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Abstract

We propose a class of Bayesian networks appropriate fartated prediction problems where the
Bayesian network’s model structure is a function of the jmted output structure. These incremen-
tal sigmoid belief networks (ISBNs) make decoding posdileleause inference with partial output
structures does not require summing over the unboundedty c@mpatible model structures, due
to their directed edges and incrementally specified modatttre. ISBNs are specifically targeted
at challenging structured prediction problems such asalfanguage parsing, where learning the
domain’s complex statistical dependencies benefits fragelaumbers of latent variables. While

exact inference in ISBNs with large numbers of latent vdegals not tractable, we propose two ef-
ficient approximations. First, we demonstrate that a pre/imeural network parsing model can be
viewed as a coarse mean-field approximation to inferende 8BNs. We then derive a more ac-

curate but still tractable variational approximation, efhproves effective in artificial experiments.

We compare the effectiveness of these models on a benchietamahlanguage parsing task, where
they achieve accuracy competitive with the state-of-thehe model which is a closer approxi-

mation to an ISBN has better parsing accuracy, suggestatd $BNs are an appropriate abstract
model of natural language grammar learning.

Keywords: Bayesian networks, dynamic Bayesian networks, grammaniteg natural language
parsing, neural networks

1. Introduction

In recent years, there has been increasing interest in structurdidtime problems, that is, clas-
sification problems with a large (or infinite) structured set of output caitegjoiThe set of output
categories are structured in the sense that useful generalisationacerist categories, as usually
reflected in a structured representation of the individual categorigsexample, the output cate-
gories might be represented as arbitrarily long sequences of labedstireflgeneralisations across
categories which share similar sets of sub-sequences. Often, givepwanthe structure of the
possible output categories can be uniquely determined by the structure ioptht. For example
in sequence labelling tasks, all possible output categories are labelrsaguof the same length as
the input sequence to be labelled. In this article, we investigate structussificiation problems
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where this is not true; the structure of the possible output categories isitptely determined by
the input to be classified. The most common type of such problems is when thesmpsequence
and the output is a more complex structure, such as a tree. In referetiie ¢ase, we will refer

to problems where the output structure is not uniquely determined by theaspwiarsing prob-

lems”. Such problems frequently arise in natural language processigpeediction of a phrase
structure tree given a sentence), biology (e.g., protein structure poajdjcchemistry, or image
processing. We will focus on the first of these examples, natural |gegparsing. The literature
on such problems clearly indicates that good accuracy cannot be eghigthout models which

capture the generalisations which are only reflected in the output struEturexample, in English
sentences, if a noun is parsed as the subject of a verb, then thesermustdbe compatible in their
singular/plural markings, independent of whether they are near ¢aehin the input sentence.

In addition to limiting the scope of this article to parsing problems, we focus oB talskre the
training data specifies the output structure, but the labelling of this strusta fully annotated.
While the unannotated labelling may not be evaluated in the task, by assumingpiete labelling
we allow our models to capture generalisation which are not directly reflectbd labelled output
structure given for training. For example, the training data for naturgluage parsing problems
is generally assumed to be a tree, but assuming that all generalisatione eaprbssed in terms
of one-level fragments of the tree leads to poor empirical performanaavettr, much better
performance can be achieved with such a model by extending the labellirgjuderfeatures of the
structural context (Charniak, 2000). Because we want to learn ttessary additional labelling,
we need to solve a limited form of grammar induction.

Graphical models provide the formal mechanisms needed to learn and edsmat incomplete
labelling, using latent variables. They also provide the formal mechaniseteddo specify the
statistical dependencies implied by the structure of a single output catétpmgver, these mech-
anisms are not sufficient to specify a complete probability model for a gamsiblem, because
we need to specify the statistical dependencies for the complete spacssifip@utput categories.
As we will discuss in Section 3, even graphical models for unboundedeseg labelling, such as
dynamic Bayesian networks, are in general not adequate for this skyse they are limited to
finite-state models.

There are well established methods for specifying probabilistic models singaproblems,
based on grammar formalisms, such as probabilistic context-free gram@&& &P The grammar
formalism defines how the complete space of possible pairs of an inputrssgwith an output
structure can be specified as a set of sequences of decisions aboopuitroutput pair. Each
possible sequence of decisions, called a derivation, specifies a sipgteotput pair (e.g., phrase
structure tree or protein structure). The probability model is then defintinms of probabilities
for each decision. In its most general form, these decision probabiligesoaditioned on anything
from the unbounded history of previous decisions:

P(T) = P(D,...,.D™) = [P(D'[D,...,.D' %), (1)
t

whereT is the input-output structure araf, ..., D™ is its equivalent sequence of decisions.

In PCFGs, the context-free assumption means that only a bounded anfotln& listory
D!,...,D'"1is relevant to the probability for decisidd!. The context-free assumption only al-
lows statistical dependencies within each bounded one-level subtree @ffiut tree, so two such
subtrees can only interact through the bounded choice of label footie they share, if any. Be-
cause the context-free assumption is defined in terms of the output strunbaiie terms of the
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input sequence, which decisions in the history are relevant deperide ontput structure specified
by the derivation. In graphical models, such a specification of whictsides are statistically de-
pendent on which other decisions is called the “model structure”. ThisE3Bike other grammar
formalisms, are examples of models where the model structure is a functiom @dijut structure,
not just of the input sequence. This is the fundamental distinction betweedelsmaf parsing prob-
lems and models of sequence labelling problems, and it will be central to a@wsdisns in this
article.

The most common approach to building probability models for parsing problers use
PCFGs without any latent variables (e.g., Charniak, 2000; Collins, 199fin et al., 1998), but
this approach relies on hand-built sets of features to represent tloeinodd decision histories
in (1). Latent probabilistic context-free grammars (LPCFGs) (Matsuetki., 2005) extend the
node labels of PCFGs with latent annotations, but previous proposasshiaeessfully induced
only a small number of latent annotations.

An alternative proposal to extending the labelling of parse trees is to usedtien units of a
neural network (Henderson, 2003). In the model of Hendersab3)20ectors of hidden unit values
decorate the positiortsn the derivation sequence, and are used to encode features of thendiell
derivation historyD?,...,D'"1. As with LPCFGs, the pattern of interdependencies between layers
of hidden units is a function of the output structure, making it appropriatedising problems. But
unlike LPCFGs, the pattern of interdependencies is not required toctebpecontext-free assump-
tion. This model achieved state-of-the-art results, but there is no dehalpilistic semantics for
the induced hidden representations.

In this article, we propose a class of graphical models which we call inerrstigmoid belief
networks (ISBNs), which are closely related to the neural network ofddeson (2003), but which
have a clear probabilistic semantics for all their variables. ISBNs are adfisigmoid belief
network (Neal, 1992), but are dynamic models and have an incrementadifised set of statistical
dependencies. Each position in the decision sequence has a vectonbétate variables, which
are statistically dependent on variables from previous positions via arpaftedges determined
by the previous decisions. This incrementally specified model structuresal®BNs to capture
the generalisations which are only reflected in the output structure, suitte dendency towards
correlations which are local in the output structure, which motivates thiexifiee assumption of
PCFGs.

Allowing the model structure to depend on the output structure means thairtipdete model
structure is not known until the complete output derivation is known. Iregethis can complicate
decoding (i.e., parsing) because computing probabilities for sub-tlerigaequires marginalising
out the unknown portion of the model structure, which in the worst casiel cequire summing over
an unbounded number of possible model structures. The properti&8bisl avoid this problem
because the probability of a derivation prefix is always independethteainknown portion of the
model structure, as discussed in Section 3.

Despite this simplification, exact inference (i.e., computing probabilities) is ngemeral
tractable in ISBNs, because they allow large vectors of latent variableshigaeily intercon-
nected directed model. We demonstrate the practical applicability of ISBN mbyeisoviding
efficient approximate inference methods. We consider two forms of appation for ISBNs, a
feed-forward neural network approximation (NN) and a form of meak fapproximation (Saul
and Jordan, 1999). In Section 5, we first show that the neural nletwodel in Henderson (2003)
can be viewed as a coarse approximation to inference with ISBNs. We tbpose an incremental
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mean field method (IMF), which provides an improved approximation but remeactable. Both
these approximations give us valid probability models.

In Section 7, we present two empirical evaluations. In the first experimentrained both of
the approximation models on artificial data generated from random ISBMNsNN model achieves
a 60% average relative error reduction over a baseline model and thenbMel achieves a further
27% average relative error reduction over the NN model. These resnitsristrate that the distri-
bution of output structures specified by an ISBN can be approximatethiise approximations
can be learnt from data, and that the IMF approximation is indeed betterthibaN approxi-
mation. In the second experiment, we apply both of the approximation modelsasepstructure
parsing with data from the Wall Street Journal Penn Treebank (Matals 1993). The IMF model
achieves statistically significant error reduction of about 8% over the Nfiem&esults of the IMF
model are non-significantly worse (less than 1% relative error incyelaae the results of one of
the best known history-based models of parsing (Charniak, 2000)arges that this correlation
between better approximation and better accuracy suggests that IS8Egaod abstract model
for structured prediction.

Section 8 discusses related work not covered in the rest of this artibbeulies particularly on
previous work on LPCFGs.

2. Inference with Sigmoid Belief Networks

Before defining ISBNs, we provide background on sigmoid belief ndtsvoh sigmoid belief net-
work (SBN) (Neal, 1992) is a type of Bayesian network. Bayesian nisvare directed acyclic
graphs where the nodes are variables and the edges specify statistieatidncies between vari-
ables. SBNs have binary variables which have conditional probabilityitdiststns (CPDs) of the
form:

P(S§=1Par(§))=0( ) %5, (2

SjePar(s)

wherePar(S) is the set of variables with edges directedstoo denotes the logistic sigmoid func-
tion o(x) = 1/(1+e7X), andJ; is the weight for the edge from variab® to variableS.! SBNs
are similar to feed-forward neural networks, but unlike neural né&tsy@BNs have a precise prob-
abilistic semantics of their hidden variables. In ISBNs we consider a dessgtaersion of SBNs
where we allow variables with any range of discrete values. The normaligeshential function is
used to define the CPDs at these nodes:

o eXF(ZSjePar(S)WIljsﬂ
2K eXp( ZSjepar(S)Wlilj Sj) ’

whereW' is the weight matrix for the variabl8.

Exact inference with all but very small SBNs is not tractable. Initially sampiireghods were
used (Neal, 1992), but they are also not feasible for large netwesggcially for the dynamic mod-
els of the type described in Section 4. Variational methods have also begrspd for approximat-
ing SBNs (Saul et al., 1996; Saul and Jordan, 1999). The main idesriational methods (Jordan

P(S =klPar(S))

(3)

1. For convenience, where possible, we will not explicitly include biassémexpressions, assuming that every latent
variable in the model has an auxiliary parent variable set to 1.
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et al., 1999) is, roughly, to construct a tractable approximate model witlmbeof free parame-
ters. The free parameters are set so that the resulting approximate maslelése as possible to
the original model for a given inference problem.

The simplest example of a variational method is the mean field method, originallgiuicd in
statistical mechanics and later applied to neural networks in Hinton et ab)19ét us denote the
set of visible variables in the model BMyand latent (hidden) variables by= hy,...,h. The mean
field method uses a fully factorised distributiQtH|V) =[]; Qi(hi|V) as the approximate model,
where each; is the distribution of an individual latent variable. The independence lest\iee
variablesh; in this approximate distributio® does not imply independence of the free parameters
which define th&);. These parameters are set to minimise the Kullback-Leibler divergencedaetw
the approximate distributio(H V) and the true distributioR(H V) or, equivalently, to maximise:

P(H,V)
Q(H|V)

The expressiorby is a lower bound on the log-likelihood R{(V). It is used in the mean field
theory (Saul and Jordan, 1999) as an approximation of the log-likelindodever, in our case of
dynamic graphical models, as explained later, we have to use a diffgnerazech which allows us
to construct an incremental structured prediction method without needingddurce the additional
parameters proposed in Saul and Jordan (1999), as we will discusstinrg5.3.

Ly = ZQ(HIV)In (4)

3. Incrementally Specifying Model Structure

We want to extend SBNs to make them appropriate for modelling parsing prebls discussed
in the introduction, this requires being able to model arbitrarily long decisiquneseed?,...,D™,
and being able to specify the pattern of edges (the model structure) astifuof the chosen
output structure. In this section, we define how incremental sigmoid beligbries specify such
model structures.

To extend SBNs for processing arbitrarily long sequences, such akethvation decision se-
quenceD?,...,D™, we use dynamic models. This gives us a form of dynamic Bayesian network
(DBN). To handle unboundedly long sequences, DBNs specify adiayaetwork template which
gets instantiated for each position in the sequence, thereby constructmgeai@ network which
is as large as the sequence is long. This constructed Bayesian networstiatiéd in the rightmost
graph of Figure 1, where the repeated two-box pattern is the template, ehefttto-right order
is the derivation order. This template instantiation defines a new set of \earifaiy each position
in the sequence, but the set of edges and parameters for these gasi@tbe same as in other
positions. The edges which connect variables instantiated for diffpositions must be directed
forward in the sequence, thereby allowing a temporal interpretation oétheesice. DBNs based on
sigmoid belief networks were considered in Sallans (2002) in the contesirdbércement learning.
Normally, DBNs only allow edges between adjacent (or a bounded windpywositions, which
imposes a Markov assumption on statistical dependencies in the Bayesiamknetw

The problem with only allowing edges between variables instantiated at pasitiinh are ad-
jacent (or local) in the decision sequence is that this does not allow the niedrlise to adequately
reflect the correlations found in parsing problems. In particular, in mamyaihs, correlations tend
to be local in the output structure, even when they are not local in theatieri sequence for that
structure. To capture these correlations in the statistical dependencrbletéhe model, we want
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Figure 1: lllustration of the predictive LR derivation of an output struetamd its associated incre-
mental specification of an ISBN model structure (ordered top-to-bottorataefght).
Dotted lines indicate the top of the parser’s stack at each derivation detidivze model
structure.

the edges of the model to reflect locality in the output structure. This regspecifying edges
based on the actual outputs in the decision sequBhce, D™, not just based on adjacency in this
sequence.

We constrain this edge specification so that a decifibrcan only effect the placement of
edges whose destination variable is at a positiot’ after the decisiom!. This gives us a form
of switching model (Murphy, 2002), where each decision switches the Irstrdeture used for the
remaining decisions. We allow the incoming edges for a given position to beliaosete func-
tion of the sequence of decisions which precede that position. For tlEsreae call our model
an “incremental” model, not just a dynamic model; the structure of the Bayastavork is deter-
mined incrementally as the decision sequence proceeds. This incremeuctfitagion of the model
structure is illustrated in Figure 1 (the directed graphs), along with the padiplt structures in-
crementally specified by the derivation (the trees). In Figure 1, dotted disssciate a position’s
instantiated template with the node in the output structure which is on top of thex’patsick when
making that position’s decision. Note that the incoming edges for a positigiantiated template
reflect edges between the associated nodes in the partial output structur

Any discrete function can be used to map the preceding sequence dbdstisa set of incom-
ing edges for a given decision. In general, we can characterise ttusdn in terms of an automaton
which reads derivations and deterministically outputs model structurevEoy derivation prefix
D1,...,D'"1, the automaton outputs a set of labelled positions in the derivation prefixededr
labelled position(t — c,r) in this set, labet determines which variables instantiated at that position
are linked to which variables instantiated at the current positiand with which parametefsFor

2. In all our models to date, we have respected the additional constrairhére is at most one labelled position in the
set for each labal, so the size of the set is bounded. We do not impose this constraintéraede the model is still
well defined without it, but we do not have empirical evidence aboutffieeteof removing it.
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example, the ISBN illustrated in Figure 1 uses a push-down automaton to comlpigte output
structure nodes are currently important (e.g., the top and next-to-tog nadke automaton'’s stack)
and specifies conditional dependencies between the current deaisigmevious decisions where
these nodes were on the top of the stack. By using a push-down autortesamodel is able to
express non-Markovian (e.g., context-free) regularities in the demnvaequences.

Previous applications of switching models to DBNs (e.g., Murphy, 2002 hbowed statistical
dependencies to be a function of the output, but only of the output fronmimediately preceding
position in the sequence, and therefore have only allowed switching beeeunded number of
alternatives. Because the number of switched alternatives is boundeghtie set of alternatives
can be expressed as a single bounded model, whose CPDs incorpeiditethte switching. Thus,
switching does not allow us to specify any models which could not be spuifia a complicated
DBN, so switching DBNs also impose some form of Markov assumption. In tefriie automata
discussed above, this means that switching DBNs can be expressedinisingtate automata, so
would only be appropriate for problems with a regular-language strutduheir output categories.
This limitation does not give us sufficient power to express the kinds oubatpnditioned statis-
tical dependencies we need for parsing problems in general. Therdfa crucial to distinguish
between standard dynamic models and our incremental models.

Incremental sigmoid belief networks allow the model structure to depend autpet structure
without overly complicating the inference of the desired conditional pritiiab P(D!|D?, ..., D! 1),
Computing this probability requires marginalising out the unknown model steituthe portion
of the Bayesian network which follows positibnin general, this could require explicitly summing
over multiple possible model structures, or in the worst case summing ovenbloended number
of possible model structures. ISBNs avoid summing over any of thesifsoswdel structures be-
cause in ISBN®(D!|D%,...,D!"?) is independent of all model structure which follows position
This can be proved by considering two properties of ISBNs. At positiarthe sequence, the only
edges whose placement are not uniquely determineB’py.., D'~1 have their destinations after
t. Also, none of the variables afterare visible (i.e., have their values specifieddh, ..., D'"1).
Therefore none of the edges whose placement is not yet known garahg impact on the infer-
ence ofP(DY|D?,...,D" 1), as follows directly from well known properties of Bayesian networks.
This property implies that each individual Bayesian network depicted inr€igjican be used to
compute the conditional probability of its next derivation decision, and it wik ¢he same answer
as if the same conditional probability were computed in the final Bayesian rieatithe end of the
derivation, or indeed in any such valid continuation.

The use of directed edges to avoid the need to sum over unknown magglets can also
be seen in Hidden Markov Models (HMMs). Given a sequence prefixcan use an HMM to
infer the probability of the following element of the sequence. This distributarot dependent
on the total length of the sequence, which would be needed to draw the ¢erhilitM model
for the sequence. Note that this property does not hold for undirecggdhigal models, such as
Conditional Random Fields (Lafferty et al., 2001). Rohanimanesh @09 investigate inference
in undirected models with edges that are a function of the output structuiréhd solutions are
approximate and computationally expensive.

The incremental specification of model structure can also be seen in LRCE@en a top-
down left-to-right derivation of a phrase structure tree, the depaieiehetween LPCFG derivation
decisions have the same structure as the phrase structure tree, but @#GLRles (one-level
subtrees) labelling each node of this derivation tree. The number otHmarat a node in the
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derivation tree is determined by the rule which is chosen to label that ncetepthincrementally

specifying the complete derivation tree. If we expressed an LPCFGraphigal model, the model
structures would have the same general form as the derivation trega® swdel structure would
also be incrementally specified. Also, the edges in this graphical model weeldito be directed,
because LPCFG rule probabilities are locally normalised. Therefore GRfaR also be thought of
as Bayesian networks with incrementally specified model structure. Tieeafiffes between ISBNs
and LPCFG will be discussed in the next section and Section 8.

As illustrated by the above examples, the argument for the incremental spgaiiiof model
structure can be applied to any Bayesian network architecture, noigosigl belief networks. We
focus on ISBNs because, as shown in Section 5, they are closely relditedempirically successful
neural network models of Henderson (2003). This previous worlshagn that the combination
of logistic sigmoid hidden units and having a model structure which refleclitp@a the output
structure results in a powerful form of feature induction. The edgas tnidden units to hidden
units allow information to propagate beyond the notion of immediate structurditjodafined in
the model, but the logistic sigmoid ensures a bias against propagating infannfatbugh long
chains of hidden units, thereby providing a soft but domain-approgriateto feature induction.

4. The Probabilistic Model of Structured Prediction

In this section we complete the definition of incremental sigmoid belief netwonkgrionmar
learning. We only consider joint probability models, since they are genesiafigler and, unlike
history-based conditional models, do not suffer from the label biaslgmo (Bottou, 1991). Also,
in many complex predication tasks, such as phrase structure parsing,afnto®g most accurate
models make use of a joint model, either in reranking or model combinations @&arniak and
Johnson, 2005; Henderson, 2004).

We use a history-based probability model, as in Equation (1), but instetidating eaclD!
as an atomic decision, it will be convenient below to further split it into a secpief elementary
decisionD! =dj,...,d!:

P(D'|DY,...,D' 1) = D P(di|h(t,k)),

whereh(t,k) denotes the decision histo®!,...,D'"1.d!,....dl ;. For example, a decision to
create a new node in a labelled output structure can be divided into two d@lmelecisions:
deciding to create a node and deciding which label to assign to it.

An example of the kind of graphical model we propose is illustrated in Figuleiforganised
into vectors of variables: latent state variable vec®rs- §l', ... ,§r;, representing an intermediate
state at position’, and decision variable vectoR', representing a decision at positisnwhere
t' <t. Variables whose value are given at the current decitide) are shaded in Figure 2; latent
and current decision variables are left unshaded.

As illustrated by the edges in Figure 2, the probability of each state vasatipends on all
the variables in a finite set of relevant previous state and decision vebtdrthere are no direct
dependencies between the different variables in a single state vectaliséssed in Section 3,
this set of previous state and decision vectors is determined by an autontatimrans over the
derivation historyD?, ..., D'"1 and outputs a set of labelled positions in the history which are con-
nected to the current positidn For each paift — c,r) in this set,r represents a relation between
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Figure 2: ISBN for estimating(d}|h(t, k)).

positiont and the positionn—c in the history. We denote by(t—c,t) the predicate which returns
true if the positiont —c with the relation label is included in the set for, and false otherwise.
In general this automaton is allowed to perform arbitrary computations,easfisd by the model
designer. For example, it could select the most recent state where theoggruestructure node
was on the top of the automaton’s stack, and a decision variable reprgsiatimode’s label. Each
such selected relatianhas its own distinct weight matrix for the resulting edges in the graph, but
the same weight matrix is used at each position where the relation is relegarbéstion 7.2 for
examples of relation types we use in our experiments).

We can write the dependency of a latent variadlen previous latent variable vectors and a
decision history as:

P(§:1|sl,...,s—1,h(t,1))=o< > ZJ{jstj#ZB;gE), (5)

)

whereJ' is the latent-to-latent weight matrix for relatiorandB' is the decision-to-latent weight
matrix for relationr and elementary decisida If there is no previous step< t which is in relation
r to the time step, that is,r(t',t) is false for allt’, then the corresponding relatioris skipped in
the summation. For each relationthe weightJ{j determines the influence of thth variable in the

related previous latent vectsr on the distribution of théth variable of the considered latent vector
S. Similarly, Bir(‘;t, defines the influence of the past decisﬂﬁmn the distribution of the considered
k

latent vector variablg.

In the previous paragraph we defined the conditional distribution of thetlaéetor variables.
Now we describe the distribution of the decision ve@br=dj, . ..d}. As indicated in Figure 2, the
probability of each elementary decisidp depends both on the current latent veoand on the
previously chosen elementary actidin ; from D*. This probability distribution has the normalised
exponential form:

Prye.i (d) €XpY jWajS))
5 dPhito (d) exp(y W jS;)’

P(d=d|S,d 1) = (6)
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where®y,, i) is the indicator function of the set of elementary decisions that can posslly/fthe
last decision in the historiy(t, k), and the\g; are the weights of the edges from the state variables.
@ is essentially switching the output space of the elementary inference proB(eins d|S,df ,)
on the basis of the previous decisidp ;. For example, in a generative history-based model of
natural language parsing, if decisidhwas to create a new node in the tree, then the next possible
set of decisions defined b o) will correspond to choosing a node label, whereas if decidion
was to generate a new word théq ») will select decisions corresponding to choosing this word.
Given this design for using ISBNs to model derivations, we can compateSBN models to
LPCFG models. As we showed in the previous section, LPCFGs can alsoughttof as Bayesian
networks with incrementally specified model structure. One differencedestwPCFGs and IS-
BNs is that LPCFGs add latent annotations to the symbols of a grammar, whiksI&&] latent
annotations to the states of an automaton. However, this distinction is blurtbe lnge of gram-
mar transforms in LPCFG models, and the many equivalences between gsaamdaautomata.
But certainly, the automata of ISBNs are much less constrained than thetefsaeegrammars of
LPCFGs. Another distinction between LPCFGs and ISBNs is that LPCF&SRtent annotations
to split symbols into multiple atomic symbols, while ISBNs add vectors of latent yagab the
existing symbol variables. The structure of the similarities between vectorscis riwter than the
structure of similarities between split atomic symbols, which gives ISBNs a niuetwred latent
variable space than LPCFGs. This makes learning easier for ISBNsjrajltire induction of more
informative latent annotations. Both these distinctions will be discussecfurtisection 8.

5. Approximating Inference in ISBNs

Exact inference with ISBNs is straightforward, but not tractable. Iblves a summation over all
possible variable values for all the latent variable vectors. The pres#rally connected latent
variable vectors does not allow us to use efficient belief propagation otlitven in the case of
dynamic SBNs (i.e., Markovian models), the large size of each individuadtlatetor would not
allow us to perform the marginalisation exactly. This makes it clear that wetoegsl/elop meth-
ods for approximating the inference problems required for structuredigiron. Standard Gibbs
sampling (Geman and Geman, 1984) is also expensive because of thepawgeof variables and
the need to resample after making each new decision in the sequence. lbmigbssible to de-
velop efficient approximations to Gibbs sampling or apply more complex versioarkov Chain
Monte-Carlo techniques, but sampling methods are generally not asfeatiational methods. In
order to develop sufficiently fast approximations, we have investigatéatizenal methods.

This section is structured as follows. We start by describing the applicatittrecstandard
mean field approximation to ISBNs and discuss its limitations. Then we propoappsoach to
overcome these limitations, and two approximation methods. First we show threguled network
computation used in Henderson (2003) can be viewed as a mean fieldiapgtion with the added
constraint that computations be strictly incremental. Then we relax this cioigtrébuild more
accurate but still tractable mean field approximation.

5.1 Applicability of Mean Field Approximations

In this section we derive the most straightforward way to apply mean field mietod SBN. Then
we explain why this approach is not feasible for structured predictiobl@nes of the scale of
natural language parsing.
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The standard use of the mean field theory for SBNs (Saul et al., 199basduordan, 1999)

is to approximate probabilities using the value of the lower bdupdrom expression (4) in Sec-
tion 2. To obtain a tighter bound, as we explained abbyds maximised by choosing the optimal
distributionQ. To approximateP(d{|h(t,k)) using the value ofy, we have to include the current
decisiond, in the set of visible variables, along with the visible variables specifiéxtirk). Then

to estimate the conditional probabili(d;|h(t,k)), we need to normalise over the set of all possible
\é?Iuedofdtk. Thus we need to compute a separate estimategtr{ﬁxd) for each possible value of

L =d:

P(H',h(t,k),d} = d)
Q(H![h(t,k),d =d)’

maxLi¥(d) = max$ Q(H!|h(t,k),dt = d)In
Qv() QZQ(\()k)

whereH! = {S!, ..., S}. ThenP(d{ = d|h(t,k)) can be approximated as the normalised exponential
of L{;k(d) values:

o _ expmaxgLy(d))
P(d} = d|h(t,k)) = 5 ¢ exp(maxg LK () (7)

It is not feasible to find the optimal distributiad@ for SBNs, and mean field methods (Saul et al.,
1996; Saul and Jordan, 1999) use an additional approximation to estirrmgé_%(ad). Even with
this approximation, the maximum can be found only by using an iterative spamchdure. This
means that decoding estimator (7) requires performing this numericaldwector every possible
value of the next decision. Unfortunately, in general this is not feadiblearticular with labelled
output structures where the number of possible alternative decidjaas be large. For our gener-
ative model of natural language parsing, decisions include word pieti¢and there can be a very
large number of possible next words. Even if we choose not to recommaa field parameters for
all the preceding state®',t’ <t, but only for the current stat§ (as proposed below), tractability
still remains a problera.

In our modifications of the mean field method, we propose to consider theleeisiond as
a hidden variable. Then the assumption of full factorisabilit@of", df |h(t, k)) is stronger than in
the standard mean field theory because the approximate distriliigono longer conditioned on
the next decisionl.. The approximate fully factorisable distributi@(H V) can be written as:

!/

Qv =d ] ()" (1)

ti

whereu}’ is the free parameter which determines the distribution of state vaiiablpositiont’,
namely its mean, ang (d}) is the free parameter which determines the distribution over decisions
di. Importantly, we usej,(d) to estimate the conditional probability of the next decision:

P(d = d|h(t,k) ~ di(d),

3. We conducted preliminary experiments with natural language pargingry small data sets and even in this setup
the method appeared to be very slow and, surprisingly, not as acasrttie modification considered further in this
section.
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Figure 3: A graphical model fragment where variaBlis a sink.

and the total structure probability is therefore computed as the produaoidion probabilities
corresponding to its derivation:

P(T)=P(D%,...,.D™ =~ uquiy (8)
L,

5.2 A Feed-Forward Approximation

In this section we will describe the sense in which neural network computzdiobe regarded as a
mean field approximation under an additional constraint of strictly feedéia computation. We
will call this approximation the feed-forward approximation. As in the mean fieloroximation,
each of the latent variables in the feed-forward approximation is indemggddistributed. But
unlike the general case of mean field approximation, in the feed-forwgptbgimation we only
allow the parameters of every distributi@ts’ |h(t,k)) andQ(di|h(t,k)) to depend on the approx-
imate distributions of their parents, thus requiring that any information abeuwtigtribution of its
descendants is not taken into account. This additional constraint iesrdespotential for a large
KL divergence with the true model, but it significantly simplifies the computations.

We start with a simple proposition for general graphical models. Undereg-forward as-
sumption, computation of the mean field distribution of a node in an ISBN is dgoiv@ compu-
tation of a distribution of a variable corresponding to a sink in the graph ohtdel, that is, a node
which does not have any outgoing edges. For example, Adsla sink in Figure 3. The following
proposition characterises the mean field distribution of a sink.

Proposition 1 The optimal mean field distribution of a sink A depends on the mean field digirib
Q(B) of its hidden parents B- (By,...,Bny) as

Q(A=a) Jexp(EqlogP(A=a|B,C)),

where Q is the mean field distribution of hidden variables, P is the model distih C are visible
parents of the node A andhilenotes the expectation under the mean field distributi@) Q

This proposition is straightforward to prove by maximising the variational dadwn(4) with
respect to the distributio®@(A). Now we can use the fact that SBNs have log-linear CPD. By
substituting their CPD given in expression (2) Bin the lemma statement, we obtain:

AS=D=0a( > Jjn),

SjePar(s)
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which exactly replicates computation of a feed-forward neural netwaitk tive logistic sigmoid
activation function. Similarly, we can show that for variables with soft-maC#% defined in (3),
their mean field distribution will be the log-linear function of their parents’ medhgrefore min-
imising KL divergence under the constraint of feed-forward computagoequivalent to using
log-linear functions to compute distributions of random variables given sefiheir parents.

Now let us return to the derivation of the feed-forward approximationS&Ns. As we just
derived, under the feed-forward assumption, means of the latentr\&cape given by

W =o(n!),

wheren! is the weighted sum of the parent variables’ means:

t/ rot’ rk
I I‘,t”:%’l,t/) 2 I Z Idtk
as follows from the definition of the corresponding CPD (5).

The same argument applies to decision variables; the approximate distributiennext deci-
siongj(d) is given by

d(d) = Pry ko (d) exp( 3 WajH) (10)
S Py (o) exp(z  Wer )
The resulting estimate of the probability of the entire structure is given by (8).

This approximation method replicates exactly the computation of the feed+fbrvearal net-
work model of Henderson (2003), where the above mqaérwe equivalent to the neural network
hidden unit activations. Thus, that neural network probability modelbearegarded as a simple
approximation to the ISBN graphical model.

In addition to the drawbacks shared by any mean field approximation metotked-forward
approximation cannot capture bottom-up reasoning. By bottom-up regsavermean the effect of
descendants in a graphical model on distributions of their ancestormd@or field approximations
to ISBNs, it implies the need to update the latent vector mqaératter observing a decisiad}, for
t’ <t. The use of edges directly from decision variables to subsequent V&etors is designed to
mitigate this limitation, but such edges cannot in general accurately approXot&ten-up reason-
ing. The next section discusses how bottom-up reasoning can be ingi@ghin the approximate
model.

5.3 Incremental Mean Field Approximation

In this section we relax the feed-forward assumption to incorporate botoreasoning into the
approximate model. Again as in the feed-forward approximation, we areegtésf in finding the
distributionQ which maximises the quantity, in expression (4). The decision distributigi(d},)
maximised.y when it has the same dependence on the latent vector rp'feaasm the feed-forward
approximation, namely expression (10). However, as we mentioned abevieed-forward com-
putation does not allow us to compute the optimal values of state rpéans

Optimally, after each new decisialj, we should recompute all the meau}'sfor all the latent
vectorsS', t’ < t. However, this would make the method intractable for tasks with long decision
sequences. Instead, after making each decidjoand adding it to the set of visible variables
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V, we recompute only the means of the current latent veStorThis approach also speeds up
computation because, unlike in the standard mean field theory, there is ddoniggroduce an
additional variational parameter for each hidden layer varigble

The denominator of the normalised exponential function in (6) does not akote compute
Ly exactly. Instead, we approximate the expectation of its logarithm by substiﬁﬁtiwgh their
means’

Eqln Z_ Ppe g (d) exp(y WejSj) ~ In Z_ Ope g (d) exp(y Wajhj),
] ]

where the expectation is taken over the latent veStatistributed according to the approximate
distributionQ. Unfortunately, even with this assumption there is no analytic way to maximise the
approximation ofLy with respect to the means, so we need to use numerical methods. We can
rewrite the expression (4) as follows, substituting the ®(id,V) defined by the graphical model
and the approximate distributidd(H|V), omitting parts independent of the meass

L= 5 i~ (14 n (1) + s

—%—ka;Wdlk, il —1In <Z_ Pt ) (d) eXp(Zdeptj )) 7 (11)

here,n! is computed from the previous relevant state means and decisions asTihi€gxpression

is concave with respect to the parameigrso the global maximum can be found. In the appendix,
where we derive the learning algorithm, we show that the Hessian of thisssipn can be viewed
as the negated sum of a positive diagonal matrix and some covariance mdtriceimplying the
concavity of expression (11). We use coordinatewise ascent, whehgieis selected by a line
search (Press et al., 1996) while keeping otliefixed.

Though we avoided re-computation of means of the previous states, estimftiencomplex
decision probabilityP(D!|h(t,k)) will be expensive if the decisioD' is decomposed in a large
number of elementary decisions. As an example, consider a situation indégygrparsing, where
after deciding to create a link, the parser might need to decide on the type bifthand, then,
predict the part of speech type of the word and, finally, predict thelveelf. The main reason
for this complexity is the presence of the summation dven expression (11), which results in
expensive computations during the search for an optimal valyé. ofrhis computation can be
simplified by using the means & computed during the estimation Bfd;,_,|h(t,k— 1)) as priors
for the computation of the same means during the estimatid®(djfh(t,k)). If we denote the
means computed at an elementary steg) asp}’k, then fork = 1, minimisation ofL{,’k can be
performed analytically, by setting

Wt =o(nh). (12)

4. Ininitial research, we considered the introduction of additional vanatiparameters associated with every possible
value of the decision variable in a way similar to Saul and Jordan (19898}his did not improve the prediction
accuracy of the model, and considerably increased the computatioeal tim
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Fork > 1, expression (11) can be rewritten as:

L=y~ = 2= (1)

U (i) g

—In (Z_ Dpy(t k1) (d)eXp(ZdeHtj’k)) (13)
]

Note that maximisation of this expression is done also after computing the lasibdd€; for the
statet. The resulting meang-*+1 are then used in the computationrqﬁc for the relevant future
stated’, that is, such’ thatr(t,t’) holds for some:

nf = > 29 Utj oty Z Bld‘ (14)
rtr(tt’) )

Concavity of expression (13) follows from concavity of (11), as theirctional forms are dif-
ferent by only a linear term and the presence of summation over the elegndetasions. See
the appendix where we will show that the Hessiam gfis negative semidefinite, confirming this
statement.

6. Learning and Decoding

We train the models described in Sections 5.2 and 5.3 to maximise the fit of thexmpai®models
to the data. We use gradient descent, and a maximum likelihood objectivigofunén order to
compute the derivatives with respect to the model parameters, the eordd $ie propagated back
through the structure of the graphical model. For the feed-forwartbajpation, computation of
the derivatives is straightforward, as in neural networks (Rumelhait,e1986). But for the mean
field approximation, this requires computation of the derivatives of the meéaith respect to the
other parameters in expression (13). The use of a numerical searehnretn field approximation
makes the analytical computation of these derivatives impossible, so adifimethod needs to
be used to compute their values. The appendix considers the challersjeg @when using maxi-
mum likelihood estimation with the incremental mean field algorithm and introducesificatidn
of the error backpropagation algorithm for this model. For both approximstitheir respective
backpropagation algorithms have computational complexity linear in the lengtherfivation.

The standard mean field approach considered in Saul and Jorda®) (K@8imisedLy (4)
during learning, becauds, was used as an approximation of the log-likelihood of the training
data. Ly is actually the sum of the log-likelihood and the negated KL divergence peate
approximate distributio®@(H|V) and the SBN distributiof®(H|V). Thus, maximisind-y will at
the same time direct the SBN distribution toward configurations which have a &gwpeoximation
error. It is important to distinguish this regularisation of the approximate digtoitb from the
Gaussian priors on the SBN parameters, which can be achieved by simgle decay. We believe
that these two regularisations should be complementary. However, in @imvef the mean field
method the approximate distributions of hidden decision variagjlese used to compute the data
likelihood (8) and, thus, maximising this target function will not automatically implyditergence
minimisation. Application of an additional regularisation term corresponding tomsation of the
KL divergence might be beneficial for our approach, and it could bebgect of further research.
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—) '
7

Figure 4: Dynamic SBN used in artificial experiments.

In our current experiments, we used standard weight decay, wigaharéeses the SBN distribution
with a Gaussian prior over weights.

ISBNs define a probability model which does not make any a-priori astsomspof indepen-
dence between any decision variables. As we discussed in Section 3gtlé nelations based on
the partial output structure makes it possible to take into account statisticaldptdencies be-
tween decisions closely related in the output structure, but separateditrgrdy many positions
in the input structure. In general, this property leads to the complexity of letenpearch being
exponential in the number of derivation decisions. Fortunately, for mestylgms, such as natural
language parsing, efficient heuristic search methods are possible.

7. Experiments

The goal of the evaluation is to demonstrate that ISBNs are an appropridéd foogrammar learn-
ing. Also, we would like to show that learning the mean field approximation eéiiiv Section 5.3
(IMF method) results in a sufficiently accurate model, and that this model is acoteate than the
feed-forward neural network approximation (NN method) of Hende(2603) considered in Sec-
tion 5.2. First, we start with an artificial experiment where the training and tedtita is known to
have been generated by a SBN, and compare models based on eachpyrthémation methods.
Second, we apply the models to a real problem, parsing of natural lamgubgre we compare our
approximations with state-of-the-art models.

7.1 Artificial Experiment

In order to have an upper bound for our artificial experiments, we daowsider incremental
models, but instead use a dynamic sigmoid belief network, a first orderdviark model, and
consider a sequence labelling task. This simplification allowed us to use Gibigdisg from
atrue model as an upper bound of accuracy. The following generative strgsponds to the
random dynamic SBNs:
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Figure 5: An example phrase structure tree.

Draw initial state vectoB' from a distribution of initial stateB(S").
t=0.
Do
t=t+1,
draw a labelr! from the distributiorP(Y!|S) as in (6),
draw an input element' from the distributiorP(X!|Y!, S),
draw the next latent state vect8r! from P(S+1|S, X' Y1),
while Y £ 0 andt < tmayx

A graphical representation of this dynamic model is shown in Figure 4. eiiteveight ma-
trices were used in the computationPX!|Y!, S) for each value of the labaf'. It is easy to see
that this model is a special case of the ISBN graphical model, namely Figuith Bon-Markovian
dependencies removed. The state vector length was set to 5, the nurpbssibie labels to 6, the
number of distinct input elements to 8, the maximal length of each sequgpde 100. We per-
formed 10 experiments For each of the experiments, we trained both IMF and NN approximations
on a training set of 20,000 elements, and tested them on another 10,000tslelverght-decay
and learning rate were reduced through the course of the experimeateven accuracy on the
development set went down. Beam search with a beam of 10 was used thsting. The IMF
methods achieved average error reduction of 27% with respect to the kidbanevhere accuracy
of the Gibbs sampler was used as an upper bound (average accofa&de5%, 81.0%, and 82.3%
for the NN, IMF, and sampler, respectively).

The IMF approximation performed better than the NN approximation on 9 empets out of
10 (statistically significant in 8 case¥)These results suggest that the IMF method leads to a much
more accurate model than the NN method when the true distribution is definedyimamic SBN.

In addition, the average relative error reduction of even the NN ajpedion over the unigram
model exceeded 60% (the unigram model accuracy was 77.4% on @yenddch suggests that
both approximations are sufficiently accurate and learnable.

7.2 Natural Language Parsing

We compare our two approximations on the natural language phrase strpersing task. The
output structure is defined as a labelled tree, which specifies the hieerdecomposition of a

5. We preselected these 10 models to avoid random dynamic SBNs with distidbutions. We excluded SBNs for
which unigram model accuracy was within 3% of the Gibbs sampler acguaad where accuracy of the Gibbs
sampler did not exceed 70%. All these constants were selected befateating the experiments.

6. In all our experiments we used the permutation test (Diaconis and,EHfé83) to measure significance and consid-
ered a result significant if p-value is below 5%.
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root

Decisions Stack l 12
1. Shiftgyy  [roof] 3/5\11
2. Projectp [root,Bill/N]
3. Project [root,NP] NP 5 VP 10
4. Shiftseisy  [ro0t,S] 2 | ST
5. Projeclp [root, S, sells/V] N V NP
6. Shiftiesny  [ro0t,S,VP] 1 4l 3
7. Projectp [root,S,VP,fresh/J] Bill sells J N
8. Shiftoranges/N [rOOt,S,VP,NP] 6 { 8{
9.-12. Attach [root,S,VP,NP,oranges/N],...,[root,S] fresh oranges

Figure 6: Derivation for a constituent parse tree.

sentence into phrases. An example of such a tree is presented on Figidmeré the tree specifies
that the adjective (Jreshand the noun (Nprangesform a noun phrase (NPjresh oranges’,
which, when combined with the verb (\8glls forms the verb phrase (VP3ells fresh oranges’
The hypothesis we wish to test here is that the more accurate approximati®BN$ will result
in a more accurate model of parsing. If this is true, then it suggests thall8R: a good abstract
model for problems similar to natural language parsing, namely parsingepnisbwhich benefit
from latent variable induction.

We replicated the same definition of derivation and the same pattern of intextion between
states as described in Henderson (2003). For the sake of completemesd provide a brief
description of the structure of the model here, though more details canubd fo Henderson
(2003).

The model uses a modification of the predictive LR order (Soisalon-Soir@ndnJkkonen,
1979), illustrated in Figure 6. In this ordering, a parser decides to intedwode into the parse
tree after the entire subtree rooted at the node’s first child has beercéulbtructed. Then the
subtrees rooted at the remaining children of the node are constructedt ileffi®-right order. The
state of the parser is defined by the current stack of nodes, the guereaining input words and
the partial structure specified so far. The parser starts with an artificieélement in the stack and
terminates when it reaches a configuration with an empty queue and with thaantifot element
on the top of the stack. The algorithm uses 3 main types of decisions:

1. The decisiorshift,, shifts the wordwv from the queue to the stack.

2. The decisiorProjecty replaces the current top of the stakvith a new nodé’, and specifies
thatY is the parent oK in the output structure.

3. The decisiomttach removes the current top of the staXland specifies that elemeniunder
the top of the stack is the parentf

Though these three types of decisions are sufficient to parse angtgenstree, Henderson
(2003) extends the parsing strategy to include a specific treatment ofieufzrconfiguration in
the parse treeChomsky adjunctigrusing a version of the Attach decision calldddify .

As was defined in expression (5), the probability of each state valsi‘ﬁbiehe ISBN depends on
all the latent variables and previous relevant decisions in a subset\0bps relevant positiorts:
r(t’,t). In this ISBN model for phrase structure parsing, we use the same patiatarconnections
between variables as in the neural network of Henderson (2003jeuinere are different relations
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r(t’,t) for selecting previous decision variablB$ and for selecting previous latent variablgs
Namely, the following four types of relations for selecting the previous positionr(t',t) for
latent variables’ are used:

1. Stack Contextthe last previous position with the same element on top of the stack as at
current positior.

2. Sub-Top of Stackhe last previous position where the node under the current top of itle sta
was on top of the stack.

3. Left Child of Top of Stackthe last previous position where the leftmost child of the current
stack top was on top of the stack.

4. Right Child of Top of Stackhe last previous position where the rightmost child of the current
stack top was on top of the stack.

These relations were motivated by linguistic considerations and many of tinesralso been found
useful in other parsing models (Johnson, 1998; Roark and Joht8@®). Also, this set of relations
ensures that the immediately preceding state is always included somewheres@t df connected
states. This requirement ensures that information, at least theoretieallpass between any two
states in the decision sequence, thereby avoiding any hard indepersdsnonptions. Also note that
each relation only selects at most one position (the most recent one ofrttiat kKhis ensures that
the number of such connections to a latent vector remains bounded aédatishould generalise
well across larger, more complex constituency structures.

For selecting the previous positiotis r (t',t) for decision variable®!, the following relations
are use:

1. Previous the previous positioh— 1.

2. Top the position at which the current top of the stack was shifted (if it is a termoral)
introduced (if non-terminal).

3. Last Shift the position at which the last terminal was shifted.

4. Left Terminal of Top of Stackthe position when the leftmost terminal dominated by the
current stack top was shifted.

This set includes the previous decisi@rgvious, which is important if the model does not do back-
ward reasoning, as in the feed-forward approximation. The remainiatiores pick out important
labels, part-of-speech tags, and words in the context.

We used the Penn Treebank Wall Street Journal corpus to performntpeical evaluation
of the considered approaches. It is expensive to train the IMF ajppation on the whole WSJ
corpus, so instead we both trained and tested the model only on sentélerggtio at most 15, as
in Taskar et al. (2004); Turian et al. (2006); Finkel et al. (2008)e $tandard split of the corpus
into training (9,753 sentences, 104,187 words), validation (321 seste)881 words), and testing
(603 sentences, 6,145 words) was performed.

As in Henderson (2003) and Turian and Melamed (2006) we used a lyualigilable tag-
ger (Ratnaparkhi, 1996) to provide the part-of-speech tag for eacth w the sentence. For each
tag, there is an unknown-word vocabulary item which is used for all thasels which are not
sufficiently frequent with that tag to be included individually in the vocalyl&Ye only included
a specific tag-word pair in the vocabulary if it occurred at least 20 time inr#lieing set, which
(with tag-unknown-word pairs) led to the very small vocabulary of 567Atagd pairs.
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R P R
Bikel, 2004 87.9 88.8 88.3
Taskar et al., 2004 89.1 89.1 89.1
NN method 89.1 89.2 89.1
Turian et al., 2006 89.3 89.6 89.4
IMF method 89.3 90.7 90.0
Charniak, 2000 90.0 90.2 90.1

Finkel et al., 2008, ‘feature-based’ 91.1 90.2 90.6

Table 1: Percentage labelled constituent recall (R), precision (P),inatian of both () on the
testing set.

For decoding, we use best-first search with the search space prumeddifferent ways. First,
only a fixed number of the most probable partial derivations are puedterdeach word shift opera-
tion. Secondly, the branching factor at each decision is limited. In the iexpets presented in this
chapter, we used the post-shift beam width of 10 and the branching éd&olncreasing the beam
size and the branching factor beyond these values did not significafett parsing accuracy. For
both of the models, the state vector length of 40 was used. All the paramatéiciti the NN and
IMF models were tuned on the validation set. A single best model of each gp¢hen applied to
the final testing set.

Table 1 lists the results of the NN approximation and the IMF approximataiong with re-
sults of different generative and discriminative parsing methods evdliratee same experimental
setup (Bikel, 2004; Taskar et al., 2004; Turian et al., 2006; Char2@@Q; Finkel et al., 2008%.
The IMF model improves over the baseline NN approximation, with a relatrng eeduction in
F-measure exceeding 8%. This improvement is statistically significant.

The IMF model achieves results which do not appear to be significantlreliff from the re-
sults of the best model in the list (Charniak, 2000). Although no longerobiee most accurate
parsing models on the standard WSJ parsing benchmark (including seneiall lengths), the
(Charniak, 2000) parser achieves competitive results (89.5% F-negamud is still considered a
viable approach, so the results reported here confirm the viability of odelsiolt should also be
noted that previous results for the NN approximation to ISBNs on the stand&J benchmark
(Henderson, 2003, 2004) achieved accuracies which are still corapetiiih the state of the art
(89.1% F-measure for Henderson, 2003 and 90.1% F-measure falekéem, 2004). For com-
parison, the LPCFG model of Petrov et al. (2006) achieve 89.7% F-meeasuthe standard WSJ
benchmark.

We do not report the results on our data set of the LPCFG model of Retab(2006), probably
the most relevant previous work on grammar learning (see the extendedslan in Section 8), as
it would require tuning of their split-merge EM algorithm to achieve optimal resuitehe smaller

7. Approximate training times on a standard desktop PC for the IMF and pyikbgimations were 140 and 3 hours,
respectively, and parsing times were 3 and 0.05 seconds per tekpectively. Parsing with the IMF method could
be made more efficient, for example by not requiring the numericabappations to reach convergence.

8. The results for the models of Bikel (2004) and Charniak (2000)ethand tested on sentences of length at most 15
were originally reported by Turian and Melamed (2005).
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data set. However, we note that the CRF-based model of Finkel et 8B)&be reported ‘feature-
based’ version) and the LPCFG achieves very close results wherdtiaidgested on the sentences
of length under 100 (Finkel et al., 2008) and, therefore, would beetep to demonstrate similar
results in our setting. Note also that the LPCFG decoding algorithm usesnacfoBayes risk
minimisation to optimise for the specific scoring function, whereas our model, as pacsing
methods in the literature, output the highest scoring tree (maximum a-postiecoding). In fact,
approximate Bayes risk minimisation can be used with our model and in our psesiperiments
resulted in approximately 0.5% boost in performance (Titov and Hende2606). We chose not
to use it here, as the maximum a-posteriori decoding is simpler, more widedptaccand, unlike
Bayes risk minimisation, is expected to result in self-consistent trees.

These experimental results suggest that ISBNs are an appropriate forostelictured predic-
tion. Even approximations such as those tested here, with a very straagdability assumption,
allow us to build quite accurate parsing models. We believe this provides dtrstification for
work on more accurate approximations of ISBNs.

8. Additional Related Work

Whereas graphical models are standard models for sequence pigcéssre has not been much
previous work on graphical models for the prediction of structures momgtex than sequences.
Sigmoid belief networks were used originally for character recognitiorstdmk later a Markovian
dynamic extension of this model was applied to the reinforcement learning $atllans, 2002).
However, their graphical model, approximation method, and learning meiffed substantially
from those of this paper.

When they were originally proposed, latent variable models for naturgukege parsing were
not particularly successful, demonstrating results significantly below tteestahe-art models (Kuri-
hara and Sato, 2004; Matsuzaki et al., 2005; Savova and Pesh@by,Ri@zler et al., 2002) or they
were used in combination with already state-of-the-art models (Koo and §&B®5) and demon-
strated a moderate improvement. More recently several methods (Petilov2€08; Petrov and
Klein, 2007; Liang et al., 2007), framed as grammar refinement appeeademonstrated results
similar to the best results achieved by generative models. All these appsoacnsidered exten-
sions of a classic PCFG model, which augment non-terminals of the grammar teith\ariables
(Latent-annotated PCFGs, LPCFGs). Even though marginalisation caartoeenped efficiently
by using dynamic programming, decoding under this model is NP-hard (K&tset al., 2005;
Sima’an, 1992). Instead, approximate parsing algorithms were congidere

The main reason for the improved performance of the more recent LPCR&dseis that
they address the problem that with LPCFGs it is difficult to discover theogpiatte latent variable
augmentations for non-terminals. Early LPCFG models which used straigtétit implemen-
tations of expectation maximisation algorithms did not achieve state-of-thesatts (Matsuzaki
et al., 2005; Prescher, 2005). To solve this problem the split-and-nagm@ach was considered
in Petrov et al. (2006); Petrov and Klein (2007) and Dirichlet Processsoin Liang et al. (2007).
The model of Petrov and Klein (2007) achieved the best reported fesuatsingle model parser
(90.1% F-measure). Even with the more sophisticated learning methods, ihta# @ork on
LPCFGs the number of latent annotations which are successfully leamii sompared to the
40-dimensional vectors used in our experiments with ISBNs.
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One important difference between LPCFGs and ISBNs is that in LPCFGatémt annotations
are used to expand the set of atomic labels used in a PCFG, whereasdB8tily reason with a
vector of latent features. This use of a vector space instead of atomis fabeides ISBNs with a
much larger label space with a much richer structure of similarity between Jdlaeled on shared
features. This highly structured label space allows standard gradisneut techniques to work
well even with large numbers of latent features. In contrast, learningH@FGs has required the
specialised methods discussed above and has succeeded in seanthicig more limited space
of latent annotations. These specialised methods impose a hierarchictlrgtrof similarity on
the atomic labels of LPCFGs, based on recursive binary augmentatiorsets (&splits”), but this
hierarchical structure is much less rich that the similarity structure of a veptae.

Another important difference with LPCFGs is that ISBN models do not plaioeg restrictions
on the structure of statistical dependencies between latent variablesstie context-free restric-
tion of LPCFGs. This makes ISBNs easily applicable to a much wider set bfggns. For example,
ISBNs have been applied to the dependency parsing problem (Titov emdelrson, 2007) and to
joint dependency parsing and semantic role labelling (Henderson et @8; B®smundo et al.,
2009), where in both cases they achieved state-of-the-art resutsapfitication of LPCFG mod-
els to even dependency parsing has required sophisticated gramméortreatons (Musillo and
Merlo, 2008), to which the split-and-merge training approach has nttegat successfully adapted.

The experiments reported in Henderson et al. (2008) also suggeshé¢hkitent annotations
of syntactic states are not only useful for syntactic parsing itself buta@sde helpful for other
tasks. In these experiments, semantic role labelling performance rosebly36% when latent
annotations for syntactic decision were provided, thereby indicating thdatant annotation of
syntactic parsing states helps semantic role labelling.

9. Conclusions

This paper proposes a new class of graphical models for structugdatpon problems, incremen-
tal sigmoid belief networks, and has applied it to natural language gramnnainigalSBNs allow
the structure of the graphical model to be dependent on the output s&ruthis allows the model
to directly express regularities that are local in the output structure bldcal in the input struc-
ture, making ISBNs appropriate for parsing problems. This ability suppioetgrduction of latent
variables which augment the grammatical structures annotated in the traiténghdmeby solving
a limited form of grammar induction. Exact inference with ISBNs is not tractdhlewe derive
two tractable approximations. First, it is shown that the feed-forwardaheetwork of Henderson
(2003) can be considered as a simple approximation to ISBNs. Secondgaaoturate but still
tractable approximation based on mean field theory is proposed.

Both approximation models are empirically evaluated. First, artificial experinvesits per-
formed, where both approximations significantly outperformed a basellmemean field method
achieved average relative error reduction of about 27% over thealneetwork approximation,
demonstrating that it is a more accurate approximation. Second, both apatioxas were applied
to the natural language parsing task, where the mean field method demahsigaiécantly bet-
ter results. These results are non-significantly different from thdtsestianother history-based
probabilistic model of parsing (Charniak, 2000) which is competitive with theesof-the-art for
single-model parsers. The fact that a more accurate approximationtéeadgsore accurate parser
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suggests that the ISBNs proposed here are a good abstract mogedrfomar learning. This em-
pirical result motivates further research into more accurate approxinsaifdSBNs.
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Appendix A.

This appendix presents details of computing gradients for the incremental frelshapproxima-
tion. We perform maximum likelihood estimation of the ISBN parameters, usingstiraaor of
the structure probability defined in expression (8). We focus on theriremtal mean field approxi-
mation introduced in Section 5.3. As we have shown there, estimates of thé@ualdistribution
ok (d) &~ P(d{ = d|h(t,k)) are dependent on the meai§ computed at the elementary stepk) in
the same way as the estimatg$d) in the feed-forward approximation depend on the meéris
expression (10), that is,

Dpyt ) (d) EXP(Y Wdi“tj’k>
S o Pr o (') X3 Wer it )

We use the gradient descent algorithm, so the goal of this section is tabdeisow to compute
derivatives of the log-likelihood

T)= ; ZWdtkjp.tj’k —log <§ ¢’h(t.k eXF(ZWd’JP-J )

with respect to all the model parameters. The derivativdg f with respect to model parameters
can be expressed as

Gi(d) = (15)

T

T)d
Zawd, i Zatk dx’ (16)

wherex is any model parameter, that is, entries of the weight matdc&andW. All the terms
except for are trivial to compute:

aali/il;rj) = Z Htj’k (éd‘kd - Qi(d)» (17)

t,

oL(T
a‘i;,k) :(1_6k,Kt+1 (Wd‘l ;qk Wd|>,
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K
whered;; is the Kronecker delta. Computation of the total derivati% is less straightforward.
The main challenge is that dependencqut]deor k > 1 on other model parameters cannot be ex-
pressed analytically, as we found valuesugblf by performing numerical maximisation of the ex-

pressiori_{;k (13). In the next several paragraphs we will consider only the chke-dl, but later
we will return to the simpler case &f= 1, where the computation of derivatives is equivalent to the
backpropagation algorithm in standard feed-forward neural nesvork

Note that the gradient of the log-likelihood can be easily computed in the sthndzan field
methods for SBNs (Saul and Jordan, 1999; Saul et al., 1996), evagtthey also use numeric
strategies to find optimal means. There means are selected so as to maximisatlemabupper
boundLy (4), which is used as the log-likelihodd= Ly in their approach. In static SBNs it
is feasible to perform complete maximisation of the entiravhich involves multiple backward-
forward passes through the structure of the graphical model. This leadkthe derivativev%
being equal to zero. Therefore, no error backpropagation is deedeeir case. All the derivatives
%( can be computed using variational parameters associated with the nodespoading to the
parameteix. E.g. if X is a weight of an edge then only variational parameters associated with
the variables at its ends are needed to compute the derivative. Unfefyuri@arning with the
incremental mean field approximati?n proposed in this paper is somewhat omopbex.

In order to compute derivative% we assume that maximisation 0 is done until conver-

gence, then the partial derivativesL:b;f< with respect tcp?k are equal to zero. This gives us a system
of linear equations, which describes interdependencies between teataueanst¥, the previous
meang k-1 and the weightsV:

tk

Rk = NG =In(1— @ — I~ In(@— @ £ ink?
l-li’

+Wa i — ZCAI&_l(d)Wdi =0,

for 1 <i <n, whereqf_, is the distribution over decisions computed in the same way; 3s(15),
but using meang* instead ofi{**:

i1 000605 W
5 & Phiek-1)(d) exp(3 ; Way i)

This system of equations permits the use of implicit differentiation to compute tivaties

t’k . . - — - -
%, wherez can be a weight matrix compone¥g; or a previous meapltj’k Yinvolved in ex-

pression (13). It is important to distinguighfrom X, used above, becaugecan be an arbitrary
model parameter not necessary involved in the expre$§j‘6but affecting the current meanpt%k

throughutj’k*l

q%(—l(d) =

t.k
. Equally important to distinguish partial derivativ% from the total derivatives
%, because the dependencwblf on parametez can be both direct,/ through maximisationL(&,F,
but also indirect through previous maximisation stép/), WhereL{,’k was dependent on The
relation between the total and partial derivatives can be expressed as
k t k t k k-1
dib oy ok di

dz 0z Zau‘jvk—l dz ’
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meaning that indirect dependenciesub\‘ (k > 1) on parameterg are coming through previous

meansutj’k_l. We apply the implicit differentiation theorem and obtain the vector of partiaale
t
tives with respect to a parametebD,p = aaizl, ey %} as
-1
Dot = — (Dﬁ”‘) DFtK (18)
whereDF'¥ andD,F' are Jacobians:
oF,* oF; " oF
T TS 0z
Dy Ftk = e N S
bl X IRtk
THT e a“‘n 07

Now we derive the Jacobiamh[Ftvk andD,FUK for different types of parameters The matrix
D«F¥ consists of the components
aF-Lk &ij

o Ay

+ (ZQLl(d)Wdi> <Z_6ﬁ<1(d)wdj> ) (19)

whered;; is the Kronecker delta. If we considét; as a random variable accepting val\Wgg under
distributiondf,_,, we can rewrite the Jacobidd:F'¥ as the negated sum of a positive diagonal
matrix and the covariance matig  (W). Therefore the matri®,: F'* is negative semidefinite.

Note that this matrix is the Hessian for the expresﬁ&h(lB), which implies concavity di{,’k
stated previously without proof. Similarly, the Hessian for (11) is only déffe by including output
weight covariances for all the previous elementary decision, not ontphéolast one, and therefore
expression (11) is also concave.

t.k
To conclude with the computation 83}— we computeD g1 Ftk and Dy FU:

o %qkl(d)wdiwdj

oF™ Oij
- ) 20
o o
aFiltk =8Oyt — At (d) oi + (W . At (d,)W ) t,k (21)
aWd] — M) dd( qkfl 1] di ;qkfl d’i IJJ .

t.k t.k
Now the patrtial derivativeg\b"\',—dj and% can be computed by substituting expressions (19)-(21)
into (18).

Fork=1, p}’l was shown to be equal to the sigmoid function of the weighted sum of thetparen
means as defined in (12) and (14). Therefore, we can compute thd gdartiatives ofp}’1 with
respect to other means and parameters involved in (12) and (14):

oyt

K., :O-,(rlt) ‘]'r'v
TSP
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wherea’(n}) = o(n;) (1- 0(n ))-
In order to computeL in (16), derivatives with respect to previous meaﬁ% are used to

propagate the error in a similar way to the neural network backpropagagonthm (Rumelhart
et al., 1986). We denote the total derivative of the approximate log-likedilvath respect to the

means of the latent variables Eié‘ Htk . The incrementality of the mean field algorithm guar-

antees that latent vectors of meaii$ are computed from the means of the previous elementary
steps. Therefore, valuez$k can be computed in the opposite order, propagating the information
back through the structure. Namely, the recursive formulae would be:

£ ki1
tk _ 0logg) t k-1 OHy
& —ankJr & atk’kSKt’
M ] H
Kit+1 1t
gt = S &' (nf)J.

rtr(tt) |

After computing values for all the elementary stef$, k), we can evaluate the derivatives of
the model parameters. We start with the output distribution param#fers

dI:(T) gtk “J
dWj; aWd| ZZ Wi

tk
The first term here is evaluated as defined in (17), the %ﬁns computed as explained above.

Finally, the total derivatives of the log-likelihood with respect to the paraméiiieand B{g are
found as follows

dE(T) t N
d\}rj :Z“J :Z S'i: 10-(r]i)a

t'1 s/t
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