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Abstract
Sequential algorithms of active learning based on the estimation of the level sets of the empirical
risk are discussed in the paper. Localized Rademacher complexities are used in the algorithms to
estimate the sample sizes needed to achieve the required accuracy of learning in an adaptive way.
Probabilistic bounds on the number of active examples have been proved and several applications
to binary classification problems are considered.
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ment coefficient

1. Introduction

Let (S,A) be a measurable space andT ⊂ R. Consider a standardprediction problem in which
(X,Y) is a random couple inS×T with unknown distributionP. HereX is adesign pointwhose
distribution will be denotedΠ andY is aresponse variablewith conditional distribution (givenX)
PY|X(·|X = x). The response variableY is to be predicted based on an observation ofX. This class
of problems includes many versions of regression and classification. Forinstance, in the binary
classification,T = {−1,1} and the conditional distribution ofY givenX is completely characterized
by the regression function

η(x) := E(Y|X = x).

In the framework ofpassive learning, a learning algorithm inputs the training data(X1,Y1), . . .
(Xn,Yn) that consists ofn independent examples sampled from the distributionP. The goal is to
construct a data dependent prediction rule ˆg : S 7→T whose risk with respect to a properly chosen loss
function is “close” to the minimal possible risk. More precisely, given a loss functionℓ : T×T 7→R,
the risk of a prediction ruleg : S 7→ T is defined as

P(ℓ•g) = Eℓ(Y;g(X)),

where we used the notation(ℓ •g)(x,y) := ℓ(y;g(x)). For instance, in the binary classification set-
ting, the binary lossℓ(y,u) := I(y 6= u) is usually used. In this case, the risk of a classification rule
g : S 7→ {−1,1} is its generalization error:

P(ℓ•g) = P{Y 6= g(X)}.

∗. Partially supported by NSF grants MSPA-MCS-0624841, DMS-0906880 and CCF-0808863.

c©2010 Vladimir Koltchinskii.



KOLTCHINSKII

SupposeG is a class of prediction rulesg : S 7→ T. The quantity

EP(ℓ•g) := P(ℓ•g)− inf
g∈G

P(ℓ•g)

is called theexcess riskof g. One of the main goals of statistical analysis of learning algorithms is
to understand how the excess riskEP(ℓ • ĝ) of a data dependent decision rule ˆg output by such an
algorithm depends on the sample sizen, on the “complexity” of the classG of prediction rules and
on the underlying complexity of the prediction problem itself.

In the recent years, there has been a lot of interest inactive learning algorithms. In this frame-
work, the algorithm can modify the design distribution in the process of learning. More precisely,
suppose that the training examples(Xj ,Yj) are sampled sequentially. At each iteration (say, iteration
numberk), the algorithm requests a design pointXk+1 sampled from a distribution̂Πk that depends
on the training data(X1,Y1), . . . ,(Xk,Yk). GivenXk+1 = x, the response variable (the label)Yk+1 is
sampled from the conditional distributionPY|X(·|X = x). The question is whether there are such
active learning algorithms for which the excess risk aftern iterations is provably smaller than for
the passive prediction rules based on the same numbern of training examples. It happens that the
answer depends on the type of learning problem. A minimax analysis by Castroet al. (2005) and
Castro and Nowak (2008) shows that such an improvement is possible in classification problems and
in some special classes of regression problems with non-smooth regression function (for instance,
if the regression function is a step function). In such cases, the improvement can be very signif-
icant. In some classification problems, the excess risk of active learning algorithms can converge
to zero with anexponential rateasn→ ∞ (comparing with the rateO(n−1) in the case of passive
learning). Castro and Nowak (2008) studied several examples of binary classification problems in
which the active learning approach is beneficial and suggested nice active learning algorithms in
these problems. However, the drawback of these algorithms is that they arenot adaptive in the sense
that they require the prior knowledge of distribution dependent parameters of the problem, such as
noise characteristics in classification. The development of active learningmethods that are adaptive
and, at the same time, computationally tractable remains a challenge. There has been a progress
in the design of active learning algorithms that possess some degree of adaptivity, in particular, see
Dasgupta et al. (2007), Balcan et al. (2009), Balcan et al. (2008) and Hanneke (2009a,b). In the
last two interesting papers by Hanneke, some versions of the algorithms of Balcan et al. (2009)
and of Dasgupta et al. (2007) were studied using the technique ofRademacher complexitiesthat
much earlier proved to be very useful in the analysis of passive learning, see Bartlett et al. (2002),
Koltchinskii (2001), Koltchinskii and Panchenko (2000), Bartlett et al.(2005), Koltchinskii (2006,
2008) and references therein. Hanneke showed that incorporating Rademacher complexities in ac-
tive learning algorithms allows one to develop rather general versions of such algorithms that are
adaptive under broad assumptions on the underlying distributions.

In the current paper, we continue this line of research. We consider thefollowing model of
active learning. At each iteration, a learning algorithm has to choose a setÂ⊂ Sof “good” design
points and also the number of training examples needed at the current iteration. Both the set̂A and
the required number of the examples might depend on the training data that is already available. The
algorithm has an access to an oracle that is asked to provide the required number of examples(X,Y)
sampled from the conditional distributionP(·|x∈ Â). Alternatively, it can be described as follows.
The oracle provides training examples(X,Y) sampled from an unknown probability distribution
P. At each iteration, the algorithm chooses a setÂ of “good” design points and asks the oracle
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whether the next design pointXk is “good”. If it is “good”, the algorithm accepts the point, the
oracle provides it with a labelYk and returns the couple(Xk,Yk). Testing whether the example is
“good” costs the algorithm nothing, but each “good” labeled training example costs $ 1. Thus, only
the number of “good” examples matters for determining the total cost of learning. The question is
how many “good” examples are needed for the excess riskEP(ℓ• ĝ) of the resulting classifier ˆg to
become smaller thanδ with a guaranteed probability at least 1−α.

We will develop active learning algorithms that are somewhat akin to what is done by Hanneke
(2009a,b), but they are more closely related to the construction of localizedRademacher complex-
ities used in the definitions of distribution dependent and data dependent excess risk bounds in
empirical risk minimization, see Koltchinskii (2006, 2008). The main idea of this construction is
to characterize the complexity of the problem by the sup-norm of a special Rademacher process
indexed by the level sets of the risk. To be more specific, suppose that weare dealing with a binary
classification problem and that the empirical risk (with respect to the binary loss) is being minimized
over a classG of binary functions. Then what matters is the collection ofδ-minimal sets

G(δ) :=
{

g∈ G : EP(ℓ•g)≤ δ
}

, δ > 0.

These sets can be estimated based on the empirical data and Rademacher complexities of such
estimated sets for small enough values ofδ are used to define reasonably tight bounds on the excess
risk. In many learning problems, theδ-minimal sets become small asδ → 0, for instance, in the
sense that theirL2(Π)-diameter is small. It turns out that an important role in the development of
active classification algorithms is played by the sets of the following type

A(δ) :=

{

x∈ S|∃g1,g2 ∈ G(δ) : g1(x) 6= g2(x)

}

.

Such a set is called adisagreement setsince it consists of the points for which there are two
classifiers inG(δ) whose predictions at pointx disagree with each other. If theδ-minimal sets are
small for small enough values ofδ, one can expect that the corresponding disagreement sets are
also small. This is not always the case, but there are natural examples in which indeed the measure
Π(A(δ)) tends to 0 asδ → 0 (sometimes, evenΠ(A(δ)) = O(δ)). Note that if the empirical risk
is being minimized over theδ-minimal setG(δ), one can eliminate from the sample all the design
pointsXj such thatXj 6∈ A(δ) : the minimizers of the empirical risk are not going to change since
the value of the binary loss at such training examples(Xj ,Yj) is a constant on theδ-minimal set. So,
only the examples for whichXj belongs to a small disagreement setA(δ) are really needed. This
simple observation opens a possibility of reducing the sample size in the process of active learning,
and this has already been exploited in several algorithms described in the literature: see Dasgupta
et al. (2007), Balcan et al. (2009), Hanneke (2009a,b) and references therein. It is interesting to
mention that some notions similar to the “disagreement sets” were used much earlier in the study
of ratio type empirical processes (for instance, in the work of Alexanderin the 80s; see, Gińe and
Koltchinskii, 2006 and references therein). Moreover, it was used byGiné and Koltchinskii (2006)
to obtain refined excess risk bounds in binary classification (in the passive learning case). This will
be discussed in some detail in Section 4.

Our approach is based on iterative estimation of theδ-minimal sets for a decreasing sequence
{δ j} of values ofδ. It happens that, for larger values ofδ, it is possible to construct a rough esti-
mate of theδ-minimal sets based on a relatively small number of training examples. The required
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sample sizes ¯n(δ) can be estimated using Rademacher complexities. For smaller values ofδ, more
examples are needed, but, at the same time, for the smaller values ofδ the disagreement sets are
also small, and these sets again can be estimated based on the training examples that have been al-
ready sampled. Thus, there is a possibility to come up with an active learning strategy that, at each
iteration, computes an estimateÂ of the disagreement set and determines the required sample size,
and then samples the required number of design points from the conditional distributionΠ(·|x∈ Â).
Each of these pointsXj = x is provided with a labelYj sampled from the conditional distribution
PY|X(·|X = x). The algorithm stops as soon asδ j becomes smaller than the required accuracy of
learningδ. At this stage, it outputs an estimate of theδ-minimal setG(δ). The number of labeled
examples needed to achieve this goal is roughly

∑
δ j≥δ

n̄(δ j)Π(A(δ j))

(see theorems 7, 8, 9 for more precise formulations). For binary classification problems with a VC-
classG such thatΠ(A(δ)) = O(δ), this leads to the bound on the number of labeled examples of the
order log(1/δ) log log(1/δ).

The need to estimate the wholeδ-minimal set in this learning strategy rather than simply mini-
mizing the empirical risk might look like too strong of an assumption. However, in the alternative
general versions of adaptive strategies of active learning due to Hanneke (2009a,b) this is also
needed. Hanneke uses previously suggested agnostic learning methodsof Dasgupta et al. (2007)
and of Balcan et al. (2009) in combination with Rademacher complexities that are based on esti-
mated level sets of the empirical risk. So, currently, this seems to be unavoidable in general adaptive
methods and our approach is just based on a more direct use of theδ-minimal sets.

To give a precise description of a version of active learning method considered in this paper and
to study its statistical properties, several facts from the general theory of empirical risk minimiza-
tion will be needed. In particular, in Section 2, we describe a construction of distribution dependent
and data dependent bounds on the excess risk based on localized Rademacher complexities, see
Koltchinskii (2006, 2008). In Section 3, we describe our active learning algorithms. These algo-
rithms are sequential in the sense that the training data is being sampled until the desired accuracy of
learning is achieved. We prove several bounds on the number of activeexamples needed to achieve
this goal with a specified probability. In sections 2 and 3, it is convenient to study the problem in a
more abstract framework, in which we suppress the labelsYj and writeS instead ofS×{−1,1}, X
instead of(X,Y), f instead ofℓ•g, etc. This allows us to simplify the notations and the description
of the algorithms, and, at the same time, it makes the results a little more general. In principle, it
should be possible to apply these results to more general classes of learning problems than binary
classification (for instance, to special regression models with a non-smooth regression function or
to the problem of estimation of the level sets of an unknown probability density). However, we do
not pursue this possibility here and, instead, we concentrate in Section 4 onthe binary classifica-
tion problems, which still remains the most interesting class of learning problems where the active
learning approach leads to faster convergence rates.

2. Empirical Risk Minimization: Bounds on the Excess Risk

Let (S,A) be a measurable space, letP be a probability measure in(S,A) and letX,X1,X2, . . . be
i.i.d. random variables in(S,A) with common distributionP. Let F be a class ofA-measurable
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functions f : S 7→ [0,1]. The values of functionsf ∈ F will be interpreted as “losses” associated
with some decisions and the integral

P f :=
∫

S
f dP= E f (X)

represents the expected loss, or the (true) risk. The optimization problem

P f −→ min, f ∈ F

is interpreted as a “risk minimization” problem and the quantity

EP( f ) := P f − inf
g∈F

Pg

is called the excess risk off . Theδ-minimal set of the true risk is defined as

FP(δ) :=

{

f ∈ F : EP( f )≤ δ
}

, δ ≥ 0.

In learning theory problems, the distributionP is usually unknown and the riskP f is to be
estimated by the empirical risk. The empirical measure based on the sample(X1, . . . ,Xn) of sizen
is defined as

Pn := n−1
n

∑
j=1

δXj

and the problem of risk minimization is replaced by the “empirical risk minimization”:

Pn f −→ min, f ∈ F . (1)

Naturally, this also leads to the definitions of the “excess empirical risk”EPn( f ) and of theδ-
minimal sets of the empirical riskFPn(δ), δ > 0.

Given a solutionf̂ of the empirical risk minimization problem (1), a basic question is to pro-
vide reasonably tight upper confidence bounds on the excess riskEP( f̂ ) that depend on complexity
characteristics of the classF . It is also of importance to understand when theδ-minimal sets of the
empirical risk are reasonably good estimates of theδ-minimal sets of the true risk. We will need
below several results of this type that can be found in the papers by Koltchinskii (2006, 2008).

First of all, we will need an upper confidence bound on the size of the empirical process

sup
f ,g∈FP(δ)

|(Pn−P)( f −g)|.

To construct such a bound, we use Talagrand’s famous concentrationinequalities. SupposeρP :
L2(P)×L2(P) 7→ [0,+∞) and

ρ2
P( f ,g)≥ P( f −g)2− (P( f −g))2, f ,g∈ L2(P).

Define the diameter ofFP(δ) as

D(δ) := DP(δ) := sup
f ,g∈F (δ)

ρP( f ,g).
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It provides a measure of the size of theδ-minimal sets. We will also use the following quantity that
characterizes the accuracy of “empirical approximation” ofP by Pn on theδ-minimal sets:

φn(δ) := E sup
f ,g∈F (δ)

|(Pn−P)( f −g)|.

Given a decreasing sequence{δ j} of positive numbers withδ0 := 1 and a sequence{t j} of positive
numbers, define a step functionUn(δ), δ ∈ (0,1] as follows:

Ūn(δ) := 2 ∑
j≥0

[

φn(δ j)+D(δ j)

√

t j

n
+

t j

n

]

I(δ j+1,δ j ](δ).

A version of Talagrand’s concentration inequality with explicit constants due to Bousquet implies
that, for all j ≥ 0 and for allδ ∈ (δ j+1,δ j ], with probability at least 1−e−t j

sup
f ,g∈FP(δ)

|(Pn−P)( f −g)| ≤ Ūn(δ).

Givenψ : R+ 7→ R+, define

ψ♭(δ) := sup
σ≥δ

ψ(σ)
σ

and

ψ♯(ε) := inf

{

δ > 0 : ψ♭(δ)≤ ε
}

.

Let

δn(F ;P) := sup
{

δ ∈ (0,1] : δ ≤ Ūn(δ)
}

.

The following bounds were proved by Koltchinskii (2006, 2008).

Theorem 1 For all δ ≥ δn(F ;P),

P

{

EP( f̂ )> δ
}

≤ ∑
δ j≥δ

e−t j

and

P

{

sup
f∈F ,EP( f )≥δ

∣

∣

∣

∣

EPn( f )
EP( f )

−1

∣

∣

∣

∣

> Ū ♭
n(δ)

}

≤ ∑
δ j≥δ

e−t j .

Thus, the quantityδn(F ;P) is a distribution dependent upper bound on the excess riskEP( f̂ )
that holds with a guaranteed probability. Moreover, for allδ ≥ δn(F ;P) and for all f ∈ F with

EP( f ) ≥ δ it is possible to control the size of the ratioEPn( f )
EP( f ) in terms of the quantitȳU ♭

n(δ). This
ratio bound for the excess risk immediately implies the following statement showing that for all the
values ofδ above certain threshold theδ-minimal sets of empirical risk provide estimates of the
δ-minimal sets of the true risk.
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Proposition 2 Let δ̄n := Ū ♯
n

(

1
2

)

. For all δ ≥ δ̄n, with probability at least

1− ∑
δ j≥δ

e−t j

the following inclusions hold:

∀σ ≥ δ FP(σ)⊂ FPn(3/2σ) and FPn(σ)⊂ FP(2σ).

Data dependent upper confidence bounds on the excess risk can be constructed using localized
sup-norms of Rademacher processes that provide a way to estimate the sizeof the empirical process.
Given i.i.d. Rademacher random variables{εi} independent of{Xi}, the Rademacher process is
defined as

Rn( f ) := n−1
n

∑
j=1

ε j f (Xj).

We will assume that
ρ2

P( f ,g) := P( f −g)2.

Define
φ̂n(δ) := sup

f ,g∈FPn(δ)
|Rn( f −g)|

and
D̂n(δ) := sup

f ,g∈FPn(δ)
ρPn( f ,g).

These quantities are empirical versions ofφn(δ) andDP(δ) and they can be used to define an empir-
ical version of the function̄Un :

Ûn(δ) := K̂ ∑
j≥0

[

φ̂n(ĉδ j)+ D̂n(ĉδ j)

√

t j

n
+

t j

n

]

I(δ j+1,δ j ](δ),

whereK̂, ĉ are numerical constants. We will also define

Ũn(δ) := K̃ ∑
j≥0

[

φn(c̃δ j)+D(c̃δ j)

√

t j

n
+

t j

n

]

I(δ j+1,δ j ](δ)

with some numerical constants̃K, c̃.
It can be shown (see Koltchinskii, 2006, 2008) that for large enough numerical constantŝK, K̃, ĉ, c̃

and for allδ ≥ δ̄n, Ūn(δ) ≤ Ûn(δ) ≤ Ũn(δ) with a high probability. More precisely, the following
statement holds. Denote

δ̂n := Û ♯
n

(

1
2

)

, δ̃n := Ũ ♯
n

(

1
2

)

.

Theorem 3 There exists a choice of numerical constantsK̂, K̃, ĉ, c̃ in the definitions of the functions
Ûn,Ũn such that the following holds. For allδ ≥ δ̄n, there exists an event E of probability

P(E)≥ 1−3 ∑
δ j≥δ

e−t j
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such that on this event
Ūn(σ)≤ Ûn(σ)≤ Ũn(σ), σ ≥ δ.

As a consequence,

P

{

δ̄n ≤ δ̂n ≤ δ̃n

}

≥ 1−3 ∑
δ j≥δ̄n

e−t j .

The proof is based on the following “statistical version” of Talagrand’s concentration inequality
(which, in turn, follows from the usual Talagrand’s concentration inequality for empirical processes
and standard symmetrization and contraction arguments, see Koltchinskii, 2008). Suppose thatF
is a class of measurable functions onSuniformly bounded byU > 0. Denote

σ2
P(F ) := sup

f∈F
P f2 andσ2

n(F ) := sup
f∈F

Pn f 2.

For a functionY : F 7→ R, denote

‖Y‖F := sup
f∈F

|Y( f )|.

Theorem 4 There exists a numerical constant K> 0 such that for all t≥ 1 with probability at least
1−e−t the following bounds hold:

∣

∣

∣

∣

‖Rn‖F −E‖Rn‖F

∣

∣

∣

∣

≤ K

[

√

t
n

(

σ2
n(F )+U‖Rn‖F

)

+
tU
n

]

,

E‖Rn‖F ≤ K

[

‖Rn‖F +σn(F )

√

t
n
+

tU
n

]

,

σ2
P(F )≤ K

(

σ2
n(F )+U‖Rn‖F +

tU
n

)

and

σ2
n(F )≤ K

(

σ2
P(F )+U‖Rn‖F +

tU
n

)

.

Also,

E‖Pn−P‖F ≤ K

[

‖Rn‖F +σn(F )

√

t
n
+

tU
n

]

and
∣

∣

∣

∣

‖Pn−P‖F −E‖Pn−P‖F

∣

∣

∣

∣

≤ K

[

√

t
n

(

σ2
n(F )+U‖Rn‖F

)

+
tU
n

]

.

In what follows, it will be of interest to consider sequential learning algorithms in which the
sample size is being gradually increased until the excess risk becomes smallerthan a given level
δ. The following quantities are used in the analysis of such algorithms. Let us fixa setM ⊂ N. A
possible choice isM = N, but, usually, we will takeM = {2k : k≥ 0}. Denote

n̄(δ) := inf

{

n∈ M : δ̄n ≤ δ
}

= inf

{

n∈ M : Ū ♭
n(δ)≤

1
2

}

,
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n̂(δ) := inf

{

n∈ M : δ̂n ≤ δ
}

= inf

{

n∈ M : Û ♭
n(δ)≤

1
2

}

and

ñ(δ) := inf

{

n∈ M : δ̃n ≤ δ
}

= inf

{

n∈ M : Ũ ♭
n(δ)≤

1
2

}

.

If
E‖Pn−P‖F → 0 asn→ ∞,

which is true for so called Glivenko-Cantelli classes of functions with respect to P (see, e.g.,
van der Vaart and Wellner, 1996), then it is easy to see that

δ̄n → 0 andδ̃n → 0 asn→ ∞.

In this case, we have
ñ(δ)<+∞, n̄(δ)<+∞,δ ∈ (0,1].

It is also easy to see that the functionsn 7→ Ūn(δ) andn 7→ Ũn(δ) are nonincreasing (it follows from
the well known reverse supermartingale properties of empirical processes; see, van der Vaart and
Wellner, 1996, Lemma 2.4.5). This implies that, for alln ≥ n̄(δ), δ̄n ≤ δ and, for alln ≥ ñ(δ),
δ̃n ≤ δ. SinceŪn(δ)≤ Ũn(δ), δ ∈ (0,1], it is also clear that

n̄(δ)≤ ñ(δ), δ ∈ (0,1].

The next proposition immediately follows from the definition of ¯n(δ) (it is, in fact, just a refor-
mulation of the statements of Proposition 2 and Theorem 3):

Proposition 5 (i) For all n ≥ n̄(δ),

P

{

EP( f̂n)> δ
}

≤ ∑
δ j≥δ

e−t j ;

(ii) For all n ≥ n̄(δ), with probability at least

1− ∑
δ j≥δ

e−t j

the following inclusions hold:

∀σ ≥ δ FP(σ)⊂ FPn(3/2σ) and FPn(σ)⊂ FP(2σ).

(iii) For all n ≥ n̄(δ), there exists an event E of probability

P(E)≥ 1−3 ∑
δ j≥δ

e−t j

such that on this event
Ūn(σ)≤ Ûn(σ)≤ Ũn(σ), σ ≥ δ.
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We will also need a version of the statements of Proposition 5 that are uniformin n∈ M. To this
end, assume that the numberst j in the definitions of the functions̄Un,Ûn,Ũn depend also onn. We

will denote these numberst(n)j . Assume that, for allj,
t(n)j

n is a nonincreasing function ofn. Then the
next statement immediately follows from Theorem 3 and the union bound.

Proposition 6 There exists an event H of probability

P(H)≥ 1− ∑
n∈M

∑
j≥0

e−t(n)j

such that on this event, for all n∈ M,

EP( f̂n)≤ δ̄n,

∀δ ≥ δ̄n FP(δ)⊂ FPn(3/2δ) and FPn(δ)⊂ FP(2δ).

Moreover, there exists an event E of probability

P(E)≥ 1−3 ∑
n∈M

∑
j≥0

e−t(n)j

such that on this event, for all n∈ M,

Ūn(δ)≤ Ûn(δ)≤ Ũn(δ), σ ≥ δ̄n

and
δ̄n ≤ δ̂n ≤ δ̃n.

As a consequence, we also have that for allδ ∈ (0,1]

n̄(δ)≤ n̂(δ)≤ ñ(δ).

The simplest choice of the numberst(n)j , in the case whenM = {2k : k≥ 0} andδ j = 2− j , j ≥ 0,
is

t(n)j = 2log(log2n+1)+2log( j +1)+ log
1
α
+ log(12), j ≥ 0, n∈ M,

whereα ∈ (0,1). With this choice, all the claims of Proposition 6 hold with a guaranteed probability
at least 1−α.

The main conclusion one can draw from Proposition 6 is that the sample size needed to achieve
the desired “accuracy of learning”δ (i.e., to “learn” a function for which the excess risk is smaller
thanδ) can itself be learned from the data. More precisely, the estimator ˆn(δ) of the required sample
size can be computed sequentially by increasing the sample sizen gradually, computing for eachn
the data dependent excess risk boundδ̂n and stopping as soon asδ̂n ≤ δ. With a high probability, the
stopping time ˆn(δ) provides a “correct” estimate of the sample size (up to a numerical constant) in
the sense that it is between two distribution dependent estimates (¯n(δ) andñ(δ)) that are typically
of the same order of magnitude (up to numerical constants). At the same time, thesample size ˆn(δ)
is sufficient for estimating theσ-minimal sets of the true risk by theσ-minimal sets of the empirical
risk for all σ ≥ δ (in the sense of the inclusions of Proposition 6). These facts will play a crucial
role in our design of active learning methods in the next section.
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3. Sequential Active Learning

We first describe a simplified (non-adaptive) version of active learningin which it is assumed that
the minimal sample size ¯n(δ) needed to achieve the desired “accuracy of learning” of the orderδ
is given. As before, suppose that{δk}k≥0 is a nonincreasing sequence of positive numbers with
δ0 = 1. Denoten̄k := n̄(δk), k≥ 1.

Algorithm 1

F̂0 := F ;
for k= 1,2, . . . ,

Âk :=
{

x : supf ,g∈F̂k−1
| f (x)−g(x)|> δk

}

;

P̂k := 1
n̄k

∑n̄k
j=1 IÂk

(Xj)δXj ;

F̂k := F̂k−1
⋂
FP̂k

(3δk);
end
The setÂk defined at each iteration of the algorithm is viewed as a set of “active examples” (or

“active set”). The examplesXj ∈ Âk are needed to compute the “active empirical measure”P̂k. The
underlying assumption is that there exists a “base algorithm” that computes theδ-minimal set

FQ(δ) :=

{

f : EQ( f ) := Q f − inf f∈F Q f ≤ δ
}

for an arbitrary discrete measureQ with a finite number of atoms. This algorithm is used to compute
the setFP̂k

(3δk). In principle, it would be enough only to ensure that, givenδ > 0 and measureQ,

the “base algorithm” outputs a set̄FQ(δ) such that

FQ(c1δ)⊂ F̄Q(δ)⊂ FQ(c2δ)

for some numerical constants 0< c1 < c2. However, to simplify the notations, we will assume that
c1 = c2 = 1.

Of course, in reality,Algorithm 1 stops after a finite number of iterations. A possible choice
could be

L := ∑
j≥0

I(δ j ≥ δ),

which can be viewed as the number of iterations needed to achieve the “desired accuracy” of learn-
ing δ ∈ (0,1). In other words, the algorithm stops whenδ j becomes smaller thanδ. For instance, if
δ j = 2− j , j ≥ 0, then the number of iterationsL is of the order log2(1/δ). Let ν(δ) denote the total
number of active examples used by the algorithm in the firstL iterations. Then

ν(δ)≤ ∑
δk≥δ

n̄k

∑
j=1

IÂk
(Xj).

Denote
A(δ) :=

{

x : sup
f ,g∈F (8δ)

| f (x)−g(x)|> δ
}

and
π(δ) := P(A(δ)).

The following statement will be easily proved by induction.
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Theorem 7 With probability at least

1− ∑
n∈M

∑
j≥0

e−t(n)j ,

the following inclusions hold for the classesF̂k output byAlgorithm 1 : for all k ≥ 0

FP(δk)⊂ F̂k ⊂ FP(8δk). (2)

Also, for all t≥ 1 and all δ ∈ (0,1], with probability at least

1− ∑
n∈M

∑
j≥0

exp{−t(n)j }− ∑
δ j≥δ

exp{−n̄(δ j)π(δ j−1)t logt}

the following bound holds:
ν(δ)≤ et ∑

δ j≥δ
n̄(δ j)π(δ j−1).

Proof The inclusions (2) obviously hold fork= 0. Assuming that, for allj < k,

FP(δ j)⊂ F̂ j ⊂ FP(8δ j),

we will prove that the same inclusions hold also fork. Let H be the event of probability at least

1− ∑
n∈M

∑
j≥0

e−t(n)j

defined in Proposition 6. By the induction assumption,

FP(δk)⊂ FP(δk−1)⊂ F̂k−1

and, by the definition of̂Ak, we have for allf ,g∈ F̂k−1,

|Pn̄k( f −g)− P̂k( f −g)|=

∣

∣

∣

∣

n̄−1
k

n̄k

∑
i=1

( f −g)(Xi)− n̄−1
k ∑

i:Xi∈Âk

( f −g)(Xi)

∣

∣

∣

∣

=

∣

∣

∣

∣

n̄−1
k ∑

i:Xi 6∈Âk

( f −g)(Xi)

∣

∣

∣

∣

≤ δk.

We can conclude that, for allf ∈ FP(δk),

∣

∣

∣
EPn̄k

( f )−EP̂k
( f )

∣

∣

∣
≤ δk.

Also, by the inclusions of Proposition 6 and the definition of ¯nk = n̄(δk), we have on the eventH
that

FP(δk)⊂ FPn̄k
(2δk).

Hence, for allf ∈ FP(δk),
EPn̄k

( f )≤ 2δk and EP̂k
( f )≤ 3δk.
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This implies the inclusion
FP(δk)⊂ F̂k−1

⋂
FP̂k

(3δk) = F̂k.

On the other hand, sincêFk ⊂ F̂k−1, we have, for allf ∈ F̂k,

∣

∣

∣
EPn̄k

( f )−EP̂k
( f )

∣

∣

∣
≤ δk.

Since for all f ∈ F̂k, EP̂k
( f )≤ 3δk, we also haveEPn̄k

( f )≤ 4δk. Thus, using again the inclusions of
Proposition 6, we get

F̂k ⊂ FPn̄k
(4δk)⊂ FP(8δk),

proving the inclusions (2)
To prove the bound onν(δ), note that on the eventH, where the inclusions (2) hold for allk

such thatδk ≥ δ, we have
Âk ⊂ A(8δk−1).

Hence, on the eventH,
ν(δ)≤ ∑

δk≥δ
νk,

where

νk :=
n̄k

∑
j=1

IA(8δk−1)(Xj).

Clearly,νk is a binomial random variable with parameters ¯nk andπ(δk−1). Therefore, we have

P{νk ≥ s} ≤

(

en̄kπ(δk−1)

s

)s

(see, e.g., Dudley, 1999, p. 16). Takings := etn̄kπ(δk−1) yields

P

{

νk ≥ etn̄kπ(δk−1)
}

≤ exp{−n̄kπ(δk−1)t logt}.

Applying the union bound, we get

P

{

ν(δ)≥ et ∑
δk≥δ

n̄kπ(δk−1)

}

≤ P(Hc)+ ∑
δk≥δ

exp{−n̄kπ(δk−1)t logt}.

Since
P(Hc)≤ ∑

n∈M
∑
j≥0

e−t(n)j ,

the result follows.

The simplest way to make the method data dependent is to replace inAlgorithm 1 the sample
sizesn̄k = n̄(δk) by their estimates ˆnk := n̂(δk), k ≥ 1 and to redefinêPk in the iterative procedure
for Âk, P̂k andF̂k as follows:

P̂k :=
1
n̂k

n̂k

∑
j=1

IÂk
(Xj)δXj .
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This modification ofAlgorithm 1 will be calledAlgorithm 2 . The following statement can be
proved quite similarly to Theorem 7 (using Proposition 6).

Recall the definition of the number of iterationsL and also thatν(δ) denotes the number of
active examples used by the algorithm in the firstL iterations.

Theorem 8 With probability at least

1−3 ∑
j≥0

∑
n∈M

e−t(n)j ,

the following inclusions hold for the classesF̂k output byAlgorithm 2 : for all k ≥ 0,

FP(δk)⊂ F̂k ⊂ FP(8δk).

Moreover, for all t≥ 1 and for all δ ∈ (0,1], with probability at least

1−3 ∑
j≥0

∑
n∈M

exp{−t(n)j }− ∑
δ j≥δ

exp{−ñ(δ j)π(δ j−1)t logt}

the following bound holds:
ν(δ)≤ et ∑

δ j≥δ
ñ(δ j)π(δ j−1).

Note that in this version of the algorithm all the training examplesXj (not only the examples in
the active setŝAk) are used to determine the sample sizes ˆnk. So, from this point of view,Algorithm
2 can not be viewed as really “active”. However, it is easy to see that in a more concrete framework
of prediction problems (such as, for instance, the binary classification) one can modify the defini-
tions of the localized Rademacher complexities and of the sample sizes ˆnk in such a way that they
depend only on the design points, but not on the response variables (labels). Thus, in the cases when
sampling the design points is “cheap” and only assigning the labels to them is “expensive” (which is
a common motivational assumption in the literature on active learning), the algorithms of this type
make some sense (see Section 4 for more details).

It is more interesting, however, that even in the abstract framework of empirical risk minimiza-
tion it is possible to change the definition of Rademacher complexities and the estimates of the
sample sizes based on them so that only the active examples that belong to the sets Âk are being
used in the computation. We will describe such a data driven algorithm of active learning below.

Let δ j := 2− j , j ≥ 0. As before, we will define iteratively data dependent function classesF̂k

beginning withF̂0 := F that provide estimates of theδ-minimal setsFP(δ) for sufficiently small
values ofδ and we set

Âk :=
{

x : sup
f ,g∈F̂k−1

| f (x)−g(x)|> cδk

}

with some constantc> 0.

Define

P̂(k)
n := n−1

n

∑
j=1

IÂk
(Xj)δXj

and

R̂(k)
n ( f ) := n−1

n

∑
j=1

ε j f (Xj)IÂk
(Xj).
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Denote

Û (k)
n := K̂

[

sup
f ,g∈F̂k−1

∣

∣

∣
R̂(k)

n ( f −g)
∣

∣

∣
+D

P̂(k)
n
(F̂k−1)

√

t(n)k

n
+

t(n)k

n

]

and define iteratively a nondecreasing data dependent sequence ˆnk :

n̂k := min
{

n∈ M,n≥ n̂k−1 : Û (k)
n ≤

1
2

δk+1

}

with the initial conditionn̂0 := inf M.

Note that the following iterative relationships hold for the distribution dependent sample sizes
n̄k := n̄(δk+1) andñk := ñ(δk+1) :

n̄k = min
{

n∈ M,n≥ n̄k−1 : Ūn(δk)≤
1
2

δk+1

}

, n̄0 := inf M

and

ñk = min
{

n∈ M,n≥ ñk−1 : Ũn(δk)≤
1
2

δk+1

}

, ñ0 := inf M.

(which easily follows from the definitions of ¯n(δ), ñ(δ)).
We will write, for brevity, P̂k := P̂(k)

n̂k
. With these definitions and notations, we can defineF̂k

iteratively exactly as before:
F̂k := F̂k−1

⋂
FP̂k

(3δk).

In short, the algorithm can be described as follows:
Algorithm 3
F̂0 := F ;
for k= 1,2, . . . ,

Âk :=
{

x : supf ,g∈F̂k−1
| f (x)−g(x)|> cδk

}

;

n̂k := min
{

n∈ M,n≥ n̂k−1 : Û (k)
n ≤ 1

2δk+1

}

;

F̂k := F̂k−1
⋂
FP̂k

(3δk);
end
As before, we define

A(δ) :=
{

x : sup
f ,g∈F (8δ)

| f (x)−g(x)|> cδ
}

and
π(δ) := P(A(δ)).

The properties ofAlgorithm 3 are summarized in the following theorem.

Theorem 9 There exist numerical constants c in the definition of the active setsÂk, K̂ in the def-

inition of Û (k)
n and K̃, c̃ in the definition of the functioñUn such that the following holds. With

probability at least

1−3 ∑
j≥0

∑
n∈M

e−t(n)j ,
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the following inequalities and inclusions hold for all k≥ 0 :

n̄k ≤ n̂k ≤ ñk,

FP(δk)⊂ F̂k ⊂ FP(8δk).

Moreover, for all t≥ 1, with probability at least

1−3 ∑
j≥0

∑
n∈M

exp{−t(n)j }− ∑
δ j≥δ

exp{−ñ(δ j+1)π(δ j−1)t logt}

the following bound holds:
ν(δ)≤ et ∑

δ j≥δ
ñ(δ j+1)π(δ j−1).

Proof There exists an eventE of probability at least

1−3 ∑
n∈M

∑
j≥0

e−t(n)j

on which the following holds. For allk and for alln∈ M

K̂

[

sup
f ,g∈FP(8δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(8δk−1))

√

t(n)k

n
+

t(n)k

n

]

≤
1
2

Ũn(δk) (3)

and

K̂

[

sup
f ,g∈FP(δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(δk−1))

√

t(n)k

n
+

t(n)k

n

]

≥ 2Ūn(δk) (4)

with properly chosen constants in the definitions of the functionsŪn,Ũn and constant̂K. At the same
time, on the same eventE, for all n∈ M,n≥ n̄(δ) and allσ ≥ δ,

FP(σ)⊂ FPn(2σ) and FPn(σ)⊂ FP(2σ). (5)

To construct such an event, first consider the eventH of Proposition 6 on which the inclusions (5)
hold. Then define

Ek,n :=

{

K̂

[

sup
f ,g∈FP(8δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(8δk−1))

√

t(n)k

n
+

t(n)k

n

]

≤
1
2

Ũn(δk)

}

and

E′
k,n :=

{

K̂

[

sup
f ,g∈FP(δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(δk−1))

√

t(n)k

n
+

t(n)k

n

]

≥ 2Ūn(δk)

}

.

Using the “statistical version” of Talagrand’s concentration inequality (Theorem 4) one can show
that with a proper choice of̂K and the constants in the definitions of the functionsŪn,Ũn,

P(En,k)≤ 1−e−t(n)k , P(E′
n,k)≥ 1−e−t(n)k
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for all k≥ 0 and for alln∈ M. Define

E :=
⋂

k≥0,n∈M

(En,k∩E′
n,k)∩H.

Then
P(E)≥ 1−3 ∑

n∈M
∑
j≥0

e−t(n)j

and all the desired properties hold on the eventE.
We will now show by induction that, on the eventE for k= 0,1, . . .

n̄k ≤ n̂k ≤ ñk,

FP(δk)⊂ F̂k ⊂ FP(8δk)

and also fork= 1,2, . . . and for alln∈ M

2Ūn(δk)−
δk+1

2
≤ Û (k)

n ≤
1
2

[

Ũn(δk)+
δk+1

2

]

. (6)

By the definitions, the claims are obviously true fork= 0. Assume that they have been proved up to
k−1. By this induction assumption, we havêFk−1 ⊂ FP(8δk−1) and, by the definition of the setÂk,

sup
f ,g∈F̂k−1

∣

∣

∣
R̂(k)

n ( f −g)
∣

∣

∣
≤ sup

f ,g∈F̂k−1

∣

∣

∣
Rn( f −g)

∣

∣

∣
+cδk

and
D2

P̂(k)
n
(F̂k−1)≤ D2

Pn
(F̂k−1)+c2δ2

k.

This implies the following upper bound on̂U (k)
n :

Û (k)
n ≤ K̂

[

sup
f ,g∈FP(8δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(8δk−1))

√

t(n)k

n
+

t(n)k

n
+cδk+cδk

√

t(n)k

n

]

.

Applying to the last term the inequalityab≤ (a2+b2)/2 and taking into account the fact thatδk ≤ 1,
it is easy to deduce from this that withc satisfying the condition

K̂c+ K̂2c2/2≤ 1/8,

we have

Û (k)
n ≤ K̂

[

sup
f ,g∈FP(8δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(8δk−1))

√

t(n)k

n
+

t(n)k

n

]

+δk+1/4.

Quite similarly, using the inclusionFP(δk−1)⊂ F̂k−1 that also holds under the induction assumption,
one can show that with a proper choice of constantc in the definition of the set̂Ak

Û (k)
n ≥ K̂

[

sup
f ,g∈FP(δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(δk−1))

√

t(n)k

n
+

t(n)k

n

]

−δk+1/2.
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Combining this with bounds (3) and (4) immediately implies (6).
Applying (6) ton= n̂k, we get

2Ūn̂k(δk)−
δk+1

2
≤ Û (k)

n̂k
≤

δk+1

2
,

which yields

Ūn̂k(δk)≤
δk+1

2
.

We also have ˆnk ≥ n̂k−1 ≥ n̄k−1 (by the induction assumption). By the definition of ¯nk, this implies
thatn̂k ≥ n̄k.

On the other hand, denote ˆn−k the element of the ordered setM preceding ˆnk. We will use
inequality (6) withn= n̂−k . It gives

Û (k)
n̂−k

≤
1
2

[

Ũn̂−k
(δk)+

δk+1

2

]

. (7)

If it happened that ˆn−k < n̂k−1, then we must have ˆnk = n̂k−1, which, by the induction assumption,
implies thatn̂k = n̂k−1 ≤ ñk−1 ≤ ñk. If n̂−k ≥ n̂k−1, then the definition of ˆnk implies that

Û (k)
n̂−k

>
δk+1

2
,

which together with (7) implies that

Ũn̂−k
(δk)>

δk+1

2
.

But, if n̂k > ñk, thenn̂−k ≥ ñk, which would imply that

Ũñk(δk)>
δk+1

2

(since for allδ, Ũn(δ) is a nonincreasing function ofn). The last inequality contradicts the definition
of ñk implying thatn̂k ≤ ñk.

The proof of the inclusions

FP(δk)⊂ F̂k ⊂ FP(8δk)

and the derivation of the bound onν(δ) repeat the argument of Theorem 7.

Note that in the bounds onν(δ) of theorems 7, 8 and 9 one can replace functionsπ(δ), n̄(δ) and
ñ(δ) by arbitrary upper bounds (with the same change in the bounds on the probability).

As soon asπ(δ)→ 0 asδ→ 0, the upper bounds onν(δ) show that, in the case of active learning,
there is a reduction of the number of training examples needed to achieve a desired accuracy of
learning comparing with passive learning. In the next section, we explore insome detail what is
happening in the case of binary classification.
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4. Active Learning in Binary Classification

Let (X,Y) be a random couple with values inS×{−1,1} and with distributionP, where(S,A) is an
arbitrary measurable space. In binary classification problems, the first componentX is viewed as an
observable instance and the second componentY is an unobservable “label”. The value ofY is to be
predicted based on an observation ofX and on the training data(X1,Y1), . . . ,(Xn,Yn) consisting ofn
independent copies of(X,Y). Measurable functionsg : S 7→ {−1,1} are called (binary) classifiers.
Let ℓ : {−1,1}×{−1,1} 7→ {0,1} be the binary loss functionℓ(y,u) := I(y 6= u), and, as before,
(ℓ • g)(x,y) := ℓ(y,g(x)) be the “loss” of classifierg for the example(x,y) ∈ S× {−1,1}. The
quantity

P(ℓ•g) = P{(x,y) : y 6= g(x)}= P{Y 6= g(X)}

is called the generalization error, or the risk ofg. We still denoteη(x) := E(Y|X = x) the regression
function. It is well known that the minimum of the generalization error over theset of all binary
classifiers is attained at the Bayes classifier

g∗(x) = sign(η(x)).

We will assume in what follows thatG is a class of binary classifiers such thatg∗ ∈ G .
For a binary classifierg, define its excess risk as

EP(ℓ•g) := P(ℓ•g)−P(ℓ•g∗).

The following formula is well known (see, e.g., Devroye et al., 1996, Theorem 2.2).

EP(ℓ•g) =
∫
{g6=g∗}

|η(x)|Π(dx), (8)

whereΠ is the marginal distribution ofX.
A standard approach to learning the Bayes classifier is based on the empirical risk minimization:

ĝ := argming∈GPn(ℓ•g) = argming∈GPn{(x,y) : y 6= g(x)}=

argming∈Gn−1
n

∑
j=1

I(Yj 6= g(Xj)),

wherePn denotes the empirical distribution based on the training data(X1,Y1), . . . ,(Xn,Yn) (we will
also use the notationΠn for the empirical distribution based on(X1, . . . ,Xn)).

If F := ℓ •G := {ℓ • g : g ∈ G} denotes the loss class, then we are in the framework of ab-
stract empirical risk minimization of sections 2,3 and general results of these sections can be now
specialized for the classification context.

It is natural to characterize the quality of the classifier ˆg in terms of its excess riskEP(ℓ • ĝ)
and to study how it depends on the complexity of the classG as well as on the complexity of the
classification problem itself. The simplest complexity assumption on the classG is that it is a VC-

class of binary functions of VC-dimensionV (in other words,C :=
{

{x : g(x) = +1 : g∈ G}
}

is a

VC-class of sets of VC-dimensionV). Under this assumption, a well known result, essentially due
to Vapnik and Chervonenkis, is that, for some constantK > 0 and for allt > 0, with probability at
least 1−e−t

EP(ℓ• ĝ)≤ K

[

√

V
n
+

√

t
n

]

.
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In principle, this bound is minimax optimal, but it can be significantly improved for special families
of distributionsP under further assumptions on the complexity of the classification problem. For
instance, the followingMassart’s low noise assumptionis frequently used: for some constant
h∈ (0,1]

|η(x)| ≥ h, x∈ S.

The parameterh is a characteristic of the level of noise in binary labelsYj . In other words, it is a
simple measure of complexity of a binary classification problem. The following theorem is a version
of the result proved by Massart and Nedelec (2006):

Theorem 10 There exists a constant K> 0 such that, for all t> 0, with probability at least1−e−t

EP(ℓ• ĝ)≤ K

[

V
nh

log
(nh2

V

)

+
t

nh

]∧[

√

V
n
+

√

t
n

]

.

This upper bound on the excess risk is optimal in a minimax sense (as it was alsoshown by
Massart and Nedelec, 2006). However, it still can be refined using thefollowing functionτ (which
is a local version of Alexander’scapacity function introduced in the 80s and used in the theory of
ratio type empirical processes, see Giné and Koltchinskii, 2006, and references therein). Define

Gδ := {g∈ G : Π{x : g(x) 6= g∗(x)} ≤ δ}

and let

τ(δ) :=
Π
{

x|∃g∈ Gδ : g(x) 6= g∗(x)

}

δ
.

Clearly, the setGδ consists of the classifiers fromG that are in a neighborhood of sizeδ of the Bayes
classifierg∗ and the set

Dδ :=

{

x|∃g∈ Gδ : g(x) 6= g∗(x)

}

consists of all the pointsx such that there exists a classifierg in the neighborhoodGδ that “disagrees”
with the Bayes classifier atx. The functionτ(δ) is always upper bounded by1δ . However, if it
happens that the measureΠ of the “disagreement set”Dδ is small whenδ is small, thenτ(δ) might
grow slower than1

δ asδ → 0, or even it can be bounded by a constant. IfC := {{g=+1} : g∈ G}
andC∗ := {g∗ =+1}, then

τ(δ) =
Π
(⋃

C∈C ,Π(C△C∗)≤δ(C△C∗)

)

δ
,

so, roughly,τ(δ) shows how many disjoint setsC△C∗ of “size” δ can be “packed” in the union of
all such sets. For instance, ifC is a class of convex sets in[0,1]d, Π is the Lebesgue measure in
[0,1]d andC∗ ∈ C ,Π(C∗) > 0, then it can be shown thatτ is uniformly bounded by a constant, see
Giné and Koltchinskii (2006). A more detailed analysis of disagreement sets, capacity functions
and their connections to the geometry of the classG can be found in the paper by Friedman (2009).

The following result was proved by Giné and Koltchinskii (2006).
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Theorem 11 There exists a constant K> 0 such that, for all t> 0, with probability at least1−e−t

EP(ℓ• ĝ)≤ K

[

V
nh

logτ
( V

nh2

)

+
t

nh

]∧[

√

V
n
+

√

t
n

]

.

Clearly, this result implies the theorem of Massart and Nedelec (sinceτ(δ) ≤ 1
δ ). The proof

is based on applying subtle bounds for empirical processes (see Giné and Koltchinskii, 2006) to
compute the excess risk bound̄δn of Section 2. Then, the general result of Theorem 1 (see also
Proposition 2) can be used to bound the excess risk.

The case whenτ(δ) is uniformly bounded from above by a constantτ0 is of special interest. In
this case, with probability at least 1−e−t ,

EP(ℓ• ĝ)≤ K

[

V
nh

logτ0+
t

nh

]

,

so the main term of the bound is of the orderO( V
nh) and it does not contain logarithmic factors

depending onn and h. It will be convenient for our purposes to phrase this result in a slightly
different form. Namely, givenδ ∈ (0,1) andα ∈ (0,1), denote

n(δ,α) := inf

{

n : P{EP(ĝn)≥ δ} ≤ α
}

.

Then

n(δ,α)≤ K

([

V
δh

logτ0+
log(1/α)

δh

]∧[

V
δ2 +

log(1/α)
δ2

])

.

The quantityn(δ,α) shows how many training examples are needed to make the excess risk of the
classifier ˆg smaller thanδ with a guaranteed probability of at least 1−α. It characterizes the sample
complexity of passive learning. In the case of empirical risk minimization over aVC-class with a
bounded capacity functionτ, the sample complexity is of the orderO(V

h
1
δ).

The role of the capacity function is rather modest in the case of passive learning since it only
allows one to refine the excess risk and the sample complexity bounds by makingthe logarithmic
factors more precise. However, the capacity functionτ happened to be of crucial importance in
the analysis of active learning methods of binary classification. This function was rediscovered in
active learning literature and its supremum is being used there under the nameof disagreement
coefficient, see, for example, Hanneke (2009a,b) and references therein.

We will describe an active learning algorithm that is a specialized version ofmore abstract
Algorithm 3 of Section 3. As before, we denoteδ j := 2− j , j ≥ 0 and choose a setM ⊂N of natural

numbers as well as nonnegative real numberst(n)k , n∈ M,k≥ 0.
Given a classG of binary classifiers, denote

GP(δ) :=

{

g : EP(ℓ•g)≤ δ
}

, δ > 0.

These sets will be calledδ-minimal sets of the true risk. Clearly, ifF = ℓ •G , then under the
notations of Section 2

FP(δ) =
{

ℓ•g : g∈ GP(δ)
}

.
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In principle, one can directly useAlgorithm 3 for the classF . However, we will modify it slightly
in order to adapt it to the binary classification framework.

We will define iteratively data dependent function classesĜk that provide estimates of theδ-
minimal setsGP(δ). and also a nondecreasing data dependent sequence of estimated sample sizes
n̂k. It will be assumed that we have an access to an algorithm that, given a discrete measureQ on
S×{−1,1} andδ > 0, computes theδ-minimal setGQ(δ) of Q.

Several definitions and notations will be needed. Note that for the binary lossℓ, for all binary
classifiersg1,g2 and for allδ ∈ (0,1), the condition|ℓ(y,g1(x))− ℓ(y,g2(x))| ≥ δ is equivalent to
the conditiong1(x) 6= g2(x). This leads to the following definition of setŝAk (that are subsets ofS,
not ofS×{−1,1}). Assuming that̂Gk−1 has been already defined, let

Âk :=
{

x : ∃g1,g2 ∈ Ĝk−1,g1(x) 6= g2(x)
}

be the set of all the points where at least two classifiers inĜk−1 disagree with each other. This set
will be used as a set of active design points at thek-th iteration.

Next define active empirical distributions based on the unlabeled examples{Xj} and on the
labeled examples{(Xj ,Yj)} :

Π̂(k)
n := n−1

n

∑
j=1

IÂk
(Xj)δXj

and

P̂(k)
n := n−1

n

∑
j=1

IÂk
(Xj)δ(Xj ,Yj )

For simplicity, we will also use the notation̂Pk := P̂(k)
n̂k

. Let

D̂(k)
n :=

1
2

sup
g1,g2∈Ĝk−1

(

Π̂(k)
n (g1−g2)

2
)1/2

be theL2(Π̂
(k)
n )-diameter of the clasŝGk−1. Note that, if we literally followed the definitions of

Section 3, we would have to define the diameter as

sup
g1,g2∈Ĝk−1

(

P̂(k)
n (ℓ•g1− ℓ•g2)

2
)1/2

.

However, it is easy to check that for all(x,y) ∈ S×{−1,1} and all binary classifiersg1,g2

(ℓ•g1)(x,y)− (ℓ•g2)(x,y) =
1
2

y(g2(x)−g1(x)),

which justifies the new definition. This simple identity also implies that the functionφn(δ), defined
in Section 2 and used in the construction of the excess risk bounds, can beupper bounded as follows:

φn(δ)≤ 2E sup
f1, f2∈F (δ)

|Rn( f1− f2)|= 2E sup
g1,g2∈G(δ)

|Rn(ℓ•g1− ℓ•g2)|=

E sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑
j=1

ε jYj(g2(Xj)−g1(Xj))

∣

∣

∣

∣

,
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where at the beginning we used the symmetrization inequality (see, e.g., van der Vaart and Well-
ner, 1996). Note that, conditionally on(X1,Y1), . . . ,(Xn,Yn), the distribution of the random vector
(ε1Y1, . . . ,εnYn) is the same as the distribution of(ε1, . . . ,εn). Because of this,

φn(δ)≤ E sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑
j=1

ε jYj(g2(Xj)−g1(Xj))

∣

∣

∣

∣

=

EE

(

sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑
j=1

ε jYj(g2(Xj)−g1(Xj))

∣

∣

∣

∣

∣

∣

∣

∣

(X1,Y1), . . . ,(Xn,Yn)

)

=

EE

(

sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑
j=1

ε j(g2(Xj)−g1(Xj))

∣

∣

∣

∣

∣

∣

∣

∣

(X1,Y1), . . . ,(Xn,Yn)

)

=

E sup
g1,g2∈G(δ)

|Rn(g1−g2)|.

This simple observation allows one to replace the Rademacher complexities for the loss classF =
ℓ•G by the Rademacher complexities for the classG itself (and the proofs of the excess risk bounds
and other results cited in Section 2 go through with no changes). Of course, the same applies to all
the constructions and the results of Section 3.

Because of this, we now define the Rademacher complexity based only on the“active” examples
as

R̂(k)
n := sup

g1,g2∈Ĝk−1

∣

∣

∣

∣

n−1
n

∑
j=1

ε j(g1−g2)(Xj)IÂk
(Xj)

∣

∣

∣

∣

.

Finally, denote

Û (k)
n := K̂

[

R̂(k)
n + D̂(k)

n

√

t(n)k

n
+

t(n)k

n

]

.

With these definitions and notations, we can now introduce the following modification of Algo-
rithm 3 of Section 3.

Algorithm 4
Ĝ0 := G ;
for k= 1,2, . . . ,

Âk :=
{

x : ∃g1,g2 ∈ Ĝk−1,g1(x) 6= g2(x)
}

;

n̂k := min
{

n∈ M,n≥ n̂k−1 : Û (k)
n ≤ 1

2δk+1

}

;

Ĝk := Ĝk−1
⋂
GP̂k

(3δk);
end

Remark 12 One can also use inAlgorithm 4 the Rademacher complexities defined as follows:

R̂(k)
n := sup

g1,g2∈Ĝk−1

∣

∣

∣

∣

n−1
n

∑
j=1

ε j(g1−g2)(Xj)

∣

∣

∣

∣

.

In this case, not only the active design points, but all the design points Xj are used to compute the
Rademacher complexities and to estimate the sample sizesn̂k. Note, however, that the labels Yj are
not involved in this computation, so, the algorithm still can be viewed as “active”. The resulting
algorithm is a modification ofAlgorithm 3 from Section 3.
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In the case whenG is a VC-class of VC-dimensionV, we will chooseM := {2k : k ≥ 0}. We
will also define

t(n)k := log(1/α)+2log(k+1)+2log(log2n+1)+ log(24). (9)

This leads to the following result that is a corollary of Theorem 9.

Corollary 13 Let δ ∈ (0,1). Suppose that Massart’s low noise assumption holds with some h∈
(0,1). Suppose that

τ0 := sup
u∈(0,1]

τ(u)<+∞.

Then there exists an event of probability at least1−α such that the following inclusions hold for
the classeŝGk output byAlgorithm 4 : for all k ≥ 0,

GP(δk)⊂ Ĝk ⊂ GP(8δk). (10)

Also with probability at least1−α, the following bound on the numberν(δ) of active training

examples used byAlgorithm 4 in the first L=
[

log2(1/δ)
]

iterations holds with some numerical

constant C> 0 :

ν(δ)≤C
τ0 log(1/δ)

h2

[

V logτ0+ log(1/α)+ log log(1/δ)+ log log(1/h)

]

.

In particular, it means that with probability at least 1−α

GP(δ/2)⊂ ĜL ⊂ GP(16δ).

Proof We only sketch the proof here, the missing details are not very complicated. The result
follows from Theorem 9, more precisely, from its modified version that takes into account the slight
changes we made in the definition of the Rademacher complexities. The inclusions (10) follow
from this theorem in a straightforward way. To prove the bound onν(δ), one has first to bound
the quantityδ̃n. This computation was essentially done by Giné and Koltchinskii (2006) (it actually
leads to the bound of Theorem 11). Namely, with some constantC1,

δ̄n ≤C1

[

V
nh

logτ
( V

nh2

)

+
log(1/α)+ log logn

nh

]∧[

√

V
n
+

√

log(1/α)+ log logn
n

]

.

As a result, the following upper bound on ˜n(σ),σ ≥ δ holds with some constantK1 :

ñ(σ)≤ K1

([

V
σh

logτ0+
log(1/α)+ log log2(1/δ)+ log log(1/h)

σh

]∧

[

V
σ2 +

log(1/α)+ log log2(1/δ)
σ2

])

.

Note that, under Massart’s low noise assumption, formula (8) for the excess risk implies that for
all binary classifiersg

E(ℓ•g)≥ hΠ{x : g(x) 6= g∗(x)}.
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Hence
F (σ)⊂

{

ℓ•g : g∈ Gσ/h

}

.

For the setsA(σ) used in Theorems 9, this implies the following:

A(σ) =
{

(x,y) : sup
f1, f2∈F (8σ)

| f1(x,y)− f2(x,y)|> cσ
}

⊂

{

(x,y) : sup
g1,g2∈G(8σ/h)

|(ℓ•g1)(x,y)− (ℓ•g2)(x,y)|> cσ
}

=

{

x : ∃g1,g2 ∈G(8σ/h) : g1(x) 6= g2(x)
}

×{−1,1}=
{

x : ∃g∈G(8σ/h) : g(x) 6= g∗(x)
}

×{−1,1}

(we used the assumption thatg∗ ∈ G and, hence,g∗ ∈ G(8σ/h)). This implies, by the definitions of
the functionsπ andτ, that

π(σ) = P(A(σ))≤ Π
({

x : ∃g∈ G(8σ/h) : g(x) 6= g∗(x)
})

≤
8σ
h

τ(8σ/h).

Using the definition ofτ0, we conclude that for allσ ≥ δ π(σ) ≤ 8τ0
h σ. It remains to substitute the

bounds on ˜n(σ) andπ(σ) into the bound onν(δ) of Theorem 9

ν(δ)≤ et ∑
δ j≥δ

ñ(δ j+1)π(δ j−1),

say, witht = e. This gives

ν(δ)≤ e2 ∑
δ j≥δ

K1

([

V
δ j+1h

logτ0+
log(1/α)+ log log2(1/δ)+ log log(1/h)

δ j+1h

]

8τ0

h
δ j−1,

which is bounded from above by

C
τ0 log(1/δ)

h2

[

V logτ0+ log(1/α)+ log log(1/δ)+ log log(1/h)

]

.

with a properly chosen numerical constantC. Also, it easily follows from the probability estimates
of Theorem 9 that the above bound onν(δ) holds with probability at least 1−α.

Finally, we discuss the properties ofAlgorithm 4 underTsybakov’s low noise assumption.
Namely, we assume that for someγ > 0, for some constantB and for allt > 0

Π{x : |η(x)| ≤ t} ≤ Btγ.

It is well known that under this assumption the following bound on the excessrisk holds for an
arbitrary classifierg :

EP(ℓ•g)≥ cΠκ({g 6= g∗}),

whereκ = 1+γ
γ and c is a constant that depends onB,κ. We will assume in this case thatG is

not necessarily a VC-class, but it can be more massive. For instance, denoteN(G ;L2(Πn);ε) the
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minimal number ofL2(Πn)-balls of radiusε needed to coverG and suppose that these covering
numbers satisfy the condition:

logN(G ;L2(Πn);ε)≤
(

A
ε

)2ρ
, ε > 0.

for someρ ∈ (0,1] and some constantA> 0. Then, the following upper bound on the excess risk of
an empirical risk minimizer ˆg holds with probability at least 1−e−t :

EP(ℓ• ĝ)≤ K

((

1
n

)−κ/(2κ+ρ−1)

+

(

t
n

)κ/(2κ−1))

,

whereK is a constant depending onκ,ρ,A,B. The bounds of this type were first proved by Tsybakov
(2004) (see also Koltchinskii, 2006, 2008). It easily follows from this bound that in order to achieve

the excess risk of orderδ one needsO
(

δ−2+(1−ρ)/κ
)

training examples.

We will now considerAlgorithm 4 with M := {2k : k ≥ 0}, and with the real numberst(n)k
defined by (9).

This leads to the following result that is also a corollary of Theorem 9.

Corollary 14 Let δ ∈ (0,1). Suppose that Tsybakov’s low noise assumption holds with someγ > 0
and B> 0. Let κ := 1+γ

γ . Suppose that

τ0 := sup
u∈(0,1]

τ(u)<+∞.

Then there exists an event of probability at least1−α such that the following inclusions hold for
the classeŝGk output byAlgorithm 4 : for all k with δk ≥ δ,

GP(δk)⊂ Ĝk ⊂ GP(8δk).

Also with probability at least1−α, the following bound on the numberν(δ) of active training
examples used byAlgorithm 4 holds with some constant C> 0 depending onκ,ρ,A,B :

ν(δ)≤Cτ0

[

δ−2+(2−ρ)/κ +δ−2+2/κ(log(1/α)+ log log(1/δ))
]

.

The proof is similar to that of Corollary 13. In this case, the improvement comparing with
passive learning is by a factorδ1/κ.

Remark 15 Alternatively, one can assume that the active learning algorithm stops as soon as the
specified number of active examples, say, n has been achieved. IfL̂ denotes the number of iterations
needed to achieve this target, then8δL̂ is an upper bound on the excess risk of the classifiers from
the setĜL̂. Under the assumptions of Corollary 13, inverting the bound onν(δ) easily gives thatδL̂
is upper bounded by

exp

{

−β
nh2

C2τ0

}

,

where

β :=
1

V logτ0∨ log(1/α)∨ log(nh2/C2τ0)∨ log log(1/h)
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with some numerical constant C2. Thus, the excess risk of such classifiers tends to zero exponentially
fast as n→ ∞. This is the form in which the excess risk bounds in active learning are usually stated
in the literature (see, e.g., Hanneke, 2009a,b). In fact, this is a refinementof the bounds of Hanneke
that were proved for somewhat different active learning algorithms (seeHanneke, 2009b, Theorems
4, 5). Similarly, under the conditions of Corollary 14, the bound onδL̂ becomes

(

τ0

n

)κ/(2κ+ρ−2)∨(

τ0(log(1/α)+ log logn)
n

)κ/(2κ−2)

.

(compare with Theorem 6 by Hanneke, 2009b).

Remark 16 Although we concentrated in this section only on binary classification problems, the
active learning algorithms described in Section 3 can be also used in the context of multiclass
classification and some other problems (e.g., estimation of non-smooth regression function and
estimation of level sets of a probability density). Recall that in the frameworkof prediction with a
general loss functionℓ described in the Introduction,

F := ℓ•G :=
{

ℓ•g : g∈ G
}

.

Following an idea of Beygelzimer et al. (2009), one can now replace the disagreement set̂Ak for the
classF̂k−1 = ℓ• Ĝk−1 involved inAlgorithm 3 by a larger set

Â+
k :=

{

(x,y) : ∃g1,g2 ∈ Ĝk−1 sup
y′∈T

|ℓ(y′,g1(x))− ℓ(y′,g2(x))|> cδk

}

=

{

x : ∃g1,g2 ∈ Ĝk−1 sup
y∈T

|ℓ(y,g1(x))− ℓ(y,g2(x))|> cδk

}

×T.

This leads to the following modification ofAlgorithm 3 :

Algorithm 5
Ĝ0 := G ;
for k= 1,2, . . . ,

Â+
k :=

{

x : ∃g1,g2 ∈ Ĝk−1 supy∈T |ℓ(y,g1(x))− ℓ(y,g2(x))|> cδk

}

×T.

n̂k := min
{

n∈ M,n≥ n̂k−1 : Û (k)
n ≤ 1

2δk+1

}

;

Ĝk := Ĝk−1
⋂
GP̂k

(3δk);
end

The Rademacher complexities of classesF̂k = ℓ • Ĝk (the quantitiesÛ (k)
n ) as well as active

empirical measureŝPk involved in this algorithm are now based on active setsÂ+
k . Clearly, only the

labels of active examples are used in this version of the algorithm. If now we define

π(δ) := Π
({

x : ∃g1,g2 ∈ GP(8δ) sup
y∈T

|ℓ(y,g1(x))− ℓ(y,g2(x))|> cδ
})

,

it is very easy to check that the statement of Theorem 9 still holds for such amodification of the
algorithm. At the same time, it is not clear at this point whether a modified definition of disagree-
ment coefficient in the paper by Beygelzimer et al. (2009) can be used to analyze the properties of
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active learning algorithms of this type and whether it is possible to extend suchan analysis beyond
classification and similar problems.
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