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Abstract

Maximum entropy (Maxent) is useful in natural language pssing and many other areas. Iterative
scaling (S) methods are one of the most popular approaches to solverilakéth many variants
of IS methods, it is difficult to understand them and see the diffees. In this paper, we create a
general and unified framework for iterative scaling methddss framework also connects iterative
scaling and coordinate descent methods. We prove genenagence results fos methods and
analyze their computational complexity. Based on the pgeddramework, we extend a coordinate
descent method for linear SVM to Maxent. Results show that faster than existing iterative
scaling methods.

Keywords: maximum entropy, iterative scaling, coordinate desceatyynal language processing,
optimization

1. Introduction

Maximum entropy (Maxent) is widely used in many areas such as naturaldgegprocessing
(NLP) and document classification. It is suitable for problems needingghibty interpretations.
For many NLP tasks, given a word sequence, we can use Maxent nmodwisdict the label se-
guence with the maximal probability (Berger et al., 1996). Such tasks dieeediif from traditional
classification problems, which assign label(s) to a single instance.

Maxent models the conditional probability as:

_ Sw(xy)
PW(y|X) - TW(X) ) (1)
Su(xy) = €MV, Ty (0 = 3 Su(xy),

y

wherex indicates a contexy is the label of the context, andl € R" is the weight vector. A real-
valued functionf(x,y) denotes the-th feature extracted from the contextind the labely. We
assume a finite number of features. In some cakesy) is 0/1 to indicate a particular property.
Tw(x) is a normalization term applied to make Py (y|x) = 1.
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Given an empirical probability distributid®(x,y) obtained from training samples, Maxent min-
imizes the following negative log-likelihood:

min — P(x,y)logPy(y|x),
w X,y

or equivalently,
min % P(x)log Tw(x) — Zwtﬁ( fo), (2)

whereP(x,y) = Nxy/N, Nyy is the number of times thak,y) occurs in training data, arid is the
total number of training sample®(x) = 3, P(x,y) is the marginal probability ok, andP(f;) =

YxyP(Xy) fi(x,y) is the expected value df(x,y). To avoid overfitting the training samples, some
add a regularization term to (2) and solve:

min L(w) =min P(x)log Ty (X) — Zwtf’( fo) + T; Zwtz, 3)

whereo is a regularization parameter. More discussion about regularization terrivaikent can
be seen in, for example, Chen and Rosenfeld (2000). We focus an {3 paper because it is
strictly convex. Note that (2) is convex, but may not be strictly convex cevefurther prove that a
unique global minimum of (3) exists. The proof, omitted here, is similar to Thedra Lin et al.
(2008).

Iterative scaling16) methods are popular in training Maxent models. They all share the same
property ofsolving a one-variable sub-problem at a timExisting IS methods include general-
ized iterative scaling@IS) by Darroch and Ratcliff (1972), improved iterative scalingg) by
Della Pietra et al. (1997), and sequential conditional generalized itesataling §CGIS) by Good-
man (2002). The approach by Jin et al. (2003) is alstsanethod, but it assumes that every class
uses the same set of features. As this assumption is not general, in thisygage not include
this approach for discussion. In optimization, coordinate des@itié a popular method which
also solves a one-variable sub-problem at a time. With these 8aayd CD methods, it is diffi-
cult to see their differences. In Section 2, we propose a unified franhewalescribeS andCD
methods from an optimization viewpoint. We further analyze the theoreticakogence as well
as computational complexity 66 and CD methods. In particular, general linear convergence is
proved. In Section 3, based on a comparison betwg@emdCD methods, we propose a hew and
more efficientCD method. These two results (a unified framework and a fa&bemethod) are the
main contributions of this paper.

BesideslS methods, numerous optimization methods have been applied to train Maxent. For
example, Liu and Nocedal (1989), Bottou (2004), D&uf@2004), Keerthi et al. (2005), McDonald
and Pereira (2006), Vishwanathan et al. (2006), Koh et al. (2@B&hkin et al. (2007), Andrew
and Gao (2007), Schraudolph et al. (2007), Gao et al. (2007), €ellial. (2008), Lin et al. (2008)
and Friedman et al. (2008). They do not necessarily solve the optimizatimem (3). Some
handle more complicated log linear models such as Conditional Random Fidk,(But their
approaches can be modified for Maxent. Some focus on logistic regressiah is a special form
of Maxent if the number of labels is two. Moreover, some consider thegulaeization terny ; |w|
in (3). Several papers have compared optimization methods for Maxeaghlikis difficult to have
a complete study. Malouf (2002) compares methods for NLP data, while M20@8B) focuses on
logistic regression for synthesis data. In this paper, we are interestedeiaidéed investigation of
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Iterative scaling

Sequential update Parallel update
— ~ |
Find Ai(z) to approximate LetA(z) = Find a separable functiof(z)
L(w+ze)—L(w) L(w+zea)—L(w) to approximate (w + z) — L(w)
| | |
SCGIS CD GIS, IIS

Figure 1: An illustration of various iterative scaling methods.

IS methods because they remain one of the most used approaches to traimt.Mehie fact can

be easily seen from popular NLP software. The Stanford Log-lines Payget supports two
optimization methods, where onelisS. The OpenNLP Maxent package (Baldridge et al., 2001)
provides only one optimization method, whichGss.

This paper is organized as follows. In Section 2, we present a unitedefvork forlS/CD
methods and give theoretical results. Section 3 proposes a&bemethod. Its advantages over
existinglS/CD methods are discussed. In Section 4, we investigate some implementation assues f
IS/ICD methods. Section 5 presents experimental results. With a careful implementatrazD
outperformdsS and quasi-Newton techniques. Finally, Section 6 gives discussion awctusmns.

Part of this work appears in a short conference paper (Huang 208D).

Notation X, Y, andn are the numbers of contexts, class labels, and features, respectinely.
total number of nonzeros in training data and the average number ofnognzer feature are re-
spectively

— #
#nZEZ Z 1 and | =Mz 4
XY t:fi(x,y)#0 n
In this paper, we assume non-negative feature values:

Most NLP applications have non-negative feature values. All exisgmgethods use this property.

2. A Framework for Iterative Scaling and Coordinate DescentMethods

An important characteristic d§ and CD methods is that they solve a one-variable optimization
problem and then modify the corresponding elementvin Conceptually, the one-variable sub-
problem is related to the function reduction

L(w+ze)—L(w),
whereq = [0,...,0,1,0,...,0]". ThenIS methods differ in how they approximate the function
t—1
reduction. They can also be categorized according to whetlsecomponents are updated in a

sequential or parallel way. In this section, we create a framework feethmeethods. A hierarchical
illustration of the framework is in Figure 1.

1. Stanford Log-linear POS Tagger can be founbtiat//nlp.stanford.edu/software/tagger.shtml
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2.1 The Framework

To introduce the framework, we separately discuss coordinate desetmids according to whether
w is sequentially or parallely updated.

2.1.1 SQUENTIAL UPDATE

For a sequential-update algorithm, once a one-variable sub-problervési sthe corresponding
element inw is updated. The new is then used to construct the next sub-problem. The procedure
is sketched in Algorithm 1. If thé-th component is selected for update, a sequefgiahethod
solves the following one-variable sub-problem:

min A(z),
whereA;(z) is twice differentiable and bounds the function difference:

A(z) > L(w+ze)—L(w), Vz. (6)

We hope that by minimizing\(z), the resulting-(w + z&) can be smaller thah(w). However,
(6) is not enough to ensure this property, so we impose an additionationnd

A(0)=0 (7)

on the approximate functiof(z). The explanation below shows that we can strictly decrease the
function value. IfA{(0) # 0 and assuma = argmin, A;(z) exists, with the conditiod(0) = 0,
we haveA(z) < 0. This property and (6) then imply(w + ze) < L(w). If A{(0) =0, we can
prove that kL (w) = 0,2 where[JiL(w) = dL(w)/dw. In this situation, the convexity df(w) and
OiL(w) = 0 imply that we cannot decrease the function value by modifyingo we should move
on to modify other components of.

A CD method can be viewed as a sequential-uptataethod. Its approximate functioR (z)
is simply the function difference:

AP(z) = L(w+z&) — L(w). (8)

OtherlS methods consider approximations so tAgt ) is simpler for minimization. More details
are in Section 2.2. Note that the name “sequential” comes from the fact tesel-problerndy (z )
depends onw obtained from the previous update. Therefore, sub-problems musdoestially
solved.

2.1.2 RARALLEL UPDATE

A parallel-updatdS method simultaneously construgtsndependent one-variable sub-problems.
After (approximately) solving all of them, the whole vecteris updated. Algorithm 2 gives the
procedure. The functioA(z), z € R", is an approximation af (w + z) — L(w) satisfying

A(z) > L(w+2z)—L(w), Vz, A0)=0, and A(z)= iA((zt). 9)
t=

2. Define a functiorD(z) = A(z) — (
A{(0) =0, thenD’(0) # 0. SinceD(0
to (6).

L(w+ze&) —L(w)). We haveD’(0) = A'(0) — TkL(w). If OtL(w) # 0 and
) =0, we can find & such thaiA(z) — (L(w+z&) —L(w)) < 0, a contradiction
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Algorithm 1 A sequential-updates method
While w is not optimal
Fort=1,...,n
1. Find an approximate functiof (z) satisfying (6)-(7).
2. Approximately solve minA(z) to getz.
3. W — W+ Z.

Algorithm 2 A parallel-updatéS method
While w is not optimal
1. Find approximate function& (z) vz satisfying (9).
2. Fort=1,...,n
Approximately solve mip Ai(z) to getz.
3. Fort=1,...,n
W — W +Z.

The first two conditions are similar to (6) and (7). By a similar argument, we nauare that the
function value is strictly decreasing. The last condition indicatesAt@tis separable, so

mZinA(z) = in;tinA((zt).
t=

That is, we can minimizé\(z), Vz simultaneously, and then update vt together. We show
in Section 4 that a parallel-update method possesses some nicer implementzienigs than a
sequential method. However, as sequential approaches wpdatsoon as a sub-problem is solved,
they often converge faster than parallel methods.

If A(z) satisfies (9), taking = ze implies that (6) and (7) hold fokA(z), t = 1,...,n. A
parallel-update method could thus be transformed to a sequential-updatedrasthg the same
approximate function. Contrarily, a sequential-update algorithm canndiréetly transformed to
a parallel-update method because the summation of the inequality in (6) dasgphof9).

2.2 Existing Iterative Scaling Methods

We introduceslS, IS andSCGIS via the proposed frameworlkalS andllS use a parallel update, but
SCGIS is sequential. Their approximate functions aim to bound the change of tbeédiunalues

Lw+2)—L(w) = P(x)log TYIV_;E)((;() + ZQt(Zt), (10)
whereTy (X) is defined in (1) and
Qa) = 2ALE (). a1

ThenGlS, IIS andSCGIS use similar inequalities to get approximate functions. With
Twz(X) _ 3ySwez(%Y) _ 3ySw(X.y) (€22 flxy))
Tw(x) Tw(X) Tw(X)
:z P (y[x)e2t & f(xy)
y
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they apply logt <a —1Va >0 andy,Py(y|x) = 1 to get

(10)< ZQt(Zt) +3 P(x) <z Pou(y[x) €52 fxy) _ 1)
X y
- ZQ[(Zt) + 3 PP (YY) (eZtZ{ft(X,Y) _ 1) _
Xy

(12)

GIS defines
f - rgs)(f (Xv y)? f (Xv y) — g ft (X7 y)v

and adds a featuré,,1(x,y) = f# — f#(x,y) with z,,1 = 0. Using Jensen’s inequality and the
assumption of non-negative feature values (5),

eSlaahiy) _ it iat (13)
" (%)

# fo(X,y) ¢ n feaf_
e a8 (5

Substituting (13) into (12), the approximate function®$ is

<

« et 1
AS'S(z Q(z)+ S P(X)Py(y|X ———f(xy) |.
)=2 Q= Xzy CIRuYP) 3 | = RixY)
Then we obtaim independent one-variable functions:

a1 _ .
A (z) = Qu(z) + —7— 2 PRy fe(x,y).
X?y

IS assumed;(x,y) > 0 and applies Jensen’s inequality

Siahixy) _ g a0 o g iGY) arrxy)
— e )

on (12) to get the approximate function

eafi(xy) _ 1
||S _
A{ Xz IDW y|X ft X y) f#(X,y)

SCGIS is a sequential-update algorithm. It repladésn GIS with
£ = mxz;let(x, y). (14)
Usingze aszin (10), a derivation similar to (13) gives

fuxy) 4 v K=t (xy) (15)

eafulxy) <
- ff f
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The approximate function &CGIS is

eaff 1
f#

A (z) = Qu(z) + Y PX)Pw(yX) fi(x,y).
Xy

As a comparison, we expardP®(z) in (8) to the following form:

A (2 )+ z B(x) log W+Z((Q gx) (16)
z)+ Y P(x)log <1+ S Ru(yx) (e H*Y) — 1)) , (17)
X y
where (17) is from (1) and
SNJJ(Q (X7 y) = SN(X7 y)ezt ft(x’y)7 (18)
Turza () = Tw(x) + Y Sw(xy)(&10Y —1). (19)
y

A summary of approximate functions t§ andCD methods is in Table 1.

2.3 Convergence of Iterative Scaling and Coordinate Descent Mabds

The convergence ofD methods has been well studied (e.g., Bertsekas, 1999; Luo and Tseng,
1992). However, for methods lik& which use only an approximate function to bound the function
difference, the convergence is less studied. In this section, we djeadfze linear convergence
proof in Chang et al. (2008) to show the convergencs@ndCD methods. To begin, we consider
any convex and differentiable functidn R" — R satisfying the following conditions in the set

U ={w|L(w)<LW)}, (20)
wherew? is the initial point of ans/CD algorithm:
1. OL is bi-Lipschitz: there are two positive constamts,x andtmin such that for any,v e U,

Tin||U — V|| < [|OL(u) = OL(V)|| < Tmax[u — V. (21)

2. Quadratic bound property: there is a constant 0 such that for any,v e U

IL(u) ~ L(v) ~ OLW) T (u— )| < K[ju v (22)
The following theorem proves that (3) satisfies these two conditions.

Theorem 1 L(w) defined in(3) satisfieq21) and (22).

The proofis in Section 7.1.

We denotewX as the point after each iteration of the while loop in Algorithm 1 or 2. Hence
from wX to Wk, n sub-problems are solved. The following theorem establishes our main linear
convergence result fas methods.
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1 _ .
A (@) = Q@)+~ ;yP(X)PW(y!X) fi(xy)
eaffxy) _ 1
AP (z Xz X)Pu (yIX) fe (X, Y)W
eztft _

ACC5(2) = Qi(a) + zP JPu(Y fi(x.y)

AP (@) =Qz)+ 5 I5(x) Iog<1+ S Ruly[x) (€41 — 1)>
X y

Table 1: Approximate functions ¢ andCD methods.

Theorem 2 Consider Algorithm 1 or 2 to minimize a convex and twice differentiable functian.L
Assume [w) attains a unique global minimum* and L(w) satisfies(21)-(22). If the algorithm
satisfies

| n||OLw )], (23)

—VjwkFt — w12, (24)

lw

>
L(Wk+1) . L(Wk) <

for some positive constantgandv, then the sequencgvk} generated by the algorithm linearly
converges. That is, there is a constart (0, 1) such that

LW — L") < (1 ) (LWH) — L(w")), vk

The proofis in Section 7.2. Note that this theorem is not restricte¢uo in (3). Next, we show that
IS/CD methods discussed in this paper satisfy (23)-(24), so they all possetasearr convergence

property.

Theorem 3 Consider Lw) defined in(3) and assume Az) is exactly minimized irGIS, IS,
SCGIS, or CD. Then{wK} satisfieg23)-(24).

The proofis in Section 7.3.

2.4 Solving One-variable Sub-problems

After generating approximate functiong|s, 1IS, SCGIS andCD need to minimize one-variable
sub-problems. In general, the approximate function possesses a glogaéminimum. We do not
discuss some rare situations where this property does not hold (for Examip, AS'S(z) has an
optimal solutionz = —oo if F~>(ft) = 0 and the regularization term is not considered).

Without the regularization term, b4 (z) = 0, GIS andSCGIS both have a simple closed-form
solution of the sub-problem:

S # - .
SIog ~ P(f) ,  Wheref®= f# !f SfSGIS’ (25)
i S xy POOPw(YIX) fe (%, y) f#if sis SCGIS.
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For 1IS, the termex () in IS(z) depends o andy, so it does not have a closed-form solution.
CD does not have a closed-form solution either.

With the regularization term, the sub-problems no longer have a closedsfution. While
many optimization methods can be applied, in this section we analyze the complexigmngf
the Newton method to solve one-variable sub-problems. The Newton method neisifiz) by
iteratively updating:

z 27—~ (2)/K' (@), (26)

wheres indicates ans or aCD method. This iterative procedure may diverge, so we often need a
line search procedure to ensure the function value is decreasing @¥lel&87, p. 47). Due to the
many variants of line searches, here we discuss only the cost for fitiairigewton direction. The
Newton directions o61S andSCGIS are similar:

A () Q@) + " 5y PX)Ru(YX) fi (X Y)

_ _ YV 27
NG Q@)+ e s, BRI iy @0
wherefsis defined in (25). Fons, the Newton direction is:
— A:IS/(ZI) - _ Q{(Zt) + Zx.,y f)(x) PW(y’X) ft <X7 y)eth#(XN) (28)
A'S"(z) Q' (z) + 3 xy POORw(YX) e (x,y) F#(x,y)g2 09"
The Newton directions ofD is: o’
A (z)
Az )
where
AP () = Q@)+ PX)PRuizayIX) (X y), (30)
Xy
AP (z) = Q)+ POPwiza (YX) fi(xy)? -
Xy

X

2
ZF~> (Z Pu+ze (YIX) fe(x Y)> . (31)
y

Egs. (27)-(28) can be easily obtained using formulas in Table 1. We sletavis of deriving
(30)-(31) in Section 7.4.
We separate the complexity analysis to two parts. One is on calculatRg k) vx,y, and the
other is on the remaining operations.
ForPRu(y|x) = Sw(X,y)/Tw(X), parallel-update approaches calculate it once evenp-problems.
To getSy(x,y) Vx,y, the operation
Z\Nt ft (Xv y) VX,y

needdO(#nz) time. If XY < #nz, the cost for obtaininBy(y|x), VX,y is O(#nz), whereX andY are
respectively the numbers of contexts and laBeRherefore, on average each sub-problem shares
O(#nz/n) = O(l) cost. For sequential-update methods, they expensively upgéage) after every

3. If XY > #nz, one can calcula®(*Y), Vf;(x,y) # 0 and then the produgl. , xy).0€™ "*¥). The complexity is
still O(#n2).
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‘ Ch GIS SCaGIs lIs

1st Newton direction O(D O(I_) O(I_) O(I}
Each subsequent Newton directiorO(l) O(1) 0O(1) O(l)

Table 2: Cost for finding Newton directions if the Newton method is used to minifize).

sub-problem. A trick to trade memory for time is to storeS|(x,y) and Ty (x), and use (18) and
(19). SinceSyzq (X,Y) = Sw(X,y), if fi(x,y) =0, this procedure reduces the number of operations
from theO(#nz) operations t®(l). However, it need®(XY) extra spaces to store &,(x,y) and
Tw(X). This trick has been used in tis€GIS method (Goodman, 2002).

From (27) and (28), all remaining operations@s, 11S, andSCGIS involve the calculation of

> P(X)Pw(ylx) fi(xy)(a function ofz), (32)
v

which need©(l) under a fixed. ForGIS andSCGIS, since the function af in (32) is independent
of x,y, we can calculate and stogg(’yf’(x) Puw(Y|X) ft(X,y) in the first Newton iteration. Therefore,
the overall cost (including calculating, (y|x)) is O(l) for the first Newton iteration an@(1) for
each subsequent iteration. RS, because? ") in (28) depends om andy, we needO(l) for
every Newton direction. Fo€D, it calculatesRy. ¢ (y|X) for everyz, so the cost per Newton
direction isO(l). We summarize the cost for solving sub-problems, SCGIS, IIS andCD in
Table 2.

2.5 Related Work

Our framework folS methods includes two important components:
1. Approximatel(w+ze&)—L(w) or L(w+2z) — L(w) to obtain functiongk(z).
2. Sequentially or parallely minimize approximate functions.

Each component has been well discussed in many places. Howewemawbe the first to investi-
gatelS methods in detail. Below we discuss some related work.

The closest work to our framework might be Lange et al. (2000) fronstigstics community.
They discuss “optimization transfer” algorithms which constA€t; ) or A(z) satisfying conditions
similar to (6)-(7) or (9). However, they do not require one-variable-groblems, sd\(z) of a
parallel-update method may be non-separable. They discuss that “optimizansfer” algorithms
can be traced back to EM (Expectation Maximization). In their paper, thetibmA; (z) or A(z) is
called a “surrogate” function or a “majorizing” function. Some also call itaumxiliary” function.
Lange et al. (2000) further discuss several ways to consé{mt where Jensen’s inequality used
in (13) is one of them. An extension along this line of research is by Zhaalg @007).

The concept of sequential- and parallel-update algorithms is well knownriy Bubjects. For
example, these algorithms are used in iterative methods for solving linear syStacobi and
Gauss-Seidel methods). Some recent machine learning works which m#rmninclude, for
example, Collins et al. (2002) and Dilckt al. (2004). Duik et al. (2004) propose a variant i&f
methods for L1-regularized maximum entropy. They consider both séglieand parallel-update
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algorithms using certain approximate functions. Their sequential methoedilgrehoose coordi-
nates minimizing (z ), while ours in Section 2.1.1 chooses coordinates cyclicly.

Regarding the convergence, if the sub-problem has a closed-fdutiosdike (25), it is easy to
apply the result in Lange et al. (2000). However, the case with regatenizis more complicated.
For example, Duik et al. (2004) point out that Goodman (2002) does not give a “completef
of convergence.” Note that the strict decrease of function valuessfiigpconditions (6)-(7) or (9)
does not imply the convergence to the optimal function value. In Section 2.Brave not only the
global convergence but also the linear convergence for a genasalaflS/CD methods.

3. Comparison and a New Coordinate Descent Method

Using the framework in Section 2, we comp&® andIS methods in this section. Based on the
comparison, we propose a new and faBtmethod.

3.1 Comparison of Iterative Scaling and Coordinate Descent Methats

An IS or CD method falls into a place between two extreme designs:

A (z) aloose bound — A (z) atight bound
Easy to minimizeA (%) Hard to minimizeA(z)

That is, there is a tradeoff between the tightness to bound the functioredifie and the hardness
to solve the sub-problem. To check ht®vandCD methods fit into this explanation, we obtain the
following relationship of their approximate functions:

A[CD(ZI) < AtSCGIS(Zt) < AtGIS(Zt),
AP (2) <AP@) <AP@) Va.

The derivation is in Section 7.5. From (38D considers more accurate sub-problems thasIS
andGIS. However, when solving the sub-problem, from Tabl€R's each Newton step takes more
time. The same situation occurs in comparitsgandGis.

The above discussion indicates that while a tifffiz) can give faster convergence by handling
fewer sub-problems, the total time may not be less due to the higher costro$ela-problem.

(33)

3.2 A Fast Coordinate Descent Method

Based on the discussion in Section 3.1, we develgp anethod which is cheaper in solving each
sub-problem but still enjoys fast final convergence. This method is mddifien Chang et al.
(2008), acD approach for linear SVM. They approximately minimi&€P (z) by applying only one
Newton iteration. This approach is a truncated Newton method: In the eagly stdhe coordinate
descent method, we roughly minimi2&P(z) but in the final stage, one Newton update can quite
accurately solve the sub-problem. The Newton direction at0 is

_m. (34)

We discuss in Section 2.4 that the update rule (26) may not decrease thieriuvalue. Hence
we need a line search procedure to find 0 such thatz = Ad satisfies the following sufficient
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Algorithm 3 A fast coordinate descent method for Maxent
e ChooseB € (0,1) andy € (0,1/2). Give initial w and calculat&y (x,y), Tw(X), VX, Y.
e While w is not optimal
— Fort=1,...,n
1. Calculate the Newton direction

d=—A"(0)/A™"(0)
_ — (Zxy P(x)Pu(¥1¥) fr(xy) + )
Sy POOPUYIX) fe ()2 = 3 P(X) (3 PulyX) fe ()" + G

where

2. WhileA =1,8,B2,...
(@) Letz =Ad
(b) Calculate

AP(z) = Q(z)+ S P(log | 1+ 5 M(eaﬁ(xyy) _1)
X % Tw(X)

() If ACP(z) < yzACP'(0), then break.
3. W — W+ 2z
4. UpdateSy(x,y) andTy(x) VX, y by (18)-(19)

decrease condition:
AP (z) - AP (0) = AP (z1) < yaA™'(0) <0, (35)

wherey is a constant ir{0,1/2). Note thaiztAtCD’(O) is negative under the definition dfin (34).
Instead of (35), Grippo and Sciandrone (1999) and Chang et @&I8]2Ge

AP (z) < —vZ (36)

as the sufficient decrease condition. We prefer (35) as it is scalgantaThat is, ifACP is linearly
scaled, then (35) holds under the saynén contrasty in (36) may need to be changed. To fikd
for (35), a simple way is by sequentially checking- 1,3,3,..., whereB € (0,1). We choos@ as
0.5 for experiments. The following theorem proves that the condition @5 patways be satisfied.

Theorem 4 Given the Newton direction d as {B84). There is\ > 0 such that Z= Ad satisfieq35)
forall 0 <A <A.

The proof is in Section 7.6. The ne®@D procedure is in Algorithm 3. In the rest of this paper, we
refer toCD as this new algorithm.

In Section 2.3 we prove the linear convergencé6€D methods. In Section 7.7, we use the
same framework to prove that Algorithm 3 linearly converges:
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Theorem 5 Algorithm 3 satisfie$23)(24) and linearly converges to the global optimum(8).

As evaluatingAP (z) via (17)-(19) need®(l) time, the line search procedure takes

O(l) x (# line search steps

This causes the cost of solving a sub-problem higher than tHaISBSCGIS (see Table 2). Fortu-
nately, we show that near the optimum, the line search procedure needmersiep:

Theorem 6 In a neighborhood of the optimal solution, the Newton direction d defin¢8dipsat-
isfies the sufficient decrease condit{@) with A = 1.

The proof is in Section 7.8. If the line search procedure succeeds-dt, then the cost for each
sub-problem is similar to that @IS andSCGIS.

Next we show that near the optimum, one Newton directioa®@$ tight AP (z) already re-
duces the objective functidniw) more rapidly than directions by exactly minimizing a lods¢€z )
of GIS, IS or SCGIS. Thus Algorithm 3 has faster final convergence tlea8, IS, or SCGIS.

Theorem 7 Assumew* is the global optimum of3). There is ane > 0 such that the following
result holds. For anyv satisfying||w —w*|| <, if we select an index t and generate directions

d=—A'(0)/A®"(0) and F=arg rginAf(a), s=GIS, IS or SCGIS, (37)

then
6 (d) < min (&(dGIS%a(dlls)’a(dscms)) 7
where
& (z) =L(Ww+ze) —L(w).

The proof is in Section 7.9. Theorems 6 and 7 show that Algorithm 3 imprqv@s the traditional
CD by approximately solving sub-problems, while still maintaining fast convergehat is, it
attempts to take both advantages of the two designs mentioned in Section 3.1.

3.2.1 BFICIENTLINE SEARCH

We propose a technique to speed up the line search procedure. \A@aj&rhctionﬁ_‘tw(zt) so that
it is cheaper to calculate tha®(z) and satisfiedP(z) > AP (z) Vz. Then,

AP (z) < yzALP'(0) (38)
implies (35), so we can save time by replacing step 2 of Algorithm 3 with

2'. WhileA =1,3,p%,...
(a) Letz =Ad
(b) CalculateAP(z)
(c) If ACP(z) < yzACP'(0), then break.
(d) CalculateASP(z)
(e) If ACP(z) < yzALP’'(0), then break.
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We assume non-negative feature values and obtain

AP (z) = Qu(z) +Rilog <1+ X) P (y]) i (x y)) (39)
Xy
wheref# is defined in (14),
P = glf‘(x), and Q = {x: Jy such thatf,(x,y) # 0}. (40)
The derivation is in Section 7.10. Because
S POOPu(Y) fi(xy), t=1,...,n (41)
Xy

are available from finding\tCD'(O), gettingACP (z) and checking (38) take onl®(1), smaller than
O(l) for (35). Using logx < a —1Va > 0, it is easy to see that

AP (z) < A°C(z), Va.

Therefore, we can simply replad¢CC'S(z) of the SCGIS method withACP (z) to have a news
method.

4. Implementation Issues

In this section we analyze some implementation issu¢s ahdCD methods.

4.1 Row Versus Column Format

In many Maxent applications, data are sparse with few nontgroy). We store such data by

a sparse matrix. Among many ways to implement sparse matrices, two commonreriesa
format” and “column format.” For the row format, ea¢k y) corresponds to a list of nonzero
fi(x,y), while for the column format, each featurés associated with a list afx,y). The loop

to access data in the row format (is,y) — t, while for the column format it is — (x,y). By
(x,y) — t we mean that the outer loop goes througly) values and for eaclx,y), there is an
inner loop for a list of feature values. For sequential-update algorithiets &8SCGIS andCD,

as we need to maintai®y (x,y) Vx,y via (18) after solving thé-th sub-problem, an easy access of
t's correspondingx,y) elements is essential. Therefore, the column format is more suitable. In
contrast, parallel-update methods can use either row or column formaiSiS;ave can store alh
elements of (41) before solvimgsub-problems by (25) or (27). The calculation of (41) can be done
by using the row format and a loop @f,y) — t. ForlIS, an implementation by the row format is
more complicated due to tre& *(*¥) term in Al'S(z). Take the Newton method to solve the sub-
problem as an example. We can calculate and store (28) forall, ..., n by a loop of(x,y) — t.
That is,n Newton directions are obtained together before conductingdates.

4.2 Memory Requirement

For sequential-update methods, to save the computational time of calciafiyig), we use (18)-
(19), soSw(x,y) Vx,y must be stored. Therefor&(XY) storage is needed. For parallel-update
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Data set | X Y n #nz

CoNLL2000-P | 197,979 44 168,674 48,030,163
CoNLL2000-C | 197,252 22 273,680 53,396,844
BROWN 935,137 185 626,726 601,216,661

Table 3: Statistics of NLP data (0/1 featurex).number of contexts(: number of class labels;
number of features, and #nz: number of total non-zero feature vaeeg4).

methods, they also ne@(XY) spaces if using the column format: To calculete™ ) vx y via
a loop oft — (x,y), we needO(XY) positions to stor§ w; fi(X,y) VX,y. In contrast, if using the
row format, the loop i — y — t, so for each fixed, we need onlyO(Y) spaces to stor§(x,y) Vy
and then obtaify (). This advantage makes the parallel update a viable appro#dthié number
of labels) is very large.

4.3 Number ofexpand log Operations

Many exp/log operations are needed in training a Maxent model. On mostuterapexp/log
operations are much more expensive than multiplications/divisions. It is inmpact@nalyze the
number of exp/log operations i8 andCD methods.

We first discuss the number of exp operations. A simple check of (Z})gBows that the
numbers are the same as those in Table2andCD needO(l) exp operations for every Newton
direction because they calculafe!“*Y) in (28) ande?*¥) in (17), respectivelycD via Algorithm
3 takes only one Newton iteration, but each line search step also @Edexp operations. |If
feature values are binamg t®) in (17) becomesg?, a value independent afy. Thus the number
of exp operations is significantly reduced fraxl ) to O(1). This property implies that Algorithm
3 is more efficient if data are binary valued. In Section 5, we will confirm tagilt through
experiments.

Regarding log operationsIS, 1IS and SCGIS need none as they remove the log function in
A(z). CD via Algorithm 3 keeps log irA"P (z) and require€O(|Q;|) log operations at each line
search step, whef® is defined in (40).

4.4 Permutation of Indices in Solving Sub-problems

For sequential-update methods, one does not have to follow a cyclic waydetaws, ..., w,.
Chang et al. (2008) report that in theiD method, a permutation dfl,...,n} as the order for
solvingn sub-problems leads to faster convergence. For sequential-updatthods adopting this
strategy, the linear convergence in Theorem 2 still holds.

5. Experiments

In this section, we compat&/CD methods to reconfirm properties discussed in earlier sections. We
consider two types of data for NLP (Natural Language Processimgicagions. One is Maxent for
0/1-featured data and the other is Maxent (logistic regression) fomgecudata with non-negative
real-valued features. Programs used for experiments in this papernlare available at
http://lwww.csie.ntu.edu.tw/ ~ cjlinfliblinear/exp.html
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Figure 2: Results on 0/1-featured data. The first row shows time versueldtive function dif-
ference (42). The second and third rows shi@\ (w)|| and testing performances along
time, respectively. Time is in seconds.

5.1 Maxent for 0/1-featured Data in NLP

We apply Maxent models to part of speech (POS) tagging and chunking t&sOS tagging,
we mark a POS tag to the word in a text based on both its definition and contextcHuanking
task, we divide a text into syntactically correlated parts of words. Thghien words in a sentence
annotated with POS tags, we label each word with a chunk tag. Other leanoihgjs such as CRF
(Conditional Random Fields) may outperform Maxent for these NLP agjpdics. However, we do
not consider other learning models as the focus of this paper is to itudgthods for Maxent.

We useCoNLL2000 shared task datafor chunking and POS tagging, amROWN corpus
for POS tagging CoNLL2000-P indicatesCoNLL2000 for POS tagging, andoNLL2000-C means
CoNLL2000 for chunking. CoNLL2000 data consist of Sections 15-18 of the Wall Street Journal
corpus as training data and Section 20 as testing data. F&RO&/N corpus, we randomly se-

4. Data can be found attp://www.cnts.ua.ac.be/conll2000/chunking
5. Corpus can be found http://www.nltk.org
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lect four-fifth articles for training and use the rest for testing. We omit théstic tag modifiers
“fw,™tl,"nc,”and “hl,” so the number of labels is reduced from 472 185. Our implementation is
built upon the OpenNLP package (Baldridge et al., 2001). We use theltsétting of OpenNLP
to extract binary features (0/1 values) suggested by Rathaparkd8)19he OpenNLP imple-
mentation assumes that each feature inderrresponds to a unique labgl In prediction, we
approximately maximize the probability of tag sequences to the word sequanedseam search
(Ratnaparkhi, 1998). Table 3 lists the statistics of data sets.
We implement the following methods for comparisons.

1. GIS and SCGIS: To minimize A(z), we run Newton updates (without line search) until
|Al(z)| < 1075, We can afford many Newton iterations because, according to TableR, ea
Newton direction costs oni@(1) time.

2. CD: the coordinate descent method proposed in Section 3.2.

3. LBFGS: a limited memory quasi Newton method for general unconstrained optimization
problems (Liu and Nocedal, 1989).

4. TRON: a trust region Newton method for logistic regression (Lin et al., 2008)eXend the
method for Maxent.

We considelLBFGS as Malouf (2002) reports that it is better than other approaches including
GIS andlIS. Lin et al. (2008) show thaltRON is faster than.BFGS for document classification, so
we includeTRON for comparison. We excludés because of its higher cost per Newton direction
thanGIS/SCGIS (see Table 2). Indeed Malouf (2002) reports @& outperformdiS. Our imple-
mentation of all methods takes the property of 0/1 features. We use theriegiiden parameter
02 = 10 as under this value Maxent models achieve good testing performalieset = 0.5 and
y = 0.001 for the line search procedure (35XdD. The initialw of all methods i<.

We begin at checking time versus the relative difference of the functie va the optimum:

L(w) —L(w")

T (42)

wherew* is the optimal solution of (3). A&* is not available, we obtain a reference point satisfying
||IOL(w)|| < 0.01. Results are in the first row of Figure 2. Next, we check these metgoaidient
values. As||OL(w)|| = 0 implies thatw is the global minimum, usually{JL(w)|| is used in a
stopping condition. The second row of Figure 2 shows time vefSlusw)||. We are also interested
in the time needed to achieve a reasonable testing result. We measure thmaect of POS
tagging by accuracy and chunking by F1 measure. The third row of &@yaresents the testing
accuracy/F1 versus training time. Note that (42) 4l (w)|| in Figure 2 are both log scaled.

We give some observations from Figure 2. Among the tigéeD methods compared, the new
CD approach discussed in Section 3.2 is the fas8&6GIS comes the second, whit&s is the last.
This result is consistent with the tightness of their approximate function§38geRegardingsS/CD
methods versusBFGS/TRON, the thredS/CD methods more quickly decrease the function value
in the beginning, butBFGS has faster final convergence. In fact, if we draw figures with longer
training time, TRON's final convergence is the fastest. This result is reasonabl8e&S and
TRON respectively have superlinear and quadratic convergence, higirethtt linear rate proved
in Theorem 2 fornS methods. The choice of methods thus relies on whether one prefers getting a
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Problem | I n #nz o?

astro-physic | 62,369 99,757 4,834,550 |8
yahoo-japan | 176,203 832,026 23,506,415 | 4
rcvl 677,399 47,236 49,556,258 | 8

Table 4. Statistics of document data (real-valued featur&s)aumber of instancesy: number
of features, #nz: number of total non-zero feature values, &ndbest regularization
parameter from five-fold cross validation.

reasonable model quicklyg/CD methods) or accurately minimizing the functiatBEGS/TRON).
PracticallyCD/IS may be more useful as they reach the final testing accuracy rapidly. Fiwally
compareLBFGS and TRON. Surprisingly,LBFGS outperformsTRON, a result opposite to that in
Lin et al. (2008). We do not have a clear explanation yet. A differendkasLin et al. (2008)
deal with document data of real-valued features, but here we haved&ilired NLP applications.
Therefore, one should always be careful that for the same apgm@sacbservations made on one
type of data may not extend to another.

In Section 4, we discussed a strategy of permutisgb-problems to speed up the convergence
of sequential-updatss methods. However, in training Maxent models for 0/1-featured NLP data,
with/without permutation gives similar performances. We find that this strategs t® work better
if features are related. Hence we suspect that features used in Pg&tag chunking tasks are
less correlated than those in documents and the order of sub-problemsésynmnportant.

5.2 Maxent (Logistic Regression) for Document Classification

In this section, we experiment with logistic regression on document data witinegative real-
valued features. Chang et al. (2008) report that thBimethod is very efficient for linear SVM, but
is slightly less effective for logistic regression. They attribute the reastimatdogistic regression
requires expensive exp/log operations. In Section 4, we show th@t¥deatures, the number of
IS methods’ exp operations is smaller. Experiments here help to ch&iCid methods are more
suitable for 0/1 features than real values.

Logistic regression is a special case of maximum entropy with two lapksnd—1. Consider
training data{X;,yi}|_;, % € R",yi = {1, —1}. Assumex; > 0, Vi,t. We set the featuré(x;,y) as

xig ify=1,
ft(Xia)/):{ ' y

0 ify=-1,
wherex; denotes the index of theth training instance;. Then
Wl X; ifve1
L y) = extwfiy) — € ify=1,
Sw(%,Y) 1 A
and Sy l
N wiXLy)
Pu(Y[Xi) = To00) ~ 1ie W 43)

From (2) and (43),
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Figure 3: Results on real-valued document data. The first row shows @rsassthe relative func-
tion difference (42). The second and third rows shi@L (w)|| and testing performances
along time, respectively. Time is in seconds.

is the common form of regularized logistic regression. We give approxinuaitetibns oflS/CD
methods in Section 7.11.

We compare the same metho®&CGIS, CD, LBFGS, andTRON. GIS is not included because
of its slow convergence shown in Section 5.1. Our implementations are bassalicces used in
Chang et al. (2008).We select three data sets considered in Chang et al. (2008). Eaclrékten
been normalized tx; || = 1. Data statistics and? for each problem are in Table 4. We §et 0.5
andy = 0.01 for the line search procedure (35)@D. Figure 3 shows the results of the relative
function difference to the optimum, the gradiéitL (w)||, and the testing accuracy.

From Figure 3, the relation between the t186CD methods is similar to that in Figure 2, where
CD is faster thar8CGIS. However, in contrast to Figure 2, heTRON/LBFGS may surpas$s/CD
in an earlier stage. Some preliminary analysis on the cost per iteration seerdg#tdrihalS/CD

6. Source can be found kitp://www.csie.ntu.edu.tw/ ~ cjlin/liblinear/exp.html
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Figure 4: This figure shows the effect of using (38) to do line seardte first and second rows
show time versus the relative function difference with differ@htCDD indicates thecD
method without using (38). Time is in seconds.

methods are more efficient on 0/1-featured data due to a smaller numbgraevations, but more
experiments/data are needed to draw definitive conclusions.

In Figure 3,TRON is only similarly to or moderately better thaBFGS, but Lin et al. (2008)
show thatTRON is much better. The only difference between their setting and ours is that &in e
(2008) add one feature to each data instance. That is, they m?add){’ﬂ , SO weights of Maxent
becomel} ], whereb is called the bias term. It is surprising that this difference affe8BGS’
performance that much.

6. Discussion and Conclusions

In (38), we propose a way to speed up the line search procedure ofithlg 3. Figure 4 shows
how effective this trick is by varying the value of. Clearly, the trick is more useful i6? is
small. In this situation, the function(w) is well conditioned (as it is closer to a quadratic function
St w?). Hence (38) more easily holdsXat= 1. Then the line search procedure costs @(g) time.
However, a too smalh? may downgrade the testing accuracy. For example, the final accunacy fo
yahoo-japan is 92 75% witho? = 41, but is 9231% witho? = 0.5I.

Some work has concluded that approachesli¥eGS or nonlinear conjugate gradient are better
thanIS methods for training Maxent (e.g., Malouf, 2002; Dara004). However, experiments in
this paper show that comparison results may vary under different citanoes. For example,
comparison results can be affected by:

1. Data of the target applicatioms/CD methods seem to perform better if features are 0/1 and
if implementations have taken this property.
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2. ThelS method being compared. Our experiments indicate@@ais inferior to many meth-
ods, but othets/CD methods likeSCGIS or CD (Algorithm 3) are more competitive.

In summary, we create a general framework for iterative scaling andlicabe descent meth-
ods for maximum entropy. Based on this framework, we discuss the geneas, computational
complexity, and other properties 8/CD methods. We further develop a new coordinate decent
method for Maxent. It is more efficient than existing iterative scaling methods.

7. Proofs and Derivations

We define 1-norm and 2-norm of a vecterc R™:

_5 , = nW2.
w1 t;|Wt’ w2 Ht;t

The following inequality is useful in our proofs.
w2 < [lwllz < Vnlwl[z, vweR". (44)
Subsequently we simplifijw||, to ||w]|.

7.1 Proof of Theorem 1

Due to the regularization ternzqé—szw, one can prove that the sgtdefined in (20) is bounded;
see, for example, Theorem 1 of Lin et al. (2008). [2&_(w) is continuous in the bounded dét
the following Tmax andtmin exist:

Tmaxzwe%x)\max(DzL(w)) and Tmin = VrpeiSAmin(DzL(w)), (45)

whereAmax(-) andAmin(-) mean the largest and the smallest eigenvalues of a matrix, respectively.
To show thatrmax andtmin are positive, it is sufficient to proveyi, > 0. As DZL(W) is I/cr2 plus a
positive semi-definite matrix, it is easy to seg, > 1/(c°) > 0.

To prove (21), we apply the multi-dimensional Mean-Value Theorem (#hoE974, Theorem
12.9) toOL(w). If u,v € R", then for anya € R", there is ec = au+ (1—a)v with 0 < a < 1 such
that

al (OL(u) —OL(v)) =a' 22L(c)(u—V). (46)

Set
a=u-—v.

Then for anyu,v € U, there is a point such that
(u—v)T(OL(u) — OL(V)) = (u—Vv)TOL(c)(u—V). (47)
SinceU is a convex set from the convexity bfw), c € U. With (45) and (47),
lu =[] OL(u) = BLW)| = (u—v)T(OL(u) = OL(v)) = Tminflu —v|[%
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Hence
IOL(u) = OL(V) || = Tmin|lu = V]]. (48)
By applying (46) again witla = OL(u) — OL(v),

I0L(u) = OL(v)|[? <[|BL(u) = OLW) | T%L(e) (u V)|
<[ OL(u) = OLV)[[[lu = V][Tmax

Therefore,
OL(u) = OL(V) || < Tmaxl|u —Vv||. (49)

Then (21) follows from (48) and (49)
To prove the second property (22), we write the Taylor expansidufof.

L(u) = L(v) +0L(v)"(u—v) + %(u —Vv)TPL(C)(u—V),

wherec € U. With (45), we have

0 V]2 < L) - L)~ 0L T (u-v) < 2y v

SinceTmax > Tmin > 0, L satisfies (22) by choosing = Tmax/2.

7.2 Proof of Theorem 2

The following proof is modified from Chang et al. (2008). Sirgev) is convex andv* is the
unique solution, the optimality condition shows that

OL(w*) = 0. (50)
From (21) and (50),
IDLWS) | > ToinlIW — w"]|. (51)
With (23) and (51),
W — W[ > N Tin WK — w7 (52)
From (24) and (52),
L (W) — L(W*h) > vntglwh —w* |2, (53)
Combining (22) and (50),
L(wK) — L(w*) < K[JwK —w* |2, (54)

Using (53) and (54), .
L(wK) — L(wkHL) > % (L) —Lw)).
This is equivalent to
(L(Wk) - L(w*)) n (L(W*) . L(wk+1)) > ‘”]T:fz"'n (L(Wk) - L(w*)) :
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Finally, we have
vn2t2

LAy — Lw) < (1— Km'“> (L(wk) - L(w*)) . (55)

Let u=vn?t2, /K. As all constants are positivg,> 0. If p> 1, L(wX) > L(w*) implies that
L(wkt1) < L(w*), a contradiction to the definition df(w*). Thus we have eithan € (0,1) or
M= 1, which suggests we get the optimum in finite steps.

7.3 Proof of Theorem 3

We prove the result foGIS and IS first. Let z = argmin, AS(z), wheres indicatesGIS or IS
method! From the definition oA%(z) and its convexity,

OAS(0) = OL(WK) andJAS(Z) = 0.2 (56)

Note that[JA3(z) is the gradient with respect tn but OL(w) is the gradient with respect tw.
SinceU is bounded, the sdtw,z) |w € U andw+z € U } is also bounded. Thus we have that
28
WGaUXz:vm?éU )\max(D A (Z))

is bounded by a constaKkt HereAmax(-) means the largest eigenvalue of a matrix. To prove (23),
we use

W< —wk|| = |z 0]
1 1 1 (57)
ZRIIDAS(Z) —OA%0)| = RHDAS(O)H = RHDL(W")H,

where the inequality is from the same derivation for (49) in Theorem 1. |d$tetwo equalities
follow from (56).

Next, we prove (24). By (56) and the fact that the minimal eigenvalug’éf(z) is greater than
or equal to ¥(0?), we have

1 1 -
AS(0) > AS(Z) — OAS(Z) T Zz+ 2?2? Z=N2)+ 2?Zsz. (58)

From (9) and (58),

L(WK) — L(WHD) = L(wK) — L(wK+2) > AS(0) — AS(Z) > 2%2? zZ= Z%ZHWKH —wK||2.
Letv = 1/(202) and we obtain (24).

We then prove results f@8CGIS andCD. For the convenience, we define some notation. A
sequential algorithm starts from an initial powi, and produces a sequer{c&k}ﬁ’:o. At each iter-
ation,w**1 is constructed by sequentially updating each componewtofhis process generates
vectorsw®t € R", t = 1,...,n, such that! = wk, wkn+1 = wk+1 and

wit = W WL wE L wKT fort=2,...,n.

7. The existence daffollows from thatU is bounded. See the explanation in the beginning of Section 7.1.

8. Itis easy to see that &l (z) in Table 1 are strictly convex.

9. Becausél L (wK) = ACP’(0), we can easily obtaiflAS(0) = OL(wK) by checkinga¥ (0) = ACD’(0), wheresis GIS
or lIS. See formulas in Table 1.
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By an argument similar to (57) and (58), we can prove that the one-lafiafictionAZ(z ), where
Sis SCGIS or CD, satisfies

W wl | > AT (0)] = AIOLW<),| and (59)
V\}t<,t+1 —V\}t<’t|2- (60)

1
L kty L kt+1 > _—
W) Ly > L

Note thatn > 0 is a positive constant. To prove (23), taking the summation of (59) frer ton,

n n
WK —wKjy > S OLWRY) >0 (JOLWS)] — [OL(w*) — OL(whty|
2 2 )

=

=n <IIDL(W"’1)II1— ZIDL(Wk’t)t - DL(W"’l)t|> - (61)
Sincel (w) satisfies (21), using (44),

n n
ZIDL(Wk’t)t —OL(WA)| < ZIIDL(WK*t) —OLW*Y 1
t= t=

n
62
< Zi\meaxHWk’t — W1 < ny/MTmad W — w1 ©2
=

From (61) and (62), we have

k+1 K n k.1
Wt —wo|g > ————||0OL(w® .
H 2 7 O )

Ny/Nmax
This inequality and (44) imply

W —wh ]| > T Wt — w1 > el [ OL (W)

Letn = n/(v/N-+NN?Tmax). We then have (23).
Taking the summation of (60) fromn= 1 ton, we get (24):

1
Ky L (wktD) > k+1 k)12
L (W) — L) > 5wkt — w2
7.4 Derivation of (30)-(31)
Using (18)-(19), we have

dSy+za (X%Y)

g~ Swlx Y)E OV f (X y) = Suiza (X Y) fe(X,Y)

and

dTw X
J(;Zt;(x) — ;SN(x,y)eZ‘f‘( Y fi(x,y) = §SN+Z(Q(X7Y) fr(x,y).
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Then (30) can be obtained from (16), the definitioff ¢ (X) in (1), and the following calculation:
dlogTwiza(X)  YySwiza(XY) fi(Xy)

4z = Twiza 09 = g Putza (YX) ft (X, y).
For (31), we use
dYyRuiza (YX) fi(X,Y)
dz
_5 foy e S dTW*;& Swiza (%)
y Tw+za (X)

:Z fi(x,y) (ft(X7Y)Pw+z(a(Y|X) Swiza (%) ;PW+Z{Q (Y [x) fe (x, )/)>
y

Twiza (X

= Ruiza (YX) fi(x (%,y)? -> (PW+ZtQ(y|X) ft(Xay)gpwma(y,’X) ft(Xay')>
y

v
2
z wiza (YIX) fi(X,y)? (Z Pu+za (YIX) ft(X, Y)> .
y

7.5 Derivation of (33)

From (6) and (9), we immediately ha#@“®'>(z) > AP (z) andAl'S(z) > ASP(z). Next we prove
thatAtG's( )ZA[SCGIS( ) AssumeD( ) A{GIS( ) AtSCG'S(zt).Then

D'(z) = (&= &) S BOORM(YIX) e (x,Y).

X,y
Sincef# > f# >0,

, .
S <oita o ©
From Taylor expansion, there existbetween 0 and such that
D(z) = D(0) +zD'(h).
FromAPCC!S(0) = A®'5(0) = 0, we haveD(0) = 0. By (63),zD’(h) > 0, so
ASS (z) — ASCEIS (7) = D(z) = D(0) = O.
We can use a similar method to prodg'>(z) > A>(z).

7.6 Proof of Theorem 4

From (31), we can define

H = max (12 ZIS x) f (X, y) ) > AP (z), va. (64)
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From the Taylor expansion aﬁtCD(zt) atz = 0, there exist between 0 and such thatz = Ad
satisfies

ACP(Ad) —yAdATP'(0)
= AP(0) + AT (0)Ad + LA (WA YA (0)

< AP (O)Ad+ %H)\Zdz — YA’ (0)

AP0 1, AP 02 ARP(0)2
- A" (0) 2" ALP"(0)2 o ACP"(0)
ACP'(0)2 H
= )\A{CD”(O) ()\ <2AtCD"(O)> — 1+y> . (65)
If we choose
S 2A® (3)(1—v)7 (66)

then forA < A, (65) is non-positive. Therefore, (35) is satisfied for alf @ < A.

7.7 Proof of Theorem 5

Following the proof in Section 7.3, it is sufficient to prove inequalities in the damme as (59) and
(60). By Theorem 4, ank € [BA,A], wheref3 € (0,1) andA is defined in (66), satisfies the sufficient
decrease condition (35). Since Algorithm 3 seléchy trying {1,B,[2,...}, with (64), the selected
valueA satisfies

Ao pr - pA 00,

This and (34) suggest that the step size Ad in Algorithm 3 satisfies

o 2B(-y) }AtCD’(O)‘ ‘ (67)

From (34), (35)z = Ad, ACP”(0) > 1/02 and\ < 1, we have
AP (z) ~ AP (0) < v&A™ (0) = —yadAP"(0) < - L2 < - L2 (68)

Note thatz is the step taken for updating™ to w'™. With ASD(z) = L(wkt+1) — L(wkt), (67)-
(68) are in the same form as (59)-(60). In Section 7.3, (59)-(603wifecient to prove the desired
conditions (23)-(24) for the linear convergence (Theorem 2). &foee, Algorithm 3 linearly con-
verges.
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7.8 Proof of Theorem 6

A direct calculation OACD'”(zt) shows that it is bounded for @l andwk. We assume that a bound
is M. UsingASP (0) = 0, (34) and Taylor expansion, there existisetween 0 and such that

AP = AP (0)d+ JAT" () + AP ()

C1AP(0)2 1, cpm

_ 3
2 A(CDH(O) + 6 (hd
< AP O+ M (69)

— A (0)+ (YA (0) - A" (0)+ M)

— A0+ (v (0) - A (0)+ gMid )

Note thaty < 1/2. AsAtCD"(O) >1/0? and|AtCD'(0)| — 0 whenw converges to the optimal solution
w*, near the optimunt is small enough so that

6 /1
o<ld < 5 (3-v) A" 0.
Then we obtairASP (d) < ydASP'(0) and (35) is satisfied.

7.9 Proof of Theorem 7
The following lemma, needed for proving Theorem 7, shows that the direteti@n byCD is bigger
than that ofGIS, 1IS, or SCGIS.

Lemma 8 There exists a positive constansuch that in a neighborhood of*,

8(0)

L) <1 =| g

; (70)

where d and 8are defined in(37).
Proof. Sinced® = argmin, Af(z) andAi(z) is strictly convex,
A (d%) =0. (71)

We separate the proof to two caség’(0) > 0 andAY(0) < 0. If A¥(0) = 0, thend® = 0, so (70)
immediately holds.
If A¥(0) > 0, from the strict convexity oAf(z) and (71),d° < 0. It is sufficient to prove that
there ish such thaty¥(d/(1+A)) < 0. This result impliesl/(1+A) < dS, so we obtain (70) .
Using Taylor expansion, i f5(x,y) < 0, then

Y <147 f5(x,y) + %zﬁ( txy))%, (72)
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where
f#if sis GIS,
fS(x,y) = ¢ ffif sis SCGIS,
f#(x,y) if sislIS.

From Table 1 and (72),

A (z) =S POORW(YP) fi(x y)et ™Y 1+ Q{(z) (73)
X,y

(Z X)Rw (Y[X) fe(X,y) + Wt I5(ft)> + <R1(W)+ 012> Zt+%zt2R2(W)

=0+ (Rulw) + o5 - ;\m(w)) 2.

where

;U
|||

Z BOOPu(YX) fe(x,Y) FS(xy) and

X,

<

X) P (y[X) fr (%, y) F3(x, y)2.

X,

<l

Now the Newton direction is

cp’ / s/
o B R
From (31),
? 1
Xz X)Pu(Y]X) fr (X, y)? ZP (Z (y1¥) fe(x, Y)> t52 (75)
< Ry(w) —Rs(w) + é,
where

2
)= P(x (Z R (¥IX) ft(x,y)> :
X y

Whenw — w*, Ry(w), Ra(w), Rs(w) respectively converge tig (w*), Rp(w*), Rs(w*). Moreover,
asw+d%g € {w | L(w) < L(w)}, d>— 0 whenw — w*. Therefore,

. ¥, Rw)
e R+ &~ IR Raw) 4 79

Here we can assuni®(w*) > 0. If not, f;(x,y) = 0 for all x,y. Thenw; = 0 is obtained in just one
iteration. From (76), we can choose a posifiveuch that
1 1 R3(W*>

1+A Ry (w*) + %

(77)
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From (76) and (77), for anwy in a neighborhood ofv*,

Ry(W) + L — L|dS|Ry(w
5/(0) < AW 2 Re(w)
From (74), ; A0
LA = Ra(w) + 5 — | dRow) (78)

From (73) withz =d/(1+A) and (78),

W (155) <A -A0 -0

Therefored/(1+A) < d®<0.
If A¥(0) < 0, thend® > 0. Using Taylor expansion, & fS(x,y) > 0, we have

A0V > 14 7 5(x,y).

Then (73) becomes

(Z XY (% Y) + o <ft>>+(rel<w>+012)a
= AY(0) + <R1(W)+ 012> %.

From (75) and a derivation similar to (76), there i5 & 0 such that

& (0)(1+A) < Rl(WHé

Letz =d/(1+\) in (79). With (74),

(79)

% (145) 2RO -#0 -0

Therefore, 0< d*<d/(1+A).
Proof of Theorem 7 We prove this theorem by calculating a lower bound®dti®) — & (d).
From (69),

5(d) < ;2&5( )) e (80)

whereM is an upper bound a@¥”(z). If w is sufficiently close tav*,

8(%) = &(0)d*+ 55 (0)(¢%) + 56{”<h><d5>3

o (dge)

25;/
1 502  1( ) 1
=% <1+)\> 507 250 69

L1/ -1\ §0? 1
~3 (%) o oMt

843

@
(81




HUANG, HSIEH, CHANG AND LIN

whereh is between 0 and® and the inequality is from Lemma 8. Combining (80) and (81),

s 1 1\ 8§02 1
&(@)-8(0)> 5 (1- 115 ) gy~ M

(Y[ A 118(0)] &(0)

- (3(h) - Mgi0) o
Sinced/ (0) > 1/(0?) andg;(0) — OiL(w*) = 0, there is a neighborhood wf* so that¥| (0) is small
enough and

1/ A 1,.,13(0)]

(7)Mo

Therefored;(d®) > &(d) in a neighborhood ofv*.

7.10 Derivation of(39)
From Jensen’s inequality and the fact that(bggs a concave function,

S Tw Tw
Yo P(X) Iog;v;"i(‘*x)(x) < log (th P(x) ﬁ?&)()()) |

Yo, P(X)

Yo, P(X)

With (16), (19) and (40), we have

A[CD(Zt) < Q[(Zt) + ISt IOg (l—l— th ﬁ(X) zyPW(¥|X)(eztft(X,Y) _ 1)> .

R

By the inequality (15),

~ i #_
T e )
A

AP (z) < Qi(z)+PRlog | 1+

Q(z)+PRlog | 1+ (emt# - 1) Sa P 5y Pu(yX) ft(X,Y))
- t

!

— _CD(Zt).

Note that replacing® with ¥, P(x) leads to another upper boundAff®(z). It is, however, looser
thanASP (z).

7.11 Logistic Regression

We list approximate functions ¢8/CD methods for logistic regression. Note that

1ojfy=y - _
LR andB(fy = Y i 82)
0 otherwise id=q |

F~’(>w)={
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ForGIS, using the formula in Table 1 and (43),

f#
AP () = (a) + (ea zHeWTX,),

where from (11) and (82),

W_th % and " =maxt(.

Qi(z) =

iyi=1

Similarly, IS andSCGIS respectively solve
1 X effi_q
s _ =
(e -0+ {3 1 )

i _ v
ASCOIS (2) — Qu(z) + (eZ‘ 1zl+e_WTXI> ’

wheref = max x; and f#(i) = 5, x¢. Finally, from (17), (30), and (31),

gax — 1
1+eWE)

/ 1 Xit
084 (3 S 35

iy

" - 1 1 eﬁWTXiXi

AED(zt>:Q[<zt>+%zlog (1+
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