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Abstract

Given a matrixM of low-rank, we consider the problem of reconstructing dnfr noisy observa-
tions of a small, random subset of its entries. The problésesain a variety of applications, from
collaborative filtering (the ‘Netflix problem’) to structexfrom-motion and positioning. We study
a low complexity algorithm introduced by Keshavan, Montgrend Oh (2010), based on a com-
bination of spectral techniques and manifold optimizattbat we call here ®TSPACE. We prove
performance guarantees that are order-optimal in a nunflaincamstances.

Keywords: matrix completion, low-rank matrices, spectral methodanifold optimization

1. Introduction

Spectral techniques are an authentic workhorse in machine learningjcstatismerical analysis,
and signal processing. Given a mathk its largest singular values—and the associated singular
vectors—'explain’ the most significant correlations in the underlying datace. A low-rank ap-
proximation ofM can further be used for low-complexity implementations of a number of linear
algebra algorithms (Frieze et al., 2004).

In many practical circumstances we have access only to a sparse stitisetentries of an
mx n matrix M. It has recently been discovered that, if the matixas rank’, and unless it is too
‘structured’, a small random subset of its entries allow to reconstreggittly This result was first
proved by Canés and Recht (2008) by analyzing a convex relaxation introducedzg} 2002). A
tighter analysis of the same convex relaxation was carried out by&Sard Tao (2009). A number
of iterative schemes to solve the convex optimization problem appearedrszreafter (Cai et al.,
2008; Ma et al., 2009; Toh and Yun, 2009).

In an alternative line of work, Keshavan, Montanari, and Oh (2010¢kdththe same problem
using a combination of spectral techniques and manifold optimization: We wai teftheir al-
gorithm as @TSPACE. OPTSPACE is intrinsically of low complexity, the most complex operation
being computing singular values (and the corresponding singular vectors) of a sparsematrix.

The performance guarantees proved by Keshavan et al. (201&)raparable with the information
theoretic lower bound: roughiyr max{r,logn} random entries are needed to reconstMiexactly
(here we assumm of ordern). A related approach was also developed by Lee and Bresler (2009),
although without performance guarantees for matrix completion.
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The above results crucially rely on the assumption Mas exactlya rankr matrix. For many
applications of interest, this assumption is unrealistic and it is therefore impdotamvestigate
their robustness. Can the above approaches be generalized wherdénlying data is ‘well ap-
proximated’ by a rank matrix? This question was addressed by Geahd Plan (2009) within the
convex relaxation approach of Cargdand Recht (2008). The present paper proves a similar robust-
ness result for ®TSPACE. Remarkably the guarantees we obtain are order-optimal in a variety of
circumstances, and improve over the analogous results oféSard! Plan (2009).

1.1 Model Definition

Let M be anm x n matrix of rankr, that is
M=UXVT. (1)

whereU has dimensionsix r, V has dimensions x r, andX is a diagonal x r matrix. We assume
that each entry ol is perturbed, thus producing an ‘approximately’ low-rank matjxvith

Nij = Mij +Z;j,

where the matriZ will be assumed to be ‘small’ in an appropriate sense.
Out of them x n entries ofN, a subseE C [m] x [n] is revealed. We IelF be them x n matrix
that contains the revealed entried\gfand is filled with 0’s in the other positions

NE N if (i,]j) €E,
') 0 otherwise.

Analogously, we letME and ZE be them x n matrices that contain the entries f and Z, re-
spectively, in the revealed positions and is filled with Q’s in the other positidhe.setE will be
uniformly random given its sizge|.

1.2 Algorithm

For the reader’s convenience, we recall the algorithm introduced bigd¢an et al. (2010), which
we will analyze here. The basic idea is to minimize the cost fundtipx,Y), defined by

FIX,Y) = min F(X.Y.S), )
1

FXYS§ = 5% (Nij — (XSY")ij)?.
(i.))€E

HereX € R™',Y € R™" are orthogonal matrices, normalized ¥yX = ml, YTY =nl.

Minimizing F(X,Y) is ana priori difficult task, sinceF is a non-convex function. The key
insight is that the singular value decomposition (SVDN\5T provides an excellent initial guess,
and that the minimum can be found with high probability by standard gradiexcede after this
initialization. Two caveats must be added to this descripti@hin general the matritE must be
‘trimmed’ to eliminate over-represented rows and colun{@$;For technical reasons, we consider
a slightly modified cost function to be denoted®gX,Y).
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OPTSPACE( matrix NE )

1: Trim NE, and letNE be the output;

2: Compute the rank-projection ofNE, P, (NF) = XSy ;

3:  Minimize F(X,Y) through gradient descent, with initial conditi®Xo, Yo).

We may note here that the rank of the matvx if not known, can be reliably estimated from
NE (Keshavan and Oh, 2009).

The various steps of the above algorithm are defined as follows.

Trimming. We say that a row is ‘over-represented’ if it contains more thifj/2n revealed
entries (i.e., more than twice the average number of revealed entries per Amalogously, a
column is over-represented if it contains more th&s| 2n revealed entries. The trimmed mathb
is obtained fromNE by setting to O over-represented rows and columns.

Rank-r projection. Let

_ min(m,n)

NE = Z oixiy
i=
be the singular value decompositionI‘Ndﬁ, with singular values; > g, > .... We then define
~ mn &
Pr(NE) = — ZlcixiyiT.
E| &

Apart from an overall normalizatiorP,r(NE) is the best rank-approximation toNE in Frobenius
norm.
Minimization. The modified cost functioR is defined as

F(X,)Y) = F(X)Y)+pG(X,Y)
c X012 k [y 2
= FX)Y)+ E G + E G
( ) pi: 1( 3uor pJ:1 ! 3lor

whereX () denotes thé-th row of X, andY ) the j-th row of Y. The functionG; : R* — R is such
thatGy(z2) = 0if z< 1 andG4(z) = ez-1” _ 1 otherwise. Further, we can chogse- O(|E|).

Let us stress that the regularization term is mainly introduced for our pectihique to work
(and a broad family of function&; would work as well). In numerical experiments we did not find
any performance loss in settipg= 0.

One important feature of ©XSPACE is thatF(X,Y) andF(X,Y) are regarded as functions
of the r-dimensional subspaces B™ andR" generated (respectively) by the columnsXofand
Y. This interpretation is justified by the fact thetX,Y) = F(XA Y B) for any two orthogonal
matricesA, B € R"™*" (the same property holds fér). The set ofr dimensional subspaces Bf"
is a differentiable Riemannian manifoem,r) (the Grassmann manifold). The gradient descent
algorithm is applied to the functioR : M(m,n) = G(m,r) x G(n,r) — R. For further details on
optimization by gradient descent on matrix manifolds we refer to Edelman dt98I9) and Absil
et al. (2008).
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1.3 Some Notations

The matrixM to be reconstructed takes the form (1) where R™", V € R™". We writeU =
[Ug,Uz,...,u] andV = [vq,Vz,..., V] for the columns of the two factors, withii || = /m, ||vi|| = /N,
anduiTuj =0, viTv,- =0 fori # j (there is no loss of generality in this, since normalizations can be
absorbed by redefining).

We shall writeX = diag(21,...,2) with Z; > 25 > --- > Z; > 0. The maximum and minimum
singular values will also be denoted By« = ;1 andZyin = Zr. Further, the maximum size of an
entry ofM iS Mmax = max; |M;j .

Probability is taken with respect to the uniformly random suliset [m] x [n] given |E| and
(eventually) the noise matrix. Definee = |[E|/,/mn In the case whem = n, € corresponds to the
average number of revealed entries per row or column. Then it is cemtén work with a model
in which each entry is revealed independently with probabglitymn Since, with high probability
|E| € [e/an— Ay/nlogn,e\/an+ Ay/nlogn]|, any guarantee on the algorithm performances that
holds within one model, holds within the other model as well if we allow for a vamgsshift in €.

We will useC, C’ etc. to denote universal numerical constants.

It is convenient to define the following projection operatel -) as the sampling operator, which

maps arm x n matrix onto anE|-dimensional subspace IR™"

[ Ny if(i,)) €E,
Fe(N)ij = { 0 otherwise.

Given a vectox € R", ||x|| will denote its Euclidean norm. For a matéixe R™", || X || is its
Frobenius norm, anfiX||; its operator norm (i.e/|X||2 = sup,o [ Xul|/[|u]}). The standard scalar
product between vectors or matrices will sometimes be indicategklyy or (X,Y) = Tr(XTY),
respectively. Finally, we use the standard combinatorics notatioa {1,2,...,n} to denote the
set of firstn integers.

1.4 Main Results

Our main result is a performance guarantee femrSPACE under appropriate incoherence assump-
tions, and is presented in Section 1.4.2. Before presenting it, we state arthebindependent
interest that provides an error bound on the simple trimming-plus-SVD apprd he reader inter-
ested in the ®TSPACE guarantee can go directly to Section 1.4.2.

Throughout this paper, without loss of generality, we assarsem/n > 1.

1.4.1 SMPLE SVD

Our first result shows that, in great generality, the rargtojection ofNE provides a reasonable
approximation oM. We defineZF to be anmx n matrix obtained fronZE, after the trimming step
of the pseudocode above, that is, by setting to zero the over-reprdsews and columns.

Theorem 1.1 Let N= M + Z, where M has rank r, and assume that the subset of revealed entries
E C [m] x [n] is uniformly random with sizgE|. Let Mnax = maX; j)c(mx[n [Mij|- Then there exists
numerical constants C and Guch that

~E nra3/2\ 2 NTa S
(NF)[F < CMmax +C 125 |2,

1
_~ IM—-P bl
JmniM P E] E]
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with probability larger thanl — 1/n3,

Projection onto rank-matrices through SVD is a pretty standard tool, and is used as first analysis
method for many practical problems. At a high-level, projection onto ramatrices can be in-
terpreted as ‘treat missing entries as zeros’. This theorem shows thapghisach is reasonably
robust if the number of observed entries is as large as the number eedegfrfreedom (which is
about(m+ n)r) times a large constant. The error bound is the sum of two contributions:réhe fi
one can be interpreted as an undersampling effect (error induced sygéentries) and the second

as a noise effect. Let us stress that trimming is crucial for achieving thisugiee.

1.4.2 OPTSPACE

Theorem 1.1 helps to set the stage for the key point of this papenuch better approximation

is obtained by minimizing the co§(X,Y) (step 3 in the pseudocode above), provided M satisfies
an appropriate incoherence conditiohet M =UZXVT be a low rank matrix, and assume, without
loss of generalit)TU = ml andVTV = nl. We say thaM is (po, 1 )-incoherentif the following
conditions hold.

Al. Foralli € [m], j € [n] we havey ;U2 < por, S§_1Vi2 < por.
A2. Foralli € [ml, j € [n] we have] S§_; Ui(Zk/Z1)Vik| < par?2.

Theorem 1.2 Let N=M + Z, where M is & [, W1 )-incoherent matrix of rank r, and assume that
the subset of revealed entries®E[m] x [n] is uniformly random with siz&|. Further, letZmin =

3 <o <2 = Zmax With Zmax/Zmin = K. LetM be the output oOPTSPACE on input NF. Then
there exists numerical constants C andsGch that if

[E| > Cm/ak?®max{porv/alogn; pgréax?; pérak?}
then, with probability at least — 1/n3,
1
J/mn
provided that the right-hand side is smaller thag;,.

>ny/ra
[E|

IM—M|r <C'k 1ZE |2 (3)

As discussed in the next section, this theorem captures rather sharmifabteof important
classes of noise on the performance ®fTSPACE.

1.5 Noise Models

In order to make sense of the above results, it is convenient to consiteipée of simple models
for the noise matrixZ:

Independent entries modelVe assume thaf’s entries are i.i.d. random variables, with zero
meanE{Z;; } = 0 and sub-Gaussian tails. The latter means that

2
P{|Zij| > X} <2e 2?7,

for some constara? uniformly bounded im.
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Worst case modeln this modelZ is arbitrary, but we have an uniform bound on the size of its
entries:|Zj| < Zmax.

The basic parameter entering our main results is the operator naffy wfich is bounded as
follows in these two noise models.

Theorem 1.3 If Z is a random matrix drawn according to the independent entries mtuh, for
any sample sizge| there is a constant C such that,

= E|logn\ /2
||ZEH2300("ng> , (4)

with probability at leastl — 1/n3. Further there exists a constant €uch that, if the sample size is
|E| > nlogn (for n> a), we have

- , ([ENY?
1z <co( BN 5)

with probability at leastL —1/nd.
If Z is a matrix from the worst case model, then

= 2|E
HZEHZS nf‘(lzmam

for any realization of E.

It is elementary to show that, jE| > 15anlogn, no row or column is over-represented with high
probability. It follows that in the regime 0E| for which the conditions of Theorem 1.2 are satisfied,
we haveZE = ZE and hence the bound (5) applies|iF ||, as well. Then, among the other things,
this result implies that for the independent entries model the right-hand sale error estimate,
Eq. (3), is with high probability smaller thafinis, if |E| > Crank*(a/Zmin)2. For the worst case
model, the same statement is tru@ifax < Zmin/C\ﬂKz.

1.6 Comparison with Other Approaches to Matrix Completion

Let us begin by mentioning that a statement analogous to our preliminaryérheol was proved
by Achlioptas and McSherry (2007). Our result however applies taanyber of revealed entries,
while the one of Achlioptas and McSherry (2007) requis> (8logn)*n (which forn < 5- 108

is larger tham?). We refer to Section 1.8 for further discussion of this point.

As for Theorem 1.2, we will mainly compare our algorithm with the convex @lar approach
recently analyzed by Caed and Plan (2009), and based on semidefinite programming. Our basic
setting is indeed the same, while the algorithms are rather different.

Figures 1 and 2 compare the average root mean square]|&rerM || /,/mnfor the two al-
gorithms as a function of| and the rank- respectively. HeréM is a random rank matrix of
dimensionm = n = 600, generated by lettingl = UVT with Uj;,V; i.i.d. N(0,20/,/n). The noise
is distributed according to the independent noise model #jth- N(0, 1). In the first suite of sim-
ulations, presented in Figure 1, the rank is fixed to 2. In the second one (Figure 2), the number
of samples is fixed t¢E| = 72000. These examples are taken from Gasnahd Plan (2009, Figure
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Convex Relaxation ——

L Lower Bound =——
| rank-r projection -—-—x-—

| OptSpace : 1 iteration =

0.8 {3 2 iterations =
X 3 iterations -

10 iterations —e—

RMSE

Figure 1: Numerical simulation with random rank-2 60600 matrices. Root mean square error
achieved by ®TSPACE is shown as a function of the number of observed entEéand

of the number of line minimizations. The performance of nuclear norm minimizatidn a
an information theoretic lower bound are also shown.

Convex Relaxation ——
1} Lower Bound
rank-r projection -
OptSpace: 1 iteration =
2 iterations = <
08 r 3 iterations = g
10 iterations —e— -~

RMSE

Rank

Figure 2: Numerical simulation with random ranlé00x 600 matrices and number of observed
entries|E|/n = 120. Root mean square error achieved byTSPACE is shown as a
function of the rank and of the number of line minimizations. The performahcedaear
norm minimization and an information theoretic lower bound are also shown.
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|El/n=80, Fit error —=—
RMSE —e—

Lower Bound
[El/n=160, Fit error -8

i
0.1 F RMSE e
L) Lower Bound -
2 o001 f
]
0.001 ¢
0.0001

0 5 10 15 20 25 30 35 40 45 50
Iterations

Figure 3: Numerical simulation with random rank-2 60800 matrices and number of observed
entries|E|/n= 80 and 160. The standard deviation of the i.i.d. Gaussian nois6@4.0
Fit error and root mean square error achieved Ir&ACE are shown as functions of
the number of line minimizations. Information theoretic lower bounds are alsersho

2), from which we took the data points for the convex relaxation appraectvell as the informa-
tion theoretic lower bound described later in this section. After a few iteratl@PESPACE has a
smaller root mean square error than the one produced by convextietaXa about 10 iterations
it becomes indistinguishable from the information theoretic lower bound foll samks.

In Figure 3, we illustrate the rate of convergence effSPACE. Two metrics, root mean squared
error(RMSE) and fit errof 2 (M — N) |l /+/|E[, are shown as functions of the number of iterations
in the manifold optimization step. Note, that the fit error can be easily evaluiaieeN© = P:(N)
is always available at the estimatdyl is a random 60& 600 rank-2 matrix generated as in the
previous examples. The additive noise is distributesi @s N(0,02) with o = 0.001 (A small noise
level was used in order to trace the RMSE evolution over many iterationsh [iant in the figure
is the averaged over 20 random instances, and resulting errors falifferent values of sample
size|E| = 80 and|E| = 160 are shown. In both cases, we can see that the RMSE converges to th
information theoretic lower bound described later in this section. The fit daways exponentially
with the number iterations and converges to the standard deviation of thentodeis Q001. This
is a lower bound on the fit error when n, since even if we have a perfect reconstructioMiof
the average fit error is still.001.

For a more complete numerical comparison between various algorithms for e@impetion,
including different noise models, real data sets and ill conditioned matraesefer to Keshavan
and Oh (2009).

Next, let us compare our main result with the performance guarantee dé€and Plan (2009,
Theorem 7). Let us stress that we require the condition numbzbe bounded, while the analysis
of Candks and Plan (2009) and Carsdand Tao (2009) requires a stronger incoherence assumption
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(compared to ouAl). Therefore the assumptions are not directly comparable. As far asrtire e
bound is concerneg, Caasl and Plan (2009) proved that the semidefinite programming approach
returns an estimatel which satisfies

1
vymn

(The constant in front of the first term is in fact slightly smaller than 7 in @arahd Plan (2009),
but in any case larger than/2. We choose to quote a result which is slightly less accurate but
easier to parse.)

Theorem 1.2 improves over this result in several respétjdiNe do not have the second term on
the right-hand side of (6), that actually increases with the number of wbentries(2) Our error
decreases ay/|E| rather than(n/|E|)Y/?; (3) The noise enters Theorem 1.2 through the operator
norm||ZE||, instead of its Frobenius norffz&||r > ||ZE||2. ForE uniformly random, one expects
1ZE || to be roughly of ordef|ZE|,\/n. For instance, within the independent entries model with
bounded variance, ||ZE||r = ©(,/[E]) while || ZE||2 is of order,/|E|/n (up to logarithmic terms).

Theorem 1.2 can also be compared to an information theoretic lower boomplited by Canéls
and Plan (2009). Suppose, for simplicity,= n and assume that an oracle provides us a linear
subspacd where the correct rankmatrixM = U3V lies. More precisely, we know thad € T
whereT is a linear space of dimensiom2— r? defined by

~ n 2
[Mspp— M|l <7,/ = IZF|lF + —=

ZEE. 6
El - GH I (6)

T={UYT+XVT [ X e R™")Y e R™"}.

Notice that the rank constraint is therefore replaced by this simple lineatragrt. The minimum
mean square error estimator is computed by projecting the revealed entoethersubspace,
which can be done by solving a least squares problem. &aadd Plan (2009) analyzed the root
mean squared error of the resulting estimaoand showed that

L

I1Z5 Ik
E|

1 .
ﬁ”MOracle— M HF ~
Here= indicates that the root mean squared error concentrates in probabilitydtiwe right-hand
side.
For the sake of comparison, suppose we have i.i.d. Gaussian noise vidgiicear. In this case
the oracle estimator yields (for= o(n))

2nr
M”F Oy =

The bound (6) on the semidefinite programming approach yields

1 ~
\/ﬁ] H IVlOracIe—

1 2
= |[Mspp— M <o(7 nE 7E).
\/W]H spp—M||F < | |+n| |

Finally, using Theorems 1.2 and 1.3 we deduce thait®PACE achieves

1 - /Cnr
—||M Ml <oy/—.

Hence, when the noise is i.i.d. Gaussian with small enaydDPTSPACE is order-optimal.
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1.7 Related Work on Gradient Descent

Local optimization techniques such as gradient descent of coordingterttdhave been intensively
studied in machine learning, with a number of applications. Here we will briefliew the recent
literature on the use of such techniques within collaborative filtering applicatio

Collaborative filtering was studied from a graphical models perspectigaliamkhutdinov et al.
(2007), which introduced an approach to prediction based on RestBotamann Machines (RBM).
Exact learning of the model parameters is intractable for such models,ebatithors studied the
performances of aontrastive divergengevhich computes an approximate gradient of the likeli-
hood function, and uses it to optimize the likelihood locally. Based on empingdéece, it was
argued that RBM’s have several advantages over spectral methroztdlborative filtering.

An objective function analogous to the one used in the present paperonaiiered early on
in Srebro and Jaakkola (2003), which uses gradient descent indteesdo minimize a weighted
sum of square residuals. Salakhutdinov and Mnih (2008) justified thefusech an objective
function by deriving it as the (negative) log-posterior of an approg@neobabilistic model. This
approach naturally lead to the use of quadratic regularization in the faétgain, gradient descent
in the factors was used to perform the optimization. Also, this paper intrddautegistic mapping
between the low-rank matrix and the recorded ratings.

Recently, this line of work was pushed further in Salakhutdinov and 8r@&10), which em-
phasize the advantage of using a non-uniform quadratic regularizatithe ifactors. The basic
objective function was again a sum of square residuals, and versgtoafastic gradient descent
was used to optimize it.

This rich and successful line of work emphasizes the importance of olgainigorous under-
standing of methods based on local minimization of the sum of square residtiatespect to the
factors. The present paper provides a first step in that directiorefdibypthe techniques developed
here will be useful to analyze the many variants of this approach.

The relationship between the non-convex objective function and caml@xation introduced
by Fazel (2002) was further investigated by Srebro et al. (2005Rautht et al. (2007). The basic
relation is provided by the identity

1 .
IM[l. =5 min_ {|IX[I2 +[IY[E}, (7
2 M=XYT

where||M||.. denotes the nuclear normMgf (the sum of its singular values). In other words, adding a
regularization term that is quadratic in the factors (as the one used in mtighldérature reviewed
above) is equivalent to weighting by its nuclear norm, that can be regarded as a convex surrogate
of its rank.

In view of the identity (7) it might be possible to use the results in this paper tee@twonger
guarantees on the nuclear norm minimization approach. Unfortunately this atiqtigs not im-
mediate. Indeed in the present paper we assume the correct radown, while on the other
hand we do not use a quadratic regularization in the factors. (Seewashad Oh, 2009 for a
procedure that estimates the rank from the data and is provably sudagsdér the hypotheses of
Theorem 1.2.) Trying to establish such an implication, and clarifying the relagbmeen the two
approaches is nevertheless a promising research direction.
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1.8 On the Spectrum of Sparse Matrices and the Role of Trimming

The trimming step of the ©TSPACE algorithm is somewhat counter-intuitive in that we seem to be
wasting information. In this section we want to clarify its role through a simplengka. Before
describing the example, let us stress once again two fégtin the last step of our the algorithm,
the trimmed entries are actually incorporated in the cost function and hendgllthdormation

is exploited;(ii) Trimming is not the only way to treat over-represented rows/columinsSnand
probably not the optimal one. One might for instance rescale the entrieslofews/columns. We
stick to trimming because we can prove it actually works.

Let us now turn to the example. Assume, for the sake of simplicity, rihatn, there is no
noise in the revealed entries, aktlis the rank one matrix witM;jj = 1 for all i andj. Within
the independent sampling model, the mamk has i.i.d. entries, with distribution Bernouti/n).
The number of non-zero entries in a column is Binoifmgd/n) and is independent for different
columns. It is not hard to realize that the column with the largest number daéhias more than
Clogn/loglogn entries, with positive probability (this probability can be made as large as we wa
by reducingC). Leti be the index of this column, and consider the test vegtothat has thé-th
entry equal to 1 and all the others equal to 0. By compuiti&e’||, we conclude that the largest
singular value oME is at least,/Clogn/loglogn. In particular, this is very different from the
largest singular value dE{ME} = (¢/n)M which ise. This suggests that approximatiivy with
the P, (MF) leads to a large error. Hence trimming is crucial in proving Theorem 1.1., At&o
phenomenon is more severe in real data sets than in the present modeleatieentry is revealed
independently.

Trimming is also crucial in proving Theorem 1.3. Using the above argumentpdssible to
show that under the worst case model,

[ logn
E > / )
1252 > C'(€) Zmax loglogn

This suggests that the largest singular value of the noise nZiri quite different from the largest
singular value oft{ZF} which iseZmax.

To summarize, Theorems 1.1 and 1.3 (for the worst case model) simply dmldotviihout
trimming or a similar procedure to normalize rows/column&6f Trimming allows to overcome
the above phenomenon by setting to 0 over-represented rows/columns.

2. Proof of Theorem 1.1

As explained in the introduction, the crucial idea is to consider the singulae wcomposition
of the trimmed matrixXNE instead of the original matriNlE. Apart from a trivial rescaling, these
singular values are close to the ones of the original madrix

Lemma 1 There exists a numerical constant C such that, with probability greater that/n?,

f—z‘<cw| = 22,
|22~ Z| < OV [ = + 21252

where it is understood that; = 0 for g >r.

2067



KESHAVAN, MONTANARI AND OH

Proof For any matrix A, leiog(A) denote theth singular value oA. Then,oq(A+B) < og(A) +
01(B), whence

% 3,
€ q

a 1
< CMmax\/:‘F EHZEH27

where the second inequality follows from the next Lemma as shown by Kasled al. (2010).

Lemma 2 (Keshavan, Montanari, Oh, 2009)There exists a numerical constant C such that, with

probability larger thanl — 1/n3,
L < CMmax\F .
2 8

= M__ilnﬂﬁE
v/ mn €

We will now prove Theorem 1.1.
Proof (Theorem 1.1) For any matrik of rank at most &, ||Al|r < v/2r||A||2, whence

M P ) < jrf]:rn M—VT”(NE—iZ;lcixiyr)
_ \/\/% M—\/T](ME+ZE_i>;10'iXiyiT> 2
\/7 - .,
= o (g} (2 3 om)) |
< o ([ Ve |+ Y2 Y o

2ar zf
< 2CMmax/ - 1Z5 |2

) nra®/? / SE
< C'Mmax ﬁ +2\@ |E| 1252

where on the fourth line, we have used the fact that for any mathigelsy; Ailj2 < 5 ||Aill2. This
proves our claim. |

3. Proof of Theorem 1.2

Recall that the cost function is defined over the Riemannian manifdtd, n) = G(m,r) x G(n,r).
The proof of Theorem 1.2 consists in controlling the behavidf of a neighborhood afi = (U,V)
(the point corresponding to the matifik to be reconstructed). Throughout the proof we4gty)
be the set of matrix coupldX,Y) € R™" x R™" such that|X®||2 < ur, [|[Y(D]|2 < prfor all i, j.
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3.1 Preliminary Remarks and Definitions

Given x; = (X1,Y1) andx = (X2,Y2) € M(m,n), two points on this manifold, their distance is
defined ad(x1,X2) = \/d(Xl,X2)2+d(Y1,Y2)2, where, letting(coshy, ...,cos9;) be the singular
values ofX] Xo/m,

d(X1, X2) = |8]]2.

The next remark bounds the distance between two points on the manifoldrtioutar, we will
use this to bound the distance between the original mitrix UZVT and the starting point of the
manifold optimizatiorM = XoSY; .

Remark 3 (Keshavan, Montanari, Oh, 2009)Let U,X € R™" with UTU = XTX =ml, V,Y €
R™" with VTV =YTY =nl, and M=U3VT, M = XSY' for = = diagZy,...,%) and Sc R"™".
If Z]_, . .,Zr > Zmin, then

Tt ~ Tt
dUX)< ———[M=M[r , dV,Y)<—-——

GivenSachieving the minimum in Eqg. (2), it is also convenient to introduce the notations

IM — M|

\/zmm +”S z”F?

¢zapxu +lIs-Z|2.

3.2 Auxiliary Lemmas and Proof of Theorem 1.2

The proof is based on the following two lemmas that generalize and shanpgaus bounds in
Keshavan et al. (2010).

Lemma 4 There exist numerical constantg,C1,C, such that the following happens. Assume
g > Color /o max{ logn; tor v/ (Zmin/Zmax)* } andd < Zmin/(CoZmax). Then,

F(X)—F(u) > Cinevad_(x,u)?—Cinvral|ZE|.d; (x,u), (8)
F(X)—F(u) < GConevaz2,d(x,u)?+Cony/ra|ZE|2d, (x,u), (9)

for all x € M(m,n)N K (4p) such that dx, u) < &, with probability at least.—1/n* Here Sc R"*"
is the matrix realizing the minimum in Eq. (2).

Corollary 3.1 There exist a constant C such that, under the hypotheses of Lemma 4
ISl < CEmad(x.u) +C ¥ 1251

Further, for an appropriate choice of the constants in Lemma 4, we have

NG

Omax(S) < szax‘f'c? ||ZE||2, (10)
1 r
Orin(S) > 3Zmin— CY |2 1)
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Lemma5 There exist numerical constantg,C1,C, such that the following happens. Assume
€> COUOr\/a(zmax/zmin)zmaX{ logn; UOr\/a(zmax/zmin)4} andd < Zmin/(CoZmax). Then,

2
\ﬁzmaXHZEHZ

€min  Zmin +,

(12)

|gradF (x)||?> > Cyne?zt. [d(x,u) —Cy

for all x € M(m,n) N K (44o) such that dx, u) < &, with probability at least. — 1/n*. (Here[a], =
max(a,0).)

We can now turn to the proof of our main theorem.
Proof (Theorem 1.2). Led = Zmin/CoZmax With Cy large enough so that the hypotheses of Lemmas
4 and 5 are verified.

Call {xx}k=0 the sequence of pails,Yk) € M(m,n) generated by gradient descent. By as-
sumption the right-hand side of Eq. (3) is smaller tag,. The following is therefore true for
some numerical consta6t

1ZE]l, <~ ( Zmin s (13)
~ C/r \ Znmax

Notice that the constant appearing here can be made as large as weywardifying the constant
appearing in the statement of the theorem. Further, by using Corollary 3dkif{@ and (9) we get

> Cinevosg{d(x,u)? -8 _}, (14)
FX)—F(u) < ConevazZfd(x,u)®+8_ }, (15)

with C; andC, different from those in Egs. (8) and (9), where

_ VT |22
€min  Zmax

& = oY I 2l
€min  Zmin

o, +

By Eq. (13), with large enoug@, we can assum@ — < 8/20 anddo + < (8/20)(Zmin/Zmax)-
Next, we provide a bound af(u, xo). Using Remark 3, we havd(u,Xo) < (T1/n/aZmin)||M —
XOSOYOTH,:. Together with Theorem 1.1 this implies

CMnax <r0()1/2 N c'r

€2 min

7.
- 1252

d(U,Xo) < ]
min

Sinceg > C”au{rz(zmax/zmin)“ as per our assumptions aMinax < pa+/f Zmax for incoherentM,

the first term in the above bound is upper boundedkhy/20CoZmayx, for large enougit”. Using

Eqg. (13), with large enough constadt the second term in the above bound is upper bounded by
% min/20C0Zmax. Hence we get

o)
< —
d(u,Xp) < 10

We make the following claims :
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1. xx € K(4uo) for all k.

First we notice that we can assumrg < X (3W). Indeed, if this does not hold, we can
‘rescale’ those rows oXp, Yo that violate the constraint. A proof that this rescaling is possible
was given in Keshavan et al. (2010) (cf. Remark 6.2 there). We rdb@atesult here for the
reader’s convenience in the next Remark.

Remark 6 LetU,X € R™" with UTU = XTX = nl and U € K (o) and dX,U) <8 < 7.
Then there exists X R"™" such that X' X’ = nl, X’ € & (3w) and dX’,U) < 43. Further,
such an X can be computed from X in a time ofi@?).

Sincexo € K(3po) , F(xo) = F(xo) < 4Cone\/a54,,0°/100. On the other han (x) >

p(el/? —1) for x ¢ K(4wo). SinceF (xx) is a non-increasing sequence, the thesis follows
provided we take > Cone/a 2

min*

2. d(xk,u) < 8/10 for all k.

Sincee > Cop2r2(Zmax/Zmin)® as per our assumptions in Theorem 1.2, we g, u)? <
(C132./C52..)(8/20)2. Also assuming Eg. (13) with large enoughwe haved, - < §/20
2
F(xo) <F(u) +C1ns\ﬂzﬁﬂnm.
Also, using Eq. (14), for atkx such thad(xk,u) € [06/10, 6], we have
F(x) > F(u) +Cine/oz3, S8
= ' i 400

Hence, for allxk such that(xk,u) € [5/10,8], we haveF (x) > F(x) > F(xo). This contra-
dicts the monotonicity oF (x), and thus proves the claim.

Since the cost function is twice differentiable, and because of the abowddimns, the sequence
{xx} converges to

Q = {x € K(4) "M(m,n) : d(x,u) < &,gradF (x) =0}.
By Lemma 5 for anyk € Q,

VT Zmax HZEHZ
dx,u) <C—F—-"=. 16
(x,u) €min  Zmin (16)

Using Corollary 3.1, we havé, (X,u) < Zmaxd(X,u) + ||S— Z||F < CZmaxd(X,u) +C(\/T/£)]|ZE| .
Together with Egs. (18) and (16), this implies

1 52 ||1ZE
v x| < ¥ Zmad 2l
ny/a €Xin
which finishes the proof of Theorem 1.2. [ |
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3.3 Proof of Lemma 4 and Corollary 3.1

Proof (Lemma 4) The proof is based on the analogous bound in the noiselesthedse, Lemma
5.3 in Keshavan et al. (2010). For readers’ convenience, the rissigported in Appendix A,
Lemma 7. For the proof of these lemmas, we refer to Keshavan et al. (2010)

In order to prove the lower bound, we start by noticing that

Fu) < [ 2e(2) 2,

which is simply proved by usin§= Z in Eq. (2). On the other hand, we have

FO) = SlZ(XSY —M-2)|?
= JIB@)E 4| (XSY - MR~ (7(2), (XS ~M)) (D)
> F(u)+Crevad. (x,u)? — v2r||ZE||2|XSY —M||E,

where in the last step we used Lemma 7. Now by triangular inequality

IXSY' =M[E < 3IX(S—Z)YT|E+3IXZ(Y = V)T|[E +3[(X —U)=VT ||
1 1
< 3nm|S— Z\|§+3nzazﬁqax(auX—UHE+HHY—VHE)
< Crfad, (x,u)?, (18)

In order to prove the upper bound, we proceed as above to get
F(x) < 3l2e(2)E +Crey/azfad(x,u)?+v2ra|Z8|Cnd. (x,u).
Further, by replacing with u in Eq. (17)
1
F(u) = EH?E(Z)HIZZ —(Be(2),(U(S—2)VT))
1
> EII?E(Z)IIE —V2ra|Z8||.Cnd; (x,u).

By taking the difference of these inequalities we get the desired uppeadbou |

Proof (Corollary 3.1) By putting together Eq. (8) and (9), and using the defirgtmfrd, (x,u),
d_(x,u), we get

Ci+C
C

(C1+C2)\ﬂ
IS=2IE < PR pdx w? + T 28 oy TR dx ) + S ZR.

Letx= ||S—Z||r, a® = ((C1+C2) /C1) ZZd (X, u)?, andb = ((C; +Cy)/r/Cs€) || Z||2. The above
inequality then takes the form

X2 < a?+by/x2+a? < a® + ab+ bx,

which implies our claink < a+h.
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The singular value bounds (10) and (11) follow by triangular inequality.ifstance
r
Orin(S) > Zrin — Cmadl(x.) ~C Y |25

which implies the inequality (11) foud(x,u) < & = Znin/CoZmax andCop large enough. An analo-
gous argument proves Eq. (10). |

3.4 Proof of Lemma 5

Without loss of generality we will assunde< 1,C, > 1 and

r
Y28 o < S (19)
because otherwise the lower bound (12) is trivial fordgk, u) < 6.

Denote byt — x(t), t € [0,1], the geodesic oM(m,n) such thatx(0) = u andx(1) = X,
parametrized proportionally to the arclength. ket x(1) be its final velocity, withv = (W, Q).
Obviouslyw € Ty (with Ty the tangent space & (m,n) atx) and

1 ~ 1 ~
ZIWII2 + Z|1Q|12 = d(x,u)?
m|| | +n||QH (x,u)?,

because — x(t) is parametrized proportionally to the arclength.
Explicit expressions fotv can be obtained in terms @f = x(0) = (W, Q) (Keshavan et al.,
2010). If we letW = LORT be the singular value decompositionvif we obtain

W = —UROsiNOR" + LOCoOR' . (20)

It was proved in Keshavan et al. (2010) thgtadG(x),w) > 0. It is therefore sufficient to lower
bound the scalar produ¢gradrF, w). By computing the gradient &f we get

(gradF (x),W) = (P(XSY —N), (X" +WSY))
= (Be(XSY —M),(XQT +WSY)) — (F(Z),(XQ"T +WSY))
= (gradFo(x), W) — (Z&(2), (X" +WSY')) (21)
whereFy(x) is the cost function in absence of noise, namely
oY) _S&igr{m J)GE((XSYT)H —M”)z}' (22)
As proved in Keshavan et al. (2010),
(gradFo(x),W) > Cney/az2, d(x,u)? (23)

(see Lemma 9 in Appendix).
We are therefore left with the task of upper bounditig(Z), (XQT +WSY')). SinceX QT
has rank at most, we have

(Pe(2),XRQ") < VI (1 Z5||2]IX T | -
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SinceXTX = ml, we get

IXSQT|Z = mTr(S'SQTQ) < noomax(S)?(| QI3
r 2
< Crfa(Smact Y125 ) dix w? (24)
< 4Crfaz2d(x,u)?,

where, in inequality (24)' we used Corollary 3.1 and in the last step, wkEge(19). Proceeding
analogously fofP=(Z),WSY'), we get

(PE(2), (XN +WSY)) < C'nZmaxy/ral||Z5[|2d(x,u).

Together with Eq. (21) and (23) this implies

E
(gradF (x), W) > Cinev/az2,.d(x,u) {d(x, u) — CZ@XM} 7
€min  Zmin

which implies Eq. (12) by Cauchy-Schwartz inequality.

4. Proof of Theorem 1.3

Proof (Independent entries modeWe start with a claim that for any sampling &twe have
1Z5(l2 < 11252 -

To prove this claim, lek* andy* be m andn dimensional vectors, respectively, achieving the opti-
mum in maxy <1, jyj<1{x' ZEy}, that is, such thaZ&||, = x*TZEy*. Recall that, as a result of the
trimming step, all the entries in trimmed rows and columnZ®fre set to zero. Then, there is no
gain in maximizingx’ ZEy to have a non-zero entry for i corresponding to the rows which are
trimmed. Analogously, foj corresponding to the trimmed columns, we can assume without loss of
generality thay; = 0. From this observation, it follows that” ZEy* = x*TZEy*, since the trimmed

matrix ZE and the sample noise mati@€ only differ in the trimmed rows and columns. The claim
follows from the fact thax*TZEy* < ||ZE||,, for anyx* andy* with unit norm.

In what follows, we will first prove that|ZE ||, is bounded by the right-hand side of Eq. (4)
for any range ofE|. Due to the above observation, this implies thaE||; is also bounded by
Co+/ey/alogn, wheree = |[E|/+/an. Further, we use the same analysis to prove a tighter bound in
Eg. (5) whenE| > nlogn.

First, we want to show thaiZE|, is bounded byCa+/e\/alogn, andzj’s are i.i.d. random
variables with zero mean and sub-Gaussian tail with pararaétdihe proof strategy is to show that
E[HZEHZ} is bounded, using the result of Seginer (2000) on expected normadnamatrices, and
use the fact thdt - ||2 is a Lipschitz continuous function of its arguments together with concentration
inequality for Lipschitz functions on i.i.d. Gaussian random variables dualagiand (1996).

Note that|| - || is a Lipschitz function with a Lipschitz constant 1. Indeed, for &handM’,
[[IM[l2 = [IM]]2] < [[M"—=M]|2 < [[M" —M]||g, where the first inequality follows from triangular
inequality and the second inequality follows from the fact thati2 is the sum of the squared
singular values.
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To bound the probability of large deviation, we use the result on concdiemtriaequality for
Lipschitz functions on i.i.d. sub-Gaussian random variables due to Talqd®96). For a 1-
Lipschitz function|| - || onmx ni.i.d. random vanabIeZE with zero mean, and sub-Gaussian tails

with parameteo?,

tZ
P(1Z5 2~ E[1Z5)2) > 1) < exp{ — 55} - (25)

Settingt = /802logn, this implies that|ZF||, < E[||Z||2] + \/802logn with probability larger
than 1-1/n%.

Now, we are left to bound the expectatifif(|ZF||,]. First, we symmetrize the possibly asym-
metric random variablea? to use the result of Seginer (2000) on expected norm of random matrices
with symmetric random variables. Lfélq 's be independent copies &f;’s, and¢;;’s be independent
Bernoulli random variables such thiaj = +1 with probability /2 andg;; = —1 with probability
1/2. Then, by convexity oE[||ZF — Z'F||,|2'F] and Jensen’s inequality,

E[1Z5]2] <E[IIZ5 ~Z"®|l2] = E[II(&i(Z5 — ZD))l2] < 2E[[(&;Z5)ll2] ,
where(EijZi'J?) denotes am x n matrix with entryg;; Zﬁ in position(i, j). Thus, itis enough to show

thatE([[|ZE||.] is bounded byo/e\/alognin the case of symmetric random variablss.
To this end, we apply the following bound on expected norm of random reatvigth i.i.d.
symmetric random entries, proved by Seginer (2000, Theorem 1.1).

£[1252] < C(E[max|zE]] + B[max|Z5 ] ) (26)

wherezE andZ,Ej denote theth row andjth column ofA respectively. For any positive parameter
B, which will be specified later, the following is true.

[max||Z 1] < Po 8\/>—|—/ maxHZ i||2 > po%ev/a +2) dz. (27)

To bound the second term, we can apply union bound on each ofablemns, and use the follow-
ing bound on each cqum|hZ ||? resulting from concentration of measure inequality for the i.i.d.
sub-Gaussian random matﬂx

(2 ) <ol g((6-3evar 5)}-
P( Y (z5)? > Bo%eva+z) <exp! —>((B—3)eva+ (28)
2%

To prove the above result, we apply Chernoff bound on the sum of émdigmt random vari-
ables. Recall thaZEj = &kjZj where&'’s are independent Bernoulli random variables such that

E = 1 with probability e/1/mn and zero with probability +¢/,/mn Then, for the choice of
A =3/80% < 1/202,

E[exp(r gzk,zk, ) = (1- e+ B )"

(- " vz

= exp{mlog <1+ \/%]) }
expleva},

IN

IN
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where the first inequality follows from the definition @f; as a zero mean random variable with
sub-Gaussian tail, and the second inequality follows frontlagx) < x. By applying Chernoff
bound, Eg. (28) follows. Note that an analogous result holds for tlefideéan norm on the rows
IZE]12.

Substituting Eq. (28) anBt( max; || Z5 (| > z) < mP(||Z&]1? > 2) in Eq. (27), we get

8 2
E[max| 25 |?] <Bo’sva+ "?me*%(ﬁ*wa . (29)

The second term can be made arbitrarily small by tafing Clogn with large enougltC. Since
E[max; [|Z&] < (/E[max [|2&]2], applying Eq. (29) witiB = Clogn in Eq. (26) gives

E[||ZF|2] < Coy/evalogn.

Together with Eq. (25), this proves the desired thesis for any samplésize

In the case whetE| > nlogn, we can get a tighter bound by similar analysis. SinzeC’logn,
for some constar@’, the second term in Eq. (29) can be made arbitrarily small with a large constan
. Hence, applying Eqg. (29) with = C in Eqg. (26), we get

E[||ZF|2] < Coy/eva.

Together with Eq. (25), this proves the desired thesisEde> nlogn.
[ |

Proof (Worst Case ModélLet D be themx n all-ones matrix. Then for any matr&from theworst
case modelwe havel|ZE||; < Zyax||DE||2, sincex” ZBy < 5 ; Zmax|xi|DE ly;|, which follows from
the fact thatZ;;’s are uniformly bounded. FurtheBE is an adjacency matrix of a corresponding
bipartite graph with bounded degrees. Then, for any choi&etbé following is true for all positive
integersk:

IDE||2< max |x"((DF)"DF)*x| < Tr(((DF)"DF)¥) < n(2e)*.

x[XI=1

Now Tr(((DE)TDF)¥) is the number of paths of lengttk@n the bipartite graph with adjacency
matrix DE, that begin and end affor everyi € [n]. Since this graph has degree bounded fynz
get

IDE5 < n(2e)™.

Takingk large, we get the desired thesis. |

Acknowledgments

This work was partially supported by a Terman fellowship, the NSF CAREERGCCF-0743978
and the NSF grant DMS-0806211. SO was supported by a fellowshiptfre Samsung Scholarship
Foundation.

2076



MATRIX COMPLETION FROMNOISY ENTRIES

Appendix A. Three Lemmas on the Noiseless Problem

Lemma 7 There exists numerical constantg,C;,C, such that the following happens. Assume
€ > Color/a max{ logn; uOr\/a(zmm/zmax)‘*} andod < Zmin/(CoZmax)- Then,

1
C1vaZ3pd(x,u)* +Crva S — Zf < e o) < Cav/aZfpd(x, )%,

for all x € M(m,n) N X (4uo) such that dx,u) < &, with probability at leastL — 1/n*. Here $ €
R"™" is the matrix realizing the minimum in Eq. (22).

Lemma 8 There exists numerical constantg &1d C such that the following happens. Assume

ngadlfo(x) HZ >C n€2 z?nind(xﬂ u)27
for all x € M(m,n) N K (44o) such that dx, u) < &, with probability at leastL — 1/n*,

Lemma 9 Definew as in Eq. (20). Then there exists numerical constagtai@ C such that the
following happens. Under the hypothesis of Lemma 8

(gradro(x), W) > Crev/a 22, d(x,u)?,

for all x € M(m,n) N % (4io) such that dx, u) < &, with probability at leastl — 1/n®.
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