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Abstract
Given a matrixM of low-rank, we consider the problem of reconstructing it from noisy observa-
tions of a small, random subset of its entries. The problem arises in a variety of applications, from
collaborative filtering (the ‘Netflix problem’) to structure-from-motion and positioning. We study
a low complexity algorithm introduced by Keshavan, Montanari, and Oh (2010), based on a com-
bination of spectral techniques and manifold optimization, that we call here OPTSPACE. We prove
performance guarantees that are order-optimal in a number of circumstances.
Keywords: matrix completion, low-rank matrices, spectral methods, manifold optimization

1. Introduction

Spectral techniques are an authentic workhorse in machine learning, statistics, numerical analysis,
and signal processing. Given a matrixM, its largest singular values—and the associated singular
vectors—‘explain’ the most significant correlations in the underlying data source. A low-rank ap-
proximation ofM can further be used for low-complexity implementations of a number of linear
algebra algorithms (Frieze et al., 2004).

In many practical circumstances we have access only to a sparse subsetof the entries of an
m×n matrixM. It has recently been discovered that, if the matrixM has rankr, and unless it is too
‘structured’, a small random subset of its entries allow to reconstruct itexactly. This result was first
proved by Cand̀es and Recht (2008) by analyzing a convex relaxation introduced by Fazel (2002). A
tighter analysis of the same convex relaxation was carried out by Candès and Tao (2009). A number
of iterative schemes to solve the convex optimization problem appeared soonthereafter (Cai et al.,
2008; Ma et al., 2009; Toh and Yun, 2009).

In an alternative line of work, Keshavan, Montanari, and Oh (2010) attacked the same problem
using a combination of spectral techniques and manifold optimization: We will refer to their al-
gorithm as OPTSPACE. OPTSPACE is intrinsically of low complexity, the most complex operation
being computingr singular values (and the corresponding singular vectors) of a sparsem×n matrix.
The performance guarantees proved by Keshavan et al. (2010) arecomparable with the information
theoretic lower bound: roughlynrmax{r, logn} random entries are needed to reconstructM exactly
(here we assumem of ordern). A related approach was also developed by Lee and Bresler (2009),
although without performance guarantees for matrix completion.
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The above results crucially rely on the assumption thatM is exactlya rankr matrix. For many
applications of interest, this assumption is unrealistic and it is therefore important to investigate
their robustness. Can the above approaches be generalized when the underlying data is ‘well ap-
proximated’ by a rankr matrix? This question was addressed by Candès and Plan (2009) within the
convex relaxation approach of Candès and Recht (2008). The present paper proves a similar robust-
ness result for OPTSPACE. Remarkably the guarantees we obtain are order-optimal in a variety of
circumstances, and improve over the analogous results of Candès and Plan (2009).

1.1 Model Definition

Let M be anm×n matrix of rankr, that is

M =UΣVT . (1)

whereU has dimensionsm× r, V has dimensionsn× r, andΣ is a diagonalr× r matrix. We assume
that each entry ofM is perturbed, thus producing an ‘approximately’ low-rank matrixN, with

Ni j = Mi j +Zi j ,

where the matrixZ will be assumed to be ‘small’ in an appropriate sense.
Out of them×n entries ofN, a subsetE ⊆ [m]× [n] is revealed. We letNE be them×n matrix

that contains the revealed entries ofN, and is filled with 0’s in the other positions

NE
i j =

{
Ni j if (i, j) ∈ E ,

0 otherwise.

Analogously, we letME and ZE be them× n matrices that contain the entries ofM and Z, re-
spectively, in the revealed positions and is filled with 0’s in the other positions.The setE will be
uniformly random given its size|E|.

1.2 Algorithm

For the reader’s convenience, we recall the algorithm introduced by Keshavan et al. (2010), which
we will analyze here. The basic idea is to minimize the cost functionF(X,Y), defined by

F(X,Y) ≡ min
S∈Rr×r

F (X,Y,S) , (2)

F (X,Y,S) ≡ 1
2 ∑
(i, j)∈E

(Ni j − (XSYT)i j )
2 .

HereX ∈Rn×r , Y ∈Rm×r are orthogonal matrices, normalized byXTX = mI , YTY = nI .
Minimizing F(X,Y) is ana priori difficult task, sinceF is a non-convex function. The key

insight is that the singular value decomposition (SVD) ofNE provides an excellent initial guess,
and that the minimum can be found with high probability by standard gradient descent after this
initialization. Two caveats must be added to this description:(1) In general the matrixNE must be
‘trimmed’ to eliminate over-represented rows and columns;(2) For technical reasons, we consider
a slightly modified cost function to be denoted byF̃(X,Y).
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OPTSPACE( matrixNE )

1: Trim NE, and letÑE be the output;
2: Compute the rank-r projection ofÑE, Pr(ÑE) = X0S0YT

0 ;
3: Minimize F̃(X,Y) through gradient descent, with initial condition(X0,Y0).

We may note here that the rank of the matrixM, if not known, can be reliably estimated from
ÑE (Keshavan and Oh, 2009).

The various steps of the above algorithm are defined as follows.
Trimming. We say that a row is ‘over-represented’ if it contains more than 2|E|/m revealed

entries (i.e., more than twice the average number of revealed entries per row). Analogously, a
column is over-represented if it contains more than 2|E|/n revealed entries. The trimmed matrixÑE

is obtained fromNE by setting to 0 over-represented rows and columns.
Rank-r projection. Let

ÑE =
min(m,n)

∑
i=1

σixiy
T
i ,

be the singular value decomposition ofÑE, with singular valuesσ1 ≥ σ2 ≥ . . . . We then define

Pr(Ñ
E) =

mn
|E|

r

∑
i=1

σixiy
T
i .

Apart from an overall normalization,Pr(ÑE) is the best rank-r approximation tõNE in Frobenius
norm.

Minimization. The modified cost functioñF is defined as

F̃(X,Y) = F(X,Y)+ρG(X,Y)

≡ F(X,Y)+ρ
m

∑
i=1

G1

(
‖X(i)‖2

3µ0r

)
+ρ

n

∑
j=1

G1

(
‖Y( j)‖2

3µ0r

)
,

whereX(i) denotes thei-th row ofX, andY( j) the j-th row ofY. The functionG1 :R+ →R is such
thatG1(z) = 0 if z≤ 1 andG1(z) = e(z−1)2 −1 otherwise. Further, we can chooseρ = Θ(|E|).

Let us stress that the regularization term is mainly introduced for our prooftechnique to work
(and a broad family of functionsG1 would work as well). In numerical experiments we did not find
any performance loss in settingρ = 0.

One important feature of OPTSPACE is that F(X,Y) and F̃(X,Y) are regarded as functions
of the r-dimensional subspaces ofRm andRn generated (respectively) by the columns ofX and
Y. This interpretation is justified by the fact thatF(X,Y) = F(XA,YB) for any two orthogonal
matricesA, B∈ Rr×r (the same property holds for̃F). The set ofr dimensional subspaces ofRm

is a differentiable Riemannian manifoldG(m, r) (the Grassmann manifold). The gradient descent
algorithm is applied to the functioñF : M(m,n) ≡ G(m, r)×G(n, r) → R. For further details on
optimization by gradient descent on matrix manifolds we refer to Edelman et al. (1999) and Absil
et al. (2008).
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1.3 Some Notations

The matrixM to be reconstructed takes the form (1) whereU ∈ Rm×r , V ∈ Rn×r . We writeU =
[u1,u2, . . . ,ur ] andV = [v1,v2, . . . ,vr ] for the columns of the two factors, with‖ui‖=

√
m, ‖vi‖=

√
n,

anduT
i u j = 0, vT

i v j = 0 for i 6= j (there is no loss of generality in this, since normalizations can be
absorbed by redefiningΣ).

We shall writeΣ = diag(Σ1, . . . ,Σr) with Σ1 ≥ Σ2 ≥ ·· · ≥ Σr > 0. The maximum and minimum
singular values will also be denoted byΣmax= Σ1 andΣmin = Σr . Further, the maximum size of an
entry ofM is Mmax≡ maxi j |Mi j |.

Probability is taken with respect to the uniformly random subsetE ⊆ [m]× [n] given |E| and
(eventually) the noise matrixZ. Defineε ≡ |E|/√mn. In the case whenm= n, ε corresponds to the
average number of revealed entries per row or column. Then it is convenient to work with a model
in which each entry is revealed independently with probabilityε/

√
mn. Since, with high probability

|E| ∈ [ε
√

αn−A
√

nlogn,ε
√

αn+A
√

nlogn], any guarantee on the algorithm performances that
holds within one model, holds within the other model as well if we allow for a vanishing shift in ε.
We will useC, C′ etc. to denote universal numerical constants.

It is convenient to define the following projection operatorPE(·) as the sampling operator, which
maps anm×n matrix onto an|E|-dimensional subspace inRm×n

PE(N)i j =

{
Ni j if (i, j) ∈ E ,

0 otherwise.

Given a vectorx∈Rn, ‖x‖ will denote its Euclidean norm. For a matrixX ∈Rn×n′ , ‖X‖F is its
Frobenius norm, and‖X‖2 its operator norm (i.e.,‖X‖2 = supu6=0‖Xu‖/‖u‖). The standard scalar
product between vectors or matrices will sometimes be indicated by〈x,y〉 or 〈X,Y〉 ≡ Tr(XTY),
respectively. Finally, we use the standard combinatorics notation[n] = {1,2, . . . ,n} to denote the
set of firstn integers.

1.4 Main Results

Our main result is a performance guarantee for OPTSPACE under appropriate incoherence assump-
tions, and is presented in Section 1.4.2. Before presenting it, we state a theorem of independent
interest that provides an error bound on the simple trimming-plus-SVD approach. The reader inter-
ested in the OPTSPACE guarantee can go directly to Section 1.4.2.

Throughout this paper, without loss of generality, we assumeα ≡ m/n≥ 1.

1.4.1 SIMPLE SVD

Our first result shows that, in great generality, the rank-r projection ofÑE provides a reasonable
approximation ofM. We definẽZE to be anm×n matrix obtained fromZE, after the trimming step
of the pseudocode above, that is, by setting to zero the over-represented rows and columns.

Theorem 1.1 Let N= M+Z, where M has rank r, and assume that the subset of revealed entries
E ⊆ [m]× [n] is uniformly random with size|E|. Let Mmax= max(i, j)∈[m]×[n] |Mi j |. Then there exists
numerical constants C and C′ such that

1√
mn

‖M−Pr(Ñ
E)‖F ≤CMmax

(
nrα3/2

|E|

)1/2

+ C′n
√

rα
|E| ‖Z̃E‖2 ,
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with probability larger than1−1/n3.

Projection onto rank-r matrices through SVD is a pretty standard tool, and is used as first analysis
method for many practical problems. At a high-level, projection onto rank-r matrices can be in-
terpreted as ‘treat missing entries as zeros’. This theorem shows that thisapproach is reasonably
robust if the number of observed entries is as large as the number of degrees of freedom (which is
about(m+n)r) times a large constant. The error bound is the sum of two contributions: the first
one can be interpreted as an undersampling effect (error induced by missing entries) and the second
as a noise effect. Let us stress that trimming is crucial for achieving this guarantee.

1.4.2 OPTSPACE

Theorem 1.1 helps to set the stage for the key point of this paper:a much better approximation
is obtained by minimizing the cost̃F(X,Y) (step 3 in the pseudocode above), provided M satisfies
an appropriate incoherence condition.Let M =UΣVT be a low rank matrix, and assume, without
loss of generality,UTU = mI andVTV = nI . We say thatM is (µ0,µ1)-incoherentif the following
conditions hold.

A1. For all i ∈ [m], j ∈ [n] we have,∑r
k=1U2

ik ≤ µ0r, ∑r
k=1V2

ik ≤ µ0r.

A2. For all i ∈ [m], j ∈ [n] we have,|∑r
k=1Uik(Σk/Σ1)Vjk| ≤ µ1r1/2.

Theorem 1.2 Let N= M+Z, where M is a(µ0,µ1)-incoherent matrix of rank r, and assume that
the subset of revealed entries E⊆ [m]× [n] is uniformly random with size|E|. Further, letΣmin =
Σr ≤ ·· · ≤ Σ1 = Σmax with Σmax/Σmin ≡ κ. Let M̂ be the output ofOPTSPACE on input NE. Then
there exists numerical constants C and C′ such that if

|E| ≥ Cn
√

ακ2 max
{

µ0r
√

α logn; µ2
0r2ακ4 ; µ2

1r2ακ4} ,

then, with probability at least1−1/n3,

1√
mn

‖M̂−M‖F ≤C′ κ2n
√

rα
|E| ‖ZE‖2 . (3)

provided that the right-hand side is smaller thanΣmin.

As discussed in the next section, this theorem captures rather sharply theeffect of important
classes of noise on the performance of OPTSPACE.

1.5 Noise Models

In order to make sense of the above results, it is convenient to consider acouple of simple models
for the noise matrixZ:

Independent entries model.We assume thatZ’s entries are i.i.d. random variables, with zero
meanE{Zi j}= 0 and sub-Gaussian tails. The latter means that

P{|Zi j | ≥ x} ≤ 2e−
x2

2σ2 ,

for some constantσ2 uniformly bounded inn.
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Worst case model.In this modelZ is arbitrary, but we have an uniform bound on the size of its
entries:|Zi j | ≤ Zmax.

The basic parameter entering our main results is the operator norm ofZ̃E, which is bounded as
follows in these two noise models.

Theorem 1.3 If Z is a random matrix drawn according to the independent entries model,then for
any sample size|E| there is a constant C such that,

‖Z̃E‖2 ≤Cσ
( |E| logn

n

)1/2

, (4)

with probability at least1−1/n3. Further there exists a constant C′ such that, if the sample size is
|E| ≥ nlogn (for n≥ α), we have

‖Z̃E‖2 ≤C′σ
( |E|

n

)1/2

, (5)

with probability at least1−1/n3.
If Z is a matrix from the worst case model, then

‖Z̃E‖2 ≤
2|E|
n
√

α
Zmax,

for any realization of E.

It is elementary to show that, if|E| ≥ 15αnlogn, no row or column is over-represented with high
probability. It follows that in the regime of|E| for which the conditions of Theorem 1.2 are satisfied,
we haveZE = Z̃E and hence the bound (5) applies to‖Z̃E‖2 as well. Then, among the other things,
this result implies that for the independent entries model the right-hand side of our error estimate,
Eq. (3), is with high probability smaller thanΣmin, if |E| ≥ Crαnκ4(σ/Σmin)

2. For the worst case
model, the same statement is true ifZmax≤ Σmin/C

√
rκ2.

1.6 Comparison with Other Approaches to Matrix Completion

Let us begin by mentioning that a statement analogous to our preliminary Theorem 1.1 was proved
by Achlioptas and McSherry (2007). Our result however applies to anynumber of revealed entries,
while the one of Achlioptas and McSherry (2007) requires|E| ≥ (8logn)4n (which for n≤ 5 ·108

is larger thann2). We refer to Section 1.8 for further discussion of this point.
As for Theorem 1.2, we will mainly compare our algorithm with the convex relaxation approach

recently analyzed by Candès and Plan (2009), and based on semidefinite programming. Our basic
setting is indeed the same, while the algorithms are rather different.

Figures 1 and 2 compare the average root mean square error‖M̂ −M‖F/
√

mn for the two al-
gorithms as a function of|E| and the rank-r respectively. HereM is a random rankr matrix of
dimensionm= n= 600, generated by lettingM = ŨṼT with Ũi j ,Ṽi j i.i.d. N(0,20/

√
n). The noise

is distributed according to the independent noise model withZi j ∼ N(0,1). In the first suite of sim-
ulations, presented in Figure 1, the rank is fixed tor = 2. In the second one (Figure 2), the number
of samples is fixed to|E|= 72000. These examples are taken from Candès and Plan (2009, Figure
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Figure 1: Numerical simulation with random rank-2 600×600 matrices. Root mean square error
achieved by OPTSPACE is shown as a function of the number of observed entries|E| and
of the number of line minimizations. The performance of nuclear norm minimization and
an information theoretic lower bound are also shown.
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Figure 2: Numerical simulation with random rank-r 600×600 matrices and number of observed
entries|E|/n = 120. Root mean square error achieved by OPTSPACE is shown as a
function of the rank and of the number of line minimizations. The performance of nuclear
norm minimization and an information theoretic lower bound are also shown.
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Figure 3: Numerical simulation with random rank-2 600×600 matrices and number of observed
entries|E|/n= 80 and 160. The standard deviation of the i.i.d. Gaussian noise is 0.001.
Fit error and root mean square error achieved by OPTSPACE are shown as functions of
the number of line minimizations. Information theoretic lower bounds are also shown.

2), from which we took the data points for the convex relaxation approach, as well as the informa-
tion theoretic lower bound described later in this section. After a few iterations, OPTSPACE has a
smaller root mean square error than the one produced by convex relaxation. In about 10 iterations
it becomes indistinguishable from the information theoretic lower bound for small ranks.

In Figure 3, we illustrate the rate of convergence of OPTSPACE. Two metrics, root mean squared
error(RMSE) and fit error‖PE(M̂−N)‖F/

√
|E|, are shown as functions of the number of iterations

in the manifold optimization step. Note, that the fit error can be easily evaluated sinceNE = PE(N)
is always available at the estimator.M is a random 600× 600 rank-2 matrix generated as in the
previous examples. The additive noise is distributed asZi j ∼N(0,σ2) with σ= 0.001 (A small noise
level was used in order to trace the RMSE evolution over many iterations). Each point in the figure
is the averaged over 20 random instances, and resulting errors for twodifferent values of sample
size|E| = 80 and|E| = 160 are shown. In both cases, we can see that the RMSE converges to the
information theoretic lower bound described later in this section. The fit error decays exponentially
with the number iterations and converges to the standard deviation of the noisewhich is 0.001. This
is a lower bound on the fit error whenr ≪ n, since even if we have a perfect reconstruction ofM,
the average fit error is still 0.001.

For a more complete numerical comparison between various algorithms for matrixcompletion,
including different noise models, real data sets and ill conditioned matrices,we refer to Keshavan
and Oh (2009).

Next, let us compare our main result with the performance guarantee of Candès and Plan (2009,
Theorem 7). Let us stress that we require the condition numberκ to be bounded, while the analysis
of Cand̀es and Plan (2009) and Candès and Tao (2009) requires a stronger incoherence assumption
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(compared to ourA1). Therefore the assumptions are not directly comparable. As far as the error
bound is concerned, Candès and Plan (2009) proved that the semidefinite programming approach
returns an estimatêM which satisfies

1√
mn

‖M̂SDP−M‖F ≤ 7
√

n
|E| ‖ZE‖F +

2
n
√

α
‖ZE‖F . (6)

(The constant in front of the first term is in fact slightly smaller than 7 in Candès and Plan (2009),
but in any case larger than 4

√
2. We choose to quote a result which is slightly less accurate but

easier to parse.)
Theorem 1.2 improves over this result in several respects:(1) We do not have the second term on

the right-hand side of (6), that actually increases with the number of observed entries;(2) Our error
decreases asn/|E| rather than(n/|E|)1/2; (3) The noise enters Theorem 1.2 through the operator
norm‖ZE‖2 instead of its Frobenius norm‖ZE‖F ≥ ‖ZE‖2. ForE uniformly random, one expects
‖ZE‖F to be roughly of order‖ZE‖2

√
n. For instance, within the independent entries model with

bounded varianceσ, ‖ZE‖F = Θ(
√
|E|) while ‖ZE‖2 is of order

√
|E|/n (up to logarithmic terms).

Theorem 1.2 can also be compared to an information theoretic lower bound computed by Cand̀es
and Plan (2009). Suppose, for simplicity,m= n and assume that an oracle provides us a linear
subspaceT where the correct rankr matrix M =UΣVT lies. More precisely, we know thatM ∈ T
whereT is a linear space of dimension 2nr− r2 defined by

T = {UYT +XVT | X ∈Rn×r ,Y ∈Rn×r} .

Notice that the rank constraint is therefore replaced by this simple linear constraint. The minimum
mean square error estimator is computed by projecting the revealed entries onto the subspaceT,
which can be done by solving a least squares problem. Candès and Plan (2009) analyzed the root
mean squared error of the resulting estimatorM̂ and showed that

1√
mn

‖M̂Oracle−M‖F ≈
√

1
|E| ‖ZE‖F .

Here≈ indicates that the root mean squared error concentrates in probability around the right-hand
side.

For the sake of comparison, suppose we have i.i.d. Gaussian noise with varianceσ2. In this case
the oracle estimator yields (forr = o(n))

1√
mn

‖M̂Oracle−M‖F ≈ σ

√
2nr
|E| .

The bound (6) on the semidefinite programming approach yields

1√
mn

‖M̂SDP−M‖F ≤ σ
(

7
√

n|E|+ 2
n
|E|
)
.

Finally, using Theorems 1.2 and 1.3 we deduce that OPTSPACE achieves

1√
mn

‖M̂OptSpace−M‖F ≤ σ

√
Cnr
|E| .

Hence, when the noise is i.i.d. Gaussian with small enoughσ, OPTSPACE is order-optimal.
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1.7 Related Work on Gradient Descent

Local optimization techniques such as gradient descent of coordinate descent have been intensively
studied in machine learning, with a number of applications. Here we will briefly review the recent
literature on the use of such techniques within collaborative filtering applications.

Collaborative filtering was studied from a graphical models perspective inSalakhutdinov et al.
(2007), which introduced an approach to prediction based on RestrictedBoltzmann Machines (RBM).
Exact learning of the model parameters is intractable for such models, but the authors studied the
performances of acontrastive divergence, which computes an approximate gradient of the likeli-
hood function, and uses it to optimize the likelihood locally. Based on empirical evidence, it was
argued that RBM’s have several advantages over spectral methods for collaborative filtering.

An objective function analogous to the one used in the present paper wasconsidered early on
in Srebro and Jaakkola (2003), which uses gradient descent in the factors to minimize a weighted
sum of square residuals. Salakhutdinov and Mnih (2008) justified the useof such an objective
function by deriving it as the (negative) log-posterior of an appropriate probabilistic model. This
approach naturally lead to the use of quadratic regularization in the factors. Again, gradient descent
in the factors was used to perform the optimization. Also, this paper introduced a logistic mapping
between the low-rank matrix and the recorded ratings.

Recently, this line of work was pushed further in Salakhutdinov and Srebro (2010), which em-
phasize the advantage of using a non-uniform quadratic regularization inthe factors. The basic
objective function was again a sum of square residuals, and version ofstochastic gradient descent
was used to optimize it.

This rich and successful line of work emphasizes the importance of obtaining a rigorous under-
standing of methods based on local minimization of the sum of square residualswith respect to the
factors. The present paper provides a first step in that direction. Hopefully the techniques developed
here will be useful to analyze the many variants of this approach.

The relationship between the non-convex objective function and convexrelaxation introduced
by Fazel (2002) was further investigated by Srebro et al. (2005) andRecht et al. (2007). The basic
relation is provided by the identity

‖M‖∗ =
1
2

min
M=XYT

{
‖X‖2

F +‖Y‖2
F

}
, (7)

where‖M‖∗ denotes the nuclear norm ofM (the sum of its singular values). In other words, adding a
regularization term that is quadratic in the factors (as the one used in much ofthe literature reviewed
above) is equivalent to weightingM by its nuclear norm, that can be regarded as a convex surrogate
of its rank.

In view of the identity (7) it might be possible to use the results in this paper to prove stronger
guarantees on the nuclear norm minimization approach. Unfortunately this implication is not im-
mediate. Indeed in the present paper we assume the correct rankr is known, while on the other
hand we do not use a quadratic regularization in the factors. (See Keshavan and Oh, 2009 for a
procedure that estimates the rank from the data and is provably successful under the hypotheses of
Theorem 1.2.) Trying to establish such an implication, and clarifying the relationbetween the two
approaches is nevertheless a promising research direction.
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1.8 On the Spectrum of Sparse Matrices and the Role of Trimming

The trimming step of the OPTSPACE algorithm is somewhat counter-intuitive in that we seem to be
wasting information. In this section we want to clarify its role through a simple example. Before
describing the example, let us stress once again two facts:(i) In the last step of our the algorithm,
the trimmed entries are actually incorporated in the cost function and hence thefull information
is exploited;(ii) Trimming is not the only way to treat over-represented rows/columns inME, and
probably not the optimal one. One might for instance rescale the entries of such rows/columns. We
stick to trimming because we can prove it actually works.

Let us now turn to the example. Assume, for the sake of simplicity, thatm= n, there is no
noise in the revealed entries, andM is the rank one matrix withMi j = 1 for all i and j. Within
the independent sampling model, the matrixME has i.i.d. entries, with distribution Bernoulli(ε/n).
The number of non-zero entries in a column is Binomial(n,ε/n) and is independent for different
columns. It is not hard to realize that the column with the largest number of entries has more than
C logn/ log logn entries, with positive probability (this probability can be made as large as we want
by reducingC). Let i be the index of this column, and consider the test vectore(i) that has thei-th
entry equal to 1 and all the others equal to 0. By computing‖MEe(i)‖, we conclude that the largest
singular value ofME is at least

√
C logn/ log logn. In particular, this is very different from the

largest singular value ofE{ME} = (ε/n)M which is ε. This suggests that approximatingM with
thePr(ME) leads to a large error. Hence trimming is crucial in proving Theorem 1.1. Also, the
phenomenon is more severe in real data sets than in the present model, where each entry is revealed
independently.

Trimming is also crucial in proving Theorem 1.3. Using the above argument, it ispossible to
show that under the worst case model,

‖ZE‖2 ≥C′(ε)Zmax

√
logn

log logn
.

This suggests that the largest singular value of the noise matrixZE is quite different from the largest
singular value ofE{ZE} which isεZmax.

To summarize, Theorems 1.1 and 1.3 (for the worst case model) simply do not hold without
trimming or a similar procedure to normalize rows/columns ofNE. Trimming allows to overcome
the above phenomenon by setting to 0 over-represented rows/columns.

2. Proof of Theorem 1.1

As explained in the introduction, the crucial idea is to consider the singular value decomposition
of the trimmed matrix̃NE instead of the original matrixNE. Apart from a trivial rescaling, these
singular values are close to the ones of the original matrixM.

Lemma 1 There exists a numerical constant C such that, with probability greater than1−1/n3,

∣∣∣σq

ε
−Σq

∣∣∣≤CMmax

√
α
ε
+

1
ε
‖Z̃E‖2 ,

where it is understood thatΣq = 0 for q> r.
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Proof For any matrix A, letσq(A) denote theqth singular value ofA. Then,σq(A+B)≤ σq(A)+
σ1(B), whence

∣∣∣σq

ε
−Σq

∣∣∣ ≤
∣∣∣∣∣
σq(M̃E)

ε
−Σq

∣∣∣∣∣+
σ1(Z̃E)

ε

≤ CMmax

√
α
ε
+

1
ε
‖Z̃E‖2 ,

where the second inequality follows from the next Lemma as shown by Keshavan et al. (2010).

Lemma 2 (Keshavan, Montanari, Oh, 2009)There exists a numerical constant C such that, with
probability larger than1−1/n3,

1√
mn

∣∣∣∣
∣∣∣∣M−

√
mn
ε

M̃E

∣∣∣∣
∣∣∣∣
2
≤CMmax

√
α
ε
.

We will now prove Theorem 1.1.
Proof (Theorem 1.1) For any matrixA of rank at most 2r, ‖A‖F ≤

√
2r‖A‖2, whence

1√
mn

‖M−Pr(Ñ
E)‖F ≤

√
2r√
mn

∣∣∣∣∣

∣∣∣∣∣M−
√

mn
ε

(
ÑE − ∑

i≥r+1

σixiy
T
i

)∣∣∣∣∣

∣∣∣∣∣
2

=

√
2r√
mn

∣∣∣∣∣

∣∣∣∣∣M−
√

mn
ε

(
M̃E + Z̃E − ∑

i≥r+1

σixiy
T
i

)∣∣∣∣∣

∣∣∣∣∣
2

=

√
2r√
mn

∣∣∣∣∣

∣∣∣∣∣

(
M−

√
mn
ε

M̃E
)
+

√
mn
ε

(
Z̃E −

(
∑

i≥r+1

σixiy
T
i

))∣∣∣∣∣

∣∣∣∣∣
2

≤
√

2r√
mn

(∣∣∣
∣∣∣M−

√
mn
ε

M̃E
∣∣∣
∣∣∣
2
+

√
mn
ε

‖Z̃E‖2+

√
mn
ε

σr+1

)

≤ 2CMmax

√
2αr

ε
+

2
√

2r
ε

‖Z̃E‖2

≤ C′Mmax

(
nrα3/2

|E|

)1/2

+ 2
√

2

(
n
√

rα
|E|

)
‖Z̃E‖2 .

where on the fourth line, we have used the fact that for any matricesAi , ‖∑i Ai‖2 ≤ ∑i ‖Ai‖2. This
proves our claim.

3. Proof of Theorem 1.2

Recall that the cost function is defined over the Riemannian manifoldM(m,n)≡ G(m, r)×G(n, r).
The proof of Theorem 1.2 consists in controlling the behavior ofF in a neighborhood ofu = (U,V)
(the point corresponding to the matrixM to be reconstructed). Throughout the proof we letK (µ)
be the set of matrix couples(X,Y) ∈Rm×r ×Rn×r such that‖X(i)‖2 ≤ µr, ‖Y( j)‖2 ≤ µr for all i, j.
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3.1 Preliminary Remarks and Definitions

Given x1 = (X1,Y1) and x2 = (X2,Y2) ∈ M(m,n), two points on this manifold, their distance is
defined asd(x1,x2) =

√
d(X1,X2)2+d(Y1,Y2)2, where, letting(cosθ1, . . . ,cosθr) be the singular

values ofXT
1 X2/m,

d(X1,X2) = ‖θ‖2 .

The next remark bounds the distance between two points on the manifold. In particular, we will
use this to bound the distance between the original matrixM =UΣVT and the starting point of the
manifold optimizationM̂ = X0S0YT

0 .

Remark 3 (Keshavan, Montanari, Oh, 2009)Let U,X ∈ Rm×r with UTU = XTX = mI , V,Y ∈
R

n×r with VTV =YTY = nI , and M=UΣVT , M̂ = XSYT for Σ = diag(Σ1, . . . ,Σr) and S∈ Rr×r .
If Σ1, . . . ,Σr ≥ Σmin, then

d(U,X)≤ π√
2αnΣmin

‖M− M̂‖F , d(V,Y)≤ π√
2αnΣmin

‖M− M̂‖F

GivenSachieving the minimum in Eq. (2), it is also convenient to introduce the notations

d−(x,u)≡
√

Σ2
mind(x,u)2+‖S−Σ‖2

F ,

d+(x,u)≡
√

Σ2
maxd(x,u)2+‖S−Σ‖2

F .

3.2 Auxiliary Lemmas and Proof of Theorem 1.2

The proof is based on the following two lemmas that generalize and sharpen analogous bounds in
Keshavan et al. (2010).

Lemma 4 There exist numerical constants C0,C1,C2 such that the following happens. Assume
ε ≥C0µ0r

√
α max{ logn; µ0r

√
α(Σmin/Σmax)

4} andδ ≤ Σmin/(C0Σmax). Then,

F(x)−F(u) ≥ C1nε
√

αd−(x,u)2−C1n
√

rα‖ZE‖2d+(x,u) , (8)

F(x)−F(u) ≤ C2nε
√

αΣ2
maxd(x,u)2+C2n

√
rα‖ZE‖2d+(x,u) , (9)

for all x∈M(m,n)∩K (4µ0) such that d(x,u)≤ δ, with probability at least1−1/n4. Here S∈Rr×r

is the matrix realizing the minimum in Eq. (2).

Corollary 3.1 There exist a constant C such that, under the hypotheses of Lemma 4

‖S−Σ‖F ≤CΣmaxd(x,u)+C

√
r

ε
‖ZE‖2 .

Further, for an appropriate choice of the constants in Lemma 4, we have

σmax(S)≤ 2Σmax+C

√
r

ε
‖ZE‖2 , (10)

σmin(S)≥
1
2

Σmin−C

√
r

ε
‖ZE‖2 . (11)
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Lemma 5 There exist numerical constants C0,C1,C2 such that the following happens. Assume
ε ≥C0µ0r

√
α(Σmax/Σmin)

2max{ logn; µ0r
√

α(Σmax/Σmin)
4} andδ ≤ Σmin/(C0Σmax). Then,

‖gradF̃(x)‖2 ≥C1nε2 Σ4
min

[
d(x,u)−C2

√
rΣmax

εΣmin

‖ZE‖2

Σmin

]2

+

, (12)

for all x ∈M(m,n)∩K (4µ0) such that d(x,u)≤ δ, with probability at least1−1/n4. (Here[a]+ ≡
max(a,0).)

We can now turn to the proof of our main theorem.
Proof (Theorem 1.2). Letδ = Σmin/C0Σmax with C0 large enough so that the hypotheses of Lemmas
4 and 5 are verified.

Call {xk}k≥0 the sequence of pairs(Xk,Yk) ∈ M(m,n) generated by gradient descent. By as-
sumption the right-hand side of Eq. (3) is smaller thanΣmin. The following is therefore true for
some numerical constantC:

‖ZE‖2 ≤
ε

C
√

r

(
Σmin

Σmax

)2

Σmin . (13)

Notice that the constant appearing here can be made as large as we want by modifying the constant
appearing in the statement of the theorem. Further, by using Corollary 3.1 in Eqs. (8) and (9) we get

F(x)−F(u) ≥ C1nε
√

αΣ2
min

{
d(x,u)2−δ2

0,−
}
, (14)

F(x)−F(u) ≤ C2nε
√

αΣ2
max

{
d(x,u)2+δ2

0,+

}
, (15)

with C1 andC2 different from those in Eqs. (8) and (9), where

δ0,− ≡C

√
rΣmax

εΣmin

‖ZE‖2

Σmin
, δ0,+ ≡C

√
rΣmax

εΣmin

‖ZE‖2

Σmax
.

By Eq. (13), with large enoughC, we can assumeδ0,− ≤ δ/20 andδ0,+ ≤ (δ/20)(Σmin/Σmax).
Next, we provide a bound ond(u,x0). Using Remark 3, we haved(u,x0)≤ (π/n

√
αΣmin)‖M−

X0S0YT
0 ‖F . Together with Theorem 1.1 this implies

d(u,x0)≤
CMmax

Σmin

( rα
ε

)1/2
+

C′√r
εΣmin

‖Z̃E‖2 .

Sinceε ≥ C′′αµ2
1r2(Σmax/Σmin)

4 as per our assumptions andMmax ≤ µ1
√

rΣmax for incoherentM,
the first term in the above bound is upper bounded byΣmin/20C0Σmax, for large enoughC′′. Using
Eq. (13), with large enough constantC, the second term in the above bound is upper bounded by
Σmin/20C0Σmax. Hence we get

d(u,x0)≤
δ
10

.

We make the following claims :
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1. xk ∈K (4µ0) for all k.

First we notice that we can assumex0 ∈ K (3µ0). Indeed, if this does not hold, we can
‘rescale’ those rows ofX0, Y0 that violate the constraint. A proof that this rescaling is possible
was given in Keshavan et al. (2010) (cf. Remark 6.2 there). We restatethe result here for the
reader’s convenience in the next Remark.

Remark 6 Let U,X ∈ Rn×r with UTU = XTX = nI and U∈ K (µ0) and d(X,U) ≤ δ ≤ 1
16.

Then there exists X′ ∈Rn×r such that X′TX′ = nI , X′ ∈ K (3µ0) and d(X′,U)≤ 4δ. Further,
such an X′ can be computed from X in a time of O(nr2).

Sincex0 ∈ K (3µ0) , F̃(x0) = F(x0) ≤ 4C2nε
√

αΣ2
maxδ2/100. On the other hand̃F(x) ≥

ρ(e1/9 − 1) for x 6∈ K (4µ0). SinceF̃(xk) is a non-increasing sequence, the thesis follows
provided we takeρ ≥C2nε

√
αΣ2

min.

2. d(xk,u)≤ δ/10 for allk.

Sinceε ≥Cαµ2
1r2(Σmax/Σmin)

6 as per our assumptions in Theorem 1.2, we haved(x0,u)2 ≤
(C1Σ2

min/C2Σ2
max)(δ/20)2. Also assuming Eq. (13) with large enoughC, we haveδ0,− ≤ δ/20

andδ0,+ ≤ (δ/20)(Σmin/Σmax). Then, by Eq. (15),

F(x0)≤ F(u)+C1nε
√

αΣ2
min

2δ2

400
.

Also, using Eq. (14), for allxk such thatd(xk,u) ∈ [δ/10,δ], we have

F(x)≥ F(u)+C1nε
√

αΣ2
min

3δ2

400
.

Hence, for allxk such thatd(xk,u) ∈ [δ/10,δ], we haveF̃(x) ≥ F(x) ≥ F(x0). This contra-
dicts the monotonicity of̃F(x), and thus proves the claim.

Since the cost function is twice differentiable, and because of the above two claims, the sequence
{xk} converges to

Ω =
{

x ∈K (4µ0)∩M(m,n) : d(x,u)≤ δ ,gradF̃(x) = 0
}
.

By Lemma 5 for anyx ∈ Ω,

d(x,u)≤C

√
rΣmax

εΣmin

‖ZE‖2

Σmin
. (16)

Using Corollary 3.1, we haved+(x,u)≤ Σmaxd(x,u)+‖S−Σ‖F ≤CΣmaxd(x,u)+C(
√

r/ε)‖ZE‖2.
Together with Eqs. (18) and (16), this implies

1
n
√

α
‖M−XSYT‖F ≤C

√
rΣ2

max‖ZE‖2

εΣ2
min

,

which finishes the proof of Theorem 1.2.

2071



KESHAVAN, MONTANARI AND OH

3.3 Proof of Lemma 4 and Corollary 3.1

Proof (Lemma 4) The proof is based on the analogous bound in the noiseless case, that is, Lemma
5.3 in Keshavan et al. (2010). For readers’ convenience, the resultis reported in Appendix A,
Lemma 7. For the proof of these lemmas, we refer to Keshavan et al. (2010).

In order to prove the lower bound, we start by noticing that

F(u)≤ 1
2
‖PE(Z)‖2

F ,

which is simply proved by usingS= Σ in Eq. (2). On the other hand, we have

F(x) =
1
2
‖PE(XSYT −M−Z)‖2

F

=
1
2
‖PE(Z)‖2

F +
1
2
‖PE(XSYT −M)‖2

F −〈PE(Z),(XSYT −M)〉 (17)

≥ F(u)+Cnε
√

αd−(x,u)2−
√

2r‖ZE‖2‖XSYT −M‖F ,

where in the last step we used Lemma 7. Now by triangular inequality

‖XSYT −M‖2
F ≤ 3‖X(S−Σ)YT‖2

F +3‖XΣ(Y−V)T‖2
F +3‖(X−U)ΣVT‖2

F

≤ 3nm‖S−Σ‖2
F +3n2αΣ2

max(
1
m
‖X−U‖2

F +
1
n
‖Y−V‖2

F)

≤ Cn2αd+(x,u)2 , (18)

In order to prove the upper bound, we proceed as above to get

F(x) ≤ 1
2‖PE(Z)‖2

F +Cnε
√

αΣ2
maxd(x,u)2+

√
2rα‖ZE‖2Cnd+(x,u) .

Further, by replacingx with u in Eq. (17)

F(u) ≥ 1
2
‖PE(Z)‖2

F −〈PE(Z),(U(S−Σ)VT)〉

≥ 1
2
‖PE(Z)‖2

F −
√

2rα‖ZE‖2Cnd+(x,u) .

By taking the difference of these inequalities we get the desired upper bound.

Proof (Corollary 3.1) By putting together Eq. (8) and (9), and using the definitions of d+(x,u),
d−(x,u), we get

‖S−Σ‖2
F ≤ C1+C2

C1
Σ2

maxd(x,u)
2+

(C1+C2)
√

r
C1ε

‖ZE‖2

√
Σ2

maxd(x,u)2+‖S−Σ‖2
F .

Let x≡ ‖S−Σ‖F , a2 ≡
(
(C1+C2)/C1

)
Σ2

maxd(x,u)
2, andb≡

(
(C1+C2)

√
r/C1ε

)
‖ZE‖2. The above

inequality then takes the form

x2 ≤ a2+b
√

x2+a2 ≤ a2+ab+bx,

which implies our claimx≤ a+b.
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The singular value bounds (10) and (11) follow by triangular inequality. For instance

σmin(S)≥ Σmin−CΣmaxd(x,u)−C

√
r

ε
‖ZE‖2 .

which implies the inequality (11) ford(x,u) ≤ δ = Σmin/C0Σmax andC0 large enough. An analo-
gous argument proves Eq. (10).

3.4 Proof of Lemma 5

Without loss of generality we will assumeδ ≤ 1,C2 ≥ 1 and
√

r
ε

‖ZE‖2 ≤ Σmin , (19)

because otherwise the lower bound (12) is trivial for alld(x,u)≤ δ.
Denote byt 7→ x(t), t ∈ [0,1], the geodesic onM(m,n) such thatx(0) = u and x(1) = x,

parametrized proportionally to the arclength. Letŵ = ẋ(1) be its final velocity, withŵ = (Ŵ,Q̂).
Obviouslyŵ ∈ Tx (with Tx the tangent space ofM(m,n) atx) and

1
m
‖Ŵ‖2+

1
n
‖Q̂‖2 = d(x,u)2,

becauset 7→ x(t) is parametrized proportionally to the arclength.
Explicit expressions for̂w can be obtained in terms ofw ≡ ẋ(0) = (W,Q) (Keshavan et al.,

2010). If we letW = LΘRT be the singular value decomposition ofW, we obtain

Ŵ =−URΘsinΘRT +LΘcosΘRT . (20)

It was proved in Keshavan et al. (2010) that〈gradG(x), ŵ〉 ≥ 0. It is therefore sufficient to lower
bound the scalar product〈gradF, ŵ〉. By computing the gradient ofF we get

〈gradF(x), ŵ〉 = 〈PE(XSYT −N),(XSQ̂T +ŴSYT)〉
= 〈PE(XSYT −M),(XSQ̂T +ŴSYT)〉−〈PE(Z),(XSQ̂T +ŴSYT)〉
= 〈gradF0(x), ŵ〉−〈PE(Z),(XSQ̂T +ŴSYT)〉 (21)

whereF0(x) is the cost function in absence of noise, namely

F0(X,Y) = min
S∈Rr×r

{
1
2 ∑
(i, j)∈E

(
(XSYT)i j −Mi j

)2

}
. (22)

As proved in Keshavan et al. (2010),

〈gradF0(x), ŵ〉 ≥Cnε
√

αΣ2
mind(x,u)2 (23)

(see Lemma 9 in Appendix).
We are therefore left with the task of upper bounding〈PE(Z),(XSQ̂T +ŴSYT)〉. SinceXSQ̂T

has rank at mostr, we have

〈PE(Z),XSQ̂T〉 ≤
√

r ‖ZE‖2‖XSQ̂T‖F .
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SinceXTX = mI , we get

‖XSQ̂T‖2
F = mTr(STSQ̂TQ̂)≤ nασmax(S)

2‖Q̂‖2
F

≤ Cn2α
(

Σmax+

√
r

ε
‖ZE‖F

)2
d(x,u)2 (24)

≤ 4Cn2αΣ2
maxd(x,u)2 ,

where, in inequality (24), we used Corollary 3.1 and in the last step, we used Eq. (19). Proceeding
analogously for〈PE(Z),ŴSYT〉, we get

〈PE(Z),(XSQ̂T +ŴSYT)〉 ≤C′nΣmax
√

rα‖ZE‖2d(x,u) .

Together with Eq. (21) and (23) this implies

〈gradF(x), ŵ〉 ≥C1nε
√

αΣ2
mind(x,u)

{
d(x,u)−C2

√
rΣmax

εΣmin

‖ZE‖2

Σmin

}
,

which implies Eq. (12) by Cauchy-Schwartz inequality.

4. Proof of Theorem 1.3

Proof (Independent entries model) We start with a claim that for any sampling setE, we have

‖Z̃E‖2 ≤ ‖ZE‖2 .

To prove this claim, letx∗ andy∗ bem andn dimensional vectors, respectively, achieving the opti-
mum in max‖x‖≤1,‖y‖≤1{xT Z̃Ey}, that is, such that‖Z̃E‖2 = x∗T Z̃Ey∗. Recall that, as a result of the

trimming step, all the entries in trimmed rows and columns ofZ̃E are set to zero. Then, there is no
gain in maximizingxT Z̃Ey to have a non-zero entryx∗i for i corresponding to the rows which are
trimmed. Analogously, forj corresponding to the trimmed columns, we can assume without loss of
generality thaty∗j = 0. From this observation, it follows thatx∗T Z̃Ey∗ = x∗TZEy∗, since the trimmed

matrix Z̃E and the sample noise matrixZE only differ in the trimmed rows and columns. The claim
follows from the fact thatx∗TZEy∗ ≤ ‖ZE‖2, for anyx∗ andy∗ with unit norm.

In what follows, we will first prove that‖ZE‖2 is bounded by the right-hand side of Eq. (4)
for any range of|E|. Due to the above observation, this implies that‖Z̃E‖2 is also bounded by
Cσ
√

ε
√

α logn, whereε ≡ |E|/√αn. Further, we use the same analysis to prove a tighter bound in
Eq. (5) when|E| ≥ nlogn.

First, we want to show that‖ZE‖2 is bounded byCσ
√

ε
√

α logn, andZi j ’s are i.i.d. random
variables with zero mean and sub-Gaussian tail with parameterσ2. The proof strategy is to show that
E
[
‖ZE‖2

]
is bounded, using the result of Seginer (2000) on expected norm of random matrices, and

use the fact that‖ · ‖2 is a Lipschitz continuous function of its arguments together with concentration
inequality for Lipschitz functions on i.i.d. Gaussian random variables due to Talagrand (1996).

Note that‖ · ‖2 is a Lipschitz function with a Lipschitz constant 1. Indeed, for anyM andM′,∣∣‖M′‖2 −‖M‖2
∣∣ ≤ ‖M′ −M‖2 ≤ ‖M′ −M‖F , where the first inequality follows from triangular

inequality and the second inequality follows from the fact that‖ · ‖2
F is the sum of the squared

singular values.
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To bound the probability of large deviation, we use the result on concentration inequality for
Lipschitz functions on i.i.d. sub-Gaussian random variables due to Talagrand (1996). For a 1-
Lipschitz function‖ ·‖2 onm×n i.i.d. random variablesZE

i j with zero mean, and sub-Gaussian tails
with parameterσ2,

P
(
‖ZE‖2−E[‖ZE‖2]> t

)
≤ exp

{
− t2

2σ2

}
. (25)

Settingt =
√

8σ2 logn, this implies that‖ZE‖2 ≤ E
[
‖Z‖2

]
+
√

8σ2 logn with probability larger
than 1−1/n4.

Now, we are left to bound the expectationE
[
‖ZE‖2

]
. First, we symmetrize the possibly asym-

metric random variablesZE
i j to use the result of Seginer (2000) on expected norm of random matrices

with symmetric random variables. LetZ′
i j ’s be independent copies ofZi j ’s, andξi j ’s be independent

Bernoulli random variables such thatξi j = +1 with probability 1/2 andξi j = −1 with probability
1/2. Then, by convexity ofE

[
‖ZE −Z′E‖2|Z′E] and Jensen’s inequality,

E
[
‖ZE‖2

]
≤ E

[
‖ZE −Z′E‖2

]
= E

[
‖(ξi j (Z

E
i j −Z′E

i j ))‖2
]
≤ 2E

[
‖(ξi j Z

E
i j )‖2

]
,

where(ξi j ZE
i j ) denotes anm×n matrix with entryξi j ZE

i j in position(i, j). Thus, it is enough to show

thatE
[
‖ZE‖2

]
is bounded byCσ

√
ε
√

α logn in the case of symmetric random variablesZi j ’s.
To this end, we apply the following bound on expected norm of random matrices with i.i.d.

symmetric random entries, proved by Seginer (2000, Theorem 1.1).

E
[
‖ZE‖2

]
≤C

(
E
[
max
i∈[m]

‖ZE
i•‖
]
+E

[
max
j∈[n]

‖ZE
• j‖
])

, (26)

whereZE
i• andZE

• j denote theith row and jth column ofA respectively. For any positive parameter
β, which will be specified later, the following is true.

E
[
max

j
‖ZE

• j‖2]≤ βσ2ε
√

α+
∫ ∞

0
P
(

max
j

‖ZE
• j‖2 ≥ βσ2ε

√
α+z

)
dz. (27)

To bound the second term, we can apply union bound on each of then columns, and use the follow-
ing bound on each column‖ZE

• j‖2 resulting from concentration of measure inequality for the i.i.d.
sub-Gaussian random matrixZ.

P

( m

∑
k=1

(ZE
k j)

2 ≥ βσ2ε
√

α+z
)
≤ exp

{
− 3

8

(
(β−3)ε

√
α+

z
σ2

)}
. (28)

To prove the above result, we apply Chernoff bound on the sum of independent random vari-
ables. Recall thatZE

k j = ξ̃k jZk j where ξ̃’s are independent Bernoulli random variables such that

ξ̃ = 1 with probability ε/
√

mn and zero with probability 1− ε/
√

mn. Then, for the choice of
λ = 3/8σ2 < 1/2σ2,

E

[
exp
(

λ
m

∑
k=1

(ξ̃k jZk j)
2
)]

=
(

1− ε√
mn

+
ε√
mn

E[eλZ2
k j ]
)m

≤
(

1− ε√
mn

+
ε√

mn(1−2σ2λ)

)m

= exp
{

mlog
(

1+
ε√
mn

)}

≤ exp
{

ε
√

α
}
,
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where the first inequality follows from the definition ofZk j as a zero mean random variable with
sub-Gaussian tail, and the second inequality follows from log(1+ x) ≤ x. By applying Chernoff
bound, Eq. (28) follows. Note that an analogous result holds for the Euclidean norm on the rows
‖ZE

i•‖2.
Substituting Eq. (28) andP

(
maxj ‖ZE

• j‖2 ≥ z
)
≤ mP

(
‖ZE

• j‖2 ≥ z
)

in Eq. (27), we get

E
[
max

j
‖ZE

• j‖2]≤ βσ2ε
√

α+
8σ2m

3
e−

3
8(β−3)ε

√
α . (29)

The second term can be made arbitrarily small by takingβ = C logn with large enoughC. Since

E
[
maxj ‖ZE

• j‖
]
≤
√

E
[
maxj ‖ZE

• j‖2
]
, applying Eq. (29) withβ =C logn in Eq. (26) gives

E
[
‖ZE‖2

]
≤Cσ

√
ε
√

α logn .

Together with Eq. (25), this proves the desired thesis for any sample size|E|.
In the case when|E| ≥ nlogn, we can get a tighter bound by similar analysis. Sinceε ≥C′ logn,

for some constantC′, the second term in Eq. (29) can be made arbitrarily small with a large constant
β. Hence, applying Eq. (29) withβ =C in Eq. (26), we get

E
[
‖ZE‖2

]
≤Cσ

√
ε
√

α .

Together with Eq. (25), this proves the desired thesis for|E| ≥ nlogn.

Proof (Worst Case Model) Let D be them×n all-ones matrix. Then for any matrixZ from theworst
case model, we have‖Z̃E‖2 ≤ Zmax‖D̃E‖2, sincexT Z̃Ey≤ ∑i, j Zmax|xi |D̃E

i j |y j |, which follows from

the fact thatZi j ’s are uniformly bounded. Further,̃DE is an adjacency matrix of a corresponding
bipartite graph with bounded degrees. Then, for any choice ofE the following is true for all positive
integersk:

‖D̃E‖2k
2 ≤ max

x,‖x‖=1

∣∣xT((D̃E)TD̃E)kx
∣∣≤ Tr

(
((D̃E)TD̃E)k)≤ n(2ε)2k .

Now Tr
(
((D̃E)TD̃E)k

)
is the number of paths of length 2k on the bipartite graph with adjacency

matrix D̃E, that begin and end ati for everyi ∈ [n]. Since this graph has degree bounded by 2ε, we
get

‖D̃E‖2k
2 ≤ n(2ε)2k .

Takingk large, we get the desired thesis.
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Appendix A. Three Lemmas on the Noiseless Problem

Lemma 7 There exists numerical constants C0,C1,C2 such that the following happens. Assume
ε ≥C0µ0r

√
α max{ logn; µ0r

√
α(Σmin/Σmax)

4} andδ ≤ Σmin/(C0Σmax). Then,

C1
√

αΣ2
mind(x,u)2+C1

√
α‖S0−Σ‖2

F ≤ 1
nε

F0(x)≤C2
√

αΣ2
maxd(x,u)

2 ,

for all x ∈ M(m,n)∩K (4µ0) such that d(x,u) ≤ δ, with probability at least1−1/n4. Here S0 ∈
R

r×r is the matrix realizing the minimum in Eq. (22).

Lemma 8 There exists numerical constants C0 and C such that the following happens. Assume
ε ≥C0µ0r

√
α(Σmax/Σmin)

2max{ logn; µ0r
√

α(Σmax/Σmin)
4} andδ ≤ Σmin/(C0Σmax). Then

‖gradF̃0(x)‖2 ≥Cnε2 Σ4
mind(x,u)2 ,

for all x ∈M(m,n)∩K (4µ0) such that d(x,u)≤ δ, with probability at least1−1/n4.

Lemma 9 Defineŵ as in Eq. (20). Then there exists numerical constants C0 and C such that the
following happens. Under the hypothesis of Lemma 8

〈gradF0(x), ŵ〉 ≥Cnε
√

αΣ2
mind(x,u)2 ,

for all x ∈M(m,n)∩K (4µ0) such that d(x,u)≤ δ, with probability at least1−1/n4.
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