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Abstract
Analysis of causal effects between continuous-valued variables typically uses either autoregressive
models or structural equation models with instantaneous effects. Estimation of Gaussian, linear
structural equation models poses serious identifiability problems, which is why it was recently pro-
posed to use non-Gaussian models. Here, we show how to combine the non-Gaussian instantaneous
model with autoregressive models. This is effectively whatis called a structural vector autoregres-
sion (SVAR) model, and thus our work contributes to the long-standing problem of how to estimate
SVAR’s. We show that such a non-Gaussian model is identifiable without prior knowledge of net-
work structure. We propose computationally efficient methods for estimating the model, as well as
methods to assess the significance of the causal influences. The model is successfully applied on
financial and brain imaging data.
Keywords: structural vector autoregression, structural equation models, independent component
analysis, non-Gaussianity, causality

1. Introduction

Analysis of causal influences or effects has become an important topic in statistics and machine
learning, and has recently found applications in, for example, neuroinformatics (Roebroeck et al.,
2005; Kim et al., 2007) and bioinformatics (Opgen-Rhein and Strimmer, 2007). While the deeper
meaning of causality has been formalized in different ways (Pearl, 2000; Spirtes et al., 1993), we
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consider the problem here from a practical viewpoint, where coefficients in conventional statistical
models are interpreted as causal influences.

For continuous-valued variables, such an analysis is typically performedin two different ways.
First, if the time-resolution of the measurements is higher than the time-scale of causal influences,
one can estimate a classic autoregressive (AR) model with time-lagged variables and interpret the
autoregressive coefficients as causal effects. Second, if the measurements have a lower time resolu-
tion than the causal influences, or if the data has no temporal structure at all, one can use a model in
which the influences are instantaneous, leading to Bayesian networks or structural equation models
(SEM); see Bollen (1989).1

While estimation of autoregressive methods can be solved by classic regression methods, the
case of instantaneous effects is much more difficult. Most methods suffer from lack of identifi-
ability, because covariance information alone is not sufficient to uniquely characterize the model
parameters. Prior knowledge of the structure (fixing some of the connections to zero) of the SEM
is then necessary for most practical applications. However, a method wasrecently proposed which
uses the non-Gaussian structure of the data to overcome the identifiability problem (Shimizu et al.,
2006). If the disturbance variables (external influences) are non-Gaussian, no prior knowledge on
the network structure is needed to estimate the linear SEM, except for the ubiquitous assumption
of a directed acyclic graph (DAG) and the assumption of no latent variables. (The case of latent
variables, that is, unobserved confounders, was later considered by Hoyer et al., 2008.)

Here, we consider the general case where causal influences can occur either instantaneously
or with considerable time lags. Such models are one example of structural vector autoregressive
(SVAR) models popular in econometric theory, in which numerous attempts havebeen made for
its estimation, see, for example, Swanson and Granger (1997), Demiralp and Hoover (2003) and
Moneta and Spirtes (2006). We propose to use non-Gaussianity to estimate the model. We show
that this variant of the model is identifiable without other restrictions on the network structure than
acyclicity and no latent variables. To our knowledge, no model proposedfor this problem has been
shown to be fully identifiable without prior knowledge of network structure.We further propose
two computationally efficient methods for estimating the model based on the theoryof independent
component analysis or ICA (Hyvärinen et al., 2001).

The proposed non-Gaussian model not only allows estimation of both instantaneous and lagged
effects; it also shows that taking instantaneous influences into account can change the values of the
time-lagged coefficients quite drastically. Thus, we see that neglecting instantaneous influences can
lead to misleading interpretations of causal effects. The framework further points towards general-
izations of the well-known Granger causality measure (Granger, 1969).

The paper is structured as follows. We first define the model and discussits relation to other
models in Section 2. We motivate the key assumption of non-Gaussianity in Section3. Next, we de-
rive the likelihood and discuss some of its interpretations in Section 4. In Section 5 we propose two
computationally efficient estimation methods and compare them with simulations. Assessement of
the results using testing is considered in Section 6. Section 7 discusses some interesting phenomena
concerning the interpretation of the estimated parameter values. Experiments on financial and neu-
roscientific data are made in Section 8. Some extensions of the model are discussed in Section 9,
and Section 10 concludes the paper. Preliminary results were published in Hyvärinen et al. (2008)
and Zhang and Hyv̈arinen (2009).

1. Here, we assume that the learning is unsupervised, that is, the inputs tothe system are not known or used. If the
inputs to the system are known, methods such as dynamic causal modellingcan be used (Friston et al., 2003).
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2. A Non-Gaussian Structural Vector Autoregressive Model

In this section, we define our new model.

2.1 Background and Notation

Let us denote the observed time series byxi(t), i = 1, . . . ,n, t = 1, . . . ,T wherei is the index of the
time series andt is the time index. All the time series (variables) are collected into a single column
vectorx(t). Without loss of generality, we can assume that thexi(t) have zero mean.

In autoregressive modelling, we would model the dynamics by a model of the form

x(t) =
k

∑
τ=1

Bτx(t− τ)+e(t) (1)

wherek is the number of time-delays used, that is, the order of the autoregressivemodel,Bτ,τ =
1, . . . ,k aren×n matrices, ande(t) is the innovation process.

In structural equation models (SEM), or continuous-valued Bayesian networks, there is no time
structure in the data, and the variables are simply modelled as functions of the other variables:

x = Bx+e (2)

where the vectore is the vector of disturbances or external influences. The diagonal ofB is defined
to be zero. It is typically assumed that we have a sample of observations which are independent and
identically distributed.

2.2 Definition of Our Model

In many applications, the influences between thexi(t) can be both instantaneous and lagged. Thus,
we combine the two models in (1) and (2) into a single model. Denote byBτ the n× n matrix
of the causal effects between the variablesxi with time lagτ,τ = 0, . . . ,k . For τ > 0, the effects
are ordinary autoregressive effects from the past to the present, while for τ = 0, the effects are
“instantaneous”.

We define our model by a straightforward combination of (1) and (2) as

x(t) =
k

∑
τ=0

Bτx(t− τ)+e(t) (3)

where theei(t) are random processes modelling the disturbances. We make the following assump-
tions on theei(t):

1. Theei(t) are are mutually independent, both of each other and over time. This is a typical
assumption in autoregressive models.

2. Theei(t) arenon-Gaussian, which is an important assumption which distinguishes our model
from classic models, whether autoregressive models, structural-equation models, or Bayesian
networks.

3. The matrix modelling instantaneous effects,B0, corresponds to anacyclicgraph, as is typical
in causal analysis. However this assumption may not be strictly necessary as will be discussed
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in Section 9. The acyclicity is equivalent to the existence of a permutation matrixP, which
corresponds to a “causal” ordering of the variablesxi , such that the matrixPB0PT is lower-
triangular (i.e., entries above the diagonal are zero). Acyclicity also implies that the entries
on the diagonal are zero, even before such a permutation.

2.3 Relation to Other Models

Next, we discuss the relationships of our model with other models.

2.3.1 LINEAR NON-GAUSSIAN ACYCLIC MODEL

Our model is a generalization of the linear non-Gaussian acyclic model (LiNGAM) proposed in
Shimizu et al. (2006). If the order of the autoregressive part is zero,that is,k = 0, the model is
nothing else than the LiNGAM model, modelling instantaneous effects only. As shown in Shimizu
et al. (2006), the assumption of non-Gaussianity of theei enables estimation of the model. This is
because the non-Gaussian structure of the data provides information notcontained in the covariance
matrix which is the only source of information in most methods.

Non-Gaussianity enables model estimation using independent component analysis, which solves
the non-identifiability of factor analytic models using the assumption of non-Gaussianity of the fac-
tors (Comon, 1994; Hyv̈arinen et al., 2001). In fact, the estimation method in Shimizu et al. (2006)
uses an ICA algorithm as an essential part. This is because we can transform (2) into the factor-
analytic model of ICA:

x = (I −B)−1e (4)

wheree is now a vector of latent variables. Under the assumptions of the model, in particular the
independence and non-Gaussianity of the disturbancesei , the model can be essentially estimated
(Comon, 1994). The acyclicity assumption also ensures thatI −B is invertible.

However, there is an important indeterminacy which ICA cannot solve: the order of the compo-
nents. In a SEM, each disturbance corresponds to one of the observed variables. In contrast, ICA,
like most factor-analytic models, gives the factors in no particular order. Thus, after ICA estimation
(or as part of the ICA estimation) we have to establish the correspondencebetween thexi and theei .
It was proven by Shimizu et al. (2006) that the correspondence can in fact be established based on
the acyclicity ofB. Basically, only one of the possible orderings of the rows of(I −B) is such that
all the elements on the diagonal are non-zero, and can thus be scaled to equal one, which has to be
the case by definition.

Thus, the LiNGAM model can be estimated by basically first performing ICA estimation and
then finding the right ordering of the components based on acyclicity.

2.3.2 AUTOREGRESSIVEMODELS

On the other hand, if the matrixB0 has all zero entries, the model in Eq. (3) is a classic vector
autoregressive model in which future observations are linearly predicted from preceding ones. If we
knew in advance thatB0 is zero, the model could thus be estimated by classic regression techniques
since we do not have the same variables on the left and right-hand sides ofEq. (3). However, our
model would still be different from classic autoregressive models because the disturbancesei(t) are
non-Gaussian.
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It is important to note here that an autoregressive model can serve two different goals: prediction
and analysis of causality. Our goal here is the latter: We estimate the parametermatricesBτ in order
to interpret them as causal effects between the variables. This goal is distinct from simply predicting
future outcomes when passively observing the time series, as has been extensively discussed in the
literature on causality (Pearl, 2000; Spirtes et al., 1993). Thus, we emphasize that our model is not
intended to reduce prediction errors if we want to predictxi(t) using (passively) observed values of
the pastx(t−1),x(t−2), . . .; for such prediction, an ordinary autoregressive model is likely to be
just as good.

2.3.3 STRUCTURAL VECTORAUTOREGRESSIVEMODELS

Combinations of SEM and vector autoregressive models have been proposed in the econometric
literature, and called structural vector autoregressive models (SVAR).Although many of them are
quite similar to our model in spirit (Swanson and Granger, 1997; Demiralp andHoover, 2003;
Moneta and Spirtes, 2006), we are not aware of any method in which non-Gaussianity would be
an essential assumption. We will see below how the assumption of non-Gaussianity is essential for
the identifiability of the model, which has been a serious problem in previous methods. In the next
section, we thus consider the justification of this assumption.

3. Why Disturbances Could be Non-Gaussian

Non-Gaussianity is the new assumption in our model. In this section, we attempt to justify why,
in many applications, we can consider theei(t) to be non-Gaussian. The arguments are based on
heteroscedasticity. We do not by any means claim that we are the first to develop these arguments;
some of them are well-known and we merely re-iterate them here.

The principle of heteroscedasticity means that the variance ofei(t) depends ont: in some parts
of the time series, it is larger, and in other parts it is smaller. The shape of the distribution conditional
to the variance is the same always: often it is assumed to be Gaussian (normal).

We argue that heteroscedasticity is an important reason why, in many cases, theei(t) should be
strongly non-Gaussian. Even if the Central Limit Theorem is applicable in thesense thatei(t) is a
sum of many different latent independent variables, the disturbances can be very non-Gaussian if,
for some reason, the variance of theei(t) is changing.

The connection between heteroscedasticity and non-Gaussianity can be developed in a few sim-
ple equations. Denote byz(t) a standardized Gaussian random variable. Assume that a disturbance
e(t) (dropping the indexi for simplicity) is a product ofzand a random “variance” variablev(t):

e(t) = z(t)v(t)

wherez(t) andv(t) are independent by definition. We can, in fact, drop the time indices and just
consider these time series as random variables. The distribution ofv can be of different kinds,
whereas the distribution ofz is fixed to standardized Gaussian. In the simplest case,v takes only
two different values, which means that the data points belong to just two different classes, and the
density is then a finite mixture of two Gaussian distributions.
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We can simply show the following well-known result: Ifz is Gaussian,e has always positive
kurtosis,2 regardless of the distribution ofv (as long asv2 has non-zero variance). This is because

kurt(e) = E{e4}−3(E{e2})2 = E{v4z4}−3(E{v2z2})2 = 3[E{v4}− (E{v2})2] (5)

which is always positive because it is the variance ofv2 multiplied by three (Beale and Mallows,
1959). It is easy to generalize this result to show that even ifz is not Gaussian, the kurtosis is still
positive if the variance ofv2 is large enough.

Heteroscedastity can be seen in some important application areas of causalmodelling, in partic-
ular:

1. In econometrics, heteroscedastic models have a long tradition (Engle, 1995). For example,
in financial markets the volatility of a price is often assumed to be changing overtime, and
volatility is nothing but the variance in some scaling.

2. In brain imaging, the power of rhytmic activity as measured by electroencephalography or
magnetoencephalography is non-constant (Hari and Salmelin, 1997). The power is essentially
the same as the variance.

We emphasize that the assumption of non-Gaussianity is fundamentally an empirical assump-
tion. It is fulfilled in some application areas and not in others. It can be validated by examining
the distributions of the estimates of theei(t), which are simply obtained by solving fore(t) in (3)
after estimation of the model. Those estimates are linear functions of the data, which implies that
if the data were Gaussian, theei(t) would necessarily be Gaussian. Thus, any non-Gaussianity in
the estimates is valid evidence for the Gaussianity of the underlyingei(t). In addition to visual
inspection, any formal tests for non-Gaussianity can be used, such as the Shapiro-Wilk test or the
Kolmogorov-Smirnov test. (Independence of theei(t) can be validated in the same way, although it
seems to be more difficult to investigate by visualization or testing.)

However, in practice the question is not whether the disturbances are non-Gaussian but whether
they are sufficiently far from Gaussian to enable sufficiently accurate estimation. In the theory of
ICA, it has been shown that the asymptotic variance of the estimators is a function of the non-
Gaussianity of the components: When their distribution approaches Gaussianity, the asymptotic
variance goes to infinity (Cardoso and Laheld, 1996; Hyvärinen et al., 2001). Thus, instead of testing
non-Gaussianity it may be much more useful to simply measure the accuracy ofthe estimates by
bootstrapping and similar methods. If the disturbances are Gaussian (or very close to Gaussian), our
estimation method is likely to fail completely. Some other assumptions are then neededto obtain
identifiability of the model.

It should be also noted that the assumptions of non-Gaussianity and independence cannot be
easily disentangled from the assumption of linearity. If there are non-linearities in the system, these
may, for example, lead to non-Gaussian residuals even if the original disturbances were Gaussian.

4. Likelihood of the Model

To estimate our model, we start by formulating its likelihood.

2. We use here the definition of kurtosis given in Eq. (5), which is sometimes called excess kurtosis. Thus, kurtosis can
be either positive or negative.
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4.1 Likelihood of LiNGAM

First, we derive the likelihood of the LiNGAM model (Shimizu et al., 2006) whichhas not yet been
given in the literature. The starting point is the likelihood of the ICA model which iswell-known,
see, for example, Pham and Garrat (1997) and Hyvärinen et al. (2001). Denote the ICA model by

x = As

for a square invertible matrixA, and independent non-Gaussian latent variablessi . Denote the
observed sample byX = (x(1), . . . ,x(T)) andW = A−1. The log-likelihood is then usually given
in the form

logL0(X) = ∑
t

∑
i

logpi(wT
i x(t))+T logdet|W|

where thepi are the density functions of the independent components (here: disturbances). Since
the densities of the disturbances are not specified, we have in general asemi-parametric problem.
Different methods have been developed for approximating logpi , for example, Pham and Garrat
(1997), Karvanen and Koivunen (2002) and Chen and Bickel (2006). Here, we have to take into
account the fact that those methods usually assume that the independent components have been
normalized to unit variance, which is not the case in LiNGAM. Thus, we prefer to modify the
formula by normalizing the densities as follows:

logL1(X) = ∑
t

∑
i

log p̃i(
wT

i x(t)
σi

)−T ∑
i

logσi +T logdet|W| (6)

where the ˜pi are the densities of the disturbances standardized to unit variance, and the σ2
i are their

variances before standardization.
In fact, in practice it has been realized that often one can just fix the ˜pi to a single function and

still obtain a satisfactory estimator. In particular, if we know that the disturbances are all super-
Gaussian (i.e., have positive kurtosis), fixing

log p̃i(s) =−
√

2|s|+const.

is enough to provide a consistent estimator under weak constraints (Cardoso and Laheld, 1996;
Hyvärinen and Oja, 1998).

In LiNGAM, we have from (4) that in terms of the ICA model,A−1 = W = I −B0 (we use
the subindex 0 forB in LiNGAM to comply with the notation below). Now, we can simplify the
likelihood because of the DAG structure. The DAG structure means that forthe right permutation
of its rows (corresponding to the causal ordering),W is lower-triangular. The determinant of a
triangular matrix is equal to the product of its diagonal elements, and a permutation does not change
the determinant, so the determinant ofW is equal to the product of the diagonal elements when the
variables are ordered in the causal order. But by definition ofW in LiNGAM, those diagonal
elements are all equal to one, so the last term in (6) is zero. So, the likelihoodof the LiNGAM
model is finally given by

logL(X) = ∑
t

∑
i

log p̃i

(
wT

i x(t)
σi

)
−T ∑

i

logσi

= ∑
t

∑
i

log p̃i

(
xi(t)−bT

0,ix(t)

σi

)
−T ∑

i

logσi (7)
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HYV ÄRINEN, ZHANG, SHIMIZU AND HOYER

where the variances of the components can be estimated by taking the empiricalvariances as

σ2
i =

1
T ∑

t
(xi(t)−bT

0,ix(t))
2.

(Alternatively, theσi could be obtained by a separate maximization of the likelihood, but this would
be more complicated computationally and conceptually.) Here,W is constrained to correspond to a
DAG, with ones added in the diagonal.

4.2 Likelihood of Our Model

Now we can derive the likelihood of our model. First note that from (3) we can derive

x(t) =
k

∑
τ=0

Bτx(t− τ)+e(t)⇔ (I −B0)[x(t)−
k

∑
τ=1

(I −B0)
−1Bτx(t− τ)] = e(t),

which gives

x(t)−
k

∑
τ=1

(I −B0)
−1Bτx(t− τ) = B0[x(t)−

k

∑
τ=1

(I −B0)
−1Bτx(t− τ)]+e(t)

which shows that the our model in (3) is a LiNGAM model for the residualsx(t)−∑k
τ=1(I −

B0)
−1Bτx(t− τ). Denoting

M τ = (I −B0)
−1Bτ andW = I −B0 (8)

and replacingx(t) in (7) by the residuals, we have

logL(X) = ∑
t

∑
i

log p̃i

(
wT

i [x(t)−∑k
τ=1M τx(t− τ)]
σi

)
− logσi (9)

with

σ2
i =

1
T ∑

t

(
wT

i [x(t)−
k

∑
τ=1

M τx(t− τ)]

)2

.

4.3 Information-Theoretic Interpretation

An interesting point to note is that the likelihood is now a sum of the negative entropies of the
residuals. The differential entropy of a random variables can be written using the standardized
version ofs, denoted by ˜s, as follows:

H(s) =−
∫

ps(u) logps(u)du=−
∫

ps̃(u) logps̃(u)du+ logσs

whereσ2
s is the variance ofs. Thus, we can interpret the terms in (9) as the (negative) entropies of the

residuals. So, estimation is accomplished by minimizing the “prediction errors” or“uncertainties”
in the DAG if the entropies are interpreted as the prediction errors when each variable is predicted by
its parents. Note that for Gaussian variables, the entropies are very simplefunctions of the squared
errors (variances), while for non-Gaussian variables, they are alsofunctions of the non-Gaussianity
(shape) of the distribution.
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5. Practical Estimation Methods

Next we propose two practical methods for estimating the model, and further show how to include
a sparseness penalty which may be very useful in practice.

5.1 A Two-Stage Method with Least-Squares Estimation

Optimization of the likelihood is difficult because it contains a complicated combinatorial opti-
mization part due to the constraint thatB0 is acyclic. A conceptually simple way of reinforcing this
constraint would be to go through all possible orderings of the observedvariables, and for each of
them, maximize the likelihood as a function of theBτ so thatB0 is constrained to be lower triangu-
lar. This is obviously computationally very expensive since the number of ordering is equal ton!
wheren is the number of variables. Only for a very smalln can this be computationally feasible.
(Another difficulty is that the likelihood contains a semiparametric part because we do not specify a
parametric model of the non-Gaussian distributions, but this problem has already been extensively
treated in the theory of ICA, and has been found not to be very serious inpractice, see Hyv̈arinen
et al., 2001.)

To avoid the computational problems with likelihood, we propose a computationallysimpler
two-stage method for estimating our model. The method combines classic least-squares estimation
of an autoregressive (AR) model with LiNGAM estimation.

5.1.1 DEFINITION

The basic idea is that theM τ in (8) can be consistently, and computationally efficiently, estimated
by classic least-squares methods. Then, since the model is essentially a LiNGAM model for the
residuals of the predictions by theM τ, we simply use our previously developed estimation methods
for LiNGAM to estimate the rest of the parameters. These methods (Shimizu et al.,2006) seem to
tackle the combinatorial optimization problem in a satisfactory way. The ensuingmethod will be
justified in more detail below; it is defined as follows:

1. Estimate a classic autoregressive model for the data

x(t) =
k

∑
τ=1

M τx(t− τ)+n(t) (10)

using any conventional implementation of a least-squares method. Note that here τ > 0, so it
is really a classic AR model. Denote the least-squares estimates of the autoregressive matrices
by M̂ τ.

2. Compute the residuals, that is, estimates ofn(t)

n̂(t) = x(t)−
k

∑
τ=1

M̂ τx(t− τ).

3. Perform the LiNGAM analysis (Shimizu et al., 2006) on the residuals. Thisgives the estimate
of the matrixB0 as the solution of the instantaneous causal model

n̂(t) = B0n̂(t)+e(t).
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4. Finally, compute the estimates of the causal effect matricesBτ for τ > 0 as

B̂τ = (I − B̂0)M̂ τ for τ > 0. (11)

5.1.2 CONSISTENCYPROOF

We now prove that this provides a consistent estimator ofBτ. First, the basic model definition in (3)
can be manipulated to yield

(I −B0)x(t) =
k

∑
τ=1

Bτx(t− τ)+e(t)

and thus

x(t) =
k

∑
τ=1

(I −B0)
−1Bτx(t− τ)+(I −B0)

−1e(t). (12)

Now, a well-known result is that least-squares estimation of an AR model as in (10) is consistent
even if the innovation vectorn(t) does not have independent or even uncorrelated elements (for
fixed t), and even if it is heteroscedastic and non-Gaussian. Thus, comparing(12) with (10), in the
limit we can equate the autoregressive matrices, which gives(I −B0)

−1Bτ = M τ for τ≥ 1, and thus
(11) is justified. (In fact, we anticipated (11) in the notation used in the likelihood in (9).)

Second, comparison of (12) with (10) shows that the residualsn̂(t) are, asymptotically, of the
form (I −B0)

−1e(t). This means

n̂(t) = (I − B0)
−1e(t) ⇔ (I − B0)n̂(t) = e(t) ⇔ n̂(t) = B0n̂(t) + e(t)

which is the LiNGAM model forn̂(t). This shows thatB0 is obtained as the LiNGAM analysis of
the residuals, and the consistency of our estimator ofB0 follows from the consistency of LiNGAM
estimation (Shimizu et al., 2006). Thus, our method is consistent for all theBτ. This obviously
proves, by construction, the identifiability of the model as well.

5.1.3 INTERPRETATIONRELATED TO ICA OF RESIDUALS

An interesting viewpoint of the two-stage estimation method is analysis of the dependencies of the
innovations after estimating a classic AR model. Suppose we just estimate an AR model as in (1),
and interpret the coefficients as causal effects. Such an interpretationmore or less presupposes
that the innovationsei(t) are independent of each other, because otherwise there is some structure
in the model which has not been modelled by the AR model. If the innovations arenot indepen-
dent, the causal interpretation may not be justified. Thus, it seems necessary to further analyze the
dependencies in the innovations in cases where they are strongly dependent.

Analysis of the dependency structure in the residuals (which are, by definition, estimates of
innovations) is precisely what leads to the two-stage estimation method. As a first approach, one
could consider application of something like principal component analysis orindependent compo-
nent analysis on the residuals. The problem with such an approach is thatthe interpretation of the
obtained results in the framework of causal analysis would be quite difficult.Our solution is to fit a
causal model like LiNGAM to the residuals, which leads to a straightforward causal interpretation
of the analysis of residuals which is logically consistent with the AR model.
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5.2 Method Based on Multichannel Blind Deconvolution

While the two-stage method proposed above is computationally very efficient, itis far from being
statistically optimal. The estimation of the autoregressive part takes in no way non-Gaussianity into
account and is thus likely to be suboptimal. However, it is useful because itprovides a good initial
guess for any further iterative method.

Thus, to improve the results of the two-stage method, we further propose anestimation method
based on the similarity of our model with convolutive versions of ICA which are also called multi-
channel blind deconvolution (MBD). Estimation of the model Eq. (3) is, in fact, closely related to
the multichannel blind deconvolution problem with causal finite impulse response (FIR) filters (Ci-
chocki and Amari, 2002; Hyv̈arinen et al., 2001). MBD, as a direct extension of ICA, assumes that
the observed signals are convolutive mixtures of some spatially and independently and identically
distributed (i.i.d.) sources.

Using MBD methods is justified here due to the possibility or transforming an autoregressive
model into a moving-average model: In Eq. (3), the observed variablesxi(t) can be considered as
convolutive mixtures of the disturbancesei(t). Thus, we can find estimates ofBτ, as well asei(t),
in Eq. (3), by using MBD methods to estimate the filter matricesWτ

ê(t) =
k

∑
τ=0

Wτx(t− τ). (13)

Comparing (13) with (3), we can see that theBτ can then be recovered from the estimatedWτ;
details are given below.

The basic statistical principle to estimate the MBD model is that the disturbancesei(t) should
be mutually independent for differenti and differentt. Under the assumption that at most one of
the sources is Gaussian, by making the estimated sources spatially and temporally independent,
MBD can recover the mixing system (here corresponding toei(t) and Bτ) up to some scaling,
permutation, and time shift indeterminacies (Liu and Luo, 1998). This implies thatour SVAR
model is identifiable by MBD if at most one of the disturbancesei is Gaussian.

There exist several well-developed algorithms for MBD. For example, one may adopt the one
based on natural gradient (Cichocki and Amari, 2002). By extending the LiNGAM analysis proce-
dure (Shimizu et al., 2006), we can find the estimate ofBτ in the following three steps, based on the
MBD estimates ofWτ.

1. Find the permutation of rows ofW0 which yields a matrix̃W0 with only significantly non-
zero entries on the main diagonal. The permutation can be found using similar methods (e.g.,
the Hungarian algorithm) as in LiNGAM (Shimizu et al., 2006). Note that here wealso need
to apply the same permutations to rows ofWτ (τ > 0) to producẽWτ.

2. Divide each row of̃W0 andW̃τ (τ > 0) by the corresponding diagonal entry iñW0. This gives
W̃′

0 andW̃′
τ, respectively. The final estimates ofB0 andBτ (τ > 0) can then be computed as

B̂0 = I −W̃′
0 andB̂τ =−W̃′

τ, respectively.

3. To obtain the causal order in the instantaneous effects, find the permutation matrixP (applied
equally to both rows and columns) ofB̂0 which makes̃B0 = PB̂0PT as close as possible to
strictly lower triangular.
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5.3 Sparsification of the Causal Connections

For the purposes of interpretability and generalizability, it is often useful tosparsify the causal
connections, that is, to set insignificant entries ofB̂τ to zero. Analogously to the development of
ICA with sparse connections (Zhang et al., 2009), we can incorporate an adaptiveL1 penalty into the
likelihood of the MBD method to achieve fast model selection which performs such sparsification.
We use a penalty-based approach because traditional model selection based on information criteria
involves a combinatorial optimization problem whose complexity increases exponentially in the
dimensionality of the parameter space. In the MBD problem, this is often not computationally
feasible.

Thus, to makeWτ in Eq. (13) as sparse as possible, we maximize the penalized likelihood
defined as

pl({Wτ}) = logL({Wτ})−λ ∑
i, j,τ
|wi, j,τ|/|ŵi, j,τ|, (14)

whereL({Wτ}) is the likelihood,wi, j,τ the (i, j)th entry of Wτ, and ŵi, j,τ a consistent estimate
of wi, j,τ, such as the maximum likelihood estimate. The parameterλ is the general weight of the
penalty.

The idea here is that we first compute an initial estimate of thewi, j,τ by a conventional method
(such as maximum likelihood) and then use those estimates to compute a parameter-wise weighting
in theL1 penalty. The end result is that thosewi, j,τ for which the initial estimates ˆwi, j,τ were small
are heavily penalized, and likely to be zero in the final estimate obtained by maximization of pl.

This penalized likelihood is a special case of adaptive Lasso and therefore has the same consis-
tency in variable selection (Zou, 2006). In fact, it can also be used for selecting the orderk of the
autoregressive model. In particular, to achieve model selection similar to the Bayesian Information
Criterion (BIC), one can setλ = logT, whereT is the sample size (Zhang et al., 2009).

It may be also useful to penalize groups of parameters. In particular, to see if the historical
values ofxi(t) causesx j(t) (i 6= j), one needs to examine the combined effect of the group of param-
eters[B̂τ]i, j ,τ = 1, ..., p, and therefore it makes sense to apply penalization on the parameter group.
Combining the above approach with group Lasso (Bach, 2008) leads to thefollowing penalized
likelihood:3

pl({Wτ}) = logL({Wτ})−λ ∑
i, j,τ
|wi, j,0|/|ŵi, j,0|−kλ∑

i, j

( k

∑
τ=1

w2
i, j,τ

)1/2/( k

∑
τ=1

ŵ2
i, j,τ

)1/2
,

where the last term has the coefficientk because the parameter groupwi, j,τ,τ = 1, ...,k hask param-
eters.

5.4 Simulations

To investigate the performance of the proposed estimation methods, we conducted a series of simu-
lations. We set the number of lagsk= 1 and the dimensionalityn= 5. We randomly constructed the
strictly lower-triangular matrixB0 and matrixB1. To make the causal effects sparse, we set about
60% of the entries in the matrixB1 and the lower-triangular part ofB0 to zero, while the magnitude
of the others is uniformly distributed between 0.05 and 0.5 and the sign is random. Super-Gaussian

3. Here we treat the instantaneous effects separately. If one would like tosee if the total influence fromxi(t− τ),τ =
0,1, ..., p to x j (t) is significant, all parameterswi, j,τ,τ = 0,1, ..., p should be treated as a group.
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disturbancesei(t) were generated by passing standardized i.i.d. Gaussian variables through a power
nonlinearity with exponent between 1.5 and 2.0 while keeping the original sign. The observations
x(t) were then generated according to the model in Eq. (3). Various sample sizes (T = 100, 300,
and 1000) were tested. We compared the performance of the two-stage method (Section 5.1), the
method by MBD (Section 5.2) and the MBD-based method with the sparsity penalty(Section 5.3).
In the last method, we set the penalization parameter in Eq. (14) asλ = logT to make its results con-
sistent with those obtained by BIC. The densities of the independent components were adaptively
estimated using the method in Pham and Garrat (1997). In each case, we repeated the experiments
for 5 replications.

Fig. 1 shows the scatter plots of the estimated parameters (including the strictly lower triangular
part of B0 and all entries ofB1) versus the true ones. Different subplots correspond to different
sample sizes or different methods. The mean square error (MSE) of the estimated parameters is
also given in each subplot. One can see that as the sample sizes increases, all methods give better
results. For each sample size, the method based on MBD is always better thanthe two-stage method,
showing that the estimate by the MBD-based method is more efficient. Furthermore, due to the
prior knowledge that many parameters are zero, the MBD-based method withthe sparsity penalty
performed best.

6. Assessment of the Significance of Causality

In practice, we also need to assess the significance of the estimated causalrelations. While the spar-
sification method in Section 5.3 is related to this goal, here we propose a more principled approach
for testing the significance of the causal influences.

For the instantaneous effectsxi(t)→ x j(t) (i 6= j), the significance of causality is obtained by
assessing if the entries ofB̂0 are statistically significantly different from zero. For the lagged effects
xi(t− τ)→ x j(t) (i 6= j,τ > 0), however, one is often not interested in the significance of any single
coefficient inB̂τ: More frequently one aims to find out if the total effect fromxi(t− τ) to x j(t) is
significant.

We propose two simple statistics. One is a measure of instantaneous variance contributed by
xi(t) to x j(t): S0(i ← j) = [B0]

2
i j · var(xi(t))/var(x j(t)). If all time series have the same variance,

it is simplified toS0(i ← j) = [B0]
2
i j . The other measures how strong the total lagged causal in-

fluence fromxi(t) to x j(t) is; it is a measure of contributed variance fromxi(t− τ),τ > 0 to x j(t):
Slag(i ← j) = var(∑τ>0[Bτ]i j x j(t − τ))/var(x j(t)). If all seriesxi(t) have the same variance and
are approximately temporally uncorrelated, the above statistic can be approximated by∑τ>0[Bτ]

2
i j .

(Note that these quantities are not exactly proportions of variance explained because the explaining
variables are not necessarily uncorrelated.)

The asymptotic distributions of these statistics under the null hypothesis (with nocausal effects)
are very difficult to derive, and they may also behave poorly in the finite sample case. Therefore, like
in Diks and DeGoede (2001) and Theiler et al. (1992), we use bootstrapping with surrogate data to
find the empirical distributions of each statistic under the null hypothesis. To generate the surrogate
data under the null hypothesis, in each bootstrapping replication we “scramble” the original series
xi(t), that is, each time series is randomly permuted in temporal order. We then calculate Ŝ∗, the
estimate of the statisticS (which may beS0(i← j) or Slag(i← j)) for the surrogate data. Next, the
α-level bootstrapping critical valuec∗tα is found as theα-th quantile of the bootstrapping distribution
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Figure 1: Scatter plots of the estimated coefficients (y axis) versus the true ones (x axis) for different
sample sizes and different methods.

of Ŝ∗. Finally, we reject the null hypothesis if̂S> c∗tα, whereŜ is the estimate ofS for the original
data.

7. Remarks on the Interpretation of the Parameters

In this section, we discuss how the autoregressive parameters are changed by taking into account the
instantaneous effects, and how our model can be interpreted in the framework of Granger causality.

7.1 Interaction Between Instantaneous and Lagged Effects

Equation (11) shows the interesting fact already mentioned in the Introduction: Consistent estimates
of theBτ are not obtained by a simple AR model fit even forτ > 0. Taking instantaneous effects into
account changes the estimation procedure for all the autoregressive matrices, if we want consistent
estimators as we usually do. Of course, this is only the case if there are instantaneous effects, that
is, B0 6= 0; otherwise, the estimates are not changed.
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While this phenomenon is, in principle, well-known in econometric literature (Swanson and
Granger, 1997; Demiralp and Hoover, 2003; Moneta and Spirtes, 2006), Eq. (11) is seldom applied
because estimation methods forB0 have not been well developed. To our knowledge, no estimation
method forB0 has been proposed which is consistent for the whole matrix without strong prior
assumptions onB0.

Next we present some theoretical examples of how the instantaneous and lagged effects interact
based on the formula in (11).

7.1.1 EXAMPLE 1: AN INSTANTANEOUSEFFECTMAY SEEM TO BE LAGGED

Consider first the case where the instantaneous and lagged matrices are as follows:

B0 =

(
0 1
0 0

)
, B1 =

(
0.9 0
0 0.9

)
.

That is, there is an instantaneous effectx2→ x1, and no lagged effects (other than the purely autore-
gressivexi(t−1)→ xi(t)). Now, if an AR(1) model is estimated for data coming from this model,
without taking the instantaneous effects into account, we get the autoregressive matrix

M1 = (I −B0)
−1B1 =

(
0.9 0.9
0 0.9

)
.

Thus, the effectx2→ x1 seems to be lagged although it is, actually, instantaneous.

7.1.2 EXAMPLE 2: SPURIOUSEFFECTSAPPEAR

Consider three variables with the instantaneous effectsx1→ x2 andx2→ x3, and no lagged effects
other thanxi(t−1)→ xi(t), as given by

B0 =




0 0 0
1 0 0
0 1 0


 , B1 =




0.9 0 0
0 0.9 0
0 0 0.9


 .

If we estimate an AR(1) model for the data coming from this model, we obtain

M1 = (I −B0)
−1B1 =




0.9 0 0
0.9 0.9 0
0.9 0.9 0.9


 .

This means that the estimation of the simple autoregressive model leads to the inference of a direct
lagged effectx1→ x3, although no such direct effect exists in the model generating the data, for any
time lag.

A more reassuring result is the following: if the data follows the same causal ordering for
all time lags, that ordering is not contradicted by the neglect of instantaneous effect. A rigorous
definition of this property is the following.

Theorem 1 Assume that there is an ordering i( j), j = 1. . .n of the variables such that no effect
goes backward, that is,

Bτ(i( j−δ), i( j)) = 0 for δ > 0,τ≥ 0,1≤ j ≤ n. (15)
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(In the purely instantaneous case, existence of such an ordering is equivalent to acyclicity of the
effects as noted in Section 2.2.) Then, the same property applies to theM τ,τ≥ 1 as well. Conversely,
if there is an ordering such that (15) applies toM τ,τ≥ 1 andB0, then it applies toBτ,τ≥ 1 as well.

Proof: When the variables are ordered in this way (assuming such an order exists), all the matrices
Bτ are lower-triangular. The same applies toI −B0. Now, the product of two lower-triangular
matrices is lower-triangular; in particular theM τ are also lower-triangular according to(11), which
proves the first part of the theorem. The converse part follows from solving for Bτ in (11) and the
fact that the inverse of a lower-triangular matrix is lower-triangular.

What this theorem means is that if the variables really follow a single “causal ordering” for
all time lags, that ordering is preserved even if instantaneous effects areneglected and a classic
AR model is estimated for the data. Thus, there is some limit to how (11) can change the causal
interpretation of the results.

7.2 Generalizations of Granger Causality

The classic interpretation of causality in instantaneous SEMs would be thatxi causesx j if the ( j, i)-
th coefficient inB0 is non-zero. On the other hand, in the time series context, the concept of
Granger causality (Granger, 1969) formalizes causality as the ability to reduce prediction error. A
simple operational definition of Granger causality can be based on the autoregressive coefficients
M τ: If at least one of the coefficients fromxi(t− τ),τ ≥ 1 to x j(t) is (significantly) non-zero, then
xi Granger-causesx j . This is because then the variablexi reduces the prediction error inx j in the
mean-square sense if it is included in the set of predictors, which is the very definition of Granger
causality.

In light of the results in this paper, we can generalize the concept of Granger causality in two
ways. First we can combine the two aspects of instantaneous and lagged effects. In fact, such a
concept of instantaneous causality was already alluded to by Granger (1969), but presumably due
to lack of proper estimation methods, that paper as well as most future developments considered
mainly non-instantaneous causality. The second generalization is to measureprediction error by the
information-theoretic definition of Section 4.3, essentially using entropy instead of mean squared
error. These two generalization are independent of each other in the sense that we can use any one
of them, omitting the other.

Both of these extensions are implicit in estimation of our model. Thus, we define thata variable
xi causes xj if at least one of the coefficientsBτ( j, i), giving the effect from xi(t − τ) to xj(t), is
(significantly) non-zero forτ ≥ 0. The condition forτ is different from Granger causality since
the valueτ = 0, corresponding to instantaneous effects, is included. Moreover, since estimation of
the instantaneous effects changes the estimates of the lagged ones, the lagged effects used in our
definition are different from those usually used with Granger causality. Using entropy instead of
mean-squared error is implicit in this definition because non-Gaussianity is used in the estimation
of the model. In general, entropy minimization is closely related to ICA estimation (Hyvärinen,
1999) as well as the estimation of the present model as was discussed in Section 4.3. Notice that we
assume here, as in the general theory of Granger causality, that there are no unobserved confounders.
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8. Real Data Experiments

We applied our model together with the estimation and testing method on both financial data and
magnetoencephalography (MEG) data. In the former application, we usedthe sparsity penalty to
select significant effects, while in the latter one, bootstrapping was used.

8.1 Application in Finance

First, we use the model in Eq. (3) to find the causal relations among severalworld stock indices.
The chosen indices are Dow Jones Industrial Average (DJI) in USA, Nikkei 225 (N225) in Japan,
Hang Seng Index (HSI) in Hong Kong, and the Shanghai Stock Exchange Composite Index (SSEC)
in China. We used the daily dividend/split adjusted closing prices from 4th Dec 2001 to 11th Jul
2006, obtained from the Yahoo finance database. For the few days when the price is not available,
we use simple linear interpolation to estimate the price. Denoting the closing price ofthe ith index
on dayt by Pi(t), the corresponding return is calculated byxi(t) =

Pi(t)−Pi(t−1)
Pi(t−1) . The data for analysis

arex(t) = [x1(t), ...,x4(t)]T , with T = 1200 observations.
We applied the MBD-based method with the sparsity penalty tox(t). The kurtoses of the es-

timated disturbances ˆei are 3.9, 8.6, 4.1, and 7.6, respectively, implying that the disturbances are
non-Gaussian. We found that more than half of the coefficients in the estimated W0 andW1 are
exactly zero due to sparsity penalty.B̂0 andB̂1 were constructed based onW0 andW1, using the
procedure given in Section 5.2. It was found thatB̂0 can be permuted to a strictly lower-triangular
matrix, meaning that the instantaneous effects follow a linear acyclic causal model. Finally, based
on B̂0 andB̂1, one can plot the causal diagram, which is shown in Fig. 2.

Fig. 2 reveals some interesting findings. First, DJIt−1 has significant impacts on N225t and HSIt ,
which is a well-known fact in the stock market. Second, the causal relationsDJIt−1→N225t→DJIt
and DJIt−1→ HSIt → DJIt are consistent with the time difference between Asia and USA. That is,
the causal effects from N225t and HSIt to DJIt , although seeming to be instantaneous, may actually
be mainly caused by the time difference. Third, unlike SSEC, HSI is very sensitive to others; it
is even strongly influenced by N225, another Asian index. Fourth, it may be surprising that there
is a significant negative effect from DJIt−1 to DJIt ; however, it is not necessary for DJIt to have
significant negative autocorrelations, due to the positive effect from DJIt−1 to DJIt going through
N225t and HSIt .

8.2 Application on MEG Data

Second, we applied the proposed model on the magnitudes of brain sources obtained from magne-
toencephalographic (MEG) signals to analyze their causal relationships.The raw recordings con-
sisted of the 204 gradiometer channels measured by the Vectorview helmet-shaped neuromagne-
tometer (Neuromag Ltd., Helsinki, Finland) in a magnetically shielded room at the Brain Research
Unit of the Low Temperature Laboratory of the Aalto University School ofScience and Technol-
ogy. They were obtained from a healthy volunteer and lasted about 12 minutes. The data was
downsampled to 75 Hz.

To begin with, we separated sources underlying the recorded MEG data using a recently pro-
posed blind source separation method, Fourier-ICA (Hyvärinen et al., 2010). We manually selected
17 sources which are expected to correspond to brain activity, rejectingclear artifacts based on the
Fourier spectra and topographic distributions of the sources.
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Figure 2: Results of application of our model to daily returns of the stock indices DJI, N225, HSI,
and SSEC, withk= 1 lag. Large coefficients (greater than 0.1) are shown in bold and red.

Next, we fitted an ordinary vector autoregressive model with 10 lags on theestimated sources,
finding the corresponding innovation series which we denote byyi(t), i = 1, ...,17. Our goal was
to analyze if there are some influences between the magnitudes of these innovations. We prefer
to analyze the innovations because the innovations are approximately white both temporally and
spatially, and thus we can analyze the magnitudes with no contamination by linear (auto)correlations
of the source signals. The autoregressive model order 10 was chosen because it was the smallest
order that gave approximately white innovations.

We then fitted the SVAR model on the logarithmically transformed magnitudesxi(t) = log(0.2+
|yi(t)|), i = 1, ...,17. We determined the orderk of our SVAR model by minimizing the AIC crite-
rion (Akaike, 1973), which is the negative log-likelihood of the MBD model plus a term measuring
the complexity of the model. The log-likelihood involves the densities of the MBD outputs êi(t),
which were modelled by a mixture of three Gaussians. From the candidate orders between 0 and
20, we found thatk= 2 gave the minimum AIC.

After finding the estimate of the coefficientsB̂τ,τ = 0,1,2 with the MBD-based approach, one
can easily calculate the estimates of the statisticsS0(i ← j) andSlag(i ← j). The bootstrapping
approach given in Section 6 was used to evaluate if these estimated statistics are significant. Here
we need to test multiple hypotheses simultaneously; to reduce the type I error,we adopted the
Bonferroni correction (Shaffer, 1995) for multiple testing correction.We used the significance level
5%. For both the instantaneous and lagged effects, one needs to perform17× 16= 272 tests;
therefore, the significance level for each individual test is then 0.05/272≈ 2×10−4. We used 104

replications for the bootstrapping.

For illustration, we give the empirical distribution of the statisticsS0(7← 14) andSlag(7← 14),
as well as their estimated values for the original seriesxi(t), in Fig. 3. ClearlyŜ0(7← 14) is
significant, whileŜlag(7← 14) is not.

Fig. 4 shows the resulting diagram of causal analysis with instantaneous effects between the
magnitudes of the selected MEG sources, with the influences significant at 5% level (corrected for
multiple testing). What we see is that the connections tend to be strong between sources which
are close to each other. For example, the occipitoparietal sources such as #1, #2, #3, #8, and #11
have strong interconnections. Some perirolandic sources such as #5, #7, #10, and #14 are also
interconnected. Sources #4 and #16 seems to mediate between these two groups.
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Figure 3: Illustration of the empirical distribution of the statistics under the null hypothesis obtained
by bootstrapping. (a) For the statisticS0(7← 14). (b) ForSlag(7← 14).

Figure 4: Results of application of our model on the log-magnitudes of the MEGsources (signifi-
cant at 5% level, corrected for multiple testing). Black dashed line: instantaneous effect.
Red solid line: lagged effect. The thickness of the lines indicates the strengthof the
influences.

1727
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9. Extensions of the Model

We have here assumed thatB0 is acyclic, as is typical in causal analysis. However, this assumption
is only made because we do not know very well how to estimate a linear non-Gaussian Bayesian
network (or SEM) in the cyclic case. If we have a method which can estimate cyclic models, we do
not need the assumption of acyclicity in our combined model either; see Lacerda et al. (2008) for
one proposal. We could just use such a new method in our two-stage method instead of LiNGAM,
and nothing else would be changed. However, development of methods for estimating cyclic models
is orthogonal to the main contribution of our paper in the sense that we can use any such new method
to estimate the instantaneous model in our framework.

In formulating the likelihood we had to assume that thee(t) are independent and identically dis-
tributed for different time points. However, in our two-stage estimation method,no such assumption
was needed to guarantee consistency. In particular, thee(t) can be heteroscedastic, as long ase(t)
ande(t ′) are uncorrelated fort 6= t ′ . In such a case, it might also be advantageous to change the
LiNGAM estimation method so that the ICA part is replaced by methods estimating (4)explicitly
based on temporal heteroscedasticity (Matsuoka et al., 1995; Hyvärinen, 2001; Pham and Cardoso,
2001); this is quite straightforward and necessitates no further changesin the method.

An interesting class of methods which is related to ours has been recently proposed by Ǵomez-
Herrero et al. (2008). The idea is to combine blind source separation with alinear autoregressive
model of the latent sources. The estimation of such a model can be accomplished by methods which
are quite similar to our estimation methods, see also Haufe et al. (2009). However, the interpretation
of the model is very different since, first, Gómez-Herrero et al. (2008) separate linear sources and
analyze their (causal) connections whereas we analyze connections between the observed variables,
and second, we estimate instantaneous causal influences whereas Gómez-Herrero et al. (2008) only
estimate lagged ones.

10. Conclusion

We showed how non-Gaussianity enables estimation of a causal discoverymodel in which the linear
effects can be either instantaneous or time-lagged. Like in the purely instantaneous case (Shimizu
et al., 2006), non-Gaussianity makes the model identifiable without explicit prior assumptions on
existence or non-existence of given causal effects. The theoreticaldevelopments are closely related
to independent component analysis. The classic assumption of acyclicity was made, although it
may not be necessary. From the practical viewpoint, an important implication isthat considering
instantaneous effects changes the coefficient of the time-lagged effectsas well. We proposed meth-
ods for computationally efficient estimation of the model, as well as for sparsification and testing of
the model coefficients.
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