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Abstract

Sequential algorithms of active learning based on the esitom of the level sets of the empirical
risk are discussed in the paper. Localized Rademacher eaitips are used in the algorithms to
estimate the sample sizes needed to achieve the requiredheg®f learning in an adaptive way.
Probabilistic bounds on the number of active examples haea proved and several applications
to binary classification problems are considered.
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1. Introduction

Let (S,4) be a measurable space ahd- R. Consider a standangrediction problem in which
(X,Y) is a random couple i®x T with unknown distributiorP. Here X is adesign pointwhose
distribution will be denotedl andY is aresponse variablewith conditional distribution (giveix)
Ryx (:[X = X). The response variab¥is to be predicted based on an observatioX oThis class
of problems includes many versions of regression and classificationingtance, in the binary
classificationT = {—1,1} and the conditional distribution &f givenX is completely characterized
by the regression function

n(x) :=E(Y|X =Xx).

In the framework opassive learning a learning algorithm inputs the training dad,Y:),...
(Xn,Yn) that consists of independent examples sampled from the distribuBofhe goal is to
construct a data dependent prediction gd&~ T whose risk with respect to a properly chosen loss
function is “close” to the minimal possible risk. More precisely, given a lassfion/: T x T — R,
the risk of a prediction rulg: S— T is defined as

P(feg) =EL(Y;9(X)),

where we used the notatidfie g)(x,y) := £(y;9(x)). For instance, in the binary classification set-
ting, the binary losg(y,u) := | (y # u) is usually used. In this case, the risk of a classification rule
g:S— {—1,1} is its generalization error:
P(feg) =P{Y #9(X)}.
x. Partially supported by NSF grants MSPA-MCS-0624841, DMS-09068%& CCF-0808863.
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Suppose; is a class of prediction ruleg: S— T. The quantity
Zp(leg) :=P({eg)— inf P({eQ)
9cG

is called theexcess riskof g. One of the main goals of statistical analysis of learning algorithms is
to understand how the excess rigk(/ e §) of a data dependent decision rg@utput by such an
algorithm depends on the sample siz@n the “complexity” of the clasg of prediction rules and

on the underlying complexity of the prediction problem itself.

In the recent years, there has been a lot of intereatiive learning algorithms. In this frame-
work, the algorithm can modify the design distribution in the process of leguriore precisely,
suppose that the training exampl(@§, Y;) are sampled sequentially. At each iteration (say, iteration
numberk), the algorithm requests a design pokat 1 sampled from a distributiofl that depends
on the training dat#X, Y1), ..., (X, Yk). Given X¢;1 = X, the response variable (the lab®).; is
sampled from the conditional distributid®x (-|X = x). The question is whether there are such
active learning algorithms for which the excess risk aft@erations is provably smaller than for
the passive prediction rules based on the same numbgtraining examples. It happens that the
answer depends on the type of learning problem. A minimax analysis by Gastlo(2005) and
Castro and Nowak (2008) shows that such an improvement is possiblagificiation problems and
in some special classes of regression problems with non-smooth regrissition (for instance,
if the regression function is a step function). In such cases, the improxerar be very signif-
icant. In some classification problems, the excess risk of active learningthlgs can converge
to zero with anexponential rateasn — o (comparing with the rat®(n=1) in the case of passive
learning). Castro and Nowak (2008) studied several examples ofybitessification problems in
which the active learning approach is beneficial and suggested nige &aining algorithms in
these problems. However, the drawback of these algorithms is that thegtardaptive in the sense
that they require the prior knowledge of distribution dependent parasnefténe problem, such as
noise characteristics in classification. The development of active leameiigpds that are adaptive
and, at the same time, computationally tractable remains a challenge. Thereenaa progress
in the design of active learning algorithms that possess some degreeptifégldn particular, see
Dasgupta et al. (2007), Balcan et al. (2009), Balcan et al. (2008Hamneke (2009a,b). In the
last two interesting papers by Hanneke, some versions of the algorithmaladrBet al. (2009)
and of Dasgupta et al. (2007) were studied using the technigRadémacher complexitieghat
much earlier proved to be very useful in the analysis of passive learpgegBartlett et al. (2002),
Koltchinskii (2001), Koltchinskii and Panchenko (2000), Bartlett e(2005), Koltchinskii (2006,
2008) and references therein. Hanneke showed that incorporadhgnficher complexities in ac-
tive learning algorithms allows one to develop rather general versionscbf agorithms that are
adaptive under broad assumptions on the underlying distributions.

In the current paper, we continue this line of research. We considdplibe/ing model of
active learning. At each iteration, a learning algorithm has to choosefas& of “good” design
points and also the number of training examples needed at the current iteBuith the sef\ and
the required number of the examples might depend on the training data thatidyadhvailable. The
algorithm has an access to an oracle that is asked to provide the requinéénof examplegX,Y)
sampled from the conditional distributid?(-|x € A). Alternatively, it can be described as follows.
The oracle provides training exampl@s,Y) sampled from an unknown probability distribution
P. At each iteration, the algorithm chooses a Aetf “good” design points and asks the oracle
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whether the next design poiX is “good”. If it is “good”, the algorithm accepts the point, the
oracle provides it with a labef and returns the couplgXy, Yk). Testing whether the example is
“good” costs the algorithm nothing, but each “good” labeled training exawwgsts $ 1. Thus, only
the number of “good” examples matters for determining the total cost of learfiime question is
how many “good” examples are needed for the excessAigK e §) of the resulting classifiey fo
become smaller thabiwith a guaranteed probability at least-1n.

We will develop active learning algorithms that are somewhat akin to whainis by Hanneke
(2009a,b), but they are more closely related to the construction of locd&iaddmacher complex-
ities used in the definitions of distribution dependent and data dependesgsesisk bounds in
empirical risk minimization, see Koltchinskii (2006, 2008). The main idea of tbistruction is
to characterize the complexity of the problem by the sup-norm of a spea@grRacher process
indexed by the level sets of the risk. To be more specific, suppose thaevaealing with a binary
classification problem and that the empirical risk (with respect to the binasy i®being minimized
over a clasg; of binary functions. Then what matters is the collectio®hinimal sets

G(3):= {ge G:Ep(leg) < 6}, 5> 0.

These sets can be estimated based on the empirical data and Rademachexittesnpf such
estimated sets for small enough value afe used to define reasonably tight bounds on the excess
risk. In many learning problems, tleminimal sets become small &— 0, for instance, in the
sense that theiry(IM)-diameter is small. It turns out that an important role in the development of
active classification algorithms is played by the sets of the following type

AB) = {xe S0 € 6(8): u(x) £ gz(X)}-

Such a set is called disagreement setsince it consists of the points for which there are two
classifiers inG (d) whose predictions at pointdisagree with each other. If t@eminimal sets are
small for small enough values & one can expect that the corresponding disagreement sets are
also small. This is not always the case, but there are natural examplegcmintieed the measure
M(A(d)) tends to 0 ad — 0 (sometimes, evefl(A(d)) = O(d)). Note that if the empirical risk
is being minimized over th&-minimal setG(d), one can eliminate from the sample all the design
pointsX; such thatX; ¢ A(d) : the minimizers of the empirical risk are not going to change since
the value of the binary loss at such training examp}§sY;)) is a constant on th&minimal set. So,
only the examples for whicX; belongs to a small disagreement 8¢d) are really needed. This
simple observation opens a possibility of reducing the sample size in the pfcadive learning,
and this has already been exploited in several algorithms described in ta&uligersee Dasgupta
et al. (2007), Balcan et al. (2009), Hanneke (2009a,b) and refesetherein. It is interesting to
mention that some notions similar to the “disagreement sets” were used much ieatie study
of ratio type empirical processes (for instance, in the work of Alexamdtre 80s; see, Gmand
Koltchinskii, 2006 and references therein). Moreover, it was use@ibg and Koltchinskii (2006)
to obtain refined excess risk bounds in binary classification (in the agsivning case). This will
be discussed in some detail in Section 4.

Our approach is based on iterative estimation ofdminimal sets for a decreasing sequence
{d;} of values ofd. It happens that, for larger values &fit is possible to construct a rough esti-
mate of thed-minimal sets based on a relatively small number of training examples. Theegqu
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sample sizeg(d) can be estimated using Rademacher complexities. For smaller val&esofe
examples are needed, but, at the same time, for the smaller valdah@disagreement sets are
also small, and these sets again can be estimated based on the training exaahpkegetbeen al-
ready sampled. Thus, there is a possibility to come up with an active learnateggstithat, at each
iteration, computes an estimaieof the disagreement set and determines the required sample size,
and then samples the required number of design points from the conditistddution1(-|x € A).

Each of these pointX; = x is provided with a labeY; sampled from the conditional distribution
Ryix (-|X = x). The algorithm stops as soon &sbecomes smaller than the required accuracy of
learningd. At this stage, it outputs an estimate of heninimal setG(d). The number of labeled
examples needed to achieve this goal is roughly

S A3)NAG)
5>5

(see theorems 7, 8, 9 for more precise formulations). For binary clas&ifigoroblems with a VC-
classg such thaf1(A(d)) = O(d), this leads to the bound on the number of labeled examples of the
order log1/d)loglog(1/d).

The need to estimate the whdleninimal set in this learning strategy rather than simply mini-
mizing the empirical risk might look like too strong of an assumption. However,dratternative
general versions of adaptive strategies of active learning due toekan{2009a,b) this is also
needed. Hanneke uses previously suggested agnostic learning mettdasgupta et al. (2007)
and of Balcan et al. (2009) in combination with Rademacher complexities thdtamed on esti-
mated level sets of the empirical risk. So, currently, this seems to be unbieidgeneral adaptive
methods and our approach is just based on a more direct use®fiiivémal sets.

To give a precise description of a version of active learning methoddenesl in this paper and
to study its statistical properties, several facts from the general thé@mjoirical risk minimiza-
tion will be needed. In particular, in Section 2, we describe a constructidistoibution dependent
and data dependent bounds on the excess risk based on localizeddghde complexities, see
Koltchinskii (2006, 2008). In Section 3, we describe our active legraigorithms. These algo-
rithms are sequential in the sense that the training data is being sampled urasitteeldiccuracy of
learning is achieved. We prove several bounds on the number of agtiveples needed to achieve
this goal with a specified probability. In sections 2 and 3, it is conveniertuttyghe problem in a
more abstract framework, in which we suppress the |afjedsd writeSinstead ofSx {—1,1}, X
instead of(X,Y), f instead off e g, etc. This allows us to simplify the notations and the description
of the algorithms, and, at the same time, it makes the results a little more generahciplp, it
should be possible to apply these results to more general classes ofdegamoilems than binary
classification (for instance, to special regression models with a non-smegrsssion function or
to the problem of estimation of the level sets of an unknown probability densityyever, we do
not pursue this possibility here and, instead, we concentrate in Sectiorihé dainary classifica-
tion problems, which still remains the most interesting class of learning problémsevhe active
learning approach leads to faster convergence rates.

2. Empirical Risk Minimization: Bounds on the Excess Risk

Let (S 4) be a measurable space, Rbe a probability measure (8 4) and letX, X, X,, ... be
i.i.d. random variables itS, 4) with common distributiorP. Let ¥ be a class of2-measurable
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functionsf : S [0,1]. The values of functions € # will be interpreted as “losses” associated
with some decisions and the integral

Pf ::/fdP:IEf(X)
S

represents the expected loss, or the (true) risk. The optimization problem
Pf—min fe¥F
is interpreted as a “risk minimization” problem and the quantity

Ep(f) = Pf—giQ;Pg

is called the excess risk df Thed-minimal set of the true risk is defined as
Fp(d) := {f € F :Ep(f) gé}, 0>0.

In learning theory problems, the distributidhis usually unknown and the risRf is to be
estimated by the empirical risk. The empirical measure based on the s@faple , X,) of sizen
is defined as

n
P,i=n1Y &
N
and the problem of risk minimization is replaced by the “empirical risk minimization”:
P.f —s min, fe . 1)

Naturally, this also leads to the definitions of the “excess empirical rigk(f) and of thed-
minimal sets of the empirical ris§p, (3), & > O.

Given a solutionf of the empirical risk minimization problem (1), a basic question is to pro-
vide reasonably tight upper confidence bounds on the excessgid} that depend on complexity
characteristics of the clags. It is also of importance to understand when Shminimal sets of the
empirical risk are reasonably good estimates of&meinimal sets of the true risk. We will need
below several results of this type that can be found in the papers by Kaich{®2006, 2008).

First of all, we will need an upper confidence bound on the size of the emlgirocess

sup |(Ph—P)(f—9)|.
f,ge Fp(d)

To construct such a bound, we use Talagrand’s famous concentiagigualities. Supposep :
L2(P) x L2(P) + [0,+) and

Pa(f.9) > P(f —9)* — (P(f —0))% f.g€ La(P).
Define the diameter ofp(0) as

D(3) :=Dp(3) := sup pp(f,Q).
f.0e F ()
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It provides a measure of the size of dxninimal sets. We will also use the following quantity that
characterizes the accuracy of “empirical approximationP &y P, on thed-minimal sets:

™(d):=E sup [(F—P)(f-g)|.
f.ge (5)

Given a decreasing sequen@g } of positive numbers witldg := 1 and a sequendg;j} of positive
numbers, define a step functibiy(d), & € (0, 1] as follows:

ti 1
_2%|: 51 +D \/:-i- n:||(5]+1751](6)'

A version of Talagrand’s concentration inequality with explicit constanestduBousquet implies
that, for all j > 0 and for alld € (j.1,dj], with probability at least + e "

sup_|(Pn—P)(f —g)[ <Un(9).

f,gefp(é)
Giveny : R, — R, define
Wwd): sup—w(c)
>0 o
and
WH(e) == inf{é >0:°(8) < s}.
Let

On(F;P) = sup{é €(0,1:5< U_n(é)}.

The following bounds were proved by Koltchinskii (2006, 2008).
Theorem 1 For all > &n(F;P),

P{zp(f”) >5} <yet

6]25

and

IP’{ sup
fef Ep(f)>8

6;>0

Thus, the quantity, (7 ;P) is a distribution dependent upper bound on the excessHiK)
that holds with a guaranteed probability. Moreover, fordalt 8,(F;P) and for all f € F with
Ep(f) > ditis possible to control the size of the rat% in terms of the quantity; (5). This
ratio bound for the excess risk immediately implies the following statement shovahépttall the
values ofd above certain threshold tleminimal sets of empirical risk provide estimates of the
o-minimal sets of the true risk.
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Proposition 2 Letgn = Uj (%) For all o > gn, with probability at least

1-y el
5;>0

the following inclusions hold:
Vo >d8 Fp(0) C #p,(3/20) and Fp,(0) C Fp(20).

Data dependent upper confidence bounds on the excess risk candbeicted using localized
sup-norms of Rademacher processes that provide a way to estimate thiglsizempirical process.
Given i.i.d. Rademacher random variablgs} independent of X; }, the Rademacher process is
defined as

Ra(f) := nfli g f(X).
=1

We will assume that
pa(f,9) :=P(f —g)*.
Define

h(d) ;= sup |Ry(f—g)
f,9€ 7p,(0)

and

Dn(d):= sup pp,(f,0).
f,ge %,y (9)

These quantities are empirical versiongpefd) andDp(3) and they can be used to define an empir-
ical version of the functiokJ,, :

t.

t
=K %[ (€8)) + Dn Céj)\/;"i_ rJ]:| |(5j+1-,5j](6)7

whereK, & are numerical constants. We will also define

6u®) =K 3 [meéj) + D<661>ﬁ + t,;] 1511 (5)

with some numerical constaris &.
It can be shown (see Kthchinskii, 2006, 2008) that for large enougfenical constants, K, €, €
and for alld > &y, Un(8) < Up(8) < Uy(8) with a high probability. More precisely, the following

statement holds. Denote L L
8= U <2) 5, U <2> .

Theorem 3 There exists a choice of numerical_constaﬁtii, ¢, € in the definitions of the functions
Un, U, such that the following holds. For all > &y, there exists an event E of probability

P(E)>1-3 ) e
5]26
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such that on this event A N
Un(0) <Up(o) <Uy(o), 0> 0.

As a consequence,

P{gn <d, < Sn} >1-3 Y el
8j>dn

The proof is based on the following “statistical version” of Talagrandisoentration inequality
(which, in turn, follows from the usual Talagrand’s concentration iditgufor empirical processes
and standard symmetrization and contraction arguments, see Koltchinslé), Zppose thaf
is a class of measurable functions®aniformly bounded by > 0. Denote

03(F) := supPf? ando?(F) := supP,f2.
fef fer

For a functiony : ¥ — R, denote
[Y[lg == sup[Y(f)].
fef

Theorem 4 There exists a numerical constantk0 such that for all t> 1 with probability at least

1— et the following bounds hold:
t tu

t tu
B[R <K @|Rn\¢+on<f>ﬁ+],

n

[Rall# — E[Rall #

(7)< K () +UIRr + 7 )

and U
oA(F) < K<c§,<¢> FU[R 5 +n>.
Also,
t tu
1P~ Pllr < K[ IRl +0a(5)y/ 5+
and

t tu
172 Pl ~ Bl Pl | < [\/n (o) + VIR ) + |

n

In what follows, it will be of interest to consider sequential learning atgors in which the
sample size is being gradually increased until the excess risk becomes sheailer given level
0. The following quantities are used in the analysis of such algorithms. Let assetM C N. A
possible choice iM = N, but, usually, we will takeM = {2 : k > 0}. Denote

n(d) :_inf{ne M: & < 6} _inf{ne M :U2(3) < ;},
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NI =

A(d) = inf{ne M: 8, < 5} = inf{ne M :02(3) <

|
|

and

NI =

A(d) = inf{n EM:3, < 5} = inf{n eM:U.(8) <

E||P,—P||l# — 0 asn — oo,

which is true for so called Glivenko-Cantelli classes of functions with eespo P (see, e.g.,
van der Vaart and Wellner, 1996), then it is easy to see that

Sn —0 andSn — 0 asn — oo,

In this case, we have
fi(8) < +e0,7(3) < +o0,5 € (0,1].

Itis also easy to see that the functianss U,(3) andn — Un(3) are nonincreasing (it follows from
the well known reverse supermartingale properties of empirical presesse, van der Vaart and
Wellner, 1996, Lemma 2.4.5). This implies that, for al> n(d), oy < & and, for alln > A(d),
dn < 8. SinceUn(8) < Un(d), 8 € (0,1], itis also clear that

A(3) < A(3), 3 (0,1].

The next proposition immediately follows from the definitionnd) (it is, in fact, just a refor-
mulation of the statements of Proposition 2 and Theorem 3):

Proposition 5 (i) For all n > n(J),

P{zp(fn) > 5} < 6;;“;

(i) For all n > n(d), with probability at least

1- %y et
51'26

the following inclusions hold:
Vo> 08 Fp(0) C #p,(3/20) and Fp,(0) C Fp(20).
(ii) For all n > n(d), there exists an event E of probability

P(E)>1-3 ) e
6;>0

such that on this event
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We will also need a version of the statements of Proposition 5 that are urifiorm M. To this

end, assume that the numbgr the definitions of the functionsp, Un, Un, depend also on. We
()
will denote these numbetff). Assume that, for al, t'T is a honincreasing function of Then the

next statement immediately follows from Theorem 3 and the union bound.

Proposition 6 There exists an event H of probability

L
]P’(H)zl—n;M;e f

such that on this event, for all@M,

Ep(fn) < &,
V8> 8, Fp(d) C Fr (3/20) and Fp (3) C Fp(20).

Moreover, there exists an event E of probability

¢
P(E) > 1_3% J;e Y

such that on this event, for all@ M,

and L
On < On < On.

As a consequence, we also have that fodadl (0, 1]
n(d) < A(8) <fi(d).

The simplest choice of the numbej@, in the case wheM = {2¢: k> 0} and®; =271, j >0,
is
: 1 :
tj(”) = 2log(log,n+ 1) +2log(j + 1) +Ioga +log(12), j >0, ne M,

wherea € (0,1). With this choice, all the claims of Proposition 6 hold with a guaranteed probability
at least - a.

The main conclusion one can draw from Proposition 6 is that the sample sidedto achieve
the desired “accuracy of learning’(i.e., to “learn” a function for which the excess risk is smaller
thand) can itself be learned from the data. More precisely, the estimé&byiof the required sample
size can be computed sequentially by increasing the sample gizglually, computing for eaatn
the data dependent excess risk bodndnd stopping as soon s < d. With a high probability, the
stopping timen{d) provides a “correct” estimate of the sample size (up to a numerical constant) in
the sense that it is between two distribution dependent estim#@sandri(d)) that are typically
of the same order of magnitude (up to numerical constants). At the same tinsentipde sizen(d)
is sufficient for estimating the-minimal sets of the true risk by tr@eminimal sets of the empirical
risk for all o > o (in the sense of the inclusions of Proposition 6). These facts will play @atru
role in our design of active learning methods in the next section.
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3. Sequential Active Learning

We first describe a simplified (non-adaptive) version of active learminghich it is assumed that
the minimal sample size(d) needed to achieve the desired “accuracy of learning” of the @der
is given. As before, suppose thgl}k-0 iS @ nonincreasing sequence of positive numbers with
0o = 1. Denoteny :=n(d), k> 1.

Algorithm 1

Fo:=F;

fork=12,...,

A= {x LSUR ge gy, | X)) —a(X)| > 6k};

Roi= 5 37114, (45)3x;
Fi:= Fi—1M Fp, (38x);
end
The setA defined at each iteration of the algorithm is viewed as a set of “active drafr{pr
“active set”). The exampleX; € A are needed to compute the “active empirical measkeThe
underlying assumption is that there exists a “base algorithm” that computdsiimemal set

#o(®) 1= { 1 (1) == QF ~infrcs Q1 <

for an arbitrary discrete measu@ewith a finite number of atoms. This algorithm is used to compute
the set#g (33). In principle, it would be enough only to ensure that, giden 0 and measur,
the “base algorithm” outputs a sg(d) such that

Fo(c18) € Fo(8) C Fo(czd)

for some numerical constants<Oc; < ¢,. However, to simplify the notations, we will assume that
ci=C=1
Of course, in realityAlgorithm 1 stops after a finite number of iterations. A possible choice

could be
L:=Y 1(8;>9),
,; j

which can be viewed as the number of iterations needed to achieve theetbasauracy” of learn-
ing d € (0,1). In other words, the algorithm stops wh&nbecomes smaller thah For instance, if
j = 271,j > 0, then the number of iterationsis of the order log(1/3). Letv(3) denote the total
number of active examples used by the algorithm in thelfifsgrations. Then

0) < kl~ Xj).
Vo)< 3 3 X

Denote

A(d) := {x: sup |f(x)—g(x)| > 6}
f,ge ¥ (8d)

and
() := P(A()).

The following statement will be easily proved by induction.
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Theorem 7 With probability at least

(m)
LRI
nem =

the following inclusions hold for the classgg output byAlgorithm 1: forallk > 0
Fp(8) C Tk C Fo(83). (2)

Also, for allt> 1 and alld € (0, 1], with probability at least

1— n;A J;Jexp{—tj(n)} - 62 exp{—n(8;)T(3;_1)tlogt}

=0
the following bound holds:
v(d) <et'y (B 1).
6]26
Proof The inclusions (2) obviously hold fdr= 0. Assuming that, for alj < k,
Fe(3;) C Fj C Fp(83)),

we will prove that the same inclusions hold alsokotLet H be the event of probability at least

()

defined in Proposition 6. By the induction assumption,
Fp(8) C Fo(Bk-1) € Fi1

and, by the definition of\, we have for allf,g € Fre1,

3 (900 -RE 3 (F-gix)

i €A

Pr(f—0) —R(f—g)| =

S (1000 <a.
i A
We can conclude that, for afl € 7p(dx),

|z%k(f)—z@(f)‘gak.

Also, by the inclusions of Proposition 6 and the definitiompf= n(dx), we have on the ever
that

fp(ék) C ,‘]:pﬁk (26k>.

Hence, for allf € Fp (&),
fFﬁk(f) < 20¢ and Zﬁ(f) < 3.
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This implies the inclusion i )
Fp() C Fu1[ ) Fa,(3%) = F.

On the other hand, sincﬁ - ﬁk_b we have, for allf € ﬁk,
(z%k(f) —z@(f)‘ < 5.

Since for allf € %, Ep () < 38, we also havetp, (f) < 48 Thus, using again the inclusions of
Proposition 6, we get

P C Iy (4) C Fr(83),

proving the inclusions (2)
To prove the bound or(d), note that on the everd, where the inclusions (2) hold for &
such thady > 8, we have

A C A8 1).

Hence, on the everd,
v(d) < z Vi,
>0

where _
Nk

Vi .= leA(86k—l) (XJ)
=

Clearly,vy is a binomial random variable with parametegsandri(dx_1). Therefore, we have

P{vk > s} < <eﬁk”(§kl)>s

(see, e.g., Dudley, 1999, p. 16). Takisig= etn,T(dk_1) yields

P{vk > etern(ak,l)} < exp{ (31 )tlogt}.

Applying the union bound, we get

P{v(é) ety rTm(akl)} <P(H%)+ Y exp{—Mm(3c1)tlogt}.
>0 >0
Since .
P(H®) < el
the result follows. [ |

The simplest way to make the method data dependent is to repl&dgdrithm 1 the sample
sizesny = n(d) by their estimatesy™:= A(d), k> 1 and to redefin® in the iterative procedure
for A, B« and % as follows:

1
i

P = 14, (X))3x;-

~
% =
A
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This modification ofAlgorithm 1 will be calledAlgorithm 2. The following statement can be
proved quite similarly to Theorem 7 (using Proposition 6).

Recall the definition of the number of iteratiohsand also thav(8) denotes the number of
active examples used by the algorithm in the firgierations.

Theorem 8 With probability at least

_¢(m
1—3% ZAe I
i>one

the following inclusions hold for the classgg output byAlgorithm 2: for all k > 0,

Fo() C Fx C Fr(83).

Moreover, for all t> 1 and for all & € (0, 1], with probability at least

1-3 gongw exp{—t\"} - EZ exp{—fi(5;)m(3;_1)tlogt}

j=0

the following bound holds:
v(3) <et Y fi(3))m(3) 1).
5;>0

Note that in this version of the algorithm all the training examplgénot only the examples in
the active setéy) are used to determine the sample size$d, from this point of viewAlgorithm
2 can not be viewed as really “active”. However, it is easy to see that inra oomcrete framework
of prediction problems (such as, for instance, the binary classificatimmran modify the defini-
tions of the localized Rademacher complexities and of the samplergizesuch a way that they
depend only on the design points, but not on the response variablels)lakhus, in the cases when
sampling the design points is “cheap” and only assigning the labels to thenpisrisive” (which is
a common motivational assumption in the literature on active learning), the algerdahthis type
make some sense (see Section 4 for more details).

It is more interesting, however, that even in the abstract framework oifigadpisk minimiza-
tion it is possible to change the definition of Rademacher complexities and the testiafehe
sample sizes based on them so that only the active examples that belong étsthease being
used in the computation. We will describe such a data driven algorithm g&detirning below.

Letd; := 271, j > 0. As before, we will define iteratively data dependent function clagges
beginning with% := ¥ that provide estimates of tReminimal sets#p(8) for sufficiently small
values ofd and we set

A= {x: sup |f(x)—g(x)| > cék} with some constart > 0.
frge.;\fk—l
Define

n
Y =y 15, ()8,
=1

and .
RI(E) =0t S & (X)14,(X).
1
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Denote
(n) (n)
~ o A ~ t t
Ur(lk) =K [ sup ‘qu()(f - g)‘ + Dﬁr(]k)(f]:k—l) kT + kn]
f.0€ Fi1

and define iteratively a nondecreasing data dependent sequence ~
. . - 1
ik .= mln{n eM,n>ng 1: U,Sk) < éékﬂ}

with the initial conditionng := inf M.
Note that the following iterative relationships hold for the distribution depetnstemple sizes
er = I’T(6k+1) andrig ;= ﬁ(5k+1) :

_ i _ — 1 _
Nk = mln{n eM,n>ng_1:Up(d) < §6k+1}, Ng ;= infM

and 1
fi = min{n eM,n>fy_q: Un(ék) < éék.}rl}, fig := inf M.

(which easily follows from the definitions @f(d), i(d)).

We will write, for brevity, B .= I3f(,'k‘>. With these definitions and notations, we can deﬁfae
iteratively exactly as before:

Fie:= Fir[ ) Fa, (330).
In short, the algorithm can be described as follows:
Algorithm 3

Fo=1F;
fork=12,...,

Ac:={x:sup gz, 1100 90| > B
A 1= min{n eM,n> A q: 00 < %ém};

Fi:= TN T4, (380);
end
As before, we define

A(d) = {x: sup |[f(x)—g(x)| > 06}
f.ge 7 (83)

and
T(d) := P(A()).

The properties oflgorithm 3 are summarized in the following theorem.

Theorem 9 There exist numerical constants c in the definition of the activefset€ in the def-
inition of Ur(,k) and K, ¢ in the definition of the functiob, such that the following holds. With

probability at least
on gt
j=0ne
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the following inequalities and inclusions hold for albkO :
N < A < i
Fo(B) C T C T (83).

Moreover, for all t> 1, with probability at least

1-33 5. exp{—t"} 3 exp(—ii3;:1m(3;-1)tlogt)

j =0
the following bound holds:
< et Z 6J+1 6] l)
5,>5

Proof There exists an evehlt of probability at least

)
1-3 %e*t:

on which the following holds. For ak and for allne M

- t(n) t(n) 1~
K| sup Rl - a)+ D (Tb(E5 )Y 5+ | < 30080 @
f,g9€ Fp(80k_1) n
and
) (g
K[ sup [Ru(f-9)|+Dn (@ M+ o] > 2 @
f.9e 7p(3k-1) n n

with properly chosen constants in the definitions of the functignil, and constar. At the same
time, on the same eveRt for allne M,n > n(3) and allo > 9,

_‘]'—p(O') C ffpn(ZO') and _'}-pn(O') - ,{Fp(ZO'). (5)

To construct such an event, first consider the evewnf Proposition 6 on which the inclusions (5)
hold. Then define

R
Rn(f —9)‘+Dpn(fp(85k 1) kn +kn] < 2Un(5k)}

Exn = {R[ sup
f,0€ Fp(83¢_1)

and
ot

> .
— n] 20, (5k)}

Choi= {R[ sup [R(1-9)]+ D (5m(B-2)

o€ Fp(Ok-1)

Using the “statistical version” of Talagrand’s concentration inequalitye6fam 4) one can show
that with a proper choice d€ and the constants in the definitions of the functibgn,

P(En) <1-e, B(Ep)>1-et
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for all k > 0 and for alln € M. Define

E= (] (EnxNEpp)NH.
k>0,neM

o
P(E) > 1—3% J;e f

and all the desired properties hold on the eent
We will now show by induction that, on the evdatfor k=0, 1,...

Then

N < fix < fig,
Fo(8) C F C Fp(83)
and also fok=1,2,... and for allne M
— o1 a1~ Oks1
2Un(3x) — 5 <Un’ < > [Un(ék) + T} . (6)

By the definitions, the claims are obviously true kot 0. Assume that they have been proved up to
k— 1. By this induction assumption, we ha¥g_1 C Fp(80-_1) and, by the definition of the séi,

sup [RY(f—g)| < sup |Ru(f—g)|+ o
f,0€ F-1 f,0€ Fk-1
and A A
Dlzﬁr(]k)("}—kfl) < D%n(.‘]’—kfl) +C255-

This implies the following upper bound an

“K o tM (M
Un’ < K[ sup ‘Rn(f*g)‘ﬁLDPn(fTP(Sékfl)) K K48+ cd k}

f,0€ Fp(83k-1) n n n
Applying to the last term the inequali < (a®+b?) /2 and taking into account the fact tgt< 1,
it is easy to deduce from this that witrsatisfying the condition

Kc+K3c?/2<1/8,
we have

o N
6 <R[ sup [Ri(f - g)+ D (BB )Y K+
f,geﬂ»'p(86k,1) n

K
n :| +6k+1/4.

Quite similarly, using the inclusioffp(dk-1) C ﬁk_l that also holds under the ipduction assumption,
one can show that with a proper choice of constantthe definition of the sefy

()
Rn(f_g)‘—FDPn(f]:P(ék—l)) k?—i- k ]—5k+1/2.

Ui > K[ sup £

0 Fp(0k-1)
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Combining this with bounds (3) and (4) immediately implies (6).
Applying (6) ton = i, we get

which yields

We also haven > fix_1 > ng_; (by the induction assumption). By the definitionmf this implies
thatrik > n.

On the other hand, denotg the element of the ordered skt precedingng. We will use
inequality (6) withn =, . It gives

[EEN

Uk <

. E[Gﬁ;(ék)‘F% - ()

2

If it happened thah,~ < fx_1, then we must have,= fx_1, which, by the induction assumption,
implies thatny = fix_1 < fix_1 < . If 1 > Ax_1, then the definition ofy implies that

Ak Okt
G > 22,

which together with (7) implies that

~ Ok+1
Uﬁ; (6k) > T .

But, if i, > fix, thenri, > fix, which would imply that

- 5
Un (8 > =5+

(since for alld, Un(é) is a nonincreasing function o). The last inequality contradicts the definition
of fix implying thatri < fi.
The proof of the inclusions

Fo() C Fu C Fp(83%)

and the derivation of the bound ®id) repeat the argument of Theorem 7. [ |

Note that in the bounds ar() of theorems 7, 8 and 9 one can replace functiids, n(d) and
fi(d) by arbitrary upper bounds (with the same change in the bounds on thebiityl).

As soon ast(d) — 0 asd — 0, the upper bounds on8) show that, in the case of active learning,
there is a reduction of the number of training examples needed to achiesraddaccuracy of
learning comparing with passive learning. In the next section, we explaenre detail what is
happening in the case of binary classification.
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4. Active Learning in Binary Classification

Let (X,Y) be a random couple with values®x {—1,1} and with distributior?, where(S, 4) is an
arbitrary measurable space. In binary classification problems, thedirgianeniX is viewed as an
observable instance and the second compoviénan unobservable “label”. The valueYis to be
predicted based on an observatiorXaénd on the training dat@, Y:), . . ., (X,, Ya) consisting oin
independent copies @K,Y). Measurable functiong: S— {—1,1} are called (binary) classifiers.
Let¢:{-1,1} x {—1,1} — {0,1} be the binary loss functiof(y,u) := | (y # u), and, as before,
(CeQ)(x.y) := L(y,g(x)) be the “loss” of classifieg for the example(x,y) € Sx {—1,1}. The
gquantity

P(¢eg) =P{(xy) 1y #9(x)} =P{Y #g(X)}
is called the generalization error, or the riskgofVe still denote(x) := E(Y|X = x) the regression
function. It is well known that the minimum of the generalization error oversiteof all binary
classifiers is attained at the Bayes classifier

g(x) = sign(n(x)).

We will assume in what follows thag is a class of binary classifiers such tgate G.
For a binary classifieg, define its excess risk as

Ep(leg):=P({eg)—P(leg.).

The following formula is well known (see, e.g., Devroye et al., 1996, Térea2.2).

Tp(leg) = /{m RUCTRCES ®)

wherell is the marginal distribution oX.
A standard approach to learning the Bayes classifier is based on the emfskeninimization:

§:= argmirbegpn(€°g) = argmirbegpn{(x,y) Y#FYX) )=

argmingegn Y 1Y) # 9(X))),
=1

whereR, denotes the empirical distribution based on the training @&ta:), . .., (Xn, Yn) (we will
also use the notatiof, for the empirical distribution based @Xy, ..., X,)).

If F:=(eG:={leg:gec G} denotes the loss class, then we are in the framework of ab-
stract empirical risk minimization of sections 2,3 and general results of tleetierss can be now
specialized for the classification context.

It is natural to characterize the quality of the classifieén terms of its excess ris&p(/ o §)
and to study how it depends on the complexity of the clgsss well as on the complexity of the
classification problem itself. The simplest complexity assumption on the Glasshat it is a VC-

class of binary functions of VC-dimensiah(in other words( := {{x: gx)=+1:g¢ g}} isa

VC-class of sets of VC-dimensidn). Under this assumption, a well known result, essentially due
to Vapnik and Chervonenkis, is that, for some conskant O and for allt > 0, with probability at

least 1— et
~ Vv t
Tp(leG) < K[\/nﬂ[n]'
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In principle, this bound is minimax optimal, but it can be significantly improvedpecsl families
of distributionsP under further assumptions on the complexity of the classification problem. For
instance, the followingvlassart’s low noise assumptionis frequently used: for some constant
he (0,1]

N(x)| >h, xeS

The parameteh is a characteristic of the level of noise in binary labglsin other words, it is a
simple measure of complexity of a binary classification problem. The followingy&meis a version
of the result proved by Massart and Nedelec (2006):

Theorem 10 There exists a constant K 0 such that, for all t> 0, with probability at leastlL — e

Eo(leg) < K[r\]/rllog(r]\?z) +r:h] /\[\/ZJF \/ﬂ

This upper bound on the excess risk is optimal in a minimax sense (as it washalsa by
Massart and Nedelec, 2006). However, it still can be refined usinfpliogving functiont (which
is a local version of Alexandersapacity function introduced in the 80s and used in the theory of
ratio type empirical processes, see &and Koltchinskii, 2006, and references therein). Define

Gs'=1{9€ G M{x:g(X) # g(X)} <8}
and let
n{xe Gs: o0 £ 0,00}

)

Clearly, the setjs consists of the classifiers frogthat are in a neighborhood of siag®f the Bayes
classifierg, and the set

1(d) =

Ds = {Xlﬂg € Gs: g(x) # g*<x>}

consists of all the pointesuch that there exists a classifign the neighborhood;s that “disagrees”
with the Bayes classifier at The functiont(d) is always upper bounded bél However, if it
happens that the measuneof the “disagreement seDj is small whend is small, thert(3) might
grow slower thar% asd — 0, or even it can be bounded by a constanCt= {{g=+1}:9€ G}
andC, := {g, = +1}, then

M <UC€C.I’I(CAC*)§5(CAC*)>
6 pu—

7(d) 5 ,

so, roughly,t(8) shows how many disjoint se&A\C, of “size” 4 can be “packed” in the union of
all such sets. For instance, @ is a class of convex sets [0,1]9, M is the Lebesgue measure in
[0,1]9 andC. € ¢,M(C,) > 0, then it can be shown thatis uniformly bounded by a constant, see
Giné and Koltchinskii (2006). A more detailed analysis of disagreement sgiscity functions
and their connections to the geometry of the clgssan be found in the paper by Friedman (2009).

The following result was proved by Gérand Koltchinskii (2006).
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Theorem 11 There exists a constant ¥ 0 such that, for all t> 0, with probability at leastl — e !

Ep(le§) < KL\]/hlogT<n\:]2> +r;[h} /\|:\/Z+ \/ﬂ

Clearly, this result implies the theorem of Massart and Nedelec (gif@e< %). The proof
is based on applying subtle bounds for empirical processes (s&aGthKoltchinskii, 2006) to
compute the excess risk boudg of Section 2. Then, the general result of Theorem 1 (see also
Proposition 2) can be used to bound the excess risk.

The case when(d) is uniformly bounded from above by a constagis of special interest. In
this case, with probability at leastde™,

\Y t
§) < K|—1 —
Ep(leg) < [nh 0gTo+ nh},
so the main term of the bound is of the ordb(r%]) and it does not contain logarithmic factors
depending om and h. It will be convenient for our purposes to phrase this result in a slightly
different form. Namely, give® € (0,1) anda € (0, 1), denote

n(d,a) := inf{n :P{Ep(Gn) > 0} < 0(}.

Then

[ 52

The quantityn(d,a) shows how many training examples are needed to make the excess risk of the
classifierg'smaller thard with a guaranteed probability of at least- 1. It characterizes the sample
complexity of passive learning. In the case of empirical risk minimization owéCalass with a
bounded capacity function the sample complexity is of the ord %%)

The role of the capacity function is rather modest in the case of passivengaince it only
allows one to refine the excess risk and the sample complexity bounds by ntla&ifggarithmic
factors more precise. However, the capacity functidmppened to be of crucial importance in
the analysis of active learning methods of binary classification. This funetas rediscovered in
active learning literature and its supremum is being used there under theahahsagreement
coefficient see, for example, Hanneke (2009a,b) and references therein.

We will describe an active learning algorithm that is a specialized versionasé abstract
Algorithm 3 of Section 3. As before, we dendie:= 2—1, j > 0and choose a sbt C N of natural

numbers as well as nonnegative real numlqi@}sn eMk>0.
Given a clasg; of binary classifiers, denote

n(d,a) < K([E\S/h logTto + Iogglh/a)] /\[V + Iog(l/a)D‘

Gp(d) 1= {g i Ep(leQ) < 6}, o> 0.

These sets will be calledminimal sets of the true risk. Clearly, if = /e G, then under the
notations of Section 2

Fp(d) = {6-9196 Gp(é)}-
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In principle, one can directly us&lgorithm 3 for the classF . However, we will modify it slightly
in order to adapt it to the binary classification framework.

We will define iteratively data dependent function clasé‘gshat provide estimates of the
minimal setsGp(d). and also a nondecreasing data dependent sequence of estimated szesple s
fix. It will be assumed that we have an access to an algorithm that, given atdisceasur€ on
Sx {—1,1} andd > 0, computes thé&-minimal setGo(d) of Q.

Several definitions and notations will be needed. Note that for the binssy |6or all binary
classifiersgs, gz and for alld € (0,1), the condition|¢(y,g1(X)) — £(y,g2(x))| > & is equivalent to
the conditiong: (X) # g2(x). This leads to the following definition of sefg (that are subsets &
not of Sx {—1,1}). Assuming tha@k_l has been already defined, let

A= {XI 391,02 € Gk-1,01(X) # gz(X)}

be the set of all the points where at least two classifier@km disagree with each other. This set
will be used as a set of active design points atkttle iteration.

Next define active empirical distributions based on the unlabeled exarfi§j¢ésand on the
labeled example§(X;,Yj)} :

n
Ak .= S 14, (%5)3x,
=1

and .
a(k _
AV =01 S 15 (4)8x,v,)
=1

5(K)

For simplicity, we will also use the notatid® := 5 - Let

A 1 A 1/2
B == > sup (I'Iﬁk) (91— gz)z)
01,02€ Gk-1

be theL,(IN A} )) diameter of the clasgk 1. Note that, if we literally followed the definitions of
Section 3, we would have to define the diameter as
1/2

sup (ﬁ,ﬁk) (logr—"Le g2)2>
01,92€ Gk-1

However, it is easy to check that for &}, y) € Sx {—1,1} and all binary classifiergs, gz

(Lo g0)(Y) ~ (£282) (%) = 3¥(6(X) ~ 61(X).

which justifies the new definition. This simple identity also implies that the funa#i¢d), defined
in Section 2 and used in the construction of the excess risk bounds, cppéebounded as follows:

Q) <2E sup |Ry(fi—f2)[=2E sup |Ry(fegri—Clegz)|=
f1,f2€ 7 (3) 91,92€ G()

n

o L Z 1(G2(X)) —91(X))) |,
91792€§ =1
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where at the beginning we used the symmetrization inequality (see, e.g., v&aateand Well-
ner, 1996). Note that, conditionally qiXi,Y1),...,(Xn,Yn), the distribution of the random vector
(e1Y1,...,€nYn) is the same as the distribution @, . . . ,€,). Because of this,

n
B <E sw S &Y (@00) - @) -
01,02€ G () =1
n
EE( SUD n Z §(92(X) — 1(X;) HXLYl (XmYn)>:
91,02€G(d =1
n
EE< sup n Z (92(Xj) — 91(Xj) HXLYl (Xn,Yn)>=
01,92€G(d =1

E sup [Ra(g1—a2)l
91,02€G(9)
This simple observation allows one to replace the Rademacher complexitiee fos$hclasg =
/e G by the Rademacher complexities for the clgsisself (and the proofs of the excess risk bounds
and other results cited in Section 2 go through with no changes). Of ¢dhessame applies to all
the constructions and the results of Section 3.
Because of this, we now define the Rademacher complexity based only‘@ctikie” examples

as

RY = sup

91792€§k 1

n
Z (91— 82) (X))14, (X)) |
Finally, denote

M ¢
A 5| A A t t
R [R B,

With these definitions and notations, we can now introduce the following matilificaf Algo-
rithm 3 of Section 3.

Algorithm 4

Go'= G;

fork=1,2,.
Aci= {x Hgl,gze Gic1,91(X) # Ga(X }
= min{n eM,n>n 00 < %6k+1}

G = Gi-1N G, (38x);
end
Remark 12 One can also use iAlgorithm 4 the Rademacher complexities defined as follows:

n

n- z (91 —92)(Xj)|-

Iiﬁ,k) = sup
J1,02€ Gk—l

In this case, not only the active design points, but all the design pojrasexused to compute the
Rademacher complexities and to estimate the samplefgizhste, however, that the labels dre
not involved in this computation, so, the algorithm still can be viewed as “dctiVbe resulting
algorithm is a modification oflgorithm 3 from Section 3.
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In the case wherg; is a VC-class of VC-dimensio, we will chooseM := {2¢: k > 0}. We
will also define

té”) :=log(1/a) +2log(k+ 1) + 2log(log, n+ 1) + log(24). 9)
This leads to the following result that is a corollary of Theorem 9.

Corollary 13 Letd € (0,1). Suppose that Massart's low noise assumption holds with some h
(0,1). Suppose that
To:= sup T(u) < +oo.
ue(0,1]
Then there exists an event of probability at lehdst a such that the following inclusions hold for
the classes}”k output byAlgorithm 4: for all k > O,

Gr(8k) C Gk C Gr(83). (10)

Also with probability at leastL — a, the following bound on the numbe(d) of active training
examples used b4lgorithm 4 in the first L= [Iogz(l/é)] iterations holds with some numerical
constantC>0:

Tolog(1/d)

v(d) <C 2

[V logto+log(1/a)+loglog(1/d) +loglog(1/h)|.

In particular, it means that with probability at least &

Ge(8/2) C GL C Gp(163).

Proof We only sketch the proof here, the missing details are not very complicated.reBult
follows from Theorem 9, more precisely, from its modified version thatd@ki® account the slight
changes we made in the definition of the Rademacher complexities. The insl{&@nfollow
from this theorem in a straightforward way. To prove the bound @), one has first to bound
the quantityd,. This computation was essentially done by &and Koltchinskii (2006) (it actually
leads to the bound of Theorem 11). Namely, with some con€tant

gnécl[;/hlogT(n\:]z)+|Og(1/a)nt\log|09n]/\[\/24-\/'09(1/0():'09'0(‘]”].

As a result, the following upper bound o(c’j, o > & holds with some constai; :

fi(o) < Klq(\j/hbgTOJr |09(1/0()+|09|092(1/5)+Iog|og(1/h)] A

ch

a2 a?

[v .\ Iog(l/a)+|09|092(1/5)]>_

Note that, under Massart’s low noise assumption, formula (8) for the exiskimplies that for
all binary classifierg

E(Ceg) > hM{x:g(X) # 9:(X)}.
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Hence

F(o)C {éog:ge gg/h}.

For the set#\(0) used in Theorems 9, this implies the following:

A©)={(xy):  sup |fi(xy)~ fa(xy) > co}
f1,f2€ 7 (80)

{y): sup [(Legr)(xy)— (Leg2)(xy)| > co} =
91,92€G(8a/h)

{x:301.02 € G(B0/N) 1010 # 8200 } x{~1.1} = {x:3g € G(Bo/M) :9(x) # .09 } x {~L 1}

(we used the assumption tlgate G and, henceg. € G(8o/h)). This implies, by the definitions of
the functiongtandt, that

(o) = P(A(0) <N({x:3g e G(8o/h) 1) £6.(0) } ) < 8§r<8cr/h>.

Using the definition ofty, we conclude that for al > & (o) < %0. It remains to substitute the
bounds om{o) andTt(o) into the bound ow(8) of Theorem 9

< et z 6j+1 6] ]_)

3>
say, witht = e. This gives
log(1/a) +loglog,(1/d) +loglog(1/h) | 8to
< -
% _ezesjzaKl([QHh logto+ dj+1h h %1

which is bounded from above by

Tolog(1/d)

C 2

[V logto+log(1/a) +loglog(1/d) + log Iog(l/h)] )

with a properly chosen numerical const@ntAlso, it easily follows from the probability estimates
of Theorem 9 that the above boundw(®) holds with probability at least % a. [ |

Finally, we discuss the properties Afgorithm 4 underTsybakov’s low noise assumption
Namely, we assume that for some- O, for some constar and for allt > 0

M{x: |nx)| <t} <Bt".

It is well known that under this assumption the following bound on the exdskdolds for an
arbitrary classifieg :
Tp(leg) > cM*({g#0.}),

wherek = 1—?’ andc is a constant that depends 8nk. We will assume in this case that is
not necessarily a VC-class, but it can be more massive. For instagwetetN(G;L>(MMy);€) the
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minimal number ofL,(IMy)-balls of radiuse needed to coveg and suppose that these covering
numbers satisfy the condition:

2
logN(G;L2(Mh);€) < (':‘) p, €>0.

for somep € (0, 1] and some constait > 0. Then, the following upper bound on the excess risk of
an empirical risk minimizeg holds with probability at least X et :

1 —K/(2k+p—1) t K/(2k—1)
fP(£‘Q)§K<<n> +<n> >7

whereK is a constant depending @np, A, B. The bounds of this type were first proved by Tsybakov
(2004) (see also Koltchinskii, 2006, 2008). It easily follows from thigrmbthat in order to achieve

the excess risk of ordérone need@(é*”(l*p)/'() training examples.

We will now considerAlgorithm 4 with M := {2¢: k > 0}, and with the real numbené”)
defined by (9).
This leads to the following result that is also a corollary of Theorem 9.

Corollary 14 Letd € (0,1). Suppose that Tsybakov’s low noise assumption holds with gonte
and B> 0. Letk := 1%’ Suppose that

To:= Sup T(u) < +oo.
ue(0,]

Then there exists an event of probability at leasta such that the following inclusions hold for
the classesg;j output byAlgorithm 4 : for all k with & > 9,

Gr(8k) C Gk C Gr(83).

Also with probability at leastl — a, the following bound on the numbe(d) of active training
examples used Ylgorithm 4 holds with some constant€ 0 depending o, p,A,B:

v(3) < Cto [5—2+<2—P>/K +5272/%(log(1/a) + log |og(1/5))} :

The proof is similar to that of Corollary 13. In this case, the improvement cangpavith
passive learning is by a factét/.

Remark 15 Alternatively, one can assume that the active learning algorithm stops asasothe
specified number of active examples, say, n has been achielzatkeribtes the number of iterations
needed to achieve this target, th&d; is an upper bound on the excess risk of the classifiers from
the set&ﬁ. Under the assumptions of Corollary 13, inverting the bouna @) easily gives thad;

is upper bounded by
ex fBﬁ
Cz'[o ’

o 1
Bi= Vlogto Vlog(1/a) Vvlog(nh?/Cyto) Vloglog(1/h)

where
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with some numerical constant CThus, the excess risk of such classifiers tends to zero exponentially
fast as n— co. This is the form in which the excess risk bounds in active learning are ustatigéds

in the literature (see, e.g., Hanneke, 2009a,b). In fact, this is a refineoh#éim bounds of Hanneke
that were proved for somewhat different active learning algorithmsksemeke, 2009b, Theorems

4, 5). Similarly, under the conditions of Corollary 14, the boundptecomes

<T0) k/(2tp-2) V (To(log(l/a) +loglogn) ) k/(2-2)

n n

(compare with Theorem 6 by Hanneke, 2009b).

Remark 16 Although we concentrated in this section only on binary classification prahléme
active learning algorithms described in Section 3 can be also used in thextaitenulticlass
classification and some other problems (e.g., estimation of non-smootssan function and
estimation of level sets of a probability density). Recall that in the framewafopkediction with a
general loss functioii described in the Introduction,

Fi=leGi= {Eog:ge g}.

Following an idea of Beygelzimer et al. (2009), one can now replaceisiagement sefy for the
classfk 1=V{e gk 1 involved inAlgorithm 3 by a larger set

At = {(x,y> 901,02 € Gica SUPIY. 6a00) — (Y .60)| > cék} -

{Xi 391,02 € Gk 1 SUTPW)’, 91(X)) — £(y, 92(x))| > C6k} xT
ye

This leads to the following modification Afgorithm 3 :
Algorithm 5

Go'= G,
fork=12,...,

A= {x: 301,00 € Gi 1 SURer [£(y, 1)) — £y, ()] > cak} T
Ay 1= min{n eM,n>n ;00 < %Skﬂ};

Gi:= Gi-1N Gg, (38);

end

The Rademacher complexities of clasggs= (o ék (the quantitiesﬂ,g'i)) as well as active
empirical measurel involved in this algorithm are now based on active gtsClearly, only the
labels of active examples are used in this version of the algorithm. If nowefieed

n(8) = N ({x: 301,02 € G(83) sUplL(y,91(X)) — £(¥ G2(x))| > c3}),
yeT
it is very easy to check that the statement of Theorem 9 still holds for snebdéication of the

algorithm. At the same time, it is not clear at this point whether a modified definifidisagree-
ment coefficient in the paper by Beygelzimer et al. (2009) can be usethtpza the properties of
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active learning algorithms of this type and whether it is possible to extendasuahalysis beyond
classification and similar problems.
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