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Abstract

A successful class of image denoising methods is based agsizayapproaches working in wavelet
representations. The performance of these methods imprelren relations among the local fre-
guency coefficients are explicitly included. However, iagh techniques, analytical estimates can
be obtaineanly for particular combinations of analytical models of sigaatl noise, thus preclud-
ing its straightforward extension to deal with other adniyrnoise sources.

In this paper, we propose an alternative non-explicit wayat@ into account the relations
among natural image wavelet coefficients for denoising: B support vector regression (SVR)
in the wavelet domain to enforce these relations in the @déchsignal. Since relations among the
coefficients are specific to the signal, the regularizatimperty of SVR is exploited to remove the
noise, which does not share this feature. The specific sigtalons are encoded in an anisotropic
kernel obtained from mutual information measures compated representative image database.
In the proposed scheme, training considers minimizing thBbigck-Leibler divergence (KLD)
between the estimated and actual probability functionsigiograms) of signal and noise in order
to enforce similarity up to the higher (computationallyiestble) order. Due to its non-parametric
nature, the method can eventually cope with different netseces without the need of an explicit
re-formulation, as it is strictly necessary under paraim&ayesian formalisms.

Results under several noise levels and noise sources shtw(ihthe proposed method out-
performs conventional wavelet methods that assume cazffioidependence, (2) it is similar to
state-of-the-art methods that do explicitly include thesations when the noise source is Gaus-
sian, and (3) it gives better numerical and visual perforreamhen more complex, realistic noise
sources are considered. Therefore, the proposed machiméng approach can be seen as a more
flexible (model-free) alternative to the explicit desddptof wavelet coefficient relations for image
denoising.

Keywords: natural images, statistical relations, image denoisirayelets, non-parametric meth-
ods, kernel, mutual information, regularization
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1. Introduction

Denoising requires representing the distorted signal in a domain whesd aighnoise display dif-
ferent enough behavior. In such a representation, noise is remgvatpbsing the known proper-
ties of the signal to the distorted samples. In image denoising, classicalegtidan techniques are
used to impose smoothness in the spatial domain since noise is typically white
(Banham and Katsaggelos, 1997). Smoothness in the spatial domain meditsapility of the
signal from the neighborhood, and thus classical approaches ettpdibw-pass behavior of the
power spectrum to rely on band-limitation or autoregressive models of thalqigndrews and
Hunt, 1977; Banham and Katsaggelos, 1997; Bertero et al., 198&redanage denoising methods
working in the spatial domain have been presented in the literature, eittegt basplines (Takeda
et al., 2007), patch-based approximations (Kervrann and BoulaR@@r,), local auto-regressive
models (Gutrrez et al., 2006), or support vector regression (Kai Tick Chosvlaee, 2001; van
Ginneken and Mendrik, 2006) to perform smooth (regularized) apmaions of the noisy signal.
Recently, successful methods use adaptive local basis represeni@eov et al., 2007). Ap-
proaches to the problem using local basis is qualitatively related to wawedetiptions. In fact,
wavelet representations have been recognized as quite approprizaéddor image denoising.

Wavelet representations are convenient in image denoising becaussd image samples have
a very specific statistical behavior in this domain. On the one hand, smostisnepresented by
a strong energy compaction in coarse scales. On the other hand, the atambof smooth re-
gions with local, high contrast features, such as edges, gives risatgesactivation of wavelet
sensors. This leads to very particular, heavy-tailed, marginal probathditgity functions (PDFs)
of the wavelet coefficients (Burt and Adelson, 1983; Field, 1987; Saaltin 1997; Hywarinen,
1999). These basic features were incorporated in the classical whesked image denoising tech-
nigues (Donoho and Johnstone, 1995; Simoncelli, 1999; Figueireddlawdk, 2001). Classical
techniques such as hard and soft thresholding (Donoho and Jobn&&86) have been derived
by using Bayesian approaches in non-redundant wavelets, lookiegierMaximum a Posteriori
(MAP) or Bayesian Least SquaréBLS) estimators, in combination with simple marginal mod-
els and assuming statistical independence among coefficients (Simoncedlj, Ri§@eiredo and
Nowak, 2001).

It is well-known, however, that marginal models in the wavelet domain ateesnough for
a proper signal characterization: relevant relations among coeffigéliteemain after wavelet
transforms (Simoncelli, 1999). For instance, edges lead to strong coupimgeen the energy
of neighboring wavelet coefficients of natural images. These relatimosnq wavelet coefficients
have proven to be a key issue in applications such as image coding (M&lo2€06; Camps-Valls
et al., 2008), texture analysis and synthesis (Portilla and Simoncelli, 200@age quality metrics
(Laparra et al., 2010). The use of these relations is in the roots of therewasit and successful
image denoising approaches as well (Portilla et al., 2003; Siwei and SithpA0687; Goossens
et al., 2009). In this case, more complex image models explicitly including the redaioong
coefficients have to be plugged and fitted into the Bayesian framework tio tiemage estimates.

Unfortunately, all these model-based Bayesian techniques have thmeeoroproblems:

1. They critically depend on the accuracy of the image model, whose defirgtrat trivial;

1. Inthe 2007 IEEE International Symposium on Information The@yT(2007), the tutorial “Recent Trends in Denois-
ing” (http://www.stanford.edu/ ~slansel/tutorial/summary.htm ) pointed out that state-of-the-art method-
ologies are usually defined in the wavelet domain.
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2. MAP or LS estimations can only be derived analytically for particular, BipicGaussian,
noise sources. For different noise sources, the whole technique hageformulated which
may nhot be analytically tractable;

3. The estimation of the parameters of the image model from the noisy obserigtiificult
in general.

Conversely, non-parametric approaches can include the above qualetperties in an indirect
way without the restriction of being analytically attached to particular image oe maigiels. These
approaches are basedlearningthe underlying model directly from the image samples.

In this work we apply support vector regression (SVR) in a redun@am@rcomplete) wavelet
domain to the noisy image. The proposed method has the following advantafyestiof the
Bayesian framework:

1. It does not use a particular parametric image model to be fitted, for exangpbnalytical
PDF is required.

2. Its solution may be found for arbitrary noise sources even withoutvikpthe functional
form of the noise PDF since it can work with just noise histograms. Thexgetioe procedure
does not need to be reformulated for different noise sources.

3. Itis capable to take into account the relations among wavelet coefficientgural images
through the use of a suitable kernel. In this way, the method preservesl¢lant relations
among the coefficients of the true signal and better removes the degradation

The proposed method does not assume independence among the sifficieats in the wavelet
domain, as opposed to Simoncelli (1999) and Figueiredo and Nowak)(2@f¥rlan explicit model
of signal relations, as done in Portilla et al. (2003). Therefore, thpgs®d machine learning
approach can be seen as a more flexible (model-free) alternative tqlifeitebescription of wavelet
coefficient relations for image denoising. Even though the selection oftieydar SVR may be
seen as a signal parametrization, the model is still non-parametric in thethahs® functional
form of the signal (or noise) characteristics (e.g., the PDF) is assumed.

Non-explicit use of dependencies in local frequency domains foridiegowvas also introduced
in Gutiérrez et al. (2006). In that case, relations were embedded into gppeatenodel used for
non-parametric spectrum estimation, and offered better results than tveahgtric autoregressive
models not including these relations. Here we pursue the same goal (a mestddhnique includ-
ing local frequency relations), but with a completely different framewBKR instead of perceptual
information). The idea of using SVR regularization in the wavelet domain fog@kenoising has
been recently introduced in Kai Tick Chow and Lee (2001), Cheng é2@04) and van Ginneken
and Mendrik (2006). However, in these works, (1) the qualitativecefiéthe different parameters
of the SVR was not analyzed, (2) these parameters were set withostifdajustification of their
values, and more importantly, (3) the relevance of the relations among tieéetvewefficients of the
signal was not an issue, so the ability of SVR to take these relations intorgdndhe kernel was
neither assessed nor compared to other methods that do consider thexot, lntfivial isotropic
Gaussian kernel was used in all cases. On the contrary, in this paefdress the key following
issues:
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¢ Natural images features in redundant wavelet domainslnteresting insight about the prob-
lem can be obtained by analyzing the mutual information between the codEiciewavelet
representations (Buccigrossi and Simoncelli, 1999; Liu and Moulin, Ra8awever, in re-
dundant domains, it is strictly necessary to discern what are the relatieasis to the signal
and those due to the transform.

e General constraints of the SVR parameters in image denoisingGeneric recommenda-
tions about the SVR parameters have been adapted to propose spdtiiadulependent
profiles for the insensitivity and the penalization parameters, and to pr@ositual infor-
mation based kernel.

o Effect of the SVR parameters. We show the qualitative effect of varying the values of the
parameters under the constrained parameter space.

e Procedure to optimize the SVR parameters\We propose an automatic procedure to select
the SVR parameters based on the Kullback-Leibler divergence, uatdaircassumptions on
signal and noise.

Even though this methodological framework is proposed in the contexhobamatic image denois-
ing, it can be readily extended to other denoising problems in which waveddficients exhibit
particular relations, such as in color or multispectral images, speech sigttals

The remainder of the paper is outlined as follows. In Section 2, we pointebeitant signal
features in redundant wavelet domains through mutual information measntge These key prop-
erties will be used by the proposed algorithm presented in Section 3. fio$dcthe effect of SVR
parameters and the validity of the proposed criterion for its selection is ssittexperimentally.
Section 5 shows the performance of the proposed method compared tardtdedoising methods
in the wavelet domain. Several experiments dealing with different amouhhature of noise il-
lustrate the capabilities of our proposal. Finally, Section 6 draws some simcéuand outlines the
further work.

2. Features of Natural Images in the Steerable Wavelet Domai

The starting hypothesis for image denoising is that signal and noise disfilergit characteristics
and thus it is possible to separate them in a certain domain. Natural images ahdrivial rela-
tionships among wavelet transform coefficients. In the following, we vethe reported statistical
properties of natural images in orthogonal wavelet domains, and thgrzariaem in the redundant
steerable wavelet domain selected in our implementation. Specifically we will useinifor-
mation (M) to assess the statistical relations among wavelet coefficientsuwrhhamages as in
Buccigrossi and Simoncelli (1999) and Liu and Moulin (2001).

2.1 Intraband Versus Interband Signal Relations in Orthogonal Waelets

Dependencies amoragrthogonal waveletoefficients were measured using mutual information in
Liu and Moulin (2001). The dependencies were studied at interbanthtratband levels, and the
results suggested that the mutual information between intraband neighbqalyarger than
the interband relations for several models and types of interaction. loiggossi and Simoncelli
(1999), the authors analyzed the linear predictability of a coefficient'siinade from a condition-
ing coefficient set, either its parent, neighbors (left and upper),iteisoefficients at the same
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location but in different orientation subbands), or aunts (cousins opdhent). After an exhaus-
tive mutual information analysis, the parent provided less information cbtitan the neighbors.
These evidences suggest that the dependencies among spatial ringgbbefficients (intraband)
in orthogonal wavelet descriptions are stronger than the interbanddepses.

2.2 Natural Images Relations in Steerable Wavelets

Redundant (non-orthogonal) wavelet representations may be more suiteage denoising appli-
cations since redundant representation of the image features may makmtiéndierent relations
clearer. Specifically, some redundant representations are desigbedramslation or rotation in-
variant (Freeman and Adelson, 1991; Coifman and Donoho, 1995sKimyg, 2006). This behavior
is convenient to ensure that a particular feature in different spatiminregor with different orienta-
tions) gives rise to the same neighboring relations. Some translation invagsetets (Simoncelli
and Freeman, 1995) have also a smoother rotation behavior than nordaed transforms. This
justifies applying the same processing all over a particular subband atidgdeith the different
orientations in similar ways. Besides, this prevents aliasing artifacts apgéagritically-sampled
wavelets. In this work we choose a redundant steerable pyramid egpaésn (Simoncelli and
Freeman, 1995) to take advantage of these properties.

Despite the reported results on the relations of signal coefficients in amlbgransforms, a
number of questions have to be answered in the case of redundagae@tions, and in particular,
in the steerable wavelet domain:

1. How relevant are the relations among coefficients of natural images iddimain?
2. How relatively important are interorientation, interscale and intrabamdlkiglations?
3. How is the spatial arrangement of these signal relations?

The first question is particularly important since, even though the stedrabfform may intensify
the relations among signal coefficients, its redundant nature may alsouogdadlations which
could be due to the transform but not to the signal. The second questiars aitoto focus on the
most significant relations. Answering the third question is crucial to desigabde kernels for
image denoising.

In the following, we get some insight on these concerns by performing #peraments on
a representative database of 920 achromatic images of size 256 extracted from the McGill
Calibrated Colour Image Databae.

2.2.1 SGNAL RELATIONS ARE SPECIFIC TO THESIGNAL

In our first test, following Liu and Moulin (2001), we computed the mutual rinfation among
steerable wavelet coefficients of the data set for different spatiahtatien, and scale distances.
We used a steerable pyramid with 8 orientations and 4 scales. The mutualatifam was estimated
from the uniformly binned empirical data (256 bins) by computing the histogrbail available
sample pairs (721280 samples) for the three considered neighbortiadslition, as stated above,
in redundant domains it is necessary to know whether these relations mmméke images or they
are due to the transform. Note that, considering i.i.d. signals, any relationgathercoefficients

2. Seéehttp://tabby.vision.mcgill.ca/
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Figure 1: Comparison between redundancy of natural image coeffidietlie steerable wavelet
representation (solid), and the redundancy due to this representatisime@). Redun-
dancy is measured in terms of relative mutual information in logarithmic scale atapng
spatial (b) orientation and (c) scale neighbors.

after a linear transform will be due to the transform no matter their PDF in tiginal domain.
Therefore, in order to assess the amount of relations due to the transf@ compared the Mi
among natural images coefficients, and the MI among the coefficients of ansigwmil (Fig. 1).
The relations displayed by i.i.d. signals in the transformed domain may be sedovasr bound
for the mutual information of signal coefficients. From Fig. 1, it can be edtihat, in every case,
relations found in natural images are bigger than those introduced by tiséotman.

2.2.2 INTRABAND SIGNAL RELATIONS DOMINATE OVER INTERSCALE ORORIENTATION

Besides, the results show that intraband relations in the signal are also morginiphan interor-
ientation or interscale relations. Note that mutual information measures anedlédi depend on
logarithms of probability so that comparisons have to be done by subtragtibby division. Be-

yond consistency with previously reported results for orthogonal kwat@ansforms (Buccigrossi
and Simoncelli, 1999; Liu and Moulin, 2001), it has been observed thaethtons are specific to
the signal and not just induced by the transform.

2.2.3 INTRABAND RELATIONS ARE STRONGLY ORIENTED

In our second test, we studied the spatial arrangement of the relationg amvatand coefficients
since they display the most relevant relations. To this end, we computed thal imdumation in

a 2D 5x 5 neighborhood for the different orientations and scales. Figure]Xtapvs the above
mentioned results for the set of natural images (finest scale). We algal@ibe relations intro-
duced by the transform (i.i.d. signal, Fig. 2 [bottom]). Similar results wereirddafor the other
(coarser) scales. Again, the relations among the signal coefficierttggéier than those introduced
by the transform. Another key issue observed in Fig. 2 [top] is the spegiital arrangement of
these relations: the presence of oriented structures in natural imagssige to strong anisotropic
intraband relations in the different subbands. Coefficients followingethelations are expected
to be representative of natural features. These mutual informatiohisresatch recently reported
results on autocorrelation of intraband wavelet coefficients (Goosteris 2009). The results ob-
tained in these experiments will be further used in Section 4 to design spexifiel& that take into
account thebservedatural image relations.
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Figure 2: Mutual information among the central coefficient and its spatighbers in the same
subband (intraband) in the steerable wavelet domain. Darker graysvialieate higher
mutual information. Top row shows the results for the different orientatdrise finest
scale of the natural image database, and bottom row shows the equnedalis for
Gaussian noise.

Summarizing, natural images have singular features in the steerable wdwelain (Figs. 1
and 2): given a distorted image, enforcing these singular oriented redaimong coefficients in
every subband (with the appropriate kernels) will eventually preseevedtural signal relations and
remove the noise. Of course, the bigger the difference between the shege intraband relations
in signal and noise the better the results are expected to be.

3. Restoring Wavelet Relations with SVR

The effect of noise in the wavelet domain is introducing artificial deviatioosthe original signal
and hiding the natural relations among the coefficients (see an illustrativepds in Fig. 3). In
the more general case, the degraded observagiooan be written as the result of the addition of a
certain realization of noisa, to the original signali;

ig=1i-+n. (1)

Note that this (convenient) way to state the problem does not necessariythaahe physical
degradation has to be additive. In fact, the nature of the degradatiaidsideally be expressed
through a probabilistic noise model that may depend on the original sig(ral). The other de-
sirable piece of information is a probabilistic model of the sigpél). However, in most practical
situations, the complete probabilistic description of the problem, that is, hajingnd p(n|i), is
not available in analytical form.

In order to avoid this lack of information, we propose to use the regularizatidity of SVRs.

In this section, first we review the capabilities of the SVR for signal agpration. Afterwards,
general constraints to the SVR parameter space are given for the [@anpi@blem of natural image
denoising. Finally, we present an automatic procedure to choose thepaippe SVR parameters
(from the above restricted space) to be used for any combination of inmnagsoése.

3.1 Capabilities of SVR for Signal Estimation

Throughout this work, a wavelet transform, maffixis applied to the observed image, leading to
a set of (noisy) coefficienty,= T -ig. The original set of wavelet coefficients=T -i, has to be
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Figure 3: Effect of noise on the wavelet coefficients. Patch of a subbba wavelet representation
of the original image Barbara (left) and its noisy version (right). Darlkdues indicate
higher amplitudes.

estimated from the distorted observatignPue to the observed strong intraband relations, we will
use the SVR in the wavelet domain in patches inside each subband. Ssislpamnidécomposed into
non-overlapping 1& 16 patches, leading to setshf= 256 samples. Now, given input-output pairs
{IOi,Yi}iN:l, wherep; are the wavelet indices arylare the corresponding noisy wavelet coefficients
in a patch, we train thadaptiveSVR (Camps-Valls et al., 2001; Navia et al., 200n®z et al.,
2005) to approximate the signal.

Let @ be a non-linear mapping to a higher dimensional feature space, then {hvadVR
computes the weights to obtain the estimationg = @' (p;)w, by minimizing the following regu-
larized functional:

W)+ Gi &,

subject tgy; — (p.)w| <g+¢&,Vi= .., N, whereg; are the magnitude of the deviations of the
estimated S|gnal from the observed n0|sy data outside the (sample-depensensitivity zones;.
Sample-dependent penalization paramet@rstune the trade-off between fitting the model to the
observed noisy data (minimizing the deviations) and keeping model wejghitsmall (enforcing
flatness in the feature space).

This adaptive SVR differs from the standard formulation (Smola andI&ocpf, 2004), in two
aspects: (1) the loss function given ey, C) is sample-dependent, which is convenient in wavelet
domains where signal and noise variances strongly depend on thengulaloa (2) the usual bias
term in SVM formulations has been intentionally dropped to account for tttdtiat the expected
value of wavelet coefficients is zero. The appropriate desigt; @inde; profiles is analyzed in
Section 3.2.

Explicitly working with the non-linearityp is no longer necessary since the whole formulation
can be expressed in the form of dot products of the mapping functidiesl &arnels K(pi, pj) =
@(pi) "@(p;). In this case, the estimation is given Ry K - a, wherea is the dual representation
of weightsw (Smola and Sdblkopf, 2004). The kernel matrix can be seen as a similarity ma-
trix between samples (or coefficients), and should reflect the relatiane&e them. Many kernel
functions have been proposed in the literature (Smola andl&gbf, 2004). In the image denoising
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case in wavelet domains, we focus on the basic structure of the gengfRbzial Basis Functions
(RBF) kernel since the relationship among the wavelet coefficientsspmneling to spatial neigh-
bors within a subband is local. However, as it will be analyzed in Section 3ZXedmel will be
adapted to incorporate the anisotropic signal relations studied in Sectiwe2.Big. 2.

3.2 General Constraints on SVR Parameter Space in Image Denoising

As stated above, SVR signal approximation will depend on the penalizatrampéersC;, the
insensitivities,j, and the kernek. In the following, we restrict the range of possible values of
these parameter8,= (C;,¢;,K), in the particular case of image denoising in wavelet domains:

Penalization factor. In general, the penalization factor of SVRs should be related to the standar
deviation of the signal (Cherkassky, 2004). In the denoising problemsidered here, the
signal variance substantially differs in each wavelet scale. Accorditiggoit is strictly nec-
essary to set a different penalization fagber scale C; = Ck;, wherek; is a scale-dependent
profile. This profilek; was obtained by averaging the standard deviation of wavelet coeffi-
cients over 100 images from the database used in Section 2. This profilawigdied by
a factor,C, varied in the range [10, ) which did not show a strong impact on the results
provided a sufficiently large value. This is consistent with the suggestepusted in Chal-
imourda et al. (2004) in a more general context. Note that, for instancee ieximples of
the next section (Fig. 3), indistinguishable results are obtained for adsaigeghC. In our
experiments, we found that a reasonable prescription for the glohat fat the penalization
profile isC ~ 10°.

Adaptive insensitivity zone. In general, the insensitivity has to be related to the standard deviation
of the noise (Kwok and Tsang, 2003). In transformed domains, theteaffeéhe transform
has to be taken into account in order to estimate the corresponding stated@ton. In
redundant wavelet representations, this standard deviation is cadffigipendent. Thus it
is strictly necessary to introduce a subband-depenglgmiofile (Camps-Valls et al., 2001;
Gomez et al., 2005). The transformed standard deviations can be estimaszd Bitampir-
ically from noise samples, or (2) computed from the noise covariance maittriis iknown.

In the empirical case, noise samples can be experimentally obtained by apiblyingise
source to a large enough set of images, and writing the noise as in Egodr. éxperiments,
we used the natural image database used in Section 2, and we obtaineddhlgyesults for
the profile by considering 100 images. In the case that the noise cowvarsgkrmown, the cor-
responding matrix in the selected wavelet domain can be obtained from tleecovariance
matrix in the spatial domair},,, and the transforni (Stark and Woods, 1994). Therefore,
the insensitivity profile can be computed as:

& =T diag(T -, T2 (2)
In the case of white nois&,, = a2- 1, and thus Eq. (2) reduces to:

& =1 0, diag(T -TT)il/z, (3

wherea? is the noise variance in the spatial domain, aris a scaling factor to be adapted
for each particular image and noise combination. The scaling factmpuld be in the range
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Figure 4: Anisotropic kernel functions used in the support vectoression method for the eight
considered orientation subbands.

[0.5, 3] according to the known relationship between ghiesensitivity zone and the noise
standard deviation (Kwok and Tsang, 2003). Note that (2) may cope wlithet noise. Con-
sidering the off-diagonal elements of the covariance matrix (neglected an(2(3)) would

give rise to coupling-insensitivities among samples. This issue has been already considered
and solved in the context of image coding by using an additional non-lireasform and a
constant in the transformed domain (Camps-Valls et al., 2008). However, in this paper
restrict ourselves to the approximated diagonal case.

Including signal relations in the kernel. In the kernel methods literature, the usepabr knowl-
edge about the problem can be encoded through bagged, clustesbabjlistic kernels (Je-
bara et al., 2004; Weston et al., 2004). In our case, we propose téntakaccount image
coefficient relations by analyzing a large (representative) datalmaktaking the (oriented)
mutual information among samples as core distance measure. Howeverthesagmpiri-
cal measures to set the kernels is not straightforward since the keavelsadfulfill Mercer’s
Theorem (Mercer, 1905). According to this, we propose to use ghrned Gaussian ker-
nels. In particular, we fitted anisotropic Laplacian kernels to the Ml measareonsider the
intraband oriented relations within each subband:

Ka(pi,pj) = exp(—((pi—pj) G(a) = 1G(a)(pi — pj))*?),

%1 c(r) ) o1 ando, are the widths of the kernelg; € R? denotes the spatial
2

position of coefficient; within a subband, anG(a) is the 2D rotation matrix with rotation

angle,a, corresponding to the orientation of each subband (see Fig. 4). Nothdse set of

oriented kernels describe the signal relationships that emerge fromiragpés in Section 2

(cf. Fig. 2[top]).

We obtained proper values for the widthsando» by fitting the above kernel to the Ml mea
sures among coefficients described in Sectiooy2< 207, ando; = 4.8 in spatial coefficient
units). The kernel was further normalized in the standard way. Since itlie somes from

direct measures from images, it describes a fundamental propertyusdhianages so it can
be kept fairly constant.

wherez = (

The conclusion of this section is that in the case of image denoising in wa@tsids, an
appropriate analysis of the signal variance, the noise variance, aneldtiens among the wavelet
coefficients of the signal can be used to strongly reduce the dimensionfdlitg 8VR parameter
space. After this analysis, the only SVR parameter that remains fixed is thal glwaling, to be
applied to the insensitivity profile.
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3.3 Procedure for Automatic SVR Selection

In the more general case, applying SVRs with a given set of param@téosa noisy image leads
to a certain image estimaﬁ@,: T~1.%. From this image estimate, and the convenient additive
notation for the noise (Eq. (1)), a noise estimate can be obtafed:ig —ig. In this section we
propose a procedure to select the SVR paramdietisat better approximates the noise free image,
using the available information.

In the more general situation the only available information is the noisy image.evowas
stated above, denoising methods usually assume that additional probabifistingtion on the
signal and noise is availabl@(i) andp(n|i). Note that this knowledge is equivalent to the knowl-
edge of the joint signal and noise distribution simge n) = p(n|i) p(i).

Let us momentarily assume that this information is available to propose the bpraredure
to set the SVR parameters. Afterwards, we will relax the requirementsrsid=ring an approxi-
mation that can be easily applied in practical situations.

In order to enforce solutions that closely follow the (assumed to be knstatijtics of signal
and noise, we propose to select the SVR that minimizek-theorder Kullback-Leibler divergence
(KLD) (Cover and Tomas, 1991) between the joint PDF of signal ancenaisd the joint PDF of
the estimated signal and the estimated noise:

6" =arg ngin{ D[ p(ie. fie) || p(i,n)] } @)

The underlying idea is that the SVR that minimizes the divergence betweebdiie BDFs is
the one that better captures the features of the true signal and betteesethewegradation.

Although in ideal situations the application of this procedure would obtain therbsults in
statistical terms, in practical situations the full probabilistic description of tbblpm is not avail-
able. A number of approximations are done in practical situations. For gestéimermal noise
in CCD cameras is not independent from the input signal since diffusirease with the irradi-
ance. However, thermal noise is usually assumed to be independentimgpdiisignal. Additional
assumptions as additivity or certain analytical marginal PDF of the noisdsarevaely used.

In our case, we assume independence between signal and noise:

p(i,n) = p(i) p(n).

However, no analytical model for these PDFs is assumed. Under thisendepce assumption, it
is easy to see that Eq. 4 reduces to:

o —arg min{ D [p(o) || p()] + Dru i) | p()] - 5)

This means that the selected SVR parameters are those that give rise tighattasd noise es-
timates probabilistically similar to the true signal and noise respectively. Notehilsagimilarity
does not require analytical models of the PDFs since it can be computedhistograms (or signal
and noise samples).

Of course, the independence assumption does not hold in generaljdrpagit will be shown
in Section 4.2, this is not a critical fact for a good behavior of the method ieveon-additive cases
in which the noise is clearly signal-dependent. Moreover, the indepeadesumption simplifies
the practical application of the criterion for SVR selection since, for a limitedber of samples,
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histogram estimations gi(i) and p(n) are far more reliable than histogram estimationp@fn),
which implies the duplication of the dimensionality (in an already high dimensionaitiin).

In the examples throughout the paper we restricted ourselves to sectemd&e.D measures due
to the lack of samples, yet capturing the second order structure of sigthabise. The optimization
in Eq. (5) was carried out by exhaustive search.

3.4 Summary of the Proposed Denoising Method

The proposed denoising method can be summarized as follows. First themage is transformed
by a steerable wavelet filter bank. Then, a set of SVRs is applied to thiegsatf the subbands of
the transform. These SVRs use the profiles for the penalization factthamsensitivity computed
from signal and noise samples as described in Section 3.2. The SVR=uUsartiel based on M
that captures signal relations in the wavelet domain as described in Se@iowRBile the scaling
of the penalization profile and the kernels are kept fixed as indicated tio8&c2, the scaling of
the insensitivity profile is automatically selected following the procedure et section 3.3.

4. Behavior of the Proposed Method

In this section, we show an illustrative example of how the SVR parameterst diffe estimated
solution. Moreover we validate the proposed automatic procedure for sg\éRtion considering
examples with different noise sources including non-additive and sitpgedndent cases.

4.1 Impact of SVR Parameters in Image Denoising

As stated above, the regularization behavior of the SVR depenfis-ofC;, ¢;,K). Here we show
the qualitative effect of the global penalization scalidgthe global insensitivity scaling, and
the kernel widtho assuming a generalized RBF kernel. Figure 5 shows the qualitative effect
SVR estimation as a function of these parameters. Compare the results witigihal@nd noisy
subbands shown in Fig. 3.

Increasing the kernel widtlw, (vertical direction), introduces too strong relations among coeffi-
cients in such a way that spurious energy appears in the reconstrdotiogasing the insensitivity,

T (horizontal direction), a sparser solution is obtained, leading to informbdgsnand thus relevant
features of the signal are discarded. On the contrary, a too small itnggnsalue gives rise to
overfitting, and hence noise is not removed. Small values o€Ctparameter gives rise to over-
regularized estimations. Large enough value€ gfive rise to similar behavior (see comments in
Section 3.2).

Of course, interactions among these parameters occur, and haveldied 1 other contexts
elsewhere (Chalimourda et al., 2004; Cherkassky and Ma, 2003k&dsdy, 2004). In the image
denoising case, the deviation fromappropriatesolution in combined directions of the parameters
gives rise to different solutions that combine the negative effect of¢parture in each direction.

The above example suggests thppropriateSVRs can certainly recover the underlying struc-
ture of the original signal from the noisy observation, which is the ratioofalee proposed method.

4.2 Validation of the Automatic Procedure for SVR Selection

In this section, we validate the previous SVR selection procedure in twaefiffevays. Firstly,
note that KLD values in the example of FiggBalitativelyillustrate the usefulness of the proposed
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Figure 5: Effect of SVR parameters on the noisy wavelet patch of Fig.h& values of the KL-
divergence criterion between the estimated and the actual PDFs of ndisigaal are
given in each case (see text in Section 3.3).

procedure: the minimum divergence solution (central subband patay giso a reasonable trade-
off between smoothness and detail preservation of the original sulpzdciol

Secondly, weguantitativelyshow that the SVR that enforces the similarity between the esti-
mated and actual sighal and noise joint PDFs (in KLD terms) is not far frenS¥R that maxi-
mizes the structural similarity between the estimated and the original image. Intomie so, we
compare the KLD measures for different SVRs, with the correspondsigrtion measured with
the Structural SIMilarity (SSIM) index (Wang et al., 2004). The SSIM nidea widely used simi-
larity measure, which is better related to human quality assessment than Bucdlidaaures, such
as MSE or PSNR. Note that while KLD values are available in real situationsifed the noise
histogram and a generic natural images histogram are known), distortesunes are not available
since the original image is unknown. Consequently, the SSIM results nese¢qted are for mere
comparison purposes.

In this experiment, the SVM parameter space is reduced to the scaling fadter msensitivity
profile as recommended in Section 3.2. Accordingly, Fig. 6 shows the KidRiatortion (1-SSIM)
results as a function af (see Eg. (3)). Curves are shown for different kinds of (Gaussmhnon-
Gaussian) noise sources corrupting a particular image (details on thesooises are given in
Section 5).

For the Gaussian noise case, two different variances are shown.wtiris noting that (1) the
KLD criterion (solid) closely follows the actual distortion curve (dasheudhd (2) the minima for
low and high noise regime curves are very similar. These facts suggedhttiee Gaussian noise
case, the proposed criterion is quite robust and provides consisgeitisrethe higher the noise
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(red curves) the higher thezone minima. Besides, the linear relation betweeand the noise
standard deviation, reported in Kwok and Tsang (2003), is confirmesd he expected, the scaling
factor keeps fairly constant,~ 2.5, for botha? = 200 anda? = 400. Obviously, higher noise
levels imply more distorted estimations. For other (non-Gaussian) noiseespanilar results are
obtained. For the JPEG and JPEG2000 quantization noise sources,Bheritdrion also matches
SSIM performance. For the case of more complex noise sources, suartecal striping (VS)
and Infra Red Imaging System (IRIS) noise, the criterion gives cloggtional solutions in SSIM
terms. Note that, remarkably, the KLD criterion is better suited to the error minimizaticen
the signal and noise independence assumption holds (Gaussian chsgfofle there is room to
further improve the SVR selection criterion. The above results suggesthingroposed SVR
selection procedure can be considered as a convenient approximatisiaition minimization
(which is not possible in real situations).

5. Denoising Experiments and Discussion

In this section, we evaluate the performance of the proposed method iedtfeeenarios for image
denoising. Our algorithm is compared to several wavelet-based denaoisithgpds using standard
256x 256 images (‘Barbara’, ‘Boats’, ‘Lena’) with different levels andismes of degradation. In
the following, we first give details on implementation issues of the considégedtams. Then, we
analyze their performance for several kinds of noise sources:

e Experiment 1. Additive Gaussian noise of different variancgs<({200 400}).
e Experiment 2. Coding noise: JPEG and JPEG2000 at different quiaohizaarseness.

e Experiment 3. Acquisition noise: vertical striping and Infra Red Imagingt&y (IRIS)
noise.

Note that the noise PDF is in general unknown, except for the acadese®t&aussian noise, but
the histogram can be computed from samples in all cases.

All results are compared numerically by using the standard (yet notjeiedsy meaningful) RMSE,

and the perceptually meaningful SSIM index (Wang et al., 2004). Mereogpresentative exam-
ples are shown in every case for visual inspection. For proper vigtialig all the results are
equalized in the same way by truncating the values outsid®tBB5 range.

5.1 Implementation Details

The algorithms that do not use information about the inter-coefficient retafidonoho and John-
stone, 1995; Simoncelli, 1999; Figueiredo and Nowak, 2001) are sti@iglard to implement and
have few parameters to tune. All these methods use orthogonal wav@leseatations. In our
particular implementation, we used 4-scale QMF wavelets from MatlabPyrYolmisvery case,
we followed authors’ prescriptions to choose these parameters for shpdréormance:

e Hard Thresholding (HT)The key parameter is the threshold valuéNe use the noise vari-
ance to set the thresholdl = 30,,, as suggested in Donoho and Johnstone (1995).

3. Seéhttp:/lwww.cns.nyu.edu/ ~ eero/software.php
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Figure 6: Validation of the proposed KLD criterion to adjust SVR paramefer equivalentlyr,
see text). In every distortion case, solid lines represent the KLD critaridmashed lines
represent the distortion (1-SSIM). For proper visualization, KLD eanvere normalized
to fall in the same range as the distortion. In the Gaussian noise case, terewlffioise
variances are consideredf = 200 (black lines) and? = 400 (red lines). As can be seen,
the minima of the KL distance (squares) are always in the same region as the rafnima
the distortion (circles), thus giving rise to similar SSIM performance.
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e Soft Thresholding (SThn our implementation, the threshold in each subband is derived from
the standard deviation of the nois®,, using optimized values to minimize the mean square
error (MSE) in a set of 100 natural images. Threshold values were optirfiz theo? in the
range [0,1600].

e Bayesian Laplacian (BL)In this case, the parameters of the Laplacian distributsoang
p in Simoncelli, 1999) for the marginal PDFs in each subband are estimated hgnomax
likelihood (ML), as suggested by the author.

e Bayesian Gaussian (BGYhe threshold value was set according to the function of noise
variance provided in Figueiredo and Nowak (2001).

On the other hand, in the case of the Gaussian Scale Mixture (GSM) (Partilla 2003), which
does consider inter-coefficient relations, we used the implementation prbisidthe author.We
have used (1) the same representation as in the proposed method (Bsmaatation steerable
pyramid), and (2) we also provided the average noise power speetrsityl (PSD) to achieve the
best possible performance of the GSM method.

Details of the proposed SVR method are included in previous Section 3.2. tlalMiaple-
mentation of the algorithm is available onliReSince theC; ands; profiles are computed off-line,
the computational cost of the proposed method is mainly constrained by theér&Rg. In our
current implementation, we used the IRWLS algorithm in Matladré2-Cruz et al., 2000) in order
to drop the bias term and incorporate the insensitivity and penalization grefily. These modi-
fications are not trivial in faster implementations (Huang and Kecman, 2@man et al., 2004).
As a result, our Matlab implementation takes about 30 seédimi®ach image/noise estimation
for a set of SVR parameters. Three strategies can be carried oytdeding up the optimization:
(1) using faster SVR implementations (Platt, 1999; Chang and Lin, 2001gTetaal., 2005), (2)
alternative procedures to exhaustive search on convex erracssarfTorczon, 1997; Lewis and Tor-
czon, 2002; Vishwanathan et al., 2006), and (3) restricting the dimentbe parameter space (as
done in Section 3.2).

5.2 Experiment 1. Additive Gaussian Noise

Table 1 shows the distortion results for the three considered images andameise variances,

= 200 ando? = 400.. The best SSIM values in each case are highlighted. In everywase
also provide the SV®! result, which is the best result the proposed method can get in SSIM terms.
This is useful to assess the performance of the proposed diverbased criterion and to give
an upper bound of method’s performance. Results show that our alggpitinforms better than
the methods that neglect signal relations (HT, ST, BG and BL), and oldaiikar (yet slightly
lower) numerical results than the one which incorporates them (GSM)ntitisurprising that the
GSM method achieves the best performance in this case, since it is anah\gidgsdlg to deal with
Gaussian noise. The SVR performance is consistent through all imadge®e variances, thus
suggesting that the guiding criterion is robust. Finally, it must be noted thateimust difficult
case ofo2 = 400, GSM and SVR offer more similar results, and clearly outperform tsteofethe
methods.

4. Seehttp://decsai.ugr.es/ ~ javier/denoise/
5. Seéhttp:/lwww.uv.es/vistalvistavalencia/denoising_SVR/
6. Computations were carried out in a 2.8GHz processor with 4GB RAM.
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‘Barbara’ ‘Boats’ ‘Lena’
Method || SSIM RMSE || SSIM RMSE || SSIM RMSE
HT 0.77 16.48 || 0.76 13.62 || 0.73 18.97
ST 0.78 14.37 || 0.79 10.26 || 0.74 12.59
BG 0.80 14.14 || 0.79 11.70|| 0.76 12.75
BL 0.81 12.95|| 0.83 8.30 0.78 11.66
GSM 0.90 8.94 0.87 8.94 0.83 1361
SVR 0.87 10.11 || 0.84 10.16 || 0.81 12.54
SVRept 0.87 10.11 || 0.85 10.36 || 0.82 12.30

‘Barbara’ ‘Boats’ ‘Lena’
Method || SSIM RMSE || SSIM RMSE || SSIM RMSE
HT 0.67 2452 || 0.68 20.15 || 0.67 20.22
ST 0.69 19.04 || 0.71 16.16 || 0.66 19.72
BG 0.70 20.40 || 0.70 19.17 || 0.67 19.26
BL 0.73 16.52 || 0.77 10.26 || 0.67 18.45
GSM 0.86 11.02 0.80 17.40|| 0.79 15.95
SVR 0.83 13.13|| 0.81 10.73 0.78 14.50
SVRePt 0.83 13.13|| 0.81 10.73 || 0.78 14.06

Table 1: Results for the Gaussian noise: distortions for different imagesn@thods are given at
02 = 200 (top) ands? = 400 (bottom).

Figure 7 shows representative visual results in the challenging situatiop -f400. It can
be noticed that thresholding methods (HT, ST) and Bayesian generalzatmncluding signal
relations in the model (BG, BL) show poor performance, producing imeiber grained or cor-
rupted by too salient wavelet functions. Even though SVR yields slightlydowenerical scores
than GSM, global visual performance is comparable.

5.3 Experiment 2. Coding Noise: JPEG and JPEG2000

In this section, we focus on restoring grayscale images after JPEG GRIPB compression, which
induces non-Gaussian noise: it produces heavy tailed marginal &F®iR the spatial domain with
non-negligible relations among the pixels (see comments in Section 5.5). Qtiantizaise is an
illustrative example of how the proposed method can cope with non-Gapselaned and signal-
dependent noise. In order to obtain the necessary samples to build teenmsggrams, we used
100 images from the database described in Section 2 encoded by JPHBE®BHO0O. In the first
case, the Matlab implementation of the JPEG algorithm with quality faGe¢® (small distortion)
andQ = 7 (large distortion) was used. In the second case, scalar quantizatioen QMF wavelet
domain using standard JPEG2000 bit allocation tables (Taubman and Mar2ebih) was used.
Different values of quantization coarseness, that will be referred £ ésmall distortion) and\,
(large distortion) were applied.

Table 2 shows the quantitative results for all considered methods for teeithages at different
guantization levels. It can be noticed that again the SVR method outperfornisrésiolding
methods (HT, ST) and those not including signal relations in the model (B%, B/R yields
similar numerical scores than GSM in JPEG (Fig. 8). However, in JPEGRB&AG6r numerical
(Table 2 [bottom]) and visual (Fig. 9) results are obtained with SVR. Iregdnhigh frequency
details are better preserved by our method, while GSM yields over smoaihgidss, particularly
in JPEG2000.
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Noisy Image (0.46) HT (0.67)

GSM 0.79 ‘

SVR (0.78) SVRP (0.78)

Figure 7: Visual results for the ‘Lena’ image corrupted with Gaussianenaié = 400. SSIM
values are given in parentheses.
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Noisy Image (0.68) ~ HT (0.65)

SVROPt (0.73)

Figure 8: Visual results for the ‘Barbara’ image with JPEG quantizationen@s= 7). SSIM
values are given in parentheses.
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Noisy Image (0.54) HT (0.54)

BL (0.54)
! -

(.57)

Figure 9: Visual results for the ‘Barbara’ image with coarse quantizaf®GR000 noise. SSIM
values are given in parentheses.
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JPEG I Q=9 I Q=7
[ ‘Barbara’ | ‘Boats’ | ‘Lena’ | ‘Barbara’ | ‘Boats’ ‘Lena’
Method SSIM RMSH SSIM RMSH SSIM RMSH| SSIM RMSE SSIM RMSH SSIM RMSE
HT 0.70 20.05| 0.75 13.07| 0.70 18.40(| 0.65 22.11| 0.71 16.34| 0.65 24.99
ST 0.73 17.51| 0.78 11.59| 0.73 15.13| 0.68 19.71| 0.75 12.72| 0.68 18.77
BG 0.72 18.76| 0.77 12.30| 0.72 16.27| 0.66 21.57| 0.74 13.32| 0.67 21.05
BL 0.71 20.37| 0.77 13.43| 0.73 16.52|| 0.64 21.67| 0.74 14.70( 0.69 17.65
GSM 0.77 15.50| 0.80 11.15| 0.75 13.66 || 0.71 18.56 | 0.77 12.18| 0.71 17.45
SVR 0.78 14.89 | 0.78 12.13| 0.74 13.22| 0.71 18.42 | 0.76 12.84| 0.71 15.68
SVRePt 0.78 14.89| 0.80 11.35| 0.75 13.97| 0.73 18.28| 0.76 12.89| 0.71 15.72
JPEG2000 || Az [ =
[ ‘Barbara’ | ‘Boats’ [ ‘Lena’ | ‘Barbara’ | ‘Boats’ [ ‘Lena’

Method SSIM RMSE SSIM RMSH SSIM RMSE| SSIM RMSE SSIM RMSH SSIM  RMSE
HT 0.54 30.81| 0.55 26.23| 0.51 32.66|| 0.67 24.82| 0.59 25.18| 0.56 28.25
ST 0.55 28.83| 0.55 25.15| 0.51 31.24|| 0.68 22.52| 0.60 23.69| 0.56 27.47
BG 0.54 30.37| 0.55 26.08| 0.51 32.45|| 0.67 24.16| 0.59 24.92| 0.56 28.10
BL 0.54 30.30| 0.55 25.87| 0.51 29.05|| 0.67 24.35| 0.59 24.79| 0.56 28.12
GSM 0.55 28.47| 0.57 20.92| 0.52 25.84| 0.68 20.54| 0.64 17.94| 0.58 23.64
SVR 0.57 25.31| 0.57 21.88| 0.52 29.32 || 0.71 17.23| 0.64 18.27 | 0.59 21.55
SVRePt 0.57 25.31| 0.57 21.74| 0.52 25.35|| 0.72 17.04| 0.64 18.27| 0.59 21.55

Table 2: Results for the coding noise: distortions at different quality leMel®’EG Q = {9,7})
and JPEG2000 (coarsendéssandAy) are given for different images and methods.

5.4 Experiment 3. Acquisition Noise: Vertical Striping and IRIS Noise

Real imaging systems introduce complex forms of noise depending on thisiioguyrocess, so
assuming a particular PDF for all cases is far from being realistic. Fomiostavariation of the
intensity between neighboring elements of the CCD typically leads to verticaingtripise in

pushbroom sensors (Mouroulis et al., 2000; Barducci and Pippil)20Dther typical acquisition
noise source is observed in infrared imaging cameras, which is a complexemtiifferent noise
sources. In this section, we pay attention to these two particular noni@ausalistic acquisition
noises through controlled experiments:

1. Vertical striping noise. We simulated this noise by modifying 4% of the image columns
selected randomly. The luminance of the selected columns was modified byoearr#enctor
following a uniform distribution between 0.8 and 1. Spatial coherenceavasd by attaching
groups of contiguous 5 to 10 strips.

2. InfraRed Imaging System (IRIS) noisespired in the observed characteristics of a represen-
tative number of acquired images by a commercial IR camera, the noise watethdy a
combination of four noise sources: low-variance Gaussian nofse 60), ‘salt-and-pepper’
noise (with a percentage of corrupted pixels aboQb%), some spatially coherent missing
pixels (black patches), and interlaced lines all over the image.

In both cases, we computed the contrast noise RiDf), from 100 noisy images. In the next
Section 5.5, the non-Gaussian nature of these acquisition noise PDF&/is sho

Table 3 shows the obtained numerical results for all images and both acquisitise sources.
In both complex scenarios, the proposed SVR-based method outper@Bisand the rest of
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Method ‘Barbara’ ‘Boats’ ‘Lena’
SSIM RMSE|| SSIM RMSE| SSIM RMSE
HT 0.73 17.43|| 0.73 15.99| 0.69 18.07
ST 0.77 15.71| 0.78 14.04| 0.75 14.08
BG 0.76 16.01| 0.76 14.75| 0.73 15.14
BL 0.77 1656| 0.81 14.96| 0.77 14.64

GSM 0.79 1483 0.79 1436| 0.75 14.45
SVR 0.80 15.66 | 0.80 1347 | 0.79 13.18
SVRPP || 0.80 15.45| 0.82 14.25|| 0.80 13.31

HT 0.50 30.80| 0.58 28.70| 0.56 28.81
ST 0.55 27.02| 0.64 23.48| 0.60 24.40
BG 0.54 28.40| 0.62 25.44| 059 26.20
BL 0.50 28.74| 0.60 21.77| 0.55 24.08

GSM 0.53 3051 0.64 2592| 0.61 30.99
SVR 0.59 31.07 | 0.67 21.44 | 0.66 31.44
SVRP || 0.60 30.71| 0.70 24.56| 0.66 32.05

Table 3: Acquisition noise: vertical striping (top) and IRIS noise (bottongtddtions for different
images and methods.

methods numerically. A noticeable gain in SSIM is observed, which is confimaieth looking
at the restored images in Figs. 10 and 11. It is worth noting that in the vestitging noise
(Fig. 10), SVR yields a sharper (and more realistic) reconstruction wislel roduces an over-
blurred solution. In the case of the IRIS noise, only SVR removes the ioteglaoise contribution,
producing better visual results. Including the average PSD informatiorSiM,&s we do in the
experiments, improves its performance. However, it is not enough to eethevnterlacing artifact
due to the particular nature of IRIS noise. IRIS noise is difficult bectusd®SD and variance
of each particular realization of the noise may substantially differ from thénfated) averages.
On the contrary, the proposed SVR method uses an adaptive cost fuleetraed from the noisy
image. Here, nevertheless, the upper bound of performance is notuggéssing that there is still
room for improving the selection criterion proposed, possibly considén@gpint density.

5.5 Analysis of the Residuals

Further qualitative insight in the obtained solutions can be achieved by cmgphe estimated
and actual PDFs of signal and noise with the different methods and rmisees. Since we are
restricting ourselves to second order KLD criterion, this comparisorcestio assess the difference
between 2D histograms (in the spatial domain).

It is widely known that the PDF of pairs of neighbor pixels in natural imagemisriented
ellipsoid reflecting the strong correlation among luminance values in the spatiedid (Clarke,
1985). The corresponding restored images (even for the worserpémy algorithms) also display
such strong local correlation. Therefore, no relevant conclusioairged by direct inspection of
these histograms (results not shown). On the contrary, the 2D histogfaims woise are more
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Noisy Image (0.77) HT (0.69)

il

Figure 10: Visual results for the ‘Lena’ image with vertical striping noisBIMbvalues are given
in parentheses.
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Noisy Image ( .58)

0.59) HT (0

64)

Figure 11: Visual results for the ‘Boats’ image with IRIS noise. SSIM valaee given in paren-
theses.
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suitable for direct inspection because (1) actual noise histogramsitealifierent for the different
noise sources, and (2) the estimated histograms strongly depend on ¢isrdgmethod.

Figure 4 represents the distribution of the actual and estimated noise PHF$H®yconsidered
methods in the spatial domain. It can be noticed that, for the Gaussian rbimsetlaods reproduce
quite well the shape and extent of the PDF, as expected for the parameatiétsmehich use a proper
Gaussian noise model. Note that the SVR method also succeeds in approximamgrgy of the
noise even without using the Gaussian assumption explicitly.

For non-Gaussian noise sources, the behavior of the methods markéstyrar instance, the
guantization noise induced by JPEG/JPEG2000 follows a non-Gaussgimted joint distribution
(the central dark area is actually an oriented ellipsoid), indicating correlatiiong noise samples.
In the case of JPEG, this central ellipsoid is better reproduced by hashthiding and the proposed
SVR method. The other methods slightly underestimate the variance of the Rorsthie case of
JPEG2000, methods not considering signal relations dramatically utideatsthe noise variance.
In the case of more complex noise sources, such as vertical striping®yrrBne of the methods
reproduce the low probability structure (light gray regions). Howetler,central peak is poorly
reproduced by marginal methods, either overestimating (HT, ST, BG)dearaatimating (BL) the
width. On the contrary, GSM and SVR give more reasonable width estimatiocoriclude, meth-
ods assuming an (inadequate) Gaussian noise model do not match, ial gibieemoise distribution,
so they should be reformulated for each particular noise source, whighengomplicated or even
impossible. GSM constitutes an exception to this statement, since results sihggeise quality
of the signal model compensates the unsuitability of the noise model. On thargpittis is not
necessary for the proposed method, which only needs examples ofmaiggs tdearn from.

6. Conclusions

In this work, we proposed an alternative non-parametric way to take irdouat the relations
among natural image wavelet coefficients for denoising: we used SVR wabelet domain to en-
force these relations in the estimated signal. The specific signal relatioit, prioved to be more
relevant in intraband coefficients, are encoded in an anisotropiclkesed on mutual information
computed from a representative image database. An adaptive SVR wétediftost functioper
subband was developed: the subband-deperglamdC; are modeled by analyzing the particular
signal and noise variances in a representative image database. Byirigliganeral recommenda-
tions for the design of the kerned, andC;, and adapting them to the particular image denoising
problem, we restricted the class of appropriate SVRs. A KLD-basedioriteras proposed to au-
tomatically select the SVR that best recovers the relevant wavelet ¢eeffrelations of the true
signal. The criterion was quite consistent but there is still room for improaerseecially in the
case of complex noise sources.

Results show that the performance of the proposed non-parametric nigtfigdbetter than
conventional wavelet methods that assume coefficient independé)ceim(lar to state-of-the-
art methods that do explicitly include these relations when the noise sour@ussian, and (3)
numerically and visually better results are obtained when more complex reatisge sources are
considered. Therefore, the proposed SVR approach can be seemare flexible (model-free)
alternative to the explicit description of coefficient relations. The importang here is that no
reformulation is needed for dealing with any other kinds of noise. Momedhese results are an

897



LAPARRA, GUTIERREZ CAMPS-VALLS AND MALO

Spatial Noise HT ST BG BL GSM SVR

0 = 400

JPEG

JPEG2000

898

VS

IRIS

Table 4: 2D histograms of the residuals in the spatial domain for all methodsoaselsources (darker regions indicate higher probability).
In all cases, we considered a pixel and its right-hand neighbor (oeégiit). All the histogram values have been exponentiated
to 0.25 for better visualization.
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additional indication that relation between local frequency coefficientssaliant natural image
feature that should not be neglected in denoising applications.

Future work is tied to the incorporation of new information in the kernels: tiveréocused on
the consideration of signal relations in the kernel, but the particular steuofuithe noise could be
eventually incorporated. Note that the denoising procedure is quiteajemsr admits any kind of
non-parametric regression machine, such as Gaussian Processes.
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