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Abstract

In this paper we develop a new approach to sparse princigapaoent analysis (sparse PCA).
We propose two single-unit and two block optimization fotations of the sparse PCA problem,
aimed at extracting a single sparse dominant principal corapt of a data matrix, or more com-
ponents at once, respectively. While the initial formulasionvolve nonconvex functions, and are
therefore computationally intractable, we rewrite theno ithe form of an optimization program
involving maximization of a convex function on a compact Sdte dimension of the search space
is decreased enormously if the data matrix has many morencslvariables) than rows. We then
propose and analyze a simple gradient method suited foragle it appears that our algorithm
has best convergence properties in the case when eithebjietive function or the feasible set
are strongly convex, which is the case with our single-umitrfulations and can be enforced in
the block case. Finally, we demonstrate numerically on assindom and gene expression test
problems that our approach outperforms existing algostboth in quality of the obtained solution
and in computational speed.

Keywords: sparse PCA, power method, gradient ascent, strongly caetsxblock algorithms

1. Introduction

Principal component analys{®CA) is a well established tool for making sense of high dimensional
data by reducing it to a smaller dimension. It has applications virtually in alsas€acience—
machine learning, image processing, engineering, genetics, neurcogp@hemistry, meteorol-
ogy, control theory, computer networks—to name just a few—where tatgesets are encountered.
It is important that having reduced dimension, the essential characteadbtlos data are retained.

If A€ RP*"is a matrix encoding samples of variables, withh being large, PCA aims at finding a
few linear combinations of these variables, calpethcipal componentsvhich point in orthogonal
directions explaining as much of the variance in the data as possible. Ifilablea contained in
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the columns ofA are centered, then the classical PCA can be written in terms of the szatgule
covariance matrix = ATA as follows:

Find z'=argmax' =z 1)

7Tz<1

Extracting one component amounts to computing the dominant eigenveciofoof equiva-
lently, dominant right singular vector ). Full PCA involves the computation of the singular
value decomposition (SVD) oA. Principal components are, in general, combinations of all the
input variables, that is, theading vector zis not expected to have many zero coefficients. In most
applications, however, the original variables have concrete physi@linggand PCA then appears
especially interpretable if the extracted components are composed onlyafsamall number of the
original variables. In the case of gene expression data, for insteach, variable represents the
expression level of a particular gene. A good analysis tool for biolbgitarpretation should be
capable to highlight “simple” structures in the genome—structures expeciegbtae a few genes
only—that explain a significant amount of the specific biological processeoded in the data.
Components that are linear combinations of a small number of variablesigeengturally, usually
easier to interpret. Itis clear, however, that with this additional goal, sdithe @xplained variance
has to be sacrificed. The objectivesgfarse principal component analyggparse PCA) is to find a
reasonablérade-off between these conflicting goals. One would like to expésmuchvariability
in the data as possible, using components constructeddsoiewvariables as possible. This is the
classical trade-off betweestatistical fidelityandinterpretability.

For about a decade, sparse PCA has been a topic of active reseétdrically, the first sug-
gested approaches were based on ad-hoc methods involving possgngcof the components
obtained from classical PCA. For example, Jolliffe (1995) considergugarious rotation tech-
nigues to find sparse loading vectors in the subspace identified by P@n&and Jolliffe (1995)
proposed to simply set to zero the PCA loadings which are in absolute valdlersthan some
threshold constant.

In recent years, more involved approaches have been put forvapproaches that consider
the conflicting goals of explaining variability and achieving representatiarsfg simultaneously.
These methods usually cast the sparse PCA problem in the form of an opitimizogram, aiming
at maximizing explained variance penalized for the number of non-zermlgmd~or instance, the
SCOTLASS algorithm proposed by Jolliffe et al. (2003) aims at maximizing tngei’yh quotient
of the covariance matrix of the data under thenorm based Lasso penalty (Tibshirani, 1996). Zou
et al. (2006) formulate sparse PCA as a regression-type optimizatiolepralnd impose the Lasso
penalty on the regression coefficients. d’Aspremont et al. (2007) inEf%> CA algorithm exploit
convex optimization tools to solve a convex relaxation of the sparse PCAepnoBhen and Huang
(2008) adapt the singular value decomposition (SVD) to compute low-rank<nagproximations
of the data matrix under various sparsity-inducing penalties. Greedy methbits are typical for
combinatorial problems, have been investigated by Moghaddam et af)(Z&6ally, d’Aspremont
et al. (2008) proposed a greedy heuristic accompanied with a certificaptimality.

In many applications, several components need to be identified. The tratidioproach con-
sists of incorporating an existing single-unit algorithm in a deflation schentecamputing the
desired number of components sequentially (see, e.g., d’Aspremont2&0al). In the case of
Rayleigh quotient maximization it is well-known that computing several comgsregnonce in-
stead of computing them one-by-one by deflation with the classical powendhetfght present
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better convergence whenever the largest eigenvalues of the undenyitrix are close to each
other (see, e.g., Parlett 1980). Therefore, block approachepdmsesPCA are expected to be more
efficient on ill-posed problems.

In this paper we consider two single-unit (Section 2.1 and 2.2) and two Bocilulations (Sec-
tion 2.3 and 2.4) of sparse PCA, aimed at extractimgparse principal components, with= 1 in
the former case and > m > 1 in the latter. Each of these two groups comes in two variants, de-
pending on the type of penalty we use to enforce sparsity—efther/y (cardinality)? Although
we assume a direct access to the data matrtkese formulations also hold when only the covari-
ance matrixz is available, provided that a factorization of the fokma= AT A is identified (e.g., by
eigenvalue decomposition or by Cholesky decompaosition).

While our basic formulations involve maximization ohanconvexXunction on a space of di-
mension involvingn, we constructeformulationsthat cast the problem into the form of maximiza-
tion of a convexfunction on the unit Euclidean sphere R (in the m = 1 case) or theStiefel
manifolc? in RP*™ (in them > 1 case). The advantage of the reformulation becomes apparent when
trying to solve problems with many variables>%- p), since we manage to avoid searching a space
of large dimension. At the same time, due to the convexity of the new cost function we are able to
propose an@nalyzethe iteration-complexity of a simple gradient-type scheme, which appears to
be well suited for problems of this form. In particular, we study (Sectionf8saorder method for
solving an optimization problem of the form

f* = maxf(x), P)
XeqQ,

whereQ is a compact subset of a finite-dimensional vector spacefaadonvex. It appears that
our method has best theoretical convergence properties when &itireQ are strongly convex,
which is the case in the single unit case (unit ball is strongly convex) amdbeanforced in the
block case by adding a strongly convex regularizing term to the objectiveibn, constant on the
feasible set. We do not, however, prove any results concerning thigyaqpfahe obtained solution.
Even the goal of obtaining a local maximizer is in general unattainable, andwsé be content
with convergence to a stationary point.

In the particular case wheq is the unit Euclidean ball iRP and f (x) = x" Cx for somep x p
symmetric positive definite matrig, our gradient scheme specializes to flwaver methogdwhich
aims at maximizing th®ayleigh quotient

xTCx
RO =7
and thus at computing the largest eigenvalue, and the correspondingesig®, ofC.

By applying our general gradient scheme to our sparse PCA reforrmgasidhe form (P), we
obtain algorithms (Section 4) with per-iteration computational cxstpm).

We demonstrate on random Gaussian (Section 5.1) and gene expressiobldted to breast
cancer (Section 5.2) that our methods are very efficient in practice. \Atttilieving a balance be-
tween the explained variance and sparsity which is the same as or supé¢hiemetasting methods,

1. Our single-unit cardinality-penalized formulation is identical to that afsgiremont et al. (2008).

2. Stiefel manifold is the set of rectangular matrices with orthonormahecatu

3. Note that in the casp > n, it is recommended to factor the covariance matrif as AT A with A € R™", such that
the dimensiorp in the reformulations equals at mast
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they are faster, often converging before some of the other algorithmgemaitialize. Addition-
ally, in the case of gene expression data our approach seems to egtrgamireents with strongest
biological content.

1.1 Notation

For convenience of the reader, and at the expense of redundanoy,of the less standard notation
below is also introduced at the appropriate place in the text where it is Baegimetermm< p<n
are actual values of dimensions of spaces used in the paper. In thidalegibelow, we use these
actual values (i.en, p andm) if the corresponding object we define is used in the text exclusively
with them; otherwise we make use of the dummy variakl@gpresenting or nin the text) and
(representingn, p or nin the text).

Given a vectol € RK, its j! coordinate is denoted by. With an abuse of notation, we may
use subscripts to indicate a sequence of vectors, sughyas. . ., y;. In that case thg!" coordinates
of these vectors are denoted By, Yj,...,¥ij. By yi we refer to thei column of Y € R,
Consequently, the element¥fat position(i, j) can be written ag;;.

By E we refer to a finite-dimensional vector spakg;is its conjugate space, that is, the space
of all linear functionals orE. By (s,x) we denote the action afe E* onx € E. For a self-adjoint
positive definite linear operat@ : E — E* we define a pair of norms da andE* as follows

IX| £ (GxxY2  xeE,

)
Isl. = (sG19Y2 scE".

Although the theory in Section 3 is developed in this general setting, theedp@ws applications
considered in this paper require either the chd@ice E* = RP (see Section 3.3 and problems (8)
and (13) in Section 2) dE = E* = RP*™ (see Section 3.4 and problems (16) and (20) in Section 2).
In both cases we will IeG be the corresponding identity operator for which we obtain

1/2
XY) =3 %Y, HXH=<X7X>1/2=<ZX?> =[xz, xyeRP, and
|

1/2
XYY =TrxXTY, X[ = (X,X)¥2 = (Zm) —IX[F, XY €RPM

Thus in the vector setting we work with tis¢andard Euclidean norrand in the matrix setting
with the Frobenius norm The symbol Tr denotes the trace of its argument.

Furthermore, forz € R" we write ||Z]|1 = ;|| (¢2 norm) and by]|Z||o (/o “norm”) we refer
to the number of nonzero coefficients, cardinality, of z By SP we refer to the space of all
p x p symmetric matricesSﬂ (resp.Sﬂ’r ) refers to the positive semidefinite (resp. definite) cone.
Eigenvalues of matri¥ are denoted by;(Y), largest eigenvalue bymax(Y). Analogous notation
with the symbolo refers to singular values.

By BX={yec RK|yTy <1} (resp.s* = {y e RX|y"y=1}) we refer to the unit Euclidean ball
(resp. sphere) iR¥. If we write B and.$, then these are the corresponding objec.iThe space
of n x mmatrices with unit-norm columns will be denoted by

[SM = {Y € R™M| Diag(YTY) = I},
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where Diag-) represents the diagonal matrix obtained by extracting the diagonal ofghmant.
Stiefel manifolds the set of rectangular matrices of fixed size with orthonormal columns:

SP={Y e RPM|YTY =|,}.

Fort € R we will further write sigrit) for the sign of the argument and = max{0,t}.

2. Some Formulations of the Sparse PCA Problem

In this section we propose four formulations of the sparse PCA problenm #ie form of the
general optimization framework (P). The first two deal with the single-yparse PCA problem
and the remaining two are their generalizations to the block case.

2.1 Single-unit Sparse PCA vig1-Penalty

Let us consider the optimization problem
def
9, (y) = maxy/z' 52— y|Zs, (3)

with sparsity-controlling parametgr> 0 and sample covariance matéix= ATA.

The solutionz*(y) of (3) in the case = 0 is equal to the right singular vector corresponding to
Omax(A), the largest singular value &t It is the first principal component of the data matixThe
optimal value of the problem is thus equal to

@, (0) = ()\maX(ATA»l/ 2= Omax(A).

Note that there is no reason to expect this vector to be sparse. On thénatiaeifor large enough
y, we will necessarily have' (y) = 0, obtaining maximal sparsity. Indeed, since

Az _ oI5zl o sifallal
2 2 T I W il

= max|[ail2 = [[a- |2,

we get||AZ|2 —V||Z]|1 < O for all nonzero vectors whenevely is chosen to be strictly bigger than
|lai+||2. From now on we will assume that

y < |la-]|2. (4)

Note that there is a trade-off between the va|ae* (y)||2 and the sparsity of the solutiai(y).
The penalty parametsris introduced to “continuously” interpolate between the two extreme cases
described above, with values in the interf@l||a;<||2). It depends on the particular application
whether sparsity is valued more than the explained variance, or vice aaséo what extent. Due
to these considerations, we will consider the solution of (3) to be a sparsgpal component of
A

2.1.1 REFORMULATION

The reader will observe that the objective function in (3) is not conmex,concave, and that the
feasible set is of a high dimensionpf< n. It turns out that these shortcomings are overcome by
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considering the following reformulation:

@, (v) = max||AZ|2 - v||z]|2
zeB"

T
= maxmaxx Az—Vl||z 5
maxmax” Az—yz]s ©)

n

T

= maxmax i(a X) —Y|Z

xefBPzeiBnizla(a1 ) y|z.|
n

-
Qgg@%ﬁ;!d\(!a X =Y), (6)
wherez = signa’x)Z. In view of (4), there is some& € B" for which a' x > y. Fixing suchx,

solving the inner maximization problem fdrand then translating back mwe obtain the closed-

form solution

signal x)[|al x| — .
zZ=z7(y)= gn(r: )Hi' | y2]+7 i=1....n. @)
V/Ziallalx - vi2
Problem (6) can therefore be written in the form

n

@, (y) = max;[!a-TXI —vl5. (8)

XGSpi

Note that the objective function is differentiable and convex, and hdhioeal and global maxima
must lie on the boundary, that is, on the unit Euclidean splireAlso, in the case whep < n,
formulation (8) requires to search a space of a much lower dimension tharitihleproblem (3).
2.1.2 SARSITY

In view of (7), an optimal solutiox* of (8) defines a sparsity pattern of the vectar In fact, the
coefficients ofz* indexed by

I={i|lafx"| >y}

are active while all others must be zero. Geometrically, active indicessmrnd to the defining
hyperplanes of the polytope
D= {xeRP||afx <1}

that are (strictly) crossed by the line joining the origin and the poify. Note that it is possible to
say something about the sparsity of the solution even without the knowlédge o

2.2 Single-unit Sparse PCA via Cardinality Penalty
Instead of the/;-penalization, the authors of d’Aspremont et al. (2008) consider tmeuiation

def
@o(y) = maxz"zz—y |Zlo, (10)
zeB"
which directly penalizes the number of nonzero components (cardinalitiieofectorz.
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2.2.1 REFORMULATION

The reasoning of the previous section suggests the reformulation

@, (y) = maxmax(x' Az)? —y||z]lo, (11)

XEBP ze BN

where the maximization with respectze B" for a fixedx € BP has the closed form solution

Zi* — zj‘(y) — [sigrlm((a,-Tx)z _y)]+a|TX 7 i=1
V/ZRalsion((@] 02— )] (] 92

In analogy with the/; case, this derivation assumes that

R o B (12)

2
25

y < |[la

so that there ig € B" such thata’x)2 —y > 0. Otherwisez* = 0 is optimal. Formula (12) is easily
obtained by analyzing (11) separately for fixed cardinality values blience, problem (10) can be
cast in the following form

n

Pol¥) = maxy (@ %"~ Vi (13)

Again, the objective function is convex, albeit nonsmooth, and the newtsspace is of particular
interest if p < n. A different derivation of (13) for the = p case can be found in d’Aspremont
et al. (2008).

2.2.2 PARSITY
Given a solution<® of (13), the set of active indices af is given by
I={i|(@x) >y}
Geometrically, active indices correspond to the defining hyperplanes gfdigtope
D= {xeRP| |a'x <1}

that are (strictly) crossed by the line joining the origin and the poipt/y. As in the/; case, we
have

y>lal3 = Z(y)=0 i=1...n (14)

2.3 Block Sparse PCA vigZ;-Penalty

Consider the following block generalization of (5),

m n
def T
= max Tr(X'AZN) — i i | 15
@y m(Y) X[E&iq ( ) JZl\/J i;’Zu‘ (15)
Ze[s"m

where them-dimensional vectoy = [yi,...,ym]' is nonnegative an®l = Diag(yy, ..., Hm), with
positive entries on the diagonal. The dimensiororresponds to the number of extracted compo-
nents and is assumed to be smaller or equal to the rank of the data matrix, that BankA).
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Each parametey; controls the sparsity of the corresponding component. It will be shovemvibat
under some conditions on the parametgrshe casg = 0 recovers PCA. In that particular instance,
any solutionz* of (15) has orthonormal columns, although this is not explicitly enforced pbs-

itive yj, the columns oZ* are not expected to be orthogonal anymore. Most existing algorithms
for computing several sparse principal components, for example, Zalu @006), d’Aspremont

et al. (2007) and Shen and Huang (2008), also do not impose ortablgawling directions. Si-
multaneously enforcing sparsity and orthogonality seems to be a hard ¢amabs questionable)
task.

2.3.1 REFORMULATION
Since problem (15) is completely decoupled in the columni, dhat is,
m
Prum(Y) = Max 5 maxp;xj Az =i Iz

the closed-form solution (7) of (5) is easily adapted to the block formulafiéj (

i Ty 11 lal x: | — v
zi =7Zj(y)) = Slgn(a: X’)[“”? Xil y’z]f
Vbl - vi2

This leads to the reformulation

m
= max
‘Pfi,m(y) Xesh ,Zli

;[uj a7 x| — )2, (16)

which maximizes a convex functioh: RP*™ — R on the Stiefel manifolgs.

2.3.2 PARSITY
A solutionX* of (16) again defines the sparsity pattern of the mattixthe entryzj is active if

W lal x| > vj,

and equal to zero otherwise. Forgll > p; max||a||2, the trivial solutionZ* = 0 is optimal.
|

2.3.3 B.ock PCA

Fory =0, problem (16) can be equivalently written in the form

@, m(0) = )r(rg%(Tr(XTAATX N?), (17)
which has been well studied (see, e.g., Brockett 1991 and Absil et @R)20rhe solutions of
(17) span the dominamb-dimensional invariant subspace of the ma#iA". Furthermore, if the
parametersgy; are all distinct, the columns of* are them dominant eigenvectors #KAT, that is,
the m dominant left-eigenvectors of the data matix The columns of the solutiod* of (15) are
thus them dominant right singular vectors &t that is, the PCA loading vectors. Such a mabyix
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with distinct diagonal elements enforces the objective function in (17) te lsalated maximizers.

In fact, if N = I, any pointX*U with X* a solution of (17) and € S is also a solution of (17).

In the case of sparse PCA, thatys; 0, the penalty term already ensures isolated maximizers, such
that the diagonal elements Nfdo not have to be distinct. However, as it will be briefly illustrated
in the forthcoming numerical experiments (Section 5), having distinct elemaritseadiagonal of

N pushes towards sparse loading vectors that are more orthogonal.

2.4 Block Sparse PCA via Cardinality Penalty
The single-unit cardinality-penalized case can also be naturally ext¢odee block case:
def il
@rom(Y) = max Tr(Diag( (XTAZN)?) Z Yillzillo, (18)

Xesh
Ze[smm

where the sparsity inducing vectpe= [yi,...,ym]' is nonnegative antll = Diag(py, . . ., km) With
positive entries on the diagonal. In the cgse 0, problem (20) is equivalent to (17), and therefore
corresponds to PCA, provided that pjlare distinct.

2.4.1 REFORMULATION

Again, this block formulation is completely decoupled in the columna,of
m

Prom(y) = max sy max(yxj Azj)* - vi|zllo,
€5m] ZJe

so that the solution (12) of the single unit case provides the optimal colgmns

Srlsnalx fvj')hu,?(alxj)z

The reformulation of problem (18) is thus

0 =max® waxj)% —vjl+ (20)
om E.Smj 1|ZI J | 11+

which maximizes a convex functioh: RP*™ — R on the Stiefel manifolg.

2.4.2 PARSITY

For a solutionX* of (20), the active entrieg; of Z* are given by the condition
(wal %)% > ;.
Hence for ally; > 1 max||a||3, the optimal solution of (18) i&* = 0
|
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3. A Gradient Method for Maximizing Convex Functions

By E we denote an arbitrary finite-dimensional vector sp&ceis its conjugate, that is, the space
of all linear functionals oie. We equip these spaces with norms given by (2).

In this section we propose and analyze a simple gradient-type method for magjmizonvex
function f : E — R on a compact seQ;

fr= C(r;anf(x). (21)

Unless explicitly stated otherwise, we wilbtassume to be differentiable. Byf’(x) we denote
any subgradient of functioh atx. By 0f(x) we denote its subdifferential.
At any pointx € Q we introduce some measure for the first-order optimality conditions:

def

A(x) = max(f’(x),y —X).

yeQ

Itis clear that
A(x) >0, (22)

with equality only at those pointswhere the gradient’(x) belongs to the normal cone to the set
ConvQ) atx.*

3.1 Algorithm

Consider the following simple algorithmic scheme.

Algorithm 1: Gradient scheme
input : X € Q
output: xx (approximate solution of (21))
begin
k——0
repeat
Xier1 € Argmax{ f(xq) + (f'(x),y =) |y € Q}
ke—k+1
until a stopping criterion is satisfied
end

Note that for example in the special cage=rs & {x c E| ||x| =r} or

Q=rB OI:ef{x € E | |Ix|| <r}, the main step of Algorithm 1 can be written in an explicit form:

Gflf/(Xk)

, 23
HOR 3)

Xer1 =T

4. The normal cone to the set C@iy) atx € Q is smallerthan the normal cone to the s@t Therefore, the optimality
conditionA(x) = 0 is strongerthan the standard one.
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3.2 Analysis

Our first convergence result is straightforward. Denrlrkt(%gf Orll_i<nkA(xi).
<i<

Theorem 1 Let sequencéx}, o be generated by Algorithm 1 as applied to a convex function f.
Then the sequendd (x«) }c_o is monotonically increasing an&iin A(x¢) = 0. Moreover,

f—f(x0)

A <
k= k+1

Proof From convexity off we immediately get

f(Xer1) > F(x) + (F/ (%), X1 — %) = F (%) +A(%),

and thereforef (x1) > f(x) for all k. By summing up these inequalities fo=0,1,... .N—1,
we obtain

£ = f(x0) = F(x) — F(x0) = 5 AX),

and the result follows. [ ]

For a sharper analysis, we need some technical assumptiohamhQ.

Assumption 1 The norms of the subgradients of f are bounded from below) dwy a positive

constant, that is,
def

5 = min |f'(x)].>0.
XeQ
f/(x)eaf(x)
This assumption is not too binding because of the following result.

Proposition 2 Assume that there exists a poingxQ such that fx') < f(x) forall x € Q. Then
Of > [minf(x)— f(x’)} / [maxHx—x’H] > 0.
x€Q XEQ
Proof Becausef is convex, for ank € Q we have

0 < F(x) — F(X) < (F'(x), x=x) < [[F'CO) I x = X]].

For our next convergence result we need to assume either strongxagrof f or strong con-
vexity of the set Con{Q ).

Assumption 2 Function f isstrongly convexthat is, there exists a constaot > 0 such that for
anyxyecE

F(9) 2 100+ {00,y =X+ L ly—xJ. (24)
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Note that convex functions satisfy inequality (24) withnvexity parametess = 0.

Assumption 3 The setConV Q) is strongly convexthat is, there is a constamty > 0 such that
for any xy € Con\Q) anda € [0, 1] the following inclusion holds:

ax+ (1—a)y+ G—ZQa(l—a)Hx—sz.SCConv(Q). (25)

Note that any se satisfies inclusion (25) withonvexity parametes, = 0.

It can be shown (see Appendix A), that level sets of strongly conuextfons with Lips-
chitz continuous gradient are again strongly convex. An example of atighction is the simple
quadraticx — ||x||%. The level sets of this function correspond to Euclidean balls of varynes s

As we will see in Theorem 4, a better analysis of Algorithm 1 is possible if CQnythe
convex hull of the feasible set of problem (21), is strongly convexteNbat in the case of the
two formulations (8) and (13) of the sparse PCA problem, the feasibl@ sethe unit Euclidean
sphere. Since the convex hull of the unit sphere is the unit ball, whichtrergdy convex set, the
feasible set of our sparse PCA formulations satisfies Assumption 3.

In the special cas@ =rS for somer > 0, there is a simple proof that Assumption 3 holds with
0qQ = % Indeed, for any,y € E anda € [0, 1], we have

lax+ (@ —a)y* = a?|x?+ (1—a)?|ly]* +2a(1-a)(Gxy)

= alx|?+@-a)lyl? —al-a)[x-y|>
Thus, forx,y € r§ we obtain

1/2 1
M2 <r— Za(@—a)x—y2

o+ (1— @)y = [r2—a(1—a)|x—y]? .

Hence, we can takeq = *.
The relevance of Assumption 3 is justified by the following technical obsierva

Proposition 3 If f is convex, then for any two subsequent iteraiggx 1 of Algorithm 1

o
A% = I (002 — %

Proof We have noted in (22) that for convéxwe haveA(xi) > 0. We can thus concentrate on the
situation wherop > 0 andf’(x) # 0. Note that

(f'(%),%+1—Yy) >0 forall yeConvQ).
We will use this inequality with
G 1/ (x)

o, @ <0t

def o
Y=Y S0t 0 (Xers = %) + 0L 0) [ — e

In view of (25),yq € ConVQ), and therefore

9
2

Sincea is an arbitrary value fronD, 1], the result follows. |

0> (F(%), Yo =X 1) = (1= 0) (F/ (), Xse = X 1) + 5200 (L = ) X — X1 (%) ]

We are now ready to refine our analysis of Algorithm 1.
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Theorem 4 (Stepsize Convergencelet f be convexds > 0), and let either Assumption &{ > 0)
or Assumptions 1&; > 0) and 3 @q > 0) be satisfied. Ifx} is the sequence of points generated
by Algorithm 1, then

00t + 0t

3 Iea = < Ar - tx)) (26)
Proof Sincef is convex, Proposition 3 gives

o 1
F(Xer1) = £ () = B0 + =5 X2 = Xel> = (0085 +01) e Xl

The additional assumptions of the theorem ensuredhdi + &; > 0. It remains to add the in-
equalities up fok > 0. |

Theorem 4 gives an upper estimate on the number of iterations it takes foritAlg 1 to
produce a step of small size. Indeed,

LAt —f(x0) 1

= min ||xi11— Xl <E€.
0Q0f +0f € Ogigk” 1=l <

It can be illustrated on simple examples that it is not in general possible targearthat the
algorithm will produce iterates converging to a local maximizer. Howevegofém 4 guarantees
that the set of the limit points is connected, and that all of them satisfy theofulst- optimality
condition. Also notice that, started from a local minimizer, the method will not maxay a
3.2.1 TERMINATION

A reasonable stopping criterion for Algorithm 1 is the following: terminate dheeelative change
of the objective function becomes small:

() — F%) _

<Eg, or equivalently,  f(xk11) < (1+¢€)f(x).
f (%)

3.3 Maximization with Spherical Constraints
ConsiderE = E* = RP with G =l and(s,x) = 3 s, and let
Q=r5P={xeRP||x|=r}.

Problem (21) takes on the form

f* = maxf(x). (27)

xersP

SinceQ is strongly convexdqq = %), Theorem 4 is meaningful for any convex functibfo; > 0).
The main step of Algorithm 1 can be written down explicitly (see (23)):

(%)
X =—F.
T 012

The following examples illustrate the connection of Algorithm 1 to classical msthod
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Example 5 (Power Method) In the special case of a quadratic objective functigqw)f = %XTCX
for some Ce S_L on the unit sphere (& 1), we have

f* = %)\max(c),

and Algorithm 1 is equivalent to th@ower iteration methotbr computing the largest eigenvalue of
C (Golub and Van Loan, 1996). Hence fQr= SP, we can think of our scheme as a generalization
of the power method. Indeed, our algorithm performs the following iteration:

Cx
=~ k>
[ICxll

Note that bothds ando; are equal to the smallest eigenvalue of C, and hence the right-hand side
of (26) is equal to

Xk+1

Amax(C) — XSCXO
2)\min(c) .
Example 6 (Shifted Power Method) If C is not positive semidefinite in the previous example, the

objective function is not convex and our results are not applicable. Hemvénrs complication can
be circumvented by instead running the algorithm with the shifted quadratitidanc

(28)

f(x) = %XT (C+wlp)x,

wherew > 0 satisfiesC = wlp, +C € S7,.. On the feasible set, this change only adds a constant
term to the objective function. The method, however, produces diffegaeisce of iterates. Note
that the constantds ando+ are also affected and, correspondingly, the estimate (28).

The example above illustrates an easy “trick” to turn a convex convextolgdanction into a
strongly convex one: one simply adds to the original objective functioroagly convex function
that is constant on the boundary of the feasible set. The two formulatioresjanealent since the
objective functions differ only by a constant on the domain of interest. édew there is a clear
trade-off. If the second term dominates the first term (say, by choesiygargew), the algorithm
will tend to treat the objective as a quadratic, and will hence tend to terminagsvier fterations,
nearer to the starting iterate. In the limit case, the method will not move awaytti@mitial iterate.

3.4 Maximization with Orthonormality Constraints

ConsiderE = E* = RP*™M the space op x mreal matrices, withm < p. Note that form= 1 we
recover the setting of the previous section. We assume this space is ehuiiip¢he trace inner
product: (X,Y) = Tr(XTY). The induced norm, denoted B || % (X,X)/2, is the Frobenius
norm (we letG be the identity operator). We can now consider various feasible setgripkest
being a ball or a sphere. Due to nature of applications in this paper, lehasitrate on the situation

whenQ is a special subset of the sphere with radius,/m, the Stiefel manifold:
Q=38P ={XeRPM|XTX =Ip}.

Problem (21) then takes on the following form:

f* = maxf(X).
XeSh
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Using the duality of the nuclear and spectral matrix norms and Propositiolow hean be shown
that ConyQ) is equal to the unit spectral ball. It can be then further deduced thatehis sot
strongly convex ¢, = 0) and as a consequence, Theorem 4 is meaningful orflyisfstrongly
convex @t > 0). Of course, Theorem 1 applies also in the= 0 case.

At every iteration, Algorithm 1 needs to maximize a linear function over the $tedaifold.
In the text that follows, it will be convenient to use the symbol P@afor theU factor of thepolar
decompositiomf matrixC € RP*™;

C=UP, Uesh PesS.

The complexity of the polar decompositiond¥ pn?), with p > m. In view of the Proposition 7,
the main step of Algorithm 1 can be written in the form

Xkr1 = Polar( f/(x)).

Proposition 7 Let Ce RP*™ with m< p, and denote byg;(C), i =1,...,m, the singular values of
C. Then

max(C, X) = ici(Q (= l[C]l. = Tr(CTO)M?), (29)
XeSh i=

with maximizer X = Polai(C). If C is of full rank, therPolarC) = C(CTC)~ %2,
Proof Existence of the polar factorization in the nonsquare case is coveretidyrdm 7.3.2 in
Horn and Johnson (1985). Lét=V>W' be the singular value decomposition (SVD)gfthat is,

V is p x p orthonormalW is m x morthonormal, and is p x mdiagonal with values;(A) on the
diagonal. Then

max(C,X) = max(Vzw"',X)

XGSm XGSm
= max(Z,V'XW)
XGSm
m m
= max(Z Z) = male 0i(C)zi < ZGi (C).
Z€5m ZGSm| 1

The third equality follows since the functiofi— VT XW mapsS$h onto itself. Both factors of the
polar decomposition dE can be easily read-off from the SVD. Indeed, if we\tébe the submatrix
of V consisting of its firstm columns and>’ be the principaim x m submatrix ofZ, that is, a
diagonal matrix with values;(C) on its diagonal, the€ = V'Z'WT = (V'WT)(WZ'WT) and we
can putJ = V'WT andP = WZ'WT. To establish (29) it remains to note that

(CU)=TrP=S Ai(P) ZG, =Tr(P"P)Y2=Tr(CTC)"? = ZG,
1

Finally, sinceCTC = PUTUP = P?, we haveP = (CTC)¥2, and in the full rank case we obtain
X*=U=CPlt=C(CTC) V2 u

Note that the block sparse PCA formulations (16) and (20) conform to¢ktisg. Here is one
more example:
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Example 8 (Rectangular Procrustes Problem)Let C, X € RP*™ and De RP*P and consider the
following problem:
min{||C—DX||2 | XTX = Ipn}. (30)

Since||C—DX||2 = ||C||2 + (DX, DX) — 2(CD, X), by a similar shifting technique as in the previous
example we can cast problem (30) in the following form

max{w||X[|2 — (DX,DX) +2(CD,X) | X"X = I}

For w > 0 large enough, the new objective function will be strongly convex. In this @asalgo-
rithm becomes similar to the gradient method proposed in Fraikin et al.§R00
The standard Procrustes problem in the literature is a special case dfBO p= m.

4. Algorithms for Sparse PCA

The solutions of the sparse PCA formulations of Section 2 provide locally olpiatizrns of zeros
and nonzeros for a vectarc S" (in the single-unit case) or a matr&e [S"]™ (in the block case).
The sparsity-inducing penalty term used in these formulations biases éothevalues assigned
to the nonzero entries, which should be readjusted by considering thelgetgive of maximum
variance. An algorithm for sparse PCA combines thus a method that ideatifggsd” pattern of
sparsity with a method that fills the active entries. In the sequel, we discugsrtkeeal block sparse
PCA problem. The single-unit case is recovered in the particularroasé.

4.1 Methods for Pattern-finding

The application of our general method (Algorithm 1) to the four sparse @Aulations of Sec-
tion 2, that is, (8), (13), (16) and (20), leads to Algorithms 2, 3, 4 anel6vly that provide a
locally optimal pattern of sparsity for a matrixe [S"]™. This pattern is defined as a binary matrix
P € {0,1}"™™ such thatp;; = 1 if the loadingz; is active andp;; = 0 otherwise. S is an indi-
cator of the coefficients of that are zeroed by our method. The computational complexity of the
single-unit algorithms (Algorithms 2 and 3) é&np) operations per iteration. The block algorithms
(Algorithms 4 and 5) have complexit9(npm) per iteration.

These algorithms need to be initialized at a point for which the associatesltgpaattern has
at least oneactive element. In case of the single-unit algorithms, such an initial iteratsP is
chosen parallel to the column Afwith the largest norm, that is,

Xx=-——, where i*=argmax|az. (31)
@i+ |2 i

For the block algorithms, a suitable initial iterafec Shis constructed in a block-wise manner as
X = [x|X, ], wherexis the unit-norm vector (31) and, € S"_, is orthogonal t, thatisx" X, =0.

The nonnegative parametgréiave to be chosen below the upper bounds derived in Section 2
and which are summarized in Table 1. Increasing the value of these parsiteatis to solutions of
smaller cardinality. There is however not explicit relationship betwesmmd the resulting cardinal-
ity. Since the proposed algorithms are fast, one can afford some trialsransit® reach a targeted
cardinality. We however see it as an advantage not to enforce a firdidality, since this informa-
tion is often unknown a priori. As illustrated in the forthcoming numerical expents (Section 5),
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Algorithm 2 Single-uni;  y < max [|a]|2
Algorithm 3~ Single-unitly y < max |/&]|3
Algorithm 4 Block/; yj < My max ||a;||2
Algorithm 5 Block /g y; < wemax [la |3

Table 1: Theoretical upper-bounds on the sparsity paramgters

our algorithms are able to recover cardinalities that are best adapted to deéthrt underlies the
data.

As previously explained, the parametgysequired by the block algorithms can be either iden-
tical (e.g., equal to one) or distinct (e.gy, = %). Since distincty; leads to orthogonal loading
vectors in the PCA case (i.e/,= 0), they are expected to push towards orthogonality also in the
sparse PCA case. Nevertheless, unless otherwise stated, the teparacaétersgy; will be set to
one in what follows.

Let us finally mention that the input matriof these algorithms can be the data matrix itself as
well as any matrix such that the factorizatibr= AT A of the covariance matrix holds. This property
is very valuable when there is no access to the data and only the covamairéeis available, or
when the number of samples is greater than the number of variables. In tliadasthe dimension
p can be reduced to at masby computing an eigenvalue decomposition or a Cholesky decompo-
sition of the covariance matrix, for instance.

Algorithm 2: Single-unit sparse PCA method based on#fipenalty (8)

input : Data matrixA € RP*"
Sparsity-controlling parametgr> 0
Initial iteratex € SP
output: A locally optimal sparsity patterR
begin
repeat
x— 3 Lallal x| — ]+ signa] x)a

X
X mor
[

until a stopping criterion is satisfied
if [afx| >y
otherwise.

Construct vectoP € {0,1}" such that{ B’ i é
P =

end

4.2 Post-processing

Once a “good” sparsity pattefd has been identified, the active entriesZo$till have to be filled.
To this end, we consider the optimization problem,

(x*,z") €'arg max Tr(XTAZN), (32)
XeSm
ZE[E_S'n]m
Zp=0
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Algorithm 3: Single-unit sparse PCA algorithm based ondgpenalty (13)
input : Data matrixA € RP*"
Sparsity-controlling parametgr> 0
Initial iteratex € SP
output: A locally optimal sparsity patterR
begin
repeat
X 3Ly [sign((ax)> — V)] al x &

X
Xe— 2o
[

until a stopping criterion is satisfied

1 i aTy)2
Construct vectoP ¢ {0,11" such thatl P~ 1 if (& x)= >y
pi=0 otherwise.

end

Algorithm 4 : Block sparse PCA algorithm based on thepenalty (16)
input : Data matrixA € RP*"
Sparsity-controlling vectolyy, . ..ym|T >0
Parametergy,...,Un >0
Initial iterateX € SP
output: A locally optimal sparsity patter®
begin
repeat
for j=1,...,mdo
[ X 3T o milblal x| - vil+ sign(@l )&
X «—— PolarX)
until a stopping criterion is satisfied

1 ifulaTx ] > v
Construct matri¥P € {0,1}"™ such that pij =1 1T K37 Xj| >,
pij =0 otherwise.

end

whereP’ € {0,1}"™™ is the complement o, Zp denotes the entries & that are constrained to
zero andN = Diag(, - . ., Mm) With strictly positivey;. Problem (32) assigns the active part of the
loading vector& to maximize the variance explained by the resulting components. Without loss of
generality, each column &f is assumed to contain active elements.

In the single-unit case = 1, an explicit solution of (32) is available,

X* =u,
Z5 =vandZz, =0, (33)
whereouv" with o > 0, u € BP andv € B/Plo is a rank one singular value decomposition of the ma-
trix Ap, that corresponds to the submatrixAtontaining the columns related to the active entries.
The post-processing (33) is equivalent to ¥agiational renormalizatiorproposed by Moghaddam
et al. (2006).
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Algorithm 5: Block sparse PCA algorithm based on thepenalty (20)
input : Data matrixA € RP*"
Sparsity-controlling vectolys, . ..ym] T > 0
Parametergy,...,Un >0
Initial iterateX € SP
output: A locally optimal sparsity patter®
begin
repeat
for j=1,...,mdo
| X 3TLg i[sign((wial x;)? = vj)l+ & x; &
X «— Polar(X)
until a stopping criterion is satisfied

1 i (aTx )2 < v
Construct matrixP € {0,1}"™ such that Pij =1 1F (53 X)) >
pij =0 otherwise.

end

Although an exact solution of (32) is hard to compute in the block casel, a local max-
imizer can be efficiently computed by optimizing alternatively with respect to ani@bie while
keeping the other ones fixed. The following lemmas provide an explicit soltgi@ach of these
subproblems.

Lemma 9 For a fixed Ze [$"]™, a solution X of

maxTr(XTAZN)
XeSh

is provided by the U factor of the polar decomposition of the product AZN.

Proof See Proposition 7. |

Lemma 10 The solution

7" %'arg max Tr(XTAZN), (34)
Ze[snm
Zo=0

is at any point Xc Sk defined by the two conditionssZ= (ATXND)p and Z, =0, where D is a
positive diagonal matrix that normalizes each column ofunit norm, that is,

D = Diag(NXTAATXN) z.
Proof The Lagrangian of the optimization problem (34) is
L(Z,A1,\2) = Tr(XTAZN) = Tr(AL(ZTZ — 1)) — Tr(A 2),
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where the Lagrangian multipliers; € R™™ andA; € R™™ have the following properties\; is
an invertible diagonal matrix an@d\z)p = 0. The first order optimality conditions of (34) are thus

ATXN—2ZA;1 — N, =0
Diag(Z'Z) = In
Zp=0.

Hence, any stationary poi@* of (34) satisfieZj, = (ATXND)p andZ;, = 0, whereD is a diag-
onal matrix that normalizes the columns &f to unit norm. The second order optimality con-
dition imposes the diagonal matr@ to be positive. Such ® is unique and given by =
Diag(NXTAATXN)z. |

The alternating optimization scheme is summarized in Algorithm 6, which computesla loc
solution of (32). A judicious initialization is provided by an accumulation poirthefalgorithm for
pattern-finding, that is, Algorithms 4 and 5.

Algorithm 6 : Alternating optimization scheme for solving (32)

input : Data matrixA € RP*"
Sparsity patter® € {0,1}"™™M
Matrix N = Diag(Hy, - . ., Mm)
Initial iterateX € SP
output: A local minimizer(X,Z) of (32)
begin
repeat
Z— ATXN
Z — 7 Diag(Z7Z2) 2
Z5+—0
X «—— PolaAZN)
until a stopping criterion is satisfied
end

It should be noted that Algorithm 6 is a postprocessing heuristic that, strjglgtking, is re-
quired only for thef; block formulation (Algorithm 4). In fact, since the cardinality penalty only
depends on the sparsity pattéiand not on the actual values assignedgpa solution(X*,Z*) of
Algorithms 3 or 5 is also a local maximizer of (32) for the resulting patkerihis explicit solution
provides a good alternative to Algorithm 6. In the single unit case %ithenalty (Algorithm 2),
the solution (33) is available.

4.3 Sparse PCA Algorithms

To sum up, in this paper we propose four sparse PCA algorithms, eachirdiog a method to
identify a “good” sparsity pattern with a method to fill the active entries ofnthleading vectors.
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They are summarized in Table 2. TNRTLAB code of these&Power® algorithms is available on
the authors’ website’.

Computation oP  Computation oZp

GPowery, Algorithm 2 Equation (33)
GPowery, Algorithm 3 Equation (12)
GPowery, m  Algorithm 4 Algorithm 6

GPowergy m Algorithm 5 Equation (19)

Table 2: New algorithms for sparse PCA.

4.4 Deflation Scheme

For the sake of completeness, we recall a classical deflation processriputingm sparse princi-

pal components with a single-unit algorithm (d’Aspremont et al., 2007)zkeR" be a unit-norm
sparse loading vector of the daiaSubsequent directions can be sequentially obtained by comput-
ing a dominant sparse component of the residual matrixxz', wherex = Az is the vector that
solves

: T
minjA—xz .
Further deflation techniques for sparse PCA have been proposeddkel(2008).

4.5 Connection with Existing Sparse PCA Methods

As previously mentioned, oul-based single-unit algorithi@Power,, rests on the same reformu-
lation (13) as the greedy algorithm proposed by d’Aspremont et al3(200

There is also a clear connection between both single-unit algoriGioger, and GPowery,
and therSVD algorithms of Shen and Huang (2008), which solve the optimization problems

min||A—xZ |2 +2y|zl. and min|A—xZ'||2 +Y]z]o
zeR" zeR"

XcsP xesP

by alternating optimization over one variable (eitheor z) while fixing the other one. It can
be shown that an update amamounts to the iterations of Algorithms 2 and 3, depending on the
penalty type. AlthoughSVD and GPower were derived differently, it turns out that, except for the
initialization and post-processing phases, the algoritarasdentical There are, however, several
benefits to our approach: 1) we are able to analyze convergencertiespof the method, 2) we
show that the core algorithm can be derived as a special case of ealgi®n of the power
method (and hence more applications are possible), 3) we give gengrakAaom single unit case

to block case, 4) our approach uncovers the possibility of a very Liséfalization technique, 5) we
equip the method with a practical postprocessing phase, 6) we providewitmihe formulation

of d’Aspremont et al. (2008).

5. Our algorithms are namé&Power where the “G” stands fogeneralizedr gradient
6. Websites arbttp://www.inma.ucl.ac.be/ ~ richtarik andhttp://www.montefiore.ulg.ac.be/ ~journee .
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5. Numerical Experiments

In this section, we evaluate the proposed power algorithms against existingesPCA methods.
Three competing methods are considered in this study: a greedy schemeatiowdputing a
local maximizer of (10) (Approximate Greedy Search Algorithm, d’Aspretatral. (2008)), the
SPCA algorithm (Zou et al., 2006) and the sPCA-rSVD algorithm (Shen and ¢uz608). We do
not include theDSPCA algorithm (d’Aspremont et al., 2007) in our numerical study. This method
solves a convex relaxation of the sparse PCA problem and has a largerpon computational
complexity of O(n®) compared to the other methods. Table 3 lists the considered algorithms.

GPower, Single-unit sparse PCA vi@-penalty
GPowery, Single-unit sparse PCA vig-penalty
GPowery, m Block sparse PCA vié;-penalty
GPowery, m Block sparse PCA vidg-penalty

Greedy Greedy method

SPCA SPCA algorithm

rSVDy, sPCA-rSVD algorithm with a;-penalty (“soft thresholding”)
rSVDy, SPCA-rSVD algorithm with aiip-penalty (*hard thresholding”)

Table 3: Sparse PCA algorithms we compare in this section.

These algorithms are compared on random data (Sections 5.1 and 5.2) as arereal data
(Sections 5.3 and 5.4). All numerical experiments are perform@dArLAB. The parameteg in
the stopping criterion of th&Power algorithms has been fixed to 1 MATLAB implementations
of the SPCA algorithm and the greedy algorithm have been rendered available byt 26U(2006)
and d’Aspremont et al. (2008). We have, however, implemented the sBER algorithm on our
own (Algorithm 1 in Shen and Huang 2008), and use it with the same stopptagan as for the
GPower algorithms. This algorithm initializes with the best rank-one approximation of e d
matrix. This is done by a first run of the algorithm with the sparsity-inducingipatetry that is set
to zero.

Given a data matriA € RP*", the considered sparse PCA algorithms prowid@nit-norm
sparse loading vectors stored in the maiix [S"]™. The samples of the associated components
are provided by then columns of the produddZ. The variance explained by thesecomponents
is an important comparison criterion of the algorithms. In the simple oasel, the variance
explained by the componeAtis

Var(z) =2’ ATAz

Whenz corresponds to the first principal loading vector, the variance i&Var Gmax(A)?. In the
casem > 1, the derived components are likely to be correlated. Hence, summing wpribace
explained individually by each of the components overestimates the vagaptaned simultane-
ously by all the components. This motivates the notioadjtisted varianc@roposed by Zou et al.
(2006). The adjusted variance of thecomponenty¥ = AZ is defined as

AdjVar Z = TrR?,

whereY = QRis the QR decomposition of the components sample m¥t(® < Sh andR is an
m x mupper triangular matrix).
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5.1 Random Data Drawn from a Sparse PCA Model

In this section, we follow the procedure proposed by Shen and Hu&@$)2o generate random
data with a covariance matrix having sparse eigenvectors. To this endadarmwe matrix is first
synthesized through the eigenvalue decomposiieaVDVT, where the firsm columns ofV ¢
R"™" are pre-specified sparse orthonormal vectors. A data matéXRP*" is then generated by
drawing p samples from a zero-mean normal distribution with covariance matrtkat is, A ~
N(0,%).

Consider a setup with =500, m = 2 andp = 50, where the two orthonormal eigenvectors are
specified as follows

oo 1 = I P
Vii = g for i=1...,10 Vi = g for i=11...,20,
vii = 0 otherwise, Vi = 0 otherwise,

The remaining eigenvectorg, j > 2, are chosen arbitrarily, and the eigenvalues are fixed at the
following values

diz = 400
d; = 300
djj = 1 for j=3,...,500

We generate 500 data matricRs RP*" and employ the fouGPower algorithms as well as
Greedy to compute two unit-norm sparse loading vectrs, € R, which are hoped to be close
to v1 andv,. We consider the model underlying the data tsbecessfully identifie¢br recovered
when both quantitief/] z;| and|v} z,| are greater than 0.99.

Two simple alternative strategies are compared for choosing the spaityisig parameteng
andy, required by th&Power algorithms. First, we choose them uniformly at random, between the
theoretical bounds. Second, we fix them to reasonable a priori vatuparticular, the midpoints
of the corresponding admissible interval. For the block algoritGiPower,, n, the parametey,
is fixed at 10 percent of the corresponding upper bound. This vahsechosen by limited trial
and error to give good results for the particular data analyzed. We dmtemd to suggest that
this is a recommended choice in general. The values of the sparsity-induaniageters for the
Lo-basedGPower algorithms are systematically chosen as the squares of the values choibeirfo
¢1 counterparts. More details on the selectioryoéndy, are provided in Table 4. Concerning the
parametergy andp, used by the block algorithms, both situatigas= [ andpy > pp have been
considered. Note thdireedy requires to specify the targeted cardinalities as an input, that is, ten
nonzeros entries for both loading vectors.

In Table 5, we provide the average of the scalar produg®s|, |v] ;| and |v} z,| for 500 data
matrices with the covariance matriX The proportion of successful identification of the vectors
v andvs is also given. The table shows that tBBower algorithms are robust with respect to the
choice of the sparsity inducing parametgrsGood values of, andy, are easily found by trial
and error. The chances of recovery of the sparse model undethyindata are rather good, and
some versions of the algorithms successfully recover the sparse medelvben the parameteys
are chosen at random. Tk ower algorithms do not appear to be as successfl@rasdy, which
managed to correctly identify vectorsandv; in all tests. Note that while the latter method requires
the exact knowledge of the cardinality of each componentGPaver algorithms find the sparse
model that fits the data best without this information. This property ofGRewer algorithms is
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Algorithm Random Fixed
GPower, y1 uniform distrib. on[0, max ||a]|2] Y11= %max laill2
y2 uniform distrib. on[0, max ||&||2] y2 = 5 max ||&]|2
GPowery, /Y1 uniform distrib. on[0, max ||a;||2] L= 7 max [|a]]3
/Y2 uniform distrib. on[0, max ||&||2] y2 = 2 max ||&||3
GPower, m y1 uniform distrib. on[0, max ||&; 2] y1 = 3 max ||
withpy = =1 y2 uniform distrib. on[0, max ||a]|2] Y2 = 4 max ||ai|2
GPower/y m /Y1 uniform distrib. on[0,max ||a;||2] y1 = z max [|al|3
withpy = =1 /Y2 uniform distrib. on[0, max ||&||2] Vo = T(l)omax lla ||§
GPowerg; m y1 uniform distrib. on[0, max || & 2] y1 = 3 max [|ail|2
with g = 1 andyp = 0.5 y2 uniform distrib. on[0, 3 max [|a 2] Y2 = 2, max [|ai|2
GPowerym /Y1 uniform distrib. on[0, max ||a||2] y1 = 7 max ||ai]|3

with yi3 =1 andy, = 0.5

/¥ uniform distrib. on[0, 3 max ||&||2]

Yo = z55max [|ail|3

Table 4: Details on the random and fixed choices of the sparsity-inducirayetersy; andy;
leading to the results displayed in Table 5. Ma#¥xused in the case of the single-unit
algorithms denotes the residual matrix after one deflation step.

valuable in real-data settings, where little or nothing is known a priori abeutdhndinality of the

components.

Looking at the values reported in Table 5, we observe that the Wi¢tkver algorithms are
more likely to obtain loading vectors that are “more orthogonal” when usingnpetersy; which

are distinct.

Algorithm y 12 2| \VIzz]  |v}z|  Chance of success
GPowery, random 15810° 0.9693 0.9042 0.71
GPowery, random 15710°% 0.9612 0.8990 0.69
GPowerp, mwithpy = o =1 random 101103 0.8370 0.2855 0.06
GPowergomWwith g =po =1 random 2103 0.8345 0.3109 0.07
GPowery, mwith iy =1 andy, =0.5 random 18 104 0.8300 0.3191 0.09
GPower/, m With Ly = 1 andy, =0.5 random 15104 0.8501 0.3001 0.09
GPowery, fixed 0 0.9998 0.9997 1
GPowery, fixed 0 0.9998 0.9997 1
GPowery, mwithpy = pp =1 fixed 425102 0.9636 0.8114 0.63
GPower, m With y = pp = 1 fixed 377102 0.9663 0.7990 0.67
GPowery, m with iy = 1 andyz = 0.5 fixed 18103 0.9875 0.9548 0.89
GPower g, m with iy = 1 andy, = 0.5 fixed 6710° 0.9937 0.9654 0.96
PCA — 0 0.9110 0.9063 0
Greedy - 0 0.9998 0.9997 1

Table 5: Average of the quantitiég z|, |v] z1, |V} | and proportion of successful identifications
of the two dominant sparse eigenvectorszoby extracting two sparse principal com-
ponents from 500 data matrices. T@Gesedy algorithm requires prior knowledge of the
cardinalities of each component, while tG®ower algorithms are very likely to identify

the underlying sparse model without this information.
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Table 5 does not include results for t8€CA algorithm because of our limited experience
with it and the absence of such experiments in the literature. However, inofidve connections
developed in Section 4.5, we do expect that theD methods will exhibit similar flexibility to
sparsity parameter tuning.

5.2 Random Data without Underlying Sparse PCA Model

All random data matrice& € RP*" considered in this section are generated according to a Gaussian
distribution, with zero mean and unit variance.

5.2.1 TRADE-OFF CURVES

Let us first compare the single-unit algorithms, which provide a unit-noransgploading vector

ze R". We first plot the variance explained by the extracted component aghesardinality of

the resulting loading vecta For each algorithm, the sparsity-inducing parameter is incrementally
increased to obtain loading vectarsith a cardinality that decreases framio 1. The results dis-
played in Figure 1 are averages of computations on 100 random matricedinvéhsionsp = 100
andn = 300. The considered sparse PCA methods aggregate in two giGBpser,,, GPowery,,
Greedy andrSVDy, outperform theSPCA andrSVDy,. It seems that these latter methods perform
worse because of thg penalty term used in them. If one, however, post-processes the aative p
of zaccording to (33), as we do &Power,,, all sparse PCA methods reach the same performance.

i
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o
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I
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Group 1: GPowery, , GPowery,, Greedy, rSVDy, | |
= = =Group 2: SPCA,rSVD,,

Proportion of explained variance
o
e

0 50 100 150 200 250 300
Cardinality

Figure 1: Trade-off curves between explained variance and cardinality. The vertical axis is the
ratio Vanzspca)/ Var(zeca), where the loading vectagpca is computed by sparse PCA
andzpca is the first principal loading vector. The considered algorithms aggragate
groups: GPowery,, GPower/,, Greedy andrSVD,, (top curve), andSPCA andrSVDy,
(bottom curve). For a fixed cardinality value, the methods of the firstmesplain more
variance.
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5.2.2 CONTROLLING SPARSITY WITHY

Among the considered methods, the greedy approach is the only one tilydiadrol the cardi-
nality of the solution, that is, the desired cardinality is an input of the algorithm.cther methods
require a parameter controlling the trade-off between variance antchabitd Increasing this pa-
rameter leads to solutions with smaller cardinality, but the resulting number pérmalements can
not be precisely predicted. In Figure 2, we plot the average relatiohsitvpeen the parametgr
and the resulting cardinality of the loading vectdor the two algorithmssPower,, andGPowery,.
In view of (9) (resp. (14)), the entrigsof the loading vector obtained by theGPower,, (resp.
GPower/,) algorithm satisfying

lall2<y (resp.|ai]3<vV) (35)

have to be zero. Taking into account the distribution of the norms of the cslof#y this provides
for everyy a theoretical upper bound on the expected cardinality of the resultingrnzcto

1

093

o8 *

Theoretical upper bound

0.7+ 1 v GPowery,

\ = = = GPowery,
0.6

05F A

0.4f £y

Proportion of nonzero entries

03t b
0.2F N

0.1 DI

0

1 1 1 N 1 1 1 1 1
0 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Normalized sparsity inducing parameter

Figure 2: Dependence of cardinality on the value of the sparsity-indy@rgmeter. In case of
the GPower,, algorithm, the horizontal axis showg||a;-||2, whereas for th&Powery,
algorithm, we usg/y/||a;-||2. The theoretical upper bound is therefore identical for both
methods. The plots are averages based on 100 test problems pfsi@0 andh = 300.

5.2.3 (REEDY VERSUS THEREST

From the experiments reported abo¥eeedy and theGPower methods appear to have similar
performance in terms of quality of the obtained solution. Moredy¥sfedy computes a full path of
solutions up to a chosen cardinality, and does not have to deal with theoisaueng the sparsity
parametery. The price of this significant advantage Gfeedy is its heavy computational load.

In order to compare the empirical computational complexities of differentrithgaes, we display

in Figure 3 the average time required to extract one sparse componenGtrassian matrices of
dimensionsp = 100 andn = 300. One immediately notices that the greedy method slows down
significantly as cardinality increases, whereas the speed of the otrstdered algorithms does not
depend on cardinality. Since on averdgeedy is much slower than the other methods, even for
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low cardinalities, and because we aim at large-scale applications wheeertiputational load of
Greedy would be prohibitive, we discard it from the following numerical experiments

— Greedy

Sl GPowery, , GPower;, ,SPCA, rSVDy,,rSVDy,

Computational time [sec]

0 50 100 15 200 250 300
Cardinality

Figure 3: The computational complexity &freedy grows significantly with cardinality of the
resulting loading vector. The speed of the other methods is unaffectedebgath
dinality target. The single dashed line is representative of the speed of thedse
GPowery, , GPower,, SPCA,rSVDy,,rSVDy, in this test.

5.2.4 3PEED AND SCALING TEST

In Tables 6 and 7 we compare the speed of the remaining algorithms. Taléd¢s6adld problems
with a fixed aspect ratin/ p= 10, whereas in Table s fixed at 500, and exponentially increasing
values ofn are considered. For th&Power,, method, the sparsity inducing paramegavas set to
10% of the upper bounghax = ||a+||2. For theGPower;, method,y was set to 1% Ofmax = | & %
in order to aim for solutions of comparable cardinalities (see (35)). Tiesparameters have also
been used for theSVD,, and therSVD,, methods, respectively. Concernif§CA, the sparsity
parameter has been chosen by trial and error to get, on average,rsolutib similar cardinalities
as obtained by the other methods. The values displayed in Tables 6 armé§poord to the average
running times of the algorithms on 100 test instances for each problemrsizeth tables, the new
methodsGPower,, and GPower,, are the fastest. The difference in speed betwgRower,, and
GPower/, results from different approaches to fill the active pai:d&Power,, requires to compute

a rank-one approximation of a submatrixfofsee Equation (33)), whereas the explicit solution (12)
is available toGPower/,. The linear complexity of the algorithms in the problem sizis clearly
visible in Table 7.

5.2.5 DFFERENTCONVERGENCEMECHANISMS

Figure 4 illustrates how the trade-off between explained variance amsitypavolves in the time
of computation for the two methodsPower,, andrSVD,,. In case of the&Power,, algorithm, the
initialization point (31) provides a good approximation of the final cardinalllyis method then
works on maximizing the variance while keeping the sparsity at a low levelghat. TheSVD,,
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pxn 100x 1000 250x 2500 500x 5000 750x 7500 1000« 10000
GPowery, 0.10 0.86 2.45 4.28 5.86
GPowery, 0.03 0.42 121 2.07 2.85
SPCA 0.24 2.92 14.5 40.7 82.2
rSVDy, 0.19 2.42 3.97 7.51 9.59
rSVDy, 0.18 2.14 3.85 6.94 8.34

Table 6: Average computational time for the extraction of one componerg¢onsis).

pxn 500x 1000 500x 2000 500x 4000 500x 8000 500x 16000
GPower, 0.42 0.92 2.00 4.00 8.54
GPowery, 0.18 0.42 0.96 2.14 4.55
SPCA 5.20 7.20 12.0 22.6 447
rSVDy, 1.05 2.12 3.63 7.43 14.4
rSVDy, 1.02 1.97 3.45 6.58 13.2

Table 7: Average computational time for the extraction of one componergég¢omsls).

algorithm, in contrast, works in two steps. First, it maximizes the variance, witkaforcing
sparsity. This corresponds to computing the first principal componeéntguires thus a first run of
the algorithm with random initialization and a sparsity inducing parameter setatIn the second
run, this parameter is set to a positive value and the method works to rapadiyade cardinality
at the expense of only a modest decrease in explained variance. S@viragorithmGPower/,
performs faster primarily because it combines the two phases into one, sieuly optimizing
the trade-off between variance and sparsity.
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Figure 4: Evolution of explained variance (left) and cardinality (right) in tiroe the methods
GPower, andrSVDy, run on a test problem of size= 250 andn = 2500. TherSVD,,
algorithm first solves unconstrained PCA, wher&€®&swer,, immediately optimizes the
trade-off between variance and sparsity.
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5.2.6 EXTRACTING MORE COMPONENTS

Similar numerical experiments, which include the methG&swer/, m and GPower, n, have been
conducted for the extraction of more than one component. A deflation sasareed by the non-
block methods to sequentially computecomponents. These experiments lead to similar conclu-
sions as in the single-unit case, that is, the mett&@swver,,, GPower,, GPower/, m, GPower; m
andrSVDy, outperform thesPCA andrSVD,, approaches in terms of variance explained at a fixed
cardinality. Again, these last two methods can be improved by postprogeksinesulting loading
vectors with Algorithm 6, as it is done fdgPower,, m. The average running times for problems
of various sizes are listed in Table 8. The new power-like methods are sagrilfi faster on all
instances.

pxn 50x 500 100x 1000 250< 2500 500<5000 750 7500
GPowery, 0.22 0.56 4.62 12.6 20.4
GPowery, 0.06 0.17 2.15 6.16 10.3
GPowers, m  0.09 0.28 3.50 12.4 23.0
GPower,m  0.05 0.14 2.39 7.7 12.4
SPCA 0.61 1.47 13.4 48.3 113.3
rSVDy, 0.29 1.12 7.72 22.6 46.1
rSVDy, 0.28 1.03 7.21 20.7 41.2

Table 8: Average computational time for the extractiomof 5 components (in seconds).

5.2.7 GOST AND BENEFITS OF THEPOST-PROCESSINGPHASE

Figure 5 illustrates the evolution of the relative increase of computational tinvelbas the relative
improvement in terms of explained variance due to the post-processing fanascreasing values
of y. Only methods with iterative post-processing algorithms are consideréds,tGRower,, (left-
hand plot) andGPower,, m (right-hand plot). In the single unit case, the post-processing phase,
which amounts to a rank-one SVD of the truncated data mAgjbecomes less costly as the level
of sparsity increases. As expected, the improvement of variance sesrednely gets larger, that is,
when thel;-penalty biases more and more the values assigned to the non-zero drtreegexrtor

Z A similar observation holds in the block case, excepted that the relaties&xé computational
time took by the post-processing increases witiThis difference with the single-unit case results
from the fact that the post-processing in the block case deals with gpatsees of possibly large
dimension, whereas in the single-unit case the problem is easily rewrittenvia tdra full vector
with a dimension that equals the number of nonzero elements. Overall, theqoestging uses less
that 10% of the time needed by the main routine, to improve the explained vabgngeto 30%.

5.3 Pitprops Data

The “pitprops” data, which stores 180 observations of 13 variablesh&an a standard benchmark
to evaluate algorithms for sparse PCA (see, e.g., Jolliffe et al. 2003; Zalu2006; Moghaddam

et al. 2006; Shen and Huang 2008). Following these previous studiesexthé&Power algorithms

to computesix sparse principal components of the data. For such more-samplesédtiables
settings, it is customary to first factor the covariance matriz as ATA with A € R13*13, such

that the dimensiorp is virtually reduced to 13. This operation can be readily done through the
eigenvalue decomposition af
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Figure 5: Effects of post-processing in the case of the algoritGRwswver,, (left-hand plot) and
GPower¢, m (right-hand plot) for increasing values pfIn both plots, the horizontal axis
is the percent increase of variance achieved by the postprocessisg ahd the vertical
axis is the percent increase in computational time due to post-processingPé&wer,
several problem sizes are considered, whereas the curveBdoer,, m relate to matrices
of dimension 500-by-5000 for several numberef extracted components. Each curve
is an average on 25 random Gaussian data matrices.

In Table 9, we provide the total cardinality and the proportion of adjustadnee explained by
six components computed wiPCA, rSVD,,, Greedy as well as ouGPower algorithms. The re-
sults concerningPCA, rSVDy,, Greedy correspond to the patterns of zeros and nonzeros proposed
by Zou et al. (2006), Shen and Huang (2008) and Moghaddam &Q#l6), respectively. For fair
comparison, the pattern related to SPCA a®dD,, have been post-processed with the approach
proposed in Section 4.2. Concerning tGgower algorithms, we fix the six parameteyg at the
same ratio of their respective upper-bounds. For the block algofihower,, m, experiments have
been conducted in both cases “identiggland “distinctyy;”.

Table 9 illustrates that better patterns can be identified with the GPower algqrithanss,
patterns that explain more variance with the same cardinality (and sometimewigvensmaller
one). These results are furthermore likely to be improved by a fine tunititeafix parameterg;

(i.e., by choosing them independently from each others).

5.4 Analysis of Gene Expression Data

Gene expression data results from DNA microarrays and provide thiessipn level of thousands
of genes across several hundreds of experiments. The interpretétimse huge databases remains
a challenge. Of particular interest is the identification of genes that atensgically coexpressed
under similar experimental conditions. We refer to Riva et al. (2005) efiedences therein for more
details on microarrays and gene expression data. PCA has been iaelgagplied in this context
(e.g., Alter et al. 2003). Further methods for dimension reduction, suittdapendent component
analysis (Liebermeister, 2002) or nonnegative matrix factorization @reinal., 2004), have also
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Method Parameters Total cardinality  Prop. of explainedbvene
rSVDy, see Shen and Huang (2008) 25 0.7924
SPCA see Zou et al. (2006) 18 0.7680
Greedy cardinalities: 6-2-3-1-1-1 14 0.7150
cardinalities: 5-2-2-1-1-1 12 0.5406
GPowery, yj/yj=022 for j=1,...,6 25 0.8083
y/y; =0.28 18 0.7674
yj/yj =0.30 15 0.7542
yi/yj = 0.40 13 0.7172
y;/Y; = 0.50 11 0.6042
GPowery, m yj/yj=0.17, for j=1,...,6 25 0.7733
withpyj =1 vyj/yj=0.25 17 0.7708
y;j/Y; =0.3 14 0.7508
yj/yj =04 13 0.7076
yj/Yj = 0.45 11 0.6603
GPowery, m vj/yj=0.18 for j=1,...,6 25 0.8111
y;/Y; =0.25 18 0.7849
with b = §  v;/y; =0.30 15 0.7610
yj/yj =0.35 13 0.7323
yj/Yj = 0.40 12 0.6656

Table 9: Extraction of 6 components from the pitprops data.GRuwer,,, one defines the upper-

boundsy; = max ||a"||o, whereA(l) is the residual data matrix aft¢r- 1 deflation steps.
For GPower/, m, the upper-bounds afg = p; max ||ai||».

been used on gene expression data. Sparse PCA, which extractsnemiggovolving a few genes
only, is expected to enhance interpretation.

5.4.1 DaTA SETS

The results below focus on four major data sets related to breast caitsr.are briefly detailed
in Table 10’ Each sparse PCA algorithm computes ten components from these dataateits, th
m=10.

Study Samples) Genesif) Reference

Vijver 295 13319 van de Vijver et al. (2002)
Wang 285 14913 Wang et al. (2005)
Naderi 135 8278 Naderi et al. (2007)
JRH-2 101 14223 Sotiriou et al. (2006)

Table 10: Breast cancer cohorts.

7. The normalized data sets have been kindly provided by Andrew &edorf.
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5.4.2 S$EED

The average computational time required by the sparse PCA algorithmslodatacset is displayed
in Table 11. The indicated times are averages on all the computations perfiorotgein cardinality
ranging fromn down to 1.

Vijver Wang Naderi JRH-2
GPowery, 5.92 5.33 2.15 2.69
GPowery, 486 4.93 1.33 1.73
GPower;, m 5.40  4.37 1.77 1.14
GPoweryy;m 5.61  7.21 2.25 1.47

SPCA 7.7 82.1 26.7 11.2
rSVDy, 10.19 9.97 3.96 4.43
rSVDy, 9.51 9.23 3.46 3.61

Table 11: Average computational times (in seconds) for the extraction=01.0 components.

5.4.3 TRADE-OFF CURVES

Figure 6 plots the proportion of adjusted variance versus the cardinalityd6Vijver” data set. The
other data sets have similar plots. As for the random test problems, thismarfoe criterion does
not discriminate among the different algorithms. All methods have in fact time ggerformance,
provided that th&PCA andrSVD,, approaches are used with postprocessing by Algorithm 6.

§_ T Group 1: All 4 GPower codes and rSVDy,
g 02 = = =Group 2: SPCA,rSVD,,
0.1
0 . . . . . .
0 2 4 6 8 10 12 14
Cardinality x 10°

Figure 6: Trade-off curves between explained variance and cardinality for the “Vijver” data set.
The vertical axis is the ratio AdjV&Zspca)/ AdjVar(Zpca), Where the loading vectors
Zspcaare computed by sparse PCA afista are themfirst principal loading vectors.

5.4.4 INTERPRETABILITY

A more interesting performance criterion is to estimate the biological interpretabilitiye ex-
tracted components. Thmathway enrichment indgPEI) proposed by Teschendorff et al. (2007)
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measures the statistical significance of the overlap between two kinds efsgén The first sets
are inferred from the computed components by retaining the most exgrgeses, whereas the
second sets result from biological knowledge. For instance, metabdhevags provide sets of
genes known to participate together when a certain biological function isreglq An alternative
is given by the regulatory motifs: genes tagged with an identical motif are likddg woexpressed.
One expects sparse PCA methods to recover some of these biologicallycsigingets. Table 12
displays the PEI based on 536 metabolic pathways related to cancer. Tis@liRHraction of these
536 sets presenting a statistically significant overlap with the genes infesradhe sparse princi-
pal components. The values in Table 12 correspond to the largest Riiedbamong all possible
cardinalities. Similarly, Table 13 is based on 173 motifs. More details on theaseélpathways and
motifs can be found in Teschendorff et al. (2007). This analysis cleatlgates that the sparse PCA
methods perform much better than PCA in this context. Furthermore, th&Rewer algorithms,
and especially the block formulations, provide largest PEI values fortpp#s of biological infor-
mation. In terms of biological interpretability, they systematically outperfornaipusly published
algorithms.

Vijver Wang Naderi JRH-2
PCA 0.0728 0.0466 0.0149 0.0690
GPower, 0.1493 0.1026 0.0728 0.1250
GPower, 0.1250 0.1250 0.0672 0.1026
GPowery, m 0.1418 0.1250 0.1026 0.1381
GPowergy,m 0.1362 0.1287 0.1007 0.1250

SPCA 0.1362 0.1007 0.0840 0.1007
rSVDy, 0.1213 0.1175 0.0914 0.0914
rSVDy, 0.1175 0.0970 0.0634 0.1063

Table 12: PEI-values based on a set of 536 cancer-related pathways

Vilver Wang Naderi JRH-2
PCA 0.0347 0 0.0289 0.0405
GPowery, 0.1850 0.0867 0.0983 0.1792
GPowery, 0.1676 0.0809 0.09250.1908
GPowery, m 0.1908 0.1156 0.1329 0.1850
GPowerg,m 0.1850 0.1098 0.1329 0.1734

SPCA 0.1734 0.0925 0.0809 0.1214
rSVDy, 0.1387 0.0809 0.1214 0.1503
rSVDy, 0.1445 0.0867 0.0867 0.1850

Table 13: PEIl-values based on a set of 173 motif-regulatory gene sets.

6. Conclusion

We have proposed two single-unit and two block formulations of the sgEse problem and
constructed reformulations with several favorable properties. Firstefoemulated problems are
of the form of maximization of a convex function on a compact set, with thelfleeset being either
a unit Euclidean sphere or the Stiefel manifold. This structure allows fodéiseyn and iteration
complexity analysis of a simple gradient scheme which applied to our spassedtihg results in
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four new algorithms for computing sparse principal components of a magiRrRP*". Second, our
algorithms appear to be faster if either the objective function or the feagibéges strongly convex,
which holds in the single-unit case and can be enforced in the block Tasd, the dimension of
the feasible sets does not dependcdiut onp and on the numben of components to be extracted.
This is a highly desirable property f < n. Last but not least, on random and real-life biological
data, our methods systematically outperform the existing algorithms both in speetlade-off
performance. Finally, in the case of the biological data, the components etthjnour block
algorithms deliver the richest biological interpretation as compared to thearanfs extracted by
the other methods.
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Appendix A.

In this appendix we characterize a class of functions with strongly cdeveksets. First we need
to collect some basic preliminary facts. All the inequalities of Proposition 1&valeknown in the
literature.

Proposition 11 (i) If f is a strongly convex function with convexity parameter then for all
x,yand0<a <1,

flax+(L-a)y) <af(+(L-a)f(y) - S al-a)x-y|2 (36)

(ii) If f is a convex differentiable function and its gradient is Lipschitz contursuaith constant
L+, then for all x and h,

f(x+h) < f(x)+(f’(x),h>+L—2thH2, (37)

IO < y/2Ls (F(x) = £.), (38)

and

where { d:efminer f(x).

We are now ready for the main result of this section.
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Theorem 12 (Strongly Convex Level Sets) et f: E — R be a nhonnegative strongly convex func-
tion with convexity parameter; > 0. Also assume f has a Lipschitz continuous gradient with
Lipschitz constant > 0. Then for anyw > 0, the set

def

Qo = {x| f(x) < w}
is strongly convex with convexity parameter
Of

9= w/Zwa'

Proof Consider any,y € Q,, scalar < a < 1 and letz; = ax+ (1—a)y. Notice that by convexity,
f(z4) < w. Foranyu € E,

Lt
F(za+ W (z0) + ((2a), U) + 5 U]
Lt
< f(Za)+Hf’(Za)HHUH+7HUHZ

GO (z0) + 2Lff(zo()\|u||+|;2f||U||2
2
(Vi 5 )
2
(3) (JT—(H \/§|yuu> ;

where s
f
B=Sa(l—a)lx—y|* (39)

In view of (25), it remains to show that the last displayed expression isdemliabove by when-
everu is of the form

(0}
L_a(1—a)|x—y|?s, (40)

2+/20L¢

for somes € S. However, this follows directly from concavity of the scalar functgih) = +/t:

(0)
u=—ra(l-a)x-y|’s=

Vo—B=g(w-B) <g(w) - (d(w),p)
B

2y/w

o

Do sl wlx-yl?
HH
2

40, /o —

ul|.
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Example 13 Let f(x) = ||x||>. Note thato; = L = 2. If we letw = r?, then
Qo ={x[ f(x) <w} ={x]|[Ix| <r}=r-B.

We have shown before (see the discussion immediately following Assumjpttbat3he strong

convexity parameter of this setag, = % Note that we recover this as a special case of Theorem 12:

Of 1

= A
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