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Abstract

A successful class of image denoising methods is based on Bayesian approaches working in wavelet
representations. The performance of these methods improves when relations among the local fre-
quency coefficients are explicitly included. However, in these techniques, analytical estimates can
be obtainedonly for particular combinations of analytical models of signaland noise, thus preclud-
ing its straightforward extension to deal with other arbitrary noise sources.

In this paper, we propose an alternative non-explicit way totake into account the relations
among natural image wavelet coefficients for denoising: we use support vector regression (SVR)
in the wavelet domain to enforce these relations in the estimated signal. Since relations among the
coefficients are specific to the signal, the regularization property of SVR is exploited to remove the
noise, which does not share this feature. The specific signalrelations are encoded in an anisotropic
kernel obtained from mutual information measures computedon a representative image database.
In the proposed scheme, training considers minimizing the Kullback-Leibler divergence (KLD)
between the estimated and actual probability functions (orhistograms) of signal and noise in order
to enforce similarity up to the higher (computationally estimable) order. Due to its non-parametric
nature, the method can eventually cope with different noisesources without the need of an explicit
re-formulation, as it is strictly necessary under parametric Bayesian formalisms.

Results under several noise levels and noise sources show that: (1) the proposed method out-
performs conventional wavelet methods that assume coefficient independence, (2) it is similar to
state-of-the-art methods that do explicitly include theserelations when the noise source is Gaus-
sian, and (3) it gives better numerical and visual performance when more complex, realistic noise
sources are considered. Therefore, the proposed machine learning approach can be seen as a more
flexible (model-free) alternative to the explicit description of wavelet coefficient relations for image
denoising.

Keywords: natural images, statistical relations, image denoising, wavelets, non-parametric meth-
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1. Introduction

Denoising requires representing the distorted signal in a domain where signal and noise display dif-
ferent enough behavior. In such a representation, noise is removed by imposing the known proper-
ties of the signal to the distorted samples. In image denoising, classical regularization techniques are
used to impose smoothness in the spatial domain since noise is typically white
(Banham and Katsaggelos, 1997). Smoothness in the spatial domain means predictability of the
signal from the neighborhood, and thus classical approaches exploitthe low-pass behavior of the
power spectrum to rely on band-limitation or autoregressive models of the signal (Andrews and
Hunt, 1977; Banham and Katsaggelos, 1997; Bertero et al., 1988). Several image denoising methods
working in the spatial domain have been presented in the literature, either based on splines (Takeda
et al., 2007), patch-based approximations (Kervrann and Boulanger,2007), local auto-regressive
models (Gutíerrez et al., 2006), or support vector regression (Kai Tick Chow and Lee, 2001; van
Ginneken and Mendrik, 2006) to perform smooth (regularized) approximations of the noisy signal.
Recently, successful methods use adaptive local basis representations (Dabov et al., 2007). Ap-
proaches to the problem using local basis is qualitatively related to wavelet descriptions. In fact,
wavelet representations have been recognized as quite appropriate domains for image denoising.1

Wavelet representations are convenient in image denoising because natural image samples have
a very specific statistical behavior in this domain. On the one hand, smoothness is represented by
a strong energy compaction in coarse scales. On the other hand, the combination of smooth re-
gions with local, high contrast features, such as edges, gives rise to sparse activation of wavelet
sensors. This leads to very particular, heavy-tailed, marginal probabilitydensity functions (PDFs)
of the wavelet coefficients (Burt and Adelson, 1983; Field, 1987; Simoncelli, 1997; Hyv̈arinen,
1999). These basic features were incorporated in the classical wavelet-based image denoising tech-
niques (Donoho and Johnstone, 1995; Simoncelli, 1999; Figueiredo andNowak, 2001). Classical
techniques such as hard and soft thresholding (Donoho and Johnstone, 1995) have been derived
by using Bayesian approaches in non-redundant wavelets, looking for eitherMaximum a Posteriori
(MAP) or Bayesian Least Squares(BLS) estimators, in combination with simple marginal mod-
els and assuming statistical independence among coefficients (Simoncelli, 1999; Figueiredo and
Nowak, 2001).

It is well-known, however, that marginal models in the wavelet domain are not enough for
a proper signal characterization: relevant relations among coefficientsstill remain after wavelet
transforms (Simoncelli, 1999). For instance, edges lead to strong couplingbetween the energy
of neighboring wavelet coefficients of natural images. These relations among wavelet coefficients
have proven to be a key issue in applications such as image coding (Malo et al., 2006; Camps-Valls
et al., 2008), texture analysis and synthesis (Portilla and Simoncelli, 2000) orimage quality metrics
(Laparra et al., 2010). The use of these relations is in the roots of the mostrecent and successful
image denoising approaches as well (Portilla et al., 2003; Siwei and Simoncelli, 2007; Goossens
et al., 2009). In this case, more complex image models explicitly including the relations among
coefficients have to be plugged and fitted into the Bayesian framework to obtain the image estimates.

Unfortunately, all these model-based Bayesian techniques have three common problems:

1. They critically depend on the accuracy of the image model, whose definitionis not trivial;

1. In the 2007 IEEE International Symposium on Information Theory (ISIT2007), the tutorial “Recent Trends in Denois-
ing” (http://www.stanford.edu/ ∼slansel/tutorial/summary.htm ) pointed out that state-of-the-art method-
ologies are usually defined in the wavelet domain.
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2. MAP or LS estimations can only be derived analytically for particular, typically Gaussian,
noise sources. For different noise sources, the whole technique hasto be reformulated which
may not be analytically tractable;

3. The estimation of the parameters of the image model from the noisy observation is difficult
in general.

Conversely, non-parametric approaches can include the above qualitative properties in an indirect
way without the restriction of being analytically attached to particular image or noise models. These
approaches are based onlearningthe underlying model directly from the image samples.

In this work we apply support vector regression (SVR) in a redundant(overcomplete) wavelet
domain to the noisy image. The proposed method has the following advantages infront of the
Bayesian framework:

1. It does not use a particular parametric image model to be fitted, for example, no analytical
PDF is required.

2. Its solution may be found for arbitrary noise sources even without knowing the functional
form of the noise PDF since it can work with just noise histograms. Therefore, the procedure
does not need to be reformulated for different noise sources.

3. It is capable to take into account the relations among wavelet coefficientsof natural images
through the use of a suitable kernel. In this way, the method preserves the relevant relations
among the coefficients of the true signal and better removes the degradation.

The proposed method does not assume independence among the signal coefficients in the wavelet
domain, as opposed to Simoncelli (1999) and Figueiredo and Nowak (2001), nor an explicit model
of signal relations, as done in Portilla et al. (2003). Therefore, the proposed machine learning
approach can be seen as a more flexible (model-free) alternative to the explicit description of wavelet
coefficient relations for image denoising. Even though the selection of a particular SVR may be
seen as a signal parametrization, the model is still non-parametric in the sensethat no functional
form of the signal (or noise) characteristics (e.g., the PDF) is assumed.

Non-explicit use of dependencies in local frequency domains for denoising was also introduced
in Gutiérrez et al. (2006). In that case, relations were embedded into a perceptual model used for
non-parametric spectrum estimation, and offered better results than local parametric autoregressive
models not including these relations. Here we pursue the same goal (a model-free technique includ-
ing local frequency relations), but with a completely different framework(SVR instead of perceptual
information). The idea of using SVR regularization in the wavelet domain for image denoising has
been recently introduced in Kai Tick Chow and Lee (2001), Cheng et al.(2004) and van Ginneken
and Mendrik (2006). However, in these works, (1) the qualitative effect of the different parameters
of the SVR was not analyzed, (2) these parameters were set without plausible justification of their
values, and more importantly, (3) the relevance of the relations among the wavelet coefficients of the
signal was not an issue, so the ability of SVR to take these relations into account in the kernel was
neither assessed nor compared to other methods that do consider them. In fact, a trivial isotropic
Gaussian kernel was used in all cases. On the contrary, in this paper weaddress the key following
issues:
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• Natural images features in redundant wavelet domains.Interesting insight about the prob-
lem can be obtained by analyzing the mutual information between the coefficients of wavelet
representations (Buccigrossi and Simoncelli, 1999; Liu and Moulin, 2001). However, in re-
dundant domains, it is strictly necessary to discern what are the relations specific to the signal
and those due to the transform.

• General constraints of the SVR parameters in image denoising.Generic recommenda-
tions about the SVR parameters have been adapted to propose specific subband-dependent
profiles for the insensitivity and the penalization parameters, and to propose a mutual infor-
mation based kernel.

• Effect of the SVR parameters.We show the qualitative effect of varying the values of the
parameters under the constrained parameter space.

• Procedure to optimize the SVR parameters.We propose an automatic procedure to select
the SVR parameters based on the Kullback-Leibler divergence, under certain assumptions on
signal and noise.

Even though this methodological framework is proposed in the context of achromatic image denois-
ing, it can be readily extended to other denoising problems in which wavelet coefficients exhibit
particular relations, such as in color or multispectral images, speech signals, etc.

The remainder of the paper is outlined as follows. In Section 2, we point outrelevant signal
features in redundant wavelet domains through mutual information measurements. These key prop-
erties will be used by the proposed algorithm presented in Section 3. In Section 4, the effect of SVR
parameters and the validity of the proposed criterion for its selection is addressed experimentally.
Section 5 shows the performance of the proposed method compared to standard denoising methods
in the wavelet domain. Several experiments dealing with different amount and nature of noise il-
lustrate the capabilities of our proposal. Finally, Section 6 draws some conclusions and outlines the
further work.

2. Features of Natural Images in the Steerable Wavelet Domain

The starting hypothesis for image denoising is that signal and noise display different characteristics
and thus it is possible to separate them in a certain domain. Natural images show non-trivial rela-
tionships among wavelet transform coefficients. In the following, we review the reported statistical
properties of natural images in orthogonal wavelet domains, and then analyze them in the redundant
steerable wavelet domain selected in our implementation. Specifically we will use mutual infor-
mation (MI) to assess the statistical relations among wavelet coefficients of natural images as in
Buccigrossi and Simoncelli (1999) and Liu and Moulin (2001).

2.1 Intraband Versus Interband Signal Relations in Orthogonal Wavelets

Dependencies amongorthogonal waveletcoefficients were measured using mutual information in
Liu and Moulin (2001). The dependencies were studied at interband andintraband levels, and the
results suggested that the mutual information between intraband neighbors is typically larger than
the interband relations for several models and types of interaction. In Buccigrossi and Simoncelli
(1999), the authors analyzed the linear predictability of a coefficient’s magnitude from a condition-
ing coefficient set, either its parent, neighbors (left and upper), cousins (coefficients at the same
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location but in different orientation subbands), or aunts (cousins of theparent). After an exhaus-
tive mutual information analysis, the parent provided less information content than the neighbors.
These evidences suggest that the dependencies among spatial neighboring coefficients (intraband)
in orthogonal wavelet descriptions are stronger than the interband dependencies.

2.2 Natural Images Relations in Steerable Wavelets

Redundant (non-orthogonal) wavelet representations may be more suited to image denoising appli-
cations since redundant representation of the image features may make the signal inherent relations
clearer. Specifically, some redundant representations are designed tobe translation or rotation in-
variant (Freeman and Adelson, 1991; Coifman and Donoho, 1995; Kingsbury, 2006). This behavior
is convenient to ensure that a particular feature in different spatial regions (or with different orienta-
tions) gives rise to the same neighboring relations. Some translation invariantwavelets (Simoncelli
and Freeman, 1995) have also a smoother rotation behavior than non-redundant transforms. This
justifies applying the same processing all over a particular subband and dealing with the different
orientations in similar ways. Besides, this prevents aliasing artifacts appearing in critically-sampled
wavelets. In this work we choose a redundant steerable pyramid representation (Simoncelli and
Freeman, 1995) to take advantage of these properties.

Despite the reported results on the relations of signal coefficients in orthogonal transforms, a
number of questions have to be answered in the case of redundant representations, and in particular,
in the steerable wavelet domain:

1. How relevant are the relations among coefficients of natural images in thisdomain?

2. How relatively important are interorientation, interscale and intraband signal relations?

3. How is the spatial arrangement of these signal relations?

The first question is particularly important since, even though the steerabletransform may intensify
the relations among signal coefficients, its redundant nature may also introduce relations which
could be due to the transform but not to the signal. The second question allows us to focus on the
most significant relations. Answering the third question is crucial to design suitable kernels for
image denoising.

In the following, we get some insight on these concerns by performing two experiments on
a representative database of 920 achromatic images of size 256× 256 extracted from the McGill
Calibrated Colour Image Database.2

2.2.1 SIGNAL RELATIONS ARE SPECIFIC TO THESIGNAL

In our first test, following Liu and Moulin (2001), we computed the mutual information among
steerable wavelet coefficients of the data set for different spatial, orientation, and scale distances.
We used a steerable pyramid with 8 orientations and 4 scales. The mutual information was estimated
from the uniformly binned empirical data (256 bins) by computing the histogramof all available
sample pairs (721280 samples) for the three considered neighborhoods. In addition, as stated above,
in redundant domains it is necessary to know whether these relations come from the images or they
are due to the transform. Note that, considering i.i.d. signals, any relation among the coefficients

2. Seehttp://tabby.vision.mcgill.ca/ .
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(a) (b) (c)

Figure 1: Comparison between redundancy of natural image coefficientsin the steerable wavelet
representation (solid), and the redundancy due to this representation (dashed). Redun-
dancy is measured in terms of relative mutual information in logarithmic scale among(a)
spatial (b) orientation and (c) scale neighbors.

after a linear transform will be due to the transform no matter their PDF in the original domain.
Therefore, in order to assess the amount of relations due to the transform, we compared the MI
among natural images coefficients, and the MI among the coefficients of an i.i.d. signal (Fig. 1).
The relations displayed by i.i.d. signals in the transformed domain may be seen asa lower bound
for the mutual information of signal coefficients. From Fig. 1, it can be noticed that, in every case,
relations found in natural images are bigger than those introduced by the transform.

2.2.2 INTRABAND SIGNAL RELATIONS DOMINATE OVER INTERSCALE ORORIENTATION

Besides, the results show that intraband relations in the signal are also more important than interor-
ientation or interscale relations. Note that mutual information measures are defined to depend on
logarithms of probability so that comparisons have to be done by subtraction,not by division. Be-
yond consistency with previously reported results for orthogonal wavelet transforms (Buccigrossi
and Simoncelli, 1999; Liu and Moulin, 2001), it has been observed that therelations are specific to
the signal and not just induced by the transform.

2.2.3 INTRABAND RELATIONS ARE STRONGLY ORIENTED

In our second test, we studied the spatial arrangement of the relations among intraband coefficients
since they display the most relevant relations. To this end, we computed the mutual information in
a 2D 5×5 neighborhood for the different orientations and scales. Figure 2[top] shows the above
mentioned results for the set of natural images (finest scale). We also provide the relations intro-
duced by the transform (i.i.d. signal, Fig. 2 [bottom]). Similar results were obtained for the other
(coarser) scales. Again, the relations among the signal coefficients arehigher than those introduced
by the transform. Another key issue observed in Fig. 2 [top] is the specificspatial arrangement of
these relations: the presence of oriented structures in natural images gives rise to strong anisotropic
intraband relations in the different subbands. Coefficients following these relations are expected
to be representative of natural features. These mutual information results match recently reported
results on autocorrelation of intraband wavelet coefficients (Goossenset al., 2009). The results ob-
tained in these experiments will be further used in Section 4 to design specific kernels that take into
account theobservednatural image relations.
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Figure 2: Mutual information among the central coefficient and its spatial neighbors in the same
subband (intraband) in the steerable wavelet domain. Darker gray values indicate higher
mutual information. Top row shows the results for the different orientationsof the finest
scale of the natural image database, and bottom row shows the equivalentresults for
Gaussian noise.

Summarizing, natural images have singular features in the steerable waveletdomain (Figs. 1
and 2): given a distorted image, enforcing these singular oriented relations among coefficients in
every subband (with the appropriate kernels) will eventually preserve the natural signal relations and
remove the noise. Of course, the bigger the difference between the shape of the intraband relations
in signal and noise the better the results are expected to be.

3. Restoring Wavelet Relations with SVR

The effect of noise in the wavelet domain is introducing artificial deviations from the original signal
and hiding the natural relations among the coefficients (see an illustrative example in Fig. 3). In
the more general case, the degraded observation,id, can be written as the result of the addition of a
certain realization of noise,n, to the original signal,i:

id = i +n. (1)

Note that this (convenient) way to state the problem does not necessarily mean that the physical
degradation has to be additive. In fact, the nature of the degradation should ideally be expressed
through a probabilistic noise model that may depend on the original signal,p(n|i). The other de-
sirable piece of information is a probabilistic model of the signal,p(i). However, in most practical
situations, the complete probabilistic description of the problem, that is, havingp(i) andp(n|i), is
not available in analytical form.

In order to avoid this lack of information, we propose to use the regularization ability of SVRs.
In this section, first we review the capabilities of the SVR for signal approximation. Afterwards,
general constraints to the SVR parameter space are given for the particular problem of natural image
denoising. Finally, we present an automatic procedure to choose the appropriate SVR parameters
(from the above restricted space) to be used for any combination of image and noise.

3.1 Capabilities of SVR for Signal Estimation

Throughout this work, a wavelet transform, matrixT, is applied to the observed image, leading to
a set of (noisy) coefficients,y = T · id. The original set of wavelet coefficients,x = T · i, has to be
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Figure 3: Effect of noise on the wavelet coefficients. Patch of a subband of a wavelet representation
of the original image Barbara (left) and its noisy version (right). Darker values indicate
higher amplitudes.

estimated from the distorted observation,y. Due to the observed strong intraband relations, we will
use the SVR in the wavelet domain in patches inside each subband. Subbands are decomposed into
non-overlapping 16×16 patches, leading to sets ofN = 256 samples. Now, given input-output pairs
{pi ,yi}

N
i=1, wherepi are the wavelet indices andyi are the corresponding noisy wavelet coefficients

in a patch, we train theadaptiveSVR (Camps-Valls et al., 2001; Navia et al., 2001; Gómez et al.,
2005) to approximate the signal.

Let φ be a non-linear mapping to a higher dimensional feature space, then the adaptive SVR
computes the weightsw to obtain the estimation, ˆxi = φ⊤(pi)w, by minimizing the following regu-
larized functional:

‖w‖2 +∑
i

Ci ξi ,

subject to|yi −φ⊤(pi)w| ≤ εi +ξi , ∀i = 1, . . . ,N, whereξi are the magnitude of the deviations of the
estimated signal from the observed noisy data outside the (sample-dependent) insensitivity zonesεi .
Sample-dependent penalization parameters,Ci , tune the trade-off between fitting the model to the
observed noisy data (minimizing the deviations) and keeping model weights‖w‖ small (enforcing
flatness in the feature space).

This adaptive SVR differs from the standard formulation (Smola and Schölkopf, 2004), in two
aspects: (1) the loss function given by (εi ,Ci) is sample-dependent, which is convenient in wavelet
domains where signal and noise variances strongly depend on the subband, and (2) the usual bias
term in SVM formulations has been intentionally dropped to account for the fact that the expected
value of wavelet coefficients is zero. The appropriate design ofCi andεi profiles is analyzed in
Section 3.2.

Explicitly working with the non-linearityφ is no longer necessary since the whole formulation
can be expressed in the form of dot products of the mapping functions called kernels, K(pi , p j) =
φ(pi)

⊤φ(p j). In this case, the estimation is given byx̂ = K ·α, whereα is the dual representation
of weightsw (Smola and Scḧolkopf, 2004). The kernel matrix can be seen as a similarity ma-
trix between samples (or coefficients), and should reflect the relations between them. Many kernel
functions have been proposed in the literature (Smola and Schölkopf, 2004). In the image denoising
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case in wavelet domains, we focus on the basic structure of the generalized Radial Basis Functions
(RBF) kernel since the relationship among the wavelet coefficients corresponding to spatial neigh-
bors within a subband is local. However, as it will be analyzed in Section 3.2, the kernel will be
adapted to incorporate the anisotropic signal relations studied in Section 2.2,see Fig. 2.

3.2 General Constraints on SVR Parameter Space in Image Denoising

As stated above, SVR signal approximation will depend on the penalization parameters,Ci , the
insensitivities,εi , and the kernelK. In the following, we restrict the range of possible values of
these parameters,θ = (Ci ,εi ,K), in the particular case of image denoising in wavelet domains:

Penalization factor. In general, the penalization factor of SVRs should be related to the standard
deviation of the signal (Cherkassky, 2004). In the denoising problem considered here, the
signal variance substantially differs in each wavelet scale. According tothis, it is strictly nec-
essary to set a different penalization factorper scale,Ci = Cki , whereki is a scale-dependent
profile. This profileki was obtained by averaging the standard deviation of wavelet coeffi-
cients over 100 images from the database used in Section 2. This profile wasmultiplied by
a factor,C, varied in the range [10, 104], which did not show a strong impact on the results
provided a sufficiently large value. This is consistent with the suggestions reported in Chal-
imourda et al. (2004) in a more general context. Note that, for instance, in the examples of
the next section (Fig. 3), indistinguishable results are obtained for a largeenoughC. In our
experiments, we found that a reasonable prescription for the global factor on the penalization
profile isC≈ 103.

Adaptive insensitivity zone. In general, the insensitivity has to be related to the standard deviation
of the noise (Kwok and Tsang, 2003). In transformed domains, the effect of the transform
has to be taken into account in order to estimate the corresponding standarddeviation. In
redundant wavelet representations, this standard deviation is coefficient dependent. Thus it
is strictly necessary to introduce a subband-dependentεi profile (Camps-Valls et al., 2001;
Gómez et al., 2005). The transformed standard deviations can be estimated either (1) empir-
ically from noise samples, or (2) computed from the noise covariance matrix ifit is known.
In the empirical case, noise samples can be experimentally obtained by applyingthe noise
source to a large enough set of images, and writing the noise as in Eq. 1. Inour experiments,
we used the natural image database used in Section 2, and we obtained fairly stable results for
the profile by considering 100 images. In the case that the noise covariance is known, the cor-
responding matrix in the selected wavelet domain can be obtained from the noise covariance
matrix in the spatial domain,Σn, and the transformT (Stark and Woods, 1994). Therefore,
the insensitivity profile can be computed as:

εi = τ diag(T ·Σn ·T
⊤)

1/2
i . (2)

In the case of white noise,Σn = σ2
n · I , and thus Eq. (2) reduces to:

εi = τ σn diag(T ·T⊤)
1/2
i , (3)

whereσ2
n is the noise variance in the spatial domain, andτ is a scaling factor to be adapted

for each particular image and noise combination. The scaling factor,τ, should be in the range
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Figure 4: Anisotropic kernel functions used in the support vector regression method for the eight
considered orientation subbands.

[0.5, 3] according to the known relationship between theε-insensitivity zone and the noise
standard deviation (Kwok and Tsang, 2003). Note that (2) may cope with colored noise. Con-
sidering the off-diagonal elements of the covariance matrix (neglected in (2) and (3)) would
give rise to couplingε-insensitivities among samples. This issue has been already considered
and solved in the context of image coding by using an additional non-linear transform and a
constantε in the transformed domain (Camps-Valls et al., 2008). However, in this paper, we
restrict ourselves to the approximated diagonal case.

Including signal relations in the kernel. In the kernel methods literature, the use ofprior knowl-
edge about the problem can be encoded through bagged, cluster, or probabilistic kernels (Je-
bara et al., 2004; Weston et al., 2004). In our case, we propose to takeinto account image
coefficient relations by analyzing a large (representative) database and taking the (oriented)
mutual information among samples as core distance measure. However, usingthese empiri-
cal measures to set the kernels is not straightforward since the kernels have to fulfill Mercer’s
Theorem (Mercer, 1905). According to this, we propose to use generalized Gaussian ker-
nels. In particular, we fitted anisotropic Laplacian kernels to the MI measures to consider the
intraband oriented relations within each subband:

Kα(pi , p j) = exp
(

− ((pi − p j)
⊤G(α)⊤Σ−1G(α)(pi − p j))

1/2),

whereΣ =

(

σ1 0
0 σ2

)

, σ1 andσ2 are the widths of the kernels,pi ∈ R
2 denotes the spatial

position of coefficientyi within a subband, andG(α) is the 2D rotation matrix with rotation
angle,α, corresponding to the orientation of each subband (see Fig. 4). Note that these set of
oriented kernels describe the signal relationships that emerge from experiments in Section 2
(cf. Fig. 2[top]).

We obtained proper values for the widthsσ1 andσ2 by fitting the above kernel to the MI mea-
sures among coefficients described in Section 2 (σ1 = 2σ2, andσ1 = 4.8 in spatial coefficient
units). The kernel was further normalized in the standard way. Since this width comes from
direct measures from images, it describes a fundamental property of natural images so it can
be kept fairly constant.

The conclusion of this section is that in the case of image denoising in wavelet domains, an
appropriate analysis of the signal variance, the noise variance, and therelations among the wavelet
coefficients of the signal can be used to strongly reduce the dimensionality of the SVR parameter
space. After this analysis, the only SVR parameter that remains fixed is the global scaling,τ, to be
applied to the insensitivity profile.
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3.3 Procedure for Automatic SVR Selection

In the more general case, applying SVRs with a given set of parameters,θ, to a noisy image leads
to a certain image estimate,îθ = T−1 · x̂θ. From this image estimate, and the convenient additive
notation for the noise (Eq. (1)), a noise estimate can be obtained:n̂θ = id − îθ. In this section we
propose a procedure to select the SVR parameters,θ, that better approximates the noise free image,
using the available information.

In the more general situation the only available information is the noisy image. However, as
stated above, denoising methods usually assume that additional probabilistic information on the
signal and noise is available:p(i) andp(n|i). Note that this knowledge is equivalent to the knowl-
edge of the joint signal and noise distribution sincep(i,n) = p(n|i) p(i).

Let us momentarily assume that this information is available to propose the general procedure
to set the SVR parameters. Afterwards, we will relax the requirements by considering an approxi-
mation that can be easily applied in practical situations.

In order to enforce solutions that closely follow the (assumed to be known)statistics of signal
and noise, we propose to select the SVR that minimizes thek-th order Kullback-Leibler divergence
(KLD) (Cover and Tomas, 1991) between the joint PDF of signal and noise, and the joint PDF of
the estimated signal and the estimated noise:

θ∗ = arg min
θ

{

DKL
[

p(îθ, n̂θ) ‖ p(i,n)
]

}

. (4)

The underlying idea is that the SVR that minimizes the divergence between the above PDFs is
the one that better captures the features of the true signal and better removes the degradation.

Although in ideal situations the application of this procedure would obtain the best results in
statistical terms, in practical situations the full probabilistic description of the problem is not avail-
able. A number of approximations are done in practical situations. For instance, thermal noise
in CCD cameras is not independent from the input signal since diffusion increase with the irradi-
ance. However, thermal noise is usually assumed to be independent of theinput signal. Additional
assumptions as additivity or certain analytical marginal PDF of the noise are also widely used.

In our case, we assume independence between signal and noise:

p(i,n) = p(i) p(n).

However, no analytical model for these PDFs is assumed. Under this independence assumption, it
is easy to see that Eq. 4 reduces to:

θ∗ = arg min
θ

{

DKL
[

p(îθ) ‖ p(i)
]

+DKL
[

p(n̂θ) ‖ p(n)
]

}

. (5)

This means that the selected SVR parameters are those that give rise to both signal and noise es-
timates probabilistically similar to the true signal and noise respectively. Note thatthis similarity
does not require analytical models of the PDFs since it can be computed from histograms (or signal
and noise samples).

Of course, the independence assumption does not hold in general, however, as it will be shown
in Section 4.2, this is not a critical fact for a good behavior of the method even in non-additive cases
in which the noise is clearly signal-dependent. Moreover, the independence assumption simplifies
the practical application of the criterion for SVR selection since, for a limited number of samples,
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histogram estimations ofp(i) andp(n) are far more reliable than histogram estimations ofp(i,n),
which implies the duplication of the dimensionality (in an already high dimensional situation).

In the examples throughout the paper we restricted ourselves to second order KLD measures due
to the lack of samples, yet capturing the second order structure of signaland noise. The optimization
in Eq. (5) was carried out by exhaustive search.

3.4 Summary of the Proposed Denoising Method

The proposed denoising method can be summarized as follows. First the noisy image is transformed
by a steerable wavelet filter bank. Then, a set of SVRs is applied to the patches of the subbands of
the transform. These SVRs use the profiles for the penalization factor andthe insensitivity computed
from signal and noise samples as described in Section 3.2. The SVRs use the kernel based on MI
that captures signal relations in the wavelet domain as described in Section 3.2. While the scaling
of the penalization profile and the kernels are kept fixed as indicated in Section 3.2, the scaling of
the insensitivity profile is automatically selected following the procedure described in section 3.3.

4. Behavior of the Proposed Method

In this section, we show an illustrative example of how the SVR parameters affect the estimated
solution. Moreover we validate the proposed automatic procedure for SVRselection considering
examples with different noise sources including non-additive and signaldependent cases.

4.1 Impact of SVR Parameters in Image Denoising

As stated above, the regularization behavior of the SVR depends onθ = (Ci ,εi ,K). Here we show
the qualitative effect of the global penalization scalingC, the global insensitivity scalingτ, and
the kernel widthσ assuming a generalized RBF kernel. Figure 5 shows the qualitative effectof
SVR estimation as a function of these parameters. Compare the results with the original and noisy
subbands shown in Fig. 3.

Increasing the kernel width,σ (vertical direction), introduces too strong relations among coeffi-
cients in such a way that spurious energy appears in the reconstruction.Increasing the insensitivity,
τ (horizontal direction), a sparser solution is obtained, leading to informationloss and thus relevant
features of the signal are discarded. On the contrary, a too small insensitivity value gives rise to
overfitting, and hence noise is not removed. Small values of theC parameter gives rise to over-
regularized estimations. Large enough values ofC give rise to similar behavior (see comments in
Section 3.2).

Of course, interactions among these parameters occur, and have been studied in other contexts
elsewhere (Chalimourda et al., 2004; Cherkassky and Ma, 2003; Cherkassky, 2004). In the image
denoising case, the deviation from anappropriatesolution in combined directions of the parameters
gives rise to different solutions that combine the negative effect of the departure in each direction.

The above example suggests thatappropriateSVRs can certainly recover the underlying struc-
ture of the original signal from the noisy observation, which is the rationaleof the proposed method.

4.2 Validation of the Automatic Procedure for SVR Selection

In this section, we validate the previous SVR selection procedure in two different ways. Firstly,
note that KLD values in the example of Fig. 3qualitativelyillustrate the usefulness of the proposed
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Figure 5: Effect of SVR parameters on the noisy wavelet patch of Fig. 3.The values of the KL-
divergence criterion between the estimated and the actual PDFs of noise and signal are
given in each case (see text in Section 3.3).

procedure: the minimum divergence solution (central subband patch) gives also a reasonable trade-
off between smoothness and detail preservation of the original subbandpatch.

Secondly, wequantitativelyshow that the SVR that enforces the similarity between the esti-
mated and actual signal and noise joint PDFs (in KLD terms) is not far from the SVR that maxi-
mizes the structural similarity between the estimated and the original image. In order to do so, we
compare the KLD measures for different SVRs, with the corresponding distortion measured with
the Structural SIMilarity (SSIM) index (Wang et al., 2004). The SSIM index is a widely used simi-
larity measure, which is better related to human quality assessment than Euclidean measures, such
as MSE or PSNR. Note that while KLD values are available in real situations (provided the noise
histogram and a generic natural images histogram are known), distortion measures are not available
since the original image is unknown. Consequently, the SSIM results next presented are for mere
comparison purposes.

In this experiment, the SVM parameter space is reduced to the scaling factor on the insensitivity
profile as recommended in Section 3.2. Accordingly, Fig. 6 shows the KLD and distortion (1-SSIM)
results as a function ofτ (see Eq. (3)). Curves are shown for different kinds of (Gaussianand non-
Gaussian) noise sources corrupting a particular image (details on the noisesources are given in
Section 5).
For the Gaussian noise case, two different variances are shown. It isworth noting that (1) the
KLD criterion (solid) closely follows the actual distortion curve (dashed),and (2) the minima for
low and high noise regime curves are very similar. These facts suggest that, in the Gaussian noise
case, the proposed criterion is quite robust and provides consistent results: the higher the noise
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LAPARRA, GUTIÉRREZ, CAMPS-VALLS AND MALO

(red curves) the higher theε zone minima. Besides, the linear relation betweenε and the noise
standard deviation, reported in Kwok and Tsang (2003), is confirmed here: as expected, the scaling
factor keeps fairly constant,τ ≈ 2.5, for bothσ2

n = 200 andσ2
n = 400. Obviously, higher noise

levels imply more distorted estimations. For other (non-Gaussian) noise sources, similar results are
obtained. For the JPEG and JPEG2000 quantization noise sources, the KLD criterion also matches
SSIM performance. For the case of more complex noise sources, such as vertical striping (VS)
and Infra Red Imaging System (IRIS) noise, the criterion gives close-to-optimal solutions in SSIM
terms. Note that, remarkably, the KLD criterion is better suited to the error minimization when
the signal and noise independence assumption holds (Gaussian case). Therefore there is room to
further improve the SVR selection criterion. The above results suggest that the proposed SVR
selection procedure can be considered as a convenient approximation todistortion minimization
(which is not possible in real situations).

5. Denoising Experiments and Discussion

In this section, we evaluate the performance of the proposed method in different scenarios for image
denoising. Our algorithm is compared to several wavelet-based denoisingmethods using standard
256×256 images (‘Barbara’, ‘Boats’, ‘Lena’) with different levels and sources of degradation. In
the following, we first give details on implementation issues of the considered algorithms. Then, we
analyze their performance for several kinds of noise sources:

• Experiment 1. Additive Gaussian noise of different variances (σ2
n = {200,400}).

• Experiment 2. Coding noise: JPEG and JPEG2000 at different quantization coarseness.

• Experiment 3. Acquisition noise: vertical striping and Infra Red Imaging System (IRIS)
noise.

Note that the noise PDF is in general unknown, except for the academic case of Gaussian noise, but
the histogram can be computed from samples in all cases.
All results are compared numerically by using the standard (yet not perceptually meaningful) RMSE,
and the perceptually meaningful SSIM index (Wang et al., 2004). Moreover, representative exam-
ples are shown in every case for visual inspection. For proper visualization, all the results are
equalized in the same way by truncating the values outside the[0,255] range.

5.1 Implementation Details

The algorithms that do not use information about the inter-coefficient relations (Donoho and John-
stone, 1995; Simoncelli, 1999; Figueiredo and Nowak, 2001) are straightforward to implement and
have few parameters to tune. All these methods use orthogonal wavelet representations. In our
particular implementation, we used 4-scale QMF wavelets from MatlabPyrTools.3 In every case,
we followed authors’ prescriptions to choose these parameters for the best performance:

• Hard Thresholding (HT). The key parameter is the threshold valueλ. We use the noise vari-
ance to set the threshold,λ = 3σn, as suggested in Donoho and Johnstone (1995).

3. Seehttp://www.cns.nyu.edu/ ˜ eero/software.php .
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Gaussian Noise

JPEG JPEG2000

Vertical Striping IRIS noise

Figure 6: Validation of the proposed KLD criterion to adjust SVR parameterε (or equivalentlyτ,
see text). In every distortion case, solid lines represent the KLD criterionand dashed lines
represent the distortion (1-SSIM). For proper visualization, KLD curves were normalized
to fall in the same range as the distortion. In the Gaussian noise case, two different noise
variances are considered:σ2

n = 200 (black lines) andσ2
n = 400 (red lines). As can be seen,

the minima of the KL distance (squares) are always in the same region as the minimaof
the distortion (circles), thus giving rise to similar SSIM performance.
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• Soft Thresholding (ST). In our implementation, the threshold in each subband is derived from
the standard deviation of the noise,σn, using optimized values to minimize the mean square
error (MSE) in a set of 100 natural images. Threshold values were optimized for theσ2

n in the
range [0,1600].

• Bayesian Laplacian (BL). In this case, the parameters of the Laplacian distribution (s and
p in Simoncelli, 1999) for the marginal PDFs in each subband are estimated by maximum
likelihood (ML), as suggested by the author.

• Bayesian Gaussian (BG). The threshold value was set according to the function of noise
variance provided in Figueiredo and Nowak (2001).

On the other hand, in the case of the Gaussian Scale Mixture (GSM) (Portilla et al., 2003), which
does consider inter-coefficient relations, we used the implementation provided by the authors.4 We
have used (1) the same representation as in the proposed method (4-scale, 8-orientation steerable
pyramid), and (2) we also provided the average noise power spectral density (PSD) to achieve the
best possible performance of the GSM method.

Details of the proposed SVR method are included in previous Section 3.2. A Matlab imple-
mentation of the algorithm is available online.5 Since theCi andεi profiles are computed off-line,
the computational cost of the proposed method is mainly constrained by the SVRtraining. In our
current implementation, we used the IRWLS algorithm in Matlab (Pérez-Cruz et al., 2000) in order
to drop the bias term and incorporate the insensitivity and penalization profiles easily. These modi-
fications are not trivial in faster implementations (Huang and Kecman, 2004;Kecman et al., 2004).
As a result, our Matlab implementation takes about 30 seconds6 for each image/noise estimation
for a set of SVR parameters. Three strategies can be carried out for speeding up the optimization:
(1) using faster SVR implementations (Platt, 1999; Chang and Lin, 2001; Tsang et al., 2005), (2)
alternative procedures to exhaustive search on convex error surfaces (Torczon, 1997; Lewis and Tor-
czon, 2002; Vishwanathan et al., 2006), and (3) restricting the dimensionof the parameter space (as
done in Section 3.2).

5.2 Experiment 1. Additive Gaussian Noise

Table 1 shows the distortion results for the three considered images and the two noise variances,
σ2

n = 200 andσ2
n = 400.. The best SSIM values in each case are highlighted. In every case, we

also provide the SVRopt result, which is the best result the proposed method can get in SSIM terms.
This is useful to assess the performance of the proposed divergence-based criterion and to give
an upper bound of method’s performance. Results show that our algorithm performs better than
the methods that neglect signal relations (HT, ST, BG and BL), and obtainssimilar (yet slightly
lower) numerical results than the one which incorporates them (GSM). It isnot surprising that the
GSM method achieves the best performance in this case, since it is analyticallysuited to deal with
Gaussian noise. The SVR performance is consistent through all images and noise variances, thus
suggesting that the guiding criterion is robust. Finally, it must be noted that, in the most difficult
case ofσ2

n = 400, GSM and SVR offer more similar results, and clearly outperform the rest of the
methods.

4. Seehttp://decsai.ugr.es/ ˜ javier/denoise/ .
5. Seehttp://www.uv.es/vista/vistavalencia/denoising_SVR/ .
6. Computations were carried out in a 2.8GHz processor with 4GB RAM.
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‘Barbara’ ‘Boats’ ‘Lena’
Method SSIM RMSE SSIM RMSE SSIM RMSE

HT 0.77 16.48 0.76 13.62 0.73 18.97
ST 0.78 14.37 0.79 10.26 0.74 12.59
BG 0.80 14.14 0.79 11.70 0.76 12.75
BL 0.81 12.95 0.83 8.30 0.78 11.66
GSM 0.90 8.94 0.87 8.94 0.83 13.61
SVR 0.87 10.11 0.84 10.16 0.81 12.54
SVRopt 0.87 10.11 0.85 10.36 0.82 12.30

‘Barbara’ ‘Boats’ ‘Lena’
Method SSIM RMSE SSIM RMSE SSIM RMSE

HT 0.67 24.52 0.68 20.15 0.67 20.22
ST 0.69 19.04 0.71 16.16 0.66 19.72
BG 0.70 20.40 0.70 19.17 0.67 19.26
BL 0.73 16.52 0.77 10.26 0.67 18.45
GSM 0.86 11.02 0.80 17.40 0.79 15.95
SVR 0.83 13.13 0.81 10.73 0.78 14.50
SVRopt 0.83 13.13 0.81 10.73 0.78 14.06

Table 1: Results for the Gaussian noise: distortions for different images and methods are given at
σ2

n = 200 (top) andσ2
n = 400 (bottom).

Figure 7 shows representative visual results in the challenging situation ofσ2
n = 400. It can

be noticed that thresholding methods (HT, ST) and Bayesian generalizations not including signal
relations in the model (BG, BL) show poor performance, producing imageseither grained or cor-
rupted by too salient wavelet functions. Even though SVR yields slightly lower numerical scores
than GSM, global visual performance is comparable.

5.3 Experiment 2. Coding Noise: JPEG and JPEG2000

In this section, we focus on restoring grayscale images after JPEG or JPEG2000 compression, which
induces non-Gaussian noise: it produces heavy tailed marginal error PDFs in the spatial domain with
non-negligible relations among the pixels (see comments in Section 5.5). Quantization noise is an
illustrative example of how the proposed method can cope with non-Gaussian, colored and signal-
dependent noise. In order to obtain the necessary samples to build the noise histograms, we used
100 images from the database described in Section 2 encoded by JPEG andJPEG2000. In the first
case, the Matlab implementation of the JPEG algorithm with quality factorsQ= 9 (small distortion)
andQ = 7 (large distortion) was used. In the second case, scalar quantization ofthe QMF wavelet
domain using standard JPEG2000 bit allocation tables (Taubman and Marcellin, 2001) was used.
Different values of quantization coarseness, that will be referred to as ∆1 (small distortion) and∆2

(large distortion) were applied.
Table 2 shows the quantitative results for all considered methods for the three images at different

quantization levels. It can be noticed that again the SVR method outperforms thethresholding
methods (HT, ST) and those not including signal relations in the model (BG, BL). SVR yields
similar numerical scores than GSM in JPEG (Fig. 8). However, in JPEG2000better numerical
(Table 2 [bottom]) and visual (Fig. 9) results are obtained with SVR. In general, high frequency
details are better preserved by our method, while GSM yields over smoothed solutions, particularly
in JPEG2000.
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Noisy Image (0.46) HT (0.67)

ST (0.66) BG (0.67)

BL (0.67) GSM (0.79)

SVR (0.78) SVRopt (0.78)

Figure 7: Visual results for the ‘Lena’ image corrupted with Gaussian noise, σ2
n = 400. SSIM

values are given in parentheses.
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Noisy Image (0.68) HT (0.65)

ST (0.68) BG (0.66)

BL (0.64) GSM (0.71)

SVR (0.71) SVRopt (0.73)

Figure 8: Visual results for the ‘Barbara’ image with JPEG quantization noise (Q = 7). SSIM
values are given in parentheses.
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Noisy Image (0.54) HT (0.54)

ST (0.55) BG (0.54)

BL (0.54) GSM (0.55)

SVR (0.57) SVRopt (0.57)

Figure 9: Visual results for the ‘Barbara’ image with coarse quantization JPEG2000 noise. SSIM
values are given in parentheses.
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JPEG Q = 9 Q = 7

‘Barbara’ ‘Boats’ ‘Lena’ ‘Barbara’ ‘Boats’ ‘Lena’

Method SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE
HT 0.70 20.05 0.75 13.07 0.70 18.40 0.65 22.11 0.71 16.34 0.65 24.99
ST 0.73 17.51 0.78 11.59 0.73 15.13 0.68 19.71 0.75 12.72 0.68 18.77
BG 0.72 18.76 0.77 12.30 0.72 16.27 0.66 21.57 0.74 13.32 0.67 21.05
BL 0.71 20.37 0.77 13.43 0.73 16.52 0.64 21.67 0.74 14.70 0.69 17.65
GSM 0.77 15.50 0.80 11.15 0.75 13.66 0.71 18.56 0.77 12.18 0.71 17.45
SVR 0.78 14.89 0.78 12.13 0.74 13.22 0.71 18.42 0.76 12.84 0.71 15.68
SVRopt 0.78 14.89 0.80 11.35 0.75 13.97 0.73 18.28 0.76 12.89 0.71 15.72

JPEG2000 ∆2 ∆1

‘Barbara’ ‘Boats’ ‘Lena’ ‘Barbara’ ‘Boats’ ‘Lena’

Method SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE
HT 0.54 30.81 0.55 26.23 0.51 32.66 0.67 24.82 0.59 25.18 0.56 28.25
ST 0.55 28.83 0.55 25.15 0.51 31.24 0.68 22.52 0.60 23.69 0.56 27.47
BG 0.54 30.37 0.55 26.08 0.51 32.45 0.67 24.16 0.59 24.92 0.56 28.10
BL 0.54 30.30 0.55 25.87 0.51 29.05 0.67 24.35 0.59 24.79 0.56 28.12
GSM 0.55 28.47 0.57 20.92 0.52 25.84 0.68 20.54 0.64 17.94 0.58 23.64
SVR 0.57 25.31 0.57 21.88 0.52 29.32 0.71 17.23 0.64 18.27 0.59 21.55
SVRopt 0.57 25.31 0.57 21.74 0.52 25.35 0.72 17.04 0.64 18.27 0.59 21.55

Table 2: Results for the coding noise: distortions at different quality levelsof JPEG (Q = {9,7})
and JPEG2000 (coarseness∆1 and∆2) are given for different images and methods.

5.4 Experiment 3. Acquisition Noise: Vertical Striping and IRIS Noise

Real imaging systems introduce complex forms of noise depending on the acquisition process, so
assuming a particular PDF for all cases is far from being realistic. For instance, variation of the
intensity between neighboring elements of the CCD typically leads to vertical striping noise in
pushbroom sensors (Mouroulis et al., 2000; Barducci and Pippi, 2001). Other typical acquisition
noise source is observed in infrared imaging cameras, which is a complex mixture of different noise
sources. In this section, we pay attention to these two particular non-Gaussian realistic acquisition
noises through controlled experiments:

1. Vertical striping noise. We simulated this noise by modifying 4% of the image columns
selected randomly. The luminance of the selected columns was modified by a random factor
following a uniform distribution between 0.8 and 1. Spatial coherence was forced by attaching
groups of contiguous 5 to 10 strips.

2. InfraRed Imaging System (IRIS) noise.Inspired in the observed characteristics of a represen-
tative number of acquired images by a commercial IR camera, the noise was modeled by a
combination of four noise sources: low-variance Gaussian noise (σ2

n ≈ 50), ‘salt-and-pepper’
noise (with a percentage of corrupted pixels about 0.05%), some spatially coherent missing
pixels (black patches), and interlaced lines all over the image.

In both cases, we computed the contrast noise PDF,p(n), from 100 noisy images. In the next
Section 5.5, the non-Gaussian nature of these acquisition noise PDFs is shown.
Table 3 shows the obtained numerical results for all images and both acquisition noise sources.
In both complex scenarios, the proposed SVR-based method outperformsGSM and the rest of
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LAPARRA, GUTIÉRREZ, CAMPS-VALLS AND MALO

Method ‘Barbara’ ‘Boats’ ‘Lena’
SSIM RMSE SSIM RMSE SSIM RMSE

HT 0.73 17.43 0.73 15.99 0.69 18.07
ST 0.77 15.71 0.78 14.04 0.75 14.08
BG 0.76 16.01 0.76 14.75 0.73 15.14
BL 0.77 16.56 0.81 14.96 0.77 14.64
GSM 0.79 14.83 0.79 14.36 0.75 14.45
SVR 0.80 15.66 0.80 13.47 0.79 13.18
SVRopt 0.80 15.45 0.82 14.25 0.80 13.31

HT 0.50 30.80 0.58 28.70 0.56 28.81
ST 0.55 27.02 0.64 23.48 0.60 24.40
BG 0.54 28.40 0.62 25.44 0.59 26.20
BL 0.50 28.74 0.60 21.77 0.55 24.08
GSM 0.53 30.51 0.64 25.92 0.61 30.99
SVR 0.59 31.07 0.67 21.44 0.66 31.44
SVRopt 0.60 30.71 0.70 24.56 0.66 32.05

Table 3: Acquisition noise: vertical striping (top) and IRIS noise (bottom). Distortions for different
images and methods.

methods numerically. A noticeable gain in SSIM is observed, which is confirmedwhen looking
at the restored images in Figs. 10 and 11. It is worth noting that in the verticalstriping noise
(Fig. 10), SVR yields a sharper (and more realistic) reconstruction while GSM produces an over-
blurred solution. In the case of the IRIS noise, only SVR removes the interlacing noise contribution,
producing better visual results. Including the average PSD information in GSM, as we do in the
experiments, improves its performance. However, it is not enough to remove the interlacing artifact
due to the particular nature of IRIS noise. IRIS noise is difficult becausethe PSD and variance
of each particular realization of the noise may substantially differ from the (estimated) averages.
On the contrary, the proposed SVR method uses an adaptive cost function learned from the noisy
image. Here, nevertheless, the upper bound of performance is not met, suggesting that there is still
room for improving the selection criterion proposed, possibly consideringthe joint density.

5.5 Analysis of the Residuals

Further qualitative insight in the obtained solutions can be achieved by comparing the estimated
and actual PDFs of signal and noise with the different methods and noise sources. Since we are
restricting ourselves to second order KLD criterion, this comparison reduces to assess the difference
between 2D histograms (in the spatial domain).

It is widely known that the PDF of pairs of neighbor pixels in natural images isan oriented
ellipsoid reflecting the strong correlation among luminance values in the spatial domain (Clarke,
1985). The corresponding restored images (even for the worse performing algorithms) also display
such strong local correlation. Therefore, no relevant conclusion is gained by direct inspection of
these histograms (results not shown). On the contrary, the 2D histograms of the noise are more
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Noisy Image (0.77) HT (0.69)

ST (0.75) BG (0.73)

BL (0.77) GSM (0.75)

SVR (0.79) SVRopt (0.80)

Figure 10: Visual results for the ‘Lena’ image with vertical striping noise. SSIM values are given
in parentheses.
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Noisy Image (0.59) HT (0.58)

ST (0.64) BG (0.62)

BL (0.60) GSM (0.64)

SVR (0.67) SVRopt (0.70)

Figure 11: Visual results for the ‘Boats’ image with IRIS noise. SSIM values are given in paren-
theses.
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suitable for direct inspection because (1) actual noise histograms are quite different for the different
noise sources, and (2) the estimated histograms strongly depend on the denoising method.

Figure 4 represents the distribution of the actual and estimated noise PDFs byall the considered
methods in the spatial domain. It can be noticed that, for the Gaussian noise, all methods reproduce
quite well the shape and extent of the PDF, as expected for the parametric models, which use a proper
Gaussian noise model. Note that the SVR method also succeeds in approximatingthe energy of the
noise even without using the Gaussian assumption explicitly.

For non-Gaussian noise sources, the behavior of the methods markedly differ. For instance, the
quantization noise induced by JPEG/JPEG2000 follows a non-Gaussian, oriented joint distribution
(the central dark area is actually an oriented ellipsoid), indicating correlation among noise samples.
In the case of JPEG, this central ellipsoid is better reproduced by hard thresholding and the proposed
SVR method. The other methods slightly underestimate the variance of the noise.For the case of
JPEG2000, methods not considering signal relations dramatically underestimate the noise variance.
In the case of more complex noise sources, such as vertical striping or IRIS, none of the methods
reproduce the low probability structure (light gray regions). However,the central peak is poorly
reproduced by marginal methods, either overestimating (HT, ST, BG) or underestimating (BL) the
width. On the contrary, GSM and SVR give more reasonable width estimation. To conclude, meth-
ods assuming an (inadequate) Gaussian noise model do not match, in general, the noise distribution,
so they should be reformulated for each particular noise source, which may be complicated or even
impossible. GSM constitutes an exception to this statement, since results suggestthat the quality
of the signal model compensates the unsuitability of the noise model. On the contrary, this is not
necessary for the proposed method, which only needs examples of noisyimages tolearn from.

6. Conclusions

In this work, we proposed an alternative non-parametric way to take into account the relations
among natural image wavelet coefficients for denoising: we used SVR in thewavelet domain to en-
force these relations in the estimated signal. The specific signal relations, which proved to be more
relevant in intraband coefficients, are encoded in an anisotropic kernel based on mutual information
computed from a representative image database. An adaptive SVR with different cost functionper
subband was developed: the subband-dependentεi andCi are modeled by analyzing the particular
signal and noise variances in a representative image database. By following general recommenda-
tions for the design of the kernel,εi andCi , and adapting them to the particular image denoising
problem, we restricted the class of appropriate SVRs. A KLD-based criterion was proposed to au-
tomatically select the SVR that best recovers the relevant wavelet coefficient relations of the true
signal. The criterion was quite consistent but there is still room for improvement, specially in the
case of complex noise sources.

Results show that the performance of the proposed non-parametric methodis (1) better than
conventional wavelet methods that assume coefficient independence, (2) similar to state-of-the-
art methods that do explicitly include these relations when the noise source is Gaussian, and (3)
numerically and visually better results are obtained when more complex realistic noise sources are
considered. Therefore, the proposed SVR approach can be seen as a more flexible (model-free)
alternative to the explicit description of coefficient relations. The importantthing here is that no
reformulation is needed for dealing with any other kinds of noise. Moreover, these results are an
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additional indication that relation between local frequency coefficients is asalient natural image
feature that should not be neglected in denoising applications.

Future work is tied to the incorporation of new information in the kernels: herewe focused on
the consideration of signal relations in the kernel, but the particular structure of the noise could be
eventually incorporated. Note that the denoising procedure is quite general and admits any kind of
non-parametric regression machine, such as Gaussian Processes.
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LAPARRA, GUTIÉRREZ, CAMPS-VALLS AND MALO

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive fieldproperties by learning a
sparse code for natural images.Nature, 381:607–609, 1996.
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