Journal of Machine Learning Research 11 (2010) 285-310 Stdair/09; Revised 10/09; Published 1/10

Optimal Search on Clustered Structural Constraint for Learning
Bayesian Network Structure

Kaname Kojima KANAME @IMS.U-TOKYO.AC.JP
Eric Perrier PERRIER@IMS.U-TOKYO.AC.JP
Seiya Imoto IMOTO@IMS.U-TOKYO.AC.JP
Satoru Miyano MIYANO @IMS.U-TOKYO.AC.JP
Human Genome Center, Institute of Medical Science

University of Tokyo

4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Editor: David Maxwell Chickering

Abstract

We study the problem of learning an optimal Bayesian networl constrained search space;
skeletons are compelled to be subgraphs of a given undiregtph called the super-structure.
The previously derived constrained optimal search (CO®aies limited even for sparse super-
structures. To extend its feasibility, we propose to divide super-structure into several clusters
and perform an optimal search on each of them. Further, torerecyclicity, we introduce the
concept of ancestral constraints (ACs) and derive an optahgarithm satisfying a given set of
ACs. Finally, we theoretically derive the necessary anéigant sets of ACs to be considered for
finding an optimal constrained graph. Empirical evaluatidemonstrate that our algorithm can
learn optimal Bayesian networks for some graphs contaisgnwgral hundreds of vertices, and even
for super-structures having a high average degree (up ©, fahich is a drastic improvement in
feasibility over the previous optimal algorithm. Learntwerks are shown to largely outperform
state-of-the-art heuristic algorithms both in terms ofrea@nd structural hamming distance.

Keywords: Bayesian networks, structure learning, constrained gtamarch

1. Introduction

Although structure learning is a fundamental task for building Bayesianank$nBNs), when
minimizing a score function, the computational complexity often prevents usffratimg optimal
BN structures (Perrier et al., 2008). With currently available exact efgos (Koivisto et al., 2004;
Ott et al., 2004; Silander et al., 2006; Singh et al., 2005) and a decobipasaore like BDeu,
the computational complexity remains exponential, and therefore, suclitlalgerare intractable
for BNs with more than around 30 vertices given our actual computatiapdaty. For larger
systems, heuristic searches like greedy hill-climbing search (HC) or custdnagrsions of this
search are employed in practice (Tsamardinos et al., 2006).

Recently, Tsamardinos et al. (2006) proposed an algorithm called maxthilirhbing
(MMHC) that combines an independence test (IT) approach with a 4=wed search strategy:
first, an undirected graph is built based on an IT approach, and thesnstrained greedy hill-
climbing search returns a local optimum of the score function. Thus, MM&lCbe considered as
a constrained search, a concept introduced by Friedman et al. (t@@@her with the sparse can-

(©2010 Kojima, Perrier, Imoto and Miyano.

K0JIMA, PERRIER, IMOTO AND MIYANO

didate (SC) algorithm. Such algorithms have been empirically shown to outeufaconstrained
greedy hill-climbing (Friedman et al., 1999; Tsamardinos et al., 2006).dBas¢éhe success of con-
strained approaches, Perrier et al. (2008) proposed an algorithoathiearn an optimal BN when
an undirected graph is given as a structural constraint. Perrier @08B) defined this undirected
graph as a super-structure; the skeleton of every graph considecethpelled to be a subgraph
of the super-structure. This algorithm can learn optimal BNs containing 6@ t@rtices when the
average degree of the super-structure is around two, that is, & sprarstural constraint is assumed.
However, its feasibility remains limited.

Independently, Friedman et al. (1999) suggested that when the stdumtostraint is a directed
graph (in the case of SC), an optimal search can be carried out on #terditee extracted from
the constraint. This cluster-based approach could potentially increadeatibility of optimal
searches; nevertheless, the algorithm proposed in Friedman et &) (E2fuires to be given a
directed graph-based constraint and to extract a cluster tree. Fottdreddarge cluster might be
generated, preventing an optimal search from being carried out.

Another potential approach is to search the best BN by checking the tkattained by with-
drawing edges in cycles one-by-one, beginning from an initial netwaiikinis build by connecting
children and their optimal parents with directed edges without checkindieityas in B&B al-
gorithm (de Campos et al., 2009). However, children in the best BN &ea stlected as the best
parents without considering acyclicity if the size of a given data set iscmirffi Thus, for the
estimation of the best BN of more than hundred vertices and sufficientalaales, the initial net-
work may contain hundreds of small cycles, and it is impossible to check tlyekss in the search
process.

In this study, we take up the concept of a super-structure constraimtrapose a cluster-based
search algorithm that can learn an optimal BN given the constraint. Trereflike in Friedman
et al. (1999), our algorithm uses an undirected graph as the struotungttaint. In addition, we use
a different cluster decomposition that enables us to consider more conggles. AAs Tsamardinos
et al. (2006) and Perrier et al. (2008) showed, good approximatiaihe drue super-structure can
be obtained by an IT approach like the max-min parent-children (MMPC) rd€ffgamardinos et
al., 2006).

If the super-structure is divided into clusters of moderate size (arotindrlices), a constrained
optimal search can be applied on each cluster. Then, to find a globally ogtiamdl, one could con-
sider all patterns of directions for the edges between clusters and apmphgtained optimal search
on each cluster for every pattern of directions independently and retarbest result found. We
theorize this idea by introducing ancestral constraints; further, wealgr® necessary and sufficient
ancestral constrains that we must consider to find an optimal network @adunoe a pruning tech-
nigue to skip superfluous cases. Finally, we develop a super-stracinsgained optimal algorithm
that extends the size of networks that we can consider by more thanaere or

The performance of our algorithm is evaluated on the Alarm, InsuramceCaild networks
(Beinlich et al., 1989; Binder et al., 1997; Cowell et al., 1999) extendedhb tiling method
(Tsamardinos et al., 2006) to obtain networks having several hundfegstices. Experiments
show that our algorithm clearly outperforms MMHC and HC with the TABU skaxtension.

286

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

2. Related Works

Given dataD for a set of random variablas, learning an optimal BN using a decomposable score
like BDeu involves finding a directed acyclic graph (DAS) such that

" =argryiny v Pa(v):D) (1)

ve

wherePay (V) CV is a set of parents for a vertexn networkN ands(v, Pay(v); D) is the value of
the score function fov in N. Hereafter, we omit the subscrijtfor PaandD for s. In this section,
we introduce some structure learning algorithms to show the motivation of seaneh.

2.1 Optimal search

Although finding a global optimum, that is, a solution of (1), is NP-hard, sdwgptimal algorithms
have been developed (Koivisto et al., 2004; Ott et al., 2004; Silandér 28006; Singh et al., 2005).
The time complexity has been successfully reduced(t®2"), wheren is the number of vertices in
BN (i.e.,|V| =n).

2.2 Hill-climbing

For learning a larger system, heuristic algorithms must be used. Greedjrhbivogy (HC) is one of
the most commonly used algorithms in practice. HC only finds local optima, anddgd)versions
of this base algorithm have been extensively studied, leading to some impgnta the score and
structure of the results (e.g., by using a TABU list).

2.3 Sparse Candidate

To improve HC, Friedman et al. (1999) limited the maximum number of parentsesiritted the
set of candidate parents for each vertex. They established SC algarithintroduced the concept
of constraining the search space of score-based approaches.

2.4 Max-min Hill-climbing

MMHC is a hybrid method combining an IT approach and a score-basechs&#eaategy. Tsamardi-
nos et al. (2006) showed that on average, MMHC outperforms otheistie approaches including
SC and HC.

2.5 Constrained Optimal Search

In SC and MMHC, the learnt structures are local optima. Perrier et &d8)2ftended the optimal
algorithm of Ott et al. (2004) and established a constrained optimal séaf@8) that learns an
optimal BN structure whose skeleton is a subgraph of a given undirecapth@ = (V,E) called
the super-structure, that is, COS aims to fi¥jg] the solution of (1), while constrainingan (v) to
be included irA\((v), whereA/(v) is the neighborhood of in G. Although using a super-structure
increases the feasibility of optimal searches, COS is still limited when the stupeture is dense
(high average degree).

287

K0JIMA, PERRIER, IMOTO AND MIYANO

2.6 Optimal Search with Cluster Tree

Friedman et al. (1999) suggested the possibility of optimally searching asydigraphs of a di-

graph constructed by connecting each vertex and its pre-selectediatnparents with directed
edges without checking acyclicity. Here, unlike MMHC and COS, the stractwonstraint is rep-

resented by a directed graph. An algorithm would proceed by convehindigraph into a cluster
tree, where clusters are densely connected subgraphs. Then|dtpestorm an optimal search on
each cluster for every ordering of the vertices contained in the sepaddtdusters. However, due
to the difficulty of building a minimal cluster tree, large clusters can make thels@apractical.

2.7 B&B Algorithm

Recently, de Campos et al. (2009) proposed an optimal branch-amdHadgorithm. This algo-
rithm constructs an initial directed graph by linking every vertex to its optimadnia although this
might create directed cycles. Then, it tries to search every possiblencesgech the direction of
one edge comprising each directed cycle is constrained for keepinficdgyand finds optimal
parents under the constraints iteratively until DAGs are obtained. Aftezdh®pletion of the full
search, the optimal solution is finally given by the best DAG found. In addifmr score functions
decomposable into penalization and fitting components, optimal parents uedssritraints are
further effectively computed using a branch-and-bound techniquemdsoriginally proposed by
Suzuki et al. (1996). This method is interesting in that it is original and alkhesdevelopment
of an anytime search that returns the best current solution found amglpem bound to the global
optimum. When the sample size is small, few directed cycles occur in the initial dirgc@h
and updated graphs because information criteria tend to select a smadlet getrfor each vertex
in small sample data (Dojer, 2006). However, for a large sample size, dhe taccurrence of a
large number of directed cycles, the complexity of this method can be practiaaibe than classic
optimal searches.

Thereafter, we will consider the same problem as in the COS approatis,ttafind Ng, an
optimal BN constrained by the super-struct@e= (V,E), an undirected graph. In our case, we
propose a cluster-based search to reduce the complexity drasticallychesters are of a different
nature from the ones in Friedman et al. (1999), as shown in the nextrsectio

3. Edge Constrained Optimal Search

In this section, we describe procedures of the proposed algorithm itt@bap manner. Under
the assumption that the skeleton is separated to small subgraphs, wedmsbeehe definition
of ancestral constraints for each subgraph and consider an algdatlearn an optimal BN on a
subgraph under some ancestral constrains. We then explain the yresdd order to efficiently
build up an optimal BN on the skeleton by using information of optimal BN on eabbgraiph under
the conditions of ancestral constraints to be considered.

3.1 Ancestrally Constrained Optimal Search for A Cluster

Hereafter, we assume that we are given a set of efiges E such that the undirected graph
G~ = (V,E\ E7) is not connected.

288

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

Figure 1: An example of a super-structure to illustrate the definitions we inénagluced. The
edges of™ are dashed and they define a clusl€gray). o indicated by arrows is one
of the 32 TDMs possible oveE® that define&/s = {vi,vo} andV2y = {ug, Uz}

Definition 1 (cluster and cluster edges)Let C= (¢, Ec) be a maximal connected component of
G~. We refer to C as alusterand call E* ¢ E~ containing all and only the edges incident to a
vertex in \¢ theset of cluster edgdsr C.

Definition 2 (tentative direction map) Given a set of edges®E we define aentative direction
map (TDM)3 on E© as a set of paird(e,d),ec E€ and de {«,—}} such that foive ¢ EC, there
uniquely exists d such thét d) € &. In other wordsp associates a unique direction with each edge
in EC.

In the following sections, we show that by successively considering @assibled onE~ and
learning the optimal BN on each cluster independently we can reconblgudtiowever, to avoid
creating cycles over several clusters, our method has to considerjatighible ancestral constraints
for a cluster, a notion that we introduce hereafter.

Definition 3 (in-vertex and out-vertex) Considering a cluster C and a TDRion EC, we define
Vs and \2§ as Wy = {ve V\Ve | Fva € Ve, ({V,Va}, —) € 8} and \Eg = {ve Ve [va €V \
Ve, ({V,Va}, —) € 8}, respectively. We drop the subscripts C @&wthen there is no ambiguity. We
call ve Vs anin-vertexand ve V24, anout-vertex

Figure 1 illustrates the previously introduced definitions. In this section ssemeC andd to
remain constant.

Definition 4 (ancestral constraints) Anancestral constraint (AG$ a pair (v,u) with ve V(‘:”6 and
ue VCO%‘ that is used to disable v as an ancestor of u. #die a set of ancestral constrainta&CS),

289

K0JIMA, PERRIER, IMOTO AND MIYANO

and 4(v) be the set of all out-vertices guch that(v,u;) € 4. We say thatq is a nested ancestral
constraint set (NACSIif and only if for any ¥ and \, in Vc”é, A(Va) C A(wp) or A(Va) 2 A(Vp)
holds. Finally, given two ACSg and B, if Vv € V(':”a, we have thati(v) C B(v), and we say thaB
is stronger than or equal t@ and denote this relation ag < B.

Finally, we recall the definition of a topological ordering and some noticiasee to it.

Definition 5 (telinearity and A4-linearity) Given an orderingr (i.e., a bijection of{|1,n|] in V),
we say that it is a topological ordering of a BN N if for every v(Wais included in R(v) = {u €
V | r(u) < rl(v)}, the set of the predecessors of v; in such a case, N is saidndibear. Given
an ACS4 and a BN N, we say that N i&-linearif and only if it respects all ACs iti. In addition,
in the case of a NACS, there exists a topological orderiimg N such that'v € VCi% andvu e 4(v),

1 (u) < ri(v) holds.

For notational brevity, ift™(u) < 1(v) holds for two verticess andu, we hereafter write
u <q V. Using the previous definitions, we can now prove the validity of our agugro

Theorem 1 There exist®* on E- and NACSs3* for every cluster Cof G~ coherent with a global
optimal BN N;. In other words, we can obtaind\oy considering the separately obtained optimal
BN for every cluster, NACS, and TDM possible.

Proof We consider an optimal DAGIS and one of its topological orderings. There exists a
unique TDMd* coherent withi'. From &, we define for every clustet; the ACS4" such that
Vv e V'”&,ﬂl‘*(V) = Pr()mvgug* 47 are definitely NACSs since for evemy andw, € V(';”&
if Va <1 Vb, then by deflnltlonﬂlI (Va) € 4*(wp). Further, the subgrapH$* of N§ on the sets
Vi =V UVc".]a* are4;-linear (because the definition gf* is based omt*). Furthermore, eacN" is

an optimal graph ol UV'”& given the constraints & andZ* (otherwise, we could build a DAG
having a lower score thaNG) Therefore, if we independently compute an optimal BN for every
cluster, for every TDM and every NACS, and return the best combinattercan build a globally

optimal BN onV. []

From Theorem 1, the ACS to be considered is limited to only NACS,Nghdan be obtained
by searching the best combination of an optimal BN separately obtainedeoy @uster and for
every NACS and every TDM. Figure 2 shows the flowchart of the $estrategy of our approach.
First, an optimal BN and its score on every cluster for every NACS ang/éV@M are computed.
Then, by using this information, an optimal BN and its score on a cluster obdthinemerging two
clusters are computed for every NACS and every TDM. After the redeaimputation of optimal
BNs and scores on merged clusters, an optimal BN and its score on a dugjks covering the
super-structure are finally obtained. The details and validity of the algorghown in the flowchart
are discussed in later sections.

The fundamental step involves learning an optimal BN on a cl@fer a givend and 4; we
call this algorithm ancestrally constrained optimal search (ACOS). Taibbest, we need to recall
some functions defined in optimal search algorithm by Ott et al. (2004)ehenvwe prefer to use
the notations introduced by Perrier et al. (2008) for the sake of simplicity.

290

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

Super-structure is decomposed
into small subgraphs called
clusters (Section 3.4)

v
4 .
[Pruning constrained search (Algorithm 3): } Construct F;and F,, (Algorithm 1);
== =

an optimal BN and its score for every cluster, Ancestrally constrained optimal

every NACS, and every TDM are computed L search (Algorithm 2)

Callfor computation

Cluster Assembler (Algorithm 5): a Merged cluster (Algorithm 4):
Clusters are assembled into a single - An optimal BN of a merged cluster
cluster and an optimal BN for the single and its score for every NACS and
cluster and its score are obtained _ every TDM are computed

Callfor computation

An optimal BN on the super-structure and
its score are obtained

Figure 2: Flowchart of algorithms for the computation of an optimal BN on &ssfyucture. The
details of these algorithms are discussed in later sections.

Definition 6 (Perrier et al. 2008) For every ve V and every XC A((v), we define F(v, X) as being
the best parent set for v included in X ang\£X) as the associated score:

F(WX) = mins(vPa),
at
Fo(v,X) = argpg&i)r(]s(v, Pa).

Further, considering a cluster @, and 4, for every XC V¢, we definéﬂ(x) to be the best score
possible for a DAG over Iz(JVC'rf23 that satisfies? (the scores of the vertices if\Vare not considered),

andﬂ?(x) to be the last element of a topological ordering (restricted to X) of an opidA& over
X UVZ; that satisfies? (given the constraints). Later, the subscripis omitted.

We first introduce an algorithm described in Perrier et al. (2008) thatiledesFs andF, using
dynamic programming and then explain how we adapt the calculatisarmd/ to satisfy the TDM
and the NACS.

Algorithm 1: Calculaters andF, (Perrier et al., 2008)
Input: Score functiors and super-structuré
Output: FunctionsF, andFs

1. Setrs(v,8) =s(v,@) andF, =@ forallve V.

201

K0JIMA, PERRIER, IMOTO AND MIYANO

2. ForallveV and allX(# g) C A (v) \ {v}, compute

u* = arg Sg(nFs(V,X \ {u}),

F(vX) = min{s(v,X),F(uX\ {u}},
B X if s(v,X) < F(v, X\ {u*})
Fo(v,X) = {Fp(v,x\u*) otherwise '

Note that the in-vertices are considered differently in our algorithm; thegrelithve no parents or
fixed parents, and can only be parents of few verticegidepending ord. Thus, although the
DAGs considered in the following algorithm are optimal ¥ V(‘:rfa, the score oW € VC‘% (that
is fixed depending o) is not counted irs(X) since it is the same for every DAG irrespective of
whether it is optimal or not.

From Theorem 1, the only orderingssuch thatu < v for everyv VC"_‘6 andu € 4(v) are to
be considered. Therefore, fare Vc andv € Vg‘a, v can be a parent of if and only if v < w,
implying u < w for everyu € 4(v). Therefore, we do not need to considavc"_‘é in our ordering
since we can infer whethercan be a parent ol by checking if it is ordered after all nodes in
A(v). We define for everX C V¢ the associate s€1C(X) = XU {v e Vc"je-> | 4(v) C X}; in other
words, for a given topological orderingover X, the possible parents X UVC‘% ofwe X arein
PC(Pr(w)) N A’(w). Using this result, we can present ACOS:

Algorithm 2: AncestrallyConstrainedOptimalSearch

Input: ClusterC, TDM 8, NACS A4, super-structur&, and functiong=, andFs (previously
computed)

Output: Optimal BN under4, 9, G, and its scores(Vc)

1. Sets(g) = and/(9) = @.
2. ForallX (# @) C\, do:

(2) Compute(X) = argminex {Fs(v, PC(X\ {v}) NAL(V)) +8(X \ {v})}.
(b) Defines(X) as the minimal score obtained during the previous step.

3. ConstructN*, an optimal4-linear BN ovelc, usingF, and/, and returrN* and its score
S9!

In Algorithm 2, the computation ofs andF, is carried out during preprocessing because it does
not depend od and 4. Step 3 can be completed in linear timeniand is presented in Perrier et al.
(2008). To prove the correctness of ACOS, we explain the computatibmddtep (a).

Theorem 2 Given C,d, and 4, ACOS constructs an optimal constrained BN 0\(3@\#0"_‘5.

Proof First, we recursively show on the size Xfthat the computation of ands’in Algorithm 2
respects their definition. Since the initialization in step 1 is correct, let us @msiet g such
that forvVy C X, §(Y) and/(Y) are well defined. For any € X, we would like to find the score
of the best DAG haviny as a sink (i.e.y is the last element of a topological ordering over
In that configuration, all nodes X \ {v} are predecessors uf and therefore, they are potential

292

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

Figure 3: If this graph is the best-linear DAG with 4 = {(v1,u1) }, since bothv; andv, are not
ancestors ofi; anduy, its strongest NACS i8 with B(v1) = B(vz2) = {u1,uz}. Therefore,
this graph is optimal for all seven NACSs included betwgeand B.

parents. Moreover, as stated previously: VC"}S such that4(w) C X\ {v} can also be a parent
of v while satisfying ACs. Consequently, after adding the structural consi@&ithe best score
for v is Fs(v, PC(X \ {v}) N A/(v)). Finally, sincev cannot be a parent of any nodesXn\ {v},

the best score over this set$6X\ {v}). Thus, step (a) of Algorithm 2 finds the best sink for
X and correctly defineg(X) ands(X). Finally, as explained in Perrier et al. (2008), we can re-
build an optimal orderingt* over\¢ by using? and obtain an optimal DAG by assignihg € V¢,

Pa(v) = Fp(V,PC(Pr (V)) NAL(V)). u

3.2 Pruning

Following Theorem 1, we know that ACOS has to be computed only for all 88\QAlthough the
number of NACSs can be shown to be less tA[EC|!) (because all NACSs can be generated
through orderings o (gn_auvg}g , it is experimentally worse than exponential in the number of
cluster edges. Fortunately, different NACSs frequently lead to the satimad networks, and
many NACS do not need to be considered. For the cluStand TDM & shown in Figure 1,
Figure 3 shows an optimal BN under NACS4 = {(v1,u;) }. Since bottv; andv, are not ancestors
of up anduy, its strongest NACS i = {(v1,U1), (V1,Uz), (V2,U2), (V2,U2) }. Therefore,N is an
optimal BN of seven NACSs betweet and B: {(vi,u1)}, {(va,us),(v2,u1)}, {(v1,u1),(v1,U2)},
{(va,u1),(ve,U2),(V2, un) b, {(Va,Un),(Va, U2),(V2, Uz) b {(Va, Un),(V2, U1),(V2, U2) b, {(Va, U, (Va, Uz),
(V2,u2), (V2,U2) }. The next lemma formally describes this observation.

Lemma l Let 4 be a NACS andB, an ACS such thaB > 4 and that an optimal-linear DAG
N* is alsoB-linear. Then\V.4’ such thatq < 4’ < B, N* is also an optimald’-linear DAG.

Proof Since4’ is more restrictive thatfl, an optimal4’-linear DAG N* verifies thats(N'*) >
s(N*). However, sincé* is B-linear, it is alsaZ’-linear; therefore, it is optimal argfN"*) = s(N*).
[|

293

K0JIMA, PERRIER, IMOTO AND MIYANO

By browsing the space of NACS in an order verifying thiaénd j if 4; < 4; theni < j, and by
using the previous lemma as a pruning criterion, we can considerablyeréuzioumber of NACSs
to which ACOS is applied. For a givéhandd, we consider a score-and-network (SN) nsag as
a list containing pairs of optimal scores and networks generated by By¥€e§s, not to be pruned.
We denote the set & 5 for all TDM as &.

Algorithm 3: PruningConstrainedSearch
Input: ClusterC and TDMd
Output: SN mapsx: 5

1. Initialize an empty set of NACSd and an empty SN maf: 5.
2. For every NACS7; (ordered such that<kif A4; < 4y), do:

(@) If 4 €U, i+ + and restart step (a).

(b) Otherwise, leartN*, an optimalZ;-linear DAG of scores*, using Algorithm 2.
(c) LetB be the ACS containing all ACs satisfiedNti.

(d) V4’ suchthatz < 4’ < 8,add4’ inU.

(e) Add the pair(N*,s") to & 5.

For enumerating ordered NACSs, see Appendix A. The following thestews the correctness of
PruningConstrainedSearch.

Theorem 3 For every NACS7, there is an optimal DAG inS.

Proof This is trivial since from Lemma 1, we have already found an optimal DEGor the NACS
4’ that are pruned (added tbin step (d)). |

3.3 Assembling Clusters

Next, we describe how the results of two clust€fsandC, are combined. The algorithm given
below builds a set of SN may® for the merged clustel out of &, and&;, (with Ve =V, UV,).

Algorithm 4: MergeCluster
Input: ClustersC; andC, and sets of SN maff§;, and<,
Output: Merged cluste€ and set of SN mapS:

1. DefineC = (V¢, UVe,, Ec, UEc, U (E©* NE®))
2. For every TDMd of EC, do:

(a) For every pair of TDM®; andd, of E© andE® that satisfy the following conditions:
Conditioni V(e d) € 9, then(e,d) € & (i=1 or 2),
Condition ii Ve€ E©*NE®, (e d) € 8, if and only if (e,d) € &,

i. For every pair of optimal networks and scof®g,s;) and(N;,s;) of &, 5, and
&, 5, respectively, do:

294

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

DefineN* = N; UN; ands" =s; +s,
If there exists a directed cycle M*, restart step i with the next pair.
Let 4 be the ACS containing all ACs satisfiedi.

If there exists an optimafi-linear network in&: 5 that has a score smaller
thans®, restart step i with the next pair.

E. Add the paifN*,s*) to & 5.
F. Remove every paiiN’,s') of & 5 such thalN’ is A4-linear ands’ > s".

oo w® >

The next theorem shows th&t 5 contains an optimal BN and its score for every NACS®n

Theorem 4 If for every pair of TDMs; andd, and for every NACS S5, and &, 5, contain pairs
of an optimal BN and its score, theg $constructed by Algorithm 4 contains a pair of an optimal
BN and its score for every NACS.

Proof First, we show that for every NAC% overC, we can build an optimafi-linear BN by
merging two optimal networks o@; andC, for some NACSs4; and 4,. To do so, for a given
TDM 9, let us consider a NAC$% for C, an optimalZ-linear BN N* of scores' and one of its
topological orderingst defined ovel/ (that is also in agreement withand). i is used instead
of 1 and 2. We definet' the ordering of the vertices i, derived fromrt*. Further, we calb
the TDM of ES derived fromTt'; we have tha®; and &; verify trivially conditions (i) and (ii)
stated in step (a) of Algorithm 4. Finally, we defitlg as a NACS foiC; such that forvv € V(i:?@,
A (V) = P (V) ﬂVCC:‘fgi. Given an optimalg;-linear network ofS;, 5 N and its scores’, let us con-
sider the grapiN’ = Ny UN3. This graph is acyclic since it is*-linear by construction. Further, its
scores = s; + s, is minimal for 4-linear; otherwise, one of thid* graphs would not be optimal.
Therefore, although’ might be different fronlN*, they both have the same score. Therefore, since
Algorithm 4 considers every coherent pairandd, (that verify conditions (i) and (ii)) and every
pair of NACS,&: 5 is correctly constructed. |

Given the previous algorithm, we simply need to merge all the clusters to obtaiptanal
DAG N¢ and its score, as explained in the following algorithm.

Algorithm 5: ClusterAssembler
Input: Set of all clusterg”
Output: Optimal BNNg and its score*

1. VC € ¢, computeX: using Algorithm 3 for every.
2. While|C| > 1, do:

(@) Select a pair of cluste@ andC;, such that(E“t UE®) \ (E¢+ N E®2)| is minimal.
(b) Compute the cluste€® andS: by mergingC; andC, using Algorithm 4.
(c) RemoveC; andC, from ¢, and addC to C.

3. SinceG is the last element i@, returnNg ands®, the sole pair stored ifg g.

295

K0JIMA, PERRIER, IMOTO AND MIYANO

Figure 4: An example of super-structure shrinkage. A bloek (\c,Ec) (gray) can be separated
from the rest of the super-structure by the removal of a cut-veréeY:. Arrows indicate
the unique TDMdx for X = {a,a,}.

The correctness of Algorithm 5 is directly derived from Theorem 4a)ndlthough we do not prove
that the complexity is minimal by merging the clusters that imply less cluster edgdseforerged
cluster at each step, we decided to use this heuristic. This is becauseiplexity depends on the
number of cluster edges in Algorithm 4; therefore, it is faster to alwayspukate a cluster with a
small number of cluster edges.

3.4 Preprocessings

In this section, we describe a preprocessing that can drastically réuitiene complexity of our
method and the heuristic we used to select the edggEs in

3.4.1 SUPER-STRUCTURESHRINKAGE

First, we introduce the notions of a block and a block tree of an undirectgzhg Their formal
definitions are described in Diestel (2005). A block is a biconnectedraphgf the undirected
graph, and vertices in the intersection of blocks are called cut-vertiasstithe removal of cut-
vertices separates blocks. A block tree is a tree comprised of blockstaegend cut-vertices as
edges. We here show leaves of a block tree of the super-structuteeaamoved if their size is
small. Let us consider the case shown in Figure 4 where a leek\c, Ec) of the super-structure
G can be separated by withdrawing a cut-verex\c and thaC is of a moderate sizé\(c| < 30).
Then, all edges$v,w), wherew ¢ \, are considered as cluster edges; becausewislgonnected
to cluster edges, no cycle can be created while merging an optimal \pAGverVc with another
cluster; otherwise, it would imply that there is a cycleNf. Therefore, there is no need of AC and
we propose to process this case in a different manner. For everyd, b learn an optimal DAG
N and its scores; overVc. Then, we replac€ by a single vertex in G to obtain the condensed
super-structur&. For every candidate parent $€bf ¥in G (i.e., VX C A((v) \), there exists the
uniqgue TDMdx corresponding t&€. For example, if a candidate parent ¥eis set to{a;,ax} in

296

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

Figure 4, unique TDMx for cluster edge$v,a;), (v,az), (v,as), and(v,a4) is indicated by arrows.
Using this observation, we redefiftigon v to beFs(V,X) = S5, andFp to beFp(9,X) = N;,; here,

Fp is used not only to store the optimal parent sewof X U (Vc N A((v)) but also to save the
optimal network oveC. We can repeat this technique to shrink every small subgraph sephyated
the removal of a single vertex B during preprocessing. This can lead to a drastic reduction of

complexity in some real cases, as discussed later.

3.4.2 RARTITIONING THE SUPER-STRUCTURE INTOCLUSTERS

To apply our algorithm, we need to select a set of edgjeshat separates the super-structure into
small strongly connected subgraphs (clusters) having balanced raiofhartices while minimiz-
ing the number of cluster edges for each cluster. Such a problem is cadlpd gartitioning. In
our case, we employed an algorithm based on edge betweenness cethtiblitgrks efficiently for
practical networks (Newman et al., 2004).

3.5 Resulting Algorithm

We summarize all results presented thus far in the following algorithm thatsl@easaoper-structure
constrained optimal network and its score.

Algorithm 6: EdgeConstrainedOptimalSearch (ECOS)
Input: Super-structur& = (V,E) and dateD
Output: Optimal constrained B and its score"

1. ¥v eV andVvX C A((v) computeFs(v, X) andFp(V, X).

2. Shrir)k every block possible i@ to obtain a shrunk super—structtéeand the function$s
andFp.

. SelecE~ using the graph partitioning algorithm and obtain the set of all clugters

. VC € C andVd; apply Algorithm 3 and obtain the set of SN més

g b~ W

. Merge all clusters using Algorithm 5 to obteﬁ@ and its score®.

6. Expand the subgraphs shrunk during step 2 to olNgin

Note that after the eAxpansion of shrunk subgraghsloes not change as the scores for these sub-
graphs are packed i,

3.6 Complexity

In this last section, although it is hardly feasible to derive the complexity abtlgm 6 in a general
case because it strongly depends on the topology of the super-strustd, we propose an upper
bound of the complexity depending on a few characteristids.dubsequently, we describe some
practical generic structures to which ECOS can or cannot be profitabljed. We then present
an empirical evaluation of the algorithm over randomly generated netwodkeeal networks, with
promising results being found for the latter.

Considering step 1 of ECOS, after defining the maximal degreg afm= m%x|9\[(v) , we
ve

obtain that the number of scores calculated is upper bound@id®"). This is actually the main

297

K0JIMA, PERRIER, IMOTO AND MIYANO

reason for using a structural constraint because the fundiipasdFs can be computed in a lin-
ear time for bounded degree structufes< 30). Actually, this is feasible even for larga if an
additional constraint on the number of parenis added, the complexity becomi@nnf).

Next, if ny is the size of the largest cluster that has been shrunk (this is a tunablegterg
and considering that at maximum, the number of cluster edges of a shrurkrilis m— 1 and
the number of TDM is %, given the exponential complexity of calculatiagrid?, we find that the
complexity of step 2 is bounded I§(b2™-12"), whereb is the number of blocks shrunk. In other
words, ifny is tuned suitably, step 2 has negligible complexity as compared to the subtstgyosn
Similarly, step 3 is negligible since its complexity is only polynomiahi(O(mn?)).

However, step 4 requires a more detailed analysis. Givenwve definen, = maxcec [Vc|, the
size of the largest cluster, akd= maxec - |[E€|, the largest number of cluster edges. The complexity
of ACOS is trivially bounded byO(2"%). Further, because the number of NACS is less than the
number of permutations ovet" UVOU for a given TDM, we have that for every cluster, ACOS is
applied at maximunk!2 times. We derive an upper bound complexity for step ©&g"k12%),
whereq is the number of obtained clusters. Note, however, that the factorial tguerientally
appears to be largely overestimated and that ACOS may actually be complyted{ pf) times for
somef > 2.

Finally, at worst, step 5 involves trying every pair of entries in two SN map seth the
maximum size of cluster edges of merged cluskerthe complexity might theoretically be as bad
asO(q(K!2X)?). However, in practice, because a major part of NACS was pruned irstepny
pairs are pruned in step 5, and because all superfluous values otheafs are eliminated in
Algorithm 4, its complexity is closer t@(qB¥).

Following those rough upper bounds, we can derive some genericstpetures that are fea-
sible for any number of vertices while not beingve For example, considering step 2, any super-
structure whose block tree contains only small blocks (less than 30 vitdesasible. Otherwise,
we can consider all the networks that can be generated by the followingdieth

e Generate an undirected gra@p of low maximal degreeng < 10).

¢ Replace every vertex by a small grapl&; (up to 20 or slightly more) and randomly connect
all edges connected tpin Gy to vertices inC;.

If ECOS can select all edges between clusters for such networks wdfildrg) E—, the search
should finish in reasonable time even for larger networks (up to sevendréds of vertices). Con-
versely, if a super-structure contains a large clique (containing more&theertices), ECOS cannot
finish as other optimal searches. To conclude, our algorithm may be avdegisakthrough in
some real cases where neither optimal searches nor COS can be appheddof a large number
of vertices or a high average degree.

4. Experimental Evaluation

We conduct two types of numerical experiments for evaluating the perfarenaf ECOS. In the for-
mer experiment, the practical time complexity of ECOS is estimated by the compaiitboG@S,
using random networks of various sizes. In order to show the perfarenan practically structured
networks, we then apply ECOS to the synthetically generated large scalerkétem Alarm, In-
surance, and Child networks in the latter experiment. The performandc@ ©@8ks compared with

298

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

n\m 2 25 3 35
10 100 100 100 100
20 100 100 100 100
30 100 100 100 100
50 100 100 95 40
75 100 100 61 O
100 100 100 4 O

Table 1: Number of times the computation finished within one day for a randaphafn vertices
and average degree ~

Algorithm m 2 2.5 3 3.5
Om 1.06 1.08 1.15 1.25

ECOS nmax(m) 355 273 151 93
Om 150 163 1.74 181
nmax(m) 51 43 38 35

COSs

Table 2: Values of coefficient§y and nmax(h) of ECOS and COS for average degree of super-
structureni’ O is the estimated base of exponential time complexity @agx(M) is the
feasible size of the super-structure for computation.

those of MMHC and greedy hill-climbing. All the computations in the following ekpents were
performed on machines having 3.0 GHz Intel Xeon processors with arfliorearchitecture (only
one core was used for each experiment).

4.1 Benefitin Terms of Complexity

In the first series of experiments, we aimed to evaluate the average compleEiB0OS depending
on n andn, the average degree &. Since the feasibility of ECOS depends on the pruning of
the search space, the theoretical derivation of the practical time complexiiffigsiit. Here, we
hypothesize that the average complexity is in the for®@,), and then estimatéy,. Lettsn be
the time required for a network @fvertices and average degnee Under our assumption of time
complexity,tmn is given by

timn = const: O, (2)

whereconstindicates the dependency of the implementation and machine specifications. Fro
Equation (2), we have thay, = exp(%(logtmn —logconsy). Becauselogiﬁt can be ignored for
large n, 3n can be estimated by eg§dnm) For vim e {2,25,3,35} and

vn € {10,20,30,50, 75,100}, we generate 100 random networks and we apply ECOS using 1,000
artificially generated samples in each case. We compute the averagi tithet is required and
calculatedmn = exp(%). If our hypothesis is correcdmn should converge tds while n in-
creases. However, to keep the computation manageable, we stop thetizadgfilarequires more

299

K0JIMA, PERRIER, IMOTO AND MIYANO

Network No. of vertices No. of edges
Alarml 37 46
Alarm3 111 149
Alarm5b 185 253
Alarm10 370 498
Insurancel 27 52
Insurance3 81 163
Insuranceb 135 268
InsurancelO 270 536
Child1 20 25
Child3 60 79
Child5 100 126
Child10 200 257

Table 3: Characteristics of the real networks considered in the computatigeiment.

than one day. Hence, we probably underestindgisslightly; nevertheless, here, we attempt to
derive the exponential nature of the average complexity and not thealeal of the constants. Fur-
ther, the following results are sufficient to obtain a rough estimate. The mohbmes we finished
the calculation for each pair of parameters is listed in Table 1. Due to the srialbfdinished
experiments fom= 3 and 3.5, we selected the valu®ss, d3550 for 3 andds 5 , respectively.
Further, for every average degree, we evaluated the maximal numberticEsnmax() feasible
from the value oBy, calculated as proposed in Perrier et al. (2008).

Table 2 lists the values @ andnmax(m) for ECOS and COS. We should note thaiax(h) of
ECOS formi= 3 and 3.5 is overestimated since in this cdggis underestimated because only the
computations that finished were used to calculate it. In praciipgx() of ECOS formi= 3 and
3.5 are respectively around 75 and 50 from the results listed in Tabler&éfdhe, we can clearly see
the practical advantage of ECOS over COS, and the improvement in tergesdfifity achieved by
our method. In addition, we should emphasize that random networks petiaizesults of ECOS
because they do not have a logical partitioning. In real cases, weoganthat super-structures can
be efficiently partitioned, enabling better performances for ECOS.

4.2 Case Study

We considered four networks whose characteristics are summarizedle Jathose networks
were generated from Alarm, Insurance, and Child networks by the tilingrithgn (Tsamardinos
et al., 2006). We compare the performances of ECOS to those of the fojjastare-of-the-art
greedy algorithms: MMHC and greedy hill-climbing (HC), both using a TABErsh extension;
the TABU list size was set to 100 as in Tsamardinos et al. (2006). COS imeiated in this
evaluation because COS and ECOS are learning the same networks ésit aelisvorks having the
same score, that is, the best one possible given the structural constrairther, COS cannot be
applied to such large networks when using such high values f@f. Perrier et al. 2008). The
super-structures were generated in two different ways: the truaskelas given or a skeleton was
inferred by using MMPC (Tsamardinos et al., 2006) implemented in the Caxpédrer System

300

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

Model Sample Size a Coverage Average Degree
true 1.00+0.00 2.74:0.00
0.01 0.77+0.00 2.29t0.00

1000 502 0.78£000 2.40:0.00

Al 0.05 0.80£000 2.67:0.00
frue 1.00L000 2.74.0.00

001 094:000 2.67:-0.00

10000 565 0.94r000 2.77:0.00

0.05 095:000 3.01-0.00

fue 1.00L000 2.69:0.00

oo 001 078:000 234000

002 080£000 2.49:0.00

Ao 0.05 0.81£000 2.87-0.00
frue T.00L000 2.69:0.00

0.01 0095£000 2.70:-0.00

10000 565 0951000 2.84:0.00

005 096£000 3.140.00

tue 1.00L000 3.97000

0o 001 064:000 297000

002 066£000 3.15:001

surances 0.05 0.68:000 3.52:001
frue T.00£000 3.97.000

0.01 0.80£000 3.43-0.00

10000 (02 081:000 3.53:0.00

0.05 0.83t000 3.73-0.01

tue 1.00L000 3.97000

0o 001 064:000 3.00:0.00

0.02 0.66£000 3.2200.00

eurance1d 0.05 067£000 3.63-0.01
frue 1.00E000 3.97.000

0.01 0.80£000 3.46:0.00

10000 (02 081:000 3.57000

0.05 0.82£000 3.81001

fue 1.00L000 2.52.000

0o 001 0.84:000 2.32:000

0.02 0.86£000 2.39-0.00

Childs 0.05 0.88:000 2.50-0.00
frue 1.00L0.00 2.52.0.00

001 1.00£000 2.53:0.00

10000 (0> 100£000 2.55:0.00

0.05 1.00£000 2.57:0.00

fue 1.00L000 2.57000

1000 001 0.82:000 2.3:000

0.02 0.84£000 2.38:0.00

_ 0.05 0874000 2.510:0.00
Child10 frue 1005000 2.57.0.00
Lo00o 001 099£000 2.58:0.00

0.02 0.99+0.00 2.6H-0.00
0.05 0.99+0.00 2.65£0.00

Table 4. Coverage and average degree of super-structurecfoexaerimental condition (meahn
standard deviation).

(Aliferis et al., 2003) with a significance leval € {0.01,0.02,0.05}. Ten data sets of 500, 1,000,
and 10,000 samples were synthetically generated from each BN comkiéiEne, we evaluate and
discuss the cases of Alarm5, Alarm10, Insurance5, Insurancelld5Chnd Child10 with 1,000
and 10,000 samples. The results of all the cases including the remainingrengsmmarized in
the supplemental material. To help evaluate the quality of the super-struletanesby MMPC, we

301

K0JIMA, PERRIER, IMOTO AND MIYANO

g, x10*
s §
o
> 9
3¢
[m]
om
2 \
g_
'\-
” A A A A A
C C C
2 (o] % 47&0 (o] 0% 47&0 (o] B 47&0 (o)
SS(True) SS(0=0.01) SS(0=0.02) SS(0=0.05)
Figure 5: BDeu scores for ten data sets of Alarm10 with 10,000 samples.
8
[T 2
o
g
3
[a) o™ 4
I
w

200

100

[[| [[| [[|
& 1, 4 & Z % & Z % & &z 4
C (o] C (al o} (el o} (el
s @&o p ¢,’$’o R ¢/’5’o R ¢/’5’o
SS(True) SS(01=0.01) SS(01=0.02) SS(a1=0.05)

Figure 6: Values of SHD for ten data sets of Alarm10 with 10,000 samples.

summarized the ratio of true edges learnt (this ratio is called coverage) arsdrage degree of
the super-structures in Table 4.

For every experimental condition, the algorithms are compared both in tersesi& (we used
the negative BDeu score, that is, smaller values are better) and sttinetomaning distance (SHD,
Tsamardinos et al. 2006) that counts the number of differences in theleeohpartially DAG
(CPDAG, Chikdering 2002) of the true network and the learnt one.

Figures 5 and 6 respectively show BDeu and SHD scores of ECOS, ®INHd HC for ten
data sets of Alarm10 with 10,000 samples given the true skeleton and supem®es inferred
by MMPC with a = 0.01, 0.02, and 0.05. In order to clarify the relation between the results of
ECOS, MMHC, and HC for each data set, results from the same data s$iekactup. In addition,

302

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

the scaling of the plots for the four conditions are the same, and thereferegghlts of HC are
the same for the four structural constraints considered. For the trist@kend super-structures
obtained witha = 0.01, all ten computations of ECOS finished within two days and ECOS gives
the best scores in all the data sets both in terms of BDeu and SHD. In ternideof, BIC usually
performs better than MMHC, whereas it is the opposite in terms of SHD.

Fora = 0.02, only two computations of ECOS finished within two days; nonethelesspthe ¢
puted scores are better than those of MMHC and HC both in terms of BDe&ldBd For the
super-structures af = 0.05, no computations of ECOS finished within two days. However, every
time ECOS finished, it gave better results than both HC and MMHC. With regdhetstructural
constraint, the best results were obtained when the true skeleton wan.krokther, foro = 0.01,
MMHC is better than HC for two data sets; but far= 0.02, it is better for one data set; and
o = 0.05, it is better for no data sets. Because the coverage of super-stsuatitha = 0.01 for
Alarm10 with 10,000 samples is already maximal, as shown in Table 4, supetusésifor higher
o contain more false-positive edges, which worsens the results of MMHColgerve the same
results in terms of SHD as well.

BDeu and SHD scores for all the experiments are summarized in Tables 6; dod each
experimental setup, the best result is in bold and the best result withokiméidedge of the true
skeleton is underlined. The numbers in parentheses for ECOS repitesenmber of times ECOS
could finish within ten data sets in two days. The cases in which no computatishefihare
indicated by “none”. Note that all computations of MMHC and HC finished indags. BDeu and
SHD scores of the finished computations are averaged and roundedlodfnearest integer.

While HC outperforms MMHC in BDeu, MMHC outperforms HC in SHD, which egs with
the results in Tsamardinos et al. (2006). A comparison of the results of @latdl HC suggests that
a structural constraint helps to find networks with smaller SHD. Howevisrstiould not mislead
us into thinking that minimizing a score function is not a good method to learn 4 dvaying a
small SHD. In fact, ECOS returns considerably better results than both ®lsittl HC in terms
of SHD, strongly illustrating the validity of score-based approaches Bodlze use of a structural
constraint.

One could argue that it is possible to increase the quality of the resultsedtagnMMHC by
using a largeni. However, as we can see in Table 6, although the score improves withr loighe
it is not always the case with the SHD. This is expected because MMHGo®/to HC with an
increasingy; hence, it is essential in the greedy case to properly sel€don the other hand, ECOS
converges to OS for increasing significance levels. Although in raresc&HD slightly worsens
with an increasingi, we should generally use as large a significance level as possible whiging
ECOS, while ensuring that the algorithm finishes.

The average running time for the experiments in seconds (rounded off teetrest integer) are
summarized in Table 7. All the algorithms except for MMPC are implemented in FaveECOS
and MMHC, the running time of MMPC is also included. Among the experimenteeed till
the end, ECOS requires the maximum computational time (around 34 hoursuihtel0 with
10,000 samples and the true skeleton. The maximum memory space (10 GByquaed by
ECOS during Insurancel0 with 1,000 samples ang 0.01. Fortunately, for all experimental
setups, ECOS outperformed the other two methods both in BDeu and SHDuglttlicstopped for
someda > 0.01, our algorithm is still better withh = 0.01 than MMHC witha = 0.05.

303

K0JIMA, PERRIER, IMOTO AND MIYANO

Sample Algorithm
Model Size ECOS MMHC FC
true 61753+ 376(10) 63294+ 477 62380+ 420
1000 0.01 62111+ 347(10) 63128+428 62380420
0.02 62015+ 364(10) 63041+ 489 62380+ 420
Al 0.05 61920+ 387(10) 62959+ 458 62380420
arm5b Pkttt St
true 487734+ 110910) 494611+ 1986 496108-1104
10000 0.01 488807+ 131210) 495708+ 2212 496108-1104
0.02 488418+ 113710) 495373+ 2269 496108-1104
0.05 488182+ 113210) 49535942638 496108-1104
true 123725+ 481(10) 126863+ 857 125156+ 585
1000 0.01 124406+ 706(10) 126673+ 833 125156585
0.02 124243+ 750(10) 126456+ 869 125156+ 585
Alarm10 0.05 none 126375831 125156+ 585
true 975343+ 943(10) 999973+ 8022 991888-2144
10000 0.01 976860+ 146410) 1000644+9143 991888-2144
0.02 976150+ 14042) 1000388-8109 991888-2144
0.05 none 10016186726 991888+ 2144
true 81148+ 341(10) 815514427 81955+ 407
1000 0.01 81529+ 351(10) 819734458 81955+ 407
0.02 81449+ 35810) 819114458 81955+ 407
0.05 81376+ 33810) 818624433 81955+ 407
Insurance5 -
true 677374+ 864(10) 684990+ 3162 681516-1892
10000 0.01 681584:170710) 688579 3521 681516+ 1892
0.02 680666+ 141810) 687627+ 2945 681516-1892
0.05 680201+ 14528) 686908+ 3196 681516-1892
true 162311+ 453(10) 164039+ 455 164034:571
1000 0.01 162949%+517(10) 164557+ 711 164034:571
0.02 162890+ 505(10) 164541+ 712 164034:571
0.05 162309+ 46(2) 1645414759 164034:571
Insurancel0 _
true 1354655+ 768(10) 1371312-3374 1364486-2957
10000 0.01 1361266+122210) 1376795:2990 1364486 2957
0.02 1360571-104010) 1376111-2542 13644862957
0.05 1360627 9552) 1375645+ 3224 1364486-2957
true 71622+ 324(10) 72057+ 344 72335396
1000 0.01 71651+ 33310) 72096+ 368 72335396
0.02 71648+ 330(10) 72114+ 376 72335+ 396
Childs 0.05 71644+ 32910) 72059+ 385 72335396
true 637783+ 321(10) 640908+ 941 6442182614
10000 0.01 637783+ 321(10) 640908+ 941 6442182614
0.02 637783+ 321(10) 640908+ 941 644218+ 2614
0.05 637783+ 321(10) 640908+ 941 644218- 2614
true 142541+ 250(10) 1438474409 143905398
1000 0.01 142604+ 256(10) 143902+ 415 143905398
0.02 142590+ 252(10) 143885+ 407 143905398
Child10 0.05 142582+ 255(10) 143896+ 391 143905+ 398
true 1271035t 684(10) 12778772824 128363@:-3796
10000 0.01 1271089+ 690(10) 1278050+2987 128363@-3796
0.02 1271072+ 683(10) 12778782823 128363@:-3796
0.05 1271054+ 68510) 12779312863 128363@-3796

Table 5: Comparison of ECOS, MMHC, and HC in terms of BDeu score (mestandard devia-
tion; smaller value is better). “none” refers to the case in which no compusdiitisahed.
The best score in each case is in bold font; the best score for eachashapde without
the knowledge of the true skeleton is underlined. The numbers in pareatfesECOS
represent the number of times ECOS could finish within ten data sets in two days.

304

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

Sample Algorithm
Model Size ECOS MMAC — HC
true 125+10(10) 163+6 215+8
1000 0.01 164+6(10) 177+4 21548
0.02 164+5(10) 177+4 215+8
0.05 161+5(10) 176+5 215+8
Alarm5 bl St
true 21+2(10) 96+15 231+12
10000 0.01 31+2(10) 100+£10 231412
0.02 30+2(10) 101+10 231+12
0.05 30+ 2(10) 102+9 231+12
true 248+ 9(10) 3214+8 421+15
1000 0.01 317+8(10) 355+13 421+15
0.02 313+9(10) 353+10 421+15
0.05 none 354+11 421+15
Alarm10 true 40+ 3(10) 215+17 447+22
10000 0.01 54+ 3(10) 219+16 447+22
0.02 54+ 4(2) 220+15 447422
0.05 none 226+12 447+22
true 196+ 8(10) 205+9 246+ 8
1000 0.01 207+7(10) 217+5 24648
0.02 206+7(10) 217+4 246+ 8
0.05 206+8(10) 217+4 24648
Insurance5 -
true 88+ 1(10) 137+9 184+ 11
10000 0.01 99+4(10) 146+11 184+11
0.02 99+ 6(10) 146+9 184+11
0.05 100+ 6(8) 146+11 184+11
true 378+21(10) 424+11 502+10
1000 0.01 398+21(10) 441+11 502+10
0.02 399+22(10) 441+11 502+10
0.05 376+24(2) 44449 502+10
Insurancel0 —_—r
true 174+5(10) 280+22 381+23
10000 0.01 198+9(10) 296+21 381423
0.02 198+12(10) 295+20 381+23
0.05 197+17(2) 295+22 381423
true 60+ 7(10) 70+7 82+8
1000 0.01 71+6(10) 80+5 8248
0.02 70+ 6(10) 79+5 82+8
Childs 0.05 70+ 6(10) 78+4 82+8
true 1+0(10) 31+9 43+10
10000 0.01 1+0(10) 31+9 43+10
0.02 1+0(10) 31+9 43+10
0.05 1+0(10) 31+9 43+10
true 145+9(10) 171+6 18245
1000 0.01 167+8(10) 188+5 182+5
0.02 165+8(10) 186+ 6 18245
Child10 0.05 163+8(10) 184+6 182+5
true 8+0(10) 88+ 16 128+ 17
10000 0.01 10+ 3(10) 87+18 128+ 17

0.02 9+3(10) 87+17 128+17
0.05 8+0(10) 87+18 128+17

Table 6: Comparison of ECOS, MMHC, and HC in terms of SHD (meastandard deviation;
smaller value is better). “none” refers to the case in which no computatioisbdih
The best score in each case is in bold font; the best score for eachashapde without
the knowledge of the true skeleton is underlined. The numbers in pareatfesECOS
represent the number of times ECOS could finish within ten data sets in two days.

305

K0JIMA, PERRIER, IMOTO AND MIYANO

Sample Algorithm
Model size ¢ ECOS MMAC HC
fue 323111184 (10) 500 280431
100 001 532:441(10) 36:0 280431
0.02 7617422514 (10) 810 280431
- 0.05 8830413741 (10) 100:0 280431
frue 1902004363 (10) 10L1 517447
loooo 001 22021843349(10) 1161 51747
0.02 37424148662 (10) 74:1 517447
0.05 92718:117691 (10) 91 517447
frue 116531584 (10) 2413 36201339
100 001 1920:1330(10) 63t1 36204339
0.02 51627491273 (10) 991 36204339
Ao 0.05 none (0) 611 36204339
frue 22914L1088 (10) 30L2 600911427
L0000 001 58004545 (10) 13853 60091422
0.02 122665:155955 (2) 1315 6009+1422
0.05 none (0) 1123 600941422
tue 74741452 (10) 510 84178
100 001 2117:1778(10) 95:0 8428
0.02 284143421 (10) 410 84428
A 0.05 47408:76941 (10) 88t0 84428
true 98070426 (10) 2004 286199
lo00o 001 ~ B8281414925(10) 221 28699
0.02 38154143336 (10) 70:3 286499
0.05 6754680972 (8) 932 286499
true 3097614846 (10) 152 832L72
oo 001 5679:8074(10) 7761 832472
0.02 22177419628 (10) 18:1 832472
neurance10 005 88391113694 (2) 042 832472
frue 12358916232 (10) 48L12 24791570
lo0o 001 63683t66898 (10) 646 2479+570
0.02 85244-101769 (10) 821 24794570
0.05 14093:12510(2) 103t7 2479+570
true 250 (10) 310 71114
1000 001 670 (10) 6840 71414
0.02 840 (10) 840 71414
childs 0.05 110+1 (10) 10940 71414
frue 940 (10) 810 217116
L0000 001 90--0 (10) 8940 217+16
0.02 51+1 (10) 5040 217416
0.05 2541 (10) 2340 217416
true 1620 (10) 9i1 7991129
1000 001 10241 (10) 9740 7994129
0.02 77+2 (10) 7340 7994129
Child1o 0.05 94+2 (10) 8940 7994129
frue 2610 (10) 2251 17291147
L0000 001 7342 (10) 7141 17294147
0.02 11842 (10) 11841 17294147
0.05 73+1 (10) 7440 17294147

Table 7: Running time of ECOS, MMHC, and HC for each experimental comditioseconds
(mean+ standard deviation). The numbers in the second parentheses for EHP@S r
sent the number of times ECOS could finish in ten data sets within two days.

306

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

5. Discussion and Conclusion

We presented a new BN learning algorithm that finds the optimal network givsructural con-
straint, the super-structure. Our algorithm decomposes the supdustrinto several clusters and
computes optimal networks on each cluster for every ancestral congtramler to ensure acyclic
networks. Experimental evaluations using extended Alarm, InsurandeChild networks show
that our algorithm outperforms state-of-the-art greedy algorithms ssidéhMHC and HC with a
TABU search extension both in terms of the BDeu score and SHD.

It may be possible to develop methods to further increase the feasibility oSE@6 suggest
some ready-to-apply tunings that should make our algorithm faster. Fiesaldrithm is highly
parallelizable since each call to ACOS can be made independently. Funtigecoald apply a
similar shrinkage technique to the interior nodes of the block tree as well ifatteegf a small size.
The algorithm may also benefit from using ECOS recursively instead &@&6r applying a COS
search on the unbreakable clusters rather than a full OS (as is thataase with ACOS). Finally,
limiting the maximal size of parent sets by a constards proposed in Section 3.6, improves the
feasibility of ECOS because it may also reduce the number of TDMs to caornisideme cases. In
terms of quality of the learnt network, the best improvements may be realizéeMejoping better
algorithms to learn super-structures; in fact, improvements in speed mayeatditdned.

If there exist many edges between strongly connected components iretbosk the clusters
obtained have too many cluster edges; this is usually the main bottleneck ddoritten that limits
its the feasibility. We should emphasize the fact that IT approaches addpfasitive edges to the
skeleton according to the specified significance level when learning pieg-structure. Therefore,
although the true skeleton may be well structured (i.e., the true skeleton chustered with a small
number of cluster edges), the false-positive edges tend to be cluses add limit the feasibility
of ECOS. For example, the super-structure of InsurancelO obtaiitledxw= 0.05 has a smaller
average degree than the true skeleton; however, our algorithm dichistt the computation in two
days. In addition, since the current version of ECOS depends orea-stipcture estimated by the
conditional independence test (MMPC), a causal relationship violatittgfdlness, for example,
XOR parents, can be missed.

We now consider whether our method is practically different from the aggested by Fried-
man et al. (1999) and whether it is more efficient. Although we can argtietinanethod has been
implemented and tested practically, it is also obvious that both strategies amrewlifsince ECOS
can be applied on a skeleton that is not only decomposable in cluster ttesisdodecomposable
in cluster graphs. For example, we converted the true skeleton of Alarm# icltgster tree. The
true skeleton was decomposed into nine clusters, the largest of them aun@dnvertices and 20
cluster edges. This is not computable for an optimal search, and treeréfermethod proposed by
Friedman et al. (1999) would not be able to consider this case; suck axdivated us to relax the
tree structure condition between clusters. Following the experimental resaltonclude that our
approach, that is, decomposing the search on every cluster, saddeestaling-up the constrained
optimal search.

307

K0JIMA, PERRIER, IMOTO AND MIYANO

Acknowledgments

We would like to thank Andr Fujita and Masao Nagasaki for their helpful comments in the initial
stage of this work. Computational resources were provided by the Humaon® Center, Institute
of Medical Science, University of Tokyo.

Appendix A.

Given a clusteC and a TDMS (i.e., the correspondinycma andvgfgt sets), we define for every
possible NACS4.

Definition 7 (NACS template) The NACS template ot is a finite list of pairs of positive integers
{(11,01),---,(I1,Or) } such that|V°“‘\ > 01 > --- > O > 0 and there are exactly lin-vertices ({‘
such that 4 (vi")| = Ox.

For example, let us consider the following NACS with V' = {V[",...,v§'} and V8§ =
{weut . v3Ut} defined by

/q(vlf) {Vout Vout Vout}
_q(vl(?) {Vout Vout Vout}
A(vD) = (L8,
A(vg) = {8},
A(vg) = {8},

av) =g.

Here, we arranged the AC sets by size to illustrate the fact that due to thdidefof NACS, two
in-vertices having the same size of ancestral constraint actually havartteeascestral constraint.

The NACS template ofd is
{(2.3),(1,2),(2,1),(1,0)}.

Further, following the definition of the NACS template, we have trivially tﬁgtlli = |V(‘:ﬁ‘5]. Be-
cause every NACS admits a unique NACS template, templates define a partition gfabe of
NACS. Given the templaté(l1,01),---,(I;,O)}, there exist

(") (8) (%)

different ways to assign the out-vertices and

R R it

different ways to assign in-vertices. The product of these two valives ¢he number of NACSs
corresponding to this template. All these NACSs can be generated by ddméenethod that con-
siders every possibility. Next, we introduce an algorithm that generatesiared list of all NACSs
by considering each template successively, starting ’(ﬂb’@é\,O) and ending with |V'”6] |V°}e‘;t).

Algorithm 7: NACS Enumerator
Input: A set of in-verticed/!'s and a set of out-verticg2y!
Onput: List of NACSs,L

308

OPTIMAL SEARCH ONCLUSTERED STRUCTURAL CONSTRAINT

1. Initialize an empty list of NACSE.
2. Initialize a NACS templat&l T to (\V'”6| 0) andl to 1.
3. While true, do:

(a) Putall the NACSs haviny T as template at the end bf
(b) If NT = {(]V'”é\ VE51)}, returnL.

(c) IfI >1andO,_1 = O + 1, increment,_;, otherwise insertl,0; + 1) in NT
immediately beforél;,O;) and increment.

(d) Decrement; and se®), to 0.
(e) Ifl} =0, remove(l;,0) from NT and decremerit

First, we define an order relation for the templates; we say (th&) > (1j,0j) if O; > Oj or

O = O’J andl; > Ij. Then, we say that a NACS templd is greater than anoth&T’ if (I1,0;) >
(13,04) or (1j,0j) = (1},05) for every j < k and(lx, Ok) > (I, Of). We note that it2; > 4y, then
the template of7; is greater than that ofl,. Therefore, to prove that Algorithm 7 is correct, we
simply need to prove that it considers every template in increasing ordeis, ttigat the loop of step

3 generates the successor of a given tempateGiven the constraint that the sum of ilis]V‘” l,
there exist three different casesNT is of a sizd =1, thenNT = {(]V'”é\ O;)} and the foIIowmg
template is{(1,01+ 1), (|VC"36| —1,0)}, as done in steps (c) and (d). Otherwise, in a similar manner
to the previous case, @1 # Oy + 1, the next template will b¢(11,01),---,(l-1,01-1), (1,01 +
1),(li —1,0)}, as in Algorithm 7. Finally, in genera®;_; = O, + 1 holds, and we simply need to
increment|_1, decrement, and rese0, to 0. After decrementingy, it is possible that; = 0, in
which case the last element should be removed. Since Algorithm 7 actiessiect successor of
NT at each step starting from the smaller temp(dit/é’f6|,0) until the largest one, we can assert its
correctness.

References

C.F. Aliferis, 1. Tsamardinos, and A. Statnikov. Causal Explorer: Abpiulistic network learn-
ing toolkit for discovery.The 2003 International Conference on Mathematics and Engineering
Techniques in Medicine and Biological Scienc303.

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The ALARbMAitoring system: a
case study with two probabilistic inference techniques for belief netwéhkseedings of 2nd
European Conference on Artificial Intelligence in Medici@d7-256, 1989.

J. Binder, S. Russell, and P. Smyth. Adaptive probabilistic networks wittehigtariablesMachine
Learning 29:213-244, 1997.

D.M. Chickering. Learning equivalence classes of Bayesian-netstoukturesJournal of Machine
Learning Researci?:445-498, 2002.

R.G., Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. SpiegelhaRmbabilistic Networks and Expert
SystemsSpringer, Berlin, 1999.

309

K0JIMA, PERRIER, IMOTO AND MIYANO

C.P. de Campos, Z. Zheng, and Q. The 26th International Conference on Machine Learping
2009 (in press).

R. Diestel.Graph Theory 3rd editionSpringer, Berlin, 2005.

N. Dojer. Learning Bayesian networks does not have to be NP-Randeedings of Mathematical
Foundations of Computer Scien@95-314, 2006.

N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian netwar&tate from massive dataset:
The “sparse candidate” algorithifihe 15th Conference on Uncertainty in Artificial Intelligence
196-205, 1999.

M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesetworks.Journal of
Machine Learning Research:549-573, 2004.

M.E.J. Newman and M. Girvan (2004). Finding and evaluating community steugtunetworks.
Physical Review F69(22):26113-26113.

S. Ott, S. Imoto, and S. Miyano. Finding optimal models for small gene netwBdcific Sympo-
sium on Biocomputin®:557-567, 2004.

E. Perrier, S. Imoto, and S. Miyano. Finding optimal Bayesian networ&rga super-structure.
Journal of Machine Learning Resear@2251-2286, 2008.

T. Silander and P. Myllyréki. A simple approach for finding the globally optimal Bayesian network
structureThe 22nd Conference on Uncertainty in Artificial Intelligen45-452, 2006.

A. Singh and A. Moore. Finding optimal Bayesian networks by dynamicramgiing (Technical
Report). Carnegie Mellon University, 2005.

J. Suzuki. Learning Bayesian belief networks based on the MDL princiesfficient algorithm
using the branch and bound technigUelCE Transactions on Information and Syster856—
367, 1999.

I. Tsamardinos, L.E. Brown, and C.F. Aliferis. The max-min hill-climbing Bagesetwork struc-
ture learning algorithmMachine Learning65(1):31-78, 2006.

I. Tsamardinos, A. Stantnikov, L.E. Brown, and C.F. Aliferis. Generataajistic large Bayesian
networks by tiling.The 19th International FLAIRS Conferen&®2-597, 2006.

310

