
Journal of Machine Learning Research 11 (2010) 285-310 Submitted 6/09; Revised 10/09; Published 1/10

Optimal Search on Clustered Structural Constraint for Learning
Bayesian Network Structure

Kaname Kojima KANAME @IMS.U-TOKYO.AC.JP

Eric Perrier PERRIER@IMS.U-TOKYO.AC.JP

Seiya Imoto IMOTO@IMS.U-TOKYO.AC.JP

Satoru Miyano MIYANO @IMS.U-TOKYO.AC.JP

Human Genome Center, Institute of Medical Science
University of Tokyo
4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Editor: David Maxwell Chickering

Abstract

We study the problem of learning an optimal Bayesian networkin a constrained search space;
skeletons are compelled to be subgraphs of a given undirected graph called the super-structure.
The previously derived constrained optimal search (COS) remains limited even for sparse super-
structures. To extend its feasibility, we propose to dividethe super-structure into several clusters
and perform an optimal search on each of them. Further, to ensure acyclicity, we introduce the
concept of ancestral constraints (ACs) and derive an optimal algorithm satisfying a given set of
ACs. Finally, we theoretically derive the necessary and sufficient sets of ACs to be considered for
finding an optimal constrained graph. Empirical evaluations demonstrate that our algorithm can
learn optimal Bayesian networks for some graphs containingseveral hundreds of vertices, and even
for super-structures having a high average degree (up to four), which is a drastic improvement in
feasibility over the previous optimal algorithm. Learnt networks are shown to largely outperform
state-of-the-art heuristic algorithms both in terms of score and structural hamming distance.

Keywords: Bayesian networks, structure learning, constrained optimal search

1. Introduction

Although structure learning is a fundamental task for building Bayesian networks (BNs), when
minimizing a score function, the computational complexity often prevents us fromfinding optimal
BN structures (Perrier et al., 2008). With currently available exact algorithms (Koivisto et al., 2004;
Ott et al., 2004; Silander et al., 2006; Singh et al., 2005) and a decomposable score like BDeu,
the computational complexity remains exponential, and therefore, such algorithms are intractable
for BNs with more than around 30 vertices given our actual computational capacity. For larger
systems, heuristic searches like greedy hill-climbing search (HC) or customized versions of this
search are employed in practice (Tsamardinos et al., 2006).

Recently, Tsamardinos et al. (2006) proposed an algorithm called max-min hill-climbing
(MMHC) that combines an independence test (IT) approach with a score-based search strategy:
first, an undirected graph is built based on an IT approach, and then, aconstrained greedy hill-
climbing search returns a local optimum of the score function. Thus, MMHC can be considered as
a constrained search, a concept introduced by Friedman et al. (1999)together with the sparse can-

c©2010 Kojima, Perrier, Imoto and Miyano.

KOJIMA, PERRIER, IMOTO AND M IYANO

didate (SC) algorithm. Such algorithms have been empirically shown to outperform unconstrained
greedy hill-climbing (Friedman et al., 1999; Tsamardinos et al., 2006). Based on the success of con-
strained approaches, Perrier et al. (2008) proposed an algorithm that can learn an optimal BN when
an undirected graph is given as a structural constraint. Perrier et al. (2008) defined this undirected
graph as a super-structure; the skeleton of every graph consideredis compelled to be a subgraph
of the super-structure. This algorithm can learn optimal BNs containing up to50 vertices when the
average degree of the super-structure is around two, that is, a sparse structural constraint is assumed.
However, its feasibility remains limited.

Independently, Friedman et al. (1999) suggested that when the structural constraint is a directed
graph (in the case of SC), an optimal search can be carried out on the cluster tree extracted from
the constraint. This cluster-based approach could potentially increase thefeasibility of optimal
searches; nevertheless, the algorithm proposed in Friedman et al. (1999) requires to be given a
directed graph-based constraint and to extract a cluster tree. For the latter, a large cluster might be
generated, preventing an optimal search from being carried out.

Another potential approach is to search the best BN by checking the network obtained by with-
drawing edges in cycles one-by-one, beginning from an initial network which is build by connecting
children and their optimal parents with directed edges without checking acyclicity as in B&B al-
gorithm (de Campos et al., 2009). However, children in the best BN are often selected as the best
parents without considering acyclicity if the size of a given data set is sufficient. Thus, for the
estimation of the best BN of more than hundred vertices and sufficient data samples, the initial net-
work may contain hundreds of small cycles, and it is impossible to check thesecycles in the search
process.

In this study, we take up the concept of a super-structure constraint and propose a cluster-based
search algorithm that can learn an optimal BN given the constraint. Therefore, unlike in Friedman
et al. (1999), our algorithm uses an undirected graph as the structuralconstraint. In addition, we use
a different cluster decomposition that enables us to consider more complex cases. As Tsamardinos
et al. (2006) and Perrier et al. (2008) showed, good approximations of the true super-structure can
be obtained by an IT approach like the max-min parent-children (MMPC) method (Tsamardinos et
al., 2006).

If the super-structure is divided into clusters of moderate size (around 30 vertices), a constrained
optimal search can be applied on each cluster. Then, to find a globally optimalgraph, one could con-
sider all patterns of directions for the edges between clusters and apply aconstrained optimal search
on each cluster for every pattern of directions independently and returnthe best result found. We
theorize this idea by introducing ancestral constraints; further, we derive the necessary and sufficient
ancestral constrains that we must consider to find an optimal network and introduce a pruning tech-
nique to skip superfluous cases. Finally, we develop a super-structureconstrained optimal algorithm
that extends the size of networks that we can consider by more than one order.

The performance of our algorithm is evaluated on the Alarm, Insurance, and Child networks
(Beinlich et al., 1989; Binder et al., 1997; Cowell et al., 1999) extended by the tiling method
(Tsamardinos et al., 2006) to obtain networks having several hundredsof vertices. Experiments
show that our algorithm clearly outperforms MMHC and HC with the TABU search extension.

286

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

2. Related Works

Given dataD for a set of random variablesV, learning an optimal BN using a decomposable score
like BDeu involves finding a directed acyclic graph (DAG)N∗ such that

N∗ = argmin
N

∑
v∈V

s(v,PaN(v);D), (1)

wherePaN(v)⊆V is a set of parents for a vertexv in networkN ands(v,PaN(v);D) is the value of
the score function forv in N. Hereafter, we omit the subscriptN for Pa andD for s. In this section,
we introduce some structure learning algorithms to show the motivation of our research.

2.1 Optimal search

Although finding a global optimum, that is, a solution of (1), is NP-hard, several optimal algorithms
have been developed (Koivisto et al., 2004; Ott et al., 2004; Silander etal., 2006; Singh et al., 2005).
The time complexity has been successfully reduced toO(n2n), wheren is the number of vertices in
BN (i.e., |V|= n).

2.2 Hill-climbing

For learning a larger system, heuristic algorithms must be used. Greedy hill-climbing (HC) is one of
the most commonly used algorithms in practice. HC only finds local optima, and upgraded versions
of this base algorithm have been extensively studied, leading to some improvement in the score and
structure of the results (e.g., by using a TABU list).

2.3 Sparse Candidate

To improve HC, Friedman et al. (1999) limited the maximum number of parents and restricted the
set of candidate parents for each vertex. They established SC algorithmand introduced the concept
of constraining the search space of score-based approaches.

2.4 Max-min Hill-climbing

MMHC is a hybrid method combining an IT approach and a score-based search strategy. Tsamardi-
nos et al. (2006) showed that on average, MMHC outperforms other heuristic approaches including
SC and HC.

2.5 Constrained Optimal Search

In SC and MMHC, the learnt structures are local optima. Perrier et al. (2008) extended the optimal
algorithm of Ott et al. (2004) and established a constrained optimal search(COS) that learns an
optimal BN structure whose skeleton is a subgraph of a given undirected graphG = (V,E) called
the super-structure, that is, COS aims to findN∗G, the solution of (1), while constrainingPaN(v) to
be included inN (v), whereN (v) is the neighborhood ofv in G. Although using a super-structure
increases the feasibility of optimal searches, COS is still limited when the super-structure is dense
(high average degree).

287

KOJIMA, PERRIER, IMOTO AND M IYANO

2.6 Optimal Search with Cluster Tree

Friedman et al. (1999) suggested the possibility of optimally searching acyclicsubgraphs of a di-
graph constructed by connecting each vertex and its pre-selected candidate parents with directed
edges without checking acyclicity. Here, unlike MMHC and COS, the structural constraint is rep-
resented by a directed graph. An algorithm would proceed by convertingthe digraph into a cluster
tree, where clusters are densely connected subgraphs. Then, it would perform an optimal search on
each cluster for every ordering of the vertices contained in the separators of clusters. However, due
to the difficulty of building a minimal cluster tree, large clusters can make the search impractical.

2.7 B&B Algorithm

Recently, de Campos et al. (2009) proposed an optimal branch-and-bound algorithm. This algo-
rithm constructs an initial directed graph by linking every vertex to its optimal parents although this
might create directed cycles. Then, it tries to search every possible casein which the direction of
one edge comprising each directed cycle is constrained for keeping acyclicity, and finds optimal
parents under the constraints iteratively until DAGs are obtained. After thecompletion of the full
search, the optimal solution is finally given by the best DAG found. In addition, for score functions
decomposable into penalization and fitting components, optimal parents under the constraints are
further effectively computed using a branch-and-bound technique that was originally proposed by
Suzuki et al. (1996). This method is interesting in that it is original and allowsthe development
of an anytime search that returns the best current solution found and anupper bound to the global
optimum. When the sample size is small, few directed cycles occur in the initial directed graph
and updated graphs because information criteria tend to select a smaller parent set for each vertex
in small sample data (Dojer, 2006). However, for a large sample size, due tothe occurrence of a
large number of directed cycles, the complexity of this method can be practicallyworse than classic
optimal searches.

Thereafter, we will consider the same problem as in the COS approach, that is, to findN∗G, an
optimal BN constrained by the super-structureG = (V,E), an undirected graph. In our case, we
propose a cluster-based search to reduce the complexity drastically; here, clusters are of a different
nature from the ones in Friedman et al. (1999), as shown in the next section.

3. Edge Constrained Optimal Search

In this section, we describe procedures of the proposed algorithm in a bottom-up manner. Under
the assumption that the skeleton is separated to small subgraphs, we first describe the definition
of ancestral constraints for each subgraph and consider an algorithmto learn an optimal BN on a
subgraph under some ancestral constrains. We then explain the procedures in order to efficiently
build up an optimal BN on the skeleton by using information of optimal BN on each subgraph under
the conditions of ancestral constraints to be considered.

3.1 Ancestrally Constrained Optimal Search for A Cluster

Hereafter, we assume that we are given a set of edgesE− ⊂ E such that the undirected graph
G− = (V,E \E−) is not connected.

288

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

v

a

v

b

b

a

a

a

b

c

c1

12

3

4 1

1

2

3

7

4 2

5

8

9

2

3

2

1

u
cc

c

c

c c c u

c

6

10

Figure 1: An example of a super-structure to illustrate the definitions we haveintroduced. The
edges ofE− are dashed and they define a clusterC (gray). δ indicated by arrows is one
of the 32 TDMs possible overEC that definesV in

C,δ = {v1,v2} andVout
C,δ = {u1,u2}.

Definition 1 (cluster and cluster edges)Let C= (VC,EC) be a maximal connected component of
G−. We refer to C as aclusterand call EC ⊂ E− containing all and only the edges incident to a
vertex in VC theset of cluster edgesfor C.

Definition 2 (tentative direction map) Given a set of edges EC, we define atentative direction
map (TDM)δ on EC as a set of pairs{(e,d),e∈ EC and d∈ {←,→}} such that for∀e∈ EC, there
uniquely exists d such that(e,d)∈ δ. In other words,δ associates a unique direction with each edge
in EC.

In the following sections, we show that by successively considering every possibleδ onE− and
learning the optimal BN on each cluster independently we can reconstructN∗G. However, to avoid
creating cycles over several clusters, our method has to consider all thepossible ancestral constraints
for a cluster, a notion that we introduce hereafter.

Definition 3 (in-vertex and out-vertex) Considering a cluster C and a TDMδ on EC, we define
V in

C,δ and Vout
C,δ as Vin

C,δ = {v ∈ V \VC | ∃va ∈ VC,({v,va},→) ∈ δ} and Vout
C,δ = {v ∈ VC | ∃va ∈ V \

VC,({v,va},→) ∈ δ}, respectively. We drop the subscripts C andδ when there is no ambiguity. We
call v∈V in

C,δ an in-vertexand v∈Vout
C,δ , anout-vertex.

Figure 1 illustrates the previously introduced definitions. In this section, we assumeC andδ to
remain constant.

Definition 4 (ancestral constraints) Anancestral constraint (AC)is a pair (v,u) with v∈V in
C,δ and

u∈Vout
C,δ that is used to disable v as an ancestor of u. LetA be a set of ancestral constraints(ACS),

289

KOJIMA, PERRIER, IMOTO AND M IYANO

andA(v) be the set of all out-vertices ui such that(v,ui) ∈ A . We say thatA is a nested ancestral
constraint set (NACS)if and only if for any va and vb in V in

C,δ, A(va) ⊆ A(vb) or A(va) ⊇ A(vb)

holds. Finally, given two ACSsA andB, if ∀v∈V in
C,δ, we have thatA(v)⊆ B(v), and we say thatB

is stronger than or equal toA and denote this relation asA ≤ B.

Finally, we recall the definition of a topological ordering and some notions related to it.

Definition 5 (π-linearity and A-linearity) Given an orderingπ (i.e., a bijection of[|1,n|] in V),
we say that it is a topological ordering of a BN N if for every v, Pa(v) is included in Pπ(v) = {u∈
V | π−1(u) < π−1(v)}, the set of the predecessors of v; in such a case, N is said to beπ-linear. Given
an ACSA and a BN N, we say that N isA-linear if and only if it respects all ACs inA . In addition,
in the case of a NACS, there exists a topological orderingπ of N such that∀v∈V in

C,δ and∀u∈A(v),

π−1(u) < π−1(v) holds.

For notational brevity, ifπ−1(u) < π−1(v) holds for two verticesv andu, we hereafter write
u≺π v. Using the previous definitions, we can now prove the validity of our approach.

Theorem 1 There existsδ∗ on E− and NACSsA∗i for every cluster Ci of G− coherent with a global
optimal BN N∗G. In other words, we can obtain N∗G by considering the separately obtained optimal
BN for every cluster, NACS, and TDM possible.

Proof We consider an optimal DAGN∗G and one of its topological orderingsπ∗. There exists a
unique TDMδ∗ coherent withπ∗. Fromδ∗, we define for every clusterCi the ACSA∗i such that
∀v ∈ V in

Ci ,δ∗ ,A
∗
i (v) = Pπ∗(v)∩Vout

Ci ,δ∗ . A∗i are definitely NACSs since for everyva and vb ∈ V in
Ci ,δ∗

if va ≺π∗ vb, then by definition,A∗i (va) ⊆ A∗i (vb). Further, the subgraphsN∗i of N∗G on the sets
Vi =VCi ∪V in

Ci ,δ∗ areA∗i -linear (because the definition ofA∗i is based onπ∗). Furthermore, eachN∗i is

an optimal graph onVCi ∪V in
Ci ,δ∗ given the constraints ofδ∗ andA∗i (otherwise, we could build a DAG

having a lower score thanN∗G). Therefore, if we independently compute an optimal BN for every
cluster, for every TDM and every NACS, and return the best combination, we can build a globally
optimal BN onV.

From Theorem 1, the ACS to be considered is limited to only NACS, andN∗G can be obtained
by searching the best combination of an optimal BN separately obtained on every cluster and for
every NACS and every TDM. Figure 2 shows the flowchart of the search strategy of our approach.
First, an optimal BN and its score on every cluster for every NACS and every TDM are computed.
Then, by using this information, an optimal BN and its score on a cluster obtained by merging two
clusters are computed for every NACS and every TDM. After the repeated computation of optimal
BNs and scores on merged clusters, an optimal BN and its score on a single cluster covering the
super-structure are finally obtained. The details and validity of the algorithmsshown in the flowchart
are discussed in later sections.

The fundamental step involves learning an optimal BN on a clusterC for a givenδ andA ; we
call this algorithm ancestrally constrained optimal search (ACOS). To describe it, we need to recall
some functions defined in optimal search algorithm by Ott et al. (2004); however, we prefer to use
the notations introduced by Perrier et al. (2008) for the sake of simplicity.

290

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

Pruning constrained search (Algorithm 3):

an op�mal BN and its score for every cluster,

every NACS, and every TDM are computed

Merged cluster (Algorithm 4):

An op�mal BN of a merged cluster

and its score for every NACS and

every TDM are computed

Construct Fs and Fp (Algorithm 1);

Ancestrally constrained op�mal

search (Algorithm 2)

Super-structure is decomposed

into small subgraphs called

clusters (Sec�on 3.4)

Cluster Assembler (Algorithm 5):

Clusters are assembled into a single

cluster and an op�mal BN for the single

cluster and its score are obtained

An op�mal BN on the super-structure and

its score are obtained

Call for computa�on

Call for computa�on

Figure 2: Flowchart of algorithms for the computation of an optimal BN on a super-structure. The
details of these algorithms are discussed in later sections.

Definition 6 (Perrier et al. 2008) For every v∈V and every X⊆N (v), we define Fp(v,X) as being
the best parent set for v included in X and Fs(v,X) as the associated score:

Fs(v,X) = min
Pa⊆X

s(v,Pa),

Fp(v,X) = arg min
Pa⊆X

s(v,Pa).

Further, considering a cluster C,δ, andA , for every X⊆VC, we definêsA(X) to be the best score
possible for a DAG over X∪V in

C,δ that satisfiesA (the scores of the vertices in Vin are not considered),

andℓA(X) to be the last element of a topological ordering (restricted to X) of an optimal DAG over
X∪V in

C,δ that satisfiesA (given the constraints). Later, the subscriptA is omitted.

We first introduce an algorithm described in Perrier et al. (2008) that calculatesFs andFp using
dynamic programming and then explain how we adapt the calculation of ˆsandℓ to satisfy the TDM
and the NACS.

Algorithm 1: CalculateFs andFp (Perrier et al., 2008)
Input: Score functions and super-structureG
Output: FunctionsFp andFs

1. SetFs(v,ø) = s(v,ø) andFp = ø for allv∈V.

291

KOJIMA, PERRIER, IMOTO AND M IYANO

2. For allv∈V and allX(6= ø)⊆N (v)\{v}, compute

u∗ = argmin
u∈X

Fs(v,X \{u}),

Fs(v,X) = min{s(v,X),F(v,X \{u∗})},

Fp(v,X) =

{

X if s(v,X)≤ Fs(v,X \{u∗})
Fp(v,X \u∗) otherwise

.

Note that the in-vertices are considered differently in our algorithm; they either have no parents or
fixed parents, and can only be parents of few vertices inVC depending onA . Thus, although the
DAGs considered in the following algorithm are optimal onX ∪V in

C,δ, the score ofv ∈ V in
C,δ (that

is fixed depending onδ) is not counted in ˆs(X) since it is the same for every DAG irrespective of
whether it is optimal or not.

From Theorem 1, the only orderingsπ such thatu≺π v for everyv∈V in
C,δ andu∈ A(v) are to

be considered. Therefore, forw ∈ VC andv ∈ V in
C,δ, v can be a parent ofw if and only if v≺π w,

implying u≺π w for everyu∈ A(v). Therefore, we do not need to considerv∈V in
C,δ in our ordering

since we can infer whetherv can be a parent ofw by checking if it is ordered after all nodes in
A(v). We define for everyX ⊆VC the associate setPC(X) = X∪{v∈V in

C,δ | A(v) ⊆ X}; in other

words, for a given topological orderingπ overX, the possible parents inX∪V in
C,δ of w∈ X are in

PC(Pπ(w))∩N (w). Using this result, we can present ACOS:

Algorithm 2: AncestrallyConstrainedOptimalSearch
Input: ClusterC, TDM δ, NACSA , super-structureG, and functionsFp andFs (previously
computed)
Output: Optimal BN underA , δ, G, and its score, ˆs(VC)

1. Set ˆs(ø) = ∞ andℓ(ø) = ø.

2. For allX (6= ø)⊆VC, do:

(a) Computeℓ(X) = argminv∈X{Fs(v,PC(X \{v})∩N (v))+ ŝ(X \{v})}.

(b) Defineŝ(X) as the minimal score obtained during the previous step.

3. ConstructN∗, an optimalA-linear BN overVC, usingFp andℓ, and returnN∗ and its score
ŝ(VC).

In Algorithm 2, the computation ofFs andFp is carried out during preprocessing because it does
not depend onδ andA . Step 3 can be completed in linear time inn and is presented in Perrier et al.
(2008). To prove the correctness of ACOS, we explain the computation ofℓ in step (a).

Theorem 2 Given C,δ, andA , ACOS constructs an optimal constrained BN over VC∪V in
C,δ.

Proof First, we recursively show on the size ofX that the computation ofℓ andŝ in Algorithm 2
respects their definition. Since the initialization in step 1 is correct, let us consider X 6= ø such
that for∀Y ⊂ X, ŝ(Y) andℓ(Y) are well defined. For anyv ∈ X, we would like to find the score
of the best DAG havingv as a sink (i.e.,v is the last element of a topological ordering overX).
In that configuration, all nodes inX \ {v} are predecessors ofv, and therefore, they are potential

292

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

v

a

v

c

c1

1

1

1

2

3

7

4 2

5

8

9

2

u
cc

c

c

c c c u

c

6

10

Figure 3: If this graph is the bestA-linear DAG withA = {(v1,u1)}, since bothv1 andv2 are not
ancestors ofu1 andu2, its strongest NACS isB withB(v1)=B(v2)= {u1,u2}. Therefore,
this graph is optimal for all seven NACSs included betweenA andB.

parents. Moreover, as stated previously,w ∈ V in
C,δ such thatA(w) ⊆ X \ {v} can also be a parent

of v while satisfying ACs. Consequently, after adding the structural constraint G, the best score
for v is Fs(v,PC(X \ {v})∩N (v)). Finally, sincev cannot be a parent of any nodes inX \ {v},
the best score over this set is ˆs(X \ {v}). Thus, step (a) of Algorithm 2 finds the best sink for
X and correctly definesℓ(X) and ŝ(X). Finally, as explained in Perrier et al. (2008), we can re-
build an optimal orderingπ∗ overVC by usingℓ and obtain an optimal DAG by assigning∀v∈VC,
Pa(v) = Fp(v,PC(Pπ∗(v))∩N (v)).

3.2 Pruning

Following Theorem 1, we know that ACOS has to be computed only for all NACSs. Although the
number of NACSs can be shown to be less thanO(|EC|!) (because all NACSs can be generated
through orderings ofV in

C,δ ∪Vout
C,δ), it is experimentally worse than exponential in the number of

cluster edges. Fortunately, different NACSs frequently lead to the same optimal networks, and
many NACS do not need to be considered. For the clusterC and TDM δ shown in Figure 1,
Figure 3 shows an optimal BNN under NACSA = {(v1,u1)}. Since bothv1 andv2 are not ancestors
of u1 andu2, its strongest NACS isB = {(v1,u1),(v1,u2),(v2,u2),(v2,u2)}. Therefore,N is an
optimal BN of seven NACSs betweenA andB: {(v1,u1)}, {(v1,u1),(v2,u1)}, {(v1,u1),(v1,u2)},
{(v1,u1),(v1,u2),(v2,u1)}, {(v1,u1),(v1,u2),(v2,u2)}, {(v1,u1),(v2,u1),(v2,u2)}, {(v1,u1),(v1,u2),
(v2,u2),(v2,u2)}. The next lemma formally describes this observation.

Lemma 1 LetA be a NACS andB, an ACS such thatB ≥ A and that an optimalA-linear DAG
N∗ is alsoB-linear. Then,∀A ′ such thatA ≤ A ′ ≤ B, N∗ is also an optimalA ′-linear DAG.

Proof SinceA ′ is more restrictive thanA , an optimalA ′-linear DAG N′∗ verifies thats(N′∗) ≥
s(N∗). However, sinceN∗ isB-linear, it is alsoA ′-linear; therefore, it is optimal ands(N′∗) = s(N∗).

293

KOJIMA, PERRIER, IMOTO AND M IYANO

By browsing the space of NACS in an order verifying that∀i and j if Ai ≤A j theni ≤ j, and by
using the previous lemma as a pruning criterion, we can considerably reduce the number of NACSs
to which ACOS is applied. For a givenC andδ, we consider a score-and-network (SN) mapSC,δ as
a list containing pairs of optimal scores and networks generated by everyNACS, not to be pruned.
We denote the set ofSC,δ for all TDM asSC.

Algorithm 3: PruningConstrainedSearch
Input: ClusterC and TDMδ
Output: SN mapsSC,δ

1. Initialize an empty set of NACSsU and an empty SN mapSC,δ.

2. For every NACSAi (ordered such thatj ≤ k if A j ≤ Ak), do:

(a) If Ai ∈U , i ++ and restart step (a).

(b) Otherwise, learnN∗, an optimalAi-linear DAG of scores∗, using Algorithm 2.

(c) LetB be the ACS containing all ACs satisfied inN∗.

(d) ∀A ′ such thatAi ≤ A ′ ≤ B, addA ′ in U .

(e) Add the pair(N∗,s∗) to SC,δ.

For enumerating ordered NACSs, see Appendix A. The following theoremshows the correctness of
PruningConstrainedSearch.

Theorem 3 For every NACSA , there is an optimal DAG in SC,δ.

Proof This is trivial since from Lemma 1, we have already found an optimal DAGN∗ for the NACS
A ′ that are pruned (added toU in step (d)).

3.3 Assembling Clusters

Next, we describe how the results of two clustersC1 andC2 are combined. The algorithm given
below builds a set of SN mapsSC for the merged clusterC out ofSC1 andSC2 (with VC = VC1∪VC2).

Algorithm 4: MergeCluster
Input: ClustersC1 andC2 and sets of SN mapsSC1 andSC2

Output: Merged clusterC and set of SN mapsSC

1. DefineC = (VC1∪VC2,EC1∪EC2∪ (EC1∩EC2))

2. For every TDMδ of EC, do:

(a) For every pair of TDMδ1 andδ2 of EC1 andEC2 that satisfy the following conditions:

Condition i ∀(e,d) ∈ δ, then(e,d) ∈ δi (i = 1 or 2),

Condition ii ∀e∈ EC1∩EC2, (e,d) ∈ δ1 if and only if (e,d) ∈ δ2,

i. For every pair of optimal networks and scores(N∗1 ,s∗1) and(N∗2 ,s∗2) of SC1,δ1 and
SC2,δ2, respectively, do:

294

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

A. DefineN∗ = N∗1 ∪N∗2 ands∗ = s∗1 +s∗2
B. If there exists a directed cycle inN∗, restart step i with the next pair.

C. LetA be the ACS containing all ACs satisfied inN∗.

D. If there exists an optimalA-linear network inSC,δ that has a score smaller
thans∗, restart step i with the next pair.

E. Add the pair(N∗,s∗) to SC,δ.

F. Remove every pair(N′,s′) of SC,δ such thatN′ isA-linear ands′ > s∗.

The next theorem shows thatSC,δ contains an optimal BN and its score for every NACS onC.

Theorem 4 If for every pair of TDMsδ1 andδ2 and for every NACS, SC1,δ1 and SC2,δ2 contain pairs
of an optimal BN and its score, then SC,δ constructed by Algorithm 4 contains a pair of an optimal
BN and its score for every NACS.

Proof First, we show that for every NACSA overC, we can build an optimalA-linear BN by
merging two optimal networks onC1 andC2 for some NACSsA1 andA2. To do so, for a given
TDM δ, let us consider a NACSA for C, an optimalA-linear BN N∗ of scores∗ and one of its
topological orderingsπ∗ defined overVC (that is also in agreement withδ andA). i is used instead
of 1 and 2. We defineπ∗i the ordering of the vertices inVCi derived fromπ∗. Further, we callδi

the TDM of ECi derived fromπ∗i ; we have thatδ1 and δ2 verify trivially conditions (i) and (ii)
stated in step (a) of Algorithm 4. Finally, we defineAi as a NACS forCi such that for∀v∈V in

Ci ,δi
,

Ai(v) = Pπi (v)∩Vout
Ci ,δi

. Given an optimalAi-linear network ofSCi ,δi
N∗i and its scores∗i , let us con-

sider the graphN′ = N∗1 ∪N∗2 . This graph is acyclic since it isπ∗-linear by construction. Further, its
scores′ = s∗1 + s∗2 is minimal forA-linear; otherwise, one of theN∗i graphs would not be optimal.
Therefore, althoughN′ might be different fromN∗, they both have the same score. Therefore, since
Algorithm 4 considers every coherent pairδ1 andδ2 (that verify conditions (i) and (ii)) and every
pair of NACS,SC,δ is correctly constructed.

Given the previous algorithm, we simply need to merge all the clusters to obtain anoptimal
DAG N∗G and its score, as explained in the following algorithm.

Algorithm 5: ClusterAssembler
Input: Set of all clustersC
Output: Optimal BNN∗G and its scores∗

1. ∀C∈ C , computeSC using Algorithm 3 for everyδ.

2. While |C |> 1, do:

(a) Select a pair of clustersC1 andC2 such that|(EC1∪EC2)\ (EC1∩EC2)| is minimal.

(b) Compute the clusterC andSC by mergingC1 andC2 using Algorithm 4.

(c) RemoveC1 andC2 from C , and addC to C .

3. SinceG is the last element inC , returnN∗G ands∗, the sole pair stored inSG,ø.

295

KOJIMA, PERRIER, IMOTO AND M IYANO

v

C
a1

a2

a3

a4

Figure 4: An example of super-structure shrinkage. A blockC = (VC,EC) (gray) can be separated
from the rest of the super-structure by the removal of a cut-vertexv∈VC. Arrows indicate
the unique TDMδX for X = {a1,a2}.

The correctness of Algorithm 5 is directly derived from Theorem 4. In (a), although we do not prove
that the complexity is minimal by merging the clusters that imply less cluster edges forthe merged
cluster at each step, we decided to use this heuristic. This is because the complexity depends on the
number of cluster edges in Algorithm 4; therefore, it is faster to always manipulate a cluster with a
small number of cluster edges.

3.4 Preprocessings

In this section, we describe a preprocessing that can drastically reducethe time complexity of our
method and the heuristic we used to select the edges inE−.

3.4.1 SUPER-STRUCTURESHRINKAGE

First, we introduce the notions of a block and a block tree of an undirected graph. Their formal
definitions are described in Diestel (2005). A block is a biconnected subgraph of the undirected
graph, and vertices in the intersection of blocks are called cut-vertices, that is, the removal of cut-
vertices separates blocks. A block tree is a tree comprised of blocks as vertices and cut-vertices as
edges. We here show leaves of a block tree of the super-structure canbe removed if their size is
small. Let us consider the case shown in Figure 4 where a blockC = (VC,EC) of the super-structure
G can be separated by withdrawing a cut-vertexv∈VC and thatC is of a moderate size (|VC|< 30).
Then, all edges(v,w), wherew 6∈VC, are considered as cluster edges; because onlyv is connected
to cluster edges, no cycle can be created while merging an optimal DAGN∗C overVC with another
cluster; otherwise, it would imply that there is a cycle inN∗C. Therefore, there is no need of AC and
we propose to process this case in a different manner. For every TDMδ, we learn an optimal DAG
N∗δ and its scores∗δ overVC. Then, we replaceC by a single vertex ˆv in G to obtain the condensed
super-structurêG. For every candidate parent setX of v̂ in Ĝ (i.e.,∀X ⊆N (v)\VC), there exists the
unique TDMδX corresponding toC. For example, if a candidate parent setX is set to{a1,a2} in

296

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

Figure 4, unique TDMδX for cluster edges(v,a1), (v,a2), (v,a3), and(v,a4) is indicated by arrows.
Using this observation, we redefineFs on v̂ to beF̂s(v̂,X) = s∗δX

andFp to beF̂p(v̂,X) = N∗δX
; here,

F̂p is used not only to store the optimal parent set ofv in X ∪ (VC ∩N (v)) but also to save the
optimal network overC. We can repeat this technique to shrink every small subgraph separatedby
the removal of a single vertex inG during preprocessing. This can lead to a drastic reduction of
complexity in some real cases, as discussed later.

3.4.2 PARTITIONING THE SUPER-STRUCTURE INTOCLUSTERS

To apply our algorithm, we need to select a set of edgesE− that separates the super-structure into
small strongly connected subgraphs (clusters) having balanced numbers of vertices while minimiz-
ing the number of cluster edges for each cluster. Such a problem is called graph partitioning. In
our case, we employed an algorithm based on edge betweenness centralitythat works efficiently for
practical networks (Newman et al., 2004).

3.5 Resulting Algorithm

We summarize all results presented thus far in the following algorithm that learns a super-structure
constrained optimal network and its score.

Algorithm 6: EdgeConstrainedOptimalSearch (ECOS)
Input: Super-structureG = (V,E) and dataD
Output: Optimal constrained BNN∗G and its scores∗

1. ∀v∈V and∀X ⊆N (v) computeFs(v,X) andFp(v,X).

2. Shrink every block possible inG to obtain a shrunk super-structureĜ and the functionŝFs

andF̂p.

3. SelectE− using the graph partitioning algorithm and obtain the set of all clustersC .

4. ∀C∈ C and∀δ; apply Algorithm 3 and obtain the set of SN mapsSC.

5. Merge all clusters using Algorithm 5 to obtainN̂∗G and its scores∗.

6. Expand the subgraphs shrunk during step 2 to obtainN∗G.

Note that after the expansion of shrunk subgraphs,s∗ does not change as the scores for these sub-
graphs are packed in̂Fs.

3.6 Complexity

In this last section, although it is hardly feasible to derive the complexity of Algorithm 6 in a general
case because it strongly depends on the topology of the super-structure used, we propose an upper
bound of the complexity depending on a few characteristics ofG. Subsequently, we describe some
practical generic structures to which ECOS can or cannot be profitably applied. We then present
an empirical evaluation of the algorithm over randomly generated networks and real networks, with
promising results being found for the latter.

Considering step 1 of ECOS, after defining the maximal degree ofG asm= max
v∈V
|N (v)|, we

obtain that the number of scores calculated is upper bounded byO(n2m). This is actually the main

297

KOJIMA, PERRIER, IMOTO AND M IYANO

reason for using a structural constraint because the functionsFp andFs can be computed in a lin-
ear time for bounded degree structures(m< 30). Actually, this is feasible even for largem if an
additional constraint on the number of parentsc is added, the complexity becomingO(nmc).

Next, if n1 is the size of the largest cluster that has been shrunk (this is a tunable parameter),
and considering that at maximum, the number of cluster edges of a shrunk block m′ is m−1 and
the number of TDM is 2m

′
, given the exponential complexity of calculating ˆsandℓ, we find that the

complexity of step 2 is bounded byO(b2m−12n1), whereb is the number of blocks shrunk. In other
words, ifn1 is tuned suitably, step 2 has negligible complexity as compared to the subsequent steps.
Similarly, step 3 is negligible since its complexity is only polynomial inn (O(mn3)).

However, step 4 requires a more detailed analysis. GivenE−, we definen2 = maxC∈C |VC|, the
size of the largest cluster, andk= maxC∈C |EC|, the largest number of cluster edges. The complexity
of ACOS is trivially bounded byO(2n2). Further, because the number of NACS is less than the
number of permutations overV in∪Vout for a given TDM, we have that for every cluster, ACOS is
applied at maximumk!2k times. We derive an upper bound complexity for step 4 asO(q2n2k!2k),
whereq is the number of obtained clusters. Note, however, that the factorial term experimentally
appears to be largely overestimated and that ACOS may actually be computed only O(βk) times for
someβ > 2.

Finally, at worst, step 5 involves trying every pair of entries in two SN map sets; with the
maximum size of cluster edges of merged clustersK, the complexity might theoretically be as bad
asO(q(K!2K)2). However, in practice, because a major part of NACS was pruned in step4, many
pairs are pruned in step 5, and because all superfluous values of the SN maps are eliminated in
Algorithm 4, its complexity is closer toO(qβk).

Following those rough upper bounds, we can derive some generic super-structures that are fea-
sible for any number of vertices while not being naı̈ve. For example, considering step 2, any super-
structure whose block tree contains only small blocks (less than 30 vertices) is feasible. Otherwise,
we can consider all the networks that can be generated by the following method:

• Generate an undirected graphG0 of low maximal degree (m< 10).

• Replace every vertexvi by a small graphCi (up to 20 or slightly more) and randomly connect
all edges connected tovi in G0 to vertices inCi .

If ECOS can select all edges between clusters for such networks while defining E−, the search
should finish in reasonable time even for larger networks (up to several hundreds of vertices). Con-
versely, if a super-structure contains a large clique (containing more than30 vertices), ECOS cannot
finish as other optimal searches. To conclude, our algorithm may be a decisive breakthrough in
some real cases where neither optimal searches nor COS can be applied because of a large number
of vertices or a high average degree.

4. Experimental Evaluation

We conduct two types of numerical experiments for evaluating the performance of ECOS. In the for-
mer experiment, the practical time complexity of ECOS is estimated by the comparison with COS,
using random networks of various sizes. In order to show the performance on practically structured
networks, we then apply ECOS to the synthetically generated large scale network from Alarm, In-
surance, and Child networks in the latter experiment. The performance of ECOS is compared with

298

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

n\ m̃ 2 2.5 3 3.5
10 100 100 100 100
20 100 100 100 100
30 100 100 100 100
50 100 100 95 40
75 100 100 61 0
100 100 100 4 0

Table 1: Number of times the computation finished within one day for a random graph ofn vertices
and average degree ˜m.

Algorithm m̃ 2 2.5 3 3.5

ECOS
δm̃ 1.06 1.08 1.15 1.25

nmax(m̃) 355 273 151 93

COS
δm̃ 1.50 1.63 1.74 1.81

nmax(m̃) 51 43 38 35

Table 2: Values of coefficientsδm̃ andnmax(m̃) of ECOS and COS for average degree of super-
structurem̃. δm̃ is the estimated base of exponential time complexity andnmax(m̃) is the
feasible size of the super-structure for computation.

those of MMHC and greedy hill-climbing. All the computations in the following experiments were
performed on machines having 3.0 GHz Intel Xeon processors with a Coremicroarchitecture (only
one core was used for each experiment).

4.1 Benefit in Terms of Complexity

In the first series of experiments, we aimed to evaluate the average complexityof ECOS depending
on n and m̃, the average degree ofG. Since the feasibility of ECOS depends on the pruning of
the search space, the theoretical derivation of the practical time complexity isdifficult. Here, we
hypothesize that the average complexity is in the form ofO(δn

m̃), and then estimateδm̃. Let tm̃,n be
the time required for a network ofn vertices and average degree ˜m. Under our assumption of time
complexity,tm̃,n is given by

tm̃,n = const·δn
m̃, (2)

whereconst indicates the dependency of the implementation and machine specifications. From
Equation (2), we have thatδm̃ = exp(1

n(logtm̃,n− logconst)). Becauselogconst
n can be ignored for

large n, δm̃ can be estimated by exp(
logtm̃,m

n). For ∀m̃ ∈ {2,2.5,3,3.5} and
∀n∈ {10,20,30,50,75,100}, we generate 100 random networks and we apply ECOS using 1,000
artificially generated samples in each case. We compute the average timet̃m̃,n that is required and

calculateδm̃,n = exp(log(t̃m̃,n)
n). If our hypothesis is correct,δm̃,n should converge toδm̃ while n in-

creases. However, to keep the computation manageable, we stop the calculation if it requires more

299

KOJIMA, PERRIER, IMOTO AND M IYANO

Network No. of vertices No. of edges
Alarm1 37 46
Alarm3 111 149
Alarm5 185 253
Alarm10 370 498

Insurance1 27 52
Insurance3 81 163
Insurance5 135 268
Insurance10 270 536

Child1 20 25
Child3 60 79
Child5 100 126
Child10 200 257

Table 3: Characteristics of the real networks considered in the computational experiment.

than one day. Hence, we probably underestimateδm̃ slightly; nevertheless, here, we attempt to
derive the exponential nature of the average complexity and not the realvalue of the constants. Fur-
ther, the following results are sufficient to obtain a rough estimate. The number of times we finished
the calculation for each pair of parameters is listed in Table 1. Due to the small ratio of finished
experiments for ˜m = 3 and 3.5, we selected the valuesδ3,75, δ3.5,50 for δ3 andδ3.5 , respectively.
Further, for every average degree, we evaluated the maximal number ofverticesnmax(m̃) feasible
from the value ofδm̃ calculated as proposed in Perrier et al. (2008).

Table 2 lists the values ofδm̃ andnmax(m̃) for ECOS and COS. We should note thatnmax(m̃) of
ECOS form̃= 3 and 3.5 is overestimated since in this case,δm̃ is underestimated because only the
computations that finished were used to calculate it. In practice,nmax(m̃) of ECOS form̃= 3 and
3.5 are respectively around 75 and 50 from the results listed in Table 1; therefore, we can clearly see
the practical advantage of ECOS over COS, and the improvement in terms of feasibility achieved by
our method. In addition, we should emphasize that random networks penalize the results of ECOS
because they do not have a logical partitioning. In real cases, we can hope that super-structures can
be efficiently partitioned, enabling better performances for ECOS.

4.2 Case Study

We considered four networks whose characteristics are summarized in Table 3; those networks
were generated from Alarm, Insurance, and Child networks by the tiling algorithm (Tsamardinos
et al., 2006). We compare the performances of ECOS to those of the following state-of-the-art
greedy algorithms: MMHC and greedy hill-climbing (HC), both using a TABU search extension;
the TABU list size was set to 100 as in Tsamardinos et al. (2006). COS is notincluded in this
evaluation because COS and ECOS are learning the same networks (or at least networks having the
same score, that is, the best one possible given the structural constraint). Further, COS cannot be
applied to such large networks when using such high values forα (cf. Perrier et al. 2008). The
super-structures were generated in two different ways: the true skeleton was given or a skeleton was
inferred by using MMPC (Tsamardinos et al., 2006) implemented in the CausalExplorer System

300

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

Model Sample Size α Coverage Average Degree

Alarm5

1000

true 1.00±0.00 2.74±0.00
0.01 0.77±0.00 2.29±0.00
0.02 0.78±0.00 2.40±0.00
0.05 0.80±0.00 2.67±0.00

10000

true 1.00±0.00 2.74±0.00
0.01 0.94±0.00 2.67±0.00
0.02 0.94±0.00 2.77±0.00
0.05 0.95±0.00 3.01±0.00

Alarm10

1000

true 1.00±0.00 2.69±0.00
0.01 0.78±0.00 2.34±0.00
0.02 0.80±0.00 2.49±0.00
0.05 0.81±0.00 2.87±0.00

10000

true 1.00±0.00 2.69±0.00
0.01 0.95±0.00 2.70±0.00
0.02 0.95±0.00 2.84±0.00
0.05 0.96±0.00 3.14±0.00

Insurance5

1000

true 1.00±0.00 3.97±0.00
0.01 0.64±0.00 2.97±0.00
0.02 0.66±0.00 3.15±0.01
0.05 0.68±0.00 3.52±0.01

10000

true 1.00±0.00 3.97±0.00
0.01 0.80±0.00 3.43±0.00
0.02 0.81±0.00 3.53±0.00
0.05 0.83±0.00 3.73±0.01

Insurance10

1000

true 1.00±0.00 3.97±0.00
0.01 0.64±0.00 3.00±0.00
0.02 0.66±0.00 3.22±0.00
0.05 0.67±0.00 3.63±0.01

10000

true 1.00±0.00 3.97±0.00
0.01 0.80±0.00 3.46±0.00
0.02 0.81±0.00 3.57±0.00
0.05 0.82±0.00 3.81±0.01

Child5

1000

true 1.00±0.00 2.52±0.00
0.01 0.84±0.00 2.32±0.00
0.02 0.86±0.00 2.39±0.00
0.05 0.88±0.00 2.50±0.00

10000

true 1.00±0.00 2.52±0.00
0.01 1.00±0.00 2.53±0.00
0.02 1.00±0.00 2.55±0.00
0.05 1.00±0.00 2.57±0.00

Child10

1000

true 1.00±0.00 2.57±0.00
0.01 0.82±0.00 2.3±0.00
0.02 0.84±0.00 2.38±0.00
0.05 0.87±0.00 2.510±0.00

10000

true 1.00±0.00 2.57±0.00
0.01 0.99±0.00 2.58±0.00
0.02 0.99±0.00 2.61±0.00
0.05 0.99±0.00 2.65±0.00

Table 4: Coverage and average degree of super-structures for each experimental condition (mean±
standard deviation).

(Aliferis et al., 2003) with a significance levelα ∈ {0.01,0.02,0.05}. Ten data sets of 500, 1,000,
and 10,000 samples were synthetically generated from each BN considered. Here, we evaluate and
discuss the cases of Alarm5, Alarm10, Insurance5, Insurance10, Child5, and Child10 with 1,000
and 10,000 samples. The results of all the cases including the remaining onesare summarized in
the supplemental material. To help evaluate the quality of the super-structureslearnt by MMPC, we

301

KOJIMA, PERRIER, IMOTO AND M IYANO

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

E
C
O
S

M
M
H
C

H
C

E
C
O
S

M
M
H
C

H
C

E
C
O
S

M
M
H
C

H
C

E
C
O
S

M
M
H
C

H
C

SS(True) SS(α=0.01) SS(α=0.02) SS(α=0.05)

B
D
e
u

x10
4

Figure 5: BDeu scores for ten data sets of Alarm10 with 10,000 samples.

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

E
C
O
S

M
M
H
C

H
C

E
C
O
S

M
M
H
C

H
C

E
C
O
S

M
M
H
C

H
C

E
C
O
S

M
M
H
C

H
C

SS(True) SS(α=0.01) SS(α=0.02) SS(α=0.05)

S
H
D

Figure 6: Values of SHD for ten data sets of Alarm10 with 10,000 samples.

summarized the ratio of true edges learnt (this ratio is called coverage) and the average degree of
the super-structures in Table 4.

For every experimental condition, the algorithms are compared both in terms ofscore (we used
the negative BDeu score, that is, smaller values are better) and structural hamming distance (SHD,
Tsamardinos et al. 2006) that counts the number of differences in the completed partially DAG
(CPDAG, Chikdering 2002) of the true network and the learnt one.

Figures 5 and 6 respectively show BDeu and SHD scores of ECOS, MMHC, and HC for ten
data sets of Alarm10 with 10,000 samples given the true skeleton and super-structures inferred
by MMPC with α = 0.01, 0.02, and 0.05. In order to clarify the relation between the results of
ECOS, MMHC, and HC for each data set, results from the same data set arelinked up. In addition,

302

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

the scaling of the plots for the four conditions are the same, and therefore, the results of HC are
the same for the four structural constraints considered. For the true skeleton and super-structures
obtained withα = 0.01, all ten computations of ECOS finished within two days and ECOS gives
the best scores in all the data sets both in terms of BDeu and SHD. In terms of BDeu, HC usually
performs better than MMHC, whereas it is the opposite in terms of SHD.

For α = 0.02, only two computations of ECOS finished within two days; nonetheless, the com-
puted scores are better than those of MMHC and HC both in terms of BDeu andSHD. For the
super-structures ofα = 0.05, no computations of ECOS finished within two days. However, every
time ECOS finished, it gave better results than both HC and MMHC. With regard tothe structural
constraint, the best results were obtained when the true skeleton was known. Further, forα = 0.01,
MMHC is better than HC for two data sets; but forα = 0.02, it is better for one data set; and
α = 0.05, it is better for no data sets. Because the coverage of super-structures withα = 0.01 for
Alarm10 with 10,000 samples is already maximal, as shown in Table 4, super-structures for higher
α contain more false-positive edges, which worsens the results of MMHC. We observe the same
results in terms of SHD as well.

BDeu and SHD scores for all the experiments are summarized in Tables 5 and6; for each
experimental setup, the best result is in bold and the best result without theknowledge of the true
skeleton is underlined. The numbers in parentheses for ECOS represent the number of times ECOS
could finish within ten data sets in two days. The cases in which no computation finished are
indicated by “none”. Note that all computations of MMHC and HC finished in twodays. BDeu and
SHD scores of the finished computations are averaged and rounded offto the nearest integer.

While HC outperforms MMHC in BDeu, MMHC outperforms HC in SHD, which agrees with
the results in Tsamardinos et al. (2006). A comparison of the results of MMHC and HC suggests that
a structural constraint helps to find networks with smaller SHD. However, this should not mislead
us into thinking that minimizing a score function is not a good method to learn a graph having a
small SHD. In fact, ECOS returns considerably better results than both MMHC and HC in terms
of SHD, strongly illustrating the validity of score-based approaches and also the use of a structural
constraint.

One could argue that it is possible to increase the quality of the results returned by MMHC by
using a largerα. However, as we can see in Table 6, although the score improves with higher α,
it is not always the case with the SHD. This is expected because MMHC converges to HC with an
increasingα; hence, it is essential in the greedy case to properly selectα. On the other hand, ECOS
converges to OS for increasing significance levels. Although in rare cases, SHD slightly worsens
with an increasingα, we should generally use as large a significance level as possible when applying
ECOS, while ensuring that the algorithm finishes.

The average running time for the experiments in seconds (rounded off to the nearest integer) are
summarized in Table 7. All the algorithms except for MMPC are implemented in Java. For ECOS
and MMHC, the running time of MMPC is also included. Among the experiments performed till
the end, ECOS requires the maximum computational time (around 34 hours) in Insurance10 with
10,000 samples and the true skeleton. The maximum memory space (10 GB) was required by
ECOS during Insurance10 with 1,000 samples andα = 0.01. Fortunately, for all experimental
setups, ECOS outperformed the other two methods both in BDeu and SHD. Although it stopped for
someα > 0.01, our algorithm is still better withα = 0.01 than MMHC withα = 0.05.

303

KOJIMA, PERRIER, IMOTO AND M IYANO

Model
Sample α Algorithm

Size ECOS MMHC HC

Alarm5

1000

true 61753±376(10) 63294±477 62380±420
0.01 62111±347(10) 63128±428 62380±420
0.02 62015±364(10) 63041±489 62380±420
0.05 61920±387(10) 62959±458 62380±420

10000

true 487734±1109(10) 494611±1986 496108±1104
0.01 488807±1312(10) 495708±2212 496108±1104
0.02 488418±1137(10) 495373±2269 496108±1104
0.05 488182±1132(10) 495359±2638 496108±1104

Alarm10

1000

true 123725±481(10) 126863±857 125156±585
0.01 124406±706(10) 126673±833 125156±585
0.02 124243±750(10) 126456±869 125156±585
0.05 none 126375±831 125156±585

10000

true 975343±943(10) 999973±8022 991888±2144
0.01 976860±1464(10) 1000644±9143 991888±2144
0.02 976150±1404(2) 1000388±8109 991888±2144
0.05 none 1001610±6726 991888±2144

Insurance5

1000

true 81148±341(10) 81551±427 81955±407
0.01 81529±351(10) 81973±458 81955±407
0.02 81449±358(10) 81911±458 81955±407
0.05 81376±338(10) 81862±433 81955±407

10000

true 677374±864(10) 684990±3162 681516±1892
0.01 681584±1707(10) 688579±3521 681516±1892
0.02 680666±1418(10) 687627±2945 681516±1892
0.05 680201±1452(8) 686908±3196 681516±1892

Insurance10

1000

true 162311±453(10) 164039±455 164034±571
0.01 162949±517(10) 164557±711 164034±571
0.02 162890±505(10) 164541±712 164034±571
0.05 162309±46(2) 164541±759 164034±571

10000

true 1354655±768(10) 1371312±3374 1364486±2957
0.01 1361266±1222(10) 1376795±2990 1364486±2957
0.02 1360571±1040(10) 1376111±2542 1364486±2957
0.05 1360627±955(2) 1375645±3224 1364486±2957

Child5

1000

true 71622±324(10) 72057±344 72335±396
0.01 71651±333(10) 72096±368 72335±396
0.02 71648±330(10) 72114±376 72335±396
0.05 71644±329(10) 72059±385 72335±396

10000

true 637783±321(10) 640908±941 644218±2614
0.01 637783±321(10) 640908±941 644218±2614
0.02 637783±321(10) 640908±941 644218±2614
0.05 637783±321(10) 640908±941 644218±2614

Child10

1000

true 142541±250(10) 143847±409 143905±398
0.01 142604±256(10) 143902±415 143905±398
0.02 142590±252(10) 143885±407 143905±398
0.05 142582±255(10) 143896±391 143905±398

10000

true 1271035±684(10) 1277877±2824 1283630±3796
0.01 1271089±690(10) 1278050±2987 1283630±3796
0.02 1271072±683(10) 1277878±2823 1283630±3796
0.05 1271054±685(10) 1277931±2863 1283630±3796

Table 5: Comparison of ECOS, MMHC, and HC in terms of BDeu score (mean± standard devia-
tion; smaller value is better). “none” refers to the case in which no computations finished.
The best score in each case is in bold font; the best score for each datasample without
the knowledge of the true skeleton is underlined. The numbers in parentheses for ECOS
represent the number of times ECOS could finish within ten data sets in two days.

304

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

Model
Sample α Algorithm

Size ECOS MMHC HC

Alarm5

1000

true 125±10(10) 163±6 215±8
0.01 164±6(10) 177±4 215±8
0.02 164±5(10) 177±4 215±8
0.05 161±5(10) 176±5 215±8

10000

true 21±2(10) 96±15 231±12
0.01 31±2(10) 100±10 231±12
0.02 30±2(10) 101±10 231±12
0.05 30±2(10) 102±9 231±12

Alarm10

1000

true 248±9(10) 321±8 421±15
0.01 317±8(10) 355±13 421±15
0.02 313±9(10) 353±10 421±15
0.05 none 354±11 421±15

10000

true 40±3(10) 215±17 447±22
0.01 54±3(10) 219±16 447±22
0.02 54±4(2) 220±15 447±22
0.05 none 226±12 447±22

Insurance5

1000

true 196±8(10) 205±9 246±8
0.01 207±7(10) 217±5 246±8
0.02 206±7(10) 217±4 246±8
0.05 206±8(10) 217±4 246±8

10000

true 88±1(10) 137±9 184±11
0.01 99±4(10) 146±11 184±11
0.02 99±6(10) 146±9 184±11
0.05 100±6(8) 146±11 184±11

Insurance10

1000

true 378±21(10) 424±11 502±10
0.01 398±21(10) 441±11 502±10
0.02 399±22(10) 441±11 502±10
0.05 376±24(2) 444±9 502±10

10000

true 174±5(10) 280±22 381±23
0.01 198±9(10) 296±21 381±23
0.02 198±12(10) 295±20 381±23
0.05 197±17(2) 295±22 381±23

Child5

1000

true 60±7(10) 70±7 82±8
0.01 71±6(10) 80±5 82±8
0.02 70±6(10) 79±5 82±8
0.05 70±6(10) 78±4 82±8

10000

true 1±0(10) 31±9 43±10
0.01 1±0(10) 31±9 43±10
0.02 1±0(10) 31±9 43±10
0.05 1±0(10) 31±9 43±10

Child10

1000

true 145±9(10) 171±6 182±5
0.01 167±8(10) 188±5 182±5
0.02 165±8(10) 186±6 182±5
0.05 163±8(10) 184±6 182±5

10000

true 8±0(10) 88±16 128±17
0.01 10±3(10) 87±18 128±17
0.02 9±3(10) 87±17 128±17
0.05 8±0(10) 87±18 128±17

Table 6: Comparison of ECOS, MMHC, and HC in terms of SHD (mean± standard deviation;
smaller value is better). “none” refers to the case in which no computations finished.
The best score in each case is in bold font; the best score for each datasample without
the knowledge of the true skeleton is underlined. The numbers in parentheses for ECOS
represent the number of times ECOS could finish within ten data sets in two days.

305

KOJIMA, PERRIER, IMOTO AND M IYANO

Model
Sample α Algorithm

Size ECOS MMHC HC

Alarm5

1000

true 3231±1184 (10) 5±0 280±31
0.01 532±441 (10) 36±0 280±31
0.02 7617±22514 (10) 81±0 280±31
0.05 8830±13741 (10) 100±0 280±31

10000

true 19020±4363 (10) 10±1 517±47
0.01 22921±43349 (10) 116±1 517±47
0.02 37424±48662 (10) 74±1 517±47
0.05 92718±117691 (10) 91±1 517±47

Alarm10

1000

true 11653±584 (10) 24±3 3620±339
0.01 1920±1330 (10) 63±1 3620±339
0.02 51627±91273 (10) 99±1 3620±339
0.05 none (0) 61±1 3620±339

10000

true 22914±1088 (10) 30±2 6009±1422
0.01 5800±4545 (10) 138±3 6009±1422
0.02 122665±155955 (2) 131±5 6009±1422
0.05 none (0) 112±3 6009±1422

Insurance5

1000

true 7474±452 (10) 5±0 84±28
0.01 2117±1778 (10) 95±0 84±28
0.02 2841±3421 (10) 41±0 84±28
0.05 47408±76941 (10) 88±0 84±28

10000

true 9807±426 (10) 20±4 286±99
0.01 8281±14925 (10) 22±1 286±99
0.02 38154±43336 (10) 70±3 286±99
0.05 67546±80972 (8) 93±2 286±99

Insurance10

1000

true 30976±4846 (10) 15±2 832±72
0.01 5679±8074 (10) 77±1 832±72
0.02 22177±19628 (10) 18±1 832±72
0.05 88391±113694 (2) 94±2 832±72

10000

true 123589±6232 (10) 48±12 2479±570
0.01 63683±66898 (10) 64±6 2479±570
0.02 85244±101769 (10) 82±1 2479±570
0.05 14093±12510 (2) 103±7 2479±570

Child5

1000

true 4±0 (10) 3±0 71±14
0.01 67±0 (10) 68±0 71±14
0.02 8±0 (10) 8±0 71±14
0.05 110±1 (10) 109±0 71±14

10000

true 9±0 (10) 8±0 217±16
0.01 90±0 (10) 89±0 217±16
0.02 51±1 (10) 50±0 217±16
0.05 25±1 (10) 23±0 217±16

Child10

1000

true 16±0 (10) 9±1 799±129
0.01 102±1 (10) 97±0 799±129
0.02 77±2 (10) 73±0 799±129
0.05 94±2 (10) 89±0 799±129

10000

true 26±0 (10) 22±1 1729±147
0.01 73±2 (10) 71±1 1729±147
0.02 118±2 (10) 118±1 1729±147
0.05 73±1 (10) 74±0 1729±147

Table 7: Running time of ECOS, MMHC, and HC for each experimental condition in seconds
(mean± standard deviation). The numbers in the second parentheses for ECOS repre-
sent the number of times ECOS could finish in ten data sets within two days.

306

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

5. Discussion and Conclusion

We presented a new BN learning algorithm that finds the optimal network given a structural con-
straint, the super-structure. Our algorithm decomposes the super-structure into several clusters and
computes optimal networks on each cluster for every ancestral constraint in order to ensure acyclic
networks. Experimental evaluations using extended Alarm, Insurance, and Child networks show
that our algorithm outperforms state-of-the-art greedy algorithms such as MMHC and HC with a
TABU search extension both in terms of the BDeu score and SHD.

It may be possible to develop methods to further increase the feasibility of ECOS; we suggest
some ready-to-apply tunings that should make our algorithm faster. First, the algorithm is highly
parallelizable since each call to ACOS can be made independently. Further, one could apply a
similar shrinkage technique to the interior nodes of the block tree as well if theyare of a small size.
The algorithm may also benefit from using ECOS recursively instead of ACOS or applying a COS
search on the unbreakable clusters rather than a full OS (as is the current case with ACOS). Finally,
limiting the maximal size of parent sets by a constantc, as proposed in Section 3.6, improves the
feasibility of ECOS because it may also reduce the number of TDMs to consider in some cases. In
terms of quality of the learnt network, the best improvements may be realized bydeveloping better
algorithms to learn super-structures; in fact, improvements in speed may also be obtained.

If there exist many edges between strongly connected components in the skeleton, the clusters
obtained have too many cluster edges; this is usually the main bottleneck of our algorithm that limits
its the feasibility. We should emphasize the fact that IT approaches add false-positive edges to the
skeleton according to the specified significance level when learning the super-structure. Therefore,
although the true skeleton may be well structured (i.e., the true skeleton can beclustered with a small
number of cluster edges), the false-positive edges tend to be cluster edges and limit the feasibility
of ECOS. For example, the super-structure of Insurance10 obtained with α = 0.05 has a smaller
average degree than the true skeleton; however, our algorithm did not finish the computation in two
days. In addition, since the current version of ECOS depends on a super-structure estimated by the
conditional independence test (MMPC), a causal relationship violating faithfulness, for example,
XOR parents, can be missed.

We now consider whether our method is practically different from the one suggested by Fried-
man et al. (1999) and whether it is more efficient. Although we can argue that our method has been
implemented and tested practically, it is also obvious that both strategies are different since ECOS
can be applied on a skeleton that is not only decomposable in cluster trees but also decomposable
in cluster graphs. For example, we converted the true skeleton of Alarm5 intoa cluster tree. The
true skeleton was decomposed into nine clusters, the largest of them containing 34 vertices and 20
cluster edges. This is not computable for an optimal search, and therefore, the method proposed by
Friedman et al. (1999) would not be able to consider this case; such a case motivated us to relax the
tree structure condition between clusters. Following the experimental results, we conclude that our
approach, that is, decomposing the search on every cluster, succeeded in scaling-up the constrained
optimal search.

307

KOJIMA, PERRIER, IMOTO AND M IYANO

Acknowledgments

We would like to thank Andŕe Fujita and Masao Nagasaki for their helpful comments in the initial
stage of this work. Computational resources were provided by the Human Genome Center, Institute
of Medical Science, University of Tokyo.

Appendix A.

Given a clusterC and a TDMδ (i.e., the correspondingV in
C,δ andVout

C,δ sets), we define for every
possible NACSA .

Definition 7 (NACS template) The NACS template ofA is a finite list of pairs of positive integers
{(I1,O1), · · · ,(Il ,Ol)} such that|Vout

C,δ | ≥ O1 > · · · > Ol ≥ 0 and there are exactly Ik in-vertices vinj
such that|A(vin

j)|= Ok.

For example, let us consider the following NACSA with V in
C,δ = {vin

1 , . . . ,vin
6 } and Vout

C,δ =

{vout, . . . ,vout
3 } defined by

A(vin
1) = {vout

1 ,vout
2 ,vout

3 },
A(vin

6) = {vout
1 ,vout

3 ,vout
3 },

A(vin
2) = {vout

1 ,vout
3 },

A(vin
4) = {vout

3 },
A(vin

3) = {vout
3 },

A(vin
5) = ø.

Here, we arranged the AC sets by size to illustrate the fact that due to the definition of NACS, two
in-vertices having the same size of ancestral constraint actually have the same ancestral constraint.
The NACS template ofA is

{(2,3),(1,2),(2,1),(1,0)}.

Further, following the definition of the NACS template, we have trivially that∑l
i=1 Ii = |V in

C,δ|. Be-
cause every NACS admits a unique NACS template, templates define a partition of the space of
NACS. Given the template{(I1,O1), · · · ,(Il ,Ol)}, there exist

(

|Vout
C,δ |

O1

)

×

(

O1

O2

)

×·· ·×

(

Ol−1

Ol

)

different ways to assign the out-vertices and
(

|V in
C,δ|

I1

)

×

(

|V in
C,δ|− I1

I2

)

×·· ·×

(

|V in
C,δ|−∑l−1

i=1 Ii
Il

)

different ways to assign in-vertices. The product of these two values gives the number of NACSs
corresponding to this template. All these NACSs can be generated by a bruteforce method that con-
siders every possibility. Next, we introduce an algorithm that generates anordered list of all NACSs
by considering each template successively, starting from(|V in

C,δ|,0) and ending with(|V in
C,δ|, |V

out
C,δ |).

Algorithm 7: NACS Enumerator
Input: A set of in-verticesV in

C,δ and a set of out-verticesVout
C,δ

Onput: List of NACSs,L

308

OPTIMAL SEARCH ON CLUSTEREDSTRUCTURAL CONSTRAINT

1. Initialize an empty list of NACSsL.

2. Initialize a NACS templateNT to (|V in
C,δ|,0) andl to 1.

3. While true, do:

(a) Put all the NACSs havingNT as template at the end ofL.

(b) If NT = {(|V in
C,δ|, |V

out
C,δ |)}, returnL.

(c) If l > 1 andOl−1 = Ol +1, incrementIl−1, otherwise insert(1,Ol +1) in NT
immediately before(Il ,Ol) and incrementl .

(d) DecrementIl and setOl to 0.

(e) If Il = 0, remove(Il ,Ol) from NT and decrementl .

First, we define an order relation for the templates; we say that(Ii ,Oi) > (I ′j ,O
′
j) if Oi > O′j or

Oi = O′j andIi > I ′j . Then, we say that a NACS templateNT is greater than anotherNT′ if (I1,O1) >

(I ′1,O
′
1) or (I j ,O j) = (I ′j ,O

′
j) for every j < k and(Ik,Ok) > (I ′k,O

′
k). We note that ifA1 > A2, then

the template ofA1 is greater than that ofA2. Therefore, to prove that Algorithm 7 is correct, we
simply need to prove that it considers every template in increasing order, that is, that the loop of step
3 generates the successor of a given templateNT. Given the constraint that the sum of allIk is |V in

C,δ|,

there exist three different cases. IfNT is of a sizel = 1, thenNT = {(|V in
C,δ|,O1)} and the following

template is{(1,O1+1),(|V in
C,δ|−1,0)}, as done in steps (c) and (d). Otherwise, in a similar manner

to the previous case, ifOl−1 6= Ol +1, the next template will be{(I1,O1), · · · ,(Il−1,Ol−1),(1,Ol +
1),(Il −1,0)}, as in Algorithm 7. Finally, in general,Ol−1 = Ol +1 holds, and we simply need to
incrementIl−1, decrementIl , and resetOl to 0. After decrementingIl , it is possible thatIl = 0, in
which case the last element should be removed. Since Algorithm 7 accessesthe direct successor of
NT at each step starting from the smaller template(|V in

C,δ|,0) until the largest one, we can assert its
correctness.

References

C.F. Aliferis, I. Tsamardinos, and A. Statnikov. Causal Explorer: A probabilistic network learn-
ing toolkit for discovery.The 2003 International Conference on Mathematics and Engineering
Techniques in Medicine and Biological Sciences, 2003.

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The ALARMmonitoring system: a
case study with two probabilistic inference techniques for belief networks.Proceedings of 2nd
European Conference on Artificial Intelligence in Medicine, 247–256, 1989.

J. Binder, S. Russell, and P. Smyth. Adaptive probabilistic networks with hidden variables.Machine
Learning, 29:213–244, 1997.

D.M. Chickering. Learning equivalence classes of Bayesian-networkstructures.Journal of Machine
Learning Research, 2:445–498, 2002.

R.G., Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter.Probabilistic Networks and Expert
Systems. Springer, Berlin, 1999.

309

KOJIMA, PERRIER, IMOTO AND M IYANO

C.P. de Campos, Z. Zheng, and Q. Ji.The 26th International Conference on Machine Learning,
2009 (in press).

R. Diestel.Graph Theory 3rd edition. Springer, Berlin, 2005.

N. Dojer. Learning Bayesian networks does not have to be NP-hard.Proceedings of Mathematical
Foundations of Computer Science, 305–314, 2006.

N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure from massive dataset:
The “sparse candidate” algorithm.The 15th Conference on Uncertainty in Artificial Intelligence,
196–205, 1999.

M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks.Journal of
Machine Learning Research, 5:549–573, 2004.

M.E.J. Newman and M. Girvan (2004). Finding and evaluating community structure in networks.
Physical Review E, 69(22):26113–26113.

S. Ott, S. Imoto, and S. Miyano. Finding optimal models for small gene networks. Pacific Sympo-
sium on Biocomputing, 9:557–567, 2004.

E. Perrier, S. Imoto, and S. Miyano. Finding optimal Bayesian network given a super-structure.
Journal of Machine Learning Research, 9:2251–2286, 2008.

T. Silander and P. Myllym̈aki. A simple approach for finding the globally optimal Bayesian network
structure.The 22nd Conference on Uncertainty in Artificial Intelligence, 445–452, 2006.

A. Singh and A. Moore. Finding optimal Bayesian networks by dynamic programming (Technical
Report). Carnegie Mellon University, 2005.

J. Suzuki. Learning Bayesian belief networks based on the MDL principle: An efficient algorithm
using the branch and bound technique.IEICE Transactions on Information and Systems, 356–
367, 1999.

I. Tsamardinos, L.E. Brown, and C.F. Aliferis. The max-min hill-climbing Bayesian network struc-
ture learning algorithm.Machine Learning, 65(1):31–78, 2006.

I. Tsamardinos, A. Stantnikov, L.E. Brown, and C.F. Aliferis. Generatingrealistic large Bayesian
networks by tiling.The 19th International FLAIRS Conference, 592–597, 2006.

310

