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Abstract

We consider a sequential version of the classical bin pggaoblem in which items are received
one by one. Before the size of the next item is revealed, tbisida maker needs to decide whether
the next item is packed in the currently open bin or the birlased and a new bin is opened. If
the new item does not fit, it is lost. If a bin is closed, the ratimgy free space in the bin accounts
for a loss. The goal of the decision maker is to minimize ties laccumulated overperiods. We
present an algorithm that has a cumulative loss not mucleddngn any strategy in a finite class
of reference strategies for any sequence of items. Spdtaalian is payed to reference strategies
that use a fixed threshold at each step to decide whether aind& dpened. Some positive and
negative results are presented for this case.

Keywords: bin packing, on-line learning, prediction with expert azvi

1. Introduction

In the classicabff-line bin packing problem, an algorithm receiitmms(also calledpiece3 of size
X1,%X2,..., Xn € (0,1]. We have an infinite number of bins, each with capacity 1, and every item is to
be assigned to a bin. Further, the sum of the sizes of the items (also degot@@dssigned to any
bin cannot exceed its capacity. A bin is empty if no item is assigned to it, otherniseised. The
goal of the algorithm is to minimize the number of used bins. This is one of thecdhs®-hard
problems and heuristic and approximation algorithms have been investigatedghly, see, for
example, Coffman et al. (1997).

Another well-studied version of the problem is the so-catladine bin packing problem. Here
items arrive one by one and each itegnmust be assigned to a bin (with free space at lggst
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immediately, without any knowledge of the next pieces. In this setting the gtia¢ isame as in
the off-line problem, that is, the number of used bins is to be minimized, seexdonple, Seiden
(2002).

In both the off-line and on-line problems the algorithm has access to the barbitnary or-
der. In this paper we abandon this assumption and introduce a more restgcsgon that we call
sequential bin packingln this setting items arrive one by one (just like in the on-line problem)
but in each round the algorithm has only two possible choices: assignve iggm to the (only)
open bin or to the “next” empty bin (in this case this will be the new open bin),itents cannot
be assigned anymore to closed bins. An algorithm thus determines a seqidiicary decisions
i1,...,in Wherei; = 0 means that the next item is assigned to the open binaad means that a
new bin is opened and the next item is assigned to that bin. Of course; @, then it may happen
that the itenx; does not fit in the open bin. In that case the item is “lost.” If the decisiqr=dl then
the remaining empty space in the last closed bin is counted as a loss. Theenagsenformance
we use is the total sum of all lost items and wasted empty space.

Just as in the original bin packing problem, we may distinguish off-line antihenversions
of the sequential bin packing problem. In tb#-line sequentiabin packing problem the entire
sequencesy, ..., Xy is known to the algorithm at the outset. Note that unlike in the classical bin
packing problem, the order of the items is relevant. This problem turns owt tofputationally
significantly easier than its non-sequential counterpart. In Section 3egemtra simple algorithm
with running time ofO(n?) that minimizes the total loss in the off-line sequential bin packing
problem.

Much more interesting is the on-line variant of the sequential bin packirigjgoro Here the
itemsyx; are revealed one by onafterthe corresponding decisignhas been made. In other words,
each decision has to be made without any knowledge on the size of the itemul&tad this way,
the problem is reminiscent of an on-lipeediction problemsee Cesa-Bianchi and Lugosi (2006).
However, unlike in standard formulations of on-line prediction, here the tlos predictor suffers
depends not only on the outcomeand decisiorn; but also on the “state” defined by the fullness of
the open bin.

Our goal is to extend the usual bin packing problems to situations in whichaomkeandle only
one bin at a time, and items must be processed immediately so they cannot vimit ébianges.
To motivate the on-line sequential model, one may imagine a simple revenue meamdgeoblem
in which a decision maker has a unit storage capacity at his disposal. Angertaluct arrives in
packages of different size and after each arrival, it has to be dkwiiether the stored packages
are shipped or not. (Storage of the product is costly.) If the storedsgamshipped, the entire
storage capacity becomes available again. If they are not shipped dsefavdahe arrival of the
next package. However, if the next package is too large to fit in the remgadpen space, it is lost
(it will be stored in another warehouse).

In another example of application, a sensor collects measurements tha¢ campressed to
variable size (these are the items). The sensor communicates its measurgnsamgibg frames
of some fixed size (bins). Since it has limited memory, it cannot store more datatte frame.
To save energy, the sensor must maximize its throughput (the proportioseéil data in each
frame) and at the same time minimize data loss (this trade-off is reflected in théiokefof the
loss function).

Just like in on-line prediction, we compare the performance of an algorithimtiae best in
a pool of reference algorithms (experts). Given a seNafeference strategies, we construct a
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randomized algorithm for the sequential on-line bin packing problem thdéewaes a cumulative
loss (measured as the sum of the total wasted capacity and lost items) thatlslethe total loss
of the best strategy in the class (determined in hindsight) plus a quantity afdeeafn?/3In'/3N.

Arguably the most natural comparison class contains all algorithms that firssdgthreshold
to decide whether a new bin is opened. In other words, referencetmedare parameterized by
a real numbep € (0,1]. An expert with parametep simply decides to open a new bin whenever
the remaining free space in the open bin is less fhae call such an expert@nstant-threshold
strategy. First we point out that obtaining uniform regret bounds fisr ¢fass is difficult. We
present some impossibility results in relation to this problem. We also offer soraaldpendent
bounds for an algorithm designed to compete with the best of all constashtiid strategies, and
show that if item sizes are jittered with a certain noise then a uniform reguoetcbof the order of
n2/3In'/3n may be achieved .

The principal difficulty of the problem lies in the fact that each action of #@sion maker takes
the problem in a new “state” (determined by the remaining empty space in théoopewmhich has
an effect on future losses. Moreover, the state of the algorithm is typidéilrent from the state
of the experts which makes comparison difficult. In related work, MerthaV. €2002) considered
a similar setup in which the loss function has a “memory,” that is, the loss ofdécppedepends on
the loss of past actions. Furthermore, Even-Dar et al. (2005) antdaYu2009) considered thedbp
case where the adversarial reward function changes accordingn® fead stochastic dynamics.
However, there are several main additional difficulties in the presert ¢asst, unlike in Merhav
et al. (2002), but similarly to Even-Dar et al. (2005) and Yu et al. (200® loss function has an
unbounded memory as the state may depend on an arbitrarily long sequgast predictions.
Second, the state space is infinite (f@gl) interval) and the class of experts we compare to is also
infinite, in contrast to both of the above papers. However, the specpépies of the bin packing
problem make it possible to design a prediction strategy with small regret.

Note that themDP setting of Even-Dar et al. (2005) and Yu et al. (2009) would be a toe pes
simistic approach to our problem, as in our case there is a strong connestiiceeln the rewards in
different states, thus the absolute adversarial reward function resalioverestimated worst case.
Also, in the present case, state transitions are deterministically given bytt@nee, the previous
state, and the action of the decision maker, while in the setup of Even-DafZ2@5) and Yu et al.
(2009) transitions are stochastic and depend only on the state and tHerdetibe algorithm, but
not on the reward (or on the underlying individual sequence gengréttnreward).

We also mention here the similan-line bin packing with rejectioproblem where the algorithm
has an opportunity to reject some items and the loss function is the sum of themaftbe used
bins and the “costs” of the rejected items, see He absb¥2005). However, instead of the number
of used bins, we use the sum of idle capacities (missed or free spaces)useith bins to measure
the loss.

The following example may help explain the difference between variousowarsf the prob-
lem.

Example 1 Let the sequence of the items {0e4,0.5,0.2, 0.5,0.5,0.3,0.5,0.1). Then the cumula-
tive loss of the optimal off-line bin packing@sand it is0.4 in the case of sequential off-line bin
packing (see Figure 1). In the sequential case the third item (0.2) hasrbgsted.

1. In sequential bin packing we assume that the cost of the items coirneittetheir size. In this case the optimal
solution of bin-packing with rejection is trivially to reject all items.
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Figure 1: The difference between the optimal solutions for the off-lineseqdential off-line prob-
lems.

The rest of the paper is organized as follows. In Section 2 the problemfiised formally.
In Section 3 the complexity of the off-line sequential bin packing problem adyard. The main
results of the paper are presented in Sections 4 and 5.

2. Setup

We use a terminology borrowed from the theory of on-line prediction witleebgulvice. Thus, we
call the sequential decisions of the on-line algorighradictionsand we uséorecasteras a synonym
for algorithm.

We denote by € {0,1} the action of the forecaster at tirhéi.e., whent — 1 items have been
received). Action 0 means that the next item will be assigned to the opendbcsion 1 represents
the fact that a new bin is opened and the next item is assigned to the next lemptyote that
we assume that we start with an open empty bin, thus for any reasonabi¢hatgt, = 0, and we
will restrict our attention to such algorithms. The sequence of decisions tipéa is denoted by
Iy € {0,1}%.

Denote byg € [0, 1) the free space in the open (last) bin at time1, that is, after having placed
the itemsxy, %o, ..., X% according to the sequenteof actions. This is thetateof the forecaster.
More precisely, the state of the forecaster is defined, recursiveigilaws: As at the beginning we
have an empty birgg=1. Fort =1,2,....,n,

e § = 1-— X, when the algorithm assigns the item to the next empty bin [j.e. 1);

§ = §&_1, when the assigned item does not fit in the open bin (j.e:,0 and§_1 < X);
e § =& 1— X%, when the assigned item fits in the open bin (l¢= 0 and§_1 > ).

This may be written in a more compact form:

§ - §(|t,X{,§—l)
(1= %) + (1= 10)(§-1— {5 1%} %)

where]I{.} denotes the indicator function of the event in brackets, that is, it equalhé dvent is
true and 0 otherwise. The loss suffered by the forecaster at tasnd

(e, % | §-1),
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where the loss functiofis defined by

0, ifs>x;

(0,x]s) = { (1)

X, otherwise

and
((1,x|s) =s. (2)

The goal of the forecaster is to minimize its cumulative loss defined by
N t
Li=L= Z O(ls,Xs | Ss-1) -
s=1

In the off-line version of the problem, the entire sequexgce. ., x, is given and the solution is the
optimal sequenck; of actions
|, = argminL, .

Ine{o,1}n
In the on-line version of the problem the forecaster does not know te@sthe next items, and the
sequence of items can be completely arbitrary. We allow the forecasterdoméze its decisions,
that is, at each time instantd; is allowed to depend on a random variablevhereUs, ... U, are
i.i.d. uniformly distributed random variables j@, 1].

Since we allow the forecaster to randomize, it is important to clarify that theeesdijuence
of items are determinebeforethe forecaster starts making decisions, thakis,..,x, € (0,1] are
fixed and cannot depend on the randomizing variables. (This is thelled-ohlivious adversary
model known in the theory of sequential prediction, see, for examplea-Biesichi and Lugosi
2006.)

The performance of a sequential on-line algorithm is measured by its cuveulass. It is
natural to compare it to the cumulative loss of the off-line solutipnHowever, it is easy to see
that in general it is impossible to achieve an on-line performance that is cabipdo the optimal
solution. (This is in contrast with the non-sequential counterpart of thep&aking problem in
which there exist on-line algorithms for which the number of used bins is witlsionatant factor
of that of the optimal solution, see Seiden 2002.)

So in order to measure the performance of a sequential on-line algorithméaaingful way,
we adopt an approach extensively used in on-line prediction (thellsol¢axperts” framework).
We define a set of reference forecasters, the so-calpdrts The performance of the algorithm is
evaluated relative to this set of experts, and the goal is to perform asynafifotis well as the best
expert from the reference class.

Formally, letfe; € {0,1} be the decision of an expéttat roundt, whereE € £ andE is the
set of the experts. This set may be finite or infinite, we consider both badas. Similarly, we
denote the state of expéftwith s ¢ after thet-th item has been revealed. Then the loss of expert
at roundt is

E“E,taxt | SE,t—l)
and the cumulative loss of expdttis

n
Len= ) 4(fet,% | SEt-1)-
2
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SEQUENTIAL ON-LINE BIN PACKING PROBLEM WITH EXPERT ADVICE

Parameters: set’E of experts, state space= [0, 1), action spaceq = {0,1}, non-
negative loss functiof: (4 x (0,1]|.S) — [0,1), numbem of items.
Initialization: S =1andsgo=1forallE € E.

Foreachround=1,...,n,
(a) each expert forms its actida; € 4,

(b) the forecaster observes the actions of the experts and forms its exisioth
It € 4,

(c) the nextitem € (0, 1] is revealed;

(d) the algorithm incurs losg(l;,x | §-1) and each experE € Z incurs loss
((fet, % | sex—1). The states of the experts and the algorithm are updated.

Figure 2: Sequential on-line bin packing problem with expert advice.

The goal of the algorithm is to perform almost as well as the best expenttfie reference class
(determined in hindsight). Ideally, the normalized difference of the cumel&isses (the so-called
regref) should vanish am grows, that is, one wishes to achieve

. 1~ .
IITjogpf(Ln — nf Len) <0
with probability one, regardless of the sequence of items. This propergllé&i¢ciannan consis-
tency see Hannan (1957). The model of sequential on-line bin packing witereadvice is given
in Figure 2.

In Sections 4 and 5 we design sequential on-line bin packing algorithmectios 4 we assume
that the clas€ of experts is finite. For this case we establish a uniform regret bougakdiess of
the class and the sequence of items. In Section 5 we consider the (infiniepElexperts defined
by constant-threshold strategies. This case turns out to be considaraf@ydifficult. We show
that algorithms, similar (in some sense) to the one developed for the finite ekgpgses, cannot
work in general in this situation. We provide a data-dependent regtetcbfior a generalization
of the finite-expert algorithm of Section 4, which, in accordance with tleeipus result, does not
guarantee consistency in general. However, we show that if the itemasizgitered with certain
noise, the regret of the algorithm vanishes uniformly regardless of ibmalrsequence of items.

But before turning to the on-line problem, we show how the off-line proltambe solved by
a simple quadratic-time algorithm.

3. Sequential Off-line Bin Packing

As it is well known, most variants of the bin packing problem grehard, including bin packing
with rejection, see He andd3a (2005), and maximum resource bin packing, see Boyar et al.)(2006

94



ON-LINE SEQUENTIAL BIN PACKING

In this section we show that the sequential bin packing problem is significeasigr. Indeed, we
offer an algorithm to find the optimal sequential strategy with time compl&Xty) wheren is the
number of the items.

The key property is that after theth item has been received, thé @ssible sequences of
decisions cannot lead to more thagifferent states.

Lemma 1 For any fixed sequence of items¥, ..., X, and for everyl <t <n,
S| <t,

where
S ={s:s=s,lt€{0,1}'}
and s, ; is the state reached after receiving items.x. ,x with the decision sequente

Proof The proof goes by induction. Note that singe= 0, we always have;, 1 = 1— X3, and
therefore|$1| = 1. Now assume thats_1| <t —1. Attimet, the state of every sequence of
decisions withly = 0 belongs to the sef = {S': s’ = s—I[[s-}%,S € &1} and the state of those
with It = 1 becomes 1 x. Therefore,

S < IS +1< [S-a| +1<t
as desired. [ |

To describe a computationally efficient algorithm to comgtjteve set up a graph with the set
of possible states as a vertex set (thereC(ré) of them by Lemma 1) and we show that the shortest
path on this graph yields the optimal solution of the sequential off-line binipggkoblem.

To formalize the problem, consider a finite directed acyclic graph with a se¢ntitesV =
{v1,...,vy|} and a set of edges = {ey,...,e|}. Each vertexi = v(s, ) of the graph is defined
by a time indexy and a statey € &, and corresponds to stagereachable afteti steps. To show
the latter dependence, we will writg € §,. Two vertices(v;,v;) are connected by an edge if and
only if vi € §_1, vj € & and statev; is reachable from statg. That is, by choosing either action
0 or action 1 in state;, the new state becomes after itemx; has been placed. Each edge has a
label and a weight: the label corresponds to the action (zero or onghanekight equals the loss,
depending on the initial state, the action, and the size of the item. Figure 3 shewsoposed
graph. Moreover a sink verteyy, is introduced that is connected with all verticessin These
edges have weight equal to the loss of the final states. These lossaepalyd on the initial state
of the edges. More precisely, fov,vy|) the loss is 1§, wherey; € Sp.

Notice that there is a one to one correspondence between pathwfranv,, and possible
sequences of actions of lengthFurthermore, the total weight of each path (calculated as the sum
of the weights on the edges of the path) is equal to the loss of the corrésgeeduence of actions.
Thus, if we find a path with minimal total weight from to v),|, we also find the optimal sequence
of actions for the off-line bin packing problem. Itis well known that this bardone irO(|V |+ |E|)
time 2

Now by Lemma 1,V| < n(n+1)/2+ 1, where the additional vertex accounts for the sink.
Moreover it is easy to see th@| < n(n— 1) +n = n?. Hence the total time complexity of finding
the off-line solution iSO(n?).

2. Here we assume the simplified computational model that referringcto \esrtex (and edge) requires a constant
number of operations. In a more refined computational model this magdded with an extra |gy| factor.
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0/£(0,x1 |s1)

0/0(0, %2 |52)
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Figure 3: The graph corresponding to the off-line sequential bin pggkioblem.

4. Sequential On-line Bin Packing

In this section we study the sequential on-line bin packing problem with eageice, as described
in Section 2. We deal with two special cases. First we consider finite slagsexperts (i.e.,

reference algorithms) without any assumption on the form or structureaherts. We construct
a randomized algorithm that, with large probability, achieves a cumulative tadamger than that

of the best expert plu®(n?/3In/3N) whereN = | £| is the number of experts.

The following simple lemma is a key ingredient of the results of this section. Wsloat in
sequential on-line bin packing the cumulative loss is not sensitive to the irdigissin the sense
that the cumulative loss depends on the initial state in a minor way.

Lemma 2 Let iy,...,im € {0,1} be a fixed sequence of decisions and ket x,xm € (0,1] be a
sequence of items. Lets; € [0, 1) be two different initial states. Finally, legs..,smand g, ..., s,
denote the sequences of states generated,by ji, and x, ..., Xy Starting from initial states &
and g, respectively. Then

<gpts<2.

i““’x‘ <) —imt,xt s0)

Proof Let m’ denote the smallest index for whi¢ly = 1. Note thats_1 =9 _; for all t > .
Therefore, we have

tiait,xt 19 —iﬂiuxt s1)
= if(it,xtlﬁ_ Zlf I, % | $-1)

= zlzoxtli Z/Oxtlstl)Mlxnﬂ% (L Xt | Swr—1) -
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Now using the definition of the loss (see Equations 1 and 2), we write

t

iﬁ(it,xt |S-1) —tif(itaxt |s-1)

-1
= 21 % (Lrg  oxy = Ifsyox}) +Sw-1—Sm-1
t=

m-1
< ZL X (1= Tgs yx}) +Sw-1—Sm-1
t=

m—1
< t; X (1—Tis 4 x)) +5
< s+

where the next-to-last inequality holds becagse; < 5, andsy_1 > 0, and the last inequality
follows from the fact that

O0<sw-1 = Sw-2—Iis, ,ox, 1 Xm-1

= Sw-3— s, oy pXm-2—Lis, o, X1
m—1

= S— t; D yox )% -

Similarly,

m

t;[(it,xt |s-1) —tzm\f(it,xt |9-1) <+

and the statement follows. [ |

The following example shows that the upper bound of the lemma is tight.

Example 2 Let x = S, § < S, and ni= 2. Then

ié(it,xt |S-1) —t_ié(it,xt | S-1)

t=
= E(O,Xl ‘ %) +€(1a X2 | %) - (Z(O7X1 | &)) +€(17 X2 | Sl))
= (0,50 %) +(1x2|sp) — (£(0, 50| S0) +£(1,x2 | 0))
= s+5—(0+0).

Now we consider the on-line sequential bin packing problem when theoftia¢ algorithm is
to keep its cumulative loss close to the best in a finite set of experts. In otrdsywwe assume
that the class of experts is finite, s@| = N, but we do not assume any additional structure of the
experts. The ideas presented here will be used in Section 5 when widaraihe infinite class of
constant-threshold experts.

The proposed algorithm partitions the time peried 1, ..., ninto segments of lengtim where
m < n is a positive integer whose value will be specified later. This way we olotain|[n/m|
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segments of lengtm, and, ifm does not dividen, an extra segment of length less than At the
beginning of each segment, the algorithm selects an expert randomlyglimcrm an exponentially
weighted average distribution. During the entire segment, the algorithm fotleevadvice of the
selected expert. By changing actions so rarely, the algorithm achievedagncsynchronization
with the chosen expert, since the effect of the difference in the initial S&tesor, according to
Lemma 2. (A similar idea was used in Merhav et al. (2002) in a different goht€he algorithm
is described in Figure 4. Recall that each exfieet £ recommends an actiof ; € {0, 1} at every
time instancé=1,...,n. Since we havél experts, we may identif with the se{1,... ,N}. Thus,
experts will be indexed by the positive integees{1,...,N}. At the beginning of each segment, the
algorithm chooses expéantandomly, with probabilityp; ;, where the distributiop; = (p1t, ..., Pnit)
is specified in the algorithm. The random selection is made independentlycfosegment.

The following theorem establishes a performance bound of the algorithcallfeatL, denotes
the cumulative loss of the algorithm whilg, is that of expert.

Theorem3 Letn,N>1,n>0,1<m<n, andd € (0,1). For any sequence;x..,x, € (0,1]
of items, the cumulative lods, of the randomized strategy defined in Figure 4 satisfies for all
i=1,...,N, with probability at leasf. — d,

~ m 1 nn nm 1 2n
Lan<Lin+—In— \/—I - 2m
n< "n+nnWi.,o+8+ 6+ +

In particular, choosing wo = 1/N foralli = 1,...,N, m= (16n/In(N/8))*/3 andn = /8mInN/n,

one has 13
~ . 3 2/3141/3 N 2n
_ oL —
Lo, min Lin < 550 IS 4 nmgs) )

Proof We introduce an auxiliary quantity, the so-callegpothetical lossdefined as the loss the
algorithm would suffer if it had been in the same state as the selected expesthypothetical
loss does not depend on previous decisions of the algorithm. More g@sedlse true loss of the
algorithm at time instanceis ¢(l;,% | &) and its hypothetic loss i&l,% | s3t). Introducing the
notation

br=L(fie, % [sit)
the hypothetical loss of the algorithm is just

Ol % | syt) = (ot % | Sat) = lat -

Now it follows by a well-known result of randomized on-line prediction (s&g., Lemma 5.1 and
Corollary 4.2 in Cesa-Bianchi and Lugosi, 2006) that the hypotheticaldbthe sequential on-line
bin packing algorithm satisfies simultaneously forial 1,. .., N, with probability at least 1 9,

1 n n 1
2\6‘“ Ze.t+m<|n+ 8n+\/2In6)+m, 3)

wheren’ = [ 2 | and the lasinterm comes from bounding the difference on the last, not necessarily
complete segment. Now we may decompose the regret relative to eggdllows:

n n
En - Li7n == I/_\n - E‘]ht + thvt - Li7n .
< %)\ &
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SEQUENTIAL ON-LINE BIN PACKING ALGORITHM

Parameters: Real numben > 0 andme N™.
Initialization: §=1,s0=1andw; g > 0 are set arbitrarily for=1,...,N such that
Wi 0+Woo+---+Wno=1.
Foreachround=1,....n,
(@) If ((t—1) modm) =0 then
— calculate the updated probability distribution
Wit—1

Pit=—xN———
| Z?‘:le,t—l
fori=1,...,N;

— randomly select an expekte {1,...,N} according to the probability dis-
tributionpy = (pat, ..., PNt);

otherwise, leth = J_1.
(b) Follow the chosen expert: = fj ¢.
(c) The size of nextitenk € (0,1] is revealed.

(d) The algorithm incurs loss
E(It,Xt ‘ §—l)

and each expeitincurs loss/(fit,% | St—1). The states of the experts and the
algorithm are changed.

(e) Update the weights
Wit = Wi.tilefrl({(fi.hxt‘s.t—l)

forallie {1,...,N}.

Figure 4: Sequential on-line bin packing algorithm.

The second term on the right-hand side is bounded using (3). To boarfidsthterm, observe that
by Lemma 2,

n n n
L= 03 = le,% | S—1) — S 000, % | Sy pt-1
n t; Kt t; t ) tZl(t | Sy pt-1)

n—1 m
< m+ Z) Zl(f(lsrmtyxsmkt | Ssmirt—1) — L(Ismet: Xsmit | Stgmye_.smit—1))
==

< m+2n

where in the first inequality we bounded the difference on the last segrapatately. |
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5. Constant-threshold Experts

In this section we address the sequential on-line bin packing problem tlvbagoal is to perform
almost as well as the best in the class of all constant-threshold strategieall fRat a constant-
threshold strategy is parameterized by a nungber(0, 1] and it opens a new bin if and only if the
remaining empty space in the bin is less tipaMore precisely, if the state of the algorithm defined
by expert with parametep is spt—1, then at timet the expert's advice s, ,<py. To simplify
notation, we will refer to each expert with its parameter, and, similarly to theqare section fp;
andsp; will denote the decision of expeptat timet, and its state after the decision, respectively.
The difficulty in this setup is that there are uncountably many constant-tiiceskperts. The
simplest possibility is to discretize the class. For example, by considering thef senstant-
threshold experts with values pfin the set{1/N,2/N,...,1} and using the randomized algorithm
described in the previous section, we immediately obtain that the cumulatiet oégine algorithm,
when compared to the best constant-threshold expertitlthis set is bounded b@(n?/3 In%/3 N)
with high probability. It is natural to suspect thatNF is large, the loss of the best discretized
constant-threshold expert is not much larger than that corresponding best (unrestricted) value
of pe (0,1]. However, this is not true in general. The next lemma shows that any @arktization
is doomed to failure, at least in the worst-case sense. We dendtg.lthe cumulative loss of the
constant-threshold expert indexed py (O, 1].

Lemma 4 For all n such that ri4 is a positive integer and/2 < a < b < 1 there exists a sequence
X1,...,%y of items such that

n
sup Lpn< inf Lpn—-+3
pe(a,b] PN pgan M 4

for any values of the initial states,s € [p, 1], p € (0,1].3

Proof Given 1/2 < a < b <1, we construct a sequence with the announced property. The first
fourth of the sequence is defined Wy=1—-aandx; = --- = X,/4 = 1. If an expert asks for a new
bin after the first item then it suffers no loss foe 2, ..., n/4, thus the cumulative loss up to time
n/4 is bounded ak, /4 < 1. Note that any expert with paramefer- a is such, as the first item
always fits the actual bin, as by the conditions of the lemma X a < p < sp0, but then the empty
space becomes , — (1—a) < a< p, and so experp opens a new bin. In case of an expert with
parameteq < a, it depends on the initial state if the expert opens a new bin. If the actua laft
open after the first item then the expert suffers logs.s = n/4— 1. In particular, ifsyo = 1 then
after the first item expeq moves to statg, ; = a and leaves the bin open. Thus, after tim@ an
expert either suffers loss at leastd — 1 (then the parameter of the expert is at n&@sbr it suffers
loss at most 1, but then it is in the statg, 4 = 1. Now for the second forth of the sequence repeat
the first one, that is, Ity /4.1 = 1 —a, Xy/442 = -+ = Xy2 = 1. By the above argument we can see
that if an expert with parameter< a does not suffer large loss up to timg4 then it starts with an
empty bin and suffers a large loss in the second fourth of the segment, s> n/4— 1 for
anyq < a. On the other hand, for any expgrt- awe havel /> < 2 andsy /2 = 1.

3. Note that for any expeg € (0,1], Spt € [p,1] for allt > 1 regardless of the initial state, and so it is natural to restrict
the initial state tdp, 1], as well.
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After this point of time, lex,»,1 = 1 —b, X,/2,» = b and repeat this pair of item/4 times.
After receivingx,»,1 = 1— b, every expert with paramet@rc (a, b] keeps the bin open and there-
fore does not suffer any loss after receiving the next item. On the bémat, experts with parameter
r > b close the bin, suffer lods, and aftelxn/2+2 = bis received, once again they close the bin and
suffer loss 1- b (here we used the fact that> 1 — b since we assumell> 1/2. Thus, between
periodsn/2+ 1 andn, all experts withp € (a, b] suffer zero loss while experts with parameter b
suffer lossn/4.

Summarizing, for the sequence

1-a 1,1,...,1,1-a 1,1,....,1,1—b,b,1—b,b...,1—b,b,
—— ——

n/4—1 periods n/4—1 periods n/2 periods
we have
<2 if pe (a,b]
Lpny >n/4—1 ifp<a
>n/4 if p>b.

Lemma 4 implies that one cannot expect a small regret with respect to aiblgossnstant-
threshold experts. This is true for any algorithm that, as the one projioslee previous section,
divides time into segments and on each segment chooses a constantithesgleot and acts as
the chosen expert during the following segment. Recall that this segmentai®necessary to
make sure that the state of the algorithm gets synchronized with the chosefitoa statement is
formalized below.

Theorem 5 Consider any sequential on-line bin packing algorithm that divides time igpmeats

of lengths m,mp, ..., My >3 (wherez}‘:lm = n) such that, at the beginning of each segmentime
algorithm chooses (in a possibly randomized way) a paramater (0, 1] and follows this expert
during the segment, that is, + Ijg_,<p) for allt = 3 mj+1,..., 5\ _;m;. Then there exists

a sequence of itemg X. ., X, such that the loss of the algorithm satisfies, with probability at least
1/2,

—~ n
Ln> inf L - —6k.
n= pe(0,1] pnt 4

Proof We construct the sequence of items using the sequence shown in thepkeofima 4 as a
building block. At time 1, divide the intervdD, 1] into 2k subintervals of equal length and choose
one of these intervals uniformly at random. Denote the end points of thisahteryA;, B1]. Then
during the first segment we define the items by

1-A, 11,...,1 ,1—-A; 1,1,...,1 ,1-By,B1,1—By,B;...,1—B1,B; .
——— ——

[m/4]—1 periods [m/4|—1 periods |m /2| periods

If my is not divisible by 4, we may define the remaining (at most three) items arbitrariign,
according to Lemma 4, if the algorithm does not choose an expert to followtine interval A, By
then its loss is larger by at lea%t — 6 than that of any expert ifA;,B1]. (The extra 3 come from
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the possibility thatm, is not divisible by 4.) However, no matter how the algorithm chooses the
expert to follow, the probability that it finds the correct subinterval/igk).

To continue the construction, we now divide the interfval, Bs] into 2 intervals of equal length
and choose one at random, &y, B,]. We define the next items similarly to the first segment, but
now we make sure that the optimal constant-threshold expert falls in theahtéeyB;], that is,
the items of the second segment are defined by

1-Ay, 1,1,...,1 ,1-As, 1,1,...,1 ,1-Bp,Bp,1—By,By....,1-B,,B, .
———— ————

|mp/4]—1 periods [mp/4]—1 periods |mp/2] periods

As before, ifm, is not divisible by 4, we may define the remaining (at most three) items arbitrarily.
Once again, the excess loss of the algorithm, when compared to the bststrtehreshold expert,
is at least2 — 6 with probability 1/(2k).

We may continue the same randomized construction of the item sizes in the samer,mann
always dividing the previously chosen interval intb &jual pieces, choosing one at random, and
constructing the item sequence so that experts in the chosen intervigirafieantly better than any
other expert.

By the union bound, the probability that the forecaster never chooseothect interval is at
least 1/2, so with probability at least/R,

oo g b= 3 (6 =

as desired. [ |

The theorem above shows that if one uses a segmentation for synelimmigurposes, one
cannot expect nontrivial regret bounds that hold uniformly over@dbfble sequences of items and
for all constant-threshold experts, unless the number of segments isrfiwopl ton. It seems
unlikely that without such synchronization one may achieyr® regret. Unfortunately, we do not
have a formal proof for arbitrary algorithms (that do not divide time intovssgs).

However, one may still obtain meaningful regret bounds that dependeodata. We derive
such a bound next. We also show that under some natural restrictions @arthsizes, this result
allows us to derive regret bounds that hold uniformly over all constaeshold experts.

In order to understand the structure of the problem of constant-tHoeskigerts, it is important
to observe that on any sequencendgtfems, experts can exhibit only a finite number of different be-
haviors. In a sense, the “effective” number of experts is not too kanglethis fact may be exploited
by an algorithm.

Fort = 1,...,n we call two experts-indistinguishablgwith respect to the sequence of items
X1,...,%_1) if their decision sequences are identical up to tim@ote that any two experts are
l-indistinguishable, as all experfsstart with a decisiorf,; = 0). This property defines a nat-
ural partitioning of the class of experts into maxintahdistinguishable sets, where any two ex-
perts that belong to the same set afiadistinguishable, and experts from different sets are not
t-indistinguishable. Obviously, there are no more thamaximalt-indistinguishable sets. This
bound, although finite, is still too large to be useful. However, it turns oat the number of
maximalt-indistinguishable sets only grows at most quadratically with
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The first step in proving this fact is the next lemma that shows that the matximdistinguishable
expert sets are intervals.

Lemma6 Let1l > p >r > 0 be such that expert p and expert r are t-indistinguishable. Then
for any p> g > r expert q is t-indistinguishable from both experts p and r. Thus, the naxim
t-indistinguishable expert sets form subinterval§@®fl].

Proof By the assumption of the lemma the decision sequences of expanidr coincide, that is,
fpu= fru and Spu=Su

forallu=12,...,t. Letty,ty,... denote the time instances when exgefor expertr) assigns the
next item to the next empty bin (i.ef,, = 1 foru=ty,ty,...). If expertq also decides 1 at timg

for somek, then it will decide O fot =tx+ 1, ... tx;1 — 1 since so does expgstandp > g, and will
decide 1 at timdy, 1 asq > r. Thus the decision sequence of expecbincides with that of expert

p andr for time instances + 1,...,t.1 in this case. Since all experts start with the empty bin at
time 0, the statement of the lemma follows by induction. [ |

Based on the lemma we can identify thandistinguishable sets by their end points. @t
{d1t,...,0n.t ) denote the set of the end points after receitingl items, wheré\; = | Q| is the
number of maximat-indistinguishable sets, arh; =0 < git < Ot < --- < Ont = 1. Then the
t-indistinguishable sets afey_1¢,0xt] for k= 1,...,N;. The next result shows that the number of
maximalt-indistinguishable sets cannot grow too fast.

Lemma 7 The number of the maximal t-indistinguishable sets is at most quadratie inumber
of the items t. More precisely; N 1+t(t—1)/2foranyl <t <n.

Proof The proof is by induction. FirstN; = 1 (and@; = {1}) since the first decision of each
expert is 1. Now assume thilf < 1+t(t —1)/2 for some 1<t < n—1. When the next iten
arrives, an experp with states decides 1 in the next step if and only if<0s—x < p. There-
fore, as each expert belonging to the same indistinguishable set hasrbestsde, thé-th max-
imal (t — 1)-indistinguishable interval with state is split into two subintervals if and only if
Ok-1t-1 < S—% < Okt—1 (experts in this interval with parameters larger tisanx will form one
subset, and the ones with parameter at nsast; will form the other one). As the number of
possible states afterdecisions (the number of different possible values efx;) is at mostt by
Lemma 1, it follows that at mostintervals can be split, and $&,1 <N+t <1+t(t+1)/2, where
the second inequality holds by the induction hypothesis. |

Lemma 7 shows that the “effective” number of constant-threshold exigerts too large. This
fact makes it possible to apply our earlier algorithm for the case of finiteregfasses with reason-
able computational complexity. However, note that the number of “distingolishexperts, that is,
the number of the maximal indistinguishable sets, constantly grows with time, ahdrehstin-
guishable set contains a continuum number of experts. Thereforeatgamesdefine the algorithm
carefully. This may be done by a two-level random choice of the expiidswe choose an indis-
tinguishable expert set, then we pick one expert from this set randoméyrésulting algorithm is
given in Figure 5.
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SEQUENTIAL ON-LINE BIN PACKING ALGORITHM WITH CONSTANT-THRESHOLD
EXPERTS

Parameters:n > 0 andme N+,
Initialization: wo1=1,N;=1,Q = {1}, s10=1ands = 1.
Foreachround=1,...,n,
(@) If ((t—1) modm) =0 then
— fori=1,...,N;, compute the probabilities
Wit—1

pi,t = NI 1

— randomly select an interva} € {1,...,N;} according to the probability
distributionpy = (p1t, ..., Pnt);

— choose an expeg; uniformly from the intervalqy—1t,0s.t];
otherwise, lefp; = pi_1.
(b) Follow the decision of expef: Iy = fy ;.
(c) % € (0,1], the size of the next item is revealed.

(d) The algorithm incurs los&(lt,% | §—1) and each expenp € (0, 1] incurs loss
0(fpt,% | Spt—1), wherep € [0,1).

(e) Compute the stag of the algorithm by (1), and calculate the auxiliary weights
and states of the expert sets foriat 1,...,N; by

Wit = W, tile*nf(fn.,ms“fl)
fit(1—x) 4+ (1= fip) (5t — [{geox) %)

w
I

(f) Update the end points of the intervals:
N
Qr1=QUJ{S -1t <8t <t}
i=1
andNe1 = Q1.
(9) Assign the new states and weights to the 1)-indistinguishable sets

~ ~ Oit+1—Gi—1t+1
St+1 =8t and Wipq=Wj——— "=
Qjt —dj-1t

foralli=1,...,Neysandj=1,...,N: such thatjj_1t < Qit+1 < djt.

Figure 5: Sequential on-line bin packing algorithm with constant-threshueres.
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Up to step (e) the algorithm is essentially the same as in the case of finitely maegtsexp
The two-level random choice of the expert is performed in step (a)telm @) we update thé-
indistinguishable sets, and usually introduce new indistinguishable exgisrt Because of these
new expert sets, the update of the weightsand the states ; are performed in two steps, (e) and
(9), where the actual update is made in step (e), and reordering ofghaséties according to the
new indistinguishable sets is performed in step (g) together with the introdwétiba weights and
states for the newly formed expert sets. (Note that in step (g) the feton — gi—1t+1)/(Qjt —
gj-1t) is the proportion of the lengths of the indistinguishable intervals expert belongs to at
timest + 1 andt.)

The performance and complexity of the algorithm is given in the next theorem.

Theorem8Lletn>1n>01<m<n, andd € (0,1). For any sequenceix..,x, € (0,1] of
items, the cumulative lods, of the randomized strategy defined above satisfies for all(@ 1],
with probability at leastl — 9,

~ m 1 nn nm 1 2n
Lo <L —In—+— —In-+—+2m
n=tent Ip,n+8+\/ 2 "5t Tm "

where | is the length of the maximal n-indistinguishable interval that contains p. benethe
algorithm can be implemented with time complexity®) and space complexity (@?).

Remark 9 (i) By choosing m- n!/2 andn ~ n~1/3, the regret bound is of the order ofRIn(1/1, ).
Note that the constamn(1/1, ) reflects the difficulty of the problem (similarly to, for example, the
notion of margin in classificationph, measures the freedom in choosing an optimal decision bound-
ary, that is, an optimal threshold). If the indistinguishable interval contegrthe optimal experts is
small, then the problem is hard (and the corresponding penalty term in tiiedois large). On the
other hand, as N< 1+ n(n— 1)/2, if the classes of indistinguishable experts are more or less of
uniform size, then the corresponding term in the bound is of the ordemof\We show below that
this is always the case if there is a certain randomness in the item sizes.

(i) The way of splitting the weight between new maximal indistinguishableeddssstep (g)
could be modified in many different ways. For example, instead of asgigreights proportionally
to the length of the new intervals, one could simply give half of the weight tonsethclasses.
In this case, instead of the terim(1/l- ) for the optimal expert ) we would get in the bound
the number of splits performed until reaching the optimal maximal n-indigisngble class. The
hardness of the problem comes from the fact that the partitioning of thetexpe maximal indis-
tinguishable classes is not known in advance. If we knew it, we couldiuslysapply the algorithm
of Theorem 3 to the resulting,Nexperts (as in Theorem 4.1 of Cesa-Bianchi and Lugosi, 2006) to
obtain a uniformly good bound over all constant-threshold experts.

Proof It is easy to see that the two-level choice of the expensures that the algorithm is the
same as for the finite expert class with the experts defina@,lyith initial weightswi o = lg ,.n =
0i,n — Gi—1,n for then-indistinguishable expert class containmg. Thus, Theorem 3 can be used to
bound the regret, where the number of experts is

For the second part note that the algorithm has to store the states, thelsnthievaveights and
the probabilities, each on the order@fn?) based on Lemma 7. Concerning time complexity, the
algorithm has to update the weights and states in each round (req@ififyy computations per
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round), and has to compute the probabilities once in exestep, which require®(n®/m) compu-
tations. Thus the time complexity of the algorithnQgn®). |

Next we use Theorem 8 to show that, for many natural sequences of tteradgorithm above
guarantees a small regret uniformly for all constant-threshold expergsarticular, we show that
if item sizes are jittered by random noise, then the algorithm shown abova kesll regret
with respect to all constant-threshold experts (it is well-known that, foegd systems, intro-
ducing such random perturbations often reduces the sensitivity, aru mesults in a more uni-
form performance, for different values of the input). To this end, imgpl/ need to show that
n-indistinguishable intervals cannot be too short. We consider a simple mbeel thie item sizes
are noisy versions of an arbitrary fixed sequence. For simplicity wengssloat the noise is uni-
formly distributed but the result remains true under more general circuogstar-or illustration
purposes the simplified model is sufficient.

Theorem 10 Lety,...,yn € (0,1] be arbitrary and define the item sizes by

yi+0or ifyi+0o: € (0,1]
x=< 1 ifyi+0;>1
0 if Vi+0; <0
whereoy,...,0, are independent random variables, uniformly distributed on the intervale]
for somee > 0. If the algorithm of Figure 5 is used with parameters=n{16n/In(n°/3))%® and
8mIn(n°/¢)/n, then with probability at least — & — 1/(4n), one has

Lh— min Lpn < ——= I — 44— . 4
R L (In(n5/56)> @

Proof The result follows directly from Theorem 8 if we show that the length of Hetest maximal
n-indistinguishable interval is at mostn® with probability at least - 1/(4n) (with respect to the
distribution of the random noise). A very crude bounding suffices taghts. Simply recall from
the proof of Lemma 7 that, at tintea maximat-indistinguishable intervalp, q) is split if and only

if X € (s+ p,s+q) wheresdenotes the state of a corresponding constant-threshold expert. Note tha
(s+p,s+q) € (0,1), sincex, = 0 orx = 1 cannot split any maximatindistinguishable interval,
but any such interval can be split by an appropriately choset time t there are at mos?/2
different maximat-indistinguishable intervals and at mostifferent states, so by the union bound,
the probability that there exists a maxintdhdistinguishable interval of length at mastn® that is
split at timet is bounded by3/2 times the probability thag < (s+ p,s+q) for a fixed interval with
q— p < &/n°. Because of the assumption on hevis generated, the latter probability is bounded by
(9—p)/(2¢€) < 1/(2n°) (the truncation ok at 0 and 1 has no effect, becayse- p,s+q) C (0, 1)).
Hence, the probability that there exists a maxitriaidistinguishable interval of length at mastn®
that is split at timet is no more than®/2-1/(2n®) < 1/(4n?). Thus, using the union bound again,
the probability that during tha rounds of the game there exists any maximaddistinguishable
interval of length at most/n® that is split is at most A(4n), and therefore, with probability at least
1—1/(4n), all maximaln-indistinguishable intervals have length at legst°, as desired. [ |
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Remark 11 (i) The theorem above shows that, for example,=f Q(n~2) for some a> O (i.e., if
the noise level is not too small), then the regret with respect to the bestartrthreshold expert is
O(n?3Int/3n).

(i) A similar model can be obtained, if, instead of having perturbed itenssittee experts
observe the free space in their bins with some noise. Thus, instegd_af expert p observes
Spt—1+ Opy truncated to the interval0,1], and makes decisionf based on this value. As in
the case of Theorem 10, we assume that the noise is independent aethainis, the random
ensemblegop; }pe (01 are independent for all t. If each component is identical, thabis, = ot
for all p € (0,1], then essentially the same argument applies as in the previous theordrspan
(4) holds if the sequenacey,...,0, satisfies the assumptions of Theorem 10. On the other hand,
if the components of the vectors are also independent, then the probbemrmés more difficult, as
the t-indistinguishable classes may not be disjoint intervals anymore. tAmriadiate assumption
on the noise that still guarantees th@t) holds for this scenario is thaty; = gqy if p and g
are t-indistinguishable. Then the same argument as in Theorem 1Gwwitk the only difference
(omitting the effects of truncation {0, 1]) that here we have to estimate the probability tha&x
(s+ p+0tq,S+q-+ 0 q) for a fixed x instead of estimating the probability that& (s+ p,s+q)
with a randomizedx However, it is easy to see that the same bound holds in both cases.

Finally, we present a simple example that reveals that the loss of the bestexpbe arbitrarily
far from that of the optimal sequential off-line packing.

Example 3 Let the sequence of items be

(e,1-€,¢1-¢,...,6,1—-€,€11...,1),
—~— N—_——

2k k

where the number of items issn3k+1 and0 < € < 1/2. An optimal sequential off-line packing

is achieved if we drop any of tleeterms; then the total loss & In contrast to this, the loss of any
constant-threshold expert is— € + k independently of the choice of the parameter p. Namely, if
p < 1-—¢ethen the loss i for the first2k items, but after the algorithm is stuck and suffefsk—¢
loss. If p> 1—¢, then the loss is k for the fir&k items and after that — € for the rest of the
sequence.

6. Conclusions

In this paper we provide an extension of the classical bin packing prolitearson-line sequential
scenario. In this setting items are received one by one, and before thefdize next item is
revealed, the decision maker needs to decide whether the next item islpa¢ke currently open
bin or the bin is closed and a new bin is opened. If the new item does not filpitisIf a bin is
closed, the remaining free space in the bin accounts for a loss. Thefdgbalaecision maker is to
minimize the loss accumulated oveperiods.

We give an algorithm that has a cumulative loss not much larger than anysknitd reference
algorithms. We also study in detail the case when the class of referentegssacontains all
constant-threshold experts. We prove some negative results, shoatngishhard to compete with
the overall best constant-threshold expert if no assumption is imposect aienh sizes. We also
derive data-dependent regret bounds and show that under somessulth@ations on the data the
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cumulative loss can be made not much larger than that of any strategy ésaa Gised threshold

at each step to decide whether a new bin is opened. An interesting a$peetproblem is that

the loss function has an (unbounded) memory. The presented solutiprenréhe fact that one

can “synchronize” the loss function in the sense that no matter in what statga@ithm is started,

its loss may change only by a small additive constant. The result for ca+ibtashold experts is
obtained by a covering of the uncountable set of constant-threshatdtexgpich that the cardinality
of the chosen finite set of experts grows only quadratically with the seguength. The approach
in the paper can easily be extended to any control problem where theulostioh has such a
synchronizable property.
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