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Abstract

We present a new sparse Gaussian Process (GP) model fasgiegre The key novel idea is to
sparsify thespectral representatioof the GP. This leads to a simple, practical algorithm foresg
sion tasks. We compare the achievable trade-offs betwesthiqpive accuracy and computational
requirements, and show that these are typically superiexigiing state-of-the-art sparse approx-
imations. We discuss both the weight space and functionesparesentations, and note that the
new construction implies priors over functions which aneagls stationary, and can approximate
any covariance function in this class.

Keywords: Gaussian process, probabilistic regression, sparse xpmtion, power spectrum,
computational efficiency

1. Introduction

One of the main practical limitations of Gaussian processes (GPs) for maeainang (Rasmussen
and Williams, 2006) is that in a direct implementation the computational and memariyeegnts
scale as0(n?) and O(n%), respectively. In practice this limits the applicability of exact GP imple-
mentations to data sets where the number of training sampless not exceed a few thousand.

A number of computationally efficient approximations to GPs have been gedpavhich re-
duce storage requirements@nm) and the number of computations @nnv), wheremis much
smaller thann. One family of approximations, reviewed in Quifionero-Candela and Rasmnus
(2005), is based on assumptions of conditional independence givetuaed set ofm inducing
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inputs Examples of such models are those proposed in Seeger et al. (20033 &d Bartlett
(2001), Tresp (2000), Williams and Seeger (2001) and Csat6é and (@f@2), as well as the Fully
Independent Training Conditional (FITC) model, introduced as SpRsseido-input GP (SPGP)
by Snelson and Ghahramani (2006). Walder et al. (2008) introduee&parse Multiscale GP
(SMGP), a madification of FITC that allows each basis function to have its setrof length-
scalest This additional flexibility typically yields some performance improvement ovéckbut

it also requires learning twice as many parameters. SMGP can alternativelgrived within the
unifying framework of Quifionero-Candela and Rasmussen (2005) dllwe the inducing inputs
to lie in a transformed domain, as shown in Lazaro-Gredilla and Figueirad-{4a10).

Another family of approximations is based on approximate matrix-vector-multigita
(MVMs), wherem is for example a reduced number of conjugate gradient steps to solve a sys
tem of linear equations. Some of these methods have been briefly revie@eidfionero-Candela
et al. (2007). Local mixtures of GP have been used by Urtasun angID&O008) for efficient
modelling of human poses.

In this paper we introduce a stationary trigonometric Bayesian model foxggign that retains
the computational efficiency of the aforementioned approaches, whilewingrperformance. The
model consists of a linear combination of trigopnometric functions where batihwesand phases are
integrated out. All hyperparameters of the model (frequencies and angd)jtack learned jointly by
maximizing the marginal likelihood. This model is a stationary sparse GP thappaoxdmate any
desired stationary full GP. Sparse trigonometric expansions have bm@wspd in several contexts,
for example, Lazaro-Gredilla et al. (2007) and Rahimi and Recht (2G@@&8discussed further in
Section 4.3.

FITC, SMGP, and the model introduced in this paper focus on prediatmeracy at low com-
putational cost, rather than on faithfully converging towards the full GReaumber of basis func-
tions grows. Performance-wise, FITC and the more recent SMGP ceegheded as the current
state-of-the-art sparse GP approximations, so we will use them asrbarichin the performance
comparisons.

In Section 2 we give a brief review of GP regression. In Section 3 wedotre the trigono-
metric Bayesian model, and in Section 4 we present the Sparse SpectrgsigBderocess (SSGP)
algorithm. Section 5 contains a comparative performance evaluation aakegata sets.

2. Gaussian Process Regression

Regression is often formulated as the task of predicting the scalar gutpissociated to thB-
dimensional inpuk,, given a training data seéb = {xj,y;|j = 1,...n} of ninput-output pairs. A
common approach is to assume that the outputs have been generated kg@mrulatent function
f(x) and independently corrupted by additive Gaussian noise of constamceo?:

yj = f(x))+¢j, gj ~ N(0, 62).

The regression task boils down to making inference ath¢xit. Gaussian process (GP) regression
is a probabilistic, non-parametric Bayesian approach. A Gaussianggrpder distribution orf (x)
allows us to encode assumptions about the smoothness (or other propdrtieslatent function

1. Note that SMGP only extends FITC in the specific case of the anisotrgpéred exponential covariance function,
whereas FITC can be applied to any covariance function.
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(Rasmussen and Williams, 2006). For any set of inguts’ ; the corresponding vector of function
evaluationd = [f(x1),..., f(xn)] " has ajoint Gaussian distribution:

P(f{xi}l1) = ALFIOKr).

This paper follows the common practice of setting the mean of the procesotb Tke properties
of the GP prior over functions are governed by the covariance function

[Kﬁ]ij = k(xi,xj) = E[f(x)f(xj)], 1)

which determines how the similarity between a pair of function values variedlaxton of the
corresponding pair of inputs. A covariance functiostationaryif it only depends on the difference
between its inputs

K(xi,xj) = k(xi —xj) = k(1).

The elegance of the GP framework is that the properties of the functiaroaveniently expressed
directly in terms of the covariance function, rather than implicitly via basis funstio

To obtain the predictive distributiop(y.|x., D) it is useful to express the model in matrix
notation by stacking the targeys in vectory = [y1,...,ya]" and writing the joint distribution of

training and test targets:
y Kit +03ln K.
] oo [ kal)

wherek;, is the vector of covariances betweé(x.) and the training latent function values, and
k.. is the prior variance of (x,). I is then x nidentity. The predictive distribution is obtained by
conditioning on the observed training outputs:

*:k* K +02| -1
BY: X0, D) = N (1, 0), Where{ M =K (Kgs +021n) ty "

0-3 = 0-% + k** - k*f(Kff + O-%I n)ilkf* .
The covariance function is parameterizedhyperparametersConsider for example the sta-
tionary anisotropic squared exponential covariance function

karp(T) = obexp(—3t'AM), where A = diag([¢2, 43, ... (3]). (3)

The hyperparameters are the prior variauéand the lengthscald€y} that determine how rapidly
the covariance decays with the distance between inputs. This covariam@h is also known
as the ARD (Automatic Relevance Determination) squared exponential, deeitanan effectively
prune input dimensions by growing the corresponding lengthscales.

It is convenient to denote all hyperparameters including the noise varlar@. These can be
learned by maximizing the evidence, or log marginal likelihood:

n 1 1 -1
logp(y|B) = —log(2m) — 5 |Ks + 0215 - éyT (K +03l0) . 4)

Provided there exist analytic forms for the gradients of the covarianmaifun with respect to the
hyperparameters, the evidence can be maximized by using a gradiedtseaseh. Unfortunately,
computing the evidence and the gradients requires the inversion of théermeamatrix< g + 02l ,
at a cost ofo(n®) operations, which is prohibitive for large data sets.

2. The extension to GPs with general mean functions is straightforward.
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3. Trigonometric Bayesian Regression

In this section we present a Bayesian linear regression model with trigénornasis functions,
and related it to a full GP in the next section. Consider the model

f(x) = iar cog(2ms’ X) + by sin(21s/ x) | (5)

where each of the pairs of basis functions is parametrized ly-alimensional vectos of spectral
frequencies. Note that eaghair of basis functions share frequencies, but each have independent
amplitude parameters, andb;,. We treat the frequencies as deterministic parameters and the
amplitudes in a Bayesian way. The priors are independent Gaussian

9% 9%
ar ~ N(07E)7 bl’ ~ N(07E)7

where the variances are scaled down linearly by the number of bastofusmdJnder the prior, the
distribution over functions from Equation (5) is Gaussian with mean functoa and covariance
function (from Equation (1))

a5 T 05 < T
k(xi,xj) = —_@(xi) @x;) = Er;COS(ZT[Sr (Xi —xj)) , (6)
where we define the column vector of length @ontaining the evaluation of tha pairs of trigono-
metric functions ak

o(x) = [cog2ms!x) sin(2ms]x) ... cog2mstx)  sin(2msix)]

Sparse linear models generally induce priors over functions whosengargepends on the input.
In contrast, the covariance function in Equation (6) is stationary, thatagribr variance is inde-
pendent of the input and equaldg. This is due to the particular nature of the trigonometric basis
functions and implies that the predictive variances cannot be “healsgitagposed in Rasmussen
and Quifionero-Candela (2005) for the case of the Relevance Veaidriive.

The predictions and marginal likelihood can be evaluated using Equatipasd24), although
direct evaluation is computationally inefficient whem 2 n. For the predictive distribution we use
the more efficient

Elyi] = o(x.) A7y, V] = 07+ 070(x.) AT p(x.), (7)

where we have defined thery n design matrix®; = [@(X1), ...,P(X,)] andA = dd] + ";ifl 2m.
0
Similarly, for the log marginal likelihood

2

0gp(y8) = ~[y"y~y ® A-tary]/(203) ~ 5 log|A| + mlog 5" - logama? . (8)
0

A stable and efficient implementation uses Cholesky decompositions, App&nBith the predic-
tive distribution and the marginal likelihood can be computedinn?). The predictive mean and
variance at an additional test point can be computed(im) and O(n?) respectively. The storage
costs are also reduced, since we no longer store the full covarianag (oésize n x n), but only
the design matrix (of size x 2m).
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3.1 Periodicity

One might be tempted to assume that this model would only be useful for modeliiglip func-
tions, since strictly speaking a linear combination of periodic signals is itsalfgier However,
if the individual frequencies are not all multiples of a common base frexye¢hen the period
of the resulting signal will be very long, typically exceeding the range ofiripats by orders of
magnitude. Thus, the model based on trigonometric basis functions haisgirase for modeling
non-periodic functions. The same principle is used (interchanging inplifraquency domains)
in uneven sampling to space apart frequency replicas an avoid aliasenprsnstance Bretthorst
(2000). As our experimental results suggest, the model provides stiisfaredictive variances.

3.2 Representation

An alternative and equivalent representation of the model in Equatiorwiiith only uses half
the number of trigonometric basis functions is possible, by writing the linear icatidin of a
sine and a cosine as a cosine with an amplitude and a phase. Although thespregentations
are equivalentinferencebased on them differs. Whereas we have been able to integrate out the
amplitudes to arrive at the GP in Equation (6), this would not be possible amdllyticsing the
more parsimonious representation.

Optimization instead of marginalization of the phases has two important comsmgud-irstly,
we lose the property of stationarity of the prior over functions. Seconeélynay expect that the
model becomes more prone to overfitting. When considering the contribugond basis func-
tion (pair) with a specific frequency, the optimization based scheme couldbititeaily the phase,
whereas the integration based inference is constrained to use a flaiy@igrhases. In Section 5.3
we empirically verify that the computation vs accuracy tradeoff typically faitbe less compact
representation.

4. The Sparse Spectrum Gaussian Process

In the previous section we presented an explicit basis function regnassidel, but we did not dis-
cuss how to select the frequencies defining the basis functions. In ttisrseve present a sparse
GP approximation view of this model, which shows how it can be understoadcasputation-
ally efficient approximation to any GP with stationary covariance functiorthénnext section we
present experimental results showing that dramatic improvements ovesstdtenf-the-art sparse
GP regression algorithms are possible.

We will now take a generic GP with stationary covariance function and i§pésspower spec-
tral density to obtain a sparse GP that approximates the full GP. The ppacatra density (or power
spectrum)S(s) of a stationary random process expresses how the power is distritugethe fre-
quency domain. For a stationary GP, the power is equal to the prior vatkénx) = k(0) = a3.
The frequency vecta has the same lengib as the input vectax. Thed-th element ok can be in-
terpreted as the frequency associated tadtfle input dimension. The Wiener-Khintchine theorem
(see for example Carlson, 1986, p. 162) states that the power speatidithe autocorrelation of
the random process constitute a Fourier pair. In our case, givefi(thas drawn from a stationary
Gaussian process, the autocorrelation function is equal to the statiamamiance function, and
we have:

kD) = [ s S - /]R e 2 K()dr, )
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We thus see that there are two equivalent representations for a statfdaassian process: the
traditional one in terms of the covariance function in the (input) space doaiha perhaps less
usual one as the power spectrum in the frequency domain.

Bochner’s theorem (Stein, 1999, p. 24) states that any stationaryiaos@ functiork(t) can
be represented as the Fourier transform of a positive finite measuis.niBans that the power
spectrum in (9) is a positive finite measure, and in particular thafitdportionalto a probability
measure S(s) [ ps(s). The proportionality constant can be directly obtained by evaluating the
covariance function in (9) at= 0. We obtain the relation:

S(s) = k(0) ps(s) = 05 ps(s). (10)

We can use the fact th&s) is proportional to a multivariate probability densitysro rewrite the
covariance function in (9) as an expectation:

K(xixj) = k@)= | &S NS(s)ds = O(ZJ/RD e (ezmSTij Ps(s)ds
_ G(Z)Eps {eZnisTxi (eZm'sTx,)*} ’ (12)

whereE s denotes expectation wrps(s) and superscript asteridklenotes complex conjugation.
This last expression is an exact expansion of the covariance funetitwe @xpectation of a product
of complex exponentials with respect to a particular distribution over thejuéecies. This integral
can be approximated by simple Monte Carlo by taking an average of a fewesaogpresponding
to a finite set of frequencies, which we cslectral points

Since the power spectrum is symmetric around zero, a valid Monte Carleguaeis to sample
frequencies always as a p&&, —s }. This has the advantage of preserving the property of the exact
expansion, Equation (11) that the imaginary terms cancel:

) = S5 [enen (gnen) s (enn) ]

2m £
2 m T Ty \ ¥ 2 &
- e $mn (1) ] = 3 5 coar ).

wheres is drawn fromps(s) and Ré-] denotes the real part of a complex number. Notice, that
we have recovered exactly the expression for the covariance furietianed by the trigopnometric
basis functions model, Equation (6). Further, we have given an intatjane of the frequencies as
spectral Monte Carlo samples, approximatarny stationary covariance function. This is a more
general result than that of (MacKay, 2003, Ch. 45), which only apptieGaussian covariances.
The approximation is equivalent to replacing the original spect®snby a set of Dirac deltas of
amplitudeay distributed according tps(s). Thus, we “sparsify” the spectrum of the GP.

This convergence result can also be stated as follows: A stationaryiGifecgeen as a neural
network with infinitely many hidden units and trigonometric activations if indepengriors fol-
lowing Gaussian angs(s) distributions are placed on the output and input weights, respectively.
This is analogous to the result of Williams (1997) for the non-stationary multilpgeceptron co-
variance function.
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Figure 1: Squared exponential covariance function and its approximaitbn(a) 10 and (b) 50
random spectral points respectively.

4.1 Example: The Squared Exponential Covariance Function

The probability density associated to the squared exponential covafiamzt@n of Equation (3)
can be obtained from the Fourier transform

paRP(s) = ! / e 21 Yo po(T)dT = /]2mA]exp(—22s! As), (12)
Karp(0) JrD

which also has the form of a multivariate Gaussian distribution. For illustratiopgses, we com-

pare the exact squared exponential covariance function with its sp@ggm@ximation in Figure 1,

where the spectral points are sampled from Equation (12). As expéotegyality of the approxi-

mation improves with the number of samples.

4.2 The SSGP Algorithm

One of the main goals of sparse approximations is to reduce the computatiodah bwhile re-
taining as much predictive accuracy as possible. Sampling from the dptiity constitutes a
way of building a sparse approximation. However, we may suspect theamvebtain much sparser
models if the spectral frequencies are learned by optimizing the marginal tkelilan idea which
we pursue in the following.

The algorithm we propose uses conjugate gradients to optimize the margiridolilce (8)
with respect to the spectral poin{s;} and the hyperparametecg, o2, and {¢1, {2, ... {p}.
Optimizing with respect to the lengthscales in addition to the spectral points isiedlg an over-
parametrization, but in our experience this redundancy proves hatpéwoiding undesired local
minima. As is usual with this kind of optimization, the problem is non-convex andamaot expect
to find the global optimum. The goal of the optimization is to find a reasonable Iptaiam.

In detail, model selection for the SSGP algorithm consists in:

1. Initialize {¢4}, 03, ando? to some sensible values. We use one half of the ranges of the input
dimensions, the variance ¢y} anda3/4, respectively.

2. Initialize the{s } by sampling from (10).

3. The superscript asterisk denotes complex conjugate and theiptibsterisk indicates test quantity.
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3. Jointly optimize the marginal likelihood wrt. spectral points and hyperpaease

The computational cost of training the SSGP algorithr@(an?) per conjugate gradient step.
At prediction time, the cost i®)(m) for the predictive mean and(m?) for the predictive vari-
ance per test point. These computational costs are of the same ordes@a®thbe majority of
the sparse GP approximations that have recently been proposed (feadpa-Candela and Ras-
mussen, 2005, for a review).

Learning the spectral frequencies by optimization departs from the drigiotvation of ap-
proximating a full GP. The optimization stage poses a risk of overfitting, whielassess in the
experimental section that follows. However, the additional flexibility canmt@thy improve per-
formance since it allows learning a covariance function suitable to the pnadti@and.

4.3 Related Algorithms

Finite decompositions in terms of harmonic basis functions, such as Fouries,s&re a classic
idea. In the context of kernel machines recent work include Lazaedi{a et al. (2007) for GPs
and Rahimi and Recht (2008) for Support Vector Machines (SVMs)wA show in the experimen-
tal section, the details of the implementation turn out to have a critical impact oretf@mpance
of the algorithms. The SVM based approach uses projections onto amasetaf harmonic func-
tions, whereas the approach used in this paper uses the evidence dr&knewarefully craft an
optimized sparse harmonic representation. As is revealed in the experiseetiah, optimization
of the frequencies, amplitudes and noise offers dramatic performanceviempents for comparable
sparseness.

5. Experiments

In this section we investigate properties of the SSGP algorithm, and evaluaterttmutational
complexity vs. accuracy tradeoff. We first relate the FITC and SSGRoaippations. We then
present empirical comparisons on several data sets, using FITC a@® a6benchmarks. Finally,
we revisit the alternative more compact representation of SSGP usingsplaasl discuss a data set
where SSGP performs badly.

Our implementation of SSGP in matlab is available fitrhp: / / www. t sc. uc3m es/ ~ni guel /
si mpl et ut ori al ssgp. php together with a simple usage tutorial and the data sets from this sec-
tion. An implementation of FITC is available from Snelson’s web pag# ap: / / www. gat shy.
ucl . ac. uk/ ~snel son .

5.1 Comparing Predictive Distributions for SSGP and FITC

Whereas SSGP relies on a sparse approximation to the spectrum, the piiD&iagation is sparse
in a spatial sense: A set pgeudo-inputss used as an information bottleneck. The only evaluations
of the covariance function allowed are those involving a function valugatado-input. For a set
of mpseudo-inputs the computational complexity of FITC is of the same ordertasftR&GP with
m spectral points.

The covariance function induced by FITC has a constant prior vajdntt it is not stationary.
The original covariance of the full GP is only approximated faithfully in thenkig of the pseudo-
inputs and the covariance between any two function values that are baibaid from any pseudo-
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Figure 2: Learning the sirig) function from 100 noisy observations (plusses) using 40 basis func-
tions with shaded area showing 95% (noise free) posterior confideeae la panel (a)
the SSGP method with three functions drawn from the posterior is showh) tihg same
data for the FITC method with samples (dots) drawn from the joint posterior.
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Figure 3: Kin-40kdata set. (a) NMSE and (b) MNLP as a function of the number of basisidursc

input decays to zero. As a result, functions sampled from the GP priocéddioy FITC tend to
white Gaussian noise away from the pseudo-inputs.
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Figure 4: Pumadyn-32nndata set. (a) NMSE and (b) MNLP as a function of the number of basis
functions.

Figure 2 compares the predictive posterior distributions of SSGP andfBlEGimple synthetic
data set. The training data is generated by evaluating the sinc function aarddfm inputsx €
[—1,5] and adding white, zero-mean Gaussian noise of variapee0.05?. SSGP is given 20 fixed
spectral points sampled from the spectrum of a squared exponentialarme function, and FITC
is given 40 fixed pseudo-inputs sampled uniformly from the range of tiv@rigainputs. The rest
of the hyperparameters are optimized in both cases by maximizing the margitiablice We plot
the 95% confidence interval for both predictive distributions (medwo standard deviations), and
draw three samples from the SSGP posterior and one sample from the &$teZior.

Despite the different nature of the approximations, the figure showsdhanfequal number
of basis functions both predictive distributions are qualitatively very similag:uncertainty grows
away from the training data. In the following section, we verify empirically tihat SSGP is a
practical approximation for modelling non-periodic data.

5.2 Performance Evaluation

We will use two quantitative performance measures: the test Normalized $tpeame Error (NMSE)
and the test Mean Negative Log Probability (MNLP) , defined as:

)2 L
NMSE = (0 = Hej)%) 1<<y*1 W

2
2L and MNLP= ={ (22—} +logo?; +log2m), 13
(4.1 -9)?) 3((55, ) tleadtitlogzm),  (13)

where,; and ofj are, respectively, the predictive mean and variance for test sangldy.; is
the actual test value for that sample. The average output value for graiata isy. We denote

*]
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the average over test cases @y For all experiments the values reported are averages over ten
repetitions.

For each data set we report the performance of five different metfigtsthe SSGP algorithm
as presented in Section 4.2; second, a version of SSGP where thalspeiciis are “fixed” to sam-
ples from the spectral density of a squared exponential covariancédn whose lengthscales are
learned (SSGP fixed spectral pointshird, the FITC approximation, learning the pseudo-inputs;
fourth, SMGP, trained as described in Walder et al. (2008); and finally laase line comparison
we report the result of a full GP trained on the entire training set. We plopéinormance as a
function of the number of basis functions. For FITC this is equivalent tantimaber of pseudo-
inputs, whereas for SSGP a spectral point corresponds to two bastfofis. The number of basis
functions is a good proxy for computational cost.

We consider four data sets of size moderate enough to be tractable byGPfudut still large
enough that there is a motivation for computationally efficient approximations.

The two first data sets are both artificially generated using a robot arm simatad are highly
non-linear and have very low noise. They were both used in Seegkr(20@3) and Snelson and
Ghahramani (2006), but note that their definition of the NMSE measurersliliy a factor of 2
from our definition in (13). We follow precisely their preprocessing asel thhe original splits. The
first data set i«in-40k (8 dimensions, 10000 training and 30000 testing samples) and the results
are displayed in Figure 3. For both error measures SSGP outperfolli@saald SMGP by a large
margin, and even improves on the performance of the full GP. The SSGRixeithspectral points
is inferior, proving that a greater sparsity vs. accuracy tradeofbeaachieved by optimizing the
spectral points.

The Pumadyn-32nnproblem (32 dimensions, 7168 training and 1024 testing samples) can be
seen as a test of the ARD capabilities of a regression model, since only &f the 32 input
dimensions are relevant. Following Snelson and Ghahramani (2006)pith @etting stuck at an
undesirable bad local optimum, lengthscales iargalized from a full GP on a subset of 1024
training data points, for all compared methods. The results are shown ia #igu

The conclusions are similar as for tken-40kdata set. SSGP matches the full GP for a surpris-
ingly small number of basis functions.

The Pole Telecomnand theElevatorsdata sets are taken frotit p: // ww. | i aad. up. pt/
~| tor go/ Regr essi on/ Dat aSet s. ht nl . In thePole Telecomndata set we retain 26 dimensions,
removing constants. We use the original split, 10000 data for training &d@f60testing. Both the
inputs and the outputs take a discrete set of values. In particular, thetotaga values between
0 and 100, in multiples of 10. We take into account the output quantization ®r loeunding the
value ofa? to the value of the quantization noise, @&mg/lz. This lower bounding is applied to
all the compared methods. The effect is to provide a better estimatia¥ fand therefore, better
MNLP measures, but we have observed that this modification has no réicféect on NMSE
values. Resulting plots are in Figure 5.

SSGP is superior in terms of NMSE, getting very close to the full GP for more2b8 basis
functions. In terms of MNLP, SSGP is between FITC and SMGP for smallut slightly worse
for more than 100 basis functions. This may be an indication that SSGPga®better predictive
means than variances. We also see that SSGP with fixed spectral pointsislynworse.

4. In practice the spectral points are sampled from the spectral defisitgquared exponential covariance function,
and scaled as the lengthscales adapt.
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Figure 5: Pole Telecomndata set. (a) NMSE and (b) MNLP as a function of the number of basis
functions.

The fourth data setizlevators relates to controlling the elevators of an F16 aircraft. After
removing some constant inputs the data is 17-dimensional. We use the onginaith 8752 data
for training and 7847 for testing. Results are displayed in Figure 6. S®6$istently outperforms
FITC and SMGP and gets very close to the full GP using a very low numbmsi$ functions. The
large NMSE average errors incurred by SSGP with fixed spectral goingsnall numbers of basis
functions are due to outliers that are present in a small number (aboutt 1) 3847) of the test
inputs, in some of the 10 repeated runs. The predictive variances && tbw points are also big,
so their impact on the MNLP score is small. Such an effect has not beenveldsin any of the
other data sets.

5.3 Explicit Phase Representation

In Section 3.2 we considered an alternative representation of the SSG# msawy only half the
basis functions, but explicitly representing the phases. Bayesianncteie this representation is
intractable, but one can optimize the phases instead, at the possibly attrédsof overfitting.

As an example, we evaluate the performance of the cosine only expangioexplicit phases

on thePole-Telecomndata set in Figure 7. Whereas the performance for the two variants are
comparable for small numbers of basis functions, the cosine only repatisen becomes worse
when the number of basis functions gets larger, confirming our suspicomphimization of the
phases increases the risk of overfitting.
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Figure 6: Elevatorsdata set. (a) NMSE and (b) MNLP as a function of the number of basis func
tions.

5.4 The Pendulum Data Set

So far we have seen data sets where SSGP consistently outperformafdT&MGP, and often
approaches the performance of a full GP for quite small numbers of foasitions. In this section
we present a counter example, showing that SSGP may occasionally failglitive suspect that
this is the exception rather than the norm.

The small data séendulum(9 dimensions, 315 training and 315 testing samples) represents
the problem of predicting the change in angular velocity of a simulated mechaeicdulum over
a short time frame (50 ms) as a function of various parameters of the dynaystam. The target
variable depends heavily on all inputs and the targets are almost noiseFiggge 8 shows the
results of our experiments. Note that we use up to 800 basis functionsséstigation, although
for computational reasons it would make sense to use the full GP ratheathapproximation
with more than 315 basis functions. Although the SSGP NMSE performano®ds ge see that
especially for large number of basis functions, the MNLP performancpdstacularly bad. A
closer inspection shows that the mean predictions are quite accurateethetipe variances are
excessively small. This SSGP model thus exhibits overfitting in the form oflmiarconfident.
Note, that the SSGP with fixed spectral points seems to suffer much lesshiaifect, as would
be expected. Interestingly, re-running the SSGP algorithm with differdom initializations
gives very different predictions, the predictive distributions fromesate runs disagreeing wildly.
One could perhaps diagnose the occurrence of the problem in this weybditom line is that
any algorithm which optimizes the marginal likelihood over a large number aihpeters, will risk
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Figure 7: Pole Telecomndata set. (a) NMSE and (b) MNLP as a function of the number of basis
functions, comparing SSGP with the version with cosines only and explicsigsha

falling in the overfitting trap. We nevertheless think that the SSGP algorithm fiéhdave very
good performance, and will be a practically important algorithm, althougarst use it with care.

6. Discussion

We have introduced the Sparse Spectrum Gaussian Process (SS@®)ralga novel perspective
on sparse GP approximations where rather than the usual sparsityiapgion in the spatial do-
main, it is the spectrum of the covariance function that is subject to a sppmeximation by

means of a discrete set of samples, the spectral points. We have praviigdiled comparison
of the computational complexity vs. accuracy tradeoff of SSGP to that ofttite of the art GP
sparse approximation FITC and its extension SMGP. SSGP shows a dramatiwemgent in four

commonly used benchmark regression data sets, including the two data est®musvaluation

in the paper where FITC was originally proposed (Snelson and Ghahra?#®6). However, we
found a small data set where SSGP badly fails, with good predictive meamsth overconfident

predictive variances. This indicates that although SSGP is practicallyyaappealing algorithm,
care must be taken to avoid the occasional risk of overfitting.

Other algorithms, such as the variational approach of Titsias (2009) fidgal on approaching
the full GP in the limit of large numbers of basis functions are to a large dagfeguarded from
overfitting. However, algorithms derived from GPs whose focus is dresing good predictive
accuracy on a limited computational budget, such as FITC, SMGP and tleattyuproposed SSGP,
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Figure 8: Pendulundata set. (a) NMSE and (b) MNLP as a function of the number of basis func

tions.

typically achieve superior performance, see Figure 3 in Titsias (200®) same risk of overfitting.
Note, that these algorithms don’t generally converge toward the full GP.

An equivalent view of SSGP is as a sparse Bayesian linear combinatiaireftrigonometric
basis functions, a sine and a cosine for each spectral point. The warghtsegrated out, and at
the price of having two basis functions per frequency, the phasedfactively integrated out as
well. We have shown that although a representation in terms of a single basti®h per frequency
and an explicit phase is possible, learning the phases poses an idarieksa overfitting. If the
spectral points are sampled from the power spectrum of a stationary @PS8GP approximates
its covariance function. However, much sparser solutions can be adhigviearning the spectral
points, which effectively implies learning the covariance function. The B8&®del is to the best
of our knowledge the only sparse GP approximation that induces a statiomasiance function.

SSGP has been presented here as a Gaussian process priordssigggwith a tractable like-
lihood function from the assumption of Gaussian observation noise. Ergeta other types of
analytically intractable likelihood functions, such as sigmoid for classificatidraplace for robust
regression is possible by using the same approximation techniques adl f8Pfu An example
is the use of Expectation Propagation in the derivation of generalized f&&h-Guzman and
Holden, 2008). Further modifications and extensions of SSGP are skstus Lazaro-Gredilla
(2010).

The main differences between SSGP and most previous approachesde §P regression is
the stationarity of the prior and the non-local nature of the basis functionsll be interesting to
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investigate more carefully in the future the exact conditions under whicle gpesctacular sparsity
VS. accuracy improvements can be expected.
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Appendix A. Details of the Implementation

In practice, to improve numerical accuracy and speed, Equationsd{8ashould be implemented
using the Cholesky decompositieh= chol(A). Thus the predictive distribution is computed as

Ely.] = o(x.) ' R\(R"\(®ry))  V[y.] = o7+ 03|[R"\@(x.)|I?,
and the log evidence as
2

2 RT i LT
VI~ IR\ (@) ] - 5 3 logR? < mlog” 5"~ 5 log 2n

ogpYI8) = —55 [

whereR;; refers to the diagonal elementsif
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