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Abstract

How can we generate realistic networks? In addition, howwardo so with a mathematically
tractable model that allows for rigorous analysis of nekwymroperties? Real networks exhibit a
long list of surprising properties: Heavy tails for the imdeout-degree distribution, heavy tails for
the eigenvalues and eigenvectors, small diameters, argifidation and shrinking diameters over
time. Current network models and generators either faildtcimnseveral of the above properties, are
complicated to analyze mathematically, or both. Here we@@se a generative model for networks
that is both mathematically tractable and can generateank$shat have all the above mentioned
structural properties. Our main idea here is to use a nordatd matrix operation, thiéronecker
product to generate graphs which we refer to as “Kronecker graphs”.

First, we show that Kronecker graphs naturally obey commetmvork properties. In fact,
we rigorouslyprovethat they do so. We also provide empirical evidence showhag) iKronecker
graphs can effectively model the structure of real networks

We then present KONFIT, a fast and scalable algorithm for fitting the Kronecker grgpn-
eration model to large real networks. A naive approach tmdittvould take super-exponential
time. In contrast, RONFIT takeslinear time, by exploiting the structure of Kronecker matrix
multiplication and by using statistical simulation teaunes.

Experiments on a wide range of large real and synthetic mé&sashow that RONFIT finds
accurate parameters that very well mimic the propertiesaafet networks. In fact, using just
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four parameters we can accurately model several aspectstl gnetwork structure. Once fitted,
the model parameters can be used to gain insights about therkestructure, and the resulting
synthetic graphs can be used for null-models, anonymizaégtrapolations, and graph summa-
rization.

Keywords: Kronecker graphs, network analysis, network models, saeiavorks, graph genera-
tors, graph mining, network evolution

1. Introduction

What do real graphs look like? How do they evolve over time? How can wergee synthetic, but
realistic looking, time-evolving graphs? Recently, network analysis hasdi&@acting much inter-
est, with an emphasis on finding patterns and abnormalities in social netwonkputer networks,
e-mail interactions, gene regulatory networks, and many more. Most @fdHefocuses on static
snapshots of graphs, where fascinating “laws” have been disahveotuding small diameters and
heavy-tailed degree distributions.

In parallel with discoveries of such structural “laws” there has betmtab find mechanisms
and models of network formation that generate networks with such stract8ce a good realistic
network generation model is important for at least two reasons. Thadfiteat it can generate
graphs for extrapolations, hypothesis testing, “what-if” scenariassemulations, when real graphs
are difficult or impossible to collect. For example, how well will a given protean on the Internet
five years from now? Accurate network models can produce more reatistiels for the future
Internet, on which simulations can be run. The second reason is more. dtifidiees us to think
about network properties that generative models should obey to bdicealis

In this paper we introduce Kronecker graphs, a generative netwodelmdhich obeys all the
main static network patterns that have appeared in the literature (Falouédo4899; Albert et al.,
1999; Chakrabarti et al., 2004; Farkas et al., 2001; Mihail and Raitsidu, 2002; Watts and Stro-
gatz, 1998). Our model also obeys recently discovered temporal evopatiterns (Leskovec et al.,
2005h, 2007a). And, contrary to other models that match this combinatioetwbrk properties
(as for example, Bu and Towsley, 2002; Klemm andiltgy) 2002; \azquez, 2003; Leskovec et al.,
2005b; Zheleva et al., 2009), Kronecker graphs also lead to tractahlgsegs and rigorous proofs.
Furthermore, the Kronecker graphs generative process also hiae aatural interpretation and
justification.

Our model is based on a matrix operation, renecker product There are several known
theorems on Kronecker products. They correspond exactly to a satifortion of what we want
to prove: heavy-tailed distributions for in-degree, out-degree, e@ees, and eigenvectors. We
also demonstrate how a Kronecker graphs can match the behavior cdlseat networks (social
networks, citations, web, internet, and others). While Kronecker mtsduave been studied by
the algebraic combinatorics community (see, e.g., Chow, 1997; Imrich, 1988h and Klazar,
2000; Hammack, 2009), the present work is the first to employ this operatitdre design of
network models to match real data.

Then we also make a step further and tackle the following problem: Givegeareal network,
we want to generate a synthetic graph, so that the resulting synthetic geatphes the properties
of the real network as well as possible.

Ideally we would like: (a) A graph generation model timatturally produces networks where
many properties that are also found in real networks naturally emery&hémodel parameter
estimation should be fast and scalable, so that we can handle networks witmsnilfioaodes. (c)
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The resulting set of parameters should generate realistic-looking nettv@kmatch the statistical
properties of the target, real networks.

In general the problem of modeling network structure presents semreéptual and engineer-
ing challenges: Which generative model should we choose, among theimtaeyiterature? How
do we measure the goodness of the fit? (Least squares don't workowpbbwer laws, for subtle
reasons!) If we use likelihood, how do we estimate it faster than in time gii@drathe number of
nodes? How do we solve the node correspondence problem, that i, mdde of the real network
corresponds to what node of the synthetic one?

To answer the above questions we preseROKFIT, a fast and scalable algorithm for fitting
Kronecker graphs by using the maximum likelihood principle. When calculdimtikelihood there
are two challenges: First, one needs to solve the node corresponutehéem by matching the
nodes of the real and the synthetic network. Essentially, one has to epa#lichappings of nodes
of the network to the rows and columns of the graph adjacency matrix. Th@@iEs intractable
for graphs with more than tens of nodes. Even when given the “trueg cod-espondences, just
evaluating the likelihood is still prohibitively expensive for large graphs tea consider, as one
needs to evaluate the probability of each possible edge. We present soltdidoth of these
problems: We develop a Metropolis sampling algorithm for sampling nodesgmnelences, and
approximate the likelihood to obtainliaear time algorithm for Kronecker graph model parameter
estimation that scales to large networks with millions of nodes and edgesNKT gives orders
of magnitude speed-ups against older methods (20 minutes on a commoditgrB@s 2 days on a
50-machine cluster).

Our extensive experiments on synthetic and real networks show thaegker graphs can ef-
ficiently model statistical properties of networks, like degree distributiondéatheter, while using
only four parameters.

Once the model is fitted to the real network, there are several benefiggpalications:

(a) Network structure:the parameters give us insight into the global structure of the network
itself.

(b) Null-model: when working with network data we would often like to assess the significance
or the extent to which a certain network property is expressed. We eakrosecker graph
as an accurate null-model.

(c) Simulations:given an algorithm working on a graph we would like to evaluate how its per-
formance depends on various properties of the network. Using ourlmapndecan generate
graphs that exhibit various combinations of such properties, and tladua¢® the algorithm.

(d) Extrapolations:we can use the model to generate a larger graph, to help us understand ho
the network will look like in the future.

(e) Sampling: conversely, we can also generate a smaller graph, which may be usefuht
ning simulation experiments (e.g., simulating routing algorithms in computer netwarks,
virus/worm propagation algorithms), when these algorithms may be too slow tnriarge
graphs.

() Graph similarity: to compare the similarity of the structure of different networks (even of
different sizes) one can use the differences in estimated parametessyakagty measure.
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(g) Graph visualization and compressiowe can compress the graph, by storing just the model
parameters, and the deviations between the real and the synthetic grapérhs for visual-
ization purposes one can use the structure of the parameter matrix to vishaltzackbone
of the network, and then display the edges that deviate from the backbocture.

(h) Anonymizationsuppose that the real graph cannot be publicized, like, for exampiErete
e-mail network or customer-product sales in a recommendation system. e/etpuld like
to share our network. Our work gives ways to such a realistic, 'simildroe.

The current paper builds on our previous work on Kronecker grdbbskovec et al., 2005za;
Leskovec and Faloutsos, 2007) and is organized as follows: SectiaefB lsurveys the related
literature. In section 3 we introduce the Kronecker graph model, and@iveal statements about
the properties of networks it generates. We investigate the model using somula Section 4
and continue by introducing ®KONFIT, the Kronecker graphs parameter estimation algorithm, in
Section 5. We present experimental results on a wide range of realyatite8c networks in
Section 6. We close with discussion and conclusions in Sections 7 and 8.

2. Relation to Previous Work on Network Modeling

Networks across a wide range of domains present surprising reguasitich as power laws, small
diameters, communities, and so on. We use these patterns as sanity checiss,air synthetic
graphs should match those properties of the real target graph.

Most of the related work in this field has concentrated on two aspects:efpiep and pat-
terns found in real-world networks, and then ways to find models to builénstehding about the
emergence of these properties. First, we will discuss the commonly fouteinsain (static and
temporally evolving) graphs, and finally, the state of the art in graph géoemethods.

2.1 Graph Patterns

Here we briefly introduce the network patterns (also referred to aegiep or statistics) that we
will later use to compare the similarity between the real networks and their sintioeinterparts
produced by the Kronecker graphs model. While many patterns havedizmvered, two of the
principal ones are heavy-tailed degree distributions and small diameters.

Degree distribution:The degree-distribution of a graph is a power law if the number of nodes
Ng with degreed is given byNg 0 d™Y (y > 0) wherey is called the power law exponent. Power
laws have been found in the Internet (Faloutsos et al., 1999), the Weinljiérg et al., 1999; Broder
et al., 2000), citation graphs (Redner, 1998), online social netw@kaklrabarti et al., 2004) and
many others.

Small diameter:Most real-world graphs exhibit relatively small diameter (the “small- world”
phenomenon, or “six degrees of separation” Milgram, 1967): A grashdimmeteD if every pair
of nodes can be connected by a path of length at ldostiges. The diameté is susceptible to
outliers. Thus, a more robust measure of the pair wise distances betoges in a graph is the
integer effective diametdifauro et al., 2001), which is the minimum number of links (steps/hops)
in which some fraction (or quantilg, sayq = 0.9) of all connected pairs of nodes can reach each
other. Here we make use effective diametewhich we define as follows (Leskovec et al., 2005b).
For each natural numbdr, let g(h) denote the fraction of connected node pairs whose shortest
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connecting path has length at mdstthat is, at mosh hops away. We then consider a function
defined over all positive real numbexdy linearly interpolating between the points,g(h)) and
(h+1,9(h+1)) for eachx, whereh = x|, and we define theffective diameteof the network to

be the valuex at which the functiorg(x) achieves the value 0.9. The effective diameter has been
found to be small for large real-world graphs, like Internet, Web, atid@social networks (Albert
and Barahsi, 2002; Milgram, 1967; Leskovec et al., 2005b).

Hop-plot: It extends the notion of diameter by plotting the number of reachable géis
within h hops, as a function of the number of hagp@almer et al., 2002). It gives us a sense of how
quickly nodes’ neighborhoods expand with the number of hops.

Scree plot:This is a plot of the eigenvalues (or singular values) of the graph adjpeeatrix,
versus their rank, using the logarithmic scale. The scree plot is also oftew to approximately
obey a power law (Chakrabarti et al., 2004; Farkas et al., 2001) edter, this pattern was also
found analytically for random power law graphs (Mihail and Papadimitrg2; Chung et al.,
2003).

Network values:The distribution of eigenvector components (indicators of “network value”
associated to the largest eigenvalue of the graph adjacency matrix hasatsfound to be skewed
(Chakrabarti et al., 2004).

Node triangle participation:Edges in real-world networks and especially in social networks
tend to cluster (Watts and Strogatz, 1998) and form triads of connectied node triangle partic-
ipation is a measure of transitivity in networks. It counts the number of triargiede participates
in, that is, the number of connections between the neighbors of a nodepldhof the number
of trianglesA versus the number of nodes that participaté itniangles has also been found to be
skewed (Tsourakakis, 2008).

Densification power law:The relation between the number of edd@g$) and the number of
nodesN(t) in evolving network at timé obeys thelensification power layDPL), which states that
E(t) O N(t)2. Thedensification exponentia typically greater than 1, implying that the average
degree of a node in the network iiscreasingover time (as the network gains more nodes and
edges). This means that real networks tend to sprout many more edge®ttes, and thus densify
as they grow (Leskovec et al., 2005b, 2007a).

Shrinking diameterThe effective diameter of graphs tends to shrink or stabilize as the number
of nodes in a network grows over time (Leskovec et al., 2005b, 200t&% is somewhat coun-
terintuitive since from common experience as one would expect that asltmae of the object (a
graph) grows, the size (i.e., the diameter) would also grow. But for etalorks this does not hold
as the diameter shrinks and then seems to stabilize as the network grows.

2.2 Generative Models of Network Structure

The earliest probabilistic generative model for graphs was thés=Rényi (Erdds and Rnyi, 1960)
random graph model, where each pair of nodes has an identical, irtsggrobability of being
joined by an edge. The study of this model has led to a rich mathematical thé@mever, as the
model was not developed to model real-world networks it produceshgrdgat fail to match real
networks in a number of respects (for example, it does not produce/faited degree distribu-
tions).

The vast majority of recent network models involve some fornpiferential attachment
(Barakasi and Albert, 1999; Albert and Baradi, 2002; Winick and Jamin, 2002; Kleinberg et al.,
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1999; Kumar et al., 1999; Flaxman et al., 2007) that employs a simple rulenode joins the
graph at each time step, and then creates a connection to an existing nitthethe probability
proportional to the degree of the nodeThis leads to the “rich get richer” phenomena and to power
law tails in degree distribution. However, the diameter in this model grows sloitiytiae number

of nodesN, which violates the “shrinking diameter” property mentioned above.

There are also many variations of preferential attachment model, all samehploying the
“rich get richer” type mechanism, for example, the “copying model” (Kuntaale 2000), the
“winner does not take all” model (Pennock et al., 2002), the “forest finodel (Leskovec et al.,
2005b), the “random surfer model” (Blum et al., 2006), etc.

A different family of network methods strives for small diameter and locasteling in net-
works. Examples of such models include #mall-world model (Watts and Strogatz, 1998) and
the Waxman generator (Waxman, 1988). Another family of models showbé¢laay tails emerge
if nodes try to optimize their connectivity under resource constraints (@adsd Doyle, 1999;
Fabrikant et al., 2002).

In summary, most current models focus on modeling only one (static) nefwogerty, and
neglect the others. In addition, it is usually hard to analytically analyzeeptieg of the network
model. On the other hand, the Kronecker graph model we describe in xthsawtion addresses
these issues as it matches multiple properties of real networks at the samehitadyeing analyt-
ically tractable and lending itself to rigorous analysis.

2.3 Parameter Estimation of Network Models

Until recently relatively little effort was made to fit the above network modele&b data. One of
the difficulties is that most of the above models usually define a mechanisnriocife by which
a network is constructed, and thus parameter estimation is either trivial ortampusssible.

Most work in estimating network models comes from the area of social scgsiedistics and
social network analysis where tlegponential random graphslso known ag* model, were in-
troduced (Wasserman and Pattison, 1996). The model essentially defotglnear model over all
possible graph§, p(G|6) 0 exp(07s(G)), whereG is a graph, and s a set of functions, that can
be viewed as summary statistics for the structural features of the netwhekp«Tmodel usually
focuses on “local” structural features of networks (like, for examplgracteristics of nodes that
determine a presence of an edge, link reciprocity, etc.). As exponeatidbm graphs have been
very useful for modeling small networks, and individual nodes an@gdaur goal here is different
in a sense that we aim to accurately model the structure of the network asle. Wioreover, we
aim to model and estimate parameters of networks with millions of nodes, whilef@vgraphs
of small size & 100 nodes) the number of model parameters in exponential randonsgrapdhlly
becomes too large, and estimation prohibitively expensive, both in termsngfutational time and
memory.

Regardless of a particular choice of a network model, a common theme wiirateyy the
likelihood P(G) of a graphG under some model is the challenge of finding the correspondence be-
tween the nodes of the true network and its synthetic counterpart. Theowdspondence problem
results in the factorially many possible matchings of nodes. One can think cbthespondence
problem as a test of graph isomorphism. Two isomorphic gr&dusdG’ with differently assigned
node IDs should have same likelihoB@G) = P(G’) so we aim to find an accurate mapping between
the nodes of the two graphs.
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SYMBOL | DEScRIPTION

G Real network

N Number of nodes i

E Number of edges i

K Kronecker graph (synthetic estimate@f

Ky Initiator of a Kronecker graphs

N; Number of nodes in initiatoK;

= Number of edges iK; (the expected number of edgesfn E; = 5 6)
G®H Kronecker product of adjacency matrices of gra@hesndH

Kik] =Ky =K || K" Kronecker power oK

Kali, ] Entry at rowi and columnj of Ky

O="7 Stochastic Kronecker initiator

1?1“(] = A =P || K" Kronecker power of?;

Bij = 7, j] Entry at rowi and columnj of P,

pij = Al J] Probability of an edgéi, j) in %, that is, entry at row and columnj of %
K=R(?) Realization of a Stochastic Kronecker graph

[(©) Log-likelihood. Log-prob. tha® generated real gragh, logP(G|O)

) Parameters at maximum likelihoo@®,= argmax, P(G|©)

o Permutation that maps node IDs®@fto those ofP

a Densification power law exponeri(t) O N(t)?

D Diameter of a graph

Ne¢ Number of nodes in the largest weakly connected component of a graph
W Fraction of timesSwapNodes permutation proposal distribution is used

Table 1: Table of symbols.

An ordering or a permutation defines the mapping of nodes in one netwoddasnin the other
network. For example, Butts (2005) used permutation sampling to determine #ginhigtween two
graph adjacency matrices, while Bdmva et al. (2006) used permutations for graph model selec-
tion. Recently, an approach for estimating parameters of the “copying” madeihtroduced (Wiuf
et al., 2006), however authors also note that the class of “copying” Ismatky not be rich enough
to accurately model real networks. As we show later, Kronecker gnapdtel seems to have the
necessary expressive power to mimic real networks well.

3. Kronecker Graph Model

The Kronecker graph model we propose here is based on a recesistruction. Defining the
recursion properly is somewhat subtle, as a number of standard, rgfafgdconstruction methods
fail to produce graphs that densify according to the patterns observedl networks, and they also
produce graphs whose diameters increase. To produce densif@plsgwith constant/shrinking
diameter, and thereby match the qualitative behavior of a real networkewvedogph a procedure that
is best described in terms of thk@onecker producof matrices.
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3.1 Main Ildea

The main intuition behind the model is to create self-similar graphs, recursie\begin with an
initiator graphKi, with N; nodes ande; edges, and by recursion we produce successively larger
graphsK»,Kas, ... such that th&" graphKy is onN, = N'l‘ nodes. If we want these graphs to exhibit a
version of the Densification power law (Leskovec et al., 2005b), Kxeshould havés, = E'l‘ edges.
This is a property that requires some care in order to get right, as stlretaursive constructions
(for example, the traditional Cartesian product or the construction cdtBar et al., 2001) do not
yield graphs satisfying the densification power law.

It turns out that theKronecker producof two matrices is the right tool for this goal. The
Kronecker product is defined as follows:

Definition 1 (Kronecker product of matrices) Given two matrices = [g ;] andB of sizes .xm
and i x m' respectively, the Kronecker product matéxof dimensiongn-n') x (m-nY) is given by

alle alsz ... al,mB

azﬂlB azqu ... amB
C=A®B= . . . .

1B @B ... anmB

We then define the Kronecker product of two graphs simply as the Kkengeoduct of their
corresponding adjacency matrices.

Definition 2 (Kronecker product of graphs, Weichsel, 1962)If G and H are graphs with adja-
cency matrices G) and A'H) respectively, then the Kronecker productz@® is defined as the
graph with adjacency matrix ) @ A(H).

Observation 1 (Edges in Kronecker-multiplied graphs)
Edge(Xij, X«) € G H iff (X, X) € Gand(X;,X) € H.

where X and Xy are nodes in G H, and X, X;, Xx and X are the corresponding nodes in G and
H, as in Figure 1.

The last observation is crucial, and deserves elaboration. Basicallyneae inG® H can be
represented as an ordered péijr, with i a node ofG andj a node ofH, and with an edge joining
Xij and Xy precisely whenX;, X) is an edge ofc and (X;,X) is an edge oH. This is a direct
consequence of the hierarchical nature of the Kronecker prodigird=1(a—c) further illustrates
this by showing the recursive construction®® H, whenG = H is a 3-node chain. Consider node
X1,2 in Figure 1(c): It belongs to thid graph that replaced nodg (see Figure 1(b)), and in fact is
the X, node (i.e., the center) within this smélkgraph.

We propose to produce a growing sequence of matrices by iterating tinedk®r product:

Definition 3 (Kronecker power) The K" power of K is defined as the matrixﬂ% (abbreviated to

Kx), such that:

K =Ki= Ki®Ki@.. . Ky = K 10Ky
N—_——

k times
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5" \
o :
S >
I Central noije is X 22
(a) GraphKy (b) Intermediate stage (c) Graph = K1 ® Ky
11 1/ O K,|K,| 0O
111 1 Ko Kl Ky
0] 1] 1 0| K, [K,
(d) Adjacency matrix (e) Adjacency matrix
of Kl of K2= K1®K1

Figure 1: Example of Kronecker multiplicatioMop: a “3-chain” initiator graph and its Kronecker
product with itself. Each of th& nodes gets expanded into 3 nodes, which are then
linked using Observation 1. Bottom row: the corresponding adjacencycesitr See
Figure 2 for adjacency matrices kg andK.

(a) Kz adjacency matrix (2% 27) (b)K4 adjacency matrix (8% 81)

Figure 2: Adjacency matrices & andKy, the 3¢ and 4" Kronecker power oK, matrix as defined
in Figure 1. Dots represent non-zero matrix entries, and white spacesesyis zeros.
Notice the recursive self-similar structure of the adjacency matrix.

Definition 4 (Kronecker graph) Kronecker graph of order k is defined by the adjacency matrix

Kik], where K is the Kronecker initiator adjacency matrix.

The self-similar nature of the Kronecker graph product is clear: TdyweKy from Ky_1, we
“expand” (replace) each node Kf 1 by converting it into a copy oK1, and we join these copies
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1111111
111/0]0
110110
110]0 |1
111111
1111010
1101111
1101111
Initiator K1 K1 adjacency matrix " KQdeaceﬁcy mat.nx

Figure 3: Two examples of Kronecker initiators on 4 nodes and the self-siatijacency matrices
they produce.

together according to the adjacencieKin ; (see Figure 1). This process is very natural: one
can imagine it as positing that communities within the graph grow recursively,neitles in the
community recursively getting expanded into miniature copies of the communitdesNim the
sub-community then link among themselves and also to nodes from other communities

Note that there are many different names to refer to Kronecker profigcaphs. Other names
for the Kronecker product are tensor product, categorical ptodirect product, cardinal product,
relational product, conjunction, weak direct product or just prodardd,even Cartesian product (Im-
rich and Klaar, 2000).

3.2 Analysis of Kronecker Graphs

We shall now discuss the properties of Kronecker graphs, specifitiadly degree distributions,
diameters, eigenvalues, eigenvectors, and time-evolution. Our ability t@ pmoadytical results
about all of these properties is a major advantage of Kronecker goaehsther network models.

3.2.1 DEGREEDISTRIBUTION

The next few theorems prove that several distributions of interesbalténomialfor our Kronecker
graph model. This is important, because a careful choice of the initial d¢apmakes the result-
ing multinomial distribution to behave like a power law or Discrete Gaussian Exgi@h (DGX)
distribution (Bi et al., 2001; Clauset et al., 2007).

Theorem 5 (Multinomial degree distribution) Kronecker graphs have multinomial degree distri-
butions, for both in- and out-degrees.
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Proof Let the initiatorK; have the degree sequendggdy,...,dy,. Kronecker multiplication of

a node with degred expands it intd\; nodes, with the corresponding degrees belngd;,d x
dy,...,d x dy,. After Kronecker powering, the degree of each node in gridpis of the form

di, x di, x ...di,, with iy, iz,...,ik € (1...N1), and there is one node for each ordered combination.
This gives us the multinomial distribution on the degreeKofSo, graptKy will have multinomial
degree distribution where the “events” (degrees) of the distribution witidsebinations of degree

products:dilldiz2 .. .d:\',“ll (wherezﬂ-\'ilij =K) and event (degree) probabilities will be proportional to

( k ) Note also that this is equivalent to noticing that the degrees of node€gs ¢gan be ex-

igiz..iny

pressed as thié" Kronecker power of the vectddy, da, . .., dny)- [ ]

3.2.2 SPECTRALPROPERTIES

Next we analyze the spectral properties of adjacency matrix of a Kkenggaph. We show that
both the distribution of eigenvalues and the distribution of component vafueagenvectors of the
graph adjacency matrix follow multinomial distributions.

Theorem 6 (Multinomial eigenvalue distribution) The Kronecker graph Khas a multinomial
distribution for its eigenvalues.

Proof Let K; have the eigenvalues;,Ay,...,An,. By properties of the Kronecker multiplica-
tion (Loan, 2000; Langville and Stewart, 2004), the eigenvalud& afre thek!™ Kronecker power
of the vector of eigenvalues of the initiator matriXa, A2, ..., An, ). As in Theorem 5, the eigen-
value distribution is a multinomial. |

A similar argument using properties of Kronecker matrix multiplication shows t@fimg.

Theorem 7 (Multinomial eigenvector distribution) The components of each eigenvector of the
Kronecker graph Kfollow a multinomial distribution.

Proof Let K; have the eigenvector, Vo, ..., Viy,. By properties of the Kronecker multiplica-
tion (Loan, 2000; Langville and Stewart, 2004), the eigenvectoté.aire given by the&" Kro-
necker power of the vecto(Vy, Vo, ..., Vy, ), which gives a multinomial distribution for the compo-
nents of each eigenvector k. |

We have just covered several of the static graph patterns. Notice thatdbfs were a direct
consequences of the Kronecker multiplication properties.

3.2.3 ONNECTIVITY OF KRONECKERGRAPHS

We now present a series of results on the connectivity of Kroneclaphgr We show, maybe a bit
surprisingly, that even if a Kronecker initiator graph is connected its &ckar power can in fact
be disconnected.

Lemma 8 If at least one of G and H is a disconnected graph, then ik is also disconnected.
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X, X,
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X, X,
B

X, 0 X,

(a) Adjacency matrix
whenG is disconnected

0

(b) Adjacency matrix

whe@ is bipartite

(A,C) 0 (A,C)
(A,D) (B,D)
(B,C) (A,D)
(B,D) 0 (B,C)

(d) Kronecker product of
two bipartite graph& andH

O X O X

X

3

0

(c) Adjacency matrix
wherH is bipartite

0

0

(e) Rearranged adjacency
matrix from panel (d)

Figure 4: Graph adjacency matrices. Dark parts represent conr@tiemtiwith ones) and white
parts represent empty (filled with zeros) parts of the adjacency matrixWVken G is
disconnected, Kronecker multiplication with any matkixwill result in G® H being
disconnected. (b) Adjacency matrix of a connected bipartite gGapith node partitions
A andB. (c) Adjacency matrix of a connected bipartite graphwvith node partition<C
andD. (e) Kronecker product of two bipartite grapBsandH. (d) After rearranging the
adjacency matrixc ® H we clearly see the resulting graph is disconnected.

Proof Without loss of generality we can assume t@dtas two connected components, whilés
connected. Figure 4(a) illustrates the corresponding adjacency mai@x fdsing the notation from
Observation 1 let graph &6 have nodes(y, ..., X,, where nodegXs,... X } and{X;1,...,%Xn}
form the two connected components. Now, note ¥, Xq) ¢ GoH foriec {1,....r}, ke
{r+1,...,n}, and allj, I. This follows directly from Observation 1 &X;, Xx) are not edges i®.
Thus,G® H must at least two connected components.

Actually it turns out that botlG andH can be connected whil€ ® H is disconnected. The

following theorem analyzes this case.

Theorem 9 If both G and H are connected but bipartite, themx@®l is disconnected, and each of
the two connected components is again bipartite.

Proof Again without loss of generality l&b be bipartite with two partitioné\ = {Xz,... X} and
B = {X1,...,%}, where edges exists only between the partitions, and no edges existtimside
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partition: (X, Xx) ¢ Gfori,ke Aori,k e B. Similarly, letH also be bipartite with two partitiorG =
{X1,... %} andD = {Xs:1,...,Xm}. Figures 4(b) and (c) illustrate the structure of the corresponding
adjacency matrices.

Now, there will be two connected componentsGme H: 1%t component will be composed of
nodes{X;;} € G®H, where(i € A j € D) or (i € B,j € C). And similarly, 2% component will
be composed of nodes; }, where(i € A, j € C) or (i € B,j € D). Basically, there exist edges
between node set#, D) and(B,C), and similarly betwee(A,C) and(B, D) but not across the sets.
To see this we have to analyze the cases using Observation 1. For example,H there exist
edges between nodea, C) and(B, D) as there exist edgés k) € Gfori € A ke B, and(j,l) e H
for j e Candl € D. Similar is true for nodeg¢A,C) and(B, D). However, there are no edges cross
the two sets, for example, nodes fr@d D) do not link to(A,C), as there are no edges between
nodes inA (sinceG is bipartite). See Figures 4(d) and 4(e) for a visual proof. |

Note that bipartite graphs are triangle free and have no self-loops, &taiss, trees and cycles
of even length are all examples of bipartite graphs. In order to ensur&glsiconnected, for the
remained of the paper we focus on initiator graghsvith self loops on all of the vertices.

3.2.4 TEMPORAL PROPERTIES OFKRONECKERGRAPHS

We continue with the analysis of temporal patterns of evolution of Kronegiegrhs: the densifica-
tion power law, and shrinking/stabilizing diameter (Leskovec et al., 2005}¥,£0

Theorem 10 (Densification power law)Kronecker graphs follow the densification power law (DPL)
with densification exponent-alog(Ez)/log(Ny).

Proof Since thek" Kronecker poweky hasNk = NK nodes ande, = EX edges, it satisfie, = N2,
wherea = log(E;)/log(N1). The crucial point is thaa is independent of, and hence the sequence
of Kronecker powers follows an exact version of the densificationgodawv. |

We now show how the Kronecker product also preserves the propkecynstant diameter, a
crucial ingredient for matching the diameter properties of many real-wateark data sets. In
order to establish this, we will assume that the initiator griphhas a self-loop on every node.
Otherwise, its Kronecker powers may be disconnected.

Lemma 11 If G and H each have diameter at most D and each has a self-loop oy rude, then
the Kronecker graph @ H also has diameter at most D.

Proof Each node irG®H can be represented as an ordered paw), with v a node ofG andw a
node ofH, and with an edge joiningv,w) and(x,y) precisely wheny,x) is an edge o6 and(w,y)
is an edge oH. (Note this exactly the Observation 1.) Now, for an arbitrary pair of nddes)
and (V,w), we must show that there is a path of length at nidsonnecting them. Sincé has
diameter at modD, there is a pathh= vy, vy, ...,v, =V, wherer <D. If r < D, we can convert this
into a pathv = v1,v,,...,vp = V of length exactlyD, by simply repeating’ at the end foD —r
times. By an analogous argument, we have a pathwy,w»,...,wp = W. Now by the definition
of the Kronecker product, there is an edge joiningw;) and (vi;1,wi;1) forall 1 <i <D -1,
and so(v,w) = (v1,w1), (V2,W2),...,(Vp,Wp) = (V,wW) is a path of lengtiD connecting(v,w) to
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(V,w), as required. [

Theorem 12 If K1 has diameter D and a self-loop on every node, then for every k, the dfaph
also has diameter D.

Proof This follows directly from the previous lemma, combined with inductiorkon |

As defined in Section 2 we also consider #ffective diameter D We defined the-effective
diameter as the minimum@* such that, for a fraction of the reachable node pairs, the path length
is at mostD*. Theg-effective diameter is a more robust quantity than the diameter, the latter being
prone to the effects of degenerate structures in the graph (e.g., verghams). However, thg-
effective diameter and diameter tend to exhibit qualitatively similar behaviorrdporting results
in subsequent sections, we will generally considercgaffective diameter witlg = 0.9, and refer
to this simply as theffective diameter

Theorem 13 (Effective diameter) If K; has diameter D and a self-loop on every node, then for
every g, the g-effective diameter of €onverges to D (from below) as k increases.

Proof To prove this, it is sufficient to show that for two randomly selected nofl&x,che proba-
bility that their distance i® converges to 1 dsgoes to infinity.

We establish this as follows. Each nodekipcan be represented as an ordered sequenke of
nodes fromK;, and we can view the random selection of a nodKmas a sequence &findepen-
dent random node selections frdta. Suppose that = (vq,...,v) andw = (wq,..., W) are two
such randomly selected nodes fréd Now, if x andy are two nodes ifK; at distanceD (such a
pair (x,y) exists since&k; has diameteD), then with probability 1- (1 — Nilz)", there is some index

j for which {vj,w;} = {x,y}. If there is such an index, then the distance betweandw is D. As
the expression 4 (1— %)k converges to 1 dsincreases, it follows that thepeffective diameter is
1

converging td. |

3.3 Stochastic Kronecker Graphs

While the Kronecker power construction discussed so far yields gsaipina range of desired prop-
erties, its discrete nature produces “staircase effects” in the degrdespactral quantities, simply
because individual values have large multiplicities. For example, degre@udli®n and distri-
bution of eigenvalues of graph adjacency matrix and the distribution of theijpal eigenvector
components (i.e., the “network” value) are all impacted by this. These quardittemultinomi-
ally distributed which leads to individual values with large multiplicities. Figure 5tilates the
staircase effect.

Here we propose a stochastic version of Kronecker graphs that elisitiaseeffect. There
are many possible ways how one could introduce stochasticity into Krongckeh model. Be-
fore introducing the proposed model, we introduce two simple ways of intioguandomness to
Kronecker graphs and describe why they do not work.
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Figure 5: The “staircase” effect. Kronecker initiator and the degrdelulision and network value
plot for the 6" Kronecker power of the initiator. Notice the non-smoothness of the curves

Probably the simplest (but wrong) idea is to generate a large deterministie&ker graphky,
and then uniformly at random flip some edges, that is, uniformly at randdactsentries of the
graph adjacency matrix and flip them {2 0,0 — 1). However, this will not work, as it will es-
sentially superimpose an Eyg-Renyi random graph, which would, for example, corrupt the degree
distribution—real networks usually have heavy tailed degree distributiohe vandom graphs
have Binomial degree distributions. A second idea could be to allow a weigtitedor matrix,
that is, values of entries &f; are not restricted to valug®,1} but rather can be any non-negative
real number. Using sudk; one would generaty and then threshold th€ matrix to obtain a bi-
nary adjacency matrik, that is, for a chosen value efetK]i, j| = 1 if K]i, j] > € elseK]i, j] = 0.
This also would not work as the mechanism would selectively remove eddekss the low degree
nodes which would have low weight edges would get isolated first.

Now we defineStochastic Kronecker graph modehich overcomes the above issues. A more
natural way to introduce stochasticity to Kronecker graphs is to relax gwrgstion that entries of
the initiator matrix take only binary values. Instead we allow entries of the initiattaki® values
on the interval0, 1]. This means now each entry of the initiator matrix encodes the probability of
that particular edge appearing. We then Kronecker-power such initizdtnix to obtain a large
stochastic adjacency matrix, where again each entry of the large matrixtb&@robability of that
particular edge appearing in a big graph. Such a stochastic adjacenc¢y deditmnes a probability
distribution over all graphs. To obtain a graph we simply sample an instameetifiis distribution
by sampling individual edges, where each edge appears independihthrobability given by the
entry of the large stochastic adjacency matrix. More formally, we define:

Definition 14 (Stochastic Kronecker graph) Let 1 be a N x N; probability matrix the value
Bij € 71 denotes the probability that edgk j) is present;j € [0,1].

Then K" Kronecker poweEP[k] = %, where each entry p € % encodes the probability of an
edge(u,Vv).

To obtain a graph, annstance(or realizatior), K = R(%) we include edgéu,Vv) in K with
probability pu, puv € Pk

First, note that sum of the entries &, 3;; 6;j, can be greater than 1. Second, notice that in
principle it takesO(lek) time to generate an instankeof a Stochastic Kronecker graph from the
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probability matrix®. This means the time to get a realizatidns quadratic in the size af as
one has to flip a coin for each possible edge in the graph. Later we showolyenerate Stochastic
Kronecker graphs much faster, in the titire2ar in the expected number of edgesfin

3.3.1 PROBABILITY OF AN EDGE

For the size of graphs we aim to model and generate here takirfgr K1) and then explicitly
performing the Kronecker product of the initiator matrix is infeasible. Tlasoa for this is tha?;
is usually dense, s is also dense and one can not explicitly store it in memory to directly iterate
the Kronecker product. However, due to the structure of Kroneckdtiptication one can easily
compute the probability of an edge .
The probabilityp,, of an edgé€u, v) occurring ink-th Kronecker powef’ = % can be calculated
in O(k) time as follows:
k—1
v =[] 22 { {uNi 1J (modNy) + 1, [VN—IlJ (modNy) + 1] . @)
i= 1 1
The equation imitates recursive descent into the matriwhere at every levelthe appropriate
entry of 2, is chosen. Sinc@ hasNk rows and columns it take®(klogN; ) to evaluate the equation.
Refer to Figure 6 for the illustration of the recursive structureof

3.4 Additional Properties of Kronecker Graphs

Stochastic Kronecker graphs with initiator matrix of sit¢e= 2 were studied by Mahdian and Xu
(2007). The authors showed a phase transition for the emergenceg@tiheomponent and another
phase transition for connectivity, and proved that such graphs funstant diameters beyond the
connectivity threshold, but are not searchable using a decentralgmitlam (Kleinberg, 1999).

General overview of Kronecker product is given in Imrich and Ekv(2000) and properties
of Kronecker graphs related to graph minors, planarity, cut vertexcahedge have been explored
in Bottreau and Metivier (1998). Moreover, recently Tsourakaki98@ave a closed form ex-
pression for the number of triangles in a Kronecker graph that depmmtise eigenvalues of the
initiator graphKj.

3.5 Two Interpretations of Kronecker Graphs

Next, we present two natural interpretations of the generative prbedssd the Kronecker graphs
that go beyond the purely mathematical construction of Kronecker gespiméroduced so far.

We already mentioned the first interpretation when we first defined Kkemegraphs. One
intuition is that networks are hierarchically organized into communities (clyst€smmunities
then grow recursively, creating miniature copies of themselves. Figuepittd the process of
the recursive community expansion. In fact, several researcheesangued that real networks are
hierarchically organized (Ravasz et al., 2002; Ravasz and Bsirdt003) and algorithms to extract
the network hierarchical structure have also been developed (Saiés-€t al., 2007; Clauset et al.,
2008). Moreover, especially web graphs (Dill et al., 2002; Dorogawg al., 2002; Crovella and
Bestavros, 1997) and biological networks (Ravasz and Bara®003) were found to be self-similar
and “fractal”.

The second intuition comes from viewing every nodePpfs being described with an ordered
sequence ok nodes fromP;. (This is similar to the Observation 1 and the proof of Theorem 13.)
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Figure 6: Stochastic Kronecker initiat@ and the corresponding®Kronecker power?,. Notice
the recursive nature of the Kronecker product, with edge probabiliti®s aimply being
products of entries af;.

Let’s label nodes of the initiator matri®y, us,...,uy,, and nodes off asvy, ..., Vyk Then
every nodey; of % is described with a sequenge(1),...,vi(k)) of node labels of?;, wherevi(l) €
{ug,...,u}. Similarly, consider also a second nodewith the label sequencgy(1),...,v;(Kk)).
Then the probabilitype of an edggvi, v;) in F is exactly:

k
Pe(Vi,Vj) = B|vi,Vj| = IE!fPl[vi(l),vj(l)].

(Note this is exactly the Equation 1.)

Now one can look at the description sequence of ne@e ak dimensional vector of attribute
values(vi(1),...,vi(k)). Thenpe(vi,V;) is exactly the coordinate-wise product of appropriate entries
of 1, where the node description sequence selects which entriéstof multiply. Thus, the?;
matrix can be thought of as the attribute similarity matrix, that is, it encodes thmlpifity of
linking given that two nodes agree/disagree on the attribute value. Themdbability of an edge
is simply a product of individual attribute similarities over thé\;-valued attributes that describe
each of the two nodes.

This gives us a very natural interpretation of Stochastic KroneckgrhgraEach node is de-
scribed by a sequence of categorical attribute values or featuresth&ndhe probability of two
nodes linking depends on the product of individual attribute similarities. WaysKronecker graphs
can effectively model homophily (nodes with similar attribute values are mory ligdink) by ?;
having high value entries on the diagonal. Or heterophily (nodes that drtfemore likely to link)
by P, having high entries off the diagonal.

Figure 6 shows an example. Let’s label node®Ppii;, u; as in Figure 6(a). Then every node
of A is described with an ordered sequencé& bfnary attributes. For example, Figure 6(b) shows
an instance fok = 2 where nodes, of 2, is described byus,uy), and similarlyvs by (uz,us).
Then as shown in Figure 6(b), the probability of eqiév,,v3) = b- ¢, which is exactly?; [up, u;] -

P [ug, up] = b- c—the product of entries a1, where the corresponding elements of the description
of nodesv, andvs act as selectors of which entries®f to multiply.

Figure 6(c) further illustrates the recursive nature of KroneckgulggaOne can see Kronecker
product as recursive descent into the big adjacency matrix wherelatséage one of the entries
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or blocks is chosen. For example, to get to eriry,v3) one first needs to dive into quadramt
following by the quadrant. This intuition will help us in Section 3.6 to devise a fast algorithm for
generating Kronecker graphs.

However, there are also two notes to make here. First, using a single initjat@rare implicitly
assuming that there is one single and universal attribute similarity matrix that &ioldss alk N;-
ary attributes. One can easily relax this assumption by taking a different initrettrix for each
attribute (initiator matrices can even be of different sizes as attributes difeoént arity), and then
Kronecker multiplying them to obtain a large network. Here each initiator matriysyitee role of
attribute similarity matrix for that particular attribute.

For simplicity and convenience we will work with a single initiator matrix but all outhrods
can be trivially extended to handle multiple initiator matrices. Moreover, as wesedllater in
Section 6 even a single>22 initiator matrix seems to be enough to capture large scale statistical
properties of real-world networks.

The second assumption is harder to relax. When describing everywnuadid a sequence of
attribute values we are implicitly assuming that the values of all attributes argmiyfdistributed
(have same proportions), and that every node has a unique combinaadinilmute values. So,
all possible combinations of attribute values are taken. For example,vadde large matrix?
has attribute sequences, us, ..., u1), andwy, has(ug,us,...,us,uy, ), while the “last” noda/le is
has attribute valuegun,,Uy,,...,Uy,). One can think of this as counting My-ary number sys-
tem, where node attribute descriptions range from 0 (i.e., “leftmost” node thithude description
(Ug, U, ..., u)) to N¥ (i.e., “rightmost” node attribute descriptidin, , Uy, - - -, U, ))-

A simple way to relax the above assumption is to take a larger initiator matrix with a smaller
number of parameters than the number of entries. This means that multiple ehtPiesill share
the same value (parameter). For example, if attrilbgteakes one value 66% of the times, and the
other value 33% of the times, then one can model this by taking & Bitiator matrix with only
four parameters. Adopting the naming convention of Figure 6 this meansdhahptera now
occupies a X 2 block, which then also makésandc occupy 2x 1 and 1x 2 blocks, andl a single
cell. This way one gets a four parameter model with uneven feature vatubuti®on.

We note that the view of Kronecker graphs where every node is dedonlth a set of features
and the initiator matrix encodes the probability of linking given the attribute vadfieso nodes
somewhat resembles the Random dot product graph model (Younghath&man, 2007; Nickel,
2008). The important difference here is that we multiply individual linkingailities, while in
Random dot product graphs one takes the sum of individual probabilitiech seems somewhat
less natural.

3.6 Fast Generation of Stochastic Kronecker Graphs

Generating a Stochastic Kronecker grabn N nodes naively take®(N?) time. Here we present
a fast heuristic procedure that works well in practice and takesliirear in the number of edges
to generate a graph. The intuition for fast generation of Stochastic Kkengraphs comes from
the recursive nature of the Kronecker product and is closely relatdtet®-MAT graph genera-
tor (Chakrabarti et al., 2004). In contrast to R-MAT Stochastic Kr&eegraph initiator matrix
encodes both the total number of edges in a graph and their strugtéeencodes the number of
edges in the graph, while the proportions (ratios) of valjesgefine how many edges each part of
graph adjacency matrix will contain.
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In order to illustrate the recursive nature of Kronecker graphs andgtdight the relation to
R-MAT graph generator Figure 6 shows how probability matrix in panelcés) be recursively
decomposed as shown in panel (c) of Figure 6. To “arrive” to a paatiedge(v;, v;) of # one has
to make a sequence kf(in our case&k = 2) decisions among the entries®f, multiply the chosen
entries of;, and then placing the edd@, v;) with the obtained probability.

Thus, instead of flippin@(N?) = O(lek) biased coins to determine the edges in a graph, we
placeE edges by directly simulating the recursion of the Kronecker product. 8§siwe recur-
sively choose sub-regions of matxwith probability proportional td;j, 6;; € 1 until in k steps
we descend to a single cell of the big adjacency m&{riand place an edge. For example, for
(v2,v3) in Figure 6(c) we first have to choobdollowing by c.

More generally, the probability of each individual edgefffollows a Bernoulli distribution,
as the edge occurrences are independent. By the Central Limit Thé@etrav, 1995) the number
of edges in? tends to a normal distribution with meagi'\fjl:leij)k = E'l‘, whereg;; € P1. So,
given a stochastic initiator matri®; we first sample the expected number of edgés #. Then
we placeE edges in a grapK, by applying the recursive descent fosteps where at each step
we choose entryi, j) with probability 6;; /E; whereE; = §;; ;. Since we addE = E‘f edges, the
probability that edgév;,v;) appears irK is exactly#|v;,vj]. However, in practice it can happen
that more than one edge lands in the sawg/;) entry of big adjacency matrik. If an edge lands
in a already occupied cell we simply insert it again. Even though valugs afe usually skewed,
adjacency matrices of real networks are so sparse that collisionstaeafip a problem in practice
as only around 1% of edges collide. It is due to these edge collisions thre pbmcedure does not
obtain exact samples from the graph distribution defined by the parametéx mBatHowever, in
practice graphs generated by this fast linear ti@€=)) procedure are basically indistinguishable
from graphs generated with the exact exponential ti®@g¢)) procedure.

Code for generating Kronecker graphs can be obtainbkttpatsnap.stanford.edu

3.7 Observations and Connections

Next, we describe several observations about the properties oékkengraphs and make connec-
tions to other network models.

e Bipartite graphs:Kronecker graphs can naturally model bipartite graphs. Instead tihgtar
with a squareN; x Nj initiator matrix, one can choose arbitralf x M; initiator matrix,
where rows define “left”, and columns the “right” side of the bipartite graptmonecker
multiplication will then generate bipartite graphs with partition siIXI%sandM‘{.

e Graph distributions: # defines a distribution over all graphs, as it encodes the probability
of all possibIelek edges appearing in a graph by using an exponentially smaller number
of parameters (jusil?). As we will later see, even a very small number of parameters, for
example, 4 (Z 2 initiator matrix) or 9 (3x 3 initiator), is enough to accurately model the
structure of large networks.

e Extension of Er@s-Renyi random graph modelStochastic Kronecker graphs represent an
extension of Erds-Renyi (Erdbs and Rnyi, 1960) random graphs. If one takés= [;j],
where everyd;; = p then we obtain exactly the Ebd-Renyi model of random grapls, p,
where every edge appears independently with probalulity
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e Relation to the R-MAT modelthe recursive nature of Stochastic Kronecker graphs makes
them related to the R-MAT generator (Chakrabarti et al., 2004). Therdifte between the
two models is that in R-MAT one needs to separately specify the number esgeddpile
in Stochastic Kronecker graphs initiator matfx also encodes the number of edges in the
graph. Section 3.6 built on this similarity to devise a fast algorithm for gengr&tinchastic
Kronecker graphs.

e Densification: Similarly as with deterministic Kronecker graphs the number of nodes in
a Stochastic Kronecker graph grows I‘d$ and the expected number of edges grows as
(Yij eij)k. This means one would want to choose val@gsof the initiator matrix?;, so
thaty;; 8;; > Ny in order for the resulting network to densify.

4. Simulations of Kronecker Graphs

Next we perform a set of simulation experiments to demonstrate the ability ofeiker graphs to
match the patterns of real-world networks. We will tackle the problem of estigniignKronecker
graph model from real data, that is, finding the most likely initiagprin the next section. Instead
here we present simulation experiments using Kronecker graphs toexipéoparameter space, and
to compare properties of Kronecker graphs to those found in largaeeasbrks.

4.1 Comparison to Real Graphs

We observe two kinds of graph patterns—*“static” and “temporal.” As meataarlier, common
static patterns include degree distribution, scree plot (eigenvalues @i @djacency matrix vs.
rank) and distribution of components of the principal eigenvector offgeaijacency matrix. Tem-
poral patterns include the diameter over time, and the densification powelFtawthe diameter
computation, we use the effective diameter as defined in Section 2.

For the purpose of this section consider the following setting. Given agraphG we want
to find Kronecker initiator that produces qualitatively similar graph. In ppillecone could try
choosing each of thblf parameters for the matri®, separately. However, we reduce the number
of parameters fronN? to just two: a andp. LetK; be the initiator matrix (binary, deterministic).
Then we create the corresponding stochastic initiator m&irby replacing each “1” and “0” oKy
with o andp respectively @ < a). The resulting probability matrices maintain—with some random
noise—the self-similar structure of the Kronecker graphs in the prevexima (which, for clarity,
we calldeterministic Kronecker graphsWe defer the discussion of how to automatically estimate
7, from dataG to the next section.

The data sets we use here are:

e CIT-HEP-TH: This is a citation graph for High-Energy Physics Theory researckrgdpom
pre-print archive ArXiv, with a total oN =29,555 papers and =352,807 citations (Gehrke
et al., 2003). We follow its evolution from January 1993 to April 2003, witfe alata-point
per month.

e AsS-ROUTEVIEWS: We also analyze a static data set consisting of a single snapshot of con-

nectivity among Internet Autonomous Systems (RouteViews, 1997) froomadga 2000, with
N =6,474 ancE =26,467.
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Figure 7: Citation network CIT-HEP-TH): Patterns from the real graph (top row), the deterministic
Kronecker graph witlK; being a star graph on 4 nodes (center + 3 satellites) (middle
row), and the Stochastic Kronecker graph=£ 0.41, 3 = 0.11 — bottom row). Static
patterns: (a) is the PDF of degrees in the graph (log-log scale), atiie(d)stribution of
eigenvalues (log-log scalejemporalpatterns: (c) gives the effective diameter over time
(linear-linear scale), and (d) is the number of edges versus numb&dekrover time
(log-log scale). Notice that the Stochastic Kronecker graphs qualitativetghes all the
patterns very well.

Results are shown in Figure 7 for theT@HEP-TH graph which evolves over time. We show
the plots of two static and two temporal patterns. We see that the deterministiedkesrmodel
already to some degree captures the qualitative structure of the dedreganvalue distributions,
as well as the temporal patterns represented by the densification powandathe stabilizing di-
ameter. However, the deterministic nature of this model results in “staircabeivior, as shown
in scree plot for the deterministic Kronecker graph of Figure 7 (columns@ond row). We see
that the Stochastic Kronecker graphs smooth out these distributionsrfuntiiching the qualita-
tive structure of the real data, and they also match the shrinking-bsfabdization trend of the
diameters of real graphs.

Similarly, Figure 8 shows plots for the static patterns in tAetonomous systems
(As-RouTeEVIEWS) graph. Recall that we analyze a single, static network snapshot in #8s ca
In addition to the degree distribution and scree plot, we also show two tydmtal (Chakrabarti
et al., 2004): the distribution afetwork valuegprincipal eigenvector components, sorted, versus
rank) and thénop-plot(the number of reachable pagéh) within h hops or less, as a function of the
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Figure 8: Autonomous systemA$-ROUTEVIEWS): Real (top) versus Kronecker (bottom).
Columns (a) and (b) show the degree distribution and the scree plot,as b€blumns
(c) and (d) show two more static patterns (see text). Notice that, again, tbleaStic
Kronecker graph matches well the properties of the real graph.
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Figure 9: Effective diameter over time for a 4-node chain initiator graphlerAdach consecutive
Kronecker power we measure the effective diameter. We use diffeedtinigs ofa pa-
rametera = 0.38,0.43 0.54 andp = 0, respectively.

number of hop#). Notice that, again, the Stochastic Kronecker graph matches well therfiesp
of the real graph.

4.2 Parameter Space of Kronecker Graphs

Last we present simulation experiments that investigate the parameter §&oehastic Kronecker
graphs.

First, in Figure 9 we show the ability of Kronecker Graphs to generate mk$wath increasing,
constant and decreasing/stabilizing effective diameter. We start withoald-ghain initiator graph
(shown in top row of Figure 3), setting each “1” Kf to a and each “0” to = 0 to obtain”;
that we then use to generate a growing sequence of graphs. We plffettieye diameter of each
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Figure 10: Fraction of nodes in the largest weakly connected comp@Xgtit) and the effective
diameter for 4-star initiator graph. (a) We fix= 0.15 and varya. (b) We vary bothx
andp. (c) Effective diameter of the network, if network is disconnected oy dense
path lengths are short, the diameter is large when the network is barelyctetne

R(%) as we generate a sequence of growing grais), R(?s), ..., R(Pio). R(Pio) has exactly
1,048,576 nodes. Notice Stochastic Kronecker graphs is a very flexildelmiwhen the generated
graph is very sparse (low value a) we obtain graphs with slowly increasing effective diameter
(Figure 9(a)). For intermediate valueswive get graphs with constant diameter (Figure 9(b)) and
that in our case also slowly densify with densification expoeatl.05. Last, we see an example
of a graph with shrinking/stabilizing effective diameter. Here we setithe0.54 which results in a
densification exponent @f = 1.2. Note that these observations are not contradicting Theorem 11.
Actually, these simulations here agree well with the analysis of Mahdian arfd0Qr).

Next, we examine the parameter space of a Stochastic Kronecker grapteswe choose a star
on 4 nodes as a initiator graph and parameterized aviéimd3 as before. The initiator graph and
the structure of the corresponding (deterministic) Kronecker grapbejs matrix is shown in top
row of Figure 3.

Figure 10(a) shows the sharp transition in the fraction of the number @fsnibet belong to the
largest weakly connected component as weBfix 0.15 and slowly increasa. Such phase tran-
sitions on the size of the largest connected component also occur @s-Beayi random graphs.
Figure 10(b) further explores this by plotting the fraction of nodes in thrgektrconnected compo-
nent (\Nc/N) over the full parameter space. Notice a sharp transition between desttedn(white
area) and connected graphs (dark).

Last, Figure 10(c) shows the effective diameter over the parametez &pa#) for the 4-node
star initiator graph. Notice that when parameter values are small, the effelisisneter is small,
since the graph is disconnected and not many pairs of nodes can Ibedeathe shape of the
transition between low-high diameter closely follows the shape of the emergéice connected
component. Similarly, when parameter values are large, the graph is vesg,a@ad the diameter is
small. There is a narrow band in parameter space where we get graphistenésting diameters.

5. Kronecker Graph Model Estimation

In previous sections we investigated various properties of networksragtea by the (Stochastic)
Kronecker graphs model. Many of these properties were also olosierveal networks. Moreover,
we also gave closed form expressions (parametric forms) for valudsesé statistical network
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properties, which allow us to calculate a property (e.g., diameter, eigersgdetrum) of a network
directly from just the initiator matrix. So in principle, one could invert theseaiqns and directly
get from a property (e.g., shape of degree distribution) to the valuegiatan matrix.

However, in previous sections we did not say anything about how \&network properties of
a Kronecker graph correlate and interdepend. For example, it coutltebsase that two network
properties are mutually exclusive. For instance, perhaps only coulsatlsh the network diameter
but not the degree distribution or vice versa. However, as we showtlégds not the case.

Now we turn our attention to automatically estimating the Kronecker initiator graipd s&tting
is that we are given a real netwoBand would like to find a Stochastic Kronecker initiat®rthat
produces a synthetic Kronecker graglthat is “similar” toG. One way to measure similarity is to
compare statistical network properties, like diameter and degree distribotigraphsG andK.

Comparing statistical properties already suggests a very direct appiméuas problem: One
could first identify the set of network properties (statistics) to match, théneda quality of fit
metric and somehow optimize over it. For example, one could use the KL divedEullback and
Leibler, 1951), or the sum of squared differences between thea@dgteibution of the real network
G and its synthetic counterpdft Moreover, as we are interested in matching several such statistics
between the networks one would have to meaningfully combine these indigidoametrics into
a global error metric. So, one would have to specify what kind of pt@sehe or she cares about
and then combine them accordingly. This would be a hard task as the paifamerest have
very different magnitudes and scales. Moreover, as new networkmatee discovered, the error
functions would have to be changed and models re-estimated. And eveitigheat clear how to
define the optimization procedure to maximize the quality of fit and how to perémtimization
over the parameter space.

Our approach here is different. Instead of committing to a set of netwankepties ahead
of time, we try to directly match the adjacency matrices of the real net@oakd its synthetic
counterpartK. The idea is that if the adjacency matrices are similar then the global statistical
properties (statistics computed owerndG) will also match. Moreover, by directly working with
the graph itself (and not summary statistics), we do not commit to any partiatlaf setwork
statistics (network properties/patterns) and as new statistical propertiesvairks are discovered
our models and estimated parameters will still hold.

5.1 Preliminaries

Stochastic graph models induce probability distributions over graphs. érgre model assigns
a probabilityP(G) to every graplG. P(G) is thelikelihoodthat a given model (with a given set of
parameters) generates the gr&hNe concentrate on the Stochastic Kronecker graphs model, and
consider fitting it to a real grap8, our data. We use the maximum likelihood approach, that is, we
aim to find parameter values, the initiatgy, that maximizeP(G) under the Stochastic Kronecker
graph model.

This presents several challenges:

e Model selection:a graph is a single structure, and not a set of items drawn independemtly an
identically-distributed (i.i.d.) from some distribution. So one cannot split it intep@hdent
training and test sets. The fitted parameters will thus be best to gengraticalar instance
of a graph. Also, overfitting could be an issue since a more complex modelaly fits
better.
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¢ Node correspondence:The second challenge is the node correspondence or node labeling
problem. The graplé has a set oN nodes, and each node has a unique label (index, ID).
Labels do not carry any particular meaning, they just uniquely denoteeatifg the nodes.
One can think of this as the graph is first generated and then the labedsg)dare randomly
assigned. This means that two isomorphic graphs that have differeataimels should have
the same likelihood. A permutatianis sufficient to describe the node correspondences as it
maps labels (IDs) to nodes of the graph. To compute the likelilR§@&] one has to consider
all node correspondencB$G) = 5, P(G|o)P(a), where the sum is over all! permutations
o of N nodes. Calculating thisuper-exponentiagum explicitly is infeasible for any graph
with more than a handful of nodes. Intuitively, one can think of this summatiosoae
kind of graph isomorphism test where we are searching for bestspamnelence (mapping)
between nodes @& andP.

e Likelihood estimation: Even if we assume one can efficiently solve the node correspondence
problem, calculatind®(G|o) naively takesO(N?) as one has to evaluate the probability of
each of theN? possible edges in the graph adjacency matrix. Again, for graphs of size w
want to model here, approaches with quadratic complexity are infeasible.

To develop our solution we use sampling to avoid the super-exponentiabgernthe node
correspondences. By exploiting the structure of the Kronecker matrix ricdtion we develop an
algorithm to evaluat®(G|o) in linear time O(E). Since real graphs asparsethat is, the number
of edges is roughly of the same order as the number of nodes, this makgofitironecker graphs
to large networks feasible.

5.2 Problem Formulation

Suppose we are given a graghon N = Nf nodes (for some positive integk), and anN; x Nz
Stochastic Kronecker graphs initiator matfx. Here?; is a parameter matrix, a set of parameters
that we aim to estimate. For now also assuagthe size of the initiator matrix, is given. Later we
will show how to automatically select it. Next, usiy we create a Stochastic Kronecker graphs
probability matrix®, where every entryyy of # contains a probability that nodelinks to node
v. We then evaluate the probability thatis a realization off. The task is to find suci®, that has
the highest probability of realizing (generating)

Formally, we are solving:

argmaP(G|2,). )

To keep the notation simpler we use standard syn@ab denote the parameter matrix
that we are trying to estimate. We denote entrie®cf P; = [6;;], and similarly we denot® =
‘A = [pij]. Note that here we slightly simplified the notation: we @ refer to?;, and6;j are
elements oP. Similarly, p;; are elements of (= #). Moreover, we denotk = R(?), that is,K
is a realization of the Stochastic Kronecker graph sampled from probabéldjicency matrixP.

As noted before, the node IDs are assigned arbitrarily and they casignificant information,
which means that we have to consider all the mappings of nodesGtorows and columns of
stochastic adjacency matrix. A priori all labelings are equally likely. A permutatianof the set
{1,...,N} defines this mapping of nodes froBto stochastic adjacency matri To evaluate the
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P ( Kronecker @)
arg max o Yoy
® R

Figure 11: Kronecker parameter estimation as an optimization problem. W&hsmaar the ini-
tiator matricedd (= P1). Using Kronecker multiplication we create probabilistic adja-
cency matrix@¥ that is of same size as real netwdek Now, we evaluate the like-
lihood by simultaneously traversing and multiplying entriesGoaind ©K (see Equa-
tion refeq:KronProbGPS). As shown by the figure permutatioplays an important
role, as permuting rows and columns®fcould make it look more similar t®X and
thus increase the likelihood.

likelihood of G one needs to consider all possible mappinghl siodes ofG to rows (columns) of
. For convenience we work witleg-likelihood I(©), and solved® = argmax | (©), wherel (©) is
defined as:

[(®) = logP(G|®)=Ilo Z (G|©,0)P(0]©)

o

= logy P(G|©,0)P(0). 3)

The likelihood that a given initiator matri® and permutatiorw gave rise to the real grag,
P(G|©,0), is calculated naturally as follows. First, by usi®gve create the Stochastic Kronecker
graph adjacency matri# = B = ©K. Permutations defines the mapping of nodes Gfto the
rows and columns of stochastic adjacency mattiXSee Figure 11 for the illustration.)

We then model edges as independent Bernoulli random variables pareee by the parame-
ter matrix®. So, each entrp,, of ? gives exactly the probability of edde, v) appearing.

We then define the likelihood:

P(Gl?,0)= [] Plow0)] [] (1—2Plou,0v), (4)
(uv)eG (uv)¢G

where we denote; as thei" element of the permutatiom, and?][i, ] is the element at row and
columnj of matrix ? = OK.

The likelihood is defined very naturally. We traverse the entries of adjgiamatrix G and then
based on whether a particular edge appearda an not we take the probability of edge occurring
(or not) as given byP, and multiply these probabilities. As one has to touch all the entries of the
stochastic adjacency matri& evaluating Equation 4 take3(N?) time.

We further illustrate the process of estimating Stochastic Kronecker initiatonxn@in Fig-
ure 11. We search over initiator matrio®go find the one that maximizes the likeliho®{G|©).

To estimateP(G|©) we are given a concret® and now we use Kronecker multiplication to create
probabilistic adjacency matri®@X that is of same size as real netwd® Now, we evaluate the
likelihood by traversing the corresponding entriesSoind®X. Equation 4 basically traverses the
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adjacency matrix o6, and maps every entfy, v) of G to a corresponding entiipy,, oy) of 2. Then

in case that edgéu,v) exists inG (i.e., G[u,v] = 1) the likelihood that particular edge existing is
Ploy, 0y, and similarly, in case the edge,v) does not exist the likelihood is simply-1P[oy, 0y].
This also demonstrates the importance of permutati@s permuting rows and columns®fould
make the adjacency matrix look more “similar’@", and would increase the likelihood.

So far we showed how to assess the quality (likelihood) of a parti@il&o, naively one could
perform some kind of grid search to find b&st However, this is very inefficient. A better way of
doing it is to compute the gradient of the Iog—likeliho%ﬂl (©), and then use the gradient to update
the current estimate @& and move towards a solution of higher likelihood. Algorithm 1 gives an
outline of the optimization procedure.

However, there are several difficulties with this algorithm. First, we aranaisg gradient
descent type optimization will find a good solution, that is, the problem doesave (too many)
local minima. Second, we are summing over exponentially many permutationsati&@g8. Third,
the evaluation of Equation 4 as it is written now tak&@?) time and needs to be evaluatisid
times. So, given a concre@ just naively calculating the likelihood tak€{N!N?) time, and then
one also has to optimize ovex.

Observation 2 The complexity of calculating the likelihood ®©) of the graph G naively is
O(N!N?), where N is the number of nodes in G.

Next, we show that all this can be dondiimear time

5.3 Summing Over the Node Labelings

To maximize Equation 2 using algorithm 1 we need to obtain the gradient of thigédigrood
2.1(©). We can write:

910 _ JowP(Clo.0PO)
Yo P(Gl0",©)P(0")
0logP(Glo,0)

° 00

P(G|o,©)P(0)

P(G[©)

~ y %logPLSl0.0) Pa(g’c’ ©p(0(G,0). (5)

[

Note we are still summing over all! permutationso, so calculating Eq. 5 is computationally
intractable for graphs with more than a handful of nodes. However,gbat®n has a nice form
which allows for use of simulation techniques to avoid the summation over sxapenrentially
many node correspondences. Thus, we simulate draws from the permdtstidiutionP(c0|G, ©),
and then evaluate the quantities at the sampled permutations to obtain the expaaedf log-
likelihood and gradient. Algorithm 2 gives the details.

Note that we can also permute the rows and columns of the parameter @&trobtain equiv-
alent estimates. Therefo&is not strictly identifiable exactly because of these permutations. Since
the space of permutations dhnodes is very large (grows &H) the permutation sampling algo-
rithm will explore only a small fraction of the space of all permutations and mayerge to one of
the global maxima (but may not explore B! of them) of the parameter space. As we empirically
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input : size of parameter matriX,, graphG onN = Nf nodes, and learning rake
output: MLE parameter® (N1 x N1 probability matrix)
1 initialize ©;
2 while not convergedio
s evaluate gradient%-| (&)
t
4 update parameter estimat€3;:, ; = O, +}‘a%7| (&)
5 end
6 return © = ©;

Algorithm 1: KRONFIT algorithm.

input : Parameter matri®©, and graplG
output: Log-likelihoodl (®), and gradien%l (©)
fort:=1toTdo

Ot := SamplePermutation (G, ©)

i = logP(G|o), ©)

grad, := 25 logP(G|aV),©)
end
return 1(©) = + 3,1, and 51 (©) = + 3, grad,

Algorithm 2: Calculating log-likelihood and gradient

o o b~ W N P

show later our results are not sensitive to this and multiple restarts resultiivakot (but often
permuted) parameter estimates.
5.3.1 S\MPLING PERMUTATIONS

Next, we describe the Metropolis algorithm to simulate draws from the permutgistriibution
P(0|G, ©), which is given by

P(0,G,©0) P(0,G,0)
5.P(1,G,0) Z

P(0|G,0) =

whereZ is the normalizing constant that is hard to compute since it involves the sumNbver
elements. However, if we compute the likelihood ratio between permutatianslo’ (Equation 6)
the normalizing constants nicely cancel out:

P(c']G,©) Po},0) o (1-2[oy,a))
P(0[G,0) P[oy,0y] (1— P[o,,0.)) (6)
’ (uvec = FW =V uyv)¢e u,Ov
/ - R
= i[cu’ ] |_| (i i[o-w a,]) @)
(U V)GG [GU7 OV] (U,V)¢G ( - [Ou, ov})
(0u,0v)#(0y,.0}) (0u,0v)#(0y,0})

This immediately suggests the use of a Metropolis sampling algorithm (Gamernf), th9
simulate draws from the permutation distribution since Metropolis is solely basadich ratios
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input : Kronecker initiator matrix® and a graptG on N nodes
output: Permutatioro!) ~ P(0|G, ©)
1009:=(1,...,N)
2i=1
3 repeat
4 Draw j andk uniformly from (1,...,N)
5 ol := SwapNodes(a~Y, j, k)
6 Drawu fromU (0,1)
if u> % then
o) = gli-1)
end
10 i=i+1
11 until o ~ P(0|G,©)
12 return o)
13 WhereU (0,1) is a uniform distribution on0, 1], ando’ := SwapNodes( o, j,k) is the
permutationo’ obtained fromo by swapping elements at positiopandk.

Algorithm 3: SamplePermutation( G, ©) : Metropolis sampling of the node permutation.

(where normalizing constants cancel out). In particular, suppose thia¢ iMetropolis algorithm
(Algorithm 3) we consider a move from permutationto a new permutatiow’. Probability of

accepting the move td' is given by Equation 6 (i% < 1) or 1 otherwise.

Now we have to devise a way to sample permutatiorisom the proposal distribution. One
way to do this would be to simply generate a random permutatiamd then check the acceptance
condition. This would be very inefficient as we expect the distribuiga|G,®) to be heavily
skewed, that is, there will be a relatively small number of good permutatnmae(mappings). Even
more so as the degree distributions in real networks are skewed there wility bad permutations
with low likelihood, and few good ones that do a good job in matching nodeigbfdegree.

To make the sampling process “smoother”, that is, sample permutations that #rat different
(and thus are not randomly jumping across the permutation space) we dddpkov chain. The
idea is to stay in high likelihood part of the permutation space longer. We do yhisaking
samples dependent, that is, givehwe want to generate next candidate permutatfrio then
evaluate the likelihood ratio. When designing the Markov chain step one Heesdareful so that
the proposal distribution satisfies the detailed balance conditigst)P(0’|0”) = 1(0”)P(0”|d’),
whereP(a’|0”) is the transition probability of obtaining permutatiohfrom o” and, (d’) is the
stationary distribution.

In Algorithm 3 we use a simple proposal where given permutatione generate” by swap-
ping elements at two uniformly at random chosen positions’of We refer to this proposal as
SwapNodes. While this is simple and clearly satisfies the detailed balance condition it is also inef
ficient in a way that most of the times low degree nodes will get swappeddet donsequence of
heavy tailed degree distributions). This has two consequences, (ajllvswly converge to good
permutations (accurate mappings of high degree nodes), and (b) enmea@h a good permutation,
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very few permutations will get accepted as most proposed permutatiomil swap low degree
nodes (as they form the majority of nodes).

A possibly more efficient way would be to swap elements diased based on corresponding
node degree, so that high degree nodes would get swapped more-tifteaver, doing this directly
does not satisfy the detailed balance condition. A way of sampling labelsddigseode degrees
that at the same time satisfies the detailed balance condition is the following: warmpédge ir
uniformly at random and swap the labels of the nodes at the edge endpdatise this is biased
towards swapping labels of nodes with high degrees simply as they haveedgee. The detailed
balance condition holds as edges are sampled uniformly at random. Weadlés proposal as
SwapEdgeEndpoints

However, the issue with this proposal is that if the gr&plis disconnected, we will only be
swapping labels of nodes that belong to the same connected componemheahis that some parts
of the permutation space will never get visited. To overcome this problenxeeigSwapNodes
with some probabilityw and SwapEdgeEndpoints  with probability 1— .

To summarize we consider the following two permutation proposal distributions:

e 0’ = SwapNodes(o’): we obtaing” by takingo’, uniformly at random selecting a pair of
elements and swapping their positions.

e 0" = SwapEdgeEndpoints (0’): we obtaing” from o’ by first sampling an edgg, k) from
G uniformly at random, then we tak# and swap the labels at positiopandk.

5.3.2 $PEEDINGUP THE LIKELIHOOD RATIO CALCULATION

We further speed up the algorithm by using the following observation. Atsewrthe Equation 6
takesO(N?) to evaluate since we have to considét possible edges. However, notice that per-
mutationso anda’ differ only at two positions, that is, elements at positipandk are swapped,

that is,oc anda’ map all nodes except the two to the same locations. This means those elements of
Equation 6 cancel out. Thus to update the likelihood we only need to travessews and columns

of matrix 2, namely rows and columnjsandk, since everywhere else the mapping of the nodes to
the adjacency matrix is the same for both permutations. This gives Equatiorré wie products

now range only over the two rows/columns®fvherec anda’ differ.

Graphs we are working with here are too large to allow us to explicitly createstome the
stochastic adjacency matrixby Kronecker powering the initiator matr&. Every time probability
PJi, j] of edge(i, j) is needed the Equation 1 is evaluated, which t&gs. So a single iteration of
Algorithm 3 takesO(kN).

Observation 3 Sampling a permutatioa from P(0|G, ©) takes QkN).

This is gives us an improvement over ®¢€N!) complexity of summing over all the permuta-
tions. So far we have shown how to obtain a permutation but we still needItagy#he likelihood
and find the gradients that will guide us in finding good initiator matrix. The lprakhere is that
naively evaluating the network likelihood (gradient) as written in Equation&stéineO(N?). This
is exactly what we investigate next and how to calculate the likelihodidear time
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5.4 Efficiently Approximating Likelihood and Gradient

We just showed how to efficiently sample node permutations. Now, givemnaup&tion we show
how to efficiently evaluate the likelihood and it's gradient. Similarly as evaluatiadikielihood
ratio, naively calculating the log-likelihodd®) or its gradient%l (©) takes time quadratic in the
number of nodes. Next, we show how to compute this in linear @gte).

We begin with the observation that real graphs are sparse, which meattsstihumber of edges
is not quadratic but rather almost linear in the number of ndges, N2. This means that majority
of entries of graph adjacency matrix are zero, that is, most of the edgestpresent. We exploit
this fact. The idea is to first calculate the likelihood (gradient) of an emptyhgithat is, a graph
with zero edges, and then correct for the edges that actually app@ar in

To naively calculate the likelihood for an empty graph one needs to evaketgeell of graph
adjacency matrix. We consider Taylor approximation to the likelihood, antbigxipe structure of
matrix ©° to devise a constant time algorithm.

First, consider the second order Taylor approximation to log-likelihood efdge that succeeds
with probability x but does not appear in the graph:

1
log(1—x) ~ —x— éxz.

Calculatingle(©), the log-likelihood of an empty graph, becomes:

le(©) i%logl pij) ~ (i%e.,) — <%§6., > (8)

Notice that while the first pair of sums ranges oMeglements, the last pair only ranges oigr
elementsi{; = log, N). Equation 8 holds due to the recursive structure of margenerated by the
Kronecker product. We substitute the {ag- pij) with its Taylor approximation, which gives a sum
over elements of and their squares. Next, we notice the sum of elementsfofms a multinomial
series, and thug; ; pij = (3, 6ij)%, where;; denotes an element 6, andp;j element oo

Calculating log-likelihood ofG now takesO(E): First, we approximate the likelihood of an
empty graph in constant time, and then account for the edges that arygotesent inG, that is,
we subtract “no-edge” likelihood and add the “edge” likelihoods:

1(©)=1e(©)+  —log(1-P[ou,0y])+log(P[oy,0)).
(uv)eG

We note that by using the second order Taylor approximation to the log-likelibban empty
graph, the error term of the approximatior%i@i Bij3)k, which can diverge for largk. For typical
values of initiator matrixP; (that we present in Section 6.5) we note that one needs about fourth
or fifth order Taylor approximation for the error of the approximation dbtugo to zero ask
approaches infinity, that i§,;; 6;; "1 < 1, wheren is the order of Taylor approximation employed.

5.5 Calculating the Gradient

Calculation of the gradient of the log-likelihood follows exactly the same patgiedescribed above.
First by using the Taylor approximation we calculate the gradient as if gsapbuld have no edges.
Then we correct the gradient for the edges that are preséat &s in previous section we speed
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up the calculations of the gradient by exploiting the fact that two consecpgvmutation® and
o’ differ only at two positions, and thus given the gradient from previoys ste only needs to
account for the swap of the two rows and columns of the gradient m@¥© to update to the
gradients of individual parameters.

5.6 Determining the Size of Initiator Matrix

The question we answer next is how to determine the right number of parantégt is, what is

the right size of matriX@? This is a classical question of model selection where there is a tradeoff
between the complexity of the model, and the quality of the fit. Bigger model with naweaneters
usually fits better, however it is also more likely to overfit the data.

For model selection to find the appropriate valudlgfthe size of matrix®, and choose the right
tradeoff between the complexity of the model and the quality of the fit, we gmfmuse the Bayes
Information Criterion (BIC) (Schwarz, 1978). Stochastic Kroneckaph model the presence of
edges with independent Bernoulli random variables, where the catanimber of parameters is
lek, which is a function of a lower-dimensional parame®er This is then acurved exponential
family (Efron, 1975), and BIC naturally applies:

BIC(Ny) = (@) + 2NZlog(N?)

where@)Nl are the maximum likelihood parameters of the model Wihx N; parameter matrix,
andN is the number of nodes i@. Note that one could also additional term to the above formula
to account for multiple global maxima of the likelihood space butlas small the additional term
would make no real difference.

As an alternative to BIC one could also consider the Minimum DescriptionthgiMpDL) (Ris-
sanen, 1978) principle where the model is scored by the quality of the ttp&usize of the de-
scription that encodes the model and the parameters.

6. Experiments on Real and Synthetic Data

Next we described our experiments on a range of real and synthetionkstw\Ve divide the ex-
periments into several subsections. First we examine the convergesheeiéng of the Markov
chain of our permutation sampling scheme. Then we consider estimating tmegpars of syn-
thetic Kronecker graphs to see whethexdFIT is able to recover the parameters used to generate
the network. Last, we consider fitting Stochastic Kronecker graphs te feed world networks.

KRONFIT code for efficient Kronecker graph parameter estimation can be dodedoom
http://snap.stanford.edu

6.1 Permutation Sampling

In our experiments we considered both synthetic and real graphs. dinksgtioned otherwise all
synthetic Kronecker graphs were generated ugihe: [0.8,0.6;0.5,0.3], andk = 14 which gives us
a graphG onN =16,384 nodes anfl =115,741 edges. We chose this particuiras it resembles
the typical initiator for real networks analyzed later in this section.
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Figure 12: Convergence of the log-likelihood and components of thaemtatbwards their true
values for Metropolis permutation sampling (Algorithm 3) with the number of sasnple

6.1.1 GONVERGENCE OF THELOG-LIKELIHOOD AND THE GRADIENT

First, we examine the convergence of Metropolis permutation sampling, weengutations are
sampled sequentially. A new permutation is obtained by modifying the previeiwbich creates
a Markov chain. We want to assess the convergence and mixing of the ¥t aim to determine
how many permutations one needs to draw to reliably estimate the likelihood andattierd,
and also how long does it take until the samples converge to the stationaryutiistribFor the
experiment we generated a synthetic Stochastic Kronecker graphsrjsasgdefined above. Then,
starting with a random permutation we run Algorithm 3, and measure how the tkeliand the
gradients converge to their true values.

In this particular case, we first generated a Stochastic Kroneckeng@as described above,
but then calculated the likelihood and the parameter gradient®fer [0.8,0.75;045,0.3]. We
average the likelihoods and gradients over buckets of 1,000 consesatiwles, and plot how the
log-likelihood calculated over the sampled permutations approaches thegtlileeliihood (that we
can compute sinc@ is a Stochastic Kronecker graphs).

First, we present experiments that aim to answer how many samples (i.e. taéoms) does
one need to draw to obtain a reliable estimate of the gradient (see Equatiofidire 12(a)
shows how the estimated log-likelihood approaches the true likelihood. Noéitedtimated values
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quickly converge to their true values, that is, Metropolis sampling quickly mtewards “good”
permutations. Similarly, Figure 12(b) plots the convergence of the gradidatiee thaid;, and6,;

of @ and®?; match, so gradients of these two parameters should converge to zeralead they
do. On the other han@;, and6,; differ betweer®’ and®;. Notice, the gradient for one is positive
as the parametdr , of @ should be decreased, and similarly 65 the gradient is negative as the
parameter value should be increased to matctethdn summary, this shows that log-likelihood
and gradients rather quickly converge to their true values.

In Figures 12(c) and (d) we also investigate the properties of the MaCkain Monte Carlo
sampling procedure, and assess convergence and mixing criteria. wergiot the fraction of
accepted proposals. It stabilizes at around 15%, which is quite close tlthef-a-thumb of
25%. Second, Figure 12(d) plots the autocorrelation of the log-likelihsa fanction of the lag.
Autocorrelationry of a signalX is a function of the lagk wherery is defined as the correlation
of signal X at timet with X att +k, that is, correlation of the signal with itself at l&gy High
autocorrelations within chains indicate slow mixing and, usually, slow coewery On the other
hand fast decay of autocorrelation implies better the mixing and thus one ressdsamples to
accurately estimate the gradient or the likelihood. Notice the rather fastoardtation decay.

All in all, these experiments show that one needs to sample on the order affttmisands
of permutations for the estimates to converge. We also verified that the cgidathe estimates is
sufficiently small. In our experiments we start with a random permutation anldog burn-in time.
Then when performing optimization we use the permutation from the previguscsiaitialize the
permutation at the current step of the gradient descent. Intuitively, shaaibes in parameter space
O also mean small changeshto|G,O) .

6.1.2 DFFERENTPROPOSALDISTRIBUTIONS

In Section 5.3.1 we defined two permutation sampling strate@eapNodes where we pick two
nodes uniformly at random and swap their labels (node ids) SaagEdgeEndpoints where we
pick a random edge in a graph and then swap the labels of the edge @adp@nalso discussed
that one can interpolate between the two strategies by exe@wapiNodes with probabilityw, and
SwapEdgeEndpoints  with probability 1— .

So, given a Stochastic Kronecker graghson N =16,384 ande =115,741 generated from
Pf =[0.8,0.7;0.5,0.3] we evaluate the likelihood & = [0.8,0.75;045,0.3]. As we sample per-
mutations we observe how the estimated likelihood converges to the true likelivmydover we
also vary parameteap which interpolates between the two permutation proposal distributions. The
quicker the convergence towards the true log-likelihood the better thegabgistribution.

Figure 13 plots the convergence of the log-likelihood with the number of salpelenutations.
We plot the average over non-overlapping buckets of 1,000 conge@érmutations. Faster con-
vergence implies better permutation proposal distribution. When we us&wajNodes (w= 1) or
SwapEdgeEndpoints  (w = 0) convergence is rather slow. We obtain best convergenee éoound
0.6.

Similarly, Figure 14(a) plots the autocorrelation as a function of the g different choices
of w. Faster autocorrelation decay means better mixing of the Markov chairn Agsdice that we
get best mixing fow = 0.6. (Notice logarithmic y-axis.)

Last, we diagnose how long the sampling procedure must be run befogernkeated samples
can be considered to be drawn (approximately) from the stationary digtnbuVe call this the
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Figure 13: Convergence of the log-likelihood and gradients for Meti®permutation sampling
(Algorithm 3) for different choices ofo that interpolates between tBeapNodes (w =
1) andSwapEdgeEndpoints  (w = 0) permutation proposal distributions. Notice fastest
convergence of log-likelihood fap = 0.6.

burn-in time of the chain. There are various procedures for assessingrgence. Here we adopt
the approach of Gelman et al. (2003), that is based on running multipleoMahains each from a
different starting point, and then comparing the variance within the chairfbetwkeen the chains.
The sooner the within- and between-chain variances become equadbtiter she burn-in time, that
is, the sooner the samples are drawn from the stationary distribution.

Let| be the parameter that is being simulated wittifferent chains, and then Ig(p denote the
Kh sample of thg!" chain, wherej = 1,...,J andk = 1,...,K. More specifically, in our case we
run separate permutation sampling chains. So, we first sample permtﬂ%ﬁimd then calculate

the corresponding Iog-likelihodcgik).
First, we compute between and within chain varianggsnd&3,, where between-chain vari-
ance is obtained by

KJ
éﬁz

Wherel_J =158, Jk) andl. = \%Zj 1l
Similarly the within-chain variance is defined by

1 J K
=P i

Then, the marginal posterior variancei o calculated using
R K-1, 1,
52 — 2 )
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Note that as the length of the chddn— oo, \/ﬁconverges to 1 from above. The recommendation
for convergence assessment from Gelman et al. (2003) is that theiglseale reduction is below
1.2.

Figure 14(b) gives the Gelman-Rubin-Brooks plot, where we plot thenfiatescale reduction
Rover the increasing chain lengghfor different choices of parameter. Notice that the potential
scale reduction quickly decays towards 1. Similarly as in Figure 14 the exivalmes ofw give
slow decay, while we obtain the fastest potential scale reduction whe.6.

6.1.3 FROPERTIES OF THEPERMUTATION SPACE

Next we explore the properties of the permutation space. We would like ttifjuarhat fraction
of permutations are “good” (have high likelihood), and how quickly arg ttiecovered. For the
experiment we took a real netwo@ (As-RoUTEVIEWS network) and the MLE paramete@for

it that we estimated before hand®) ~ —150,000). The networ® has 6,474 nodes which means
the space of all permutations hasl0?>°%° elements.

First, we sampled 1 billion () permutation; uniformly at random, that i(o;) = 1/(6,474)
and for each evaluated its log-likelihod@;|©) = logP(©|G, o;). We ordered the permutations in
deceasing log-likelihood and plottégb;|®) vs. rank. Figure 15(a) gives the plot. Notice that very
few random permutations are very bad (i.e., they give low likelihood), simifarypermutations
are very good, while most of them are somewhere in between. Notice tdrdmedom” permuta-
tion has log-likelihood ofx —320,000, which is far below true likelihodd®) ~ —150,000. This
suggests that only a very small fraction of all permutations gives good labelings.

On the other hand, we also repeated the same experiment but now usimgaterns sampled
from the permutation distributioo; ~ P(0|©, G) via our Metropolis sampling scheme. Figure 15(b)
gives the plot. Notice the radical difference. Now ttig|®;) very quickly converges to the true
likelihood of ~ —150 000. This suggests that while the number of “good” permutations (accurate
node mappings) is rather small, our sampling procedure quickly conviertfes “good” part of the
permutation space where node mappings are accurate, and spends thimenthsdre.
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6.2 Properties of the Optimization Space

In maximizing the likelihood we use a stochastic approximation to the gradient. déssvariance
to the gradient and makes efficient optimization techniques, like conjugatiegtahighly unstable.
Thus we use gradient descent, which is slower but easier to contral, Ww&snake the following
observation:

Observation 4 Given a real graph G then finding the maximum likelihood Stochastic Kronecke
initiator matrix © A
©=arg rr(])a>P(G|®)

iS a non-convex optimization problem.

Proof By definition permutations of the Kronecker graphs initiator ma®iall have the same
log-likelihood. This means that we have several global minima that comesjegpermutations of
parameter matri©, and then between them the log-likelihood drops. This means that the optimiza-
tion problem is non-convex. |

The above observation does not seem promising for estimé)timgng gradient descent as it is
prone to finding local minima. To test for this behavir we run the following expent: we gener-
ated 100 synthetic Kronecker graphs on 16,384)(@odes and 1.4 million edges on the average,
each with a randomly chosen<2 parameter matri®©*. For each of the 100 graphs we run a single
trial of gradient descent starting from a random parameter métixand try to recove®*. In
98% of the cases the gradient descent converged to the true pararidaystimes the algorithm
converged to a different global minima, that@&is a permuted version of original parameter matrix
©*. Moreover, the median number of gradient descent iterations was only 52

This suggests surprisingly nice structure of our optimization space: it seebehave like a
convex optimization problem with many equivalent global minima. Moreover,ekiperiment is
also a good sanity check as it shows that given a Kronecker graplamveecover and identify the
parameters that were used to generate it.

Moreover, Figure 15(c) plots the log-likelihod@;) of the current parameter estima®e over
the iterationd of the stochastic gradient descent. We plot the log-likelihood for 10 difteruns
of gradient descent, each time starting from a different random setrafipeter®©g. Notice that in
all runs gradient descent always converges towards the optimumpaediithe runs gets stuck in
some local maxima.

6.3 Convergence of the Graph Properties

We approached the problem of estimating Stochastic Kronecker initiator n@atrixdefining the
likelihood over the individual entries of the graph adjacency matrix. Hewavhat we would really
like is to be given a real grap@ and then generate a synthetic graplthat has similar properties
as the real5. By properties we mean network statistics that can be computed from thie, doap
example, diameter, degree distribution, clustering coefficient, etc. A gtriisrinot clear that our
approach which tries to match individual entries of graph adjacency maittbaleo be able to
reproduce these global network statistics. However, as show next tiostise case.

To get some understanding of the convergence of the gradient dé@s¢erms of the network
properties we performed the following experiment. After every st#stochastic gradient descent,
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Figure 16: Convergence of graph properties with the number of iteragfaradient descent using
the synthetic data set. We start with a random choice of parameters and \g&hote
gradient descent the Kronecker graph better and better matches kgtwperties of
the target graph.

we compare the true grapgh with the synthetic Kronecker gragy generated using the current
parameter estimaté;. Figure 16(a) gives the convergence of log-likelihood, and (b) gizsslute
error in parameter valueiqe.J 05il, wheree.J €6, and;; € ©%). Similarly, Figure 16(c) plots
the effective diameter, and (d) gives the largest smgular value ohgadfacency matriX as it
converges to largest singular valueGf

Note how with progressing iterations of gradient descent propertiesiphif; quickly converge
to those ofG even though we are not directly optimizing the similarity in network properties: log
likelihood increases, absolute error of parameters decreases, diametargest singular value of
K: both converge t@. This is a nice result as it shows that through maximizing the likelihood the
resulting graphs become more and more similar also in their structural prep@sten though we
are not directly optimizing over them).

6.4 Fitting to Real-world Networks

Next, we present experiments of fitting Kronecker graph model to redtiwetworks. Given a real
networkG we aim to discover the most likely paramet&shat ideally would generate a synthetic

1023



LESKOVEC, CHAKRABARTI, KLEINBERG, FALOUTSOS AND GHAHRAMANI

=
o
[ee]

T L \Hheal grapH -"\“é“\“\- TTT
Kronecker —&—

=

=
o
~

= =
o o
[3;] [s2]

T \HHH‘ T \HHH‘ T \HHH‘ T TTTTmm]

I

=
o
w
UBULALLLL B ALY B R BT
=
(@)

Real graph -~
| | Konegker —s—

Reachable pairs of nodes, r(h)

10° o 103 11
10° 10t 102 10° 10* 0 1 2 3 4 5 6 7 8 9
In-degree, k Number of hops, h
(a) Degree distribution (b) Hop plot
102 T T T T TT 100 T \HHH‘ T T TTT[T T T TTTTT

T ‘Hmﬁedlgl’apH _____ O
Kronecker —=—

T \\Hhealg‘raph ..... O
Kronecker —s—

T TH

Singular value
[
o
2.
Network value

r 1 102 E E
O L L1 \\\‘ L ] ' '3 L \\\HH‘ L \\\HH‘ L \\\HH‘ L1l
10 10
10° 10t 102 10° 10t 102 10° 10*
Rank Rank
(c) Scree plot (d) “Network” value

Figure 17: Autonomous SystemA $-ROUTEVIEWS): Overlayed patterns of real graph and the
fitted Kronecker graph. Notice that the fitted Kronecker graph matchésrips of the
real graph while using only four parameters<(2 initiator matrix).

graphK having similar properties as re@l This assumes that Kronecker graphs are a good model
of the network structure, and thatRONFIT is able to find good parameters. In previous section
we showed that RONFIT can efficiently recover the parameters. Now we examine how well can
Kronecker graph model the structure of real networks.

We consider several different networks, like a graph of connectwitgng Internet Autonomous
systems (A-RoUTEVIEWS) with N =6,474 andE =26,467 a who-trusts-whom type social net-
work from Epinions (Richardson et al., 2003)Ri&I0NS) with N =75,879 andE =508,960 and
many others. The largest network we consider for fitting isCKR photo-sharing online social
network with 584,207 nodes and 3,555,115 edges.

For the purpose of this section we take a real netwdrkind parameter® using KRONFIT,
generate a synthetic graﬁhusing@), and then compar@ andK by comparing their properties that
we introduced in Section 2. In all experiments we started from a randont @aimdom initiator
matrix) and run gradient descent for 100 steps. At each step we estimadikelihood and the
gradient based on 510,000 sampled permutations where we discard®f80amples to allow
the chain to burn-in.

1024



KRONECKERGRAPHS. AN APPROACH TOMODELING NETWORKS

6.4.1 HTTING TO AUTONOMOUS SYSTEMS NETWORK

First, we focus on the Autonomous Systems network obtained from the iditjvef Oregon Route
Views project (RouteViews, 1997). Given the AS netw@kve run KRONFIT to obtain param-
eter estimate®. Using the® we then generate a synthetic Kronecker grpland compare the
properties ofG andK.

Figure 17 shows properties ofSAROUTEV IEWS, and compares them with the properties of a
synthetic Kronecker graph generated using the fitted paranétm‘rsize 2x 2. Notice that proper-
ties of both graphs match really well. The estimated parameteéar[@.%?, 0.571;0571,0.049.

Figure 17(a) compares the degree distributions of tseROUTEVIEWS network and its syn-
thetic Kronecker estimate. In this and all other plots we use the exponentiahdpivtich is a
standard procedure to de-noise the data when plotting on log-log scalése B very close match
in degree distribution between the real graph and its synthetic counterpart.

Figure 17(b) plots the cumulative number of pairs of nogéy that can be reached id h
hops. The hop plot gives a sense about the distribution of the shoatibskemgths in the network
and about the network diameter. Last, Figures 17(c) and (d) plot tluérapgroperties of the graph
adjacency matrix. Figure 17(c) plots largest singular values vs. rak(c plots the components
of left singular vector (the network value) vs. the rank. Again notice tieggreement with the
real graph while using only four parameters.

Moreover, on all plots the error bars of two standard deviations showatfi@nce of the graph
properties for different realizationR(©X). To obtain the error bars we took the safeand
generated 50 realizations of a Kronecker graph. As for the most oflthe the error bars are so
small to be practically invisible, this shows that the variance of network ptiegavhen generating
a Stochastic Kronecker graph is indeed very small.

Also notice that the A-ROUTEVIEWS is an undirected graph, and that the fitted parameter
matrix © is in fact symmetric. This means that without a priori biasing the fitting towards un
rected graphs, the recovered parameters obey this aspect of theladtitting AS-ROUTEVIEWS
graph from a random set of parameters, performing gradient defecet00 iterations and at each
iteration sampling half a million permutations, took less than 10 minutes on a stanesktbol
PC. This is a significant speedup over Bkaa et al. (2006), where by using a similar permuta-
tion sampling approach for calculating the likelihood of a preferential attawhmedel on similar
As-RoUTEVIEWS graph took about two days on a cluster of 50 machines.

6.4.2 (HOICE OF THEINITIATOR MATRIX SIZE N¢

As mentioned earlier for finding the optimal number of parameters, that istisglehe size of
initiator matrix, BIC criterion naturally applies to the case of Kronecker gsapRigure 23(b)
shows BIC scores for the following experiment: We generated Kromegewh withN =2,187
andE =8,736 usingN; = 3 (9 parameters) arkdl= 7. For 1< N; < 9 we find the MLE parameters
using gradient descent, and calculate the BIC scores. The model withatbstlscore is chosen.
As Figure 23(b) shows we recovered the true model, that is, BIC scthe iswest for the model
with the true number of parametehd, = 3.

Intuitively we expect a more complex model with more parameters to fit the data.b€hus
we expect largeN; to generally give better likelihood. On the other hand the fit will also depand o
the size of the grapfs. Kronecker graphs can only generate graphaibnodes, while real graphs
do not necessarily havIEl'l‘ nodes (for some, preferably small, integélsandk). To solve this
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Ne|| 16) | Nf | Ef ||{degu)>0}| | BIC score
2 | —152,499] 8,192 [ 25,023 5,675 152,506
3 | —127,066| 6,561 | 28,790 5,683 127,083
4 | —153,260| 16,384 | 24,925 8,222 153,290
5 | —149,949] 15,625] 29,111 9,822 149,996
6 | —128,241| 7,776 | 26,557 6,623 128,309
As-ROUTEVIEWS | 26,467| 6,474 |

Table 2: Log-likelihood at MLE for different choices of the size of the ind@gramatrix N; for the
As-RoUTEVIEWS graph. Notice the log-likelihoodi(B) generally increases with the
model complexityN;. Also notice the effect of zero-padding, that is, fdf = 4 and
N1 = 5 the constraint of the number of nodes being an integer powij decreases the
log-likelihood. However, the columi{degu) > 0}| gives the number of non-isolated
nodes in the network which is much less tidihand is in fact very close to the true num-
ber of nodes in the &-ROUTEVIEWS. Using the BIC scores we see tiit=3 orN; = 6

are best choices for the size of the initiator matrix.

problem we choosk so thatN¥~* < N(G) < N¥, and then augmer@ by addingN¥ — N isolated
nodes. Or equivalently, we pad the adjacency matri§ afith zeros until it is of the appropriate
size,N'l‘ X N'l‘. While this solves the problem of requiring the integer power of the numbeoddés
it also makes the fitting problem harder as whé¢r« N'l‘ we are basically fittings plus a large
number of isolated nodes.

Table 2 shows the results of fitting Kronecker graphs &8 RouTEVIEWS while varying the
size of the initiator matriN;. First, notice that in general largBi results in higher log-likelihood
I(é) at MLE. Similarly, notice (cqumrN'l‘) that while As-ROUTEVIEWS has 6,474 nodes, Kro-
necker estimates have up to 16,384 nodes (16;384which is the first integer power of 4 greater
than 6,474). However, we also show the number of non-zero degoeeigolated) nodes in the
Kronecker graph (columf{degu) > 0}|). Notice that the number of non-isolated nodes well cor-
responds to the number of nodes irs-ROUTEVIEWS network. This shows that KONFIT is
actually fitting the graph well and it successfully fits the structure of thelgpdyps a number of
isolated nodes. Last, colunif gives the number of edges in the corresponding Kronecker graph
which is close to the true number of edges of thre ROUTEV IEWS graph.

Last, comparing the log-likelihood at the MLE and the BIC score in Table 2atieathat the
log-likelihood heavily dominates the BIC score. This means that the size of itiedn matrix
(number of parameters) is so small that overfitting is not a concern. Thusaw just choose the
initiator matrix that maximizes the likelihood. A simple calculation shows that one woegdi n
to take initiator matrices with thousands of entries before the model complexitpfpRIC score
would start to play a significant role.

We further examine the sensitivity of the choice of the initiator size by the follgwkperiment.
We generate a Stochastic Kronecker grakihsn 9 parameterd\y = 3), and then fit a Kronecker
graphK’ with a smaller number of parameters (4 instead ®;9~ 2). And also a Kronecker graph
K" of the same complexity &§ (N = 3).
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Figure 18: 3 by 3 Stochastic Kronecker graphGiven a Stochastic Kronecker grapBgienerated
from Ny = 3 (red curve), we fit a Kronecker grajpti with Nj = 2 (green) and” with
Ni = 3 (blue). Not surprisinglyK” fits the properties oK perfectly as the model is the
of same complexity. On the other hakd has only 4 parameters (instead of 9 a¥in
andK”) and still fits well.

Figure 18 plots the properties of all three graphs. Not surprisikglyblue) fits the properties
of K (red) perfectly as the initiator is of the same size. On the other Karfdreen) is a simpler
model with only 4 parameters (instead of 9 akimndK”) and still generally fits well: hop plot
and degree distribution match well, while spectral properties of grapheadjgaenatrix, especially
scree plot, are not matched that well. This shows that nothing drastic m&ppée that even a bit
too simple model still fits the data well. In general we observe empirically thatdrgasing the
size of the initiator matrix one does not gain radically better fits for degreédisom and hop plot.
On the other hand there is usually an improvement in the scree plot and thod pidtvork values
when one increases the initiator size.

6.4.3 NETWORK PARAMETERS OVER TIME

Next we briefly examine the evolution of the Kronecker initiator for a tempomaltylving graph.
The idea is that given parameter estimates of a real-gGt timet, we can forecast the future
structure of the grap@: x at timet 4 x, that is, using parameters obtained fr@ywe can generate
a larger synthetic grapi that will be similar toG, x.
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Snapshotattméd N | E | [(6) | EstimatesatMLED
T1 2,048 | 8,794 | —40,535 | [0.9810.633;06330.048
T 4,088| 15,711| —82,675 | [0.9340.623;0622 0.044
T3 6,474 | 26,467 | —152,499| [0.987,0.571;0571,0.049

Table 3: Parameter estimates of the three temporal snapshots ostROBTEV IEWS network.
Notice that estimates stay remarkably stable over time.
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Figure 19: Autonomous systems network over t{fas-ROUTEV IEWS): Overlayed patterns of real
As-RouTEVIEWS network at timeTs and the Kronecker graphs with parameters esti-
mated from As-ROUTEVIEWS at time T, andT,. Notice good fits which means that
parameters estimated on historic snapshots can be used to estimate the gragh-in th
ture.

As we have the information about the evolution of th& ROUTEV IEWS network, we estimated
parameters for three snapshots of the network when it had abnati2s. Table 3 gives the results of
the fitting for the three temporal snapshots of thte ROUTEV IEWS network. Notice the parameter
estimate® remain remarkably stable over time. This means that Kronecker graphe aesed to
estimate the structure of the networks in the future, that is, parameters estinoateitie historic
data can extrapolate the graph structure in the future.
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Network | N E | Estimated MLE parametes | 1(6) | Time
AS-ROUTEVIEWS 6,474 26,467 | [0.987,0.571;0571,0.049 —152,499| 8milb5s
ATP-GR-QC 19,177 26,169| [0.9020.253;0221,0.582 —242,493| 7m40s
B10-PROTEINS 4,626 29,602 | [0.847,0.641;06410.072 —185,130| 43m4ls
EMAIL -INSIDE 986 32,128 | [0.9990.772;0772,0.257) —107,283| 1h07m
CA-GR-QC 5,242 28,980| [0.9990.245;02450.691] —160,902| 14m02s
As-NEWMAN 22,963 96,872 0.954,0.594;0594,0.019 —593,747| 28m48s
BLOG-NAT05-6M 31,600 271,377| [0.9990.569;05020.221] —1,994,943| 47m20s
BLOG-NATO6ALL 32,443| 318,815| [0.9990.578;0517,0.221] —2,289,009| 52m31ls
CA-HEP-PH 12,008 | 237,010 [0.9990.437;0437,0.484 —1,272,629| 1h22m
CA-HEP-TH 9,877 51,971| [0.9990.271;0271,0.587 —343,614| 21m1l7s
CIT-HEP-PH 30,567 | 348,721| [0.9940.439;03550.526 —2,607,159| 51m26s
CIT-HEP-TH 27,770 352,807| [0.990,0.440;0347,0.538 —2,507,167| 15m23s
EPINIONS 75,879| 508,837| [0.9990.532;04800.129 —3,817,121| 45m39s
GNUTELLA-25 22,687 54,705| [0.7460.496;0654,0.183 —530,199| 16m22s
GNUTELLA-30 36,682 88,328 | [0.7530.489;06320.178 —919,235| 14m20s
DELICIOUS 205,282 436,735| [0.9990.327;03480.391] —4,579,001| 27m51s
ANSWERS 598,314| 1,834,200 [0.9940.384;0414,0.249 —20,508,982| 2h35m
CA-DBLP 425,957| 2,696,489 [0.9990.307;0307,0.574 —26,813,878| 3h01m
FLICKR 584,207| 3,555,115 [0.9990.474;04850.144 —32,043,787| 4h26m
WEB-NOTREDAME || 325,729| 1,497,134| [0.9990.414;04530.229 —14,588,217| 2h59m

Table 4: Results of parameter estimation for 20 different networks.

Tablees the description

and basic properties of the above network data sets. Networks aodiF{T code are
available for download dtttp://snap.stanford.edu

Figure 19 further explores this. It overlays the graph properties ofghleAs-ROUTEVIEWS

network at timels and the synthetic graphs for which we used the parameters obtained archisto
snapshots of &-ROUTEVIEWS at timesT; andT,. The agreements are good which demonstrates
that Kronecker graphs can forecast the structure of the network futine.

Moreover, this experiments also shows that parameter estimates do motrautfth from the
zero padding of graph adjacency matrix (i.e., adding isolated nodes to @ﬁbaeNk nodes).
Snapshots of 8-RoUTEVIEWS at T; and T, have close to 2nodes, while we had to add 26%
(1,718) isolated nodes to the networkiato make the number of nodes be Regardless of this we
see the parameter estima@semain basically constant over time, which seems to be independent
of the number of isolated nodes added. This means that the estimated pasaretat biased too
much from zero padding the adjacency matri>xGof

6.5 Fitting to Other Large Real-world Networks

Last, we present results of fitting Stochastic Kronecker graphs to 26 taa-world networks:
large online social networks, likeFENIONS, FLICKR and DELICIOUS, web and blog graphs (AB-
NOTREDAME, BLOG-NATO05-6M, BLOG-NATOG6ALL), internet and peer-to-peer networks
(As-NEWMAN, GNUTELLA-25, GNUTELLA-30), collaboration networks of co-authorships from
DBLP (CA-DBLP) and various areas of physics (G#f&P-TH, CA-HEP-PH, CA-GR-QC), physics
citation networks (Cr-HeP-PH, CIT-HEP-TH), an email network (EAIL -INSIDE), a protein inter-
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Figure 20: Blog networK BLOG-NATO6ALL ): Overlayed patterns of real network and the estimated
Kronecker graph using 4 parameters«(2 initiator matrix). Notice that the Kronecker
graph matches all properties of the real network.

action network Bo-PROTEINS, and a bipartite affiliation network (authors-to-papersPACR-QC).
Refer to Table 5 in the appendix for the description and basic propertibesé networks. They
are available for download attp://snap.stanford.edu

For each data set we started gradient descent from a random poido(n initiator matrix) and
ran it for 100 steps. At each step we estimate the likelihood and the gradised lon 510,000
sampled permutations where we discard first 10,000 samples to allow the chaimim.

Table 4 gives the estimated parameters, the corresponding log-likelihaddseawall clock
times. All experiments were carried out on standard desktop computer.eNbétthe estimated
initiator matricesd seem to have almost universal structure with a large value in the top left entr
a very small value at the bottom right corner and intermediate values in thetotheorners. We
further discuss the implications of such structure of Kronecker initiator martrtke global network
structure in next section.

Last, Figures 20 and 21 show overlays of various network propeffiesaband the estimated
synthetic networks. In addition to the network properties we plotted in Fig8revé also sepa-
rately plot in- and out-degree distributions (as both networks are dinesbeidplot the node triangle
participation in panel (c), where we plot the number of triangles a nodeipates in versus the
number of such nodes. (Again the error bars show the variance obrieproperties over different
realizationsR(©M) of a Stochastic Kronecker graph.)

Notice that for both networks and in all cases the properties of the rv@brieand the synthetic
Kronecker coincide really well. Using Stochastic Kronecker graphs witjparameters we match
the scree plot, degree distributions, triangle participation, hop plot andretalues.

Given the previous experiments from the Autonomous systems graph wpresbnt the results
for the simplest model with initiator sizi; = 2. Empirically we also observe thhl = 2 gives
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Figure 21: EPINIONS who-trusts-whom social networkOverlayed patterns of real network and
the fitted Kronecker graph using only 4 parameters initiator matrix). Again, the
synthetic Kronecker graph matches all the properties of the real network

surprisingly good fits and the estimation procedure is the most robust awerges the fastest.
Using larger initiator matricelsl; > 2 generally helps improve the likelihood but not dramatically.
In terms of matching the network properties we also gent a slight improvenyemiaking the
model more complex. Figure 22 gives the percent improvement in log-likelibsove make the
model more complex. We use the log-likelihood of & 2 model as a baseline and estimate the
log-likelihood at the MLE for larger initiator matrices. Again, models with moreap@eters tend to
fit better. However, sometimes due to zero-padding of a graph adjaosatcix they actually have
lower log-likelihood (as for example seen in Table 2).

6.6 Scalability

Last we also empirically evaluate the scalability of thed&FIT. The experiment confirms that
KRONFIT runtime scales linearly with the number of eddge# a graphG. More precisely, we
performed the following experiment.

We generated a sequence of increasingly larger synthetic grapti®iodes and & edges, and
measured the time of one iteration of gradient descent, that is, sample 1 millionigadons and
evaluate the gradients. We started with a graph on 1,000 nodes, and finighead graph on 8
million nodes, and 64 million edges. Figure 23(a) showsOKFIT scaledinearly with the size of
the network. We plot wall-clock time vs. size of the graph. The dashed lires @i linear fit to the
data points.

7. Discussion

Here we discuss several of the desirable properties of the propaseddker graphs.
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Figure 22: Percent improvement in log-likelihood over the 2 model as we increase the model
complexity (size of initiator matrix). In general larger initiator matrices that hravee
degrees of freedom help improving the fit of the model.
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Figure 23: (a) Processor time to sample 1 million gradients as the graph gkmtise the algo-
rithm scales linearly with the graph size. (b) BIC score for model selection.

Generality: Stochastic Kronecker graphs include several other generatorgeialsgases: For
Bij = ¢, we obtain the classical Eid-Renyi random graph model. F& ; € {0,1}, we obtain
a deterministic Kronecker graph. Setting tie matrix to a 2x 2 matrix, we obtain the R-MAT
generator (Chakrabarti et al., 2004). In contrast to Kroneckghgrghe RMAT cannot extrapolate
into the future, since it needs to know the number of edges to insert. Tlaisidapable of obeying
the densification power law.
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Figure 24: 2x 2 Kronecker initiator matrix (a) can be thought of as two communities where ther
area andd edges inside each of the communities dnahdc edges crossing the two
communities as illustrated in (b). Each community can then be recursively divgieg
the same pattern. (c) The onion like core-periphery structure whereeth@rk gets
denser and denser as we move towards the center of the network.

Phase transition phenomenarhe Erdds-Renyi graphs exhibit phase transitions (&sdand
Rényi, 1960). Several researchers argue that real systems atlee“atige of chaos” or phase
transition (Bak, 1996; Sole and Goodwin, 2000). Stochastic Kronegiegrhs also exhibit phase
transitions (Mahdian and Xu, 2007) for the emergence of the giant coemp@md another phase
transition for connectivity.

Implications to the structure of the large-real networksnpirically we found that Z 2 initiator
(N1 = 2) fits well the properties of real-world networks. Moreover, givernkd2dnitiator matrix, one
can look at it as a recursive expansion of two groups into sub-graMpsntroduced this recursive
view of Kronecker graphs back in Section 3. So, one can then intalreliagonal values @ as
the proportion of edges inside each of the groups, and the off-diagahees give the fraction of
edges connecting the groups. Figure 24 illustrates the setting for twosggroup

For example, as shown in Figure 24, lamel and smallb,c would imply that the network is
composed of hierarchically nested communities, where there are manyirsigessach community
and few edges crossing them (Leskovec, 2009). One could think ostihisture as some kind
of organizational or university hierarchy, where one expects the frieatiships between people
within same lab, a bit less between people in the same department, less adeosstdiepartments,
and the least friendships to be formed across people from differeabkcof the university.

However, parameter estimates for a wide range of networks presentadle4lsuggests a very
different picture of the network structure. Notice that for most netwarksb > ¢ > d. Moreover,
a~1l,b~c~0.6 andd ~ 0.2. We empirically observed that the same structure of initiator matrix
© also holds when fitting & 3 or 4x 4 models. Always the top left element is the largest and then
the values on the diagonal decay faster than off the diagonal (Lesk20@9).

This suggests a network structure which is also knowroas-peripheryBorgatti and Everett,
2000; Holme, 2005), thgllyfish (Tauro et al., 2001; Siganos et al., 2006), or tletopus(Chung
and Lu, 2006) structure of the network as illustrated in Figure 24(c).

All of the above basically say that the network is composed of a denselydlinégvork core
and the periphery. In our case this would imply the following structure of tii@tior matrix. The
core is modeled by paramet@and the periphery bg. Most edges are inside the core (lagjeand
very few between the nodes of periphery (sntfll Then there are many more edges between the
core and the periphery than inside the periphéryg ¢ d) (Leskovec, 2009). This is exactly what
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we see as well. And in spirit of Kronecker graphs the structure repeatssively—the core again
has the dense core and the periphery, and so on. And similarly the pgrifgedf has the core and
the periphery.

This suggest an “onion” likeested core-peripherf.eskovec et al., 2008a,b) network structure
as illustrated in Figure 24(c), where the network is composed of dendedarser layers as one
moves towards the center of the network. We also observe similar strudttve idronecker ini-
tiator when fitting 3x 3 or 4x 4 initiator matrix. The diagonal elements have large but decreasing
values with off diagonal elements following same decreasing pattern.

One of the implications of this is that networks do not break nicely into hieizalih orga-
nized sets of communities that lend themselves to graph partitioning and communitjiateal-
gorithms. On contrary, this suggests that large networks can be decednipts a densely linked
core with many small periphery pieces hanging off the core. This is in dance with our recent
results (Leskovec et al., 2008a,b), that make similar observation (bed lomsa completely differ-
ent methodology based on graph partitioning) about the clustering and adtyrstuucture of large
real-world networks.

8. Conclusion

In conclusion, the main contribution of this work is a family of models of netwadrkcsure that
uses a non-traditional matrix operation, tkenecker product The resulting graphs (a) have all
the static properties (heavy-tailed degree distribution, small diameter, dicall the temporal
properties (densification, shrinking diameter) that are found in realank$w And in addition, (c)
we can formally prove all of these properties.

Several of the proofs are extremely simple, thanks to the rich theory afg€k@r multiplication.
We also provide proofs about the diameter and effective diameter, argheve that Stochastic
Kronecker graphs can mimic real graphs well.

Moreover, we also presentedRKNFIT, a fast, scalable algorithm to estimate Stochastic Kro-
necker initiator, which can be then used to create a synthetic graph that mimigsogherties of a
given real network.

In contrast to earlier work, our work has the following novelties: (a) iti®ag the few that
estimates the parameters of the chosen generator in a principled way, (hjnbg the few that
has a concrete measure of goodness of the fit (namely, the likelihodd) afids the quadratic
complexity of computing the likelihood by exploiting the properties of the Kroeegkaphs, and
(d) it avoids the factorial explosion of the node correspondencdgmglby using the Metropolis
sampling.

The resulting algorithm matches well all the known properties of real graswe show with
the Epinions graph and the AS graph, it scales linearly on the number e$edqd it is orders of
magnitudes faster than earlier graph-fitting attempts: 20 minutes on a commoditgB@s 2 days
on a cluster of 50 workstations (B&ko\a et al., 2006).

The benefits of fitting a Kronecker graph model into a real graph aeralev

e Extrapolation Once we have the Kronecker generagofor a given real matridxG (such that
G is mimicked by®K), a larger version o6 can be generated lgk+1,

¢ Null-model When analyzing a real netwofk one often needs to asses the significance of the
observation® that mimicsG can be used as an accurate modebof
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e Network structureEstimated parameters give insight into the global network and community
structure of the network.

e Forecasting As we demonstrated one can obt&rfrom a graphG; at timet such thaiG is
mimicked by®K. Then® can be used to model the structureGef  in the future.

e Sampling Similarly, if we want a realistic sample of the real graph, we could use a smaller
exponent in the Kronecker exponentiation, |R&1.

e Anonymization Since ®K mimics G, we can publisl®X, without revealing information
about the nodes of the real gra@h

Future work could include extensions of Kronecker graphs to evolvatgarks. We envision
formulating a dynamic Bayesian network with first order Markov depeciésnwhere parameter
matrix at timet depends on the graph at current time and the parameter matrix at time- 1.
Given a series of network snapshots one would then aim to estimate initiatoresattimdividual
time steps and the parameters of the model governing the evolution of the initiatiax. ma/e
expect that based on the evolution of initiator matrix one would gain greatghtns the evolution
of large networks.

Second direction for future work is to explore connections betweendtiaT graphs and Ran-
dom Dot Product graphs (Young and Scheinerman, 2007; Nicke8)20Mis also nicely connects
with the “attribute view” of Kronecker graphs as described in Section 3.&ould be interesting
to design methods to estimate the individual node attribute values as well as ithaedttribute
similarity matrix (i.e., the initiator matrix). As for some networks node attributes aeadyr given
one could then try to infer “hidden” or missing node attribute values and thysgaen insight into
individual nodes as well as individual edge formations. Moreoverwihisid be interesting as one
could further evaluate how realistic is the “attribute view” of Kroneckepfsa

Last, we also mention possible extensions of Kronecker graphs for mgdebighted and
labeled networks. Currently Stochastic Kronecker graphs use a Beredge generation model,
that is, an entry of big matri® encodes the parameter of a Bernoulli coin. In similar spirit one could
consider entries of to encode parameters of different edge generative processesxdrople, to
generate networks with weights on edges an ent® oduld encode the parameter of an exponential
distribution, or in case of labeled networks one could use several initiaticesin parallel and
this way encode parameters of a multinomial distribution over different nibdleLde values.
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Appendix A. Table of Networks

Table 5 lists all the network data sets that were used in this paper. We alsoiteahgome of the
structural network properties. Most of the networks can be obtained at
http://snap.stanford.edu
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Network 7 N | E | Ne [ Ne/N| C| D| D | Description

Social networks

ANSWERS 598,314 | 1,834,200 488,484| 0.82 | 0.11 | 22 | 5.72 | Yahoo! Answers social network (Leskovec et al., 2008a)

DELICIOUS 205,282 436,735| 147,567| 0.72| 0.3 | 24 6.28 | del.icio.us social network (Leskovec et al., 2008a)

EMAIL -INSIDE 986 32,128 986 | 1.00| 045| 7 2.6 | European research organization email network (Leskovec et al7a20
EPINIONS 75,879 | 508,837| 75,877| 1.00| 0.26 | 15| 4.27 | Who-trusts-whom graph of epinions.com (Richardson et al., 2003)
FLICKR 584,207 | 3,555,115| 404,733| 0.69| 0.4 | 18 5.42 | Flickr photo sharing social network (Kumar et al., 2006)

Information (citation) networks

BLOG-NATO05-6M 31,600 271,377| 29,150| 0.92| 0.24 | 10 3.4 | Blog-to-blog citation network (6 months of data) (Leskovec et al., 2D07b
BLOG-NATOGALL 32,443 | 318,815| 32,384| 1.00| 0.2 | 18| 3.94 | Blog-to-blog citation network (1 year of data) (Leskovec et al., 2007b)
CIT-HEP-PH 30,567 | 348,721| 34,401| 1.13| 0.3 | 14| 4.33| Citation network of ArXivhep-th papers (Gehrke et al., 2003)
CIT-HEP-TH 27,770 352,807| 27,400| 0.99| 0.33| 15 4.2 | Citations network of ArXivhep-ph papers (Gehrke et al., 2003)
Collaboration networks

CA-DBLP 425,957 | 2,696,489| 317,080 0.74 | 0.73 | 23 | 6.75 | DBLP co-authorship network (Backstrom et al., 2006)

CA-GR-QC 5,242 28,980 4,158 | 0.79| 0.66 | 17 6.1 | Co-authorship network igr-qc category of ArXiv (Leskovec et al., 2005b)
CA-HEP-PH 12,008 237,010 11,204| 0.93| 0.69| 13 | 4.71 | Co-authorship network ihep-ph category of ArXiv (Leskovec et al., 2005b)
CA-HEP-TH 9,877 51,971 8,638 | 0.87| 0.58| 18 | 5.96 | Co-authorship network ihep-th category of ArXiv (Leskovec et al., 2005b)
Web graphs

WEB-NOTREDAME | 325,729] 1,497,134 325,729 1.00 | 0.47 | 46 | 7.22 | Web graph of University of Notre Dame (Albert et al., 1999)

Internet networks

As-NEWMAN 22,963 96,872 | 22,963| 1.00| 0.35| 11| 3.83 | AS graph from new (July 16, 2007)

AsS-ROUTEVIEWS 6,474 26,467 6,474| 1.00| 04| 9| 3.72| AS from Oregon Route View (Leskovec et al., 2005b)

GNUTELLA-25 22,687 54,705| 22,663| 1.00| 0.01| 11| 5.57 | Gnutella P2P network on 3/25 2000 (Ripeanu et al., 2002)
GNUTELLA-30 36,682 88,328 | 36,646| 1.00| 0.01 | 11 5.75 | Gnutella P2P network on 3/30 2000 (Ripeanu et al., 2002)

Bi-partite networks

ATP-GR-QC | 19,177] 26,169] 14,832] 0.77] 0] 35] 11.08] Affiliation network ofgr-gc category in ArXiv (Leskovec et al., 2007b)
Biological networks

BI0-PROTEINS | 4626] 29,602] 4,626] 1.00] 0.12] 12| 4.24] Yeast protein interaction network (Colizza et al., 2005)

Table 5: Network data sets we analyzed. Statistics of networks we consigteber of node&l; number of edge&, number of nodes in
largest connected componey, fraction of nodes in largest connected compomyitN, average clustering coefficie@t diameter
D, and average path lengih Networks are available for downloadtdtp://snap.stanford.edu
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