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Abstract

Analysis of causal effects between continuous-valuedbstes typically uses either autoregressive
models or structural equation models with instantaneofextst Estimation of Gaussian, linear
structural equation models poses serious identifiabilippfems, which is why it was recently pro-
posed to use non-Gaussian models. Here, we show how to cemhigimon-Gaussian instantaneous
model with autoregressive models. This is effectively whatalled a structural vector autoregres-
sion (SVAR) model, and thus our work contributes to the lstapding problem of how to estimate
SVAR'’s. We show that such a non-Gaussian model is identéialithout prior knowledge of net-
work structure. We propose computationally efficient mdthfor estimating the model, as well as
methods to assess the significance of the causal influenbesmddel is successfully applied on
financial and brain imaging data.

Keywords: structural vector autoregression, structural equatiodets independent component
analysis, non-Gaussianity, causality

1. Introduction

Analysis of causal influences or effects has become an important topiatistiss and machine
learning, and has recently found applications in, for example, neuraiafiics (Roebroeck et al.,
2005; Kim et al., 2007) and bioinformatics (Opgen-Rhein and Strimmer,)200%ile the deeper
meaning of causality has been formalized in different ways (Pearl, 2q0eS et al., 1993), we
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consider the problem here from a practical viewpoint, where coeffgiarconventional statistical
models are interpreted as causal influences.

For continuous-valued variables, such an analysis is typically perform&gb different ways.
First, if the time-resolution of the measurements is higher than the time-scalesafl @afluences,
one can estimate a classic autoregressive (AR) model with time-laggedlearéadd interpret the
autoregressive coefficients as causal effects. Second, if the ragasts have a lower time resolu-
tion than the causal influences, or if the data has no temporal structdleoaeacan use a model in
which the influences are instantaneous, leading to Bayesian networtksaiugal equation models
(SEM); see Bollen (1989).

While estimation of autoregressive methods can be solved by classicsiegresethods, the
case of instantaneous effects is much more difficult. Most methods sudfer lack of identifi-
ability, because covariance information alone is not sufficient to uniquelyacterize the model
parameters. Prior knowledge of the structure (fixing some of the connedticzero) of the SEM
is then necessary for most practical applications. However, a methoceeastly proposed which
uses the non-Gaussian structure of the data to overcome the identifiabibtgmrShimizu et al.,
2006). If the disturbance variables (external influences) are raars€kan, no prior knowledge on
the network structure is needed to estimate the linear SEM, except for thatah&assumption
of a directed acyclic graph (DAG) and the assumption of no latent varialfléwe case of latent
variables, that is, unobserved confounders, was later considgtedyer et al., 2008.)

Here, we consider the general case where causal influences caneiiher instantaneously
or with considerable time lags. Such models are one example of structutat aetoregressive
(SVAR) models popular in econometric theory, in which numerous attemptsteere made for
its estimation, see, for example, Swanson and Granger (1997), Demikhldaover (2003) and
Moneta and Spirtes (2006). We propose to use non-Gaussianity to estimatedel. We show
that this variant of the model is identifiable without other restrictions on thearktstructure than
acyclicity and no latent variables. To our knowledge, no model propimsetis problem has been
shown to be fully identifiable without prior knowledge of network structée further propose
two computationally efficient methods for estimating the model based on the thieiodependent
component analysis or ICA (Hyvinen et al., 2001).

The proposed non-Gaussian model not only allows estimation of both inséaotmand lagged
effects; it also shows that taking instantaneous influences into accanichange the values of the
time-lagged coefficients quite drastically. Thus, we see that neglectingtiaséus influences can
lead to misleading interpretations of causal effects. The framework fusthets towards general-
izations of the well-known Granger causality measure (Granger, 1969).

The paper is structured as follows. We first define the model and digisusdation to other
models in Section 2. We motivate the key assumption of non-Gaussianity in S@échimxt, we de-
rive the likelihood and discuss some of its interpretations in Section 4. In 8écti@ propose two
computationally efficient estimation methods and compare them with simulationssséssent of
the results using testing is considered in Section 6. Section 7 discusses sen@gtiimg phenomena
concerning the interpretation of the estimated parameter values. Experimdirtartccial and neu-
roscientific data are made in Section 8. Some extensions of the model arssdiddn Section 9,
and Section 10 concludes the paper. Preliminary results were publishgd/@miiren et al. (2008)
and Zhang and Hyarinen (2009).

1. Here, we assume that the learning is unsupervised, that is, the inghts dgstem are not known or used. If the
inputs to the system are known, methods such as dynamic causal modehibg used (Friston et al., 2003).
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2. A Non-Gaussian Structural Vector Autoregressive Model

In this section, we define our new model.

2.1 Background and Notation

Let us denote the observed time seriesddy),i = 1,...,n,t =1,..., T wherei is the index of the
time series antlis the time index. All the time series (variables) are collected into a single column
vectorx(t). Without loss of generality, we can assume thabéfi® have zero mean.

In autoregressive modelling, we would model the dynamics by a model of tive fo

k
X(t) = Z Bx(t—1) +et) (1)
=1
wherek is the number of time-delays used, that is, the order of the autoregressde,B.,T =
1,...,karenx n matrices, anat) is the innovation process.
In structural equation models (SEM), or continuous-valued Bayesiavorks, there is no time
structure in the data, and the variables are simply modelled as functions dhévevariables:

X=Bx+e 2)

where the vectoe is the vector of disturbances or external influences. The diagoralsflefined
to be zero. Itis typically assumed that we have a sample of observations areilmdependent and
identically distributed.

2.2 Definition of Our Model

In many applications, the influences betweenxfie can be both instantaneous and lagged. Thus,
we combine the two models in (1) and (2) into a single model. DenotB.bihe n x n matrix
of the causal effects between the variablewith time lagt,1=0,...,k. Fort > 0, the effects
are ordinary autoregressive effects from the past to the preseiig foht = 0, the effects are
“instantaneous”.

We define our model by a straightforward combination of (1) and (2) as

k
X(t) = ZJBTX(t_T) +e(t) (3)
=
where theg (t) are random processes modelling the disturbances. We make the followingms
tions on theg (t):

1. Theg(t) are are mutually independent, both of each other and over time. This is altypica
assumption in autoregressive models.

2. Theg(t) arenon-Gaussianwhich is an important assumption which distinguishes our model
from classic models, whether autoregressive models, structural-equoaiibels, or Bayesian
networks.

3. The matrix modelling instantaneous effe@s, corresponds to aacyclicgraph, as is typical
in causal analysis. However this assumption may not be strictly necessaiylze discussed

1711



HYVARINEN, ZHANG, SHIMIZU AND HOYER

in Section 9. The acyclicity is equivalent to the existence of a permutation nigtvishich
corresponds to a “causal” ordering of the variablesuch that the matrieBoP' is lower-
triangular (i.e., entries above the diagonal are zero). Acyclicity also impléaghile entries
on the diagonal are zero, even before such a permutation.

2.3 Relation to Other Models

Next, we discuss the relationships of our model with other models.

2.3.1 LUNEAR NON-GAUSSIAN AcYcLIC MODEL

Our model is a generalization of the linear non-Gaussian acyclic model AM)3roposed in
Shimizu et al. (2006). If the order of the autoregressive part is zbad,is,k = 0, the model is
nothing else than the LINGAM model, modelling instantaneous effects only. &wrsin Shimizu
et al. (2006), the assumption of non-Gaussianity ofghenables estimation of the model. This is
because the non-Gaussian structure of the data provides informatioontained in the covariance
matrix which is the only source of information in most methods.

Non-Gaussianity enables model estimation using independent componlgstgnehich solves
the non-identifiability of factor analytic models using the assumption of nors&auity of the fac-
tors (Comon, 1994; Hyarinen et al., 2001). In fact, the estimation method in Shimizu et al. (2006)
uses an ICA algorithm as an essential part. This is because we carmotrar{®) into the factor-
analytic model of ICA:

x=(1-B) e 4)

wheree is now a vector of latent variables. Under the assumptions of the model,tioytar the
independence and non-Gaussianity of the disturbagc¢celse model can be essentially estimated
(Comon, 1994). The acyclicity assumption also ensured th& is invertible.

However, there is an important indeterminacy which ICA cannot solve: riter of the compo-
nents. In a SEM, each disturbance corresponds to one of the otbsemiables. In contrast, ICA,
like most factor-analytic models, gives the factors in no particular orders Tafter ICA estimation
(or as part of the ICA estimation) we have to establish the correspontieheeen the; and thes .

It was proven by Shimizu et al. (2006) that the correspondence cactitné established based on
the acyclicity ofB. Basically, only one of the possible orderings of the rowsél of B) is such that
all the elements on the diagonal are non-zero, and can thus be scaletoeg, which has to be
the case by definition.

Thus, the LINGAM model can be estimated by basically first performing IQAnegion and
then finding the right ordering of the components based on acyclicity.

2.3.2 AUTOREGRESSIVEMODELS

On the other hand, if the matri®g has all zero entries, the model in Eq. (3) is a classic vector
autoregressive model in which future observations are linearly predicten preceding ones. If we
knew in advance th& is zero, the model could thus be estimated by classic regression techniques
since we do not have the same variables on the left and right-hand siges (f). However, our
model would still be different from classic autoregressive models tsecte disturbances(t) are
non-Gaussian.
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Itis important to note here that an autoregressive model can serve feredifgoals: prediction
and analysis of causality. Our goal here is the latter: We estimate the paramagtieesB, in order
to interpret them as causal effects between the variables. This goalnsdiom simply predicting
future outcomes when passively observing the time series, as has leesiwly discussed in the
literature on causality (Pearl, 2000; Spirtes et al., 1993). Thus, we emptthat our model is not
intended to reduce prediction errors if we want to prexi@l using (passively) observed values of
the pasi(t — 1),x(t — 2),...; for such prediction, an ordinary autoregressive model is likely to be
just as good.

2.3.3 SRUCTURAL VECTORAUTOREGRESSIVEMODELS

Combinations of SEM and vector autoregressive models have beensprbpothe econometric
literature, and called structural vector autoregressive models (SVARpugh many of them are
quite similar to our model in spirit (Swanson and Granger, 1997; DemiralpHombver, 2003;

Moneta and Spirtes, 2006), we are not aware of any method in whiclaossianity would be
an essential assumption. We will see below how the assumption of noni&@atysis essential for
the identifiability of the model, which has been a serious problem in previousdgtin the next
section, we thus consider the justification of this assumption.

3. Why Disturbances Could be Non-Gaussian

Non-Gaussianity is the new assumption in our model. In this section, we attemstifyg juhy,

in many applications, we can consider #&é) to be non-Gaussian. The arguments are based on
heteroscedasticity. We do not by any means claim that we are the firstatodeiiese arguments;
some of them are well-known and we merely re-iterate them here.

The principle of heteroscedasticity means that the varianegtgfdepends om: in some parts
of the time series, itis larger, and in other parts it is smaller. The shape akthibution conditional
to the variance is the same always: often it is assumed to be Gaussian (normal)

We argue that heteroscedasticity is an important reason why, in many tesgé ) should be
strongly non-Gaussian. Even if the Central Limit Theorem is applicable isghse tha# (t) is a
sum of many different latent independent variables, the disturbamcebecvery non-Gaussian if,
for some reason, the variance of #é) is changing.

The connection between heteroscedasticity and non-Gaussianity cavdbed in a few sim-
ple equations. Denote [yt) a standardized Gaussian random variable. Assume that a disturbance
e(t) (dropping the index for simplicity) is a product o and a random “variance” variablgt ):

wherez(t) andv(t) are independent by definition. We can, in fact, drop the time indices and just
consider these time series as random variables. The distributiorcaf be of different kinds,
whereas the distribution d&fis fixed to standardized Gaussian. In the simplest catakes only

two different values, which means that the data points belong to just twaetiffelasses, and the
density is then a finite mixture of two Gaussian distributions.
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We can simply show the following well-known result: 2fis Gaussiane has always positive
kurtosis? regardless of the distribution of(as long as? has non-zero variance). This is because

kurt(e) = E{e'} — 3(E{€’})? = E{v'Z"} - 3(E{v’Z})* = B[E{V'} - (E{v*})?] (5)

which is always positive because it is the varianceofultiplied by three (Beale and Mallows,
1959). It is easy to generalize this result to show that eveiisiinot Gaussian, the kurtosis is still
positive if the variance o#? is large enough.

Heteroscedastity can be seen in some important application areas ofroadsdling, in partic-
ular:

1. In econometrics, heteroscedastic models have a long tradition (Eng&). 1Por example,
in financial markets the volatility of a price is often assumed to be changingtiover and
volatility is nothing but the variance in some scaling.

2. In brain imaging, the power of rhytmic activity as measured by electrepdadaegraphy or
magnetoencephalography is non-constant (Hari and Salmelin, 199¥polver is essentially
the same as the variance.

We emphasize that the assumption of non-Gaussianity is fundamentally an eirg@samp-
tion. It is fulfilled in some application areas and not in others. It can be \aliday examining
the distributions of the estimates of thgt), which are simply obtained by solving feft) in (3)
after estimation of the model. Those estimates are linear functions of the dath, imiplies that
if the data were Gaussian, tlegt) would necessarily be Gaussian. Thus, any non-Gaussianity in
the estimates is valid evidence for the Gaussianity of the underlyiihg In addition to visual
inspection, any formal tests for non-Gaussianity can be used, suck &h#piro-Wilk test or the
Kolmogorov-Smirnov test. (Independence of &) can be validated in the same way, although it
seems to be more difficult to investigate by visualization or testing.)

However, in practice the question is not whether the disturbances af@aassian but whether
they are sufficiently far from Gaussian to enable sufficiently accurdit@atton. In the theory of
ICA, it has been shown that the asymptotic variance of the estimators is gofuid the non-
Gaussianity of the components: When their distribution approaches Gaitissibe asymptotic
variance goes to infinity (Cardoso and Laheld, 1996;&tinen et al., 2001). Thus, instead of testing
non-Gaussianity it may be much more useful to simply measure the accurtoy e$timates by
bootstrapping and similar methods. If the disturbances are Gaussiamyafage to Gaussian), our
estimation method is likely to fail completely. Some other assumptions are then rieeolatein
identifiability of the model.

It should be also noted that the assumptions of non-Gaussianity and imtiig@e cannot be
easily disentangled from the assumption of linearity. If there are non-itie=ain the system, these
may, for example, lead to non-Gaussian residuals even if the original distteb were Gaussian.

4. Likelihood of the Model

To estimate our model, we start by formulating its likelihood.

2. We use here the definition of kurtosis given in Eq. (5), which is somstoakled excess kurtosis. Thus, kurtosis can
be either positive or negative.
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4.1 Likelihood of LINGAM

First, we derive the likelihood of the LINGAM maodel (Shimizu et al., 2006) wHiels not yet been
given in the literature. The starting point is the likelihood of the ICA model whickel-known,
see, for example, Pham and Garrat (1997) andatipen et al. (2001). Denote the ICA model by

X =AS

for a square invertible matrid, and independent non-Gaussian latent variagledDenote the
observed sample by = (x(1),...,x(T)) andW = A~1. The log-likelihood is then usually given
in the form

logLo(X) = Z Y logp; (W x(t)) + T logdetW|

where thep; are the density functions of the independent components (here: disted)a Since
the densities of the disturbances are not specified, we have in gerssmaligarametric problem.
Different methods have been developed for approximatingplofpr example, Pham and Garrat
(1997), Karvanen and Koivunen (2002) and Chen and Bickel@R0OBlere, we have to take into
account the fact that those methods usually assume that the indepeongdnents have been
normalized to unit variance, which is not the case in LINGAM. Thus, weeprtf modify the
formula by normalizing the densities as follows:

L WIX(t)
logLi(X) = log i (— —T S logo; + TlogdetW 6
91()legp.(oi) .Zg' gdetW| (6)
where thepare the densities of the disturbances standardized to unit variance,mfdaie their
variances before standardization.
In fact, in practice it has been realized that often one can just fipthe d single function and
still obtain a satisfactory estimator. In particular, if we know that the disturbamre all super-

Gaussian (i.e., have positive kurtosis), fixing
log fii(s) = —V/2|s| + const.

is enough to provide a consistent estimator under weak constraints @0aadd Laheld, 1996;
Hyvarinen and Oja, 1998).

In LINGAM, we have from (4) that in terms of the ICA mode\, ! =W = | — By (we use
the subindex 0 foB in LINGAM to comply with the notation below). Now, we can simplify the
likelihood because of the DAG structure. The DAG structure means th#tdatight permutation
of its rows (corresponding to the causal ordering),is lower-triangular. The determinant of a
triangular matrix is equal to the product of its diagonal elements, and a peionudaes not change
the determinant, so the determinanWdfis equal to the product of the diagonal elements when the
variables are ordered in the causal order. But by definitiolVoin LINGAM, those diagonal
elements are all equal to one, so the last term in (6) is zero. So, the likeldfabe LINGAM
model is finally given by

w x(t)

logL(X) = ZZIog Bi (Io.> -T Z logo;
- Z Y log (m © _Gk_’a‘x(t)> ~T Y logai (7)
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where the variances of the components can be estimated by taking the envairi@ates as

0f = £ 3 0u(0) ~ D)

(Alternatively, theo; could be obtained by a separate maximization of the likelihood, but this would
be more complicated computationally and conceptually.) HAré& constrained to correspond to a
DAG, with ones added in the diagonal.

4.2 Likelihood of Our Model

Now we can derive the likelihood of our model. First note that from (3) arderive

xt):iBTx(t—r)+e() (1 —Bo)[x il—Bo “1Bx(t—1)] = e(t),
= =1
which gives
X(t) — i(I—Bo) IBx(t—1) = i | —Bo) Bx(t—1)] +e(t)
=1 =1

which shows that the our model in (3) is a LINGAM model for the residuets — T¥_; (1 —
Bo) ~1Bx(t —1). Denoting

M: = (1 —Bo) !By andW =1 - By (8)

and replacing(t) in (7) by the residuals, we have

IOgL Zzlogp < ;I—[ (t)_Z![(—lMTX(t_T)]) *Iogo-i (9)

Oj

with

2
02 = 'Il'Z (W,T X(t) — ier(t—T)]) .

4.3 Information-Theoretic Interpretation

An interesting point to note is that the likelihood is now a sum of the negativepatr of the
residuals. The differential entropy of a random variablean be written using the standardized
version ofs, denoted bys,"as follows:

H(S) = — [ p(ulogps()du=— [ ps(u)logps(u)du+ logos

wherea? is the variance dof. Thus, we can interpret the terms in (9) as the (negative) entropies of the
residuals. So, estimation is accomplished by minimizing the “prediction errofsinoertainties”

in the DAG if the entropies are interpreted as the prediction errors whérvadable is predicted by

its parents. Note that for Gaussian variables, the entropies are very $impl®ns of the squared
errors (variances), while for non-Gaussian variables, they ardwaistions of the non-Gaussianity
(shape) of the distribution.
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5. Practical Estimation Methods

Next we propose two practical methods for estimating the model, and futibersow to include
a sparseness penalty which may be very useful in practice.

5.1 A Two-Stage Method with Least-Squares Estimation

Optimization of the likelihood is difficult because it contains a complicated combiahtapti-
mization part due to the constraint th& is acyclic. A conceptually simple way of reinforcing this
constraint would be to go through all possible orderings of the obsemuéables, and for each of
them, maximize the likelihood as a function of BBeso thatBg is constrained to be lower triangu-
lar. This is obviously computationally very expensive since the numberdarimg is equal ta!
wheren is the number of variables. Only for a very smaltan this be computationally feasible.
(Another difficulty is that the likelihood contains a semiparametric part becaasdo not specify a
parametric model of the non-Gaussian distributions, but this problem leeslglbeen extensively
treated in the theory of ICA, and has been found not to be very seriquaatice, see Hyarinen
etal., 2001.)

To avoid the computational problems with likelihood, we propose a computatiosialiyler
two-stage method for estimating our model. The method combines classic leastssgstimation
of an autoregressive (AR) model with LINGAM estimation.

5.1.1 DeFINITION

The basic idea is that thd in (8) can be consistently, and computationally efficiently, estimated
by classic least-squares methods. Then, since the model is essentially AMiR®del for the
residuals of the predictions by tié;, we simply use our previously developed estimation methods
for LINGAM to estimate the rest of the parameters. These methods (Shimizu 20@6) seem to
tackle the combinatorial optimization problem in a satisfactory way. The ensuétigod will be
justified in more detail below; it is defined as follows:

1. Estimate a classic autoregressive model for the data
k
X(t) = z Mx(t —1)+n(t) (10)
=1

using any conventional implementation of a least-squares method. Note teathé, so it
is really a classic AR model. Denote the least-squares estimates of the aegeregymatrices
by M.

2. Compute the residuals, that is, estimates(bf
k ~
Alt) =x(t)— Y Mx(t—1).
Tzl

3. Perform the LINGAM analysis (Shimizu et al., 2006) on the residuals. gites the estimate
of the matrixBg as the solution of the instantaneous causal model

At) = Bod(t) + e(t).
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4. Finally, compute the estimates of the causal effect matBedsr t > 0 as

B: = (I —Bo)M< for T > 0. (11)

5.1.2 ONSISTENCYPROOF

We now prove that this provides a consistent estimat@-of-irst, the basic model definition in (3)
can be manipulated to yield

(I —=Bo)x(t) = iBTx(t—T) +e(t)

and thus
k

X(t) = Za —Bo) 'Bx(t —1) + (I — Bo) te(t). (12)
=

Now, a well-known result is that least-squares estimation of an AR model 49)ng consistent
even if the innovation vecton(t) does not have independent or even uncorrelated elements (for
fixedt), and even if it is heteroscedastic and non-Gaussian. Thus, compa2ngith (10), in the
limit we can equate the autoregressive matrices, which glves,) !B, = M. for 1 > 1, and thus
(11) is justified. (In fact, we anticipated (11) in the notation used in the liketihng9).)

Second, comparison of (12) with (10) shows that the residu@lsare, asymptotically, of the
form (1 —Bg)~te(t). This means

At) = (I — Bo)~'e(t) & (I — Bo)i(t) = et) & Alt) = Boi(t) + et

which is the LINGAM model fofi(t). This shows thaBy is obtained as the LINGAM analysis of
the residuals, and the consistency of our estimat&ydbllows from the consistency of LINGAM
estimation (Shimizu et al., 2006). Thus, our method is consistent for aBthelhis obviously
proves, by construction, the identifiability of the model as well.

5.1.3 INTERPRETATIONRELATED TO ICA OF RESIDUALS

An interesting viewpoint of the two-stage estimation method is analysis of thexdepeies of the
innovations after estimating a classic AR model. Suppose we just estimate an AdRasad (1),
and interpret the coefficients as causal effects. Such an interpretatics or less presupposes
that the innovations;(t) are independent of each other, because otherwise there is somerstructu
in the model which has not been modelled by the AR model. If the innovationsaaiedepen-
dent, the causal interpretation may not be justified. Thus, it seems ngctsfarther analyze the
dependencies in the innovations in cases where they are strongly éepend

Analysis of the dependency structure in the residuals (which are, byitdefi estimates of
innovations) is precisely what leads to the two-stage estimation method. As apfr®ach, one
could consider application of something like principal component analysiglependent compo-
nent analysis on the residuals. The problem with such an approach théhaterpretation of the
obtained results in the framewaork of causal analysis would be quite diffl@ultsolution is to fit a
causal model like LINGAM to the residuals, which leads to a straightforwausa@l interpretation
of the analysis of residuals which is logically consistent with the AR model.
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5.2 Method Based on Multichannel Blind Deconvolution

While the two-stage method proposed above is computationally very efficiénfait from being
statistically optimal. The estimation of the autoregressive part takes in no wagaossianity into
account and is thus likely to be suboptimal. However, it is useful becapseviides a good initial
guess for any further iterative method.

Thus, to improve the results of the two-stage method, we further propcesstiaration method
based on the similarity of our model with convolutive versions of ICA whighalso called multi-
channel blind deconvolution (MBD). Estimation of the model Eq. (3) is, in, felosely related to
the multichannel blind deconvolution problem with causal finite impulse regp@iR) filters (Ci-
chocki and Amari, 2002; Hyarinen et al., 2001). MBD, as a direct extension of ICA, assumes that
the observed signals are convolutive mixtures of some spatially and indkespiynand identically
distributed (i.i.d.) sources.

Using MBD methods is justified here due to the possibility or transforming anegressive
model into a moving-average model: In Eq. (3), the observed variafilgcan be considered as
convolutive mixtures of the disturbancest). Thus, we can find estimates Bf, as well as (t),
in Eq. (3), by using MBD methods to estimate the filter matridés

= iWTX(t —1). (13)

Comparing (13) with (3), we can see that tBe can then be recovered from the estimatig;
details are given below.

The basic statistical principle to estimate the MBD model is that the disturbariceshould
be mutually independent for differenand different. Under the assumption that at most one of
the sources is Gaussian, by making the estimated sources spatially and thnipdegpendent,
MBD can recover the mixing system (here corresponding tp and B;) up to some scaling,
permutation, and time shift indeterminacies (Liu and Luo, 1998). This impliesoinaSVAR
model is identifiable by MBD if at most one of the disturbaneeis Gaussian.

There exist several well-developed algorithms for MBD. For example,ay adopt the one
based on natural gradient (Cichocki and Amari, 2002). By extendimd¢titikGAM analysis proce-
dure (Shimizu et al., 2006), we can find the estimatBoh the following three steps, based on the
MBD estimates ofV/;.

1. Find the permutation of rows &Wg which yields a matrixVo with only significantly non-
zero entries on the main diagonal. The permutation can be found using similardaéghg.,
the Hungarian algorithm) as in LINGAM (Shimizu et al., 2006). Note that herala@need
to apply the same permutations to rows/éf (t > 0) to produceéhy.

2. Divide each row ofVo andWs (1 > 0) by the corresponding diagonal entryify. This gives
W{ andWy¢, respectively. The final estimatesB§ andB; (1 > 0) can then be computed as
@0 =1-Wj and@T = —W, respectively.

3. To obtain the causal order in the instantaneous effects, find the péionuteatrix P (applied
equally to both rows and columns) Bf, which makesBo = PBoPT as close as possible to
strictly lower triangular.
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5.3 Sparsification of the Causal Connections

For the purposes of interpretability and generalizability, it is often usefgiptrsify the causal
connections, that is, to set insignificant entrieBefto zero. Analogously to the development of
ICA with sparse connections (Zhang et al., 2009), we can incorpanatdagptive_; penalty into the
likelihood of the MBD method to achieve fast model selection which perforrok sparsification.
We use a penalty-based approach because traditional model selestohdeinformation criteria
involves a combinatorial optimization problem whose complexity increasesnergially in the
dimensionality of the parameter space. In the MBD problem, this is often notwatignally
feasible.

Thus, to makeN; in Eq. (13) as sparse as possible, we maximize the penalized likelihood
defined as

PI{Wi}) = logL({We}) = A > Wi jl /I jal, (14)
i,],T
whereL({W<}) is the likelihood,w; j: the (i, j)th entry of W, andwj j: a consistent estimate
of w; j 1, such as the maximum likelihood estimate. The paranmetsrthe general weight of the
penalty.

The idea here is that we first compute an initial estimate ofwhe by a conventional method
(such as maximum likelihood) and then use those estimates to compute a paraisetseighting
in theL; penalty. The end result is that thosg; ; for which the initial estimates;; j ; were small
are heavily penalized, and likely to be zero in the final estimate obtained by masioniof pl.

This penalized likelihood is a special case of adaptive Lasso and thefreis the same consis-
tency in variable selection (Zou, 2006). In fact, it can also be usedefecsng the ordek of the
autoregressive model. In particular, to achieve model selection similar taatyesiEin Information
Criterion (BIC), one can set=logT, whereT is the sample size (Zhang et al., 2009).

It may be also useful to penalize groups of parameters. In particulaeetdf she historical
values ofx; (t) causes(t) (i # j), one needs to examine the combined effect of the group of param-
eters[ér]m,r =1,...,p, and therefore it makes sense to apply penalization on the parameter group
Combining the above approach with group Lasso (Bach, 2008) leads folkhwsing penalized
likelihood3

PIW}) = logL (W) =2 3 i/l ~K0S ( zm.F,T)” °/ (imﬁ,—,r)” g

where the last term has the coefficiériiecause the parameter gromg -, T = 1,...,k hask param-
eters.

5.4 Simulations

To investigate the performance of the proposed estimation methods, wectehdiseries of simu-
lations. We set the number of lags= 1 and the dimensionality= 5. We randomly constructed the
strictly lower-triangular matrixBo and matrixB;. To make the causal effects sparse, we set about
60% of the entries in the matrB; and the lower-triangular part &jy to zero, while the magnitude
of the others is uniformly distributed between 0.05 and 0.5 and the sign ismar&lger-Gaussian

3. Here we treat the instantaneous effects separately. If one would lgeeti the total influence from(t — 1), T =
0,1,..., ptoxj(t) is significant, all parametes; j ;,1=0,1,..., p should be treated as a group.
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disturbances (t) were generated by passing standardized i.i.d. Gaussian variablegtlarpoger
nonlinearity with exponent between 1.5 and 2.0 while keeping the original Sige observations
X(t) were then generated according to the model in Eq. (3). Various sampte(8ize100, 300,
and 1000) were tested. We compared the performance of the two-stagedni@dction 5.1), the
method by MBD (Section 5.2) and the MBD-based method with the sparsity pgBaityion 5.3).
In the last method, we set the penalization parameter in Eq. (M3-degT to make its results con-
sistent with those obtained by BIC. The densities of the independent cemisonere adaptively
estimated using the method in Pham and Garrat (1997). In each casgeateckthe experiments
for 5 replications.

Fig. 1 shows the scatter plots of the estimated parameters (including the stricthti@amgular
part of Bop and all entries 0B1) versus the true ones. Different subplots correspond to different
sample sizes or different methods. The mean square error (MSE) o$tingated parameters is
also given in each subplot. One can see that as the sample sizes incaélasethods give better
results. For each sample size, the method based on MBD is always bettérdan-stage method,
showing that the estimate by the MBD-based method is more efficient. Furtherchge to the
prior knowledge that many parameters are zero, the MBD-based methothwisiparsity penalty
performed best.

6. Assessment of the Significance of Causality

In practice, we also need to assess the significance of the estimatedretatgals. While the spar-
sification method in Section 5.3 is related to this goal, here we propose a marplatdnapproach
for testing the significance of the causal influences.

For the instantaneous effecigt) — x;(t) (i # j), the significance of causality is obtained by
assessing if the entries Bf are statistically significantly different from zero. For the lagged effects
X (t—1) = x;(t) (i # j,T>0), however, one is often not interested in the significance of any single
coefficient inB;: More frequently one aims to find out if the total effect fromit — 1) to x(t) is
significant.

We propose two simple statistics. One is a measure of instantaneous variatrieuted by
X (t) toxj(t): S(i + j) = [Bo]ﬁ- -var(x(t))/var(x;(t)). If all ime series have the same variance,
it is simplified to S (i < j) = [Bo}ﬁ-. The other measures how strong the total lagged causal in-
fluence fromx(t) to x;(t) is; it is a measure of contributed variance fraytt — 1), t > 0 to x;(t):
Sag(i < j) = var(3-o[B1Jijxj(t — 1)) /var(x;(t)). If all seriesx;(t) have the same variance and
are approximately temporally uncorrelated, the above statistic can be appted byzDo[BT]ﬁ.
(Note that these quantities are not exactly proportions of variance explaguause the explaining

variables are not necessarily uncorrelated.)

The asymptotic distributions of these statistics under the null hypothesis (withusal effects)
are very difficult to derive, and they may also behave poorly in the finiteot®acase. Therefore, like
in Diks and DeGoede (2001) and Theiler et al. (1992), we use bogtétigapvith surrogate data to
find the empirical distributions of each statistic under the null hypothesiseiergte the surrogate
data under the null hypothesis, in each bootstrapping replication wenibtgathe original series
xi(t), that is, each time series is randomly permuted in temporal order. We theﬂana@u the
estimate of the statisti§ (which may beSy(i < j) or Sag(i — j)) for the surrogate data. Next, the
o-level bootstrapping critical valug, is found as ther-th quantile of the bootstrapping distribution
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Figure 1: Scatter plots of the estimated coefficiept«(s) versus the true onesdxis) for different
sample sizes and different methods.

of &. Finally, we reject the null hypothesis &> Cios whereSis the estimate o8 for the original
data.

7. Remarks on the Interpretation of the Parameters

In this section, we discuss how the autoregressive parameters agedhantaking into account the
instantaneous effects, and how our model can be interpreted in the faaknefnGranger causality.

7.1 Interaction Between Instantaneous and Lagged Effects

Equation (11) shows the interesting fact already mentioned in the Introdu@amnsistent estimates

of the B; are not obtained by a simple AR model fit eventor 0. Taking instantaneous effects into
account changes the estimation procedure for all the autoregressiveesidaf we want consistent

estimators as we usually do. Of course, this is only the case if there aretémsans effects, that

is, Bo # 0; otherwise, the estimates are not changed.
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While this phenomenon is, in principle, well-known in econometric literature (Sea and
Granger, 1997; Demiralp and Hoover, 2003; Moneta and Spirtes) 2B6(11) is seldom applied
because estimation methods By have not been well developed. To our knowledge, no estimation
method forBp has been proposed which is consistent for the whole matrix without stnooig p
assumptions oB,.

Next we present some theoretical examples of how the instantaneougigad kffects interact
based on the formula in (11).

7.1.1 EXAMPLE 1: AN INSTANTANEOUSEFFECTMAY SEEM TO BELAGGED

Consider first the case where the instantaneous and lagged matricedalaves:

01 09 0
B°_<o o)’ Bl_(o o.9>'

That is, there is an instantaneous effect> x;, and no lagged effects (other than the purely autore-
gressivexi(t — 1) — xi(t)). Now, if an AR(1) model is estimated for data coming from this model,
without taking the instantaneous effects into account, we get the autssagrenatrix

M1 = (1 - Bg)~1B; = (o.g o.9> '

0 09
Thus, the effeck, — x; seems to be lagged although it is, actually, instantaneous.

7.1.2 EXAMPLE 2: SPURIOUSEFFECTSAPPEAR

Consider three variables with the instantaneous effacts x, andx, — X3, and no lagged effects
other thanxi(t — 1) — x(t), as given by

0 0O 09 0 O
Bo=(1 0 0}, Bi=|{ 0 09 O
010 0O 0 09

If we estimate an AR(1) model for the data coming from this model, we obtain

09 0 O
Mi=(—-Bo) 'B1={09 09 0
09 09 09

This means that the estimation of the simple autoregressive model leads to thadefef a direct
lagged effeck; — X3, although no such direct effect exists in the model generating the datmyfo
time lag.

A more reassuring result is the following: if the data follows the same caudating for
all time lags, that ordering is not contradicted by the neglect of instantareféect. A rigorous
definition of this property is the following.

Theorem 1 Assume that there is an orderingjj,j = 1...n of the variables such that no effect
goes backward, that is,

Be(i(j—9),i(j))=0for>0,1>01<j<n. (15)
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(In the purely instantaneous case, existence of such an ordering igadent to acyclicity of the
effects as noted in Section 2.2.) Then, the same property appliedta the> 1 as well. Conversely,
if there is an ordering such that (15) appliesikb;, T > 1 andBy, then it applies td3,T > 1 as well.

Proof: When the variables are ordered in this way (assuming such an ordes) ealsthe matrices
B; are lower-triangular. The same appliesite By. Now, the product of two lower-triangular
matrices is lower-triangular; in particular ti, are also lower-triangular according 1), which
proves the first part of the theorem. The converse part follows frawirg for B; in (11) and the
fact that the inverse of a lower-triangular matrix is lower-triangular.

What this theorem means is that if the variables really follow a single “caudafiog” for
all time lags, that ordering is preserved even if instantaneous effectsegtected and a classic
AR model is estimated for the data. Thus, there is some limit to how (11) can eltaagausal
interpretation of the results.

7.2 Generalizations of Granger Causality

The classic interpretation of causality in instantaneous SEMs would bg ttaises; if the (j,i)-

th coefficient inBg is non-zero. On the other hand, in the time series context, the concept of
Granger causality (Granger, 1969) formalizes causality as the ability twmegarediction error. A
simple operational definition of Granger causality can be based on theegudssive coefficients

M.: If at least one of the coefficients from(t —1),T > 1 to x;(t) is (significantly) non-zero, then

X; Granger-causes;. This is because then the variablereduces the prediction error ¥j in the
mean-square sense if it is included in the set of predictors, which is tgedeénition of Granger
causality.

In light of the results in this paper, we can generalize the concept ofgérarausality in two
ways. First we can combine the two aspects of instantaneous and ladgetd.efn fact, such a
concept of instantaneous causality was already alluded to by Grarifi9)(but presumably due
to lack of proper estimation methods, that paper as well as most future demeaits considered
mainly non-instantaneous causality. The second generalization is to mpeedition error by the
information-theoretic definition of Section 4.3, essentially using entropy idsieanean squared
error. These two generalization are independent of each other inrtbe gt we can use any one
of them, omitting the other.

Both of these extensions are implicit in estimation of our model. Thus, we deéite ¥ariable
X causes xif at least one of the coefficienB(j,i), giving the effect from;k — 1) to x;(t), is
(significantly) non-zero for > 0. The condition fort is different from Granger causality since
the valuet = 0, corresponding to instantaneous effects, is included. Moreoveg sstimation of
the instantaneous effects changes the estimates of the lagged ones, duedtiggts used in our
definition are different from those usually used with Granger causalisindJentropy instead of
mean-squared error is implicit in this definition because non-Gaussianitgdsinghe estimation
of the model. In general, entropy minimization is closely related to ICA estimationgiiyen,
1999) as well as the estimation of the present model as was discussetiam 82 Notice that we
assume here, as in the general theory of Granger causality, thatthaceunobserved confounders.
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8. Real Data Experiments

We applied our model together with the estimation and testing method on both findateizand
magnetoencephalography (MEG) data. In the former application, wetheesparsity penalty to
select significant effects, while in the latter one, bootstrapping was used.

8.1 Application in Finance

First, we use the model in Eg. (3) to find the causal relations among several stock indices.
The chosen indices are Dow Jones Industrial Average (DJI) in USkkeN225 (N225) in Japan,
Hang Seng Index (HSI) in Hong Kong, and the Shanghai Stock Exgh@omposite Index (SSEC)
in China. We used the daily dividend/split adjusted closing prices from 4th2D@1 to 11th Jul
2006, obtained from the Yahoo finance database. For the few daysthwagrice is not available,
we use simple linear interpolation to estimate the price. Denoting the closing pticeitf index
on dayt by R (t), the corresponding return is calculatediy) = % The data for analysis
arex(t) = [xq(t),...,x4(t)]", with T = 1200 observations.

We applied the MBD-based method with the sparsity penalty(td The kurtoses of the es-
timated disturbancesg are 3.9, 8.6, 4.1, and 7.6, respectively, implying that the disturbances are
non-Gaussian. We found that more than half of the coefficients in the esfiM&aendW, are
exactly zero due to sparsity penal@o andB; were constructed based o andW1, using the
procedure given in Section 5.2. It was found tBgtcan be permuted to a strictly lower-triangular
matrix, meaning that the instantaneous effects follow a linear acyclic causklnféinally, based
on By andB1, one can plot the causal diagram, which is shown in Fig. 2.

Fig. 2 reveals some interesting findings. First,;Ddhas significant impacts on N22&and HS{,
which is a well-known fact in the stock market. Second, the causal reldddins, — N225 — DJ}k
and DJ|_; — HSI; — DJI; are consistent with the time difference between Asia and USA. That is,
the causal effects from N2g&nd HS] to DJk, although seeming to be instantaneous, may actually
be mainly caused by the time difference. Third, unlike SSEC, HSI is versitsento others; it
is even strongly influenced by N225, another Asian index. Fourth, it neaguibprising that there
is a significant negative effect from RJ to DJk; however, it is not necessary for Pdb have
significant negative autocorrelations, due to the positive effect frdin.Pto DJk going through
N225 and HSJ.

8.2 Application on MEG Data

Second, we applied the proposed model on the magnitudes of brain sobtetned from magne-
toencephalographic (MEG) signals to analyze their causal relationshiifgsraw recordings con-
sisted of the 204 gradiometer channels measured by the Vectorview helapesheuromagne-
tometer (Neuromag Ltd., Helsinki, Finland) in a magnetically shielded room atrie Besearch
Unit of the Low Temperature Laboratory of the Aalto University Schoobofence and Technol-
ogy. They were obtained from a healthy volunteer and lasted about 12esiniThe data was
downsampled to 75 Hz.

To begin with, we separated sources underlying the recorded MEG siaitz ai recently pro-
posed blind source separation method, Fourier-ICA @finen et al., 2010). We manually selected
17 sources which are expected to correspond to brain activity, rejedéagartifacts based on the
Fourier spectra and topographic distributions of the sources.
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Figure 2: Results of application of our model to daily returns of the stockésdixll, N225, HSI,
and SSEC, witlk = 1 lag. Large coefficients (greater than 0.1) are shown in bold and red.

Next, we fitted an ordinary vector autoregressive model with 10 lags oestimeated sources,
finding the corresponding innovation series which we denotg ty,i = 1,...,17. Our goal was
to analyze if there are some influences between the magnitudes of thesatiomeyv We prefer
to analyze the innovations because the innovations are approximately wititéebgporally and
spatially, and thus we can analyze the magnitudes with no contamination by hnéaycorrelations
of the source signals. The autoregressive model order 10 wasichesause it was the smallest
order that gave approximately white innovations.

We then fitted the SVAR model on the logarithmically transformed magnitggs=log(0.2+
lvi(t)|),i =1,...,17. We determined the ordkrof our SVAR model by minimizing the AIC crite-
rion (Akaike, 1973), which is the negative log-likelihood of the MBD modekiterm measuring
the complexity of the model. The log-likelihood involves the densities of the MBPuWsE (t),
which were modelled by a mixture of three Gaussians. From the candidates dretween 0 and
20, we found thak = 2 gave the minimum AIC.

After finding the estimate of the coefficierBs, T = 0,1, 2 with the MBD-based approach, one
can easily calculate the estimates of the statisfigs<— j) and Sag(i < j). The bootstrapping
approach given in Section 6 was used to evaluate if these estimated statissigniicant. Here
we need to test multiple hypotheses simultaneously; to reduce the type lwer@tlopted the
Bonferroni correction (Shaffer, 1995) for multiple testing correctde used the significance level
5%. For both the instantaneous and lagged effects, one needs to péiforh6 = 272 tests;
therefore, the significance level for each individual test is th@6/272~ 2 x 10~4. We used 16
replications for the bootstrapping.

For illustration, we give the empirical distribution of the statis&67 < 14) andSag(7 < 14),
as well as their estimated values for the original sexi¢s, in Fig. 3. Clearly&(7 « 14) is
significant, whileSag(7 < 14) is not.

Fig. 4 shows the resulting diagram of causal analysis with instantane@csseffetween the
magnitudes of the selected MEG sources, with the influences significa¥tt kel (corrected for
multiple testing). What we see is that the connections tend to be strong betageerswhich
are close to each other. For example, the occipitoparietal sourcess#dh &2, #3, #8, and #11
have strong interconnections. Some perirolandic sources such a3 #8116 and #14 are also
interconnected. Sources #4 and #16 seems to mediate between theseup# gro
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9. Extensions of the Model

We have here assumed th&{ is acyclic, as is typical in causal analysis. However, this assumption
is only made because we do not know very well how to estimate a linear noss@@a Bayesian
network (or SEM) in the cyclic case. If we have a method which can estimalie ayodels, we do

not need the assumption of acyclicity in our combined model either; seedaaeeal. (2008) for
one proposal. We could just use such a new method in our two-stage mesheadiof LINGAM,

and nothing else would be changed. However, development of methaeltifnating cyclic models

is orthogonal to the main contribution of our paper in the sense that we eamysuch new method

to estimate the instantaneous model in our framework.

In formulating the likelihood we had to assume thatéft¢ are independent and identically dis-
tributed for different time points. However, in our two-stage estimation metidiyuch assumption
was needed to guarantee consistency. In particulag(thean be heteroscedastic, as longegs
ande(t’) are uncorrelated far=#t’ . In such a case, it might also be advantageous to change the
LINGAM estimation method so that the ICA part is replaced by methods estimatirexititly
based on temporal heteroscedasticity (Matsuoka et al., 199%jrkiywn, 2001; Pham and Cardoso,
2001); this is quite straightforward and necessitates no further chantiessmethod.

An interesting class of methods which is related to ours has been recernilyspby Gmez-
Herrero et al. (2008). The idea is to combine blind source separation Witbar autoregressive
model of the latent sources. The estimation of such a model can be accardlismethods which
are quite similar to our estimation methods, see also Haufe et al. (2009). Elowevinterpretation
of the model is very different since, first,6@ez-Herrero et al. (2008) separate linear sources and
analyze their (causal) connections whereas we analyze connecttareehahe observed variables,
and second, we estimate instantaneous causal influences whéraag-Berrero et al. (2008) only
estimate lagged ones.

10. Conclusion

We showed how non-Gaussianity enables estimation of a causal discowdef in which the linear
effects can be either instantaneous or time-lagged. Like in the purely instauotscase (Shimizu
et al., 2006), non-Gaussianity makes the model identifiable without explioit @ssumptions on
existence or non-existence of given causal effects. The theordéegalopments are closely related
to independent component analysis. The classic assumption of acycligtynade, although it
may not be necessary. From the practical viewpoint, an important implicatibat€onsidering
instantaneous effects changes the coefficient of the time-lagged efteetsll. We proposed meth-
ods for computationally efficient estimation of the model, as well as for spgaatdn and testing of
the model coefficients.
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