theerefee will compute an
upper bound ofp(sy = 1,y | @) which is tractable and still serves well in selecting a subset of
hidden units that can explain a givgf{). Let us for this purpose consider the data point dependent
weight matrix defined by W := WiP(y(™ W) = max{y”, Wan} andVie .= (Wb . wub)T,
where ‘ub’ refers to ‘upper bound’. This formal definition Wf“® allows for a compact notation

of an upper bound op(s, = 1,y |©). Because of the non-negativity of the entriesAhand

the mono-modality of the Gaussian distribution w.r.t. the mean, we can show ((peEmndix B for
details):

P =15"10) = F pF"™ [Wa(EW),0)pE|m < mpy"” WP 0) = sn(y™).  (28)

The upper boungdj, is tractable (also compare Appendix C) because we have removed the summa-
tion over thes. The price we pay is that the selection functi§ycan be a relatively coarse estimate

in some cases. Importantly, however, we know thag,ifs sufficiently small, then the contribu-

tion of all joint probabilitiesp(s,y(" |©) with s, = 1 can be neglected. The E-step given by the
approximation of the sufficient statistics in Section 2 with (28) as selectionitumtogether with
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the M-step in (27) or (26) represents the learning algorithm for the NMieiggive model defined
by (22), (24) and (25) with non-negativity constraint.

In addition we add after each M-step a small parameter noise to the basissWditd Gaus-
sian, standard deviation@b) and we use a standard relaxation scheme in order to avoid local optima
of the potentially multi-modal likelihood landscape. Annealing (see, e.g., Usdl&lakano, 1998;
Sahani, 1999) amounts to the replacemefitéo?) — (B/0?), m— 1 and(1— 1) — (1—mP. The
constang is an inverse ‘temperaturel = 1/T, whereT is decreased from a high valTé" to a
valueT"a equal or close to one.

4.1.1 EXPERIMENTS- ARTIFICIAL DATA

Let us consider data as displayed in Figure 3A. That is, we considerrhizhleses in the form of
horizontal and vertical bars (five pixels each) onxa®grid. Each bar appears with probabil@
such that there are on average two bars per data point. e &s800 data points. The grey-value
of a bar is taken to be 10, background pixels are zero. The bardmpose linearly (pixel values in
regions of overlap are 20) and are subject to Gaussian noise with slatelaationo = 2.0. Data
as in Figure 3A are well-suited to study the functioning of the approximatioarsetbecause we
know the underlying generating process and have ground-truthdbrdzda point. We will later use
this knowledge to illustrate the influence of each data point on the update widitiel parameters.
For this reason data points such as displayed in Figure 3A or versionamitbise are frequently
used in the recent literature (see, e.g., Hinton et al., 1995; Hoyer, 3po&tling, 2006).

The model which is applied to the data us¢s= 10 hidden units an@® = 25 observed units.
The entries oW are initialized by drawing iid from a Gaussian distribution with a mean of 4 and
a standard deviation cg The standard deviation of the generative model is set+02.0 and the
value ofttis set tol—zo. Small deviations from these values did not have significantly negatigeteff
on the algorithms performance in extracting data components. Figure 4B shewooling sched-
ule for annealing. We linearly decrea$efrom Tt = 13 to T" = 1 during 100 EM-iterations
(including ten initial iterations aT ™Mt and twenty final iterations ak).  Figure 3B shows a
typical time-course of the parametahsif trained as described above. As approximation param-
eters we usetl’ = 5 andy = 3. Although approximate EM schemes do in general not guarantee
the increase of the data likelihood, we find that the learning algorithm inesee likelihood to
values close to the one for the generating parameters (dashed horizmnial Figure 4A). This
behavior is reflected by the convergence of the model parameters ts ¢ihse to the generating
ones (compare Figure 3). In most trials the parameters converged txapately optimal values
relatively early but in some trials they converged relatively late during iegricompare likelihood
values in Figure 4A). We ran 50 trials with 50 different sets of data pointergéed as described
above. The algorithm extracted all bars in all of the trials (see Appenddr Eneasurement de-
tails). To quantify the quality of parameter reconstruction we computed, fir g&l, the mean
absolute error (MAE) between the obtained generative figljsand the corresponding generating
causes: MAE= = 34|Wan — WS | whereWS" denotes the cause representedfy(compare
Appendix E). For all trials the MAE was smaller thar20 with a mean of 20 (note that pixels of
bars were set to 10 and background to zero).

In a second series of measurements we used the model with the same paramettee same
data as above except that the generating noise variance was set tim Z€rtrials on this non-noisy
data the algorithm extracted all bars in 46 of the trials (92% reliability) and@eglanine of the ten
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Figure 3: A 14 data points of the linear bars test with Gaussian nds&ime course of the gen-
erative field3NV of the NMF-like generative model if Expectation Truncation is used for
learning.

single bars in the four remaining cases. All successful trials had a MAtelofv Q20 with a mean
MAE of 0.05. Parameter recovery was more precise than in the previous trial lsecagse of the
non-noisy data. A higher initial temperature or a longer cooling increasidbility to values close

to 100% for this data. E.g., when we usedi' = 15 and stretched the cooling schedule in Figure 4B
to 200 iterations, the algorithm found all bars in all of 50 trials. Likewise,@asimng the number of
data points increased reliability-(94% reliability forN > 1000 data points witfl = 13 and 100
iterations cooling).

High reliability (i.e., a high probability to extract all causes) in this linear bardiastlso been
observed for other learning algorithms (see, e.qg., algorithms investigatgalatiigg, 2006). Note,
however, that the standard bars benchmark tadt{&k, 1990) uses non-linearly overlapping bars
(we will come to the standard version of the bars test in the next sectionjh&presented NMF
algorithms we have (as is usual in the literature) only inferred the paranvgtdrsour generative
setting it is in principle also possible to learn the model parametensd T (compare licke and
Sahani, 2008). However, for comparison with other approachesoatadvity, we focused ow.

To investigate the quality of the ET approximation more directly, the vaQi®s(Equation 21)
were computed for 40 data points during learning. Figure 4C shows timseafQ("™ during a
trial on the noisy linear bars test using the parameters given above.ath@aints were randomly
selected but it was made sure that twenty of them were generated by legsaty causes (bright
green lines) and the other twenty by more tlyasauses (dark red lines). As can be observed, the
approximation quality of the twenty data points generateellyycauses quickly increases whereas
the approximation for the other twenty data points approaches zero. Feonséld approximation
this could have been expected as we have restricted the summation in (6)ea bidtes with less
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Figure 4: A Data likelihood during ten trials using the same seiNof 500 data points but dif-
ferent random initializations. The likelihood value that results from usingémerating
parameters is marked by the dashed horizontal Bn€ooling schedule during learning.

C Approximation qualitiesQ" of 40 data points during learning. Twenty of the data
points were generated by y causes (bright green lines) and the other twenty by more
thany causes (dark red linesp Sorted values of the sunzs= S 4. p(5y" |©) at the

end of learning. Bright green bars were used to mark the data pointsagemhdy< vy
causes, dark red bars to mark data points generated by more ¢thases. Th&l®“ data
points left of the black vertical line were used in the final M-steps.

or equaly = 3 active causes. For other trials, the val@® show the same qualitative behavior.
However, the exact time-courses can differ quantitatively from trial tt tria

Note that the poorly approximated data points do finally not negativelytatiecparameter
updates because they are not taken into account for the M-step. Thissteaiid in Figure 4D
which shows the logarithms of the sufn= Y+, p(5,Y"|©) at the end of learning and for each
of the N = 500 data points used (divided by a common faatr Bright green bars display the
values of all data points generated by less or egualuses, dark red bars display the values of all
other data points. The data points are ordered descendingly. Accadodiihg approximation used
(see Section 2 resp. Equation 23), we only consideNf&data points left of the black bar, that
is, we finally only use data points with quality valu@s close to one. The relation of the quality
values to the KL-divergence in (21) directly shows that the ET approximétiothese data points
is virtually optimal in this case.
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4.1.2 EXPERIMENTS- MORE REALISTIC DATA

As a second example, we applied the learning algorithm to gray-valued imagespostal digits
database MNIST (http://yann.lecun.com/exdb/mnist/). This data is frequentlyiiged NMF
literature, which makes it well suited as a means for comparison of our alguotdtistandard NMF
approaches. Note that we do not have ground-truth about the hiddgmonents in this case.

HHHE aEaN HHEE DHANE
HEEEH HEEA DEEAE EnEA
. DHEE BEEE HHHE HHEER

t=0 t=5 t=10 t =50 t=120

Figure 5: Resulting basis vectdr$, for the MNIST database. The probabilistic version of NMF
trained with ET converges to a parts-based decomposition.

Figure 5 shows the application of the algorithm uskhg= 12 hidden variables and approxi-
mation parameters for ET set ¥ = 10 andy = 5. The prior parameter was settio= 0.3 such
that three to four of the 12 latent variables do explain a data point onge/efde noise parameter
o in (24) was set tay = 0.73 after screening through values between zero and one. The dimen-
sionality of each data point B = 28 x 28 and we used a subsetNf= 1000 data points, some of
which are shown in Figure 6A. We linearly decreased the temperature égureEB but used a
slightly longer learning time (120 iterations) to provide more time for convergelmcFigure 5 the
time course ofV displayed as basis vector sets is shown. As can be observed, the {Easdhe
converge to basis vectors that represent digit parts.

To assess the quality of the basis vectors and for comparison with staNté&Fdwe show
average reconstructions of probabilistic NMF and standard NMF in Figuta Figure 6B it can
be observed that already for the small subset of 12 basis vectors ireFgine reconstructions
match the inputs in Figure 6A relatively well. Despite the constraint to binaryehida@riables in
our generative version of NMF, the resulting reconstructions are sietjar to those of standard
NMF as shown in Figure 6C. For these data, the overall average tesction error,<s 5, ||y —
zh\M<sh>q<n) |12, of the generative version is less than 5% larger than the reconstructmmoé
standard NMF.

4.2 Maximal Causes Analysis (MCA)

The second generative model we consider was suggested to extrduitidea causes from data
whose components combine non-linearly. It uses a maximum rule in the plase WMF, sparse
coding (Olshausen and Field, 1996), independent component an@iysisComon, 1994) and
many other methods assume a linear superposition of hidden components:

D
pPYISW) = J_| P(Ya [ Wa(SW),0), p(ya|w) = N (ya;w,0?) (29)

=1
with Wg(5W) = mhaX{Sthh}a
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A Digit data used for testing the ET-version of NMF
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C Standard NMF reconstruction

Figure 6: Reconstruction of data points representing hand-written digisibset of thé&N = 1000
data points used for the application of probabilistic and standard NMF to tH&Wdkata
base.B Average reconstruction of the digit dataAnon the basis of the basis vectors in
Figure 5. C Reconstruction of the digit data it using standard NMF with the same
number of basis vectors.
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where we have used a Gaussian noise model wiis a place-hoder faVq(5,W) (note the dif-
ference to Poisson noise used bycke and Sahani, 2008). For the activities of the binary hidden
variabless, we use the same prior as for the NMF model in Section 4.1 (see Equation2R) tife
previous model, the weight matrit/ € RP*H parameterizes the influence of the hidden causes on
the distribution ofy. The functioWy(5,W) in (29) gives theeffective weighon yy, resulting from

a particular instance of the state vecioAn update rule for the weight matri%¢ of this model was
derived in Lilcke and Sahani (2008) and is given by:

n 0 __
ZM (AGhEW)) o ik AG(BW) = (ng(g’w)> (30)
Wy = € . . where 1
nezM </‘Zldh(§,W)>q(n) WS(§,W) _ <§ (Sthh)P> . (31)
[t

The parametep controls the nonlinearity and is increased to large values during learnigain A

the entries iV are non-negative. To derive a selection function we can therefqly #pe same

arguments as for NMF and thus arrive at the very same functipas given in Equation 28. The
selection function (28), M-step equations (30) and (31), and the Eagigmximation described in
Section 2 represent a full learning algorithm for the extraction of non{lipeambining compo-

nents, which will be referred to as MGA.

4.2.1 EXPERIMENTS- ARTIFICIAL DATA

To study the properties of MG&r let us first apply it to data with ground-truth. A well-suited
type of data for the algorithm is the so-called bars test introducedoigigk (1990). The bars
test has become a standard benchmark for component extraction algdqgtens.g., Saund, 1995;
Dayan and Zemel, 1995; Hochreiter and Schmidhuber, 1999; Chadks2f02; lilcke and von der
Malsburg, 2004; Spratling, 2006; Butko and Triesch, 200&Ke and Sahani, 2008) and thus allows
for quantitative comparison with other systems. To generate data accoodimg bars test we use
the same parameter settings as for the artificial data in Figure 3A, tlat§ x 5, bars pixel value
10 and other pixels zero, Gaussian generating noise with standard de2atiand the probability
for each bar to occur i%. In contrast to the data used in the experiment of Figure 3, however, the
standard form of the bars test uses a non-linear superposition ofubescéoverlapping bar regions
have pixel values 10 instead of 20 for NMF). Figure 7A shows a randelection of 12 of the

N = 500 data points used.

We apply MCAg to the data using the same model parameters and the same approximation
parametersH’ = 5 andy = 3) as for the linear bars test in Section 4.1.1. Annealing for MEA
amounts to the same replacements as for NMFo?) — (B/0?), t— 1 and(1—11) — (1— )P,
Additionally, p in (30) and (31) is increased from a relatively small valug 't to a large value at
Tfinal by makingp temperature dependeri:= 1%[3 = +55. As cooling schedule we use the same
one as in Section 4.1.1 (see Figure 4B) but With?' = 1.05 to avoid a singularity fop. For MCA
we found it beneficial to add to the s&t, (Equation 7), the set of all vectors with just one non-zero
entry: X n = XnU{5| 3is = 1}. Making X, larger can in general only increase the accuracy of
the approximation. At the same time, usifig, instead ofX,, does not change the scaling behavior
with H of the algorithm (see Appendix C for a discussion).
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Figure 7: A Example data of a bars test with= 5 x 5 and additive Gaussian noid®.Time course
of W for the MCA model trained with ETC Likelihood values for ten trials with the same
set of training patterns and different initial conditions for each tialime course of the
quality values of 40 data points during one trial. Values are plotted for twemyamly
selected data points generated by less or egoalises (bright green lines) and twenty
randomly selected data points generated by greatenthanses (dark red lines).

Figure 7B shows a typical time course \f during learning. Figure 7C shows time courses
of the data likelihood for ten different runs using the same data set. Thavioelof the likeli-
hood values results from the specific form of annealing which includearthealed nonlinearity
in Equation 31. In Figure 7D typical time courses for the quality valQés (Equation 21) for 40
data points are shown. For the 20 data points which were generatgdylmauses (bright green
lines) the quality values increased to one. For the data points generated bguses (dark red
lines) the quality values finally decreased to zero. As for NMF, only the pl@itsts which were
well approximated were finally taken into account for learning.

To probe the reliability of MCAr, we ran 50 trials of the bars test with the bars test parameters
as given above. In each trial we used a new salleéf 500 data points. In 46 of the 50 trials
MCAEgT extracted all bars (92% reliability), and in four of the trials 9 of 10 barsewextracted.
Reconstruction of the generating parameters was high with a maximal MAEBSfahd a mean
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MAE of 0.29 (bars had value 10). We observed that the convergence to |dtialaoim 8% of
the trials was mainly due to effects of finite sample size. When we ran 100 trialg tle same
parameters bt = 2000 data points instead Nf= 500, the algorithm extracted all bars in all trials.

For comparison with other methods, we ran additional trials using the sanragtara for bars
generation but with Gaussian noise for data pixels set to variance zéis.vdrsion of the bars
test is presumably the one most commonly used in the literature (e.g., Saui,D&n and
Zemel, 1995; Hochreiter and Schmidhuber, 1999c¢cke and Sahani, 2008). In 41 of the 50 trials
MCAEgT extracted all bars (82% reliability) and found 9 of 10 bars in the other nials.trAgain,
reconstruction of the generating parameters in the successful trialdgtawith a maximal MAE
of 0.14 and a mean MAE of.05. Also for the non-noisy bars test, reliability of the algorithm
increased when we increased the sample size. For instance, we obtdiakilitres of more than
90% for N larger than about 2000. WitN = 10000 and slower cooling (same cooling schedule
as in Figure 4B but stretched to 200 iterations), the algorithm found allibaais of the 50 trials.
Achieving close to 100% reliability is thus more difficult for non-noisy bars.

In earlier work, generative modelling approaches to the bars test metragvad relatively low
reliability values. For instance, the model of Saund (1995) achieved 2liébitity, and the model
of Dayan and Zemel (1995) (although trained without overlapping laatseved 69%. Approaches
such as PCA or ICA that assume linear superposition have been repofigtliin this task (see
Hochreiter and Schmidhuber, 1999). Other objective function apbesaand different types of
neural network approaches (e.g., Charles et al., 200@ké and von der Malsburg, 2004; Spratling,
2006, and references therein) have been more successful in teraigbility. They do, however,
often use hidden assumptions and constraints which make an objectiverangdifficult (see,
e.g., Spratling, 2006, oriicke and Sahani, 2008, for discussions). The more recently sudgeste
approach of MCA (liicke and Sahani, 2008) represents a fully generatively interpretapteach
which achieves high reliability values. The unrestricted version of M&#racts all bars in 90%
of the trials with noisy bars (with Poisson noise) and in 81% of the casesdandlseless bars.
MCAET slightly improves on these results with 92% vs. 90% for noisy bars and 8284%6in the
non-noisy case (experiments with= 500). If more data points are used, Mg&Ashows close to
100% reliability (50 of 50 trials successful, see above).

Other than the standard bars test, there has recently been an incretesis} in bars with more
pronounced overlap. We therefore used a version of the bars wmsggssted by licke (2004). For
this data, bars of the same orientation can overlap (two neighboring véricahre not disjoint but
overlap). For the test we adopted the same parameter setting for suctagpsied by Spratling
(2006) and liicke and Sahani (2008), that d,= 400 example patterns, 16 baBB= 9 x 9, bars
appear with probabilityl%, and number of hidden units 4 = 32. Bars are two pixels wide such
that parallel neighboring bars have a one pixel wide region of overlagure 8A shows some
examples of the data points used. We applied ME® the data using the same parameters as for
the standard bars test except of a higher initial temperaiuee 23) and longer cooling time (the
cooling schedule in Figure 4B was stretched by a factor four to 400 itegation21 of the 25 trials
the system extracted all bars (see Figure 8B). In four trials 15 of thedtviere represented. The
average number of extracted bars was thu84.5In all the successful trials, reconstruction of the
generating parameters was high with a maximal MAE .660and a mean MAE of.04 (bars have

1. Note that alternatively to using = 10000 and 200 iterations, we could, for non-noisy data, simply add<&zaus
pixel noise. This would take us back to the noisy-bars test and we wouddnotlose to 100% reliability with
N = 1000 data points.
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Figure 8: A Selection of 14 data points of a bars test with increased oveBldypical parameters
W after learning if twice as many hidden units as bars are used. The sopEus units
are used to represent composite patterns.

value 10). As for the standard bars test we found that convergergeaiooptima was caused by
effects of the finite sample size. When we repeated the experiment with thegea@eting and
model parameters but with = 800 instead oN = 400 data points, the algorithm extracted all bars
in all of 50 trials (mean number of bars extracted equal t®16n work by Spratling (2006) state-
of-the-art systems were quantitatively compared using the mean numberaafted bars. From the
evaluated systems only few achieved values close or equal to the optimalofallé forN = 400.
From the systems with high values, many required additional constraints grathmeters (e.g.,
constrained forms of NMF) that had to be set by hand (see Spratling; RQ6ke and Sahani, 2008,
for discussions).

In general, the component extraction performance of MEén the different bars test tasks is
similar to the performance of MCAsuggested by licke and Sahani, 2008. In terms of computa-
tional cost, MCAet represents a substantial improvement, however (even compared to R;MCA
constrained form of MCA,; seeilcke and Sahani, 2008). This allows for applications with l&ige
as demonstrated, for example, in the following section.

4.2.2 EXPERIMENTS- MORE REALISTIC DATA

As an example for an application to more realistic data, we applied MGd visual data in the
form of image patches. We used the same image, Figure 9A, as in wollkdikg land Sahani (2008)
to allow for a comparison. We randomly seleci¢e: 40000 patches of 1010 pixels as data points
(see Figure 9D for ten examples). The data points were globally scaled tdlie interval[0, 10].
However, just very few pixels had values close to 10 after scaling. Tlanmpixel value was .6
and thus smaller than for the bars test. We therefore used a smaller assaussib@ noise for the
model (standard deviatiom = 1.0 instead ofo = 2.0) and started cooling at a lower temperature
of Tt — 4.0. Also the small noise term on the model parameters was scaled ddniri8tead
of 0.05). During learning, we cooled for 400 iterations (cooling scheduleigiiré 4B stretched
by a factor four) and allowed for additional 400 iterationsT4t2' to guarantee full convergence
(although changes after iteration 400 were small).

Figures 9B and 9C show the resulting paramerafter applying MCAer with H = 50 and
H = 100 hidden units, respectively. For the approximations we again Hsed5 andy = 3.
As can be observed, the extracted generative fields representl tgpioponents of the training
patches (compare Figure 9B-D). Data generated according to the M@Zajse model using the
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Figure 9: Application to visual datad The 250-by-250 pixel image used as basis for the experi-
ment. The image is taken from the van Hateren database of natural imagéss(ed for
visualization) B Parameter§\f, = (Whi,...,Whp)" of the MCA generative model with

— 50 trained by ET wittH’ = 5 andy = 3. C Parameter§}, of MCA with H = 100
(H’ =5 andy = 3). D A selection of 10 typical training patche& Ten examples of
patches generated according to the MCA generative model using theatiemdields
in C. To reduce the apparent noise level, the patches were generated migfiers than
for training.

extracted generative fields thus resemble the structure of the trainingpdkigure 9E). Note that
the components of the data (e.g., images of grass blades and stems) supenoptinearly which
motivated the application of MCA.

Due to impractically long computation times, no previous version of MCA couldoipéiexd to
numbers of hidden units much larger than 50. The maximum achievable s@fathe application
of the constrained MCA version (R-MGAwith H = 50 toN = 5000 patches of 18 10 pixels.
As shown in the examples of Figure 9, Expectation Truncation allows foedacale applications
of unconstrained MCA wittH = 100 and beyond. Compared to Mg#he number of states that
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have to be evaluated by MGA for H = 100 is reduced by more than three orders of magnitude
(see Section 5.2 and Appendix C for discussions).

4.3 Linear Components Analysis (LinCA)

As third and final example let us discuss a generative model whose cemgaran be negative as
well as positive. Consider, therefore, the model given by (22), §24d))(25) without the restriction

to non-negative weights. For smatlin (22) such a generative model is reminiscent of sparse
coding (SC; Olshausen and Field, 1996): its hidden variables areefpacsive, its basis functions
are combined linearly, and its observed variables are, given the latesepeindently drawn from
standard Gaussian distributions. Instead of defining explicit prior arsk mtstributions, SC-like
models are often, more informally, written in the form:

H
y= Y sVih+off = Ws+oi, (32)
h=1

where the entries af are independently and identically drawn from a Gaussian distribution with
zero mean and unit variance.

The model (32) with binary factors, distributed according to the Bernoulli prior (22) can be
trained with Expectation Truncation. As M-step we can directly use EquaBonHbwever, in
contrast to the previous generative models, we can not use Equati@a28edection function be-
cause it was derived assuming non-negative entvigs To find appropriate selection functions, let
us first consider a special case: let us assume the number of obsevdddden variables to be
identical,H = D, and let us assume zero observation nogse-( in Equation 32; also compare
Teh et al., 2003). For continuous fact@&swith non-Gaussian priors this special case represents
the standard version of ICA (see, e.g., Comon, 1994;&dyen et al., 2009). ICA is deterministic
in the sense that for any given data pojfit! the generating hidden vectst? is known exactly.

If W is invertible, the generating hidden vector is givendfy) = W-1§(™ (as can directly be de-
duced from Equation 32 witls = 0). ICA is most frequently applied to (PCA-)whitened data
(compare, e.g., Bishop, 2006; Hynnen et al., 2009), in which ca$® is an orthogonal matrix
(W-1=WT). For ICA on whitened data, the generating hidden units of a data ptinare thus
given bys™ =WT y("_ In other words, the conditional distributiqa(y| S, ©) and thus the poste-
rior p(s|y™, @) become equal to the delta functi6e—WT ). Foro > 0 in Equation 32, the
conditional distributionp(y|S, ©) is, in hidden space, a Gaussian function with ma&ny™, and
the posterior is proportional to the product of this function with the prior. Atiplication with a
sparse prior has the effect of moving the Gaussian function closer te #xash with large values
W §(™. The scalar productdf! ¥ can thus serve to select those hidden dimensions which span
the space most posterior mass lies near to.

Knowing where most posterior mass is concentrated is the crucial pisitedor finding se-
lection functions for ET. In the binary case of model (32) with Bernouliop(22), selecting the
hidden dimensions corresponds to selecting the hidden variables whictoatéikely to have non-
zero entries. In analogy to the ICA case, we thus use the scalar ptodigfine selection functions:

. Wy . .
.S‘h(y( )):W, with [V =1/52,(v)2 and WT = (Win,...,Wbn). (33)

We use normalized scalar products because we are not constrainedrtb@onal matrixV.and
want to prevent the lengths M_'/H from having a strong influence on the selections. Note, however,
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that if the matriXWVv is orthogonal, the selection is equivalent to one based on non-normatizied s
products. The normalization by<”)| does not affect the selection becayi§® is independent af.

Selection functions (33), M-step equation (26), and the ET approximatibie &-step represent
a learning algorithm that will be referred to as Linear Components Analysi€A).

4.3.1 EXPERIMENTS- ARTIFICIAL DATA

To study the LinCA learning algorithm it is first applied to artificial bars datee We the same
linear bars test setup as for the noisy bars test in Section 4.1.1 (compare B#j but invert five

of the ten bars to negative values. Figure 10A shows 12 examples Nfth800 data points used.
The observed variables (or ‘pixels’) of positive bars have valu8,ibserved variables of negative
bars have value-10.0, and all other observed variables have value zero. Consequeailyitialize

the parameteid/ with positive and negative values by drawing iid from a Gaussian with zeemme
and standard deviation@ All other parameters (for initialization, approximation, annealing, and
data generation) are chosen as in Section 4.1.1 for the NMF model. FigBrehtivs a typical
time course of the parametahsfor noisy data points. As can be observed, the parameters converge
to the true generating causes relatively early. Figure 10C shows the ligdlfaues of ten trials
with the same set dfl = 500 data points. In most trials, likelihoods converged quickly to values
close to the likelihood values of the generating parameters (dashed haltitmog). In some trials
convergence took longer, however. Figure 10D shows the quality s@ltte (Equation 21) during

a typical trial. After an initially relatively low approximation quality, the quality vaue the data
points generated by less or eqyalauses (bright green lines) quickly increase. As previously, only
these data points are finally used for learning. Data points generate@dgigthary causes (dark
red lines) are finally discarded.

To measure the reliability of the system, we ran 50 trials with 50 different dé&gaotN = 500
data points. In all trials all bars were extracted. Parameter reconstrirct@dinthe trials was high
with all MAE smaller than ®8 and a mean MAE of.Q1. For bars without noise we extract all
bars in 49 trials (98%) and nine of ten bars in one trial. Due to the non-naity, garameter
reconstruction was higher than for noisy data. The MAE of all sucaktigdls was smaller than
0.09 and the mean MAE was.@®. The reliability for non-noisy data increased to still higher
reliability values when we cooled longer. If the cooling schedule in FigurevdB stretched to
200 iterations, all bars were found in all of 100 trials. Alternatively, rélighincreased when we
increased the sample size: all bars were found in 100 of 100 tri&ls=f1000 data points were
used.

4.3.2 EXPERIMENTS- MORE REALISTIC DATA

As an example of more realistic data, we applied LIinCA to sound waveformmdSwmaves have
positive and negative parts and their components superimpose lineaid, iwlconsistent with the
assumptions of the LinCA model. As data we used short sound intervals ethfaom recordings
of ten different male voices uttering the sentence: “Don’t ask me to carmilg rag like that”.
Data was taken from the TIMIT database with voices sampled at 16kHz nijdearn from the
spoken text, we cut off the silent initial part and the silent final part ehe®corded sentence.
Furthermore, we multiplied each voice recording by a different factoh $hat each recording
filled the interval[—5,5] (maximal absolute amplitude of each recordin@)5 This compensated
for different sound levels of the different speakers and made thealag@ comparable to those of
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Figure 10: A Example data of a bars test with components of positive and negative Mala@&s<5,
and additive Gaussian noidg.Time course otV for the LinCA model trained with ET.
C Likelihood values for ten trials with the same set of training patterns and eliffer
initial conditions for each trialD Time course of the quality values of 40 data points
during one trial. Values are plotted for twenty randomly selected data poinesajed
by less or equay causes (bright green lines) and twenty randomly selected data points
generated by greater thgrwauses (dark red lines).

previous experiments. After the multiplication only few data values lay closeSt@r 5. As in
Section 4.2.2 we therefore assumed a lower data noise than for the bafs daieb in this case).
As data points we used all possible segments ddrh2 length. This amounts i = 389510 data
points withD = 200 observed variables.

We applied LinCA withH = 200 hidden units to the data and used a prior parametesdd.01
(on averagetH = 2.0 causes per data point as in previous experiments). The approximatém-pa
eters for ET we set tg= 4 andH’ = 10 (as in Section 4.2, we found it beneficial to g, which
increases robustness of learning without changing the complexity; cerypgendix C). During
training we annealed according to the cooling schedule in Figure 4B stddbgreefactor two to 200
iterations. The initial temperature was seftd! = 5.0 and the final temperature 1" = 1.0. An
additional 200 iterations &t™a = 1 were used to guarantee full parameter convergence (although
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Figure 11: Parameteid after training LINCA on acoustic data. Data points werebir®s long
intervals of voice recordings. For visualization, tHe= 200 generative fields were
individually scaled. Fielda-c are examples of different types of generative fields.
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changes after 200 iterations were small; compare Section 4.2.2). Figuned4 the learnt param-
etersW after a typical run. Many of the generative fields (or basis functigtsjre localized in
time and frequency space (e.g., field Others are only localized in frequency space (e.g., figld
Still others resemble amplitude modulated waveforms (e.g., fletd represent combinations of
low and very high frequencies. We thus recover generative fieldsptiep similar to those obtained
by other approaches (compare Teh et al., 2003, @sté& and Hy@rinen, 2007). Note, however,
that we applied the algorithm to the data without preprocessing such as wbitéss for the pre-
vious experiments, no preprocessing except for data scaling was Uikedis unlike SC or ICA
approaches that usually require specifically preprocessed datalstMean LinCA on a subset of
theN = 389510 data points. Results with, for exame= 100000 showed no significant differ-
ences. Similarly, a run of LInCA withl = 400 andrtH = 2.0 showed comparable results (although
we observed a tendency towards more generative fields with low absoiptawades in this case).

The experiments on acoustic data show that LinCA can be trained with ETaal&rde-scale
applications. As the number of preselected candiddtesn be much smaller than the total number
of hidden units, ET scales very favorably with H (see discussion in Sebtiband Appendix C).
For the experiment of Figure 11, ET evaluates just a couple of hundfdudden states per data
point instead of 20 required for an exact E-step. Without preselection (H.= H) and same
y, the number of hidden states per data point is still larger thanx20if (compare Appendix C),
which would by far exceed currently available computational resources.

5. Discussion

We have studied an approximation to EM to train multiple-cause generative maitlelbinary
hidden variables. Training in the scheme is based on a candidate preselecgduce the compu-
tational cost of intractable exact EM learning.

5.1 Properties of Expectation Truncation

The approximation scheme introduced in Section 2 and systematically derigstiion 3 is an
example of a deterministic approximation to EM. In contrast to exact EM, thexegsiarantee that
the data likelihood under a given generative model is always increasesnains unchanged. In
numerical experiments on a number of different generative models, sogaed, however, very
close to optimal parameters for different types of data. This reflects tpepy of the approxima-
tion to become increasingly optimal the more it approaches the likelihood optimumuardify
the approximation quality, we have, in different applications, monitored quadityes,Q", for a
selection of data points (see Section 4.1.1, Section 4.2.1, and Section 4t&udlity values are
themselves measures for the KL-divergence between the exact po&jerem a data point) and
its approximation (compare Section 3). The values@6P as monitored during the experiments
show that the KL-divergence for those data points, which are finallyntatke account for learning,
becomes virtually zero. Further away from the optimum, the approximation & EJually poorer
than close to the optimum. However, when measured, also the initial iteratiordgiepsrease the
data likelihood in numerical experiments.
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5.2 Applicability and Complexity

For the ET approximation to work, different requirements for the genveratiodel and the data
have to be fulfilled. These requirements have been made explicit in Section 3rdetical reasons,
hidden variables with a small number of discrete values are the most saljgiveraent. In our
formulation and in the experiments, we have used binary values, but Ebecapplied without
modifications to hidden variables with more than two discrete states. For hiddibles with
continuous values the E-step can, however, not be evaluated diremthpéce Equation 6 or Al-
gorithm 2). Thus, generative models with latents of continuous valuesotdentrained by the
presented method. By combining ET with other approximation schemes, it tmuléyer, be gen-
eralized to latents with continuous values. For this note that the derivatiol @f Eection 3 in
large parts does not rely on the assumption of discrete latents. IndeatEribations would still
hold when all sums oveFin Section 3 were replaced by integrals over the corresponding states. We
are then, however, left with integrals o\&see Algorithm 2) that have to be evaluated. By applying
approximation methods to these integrals over relatively small state spacasdesgorithms for
generative models with latents of continuous values could be derived.

As shown in Section 4, ET can be applied directly to data that can be gesheralleby com-
binations of binary causes. In numerical experiments we have seen lesanffits application to
NMF, to non-linear component superpositions (MCA), and to a form afsg coding (LINCA).
But also the applicability of ET to generative models with binary hidden vasakl@ot without
limits. From the inspection of the methods’ functioning (compare Section 3) imbesalear that
it is based on the following assumption: for a sufficiently large number of glaitets the posterior
probability mass has to be concentrated in a relatively small subset of theslae space. In
other words, a large number of data points must be well-explicable by evmgjdew configura-
tions of the potential latent states. If this assumption is not fulfilled, goocappations can only
be achieved by considering sums over large sets of states. We could@lEapbut the required
approximation parameters would result in computational costs comparableotoethéor exact EM.
Models with large numbers of hidden variables would thus not be computhyitreatable in such
cases. Even if the probability mass of most posteriors is finally concentrétted small regions of
the state space, the applicability of ET may still be limited as it additionally requirechamism
to locate these regions. For the generative models discussed in Sectientégctiable selection
functions (28) and (33) perform well in this respect, and successfudlyimize the likelihood and
recover close to optimal parameter values. However, for more complicateelsrtbe definition of
tractable selection functions (or more generally of SEt§ may be challenging and can limit the
applicability of ET. Again, the summation over more states would reduce théepmoBor instance,
by choosingX, = K (no second variational step) ET could be applied without a preselectisn pr
cess. However, without this crucial reduction of states, the applicatae sould be much more
limited. In summary, applicability of ET for models with binary latents is thus not astipe of
principal nature but a question about the trade-off between computiatiosiaand approximation
quality.

Note that the space of models ET can be applied to is much larger than thec$paodels
with sparsely active binary latents. ET only requires that, on averagestiges can represent
a data point well. These states do not have to be sparse nor do the hatitdres have to be
independent. Examples are, for instance, the generative models diddnsSection 4 but with
priors that fix the number of active causes (e.g., always five causes)ad he requirements for ET
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can still be satisfied in such situations. In preliminary numerical experimeimg sisch non-sparse
and dependent priors, ET still efficiently increased the likelihood to aqupiettely optimal values.

In general, a reduction of the computational cost using ET is paid for Bdaction of the
approximation’s quality. Hereby, ET benefits from the fact that the réoludn quality is very
limited compared to a vast reduction in required computations (compare Seltiéiordthe data
considered, the computational cost can be reduced by many ordersgyoftade with only mini-
mal losses for the approximation’s accuracy. For a given set of dg@od approximation setting
for ET usually arises naturally. The Bernoulli prior (22), for instanesults in many data points
requiring the consideration of at masH components for good approximations. The overall com-
putational complexity of ET thus depends on the complexity of the data and tieeagi®e model
used. More specifically, it depends on how the subggtsn (6) are selected. For the generative
models and data considered in this paper, a detailed discussion of ET si@gimpal complexity
can be found in Appendix C. The crucial advantage of preselectiontithtn@aomputational cost is
split up into essentially two parts (see Equation 38). Importantly, only theleesn part depends
hereby on the total number of hidden varialdtesThe second and computationally more intensive
part becomes independent of the total number of latents, dependingrotilg aumber of selected
candidates. The preselection part is computationally much less costly: fexahgples considered
here, its complexity scales just linearly with (also compare Figure 13). ET thus becomes espe-
cially efficient for large numbers of hidden variables. An example is théicgipn of MCAgt to
the data of Section 4.2.2. Another example is the application of LinCA to the d&teotibn 4.3.2.

In the latter case ET computes approximations by evaluating less than 10@0fstate= 200
instead of 2°° required for an exact E-step.

5.3 Relations to Other Approximation Schemes

A central role for optimal learning and inference in probabilistic models isguldyy the poste-
rior probability p(S| g, ©). Computing expectation values w.r.t. to the posterior or computing the
posterior directly is usually intractable for multiple-cause models. Approximatitemes find
computationally tractable approximations to expectation values m(.éty(”), ©) or they approxi-
mate the posterior directly. Many examples of such approximations can bd fiothe literature,
and they usually fall into two major classes: sampling methods and deterministoaapps.

Sampling methods are in a sense more general because they usually mlyeom$sumptions
than deterministic approaches. Furthermore, there are no principled limits t@ftbem. In gen-
eral, the approximations obtained recover the exact solutions in the limit oténfiomputational
resources. However, sampling methods can be computationally very degamnd may limit ap-
plications to relatively small scale problems. In contrast to sampling, determiaggiioaches are
based on analytical approximations to the posterior or its expectations catwputeit. By defini-
tion, they do in general not find the exact solutions and often rely on pkatiassumptions about
the model they are applied to. However, if these assumptions are fulfillgdatheften computa-
tionally much less demanding. For these reasons, deterministic and samplingcpgs are often
regarded as complementary (see, e.g., MacKay, 2003, or Bishop, 200 cussions).

Major and frequently applied examples of deterministic approachesaarational EM ap-
proaches (e.g., Jordan et al., 1999; Jaakkola, 2000; MacKay; BéI®p, 2006) anéxpectation
propagation(EP) approaches (e.g., Minka, 2001; Bishop, 2006). The methodpgdEation Trun-
cation discussed in this paper is an example of a variational EM approdttough introduced
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as an approximation to expectation values (see Equation 6), we have gh&ention 3 that ET
can be derived from variational approximations to exact posterior disivifts. Thus, much of the
typical properties of variational approaches and their differencegh&r @approximation methods
(discussed, e.g., by MacKay, 2003; Bishop, 2006) such as expectatipagation carry over to
ET. A crucial difference between ET and standard variational EM isEfatloes not use factor-
izing distributions to approximate the exact posterior. Instead ET uses tatioaal steps: one
that takes the form of a data point selection, and a second that is basgoteselection of hidden
variables (see Section 3 for more details). A consequence, for exaimptbe data discussed in
this paper, was that we finally only learned from data points whose Kérgénce between exact
and approximated posterior was virtually zero. In numerical simulations thisteel in a virtually
optimal parameter recovery. At the same time, the preselection of relevaetrhidriables per data
point allowed a massive reduction of the computational cost.

Expectation Truncation was motivated by earlier approaches which weeetoged in the con-
text of non-linear component extraction modelsi¢ke and Sahani, 2008jicke et al., 2009). For
efficient learning truncated sums were used to optimize the model paranssersde Licke and
Sahani, 2007). Optimization was partly performed under additional camtstta correct for impre-
cise approximations. Furthermore, the approach was developed ffispen-linear generative
models and no explicit data point selection was used. As a consequesteEanaelation to vari-
ational EM could be derived (but see discussion irtke and Sahani, 2008). Most significantly,
however, no candidate preselection was used. This could result in icpigclong computation
times already for relatively small numbers of hidden variables. With the Bfeweork developed
in this paper we can interpret the earlier approaches as approximatigrecialcases of ET. The
approximations for MCA (Lucke and Sahani, 2008) can thus be regarded as ET approximation
without the second variational step, that is, without selecting subiggtsf X (no preselection).
Without preselection, the computational cost of learning algorithms can setleorably with the
number of hidden unitsl (cubically in the case of MC4 compare casdd’ = H in Appendix C).
Data point selection in MCAcan be seen as implicitly accomplished by an E-step that considers
more terms in the denominator than in the numerator. Likewise, the approximationdoisive
components analysis (OCA;lcke et al., 2009) can be seen as ET without preselection (instead
of implicit data point selection more terms of the truncated sums were used INot that in-
stead of omitting the second variational approximation, another speciabtB3ds obtained if the
first variational step is omitted (no data point classification). This amountstiogs& equal to the
whole state space (the sums o¥¢in Algorithm 2 equal one in this case). Efficient approximations
can still be obtained if proper subsexg, are selected. On different generative models preliminary
experiments showed results similar to the ones reported in Section 4. Dependine model, the
approximations can be much less efficient or much less accurate, however

An extreme case for selecting subs&, is to select them to contain just one element,
Kn = {sM}. Inthis case the approximated expectation value of a fungtioi{6) becomes equal to
the functions value &™: (g(3))4m = g(3""). This choice relates ET to energy models (compare,
e.g., Teh et al., 2003, or H@vinen et al., 2009) and maximum a posteriori (MAP) approximations
as, for example, used in the original sparse coding model (OlshauseRield, 1996). Indeed,
if we set X to be the entire state space and chogge= {$"} with §" being the MAP esti-
mate of the posterior, we obtain an update rule for basis functdpsoportional tozny(”) (§(”))T
(compare Equation 26). That is, a learning rule\Wras used in sparse coding can be obtained
(compare Olshausen and Field, 1996, or Olshausen, 2002). If insteadAP estimate the scalar
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products™ =W y(" is used to sele@™, ET for linear generative models can be related to ICA
approaches (also compare Section 4.3). Note that MAP estimate and sodiactgplay the role of
the selection functions; in the case of SC and ICA, respectively.

More generally, MAP estimates or scalar products can be starting pointsive tkss basic
selection functions for a generative model. Regarding a MAP estimate, itlig tiie a significant
amount of posterior mass is located in the vicinity of the MAP state. If the posterdalditionally
known to be monomodalk ,, can be chosen as a region around the MAP estimate. For multi-modal
posteriors, generalizations of MAP estimates could be used (see, emgerrand Globerson, 2009,
and references therein). Alternatively, selection functions can tdeeddvy considering the limit of
no observation noise for a given model. For data with relatively low amodmtsise, most of the
posterior mass will be located close to the estimated state for zero noise (edimp#CA case).

In numerical experiments we have compared the tractable selection fun@®rand (33) with
the respective optimal selection function given${y'(y") = p(s, = 1|y(",©) (see Section 4.1).
For low numbers of hidden variableg(s, = 1|y, ®) can still be computed. Numerical experi-
ments using the tractable selection functions, experiments using the optimébseleaction, and
experiments using exact EM hereby resulted in virtually identical finalpetar values close to the
optimum. We observed some differences in the convergence behavioeviep these differences
were small compared, for example, to differences in using differereaimy schemes or annealing
parameters.

5.4 Results on Different Data Sets

In numerical experiments we have applied ET to three types of generatidelsndNMF, MCA,
and LinCA. The experiments were aimed at demonstrating the method itself. vielgves a by-
product, we obtained some results that are closely related to recent gleeglts in component
extraction algorithms: The application of the probabilistic NMF algorithm to the $Ndlata base
showed that, for this data, potentially only very little is gained by considerimgracous hidden
units instead of binary ones. As could be observed by comparing fegctisn errors obtained
for standard vs. probabilistic NMF, continuous hidden variables improgednstructions by less
than 5%. Regarding MCA, we showed that the algorithm derived with ET nspetitive to the
best performing systems in standard benchmarks. We applied the algoritthe $tandard bars
test with 10 bars and to a more recent benchmark with 16 bars and lasgéamvin both cases the
algorithm extracted all causes with close to 100% reliability (50 succesisfisl dut of 50) provided
that we used sufficiently many data points. For fewer data points the algosi#ismstill competitive
but reliability was lower. Applications of the algorithm to image patches andsticadata showed
robust applicability to large scale problems.

For all experiments in the paper we have used deterministic annealing (edg. ade Nakano,
1998; Sahani, 1999) to avoid the convergence to local optima (compat®rsd). The initial
temperature for annealing can be chosen by observing that for a gieelel and application a
critical temperature exists above which all generative fields converge tsathe average field (no
differentiation to different components). The initial temperature is thenerthts lie below this
critical temperature. Note that for Gaussian noise, the annealing temjgecatanges the standard
deviationo. It is thus closely connected to the noise parameter. For many types ofdatponent
extraction is robust to different values o@f For instance, for the noiseless bars tests in Section 4.1,
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Section 4.2, or Section 4.8,= 2.0 was used while the ground-truth would ®be= 0.0. For some
data/model combinations the dependencyaan be more sensitive, however.

In addition to the data and models discussed in Section 4 we also ran experanentsiels
with Poisson instead of Gaussian noise, used other types of data includingxample, sound
spectrograms instead of sound waveforms, and used data and modelferaentlitombinations
with different priors. The obtained results were all comparable to the @pested for the other
experiments: the likelihood (when computationally tractable) usually incrdasgdse to optimal
values, the generating parameters in successful trials were well redpwand the reliability to
recover the generating causes was high.

In general, the derivation of new learning algorithms based on ET is sti@igfrd. If the data
is well-explicable by combinations of binary hidden causes, a generatidelrabould be chosen
that appropriately reflects the data generation process. Once the parapdate rules for such a
model are derived, the E-step can be computed with ET. This involves fimitida of selection
functions, the choice of an appropriate constraint%gy (compare Equation 7), and the choice of
approximation parameters. Depending on the data, a preselection fureiaake the form of an
upper-bound on the joint probability as shown, for example, for NMF ictiSe 4.1, or it can take
the form of a scalar product as for LinCA in Section 4.3. More generatly,discriminative method
represents a potential choice for a selection function.

5.5 Conclusion

Motivated by earlier work that discusses the benefits of a candidatelgcéen (e.g., Krner et al.,
1999; Lee and Mumford, 2003; Yuille and Kersten, 2006), we haveneefand studied a novel
approximation scheme for probabilistic generative models. This schemanslfded as a deter-
ministic variational EM approximation to maximize the data likelihood under a giveergtve
model. The formulation in terms of a grounded probabilistic approach allowed guantify the
gain in efficiency that is achievable by preselection. To study the apprtgimscheme empiri-
cally, it has been applied to different types of generative models withreiffecombination rules.
In standard benchmarks on artificial data we found that the derivedthlgs increased the likeli-
hood to values very close to the optimum, extracted hidden causes with higgilitg/iand reduced
the computational cost potentially by orders of magnitude. We reporteditaiae results on data
with ground-truth and, where standard benchmarks were availableedtibat the derived learning
algorithms are competitive with the best performing systems so far. Applicatamsre realistic
data demonstrated robustness and applicability to larger scale problems.

In conclusion, the contribution of the novel method is thus two-fold: (1)l#tes the intuitive
and frequently discussed benefits of preselection to the groundedwoaknef an EM-based ap-
proximation, and (2) it defines an approximation scheme that allows to effictesin standard and
novel types of generative models.
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Appendix A. ET as Variational EM: Detailed Derivations

In Appendix A.1 we discuss the consistency of maximum likelihood parametesgginal and
truncated generative models. Appendix A.2 discusses details aboutsk#iciion of data points.

A.1 Necessary Conditions for Global Likelihood Maxima

In Section 3.1 we have seen tHatg, ©) in (15) is a lower bound of the likelihood(®) in (1).

If the used variational distributionq(”)(c; ©) are good approximations to the exact posteriors
p(c|yM.©) in (14), thenL(®) ~ F(q,©) after each E-step. Because of the variational approxi-
mation in Section 3.1 the equalify(q,®) = L(©) holds if M is equal toM°P! (16) and if the true
posterior values in (14) are equal to zero or one fonalhlthough the latter condition is fulfilled
only in boundary cases, we will, in this section, assume the equality to hold (kd&fgng in mind
that it is almost always an approximation). If the equality hol%l(sq,@) in (15) is in its global
maximum equal to the likelihood(©).

Let us, further, assume that there exist param@eéisuch that the original generative model re-
produces the underlying distribution of the data poipt§) = p(y|©*). From Section 3.1 we then
know that the mixed model with prior (11) and (12) ane- K also reproduces the original distribu-
to have been generated by the truncated generative models. That iatdieetican be subdivided
into the two disjoint set$y™}_ason aNA{Y™ } g gom. If p(Y]©*) is the underlying distribution of
the whole data set, thep(y|c = 1,0*) and p(y|c = 0,0*) are the underlying distributions of the
two disjoint parts (compare Figure 1).

We can approximately recover the distributip{y| ©*) by (globally) maximizing the data like-
tributions p(y|c = 1,0*) andp(y¥|c = 0,©*) by (globally) maximizing the data likelihoods of the
truncated generative models ¢}, aron @aNd{Y" }a00m, respectively. Let us denote the pa-

underlyin

p(y"™ | @) p(y" [c=1, ©) p(y"|c=0,0%) distributions

generatio\ \ \
enerated
ALA TN (Y} neagon {Vm”thWt gmapmnm
maximum Iikelihood\ \ \

recovery recovered

p(y™ |eh p(y" |c=1, ™) P [c=0,0")  istributions

Figure 12: Recovery of the generating distributions through the origim@lthe truncated gen-
erative models. The original distributions can be recovered from thesddsaif the
corresponding likelihoods are maximized.

rameters recovered by maximizih¢®) by ©f, and the parameters recovered by maximizipg®)
andLo(©) by @™ and@T, respectively (compare Figure 12). In gene€l, ', ando™ are dif-
ferent. If the variational approximatioi = M °Ptis exact, we know, however, that in the limit of
infinitely many data points (and by still assumip@/) = p(y| ©*)) applies:

p(y|©*) = p(¥|©"), p(y|c=1,0") = p(y|c=1,0"), andp(y|c=0,0") = p(y|c=0,0"). (34)

The equalities hold because filr— o and p(y) = p(y|©*) it follows from L(©*) = L(O") that
DkL(p(¥|©*), p(¥|©")) = 0. As the Kullback-Leibler divergence between two distributigrasd
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p is zero if and only if the distributions are identical, (34) has to hold. Note,evew that the
recovered parameters can still be different fi®in For instance, if there exist transformatichof
©* that do not change the distribution, then &pbtained from®* through such a transformation,
© = T(©"), is a likelihood maximum as well. Such multiple global maxima are the norm rather
than the exception. Global maxima of models such as sparse coding (@stedsField, 1996) or
independent component analysis (e.g., Comon, 1994) remain global maxdeatbhe exchange of
any two basis functions or the negation of any of them.

Let all transformationg” that map the global maxima &f©) onto itself define a set that we
will refer to as thetransformation setWe say that the set of global maximamsariant under the
transformation set. For any two global maxi@aandO' of L(©), there now exists a membe@r of
the transformation set such tr@t = 7 (O"). Let us now demand that all global maximala{©)
andL(®) are also invariant under the transformation set. Although this will usually éeake,
for example, for the exchange of any two basis functions, it is importartate this requirement
explicitly as it is not fulfilled in general. If this property is fulfilled, howeves can infer:

o' is maximum likelihood solution oh(©)
= There existsl’ such tha®' = 7(0*) with ©* being the generating parameters.
= p(¥|c= 1,0%) is the actual generating distribution Hf"™ }, - 4 ont
= O is maximum likelihood solution of(©®)
= p(Y|c=1,0") = p(y|c=1,7(©)) = p(y|c=1,0")
= O is maximum likelihood solution of 1 (©).

Analogously®' is also a maximum likelihood solution &§(®) if it is a maximum likelihood solu-
tion of L(®). For the free-energy (15) this means that at a global maximum®f bothL;(©) and
Lo(©) also have a global maximum (under the stated assumptions). A global maxirmexafo-
ple, inL1(O) is thus anecessargondition for a global maximum ib(©). We havenot shown that
a maximum inL;(©) is a sufficient condition for a maximum In(®). TheoreticallyL1(©) might,
for instance, not depend on all parameters, or it might have additionalgioaxima. Finally, note
again that the necessary condition only holds under the introduced a&susnpVhile, for exam-
ple, the assumption on invariance under transformatibresn exactly be fulfilled (depending on
the generative model), the assumptions that the true data distribution caly beamatched or that
the variational approximation in Section 3.1 is exact are in practice almostfiudfileed. The same
applies for the assumption of infinitely many data points. All these assumptionshoaever, be
fulfilled approximately. By (globally) maximizing1(®) we can thus expect to recover parameters
that maximizel (©) approximately.

A.2 Details of Data Classification

Starting point for choosing is the setM°Ptin Equation 16. Setting/=%°Pt would represent
the best choice but without ground-truth informatia’ ! can not be computed exactly. We can,
however, try to approximat@/°P'. To do so, first note that we can compute an expectation value
for the size ofM°P. It is given byN(K) = N Y& « P(3|©). We can now find an approximation

to M Pt by computing the valueg™ (c = 1; @°9) for all data points, sort them, and take the data
points with theN(%X) highest values. This would represent a good approximation/f5' but

it seems that we have gained very little, since we still have to compute the inteaptadieriors
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g™ (c=1;0°) = p(c=1|y™,@°M) for all n data points. Note, however, that with this procedure,
the absolute values af" (c = 1;©°9) are not used for the approximation anymore. All that is
required is a pairwise comparison of the data points based on their vall@s= 1; ©°!9).

To derive a tractable approximation of the pairwise comparison, considetda pointsy"
andy(™), that are neighbors after a sorting accordingf(c = 1; @°!). For arbitrarily many data
points and for non-zero noise, the differences between the two data peitome arbitrarily small.
In particular, it applies for neighboring data points that the differen¢eden the denominators
of " (c = 1;©°%) become arbitrarily smallysp(y™,5|0) ~ T<p(y),5|©). The same applies
for differences between the numerators. However, as the numeratdesrcjust small sums over
§, their values for neighboring data points can be expected to vary morghtithan those of the
denominators. We can thus replace the comparison betqﬁ@eéo: 1;0°9) by a comparison of
their numeratorg ¢ « p(¥", 5| ©). This is an approximation to the pairwise comparison required
for exact sorting. In the limit of infinitely many data points this procedure @expected to result
in setsM that represent good approximationsit°Pt,

If we now take preselection into account (compare Section 3.2), the c@mopdor sorting can
be reduced further. For this note that the posterior in (14) is approxinmgted) (c = 1; ©°9) ~
Ysex, PY™ 80)

Ysp(YM 5]©)
paring the valueg™ (c = 1; ©°9) is given by sorting based on the valugs 5 p(y",s|©) for all
n. This shows that the selection NfU data points as introduced in Section 2 (Equations 8 and 9)
corresponds to defining a s&f as an approximation t@/°P.,

. Following the same arguments as above, an approximation of the sortingrby co

Appendix B. Selection Function for NMF and MCA

We show thatp(s, = 1, |0©) is bounded bys,(y(") in (28) from above. This implies that
p(sh = 1]y, 0) is bounded b% from above. Asp(y("|O) is independent oh, candi-
date selection based on the one bound is equivalent to selection basedlaihgéhbound. Now,
consider the seb, := {d e {1,...,D} ]yé”) < Wyn} and note that ifyé") <Wyh ands, = 1 then
p(YY [Wan,0) < p(y” [Wg(3W),0). This is becaus#y(sW) can only be larger thawgs, for
non-negativ&V and therefore the mono-modal Gaussian distribup'gré”) |W4¢(SW),0) is further
away from the maximum valuep(yé”) |w, o) with w = yé”) is on the other hand larger or equal to
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p(y{" |, o) for any other valuav. It follows:

ps:=1y"|0) = Z p(y"™ [5.©) p(s|m
Sh=
— Wy (8 W ) g
g (ﬂp(yd d(SW),0) | p(s[m
=1

Sh
[ ps" Wan0) | [ TT POS 1Y) | S pEIM
deop deop g

=1
(|‘| p(yy” WP, o )( pyd W, ))Tr
d dedn

MWW o) = Sh(y™),

Wherer“r? max{yOI ,Wan} as in Equation 28.

Appendix C. Computational Complexity

The computational cost of an E-step in the ET approximation scheme resuftshfe computation

of the selection functions, (Section 2 and Section 4) and the computation of the approximate suffi-
cient statistics (6). For the sufficient statistics we have to compute the jotnmpimiesp(§,y(”) |©)

for different arguments. For the generative models of NMF, MCA andCRir{Section 4.1, Sec-
tion 4.2, and Section 4.3, respectively) the joint probabilities take the form:

H
p(sy™ (J‘| p(yy |Wa(3W), 0 > (hﬂlp(sh!ﬂ)>- (35)

For the first factor we have to compuieterms. Each term involves the computation/d§(S,W)
which is equal toy ,Wgnsh in the cases of NMF and LinCA, and equal to mfWgns,} in the
case of MCA. In either casé/q4(5,W) can be computed with a cost proportional to the number of
non-zero entries in a given vectgry’ = |§|. The first factor in (35) is thus computable in times
proportional toDy’. The computational cost of the second factor can be neglected beasutseo
terms (occurring’ and(H —y’) times) have to be computed.

The complexity of the selection functions,, used for NMF and MCA results from comput-
ing D times the conditional probabilitiqs(yfj”) |WjP,0). The functionss, have to be computes
times, which amounts to a computational cost proportion&tb(per data point). The selection
functions used for the LinCA generative model (33) have the same cotigmatiacost. After pre-
selection, the selection function values are used to determinid’thaden units with the largest
values, a computation that can be executed in times proportiofil toH’log(H)) (see, e.g., Lam
and Ting, 2000, for references).
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In the approximate sufficient statistics (6) we sum o\&p| different state vectors If X is
!

/
given as in Equation 7, it contair@y\’,:0 < C’ ) different states wit)—( c, > counting the states

with y' non-zero entries. The denominator in (6) can therefore be computed in tho@srional
toD C(H',y), where

For NMF, MCA, and LinCA the numerator can in both cases also be computiéa proportional
toD C(H’,y) due to the special forms of the sufficient statistics. For NMF and LinCA tffeigunt
statistics(s,-)q(n) and <$ Sj>q(n) do not require the computation of additional terms. For MCA the

termsﬂgi(é,W) (see Equation 30) are of the form:

1p
p

A5, (3W) = (sWai)* 2 ( Z(shwdmp) (36)

The last term in (36) can be computed together With(S,W). Further, the computation of tH2
termsp(s,¥( | ©) 44i(S W) in the denominator is required jugttimes for a givers. The numera-
tor, like the denominator, is thus computable in times proportionBl\to

Selection functions and sufficient statistics have to be computed for etecpalat (see Algo-
rithm 1), which results in a computational time proportional to:

aiNDH + azN(H + H’log(H)) + asND(C(H',y), (37)

wherea, 0», andas are constants that describe potentially different weightings of the thnes ter
Note that if the size ofk, is increased by adding unit vectotk, , = XnU {5| 3;s = 1} (as was
done for MCA and LinCA) the scaling behavior (37) remains unchanalisd (iote thaf ,, remains
a subset off as defined in Section 3.2). The usage#of, instead ofX , adds anothefH —H’) <H
terms toC(H’,y) and consequently a costafND(H —H’) < a4N DH to the whole expression.
With a change of factom, the additional cost thus gets absorbed into the first term in (37).
Considering expression (37) note that in our applicatidnis,always much larger than 10 ).
We can therefore neglect the second term such that the computatiohiasl @pgroximately?

Cer(ry (N,D,H) i= aiNDH + agNDC(H",y). (38)

The constantsi; andas depend on the generative model and the specific implementation of the
algorithm. The principle scaling behavior remains the same, however. IneFl@uve have plotted

the scaling behavior for ET withi; = a3 = % The different graphs show the dependence of
Cet(Hry)(N,D,H) for different values oH’ andy, D = 100 andN = 1000. Note that different
choices ofD andN would just globally shift the curves in the double-log plot. The steepestcur

in Figure 13 is the one for EH,H), that is, if we choosél’ = H andy = H. In this case we
drop back to the exact sufficient statistics with exponential computatiosal dote that for this

2. Note that ET also involves partial sorting of the data points once aftbrieatep. In a typical experiment (and in all
of the experiments discussed in the paper)(lgs much smaller thaDH. The computational cost of discarding
data points can therefore be neglected.
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E-step complexity

- e H H oy o
JLELE i I I s
ET(10:10 f)[/ s
I P i ]
101 E ET(H,H) 200 ET(§54)7 i
; (exact E-step) s / i ~7
p // i Vs A
F T,
L ET(H,3/)// i, ‘/,/// ,‘/ i
1010 k P ; e e E
: P 4 e 3
Ve L e H
L // ,{,’//n/ /./ ET(E’3)
s .
10° k T ETH2 S 3
5 . e ETO7)
108
107 €
i P e
e m";" L L M |
10°

5 10 20 50 100 200 500 H

Figure 13: Scaling behavior of ET with (7) for different settings of theapzetersH’ andy. The
plots show the function (38) and its dependencéion

and for all other plots wittH’ = H, we set the first term in (38) to zero because no preselection
is required. The three dashed grey lines describe the computationabE&St§H, 1), ET(H,2),

and ETH,3). They resemble straight lines because for largéheir scaling is proportional to

H, H2, andH3, respectively. Note that these three approximations are further exafoplES
without preselectionH’ = H). Their scaling behavior relative to the scaling with other parameters
can therefore serve as a comparison for the computational gain of etegiceselection. The
three solid black lines describe the computational time required for the parasatiegs ET5, 3),
ET(7,5), and ET9,7). These curves are flat initially because the first term in (13) (the potseie
term) is small compared to the second term which is independéht Bbr largeH, the preselection
term becomes increasingly dominant, however. The three black dashsdléseribe the scaling
with H for ET(45,3), ET(5,4), and ET 4%, & — 2). The computational cost of Ef}, 3) is orders

of magnitude smaller than the cost for T, 3) but finally scales with the same slope. &, 4) is
computational less expensive than(ET3) for H < 1000 but will finally become computationally
more intensive. If the parameters andy’ are both scaled up withl as for E'I'(lH—O, % —2), we
finally get a scaling behavior similar to that of an exact E-step. Note, henviénat even in this case
the computational cost remains smaller than that ofHEB) for values ofH smaller that about

H = 180.

As discussed earlier, the computational gain achievable by ET depeniite atata and the
generative model used. If the data contains sufficiently many data poin@réhevell represented
by few active causes, the computational gain is potentially very substaraidhdtance for the data
used in this paper it was sulfficient to use small valuedfoandy. Compared to systems without
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preselection or an exact E-step, the gain amounts to several ordergwifude (as, e.g., discussed
for H = 100 in Section 4.2.2, or fdd = 200 in Section 4.3.2).

Note that there are usually secondary effects that make learning sloendreases. E.g., a
large numbers of hidden variables usually requires large sets of data pmavoid overfitting. We
also observed that longer cooling times are often beneficial for largesafd and/orH. However,

ET scales essentially linearly with the number of data points, and the cooliegdehusually has
to be increased merely by a factor of-38. The secondary effects do, therefore, only play a role
because ET has reduced the potentially exponential cost to a scalingishbioke to linear irH.

Appendix D. Classical NMF vs. ET-NMF

The classical NMF belongs to the class of non-negative matrix factorizgiigh-) methods, which
makes use of non-negative data points, generative fields and souncdss appendix, we first
summarize the classical NMF and then derive the probabilistic version {@#F}Nsing Expectation
Truncation.

D.1 Classical NMF

The standard NMF was proposed originally in Lee and Seung (1999)asmeter-free method for
the factorization of data into non-negative generative fields (or ‘b&siors’) and source activities.
Starting with generative field&f, = (Wi, ..., Wbn)T for each source (or causs) contained in the
rows of a matriXW € RP*H, N data points/("' contained in the columns of a matfike RP*N,
and the corresponding source activity vec®P for each data point contained in the columns of a
matrix Se RH*N, the NMF factorization tries to find an approximation

Y~WS resp.,invector form y™ ~wsM (39)

with non-negative entries for, W and S, meaning that the generative field$, are combined
linearly using the source activatioq%‘) to approximate the data vectoi$).

Different cost function& (W, S) have been proposed for this factorization; here we will consider
an Euclidean cost function which we will compare in the next section to askamibased gener-
ative version of NMF used for Expectation Truncation (ET-NMF). Tctdaize (39), we therefore
minimize

E(W,S) =|[Y ~W§? (40)
with respect taV andS. Introducing

pzd

1

(1.0 = 3 10787

for a more compact notation and using the vectorial form of (40), the tasknsnimize
E(W,S) = ([[y-Ws|?) , (41)

that is, the average Euclidean reconstruction error over all data gtthts
In Lee and Seung (2001), it could be shown that the following paranretemultiplicative
update rules converge to local minima of the cost function (41),
M) Ty . .
[ - (Wh) z o and Wh g o 7§qu> : (42)
(Wh)T (T Whsy”) > Why (S sh)

ﬁ(qn
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(the multiplication® and division in the second equation of (42) are applied component-wise on
vectors). At start, the generative fields and the source activities ardimgiti@mandomly with positive
values, and then the two equations (42) are applied in alternation untilrgemee.

The update rules (42) conserve non-negativity and, interestinglyider@ good compromise
between speed and ease of implementation. This can be seen by condiitexitly the gradient
descent update equations derivediérfrom the minimization of Equation 41,

WM—MM@(@S&—ZV%@Y%», (43)

with a stepsize vectar, and modifying an argument from Lee and Seung (2001), diagonatiglres
ing the variables using a stepsize

—

W%
S Wy (S Sh)

Inserting (44) into (43) yields the second, multiplicative update rule frdth @b that in conjunction
with the convergence proof of the multiplicative NMF equations from LeeSauhg (2001) we can
interprete NMF as a gradient-descent optimization of (41) wifrom (44) being a good choice of
the gradient descent stepsize for the update of the generativeVliglds

g — (44)

D.2 ET-NMF

For the generative version of NMF, the choice of the source activitiearecaccording to the
Bernoulli prior (22) from Section 4. As for the classical NMF, we combine generative fields
W, linearly with the source activities, usingW (s, W) := WS, with the difference that the activities
are now binary and constitute the hidden variables of the system (remarkothave writes, in-
stead ofsf]”)). In addition, we use a Gaussian noise model such that the probabilityadbaector
y givensSis defined byp(¥|S,©) given by Equation 24 from Section 4.1.

At this point we apply the Expectation Maximization formalism introduced in Se@idfrom
the data likelihood of the generative model resp. the free energy (2)emegit for theN-relevant
terms (“+..." denotes terms that do not dependwWwi an expression similar to Equation 41,

E(W) = (|[y-Ws|[*)_ +..., (45)

so that again the average Euclidean reconstruction error should be mishinTibe difference is
that now the averaging..) runs not only over all data points, but also over all possible source
combinationss used to generate each data point. Here we wfote,, to express that in addition,
we use the Expectation Truncation formalism for the computation of averapasis, the averaging
runs over the subset of data vectors M and the set of source vect@s X, gained by the source
preselection and sparseness assumptions:

(tOs)e= 3 Y pEy". 0 fg"s) = 3 (f07m) (46)

neM S€Kn nem

From here on, all following steps can be considered in analogy to thecabs$/JF, by replac-
ing (...) = (...);. The task of ET-NMF is therefore to minimize (45) with respeci\tpusing the
preselected causes and all possible source activation v8gergerated by those causes.
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It can be easily seen now that the gradient-descent minimization of W and@ndiarescaling
of the stepsize according to

—

oW
¥ Wh (SySh) e

can also be done in analogy to the classical NMF, leading to the multiplicatiateipduation for
the generative fields of ET-NMF,

a=

Yer
Zh’vw <Sh’ S‘h>ET

The multiplicative, parameter-free equation 47 therefore leads to a neptitoal decrease of the
ET-NMF model resp. the energy function (45) for positive data poirtsitipe generative fields and
Bernoulli-prior-distributed source activations. Since the convergprmef of the original NMF as
presented by Lee and Seung (2001) considers convergei¢eantl S separately, it is straightfor-
ward to apply it to the ET-NMF by considering the selected source actigdienX, in (46) as
given, and applying the classical NMF to an expanded data set whictporedes the given acti-
vation vectors together with the data vectors and the probabilities as auceifrequencies. For a
fixed set ofS’s, (47) can then be applied until convergence.

The differences and similarities between the classical NMF and ET-NMRhzanbe shortly
stated as follows. The classical NMF uses data points in fixed associatiotheiitttorresponding
continuous activation vectors and minimizes the Euclidean cost functiorf@dbpth the source
activationsandthe generative fields, the latter according to the multiplicative update rule E42)
NMF explores a subset of allowed binary source activations for eaehpbint and minimizes in its
M-step the Euclidean cost function (45) for the generative fields ootgraling to the multiplicative
update rule (47). The E-step of ET-NMF is based on the truncated &tjpecvalues (6) to calculate
the averaged quantities in thi¢ update equations according to

V%H\MG (47)

<ysh>ET: z y(n) <a”l>q(“) and <Sh’Sh>ET: Z <Sh’sh>q<”) (48)
nem nem

so that the sufficient statistics of the ET-NMF model that have to be comportede M-step will
be given by the first and second order momQa&q(n) and<sq/sh)q<n) of the approximate posterior.
The full Expectation Truncation formalism then comprises the calculation ofxtpectation val-
ues(sn)qm and <sh/sh>q<n) (needed for (48)), and afterwards the adjustment of the generatlds fi
according to (47).

Appendix E. Details of Measurements

For the measurements in Section 4, we here give details about the pmeaslused to determine
if a cause is represented by the parameters of a hidden variable.

Let y@US€denote a data point showing causewithout noise (e.g., one noiseless bar). Let
further, denote a hidden state with just one non-zero entry at positidio determine if causk/
is represented, we compute the approximate posterior probabpitssy">; ©) for each vector
§, using the approximation provided by ET. The hidden umivith the highest posterior value
B(sh Y7246 O) is taken as the unit representing cabSewe only take all causes to be represented
if the mapping from the causes to the representing latents is injective. Addlyiona demand
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that the mean average error (MAE) between the generating cause panrsyfe'>°and the model
parameter§i, of the representing unit is smaller thai® Tor each cause. For the data used in this
paper, the threshold discounted any generative fidldsvith significant traces of more than one
cause.
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