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Abstract

Many structured information extraction tasks employ azillee graphical models that capture inter-
instance associativity by coupling them with various cliquotentials. We propose tractable fam-
ilies of such potentials that are invariant under permategtiof their arguments, and call them
symmetric clique potentialdMe present three families of symmetric potentialsax, sum, and
MAJORITY.

We propose cluster message passing for collective inferefith symmetric clique potentials,
and present message computation algorithms tailored to potentials. Our first message com-
putation algorithm, calledi-pass, is sub-quadratic in the clique size, outputs exassatges for
MAX, and compute%-approximate messages for Potts, a popular member sfitlfamily. Em-
pirically, it is upto two orders of magnitude faster thanstixig algorithms based on graph-cuts or
belief propagation. Our second algorithm, based on Lagaarmglaxation, operates omJORITY
potentials and provides close to exact solutions whiledéivo orders of magnitude faster. We
show that the cluster message passing framework is moreiped, accurate and converges faster
than competing approaches.

We extend our collective inference framework to exploitoasativity of more generaintra-
domain propertiesf instance labelings, which opens up interesting apptinatin domain adaptation.
Our approach leads to significant error reduction on unseemahs without incurring any over-
head of model retraining.

Keywords: graphical models, collective inference, clique potestialuster graphs, message
passing

1. Introduction

Markov Random Fields (MRFs) are the models of choice in various stedtinformation extrac-
tion (IE) tasks such as part-of-speech tagging, NP-chunking, tgriesgtation, and named entity
recognition. The goal of IE is to mark each token in a sentence with a labeldrdiscrete set, like
Person, Location, and Other. As illustrated in Figure 1(c), the basic M&&ation model defines
edge potentials between labels of adjacent words to capture first-apendencies (Lafferty et al.,
2001). The resulting chain model allows tractable exact inference thairguting the maximum
a-posteriori (MAP) labeling of the sentence is easy.
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Apart from traditional settings, IE is now being increasingly used in marty seenarios, such
as guery-driven extraction (Gupta and Sarawagi, 2009; Carlsdn €040) and constructing on-
the-fly relations from semi-structured web sources (Elmeleegy et al.) 2B@8vever these setups
are characterized by limited training data, which restricts the robustnese oéshlting MRFs
during deployment. One promising way to increase the robustness of Mirkg dleployment
is to strengthen the first-order dependencies of the model with extra &mygrdependencies ,
resulting in more robust labelings. The goal of this paper is to exploit longerdependencies in a
principled manner.

There has been a lot of work on capturing long-range dependeneiegdn labels of non-
adjacent words. This typically includes dependencies of the form—if antq@eats in a document,
then the labels of the repetitions should ideally be the same (Sutton and McCallg#y BLinescu
and Mooney, 2004; Krishnan and Manning, 2006; Finkel et al., 200%)igure 1(d), we show
an example where the extra dotted edges join unigram recurrencesloBgeatange dependencies
are termedhssociativesince they introduce positive couplings between labels of token pairst Apa
from textual tokens, associative dependencies have also been ekplhite labeling documents
(Lu and Getoor, 2003; Chakrabarti et al., 1998), image pixels (Tagkar, 2004), and annotating
Web documents (Kulkarni et al., 2009). Due to these couplings, MAPané&eris done collectively
across all sentences so as to maximize the sum of sentence-specific gdriga associative
potentials. This joint MAP computation task is traditionally caleadlective inference

Previous work on collective inference can be broadly classified into ttegories. The first
category defines a separate associative potential over every irteamdasedge (i.e., dotted edge
in Figure 1(d)). Inference on such graphs is performed by viewing & graphical model with
pairwise potentials. A variety of generic approximation algorithms have bsed 1o solve this
typically intractable inference task, including Loopy Belief propagationn@gcu and Mooney,
2004; Sutton and McCallum, 2004), and Gibbs sampling (Finkel et al., 200&)second category
defines an associative potential for each clique that is created frorepagtitions of a unigram
and the potentials can take more general forms like the Majority function (#arskand Manning,
2006). Collective inference on this category of models is performed Ustad search algorithms
such as Iterative Conditional Mode fitting (ICM) (Lu and Getoor, 2008aksabarti et al., 1998) or
two stage algorithms (Krishnan and Manning, 2006).

This paper unifies various collective extraction tasks with different fayfresssociative poten-
tials under a single framework. We do this by employing a cluster graphsepiagion of the collec-
tive model. Figure 1(e) illustrates the cluster graph for our toy exampleclister graph comprises
of one cluster per MRF-instance, and one cluster per clique with its pamegg associative po-
tential. As in the traditional collective extraction models, we assume that a clajoprses of all
the occurrences of a particular token. We emphasize that instead ofrslfstehain models, the
framework can also define clusters for any tractable component, swichipartite matching or an
alignment, but since our interest is in |E tasks, we shall focus on chain models

Collective inference in our model then simply corresponds to messagmg@asshis cluster
graph. This view of collective inference offers several advantages earlier approaches. First,
it allows us to plug in and study various clique potentials cleanly under the sastercmessage
passing umbrella. Second, it allows us to exploit special properties oktueiative potentials to
design combinatorial algorithms that are both more accurate and more ¢éfflidenexisting al-
gorithms. Specifically, we show that most associative potentials used iticeracesymmetric
clique potentials. Symmetric clique potentials are invariant under any permutation of their argu-
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ments. So the value of a symmetric potential depends only on the counts of itstdistjoments,
and not their position in the clique. For example in Figure 1(d), the clique paten ‘Iraq’ would
give a low score if its end vertices had different labels, regardlesdiahwiraq’ vertex gets what
label. We present three families of symmetric clique potentials that capturedsbatiativity in
different ways—mAX, suM (which subsumes the popular Potts potential), edORITY. The
most crucial component of the collective inference problem is then toeaftlg compute outgoing
messages from clique clusters governed by symmetric potentials. We deisatalifproblem as
clique inference

1.1 Contributions

We show that the overall collective inference problem is intractable ewahé case of two labels.
We therefore concentrate on designing efficient and accurate megsasgjag algorithms on our
special cluster graph. We present a suite of efficient combinatoriatilgw tailored to specific
symmetric clique potentials for the clique inference sub-problem. We devisethbinatorial al-
gorithm calledna-pass that computes exact outgoing messages for cliquesmwithpotentials, and
also for any arbitrary symmetric clique potential over two labels. We showothgtss provides

a %—approximation for clique inference with the well-known and NP-hard Paitsrgial with the
sum family. We show that this analysis is tight, and that the corresponding cligeeeimée bound

by alternative schemes lilee-expansion, LP-rounding, TRW-S and ICM are eitl%elor at best lo-
cally optimal. Further, the runtime of-pass iSO(mnlogn) wheren is the clique size, andhis the
number of labels. We also show tliajpass can be generalized to provide a better approximation of
%, but with a runtime oD(mPnlogn). Alternative clique inference approaches such as the graph-cut
algorithm of Boykov et al. (2001) and the tree-reweighted messagagd3RWS) algorithm of
Kolmogorov (2006) are quadratic m We present a new Lagrangian-relaxation based algorithm,
called LR, forMAJORITY potentials. The LR algorithm is nearly exact in practice but is usually two
orders of magnitude faster than an exact LP-based algorithm.

Our experiments show that computing a rich set of messages leads to siglyificare accuracy
gains over other collective inference approaches that do not comyehensessages, for example,
Krishnan and Manning (2006). We also show that decomposing the prahler the cluster graph
and employing fast message computation algorithms helps our collectiveicéeseheme converge
one-order faster than alternatives like loopy belief propagation. Irt,ske show that it makes more
sense to compute messages at a cluster level, and we provide fast aradeaatgorithms to do so.

We then extend our collective inference framework to capture assatiaiiva more general
kind than just labels of unigram repetitions. We encourage associatiptppértiesof labelings of
records appearing as a group. We apply this framework to domain adaptaiiere a model trained
on one or more domains is deployed on a different but related domainx&mpde, a model trained
for extracting fields of a bibliographic records is deployed on all rezoaining from the homepage
of a single author. The bibliographic entries from the same author’s ptiblisehomepage would
predominantly have the same style, such as order of labels, say Title follgwaathor(s) followed
by Venue, or the HTML tag before a Title. While we do not know the propeatyes across the
records apriori, we do know that they will be largely unimodal acrossrosowithin a given domain.
We use this collective signal to couple together the labelings of intra-domeamds and show
how our collective inference framework naturally extends to this sceaadgprovides significant
reduction in error.
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War in Iraq continues..

US troops in Iraq suffered..

..coalition troops enter Irag.. o o o o o @ o o
(a) Input sentences (b) Base Model (c) Structured Model (MRF)
e @ @
o \ @
o @
(d) Collective Model (e) Cluster graph for the collective model

Figure 1: Various models for named-entity recognition illustrated on a smalusorFigure 1(e)
shows the cluster graph for the collective model of (d) with one clusteispetence
(shown as flat chains), and one cluster per associative clique (slohig circles).

At this point, we note that our previous work (Gupta et al., 2007) focysiedarily on thea-
pass algorithm along with a sketch of some of its properties. This papemnsesdetailed treatment
of the algorithm and its generalized version, with rigorous proofs of thmiraimation bounds,
including some new bounds for a variant of the clique inference objewiitlePotts potential. In
addition, new material in this paper includes the LR algorithm fomlheoRITY potential, exten-
sion of our framework to include properties-based associativity, andriealpstudies of various
collective inference techniques.

We also note that subsequent to our work (Gupta et al., 2007), theleebasan abundance of
research on higher order clique potentials in last few years, primarilydgdamputer vision com-
munity. While their applications and basic graph structure are differeitts(gs chains), many of
their ideas are highly relevant—either in terms of special algorithms for cligledtive inference
(Komodakis et al., 2007a; Komodakis and Paragios, 2009; Kumar andZ0f¥8a; Werner, 2008),
reduction of clique potentials to pairwise potentials (Kohli et al., 2009; Istak&009), and special
families of clique potentials (Potetz and Lee, 2008; Rother et al., 2009w eatlal., 2010). We will
present theoretical and empirical comparisons and draw parallels witblévamnt schemes later on
in this paper.

1.2 Outline

In Section 2, we present the MRF model for extraction and define the tedlécference problem

in the traditional setup of unigrams. We show that even with this setup, coienference remains
NP-hard. In Section 3, we discuss the cluster message passing algaritboiléctive inference,
and introduce thelique inferencesub-problem which formalizes the task of computing outbound
messages from clique clusters. Then in Section 4, we describeathesum, andMAJORITY fami-

lies of symmetric potentials. In Section 5 we presenth@ass and LR clique inference algorithms,
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and analyze their approximation quality. In Section 6, we extend our frarkevaapture more
general associative properties. Section 7 contains experimental rektlitee types: (a) quality
of the a-pass and LR algorithms; (b) effect of modeling more general assaeiatoperties in a
domain adaptation task; and (c) collective inference via cluster messsgjagas alternatives. Fi-
nally, Section 8 discusses prior art and Section 9 contains conclusidrs discussion of future
work.

2. Collective Inference with MRFs

We now review the basic first-order MRF model for information extractiod,taen formally define
the collective inference problem over various coupled MRFs. We densémtence by bolk, and
its labeling vector by. Consequentlyg andy; denote tha'" token inx and its label respectively.
The MRF defines a log-linear model parameterized by a weight vegterhere the conditional
probability of a labeling is given by:

logP(y[x,w) = ¥ @ (¥, Y%i-1:%W) — l0gZa.

|
Here@ (yi,yi—1; W) is the log of the potential on the edge between tokemsli — 1, These potentials
are local, that is, they depend only on the labels of the edge arf, lsgthe normalization factor.
During inference, we compute the most probable labelirg of

argmasiog P(y[x,w) = arg rgaxzcn(yi,yi_l;x,w).
|

If there arempossible labels at each token, antbkens inx, then exact inference can be done using
max-product message passingdmn?) time.

We now move to the collective model whose toy example is illustrated in Figurelléthhere
beN sentence$x’, ..., xN}. Correspondingly, we haw conditional distribution®(y*|x¥,w), k=
1,...,N. We use the shorthargf(y&, y¥ ,) to refer tog(yk, y¢ ;;xK w).

Lett denote a token that repeats across the sentences, andégtote the set of all such tokens.
For a repeating toke let D(t) be the set of all (sentence-id, token-id) locations where it occurs in
theN sentences, that if)(t) = {(k,i)|X* =t}. We express the conformance in the label assigned to
positions inD(t) with a higher order clique potentialt({y}‘}(k,i)@(t)). Our collective MRF model
that couples sentences using unigrams is then given by (up to a normalizatistant):

N
logP({y* Lo (XML, w) ~ 5 logPY X w) + 3 C({M}kien)) (1)
k=1 teT

Q

N [X
(Z Z@(%Jﬁl)) + 5 G wiren))-

k=1i= teT

The clique potential Chas two important properties: First, it is invariant under any permutation

of its arguments—that is, it is aymmetricfunction of its input. Thus, if there arm possible
labels, we can represent the arguments witlresin histogram. For example, ih= 3 and input
is {1,2,1,1,2,3,2}, then G(S) depends on the 3-bin histogram with value8,3. Second, Cis
associative—that is, it favors agreement of labels in its argument set, and it maximized alhe
arguments have the same label.
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All collective extraction methods proposed in the literature fit the above freame The earliest
and the most popular collective model used associative potentials ovgrmpareof occurrences of
t (Sutton and McCallum, 2004; Finkel et al., 2005). This pairwise potentialanRotts potential—1
if the pair had matching labels and 0 otherwise. Clearly, we can define aoyajabe G that mimics
this behavior while staying symmetric. Consider the clique potential:

CG(WIkheDth= 5 3y =V).

(ki), (I.1)eD(t)

This is equivalent to all the pairwise potentials forAlso, using the histogram view, this can be
re-written up to a constant &', nZ, whereny is the bin count for labed in the histogram cor-
responding tgy¥|(k,i) € D(t)}. Other known collective models like the ones proposed by Lu and
Getoor (2003) and Krishnan and Manning (2006) can also be cagf the@riMajority’ symmetric
clique potential as we shall see in later sections.

Having defined our collective model, and shown that it subsumes poplilectoe models, we
are ready to define the collective inference objective.

Definition 1 (Collective Inference)Collective inference is the task of finding labelings. .., yN
that jointly maximize the probability of the collective model (Equation 1):

arg max (Z Xzi(d( YOV 1) ) +> C({¥ Y kirenrn))- (2)

k=1i teT

In general terms, collective inference corresponds to labeling thesrudaegeneric cyclic graph.
However, our graph has a special structure—it is composed of chaihdigues, and although the
intra-chain edge potentiatgcan be arbitrary, the clique potentials are associative and symmetric.
However we next prove that even in this setup, collective inference ibaue.

Theorem 2 The collective inference problem is NP-hard even with just two labels.

Proof We reduce the well-known NP-hard problem of finding MAX-CUTSs in apitaary graphG
to our collective inference problem (called CI). For each nodeG define a 2-node chaim u; in
Cl where each node can take binary labels and with edge potehtial/) = Md(y #Y). Mis a
large positive number 2E, whereE is the number of edges i@. For an edgéu,v) € G, we add
three cliqgues{uy,vi), (uz,v2) and(uz,v1). All three clique potentials are;Qy,y'}) =d(y=Y).

The key observation is th& has a cut of size> kiff Cl has a map score of Mn+ E + k where
nis the number of nodes iG.

SupposeG has a cut(A, B) of size > k. Define a labeling in CI where all variables A =
{vilve A} U{v,|v € B} are labeled 0 and the reBt are labeled 1. Then for everyc G, (uz,u)
are labeled differently, thus the total contribution from the edge potentialsrwdttains of Cl is
Mn. For an edg€u,v) € G that is part of the cutA,B) with u € Ajv € B, two cliques(uz, V)
and(uz,v1) have both their arguments labeled the same whereas for all other edgeserdf/the
cliques(us,v1) reaches such conformance. Thus, the total contribution from cliquatsiteis
E + k. The converse holds the same way. Siktes sufficiently large, the edgeus,uy) in CI will
always have both ends labeled differently. So given a labeling in Cl analefine a cut ilG by the
subset of verticesg for which v, is labeled 0 in CI.
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At this point we note that our collective inference objective is related towarmbodies of work
on joint inference, primarily in computer vision tasks. For the sake of coityime defer our
discussion of all related work to Section 8 and instead present our frarkdar maximizing the
collective inference objective.

3. Cluster Graph based Collective Inference Framework

Having established that optimizing the objective in Equation 2 is NP-hard, atueah choice for
approximating it is ordinary pairwise belief propagation on the collectivplgycal model. This
involves passing messages along edges inside the chains, as well athelohgue edges. How-
ever this approach is not suitable due to many reasons. First, some symrotdritigis like the
Majority potential cannot be decomposed along the clique edges, so wetaompute the cor-
responding messages. Second, the approach does not exploit¢is spure of the clusters and
the symmetric potentials. Third, this approach is not tenable if we wish to exterfthtnework to
capture associativities of more general properties of the kind discusSexttion 6.

Hence we adopt message passing on a special cluster graph whsreleia and clique cor-
responds to a cluster. The clique cluster for a unigram is adjacent to alh#nes that contain that
unigram, as shown via singleton separator vertices in Figure 1(e). Tinis sEmessage passing
on the cluster graph allows us to exploit potential-specific algorithms at thessliqmd at the same
time work with any arbitrary symmetric clique potentials. Cluster graphs haveus=sl effectively
for message passing elsewhere as well (Yedidia et al., 2003; Dudhi20@v).

Let m_; andm_,x denote message vectors from chiito an incident cliqué and vice-versa.
A chain is said to be incident on a clique if there exists a positionchaink which matches term
t, thatis,(k, j) € D(t). We assume thdd(t) is created such that from any chain only one position
belongs to it. We next discuss how these messages are computed.

3.1 Message from an Instance to a Clique

The messagm_.t(y) for a(k, j) € D(t) is given by:

|X]

Mt (y) = max (Z(Pk (VS V) m’—>k(ylj<'))-

t’;éteff,(k,j’)eD(t’)

To computemy_,;(y), we need to absorb the incoming messages from other incident ctigges
and do the maximization while freezing the label of positjdn chainktoy for a(k, j) € D(t). A
cliquet’ is incident to chairk via only a singleton vertex so we can easily absorb the message
by including it in the node potential of this vertex. After absorptiog,,; can be computed using
the same inference algorithm applicable to the chain.
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3.2 Message from a Clique to an Instance

The more interesting message computation is thatrfofi given a(k, j) € D(t). Let the cliquet
haven vertices. Then the message computation can be written as:

m_k(y)= ~ max > Mesi(W) +CG{y - ¥n})- 3)
(Y17Yk:y7)’n) (k,7]/)€D(t) k/#k

The maximization in Equation 3 can be re-written as

~Mely)+ max ( 3 mmyk/)+q<{y1,...,yn}>). (4)
) \(k,iep)

The maximization term is an instance of the geneligue inference problerdefined as:

Definition 3 (Clique Inference) Given a clique over n vertices, with a symmetric clique potential
C(y1,...,¥n), and vertex potentialg;, for all j < n and labels y. Compute a labeling of the clique
vertices that maximizes:

n
max ivi +C(y1,... . 5
ViV glq’ljyj + (YL 7Yn) ( )
Thus the second term in Equation 4 can be seen as clique inferencetipglefi, = m;_(y) and

C £ C;. To computam_,«(y), we can solve the clique inference problem with the easily enforceable
constraintyy = y. From now on, we refer to outbound message computation at the cliquibgLees ¢
inference.

4. Symmetric Clique Potentials

Having established cluster message passing as our collective inferaackgmn, and clique infer-
ence as our message computation tool, we turn our attention towards vaailiss of symmetric
clique potentials. As seen in Section 2, these associative clique potenti@sddeply on the
histogram of label countgny|y = 1,...,m} over the cliqueny being the number of clique vertices
labeledy. Thus for ease of notation, we will denote the arguments of a symmetric pb@&nitia ei-
ther the vertex labelg = (y1,...,yn) or by its corresponding count histograrty;) = (ng,...,Nm).
Here we clarify thah is used to denote the entire count histogragptp denote the count for labg|
while n denotes the clique size. An associative symmetric clique potential is thus maxiwtized
ny = n for somey, that is, one label is given to all the clique vertices.

We consider specific families of clique potentials, many of which are currestd in real-life
tasks. In Section 5 we will look at various potential-specific exact andbappate clique inference
algorithms that exploit the specific structure of the potential at a clique.

In particular, we consider the three types of symmetric clique potentials listeabie T. They
differ in the manner in which they reward skew in the count histognam

4.1 maXx Clique Potentials
These clique potentials are of the form:

C(na,...,Nm) = m;';ley(ny).
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Name Form Remarks

MAX max, fy(ny) fy is @ non-decreasing function.

SUM Yy fy(ny) fy non-decreasing. Includes Pott3 5, nZ.
MAJORITY | fa(n), wherea = argmayny A popular form isfa(n) = 5, Wayny.

Table 1: Three kinds of symmetric clique potentials considered in this paper(n,,...,ny) de-
notes the counts of various labels among the clique vertices.

for arbitrary non-decreasing functiorig When fy(ny) £ ny, we get themakesparelique potential
which has roots in the job-scheduling literature. This potential dependsoonilye biggest label
count and ignores the other labels. Truncated version of this potentialdsen recently used in
computer vision (Kohli et al., 2009).

In Section 5.1, we present tloepass algorithm that computes messages/ox clique poten-
tials exactly inO(mnlogn) time. MAX potentials are tractable and relatively simpler potentials, but
most importantly, they provide key insights to deal with the more comgplex potentials.

4.2 sum Clique Potentials

SuM clique potentials are of the form:

C(ng,...,nm) = > fy(ny).
y
This family of potentials includes functions that aggregate the histogram@kewbins, for exam-
ple, the entropy potential wherg(ny) O nylogny. One very interesting member is the case when
the well-known Potts model is applied homogeneously on all edges of a cliguie. > 0 be the
pairwise reward of assigning the same label to two nodes of an edgeuifimeation of these terms
over a clique is equivalent (up to a constant) to the clique potential:

CPONNy,...,Nm) =AY Nj.
y

This corresponds to the gini entropy of the histogram. We will show that lihaecinference
problem is NP-hard with the above potential and provic%é-approximation in Section 5.
We note that the traditional usage of Potts is in a minimization setting, that is, edgps-a
nalized by some costif their end vertices are labeled differently. The corresponding castore
of Potts is then €M (y1,...,yny) £ Yy -i0(Yi #Yj). Itis easy to see that these two versions are
related by:
CPOS(y1, ..., ymA) = An2 — C™M(yy, ... yn; 2M).

We show that our algorithm provide%aapproximation for the minimization version of the problem.

4.3 MAJORITY Clique Potentials

A MAJORITY potential is defined as:

C(ny,...,Nm) = fa(n), a=argmay n. (6)
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An important special subclass is the linear majority potentials defined as:

CY = 3 wayny, &= argmay ny.
y

This potential has been used for a variety of tasks such as link-basesificktion of web-pages
(Lu and Getoor, 2003) and named-entity extraction (Krishnan and Mgna@06). The role of the
parametersvyy is to capture the co-existence of some label pairs in the same clique. Caiegiste
allows us to downplay ‘strict associativity’ viz. it permits a few cliques vedite have similar
but not necessarily the same labels. For example, consider a clique roadedcurrences of the
unigram ‘America’. However, some occurrences of America cormedo Location, while others
might correspond to an Organization, say Bank of America. Also, it isfara location name
to be shared with a person name. This can be captured by allowing a habherofwgy for the
(Location, Organization) pair than for the (Location, Person) pair.

Unlike Potts potentialMAJORITY potential cannot be represented using edge potentials. We
will present an exact polynomial time algorithm and several efficientegprations in Section 5.3.

5. Algorithms for Clique Inference

We will useF(y1,...,yn) to denote the clique inference objective in Equation 5. As short-hand,
we will denoteF (y1,...,¥n) by F(y) = @(y) + C(y), wherey(y) is the vertex score (i.e., node
potential) of the clique labeling and the second term is the clique score (i.e., clique potential).
WIlog assume that all the vertex termpg are positive. Otherwise a constant can be added to all of
them and that will not affect the maximization. The MAP clique labeling will beaded byy*, and

¥ will denote a possibly sub-optimal labeling.

We show that the clique inference is easyday C() with just two labels and in Section 5.1 we
present an exact algorithm callagpass for this case. We show that the same algorithm generalizes
to give an exact solution fanax potentials. We address tis&m andMAJORITY clique potentials
respectively in Sections 5.2 and 5.3. Finally, in Section 5.4 we show how tadxite clique
inference algorithms to efficiently batch the computation of multiple max-marginals.

5.1 a-pass Algorithm

We begin withMmAX potentials. Recall that ®mAx potential is of the form (h(y)) = max, fy(ny).
We propose an exact inference procedure callgriss (Algorithm 1) for such potentials.

The a-pass algorithm guesses that the dominant labgf iis a, with a count ofk. Of course
we do not knowa or k so all (a, k) combinations are tried out. For eagn k) combinationa-pass
computes the bestvertices to assign the label Thesek vertices are obtained by sorting all the
vertices according to the criteniay — maxg_.q P g, and picking the topevertices. Every remaining
vertexu is labeled with the best nom-label as per the vertex score, that is, with arg .
Let §°k denote the clique labeling thus obtained in thiek)!" combination. Trying out al(a, k)
combinationsp-pass returns thg”k whose scoré (§°K) is the highest.

It is straightforward to see that-pass runs irO(mnlogn) time by incrementally computing
F (9°K) from F (9°1), that is, for eactn, we can sort the vertices just once forlak=1,...,n.
For clique potentials that are decomposable over the edges, as in Pottsntimeeris much better
than ordinary belief propagation, which would c@gin?).

We now look at properties af-pass.
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Input: Vertex scoreg, Clique Potential C
Output: Labelingy
Best =—oo;
foreachlabela € {1,...,m} do
Sort the vertices in descending order according to the mgtgi— maxg.q Y g;
foreachk e {1,...,n} do
Assign the firsk sorted vertices the labal;
Assign the remaining vertices their individual best rootabel;
s+ score of this labeling undét();
if s> Bestthen
Best+s;

y < current labeling;
end

end
end

return V;
Algorithm 1: Thea-pass algorithm

Claim 5.1 Assignmenj®* has the maximum vertex score overyaivhere k vertices are assigned
label a, that is, P(§°K) = max;., ) —kW(Y).

Claim 5.2 For MAX potentials, Gy%K) > fq(K).

Proof Labela has a count ok and themax potential considers the maximum over all label counts,
which is at leask. |

Theorem 4 Thea-pass algorithm solves the clique inference problem exactlyfor clique po-
tentials in Qmnlogn) time.

Proof Lety* be the true MAP and leB = argmax fy(ny(y*)), £ =ng(y*). Lety be the labeling
returned bya-pass. We have:

FO) = max  F(99)

1<a<m,1<k<n

|
M
—~
y &>
>
o~
S—

> W)+ fg(¢) (by Claim5.2

y
y*)+C(y*) (byClaim5.])
y

|
Although we had initially designed the-pass algorithm fomAX potentials, a similar argu-

ment can be used to show thedpass performs exact clique inference éowy arbitrary symmetric
potential when we have two labels.

Claim 5.3 a-pass is exact for arbitrary symmetric potentials over two labels.
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Proof Let the MAP y* have label count$; andn—n;, and a vertex score afi(y*). Lety
be the labeling returned by-pass. Then we get(y) > F(§i™M) = ¢(§1™) +C(ng,n—ng) >
W(y*)+C(n,n—np) = F(y*). SinceC is arbitrary, the result follows. [ |

We also note that in some real-life tasks the vertex terms tend to heavily dominatiétre
term. In such a case too-pass will provide an exact solution. This follows immediately from
Claim 5.1 and the observation tHaty) ~ Y(y).

5.2 Clique Inference for sum Potentials

We focus on the Potts potential, the most popular member ofthe family. Potts potential is
given by C°"Y(y) = A 3, nZ and the clique inference objective is:

max > iy, FAY ng. 7)
n =1 y

In the above\ > 0 since we are interested in the associative case which encouragemagte
among labels. It is well known that inference with Potts potentials over gegeaphs, is NP-hard
(Boykov et al., 2001) when number of labelsi2 even withA > 0. So we will first show that the
task remains NP-hard even for cliques. Then, we will provedhpass achieves an approximation
ratio of ‘g‘, followed by a more complex proof for a better and tight approximation ratigoi/ve
will then generalize the-pass algorithm, which will result in an improved ratio %)ht a cost of
higher runtime. In contrast, the-expansion algorithm of Boykov et al. (2001) will be shown to
have a ratio of only.

Theorem 5 When Qy) =AY, nf,,)\ > 0, clique inference is NP-hard.

Proof We prove hardness by reduction from the NP-compietact Cover by 3-sefzroblem (Pa-
padimitriou and Steiglitz, 1982). In an instance of Exact Cover by 3-setgres given a universe

U of elements, a s&d of subsets ol where each subset has three elements, and the goal is to find
S C Sthat coverdJ, while minimizing |S|. We create an instance of clique inference as follows.
We let elements df) correspond to vertices, and each se$io a label. Assignpy = 2nA if ele-

menti belongs to sey, and zero otherwise (s&t> 0 arbitrarily). Consider the problem of deciding

if exactly 3 out of m subsets covéd. The MAP score in the constructed clique inference instance
will be (2n?+ 329)\ iff we can find an exact cover. u

The above proof establishes that there cannot be an algorithm that reopab/l in bothn andm.
But we have not ruled out algorithms with complexity that is polynomiad but exponential irm,
say of the formO(2™n*) for a constank.

We next analyze the approximation guarantees provided byithass algorithm. We first
present an easy proof for a weaker boundg—‘osﬁnd then move on to a more detailed proof for
}—g. Recall that the optimal labeling 18 and the labeling output by-pass isy.

Theorem 6 F(9) > 2F (y*).
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Proof Without loss of generality assume that the label countgafren; > n, > ... > ny,. Then
C(y*) =A3yng <Angyyny = Ann.

F§) = FE™) =w@™)+CcE™)
> Y(y")+CEH™) (from Claim 5.1)
> W(y")+Anf (sincel > 0)
> Y(y*)+C(y*) —Amn+Ang
> F(y*)—An?/4. (8)
Now consider the two cases whéféy*) > >An? andF (y*) < 3An?. For the first case we get from

above thafF () > F(y*) —An?/4 > %‘F(y*). For the second case, we know that the séof§™")
where we assign all vertices the last label is at ldast(because all vertex scores are assumed to
be non-negative) and th#(y) > 2F (y*). u

We stress that non-negativity of the vertex scores is important for the mutipkicbound of2,
else one can construct examples whe(g*) = 0. At the same time, Equation 8 provides a useful
additive bound that holds for arbitrary vertex scores.

We now state the more involved proof for showing thgbass actually provides a tight approx-
imation bound ofi—g for clique inference with Potts when the vertex scores are non-negative

Theorem 7 F(Y) > %F(y*). Further, this ratio is tight.
Proof See Appendix A. |

We next present a generalization of thgass algorithm that provides provably better guarantees
for Potts.

5.2.1 (ENERALIZED 0-PASSALGORITHM

In a-pass, for each label, we go over each coufitand find the best vertex score wihvertices
assigned labal. We generalize this to go over all label subsets of size no moregheaparameter
of the algorithm that is fixed based on the desired approximation guarantee.

For each label subsétC {1,...,m} of size no more than, and for each courk, maximize
vertex scores with exactli¢ vertices assigned a label from For this, we sort the vertices in
decreasing order of maxa Wi — maxa Yiy, assign the toj vertices their best label iA and the
remaining their best label not ih. The best solution over all combinatiof&, k) with |A| < qis
returned as the final labeling It is easy to see that this algorithm reduces {pass whem = 1.

The complexity of this algorithm i©(nnfllogn) because there arg) choices for the seA.
In practice, we can use heuristics to prune the number of label subsgthefr we can make the
following claims about the quality of its output.

Theorem 8 Generalizedx-pass enjoys an approximation boundgofthat is, Hy) > gF(y*).
Proof The bound is achieved wittp= 2. We provide the details in Appendix A. |

We conjecturethat the bound for generglis % This bound is not tight as far= 1 we have
already shown that thg bound can be tightened . With g = 2 we get a bound of which is

better thant3.
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5.2.2 0-EXPANSION ALGORITHM

In general graphs, a popular method that provides the approximatioargea of 1/2 for the Potts
model is the graph-cut basedexpansion algorithm (Boykov et al., 2001). We explore the behavior
of this algorithm for clique inference with Potts potentials.

In this scheme, we start with any initial labeling—for example, all vertices ssigaed the first
label, as suggested in Boykov et al. (2001). Next, for each aked perform aru-expansion phase
where we switch the labeling of an optimal set of vertices from their cutadet toa. We repeat
this in a round over thelabels, until no vertices switch their labeling in a complete round.

For graphs whose edge potentials form a metric, an optirretpansion move is based on the
use of the mincut algorithm of Boykov et al. (2001) which for the caseligfies can beD(n®).
We next show how to perform optimatexpansion moves more efficiently @(mr?) time) for all
kinds of sum potentials.

Ana-expansion movelet § be the labeling at the start of this move. For each Ighéla create a
sorted listS, of vertices assigneglin § in decreasing order afiq — Yyy. If in an optimal move, we
moveky vertices fromy to a, then it is clear that we need to pick the tigpvertices fromS,. Letr;
be the rank of a verteiin S,. Our remaining task is to decide the optimal numkgto take from
eachS,. We find these using dynamic programming. Without loss of generality assume. Let
Dj(k) denote the best score wheknertices with current labels in.1. j switch toa. We compute

Dj(k)= _max Dja(k=1)+fn@ -+ 3 Wat+ > Wi,

1<k, I<nj(y) i<l il

wheren;() is the usual cardinality of labglin the labeling. Now we can find the optimal number
of vertices to switch ta as argma, n, (5)Pm-1(K) + fa(k+na(¥)).

5.2.3 GOMPARISON WITHEXISTING APPROXIMATION BOUNDS

As mentioned earlier, the " clique potential is equivalent to the sum of Potts potentials over
edges of a complete graph. For arbitrary graphs with homogeneous Bttgigl on edges, the
alpha expansion algorithm of Boykov et al. (2001) and the LP relaxatgorithm of Kleinberg
and Tardos (2002) provide a factor of 2 approximation guaranteerfonianization version of the
objective. For cliques with homogeneous edge potentials, their objectiveas to an energy-based
formulation (using their notation):

mjﬂzej(yijmZié(yj #Yi) = myinzej(yj) +\§/(n2— > ), (9)
where8;(y;) denotes node energy and is assumed to be positivg dedotes the homogeneous
Potts parameter.

First we show thati-expansion provides an approximation bound of 2 even for the speasal ¢
of cliques. Symmetrically, we also show that thheexpansion algorithm provides a bound %)f
for our original max-version of the clique inference problem. Next, wansthata-pass provides
a bound ofg for even the minimization objective above. Thus, for both the minimization and
maximization objectivegy-pass improves upon the guarantees obtained by existing algorithms.

Theorem 9 Thea-expansion algorithm provides no better approximation guarantee thantBéo
minimization objective (9).
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Proof Aninstance where this occurs is as follows. Thereraredes ana+ 1 labelsyy, ..., yn. The
vertex energy fofx,Yo) is 2n— 2 and for(x;,y;) it is 0. All other vertex energies are, andy = 1.
Suppose initially all nodes are assigned lafael Then the clique energy is 0 and vertex energy is
n(2n—2). Now considering any other labgl,i >= 1, the optimal set of nodes to switch is just
x;. But this reduces vertex energy bg 2 2 but increases cliqgue energy by the same amount, so no
switching is done. However the optimal solution ixakabeled withy;, which has a total energy of
n—n. [ |

Theorem 10 Thea-expansion algorithm provides no better approximation guarantee thafofl/2
the maximization objective (7).

Proof Consider an instance whene= \/n+1, andA = 1. Letyy1 = 24/n for all u. Divide the
vertices into,/n groups of size,/n each, and letp, ;1 = 2n for every vertexu in theith group.
All other vertex scores are zero. Consider the solution where evetgxis assigned label 1. This
labeling is locally optimal wrt angi-expansion move, and its scoren& 1+ 2//n). However, the
exact solution assigns every vertex group its label, with a seq@+ 1/,/n) , thus giving a ratio
of 1/2 in the limit. [

Theorem 11 Thea-pass algorithm achieves an approximation ratiogdbr the minimization ob-
jective 9.

Proof Supposé = max;ny is the highest count in the optimal labeling. Consider two cdses)/2
andk < n/2.

If k> n/2, the clique energy is at leagin® — (k%4 (n—k)?)) = y2k(n—k). The clique energy
in a-pass is at mosg(2n? — k? — (n—k)) = y(n—k)(n+k— 1). The vertex energy in the optimal
labeling cannot be smaller than thatirpass. Sinc& >=n/2, (n+k—1)/2k < 3/2.

If k < n/2, then the clique energy in the optimal labeling is at lggst — nk) = yn(n — k).
Therefore the ratio is again at mast+k—1)/n < 3/2. [ |

As expected, generalizedpass provides a superior approximation ratio for Objective 9.

Theorem 12 The generalized-pass algorithm with two labels (g 2) achieves an approximation
ratio of 1*—2\/5 for objective 9.

Proof We omit the complete proof as it is quite detailed and give only a brief sketchy ¥dsume
that 1 and 2 are the two most dominant labels in the optimal labeling OPT, with aguns< n;.
Consider two solutions—one given loypass (i.e.g = 1) when label 1 has coumi, and another
given by generalized-pass withg = 2 when counts of labels 1 and 2 are+ n,. The node energies
of these two labelings cannot be worse than that of OPT (Claim 5.1). Sefitexamation bound
depends only on the ratios of the clique energies. Therefore wlog askatye= 2 in Objective 9.
The clique energies of the two solutions cannot ex¢eée n?) and(n? — M) respectively. We
can now work out the two cases whethér< (n; +nz)?/2 or not, and get the desired approximation
bound through contradictions. The analysis also shows that the bounkitjsatigl is achieved when
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n =n/v/2 andn, = n—n/v/2. [ |

5.2.4 BNTROPY POTENTIALS AND THE 0-PASSALGORITHM

As an aside, let us explore the behavionegpass on another family of additive potentials—entropy
potentials. Entropy potentials are of the form:

C(n(y))=A Z nylogny, whereA > 0.
y

The main reason-pass provides a good bound for Potts potentials is that it guaranteesia cliqg
potential of at Ieasmf wheren; is the count of the most dominant label in the optimal solugitn
The quadratic term compensates for possible sub-optimality of counts oflakieds. If we had a
sub-quadratic term instead, sayplogn; for the entropy potentials, the same bound would not have
held. In fact the following theorem shows that for entropy potentialg) éveugha-pass guarantees

a clique potential of at least logny, that is not enough to provide a good approximation ratio.

Theorem 13 a-pass does not provide a bound better t@mr entropy potentials.

Proof Consider a counter example where thererare n+logn labels. Divide the labels into two
sets—A with logn labels andB with n labels. The vertex scores are as follows: the vertices are
divided into logn chunks of sizen/logn each. If thejt" vertex lies in thet" chunk, then let it have
a vertex score of logwith labely in A and a vertex score of logt € with the jt" label inB. Let all
other vertex scores be zero. Also, det 1.

Consider the labeling which assigns i label in A to they!" chunk. Its score isr@logn—
nloglogn. Now considen-pass, witha € A. Initially vertexy will be set to they!" label inB. The
best labeling found bg-pass will assign every vertex tq for a total score of roughlyp+ nlogn.

If a € B, then again the best labeling will assign everythingitfor a total score of roughlyn -+
1)logn.

Thus the bound is no better thgrasn — . u

Thus,a-pass provides good approximations when the clique potential is heavily dtadiby
the most dominating label. We now look mRJORITY potentials, which are linear in the counts
{ny}y. Looking at Theorem 13, we expect tliapass will not have decent approximation guarantees
for MAJORITY. Thisis indeed the case. We will prove in Section 5.3 that neahgaiss nor a natural
modification ofa-pass enjoy good approximation guarantees.

5.3 Cligue Inference forMAJORITY Potentials

Recall thatMAJORITY potentials are of the form € fa(n), a=argmax ny. We consider linear
majority potentials wheré,(n) = ¥, Wayny. The matrixW = {wyy } is not necessarily diagonally
dominant or symmetric.

We show that exact MAP for linear majority potentials can be found in polyniaimia. We
also present a modification to tlepass algorithm to serve as an efficient heuristic, but without
approximation guarantees. Then we present a Lagrangian relaxatied bpproximation, whose
runtime is competitive witl-pass, but which provides much more accurate solutions.
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5.3.1 MODIFIED 0-PASSALGORITHM

Assume that we magically know the majority lalieh advance. Then for linear majority potentials,
we can incorporate the linear clique temgyny in the various vertex scores, and this leads to the
following natural modifications to the-pass algorithm: (a) While making iterations for the label
a, sort the vertices according to the modified medrig + Wgq — max.cq (Piy +Way), and (b) While
sweeping the list foa with varying values ok, discard all candidate solutions whose majority label
is nota.

However even after these modificationspass does not provide the same approximation guar-
antee as for homogeneous Potts potentials, as we prove next.

Theorem 14 The modifiedx-pass algorithm cannot have an approximation ratio better t%am
linear majority potentials with arbitrary W.

Proof Consider the degenerate example where all vertex scores are zefamhey be two fixed
labels and let the matriw/ be defined as followswg, = M + ¢, wg, = M Vy # 3,y and all the other
entries inW are zero.

In modifieda-pass, whem # 3, the labeling returned will have a zero score. Whes (3, all
vertices will prefer the labey, soa-pass will have to assign exacthy2 vertices to to make it
the majority label, thus returning a score%‘gin. However, consider the labeling which assigns
n/mvertices to each value, with a score(ai— 1)Mn/m. Hence the approximation ratio cannot be
better thang. m

5.3.2 EXACT ALGORITHM

SinceMAJORITY potentials are linear, we can pose the optimization problem in terms of Integer
Programs (IPs). Assume that we know the majority laheThen, the optimization problem corre-
sponds to the IP:

mzaxz (Wiy +Way)Zy,
Ly
S.t.vy: Zziy < Zziaa
| |

Vi ZZ‘V =1, zy € {0,1}. (10)
y

We can solvem such IPs by guessing various labels as the majority label, and reportingshe b
overall labeling as the output. However, Equation 10 cannot be tightlyeelaxa linear program.
This can be easily shown using a counter example: Consider a 3-vetahelZlique with a zeraV
matrix. Let the vertex score vectors tpg = (1,4,0), W1 = (4,0,4), W = (3,4,0). While solving

for a = 0, the best IP labeling is, 0,0 with a score of 11. However the LP relaxation has the
solutionz = (0,1,0;1,0,0;1/2,1/2,0) with a score of 15.
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This issue can be resolved by making the constraint matrix totally unimodulali@sg. Guess
the majority labeh, its countk = ny, and solve the following IP:

mzaxz (wiy + Woty) Zy,
I7y
stvy#£a: y zy <Kk
Z y

zziu :k7
|

Vi : ZZ‘V =1, zy € {0,1}. (12)
y

This IP solves the degree constrained bipartite matching problem, whichecami\ied exactly in
polynomial time. Indeed, it can be shown that the constraint matrix of this |IRakytanimodular,
so its LP relaxation will have an integral solution. We refer the reader taazatmal. (2009) for the
details. Thus we solv®(mn) such problems by varying andk, and report the best solution. We
believe that the above LP is concavekirso the system for a fixeal should be efficiently solvable
using golden section search.

5.3.3 LAGRANGIAN RELAXATION BASED ALGORITHM FOR MAJORITY POTENTIALS

Solving the linear system in Equation 11 is very expensive because wemeelveO(mn) LPs,
whereas the system in Equation 10 cannot be solved exactly using a liteeatien. Here, we
look at a Lagrangian Relaxation based approach (LR), where we gwv&y/stem in Equation 10
but bypass the troublesome constraiptz a @ 5;zy < 3 Zaq.

We use Lagrangian relaxation to move this constraint to the objective funcsimoy violation
of this constraint is penalized by a positive penalty term. Consider the folipmirdified program,
also called the Lagrangian:

L(Y) =L(y,-.-,Ym) = mZaXZ(quy +Way)Zy + ZYy(Z Zjog — zziy)a
Yy y [ |

stvi:yzy=1, zy €{0,1}. (12)
y

Fory > 0, and feasible, L(y) is an upper bound for our objective in Equation 10. Thus, we compute
the lowest such upper bound:

L* = minL(y). (13)
y>0

Further, the penalty term in Equation 12 is lineagjrso we can merge it with the first term to get
another set of modified vertex potentials:

y=ad
y#a

Equation 12 can now be rewritten in termsudf, with the only constraint that correspond to
a valid labeling:

Wiy = Ll’iyJFWO(y—Yy‘F{ gyyy,

myaxz lpﬁ,ziy,
|7y

S.t.Vi: ZZ‘V =1, zyc{0,1}.
y
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Hence L (y) can be computed by independently assigning each vieldéts best label viz. argm@npg,.
We now focus on computing*. We use an iterative approach, beginning wyth 0, and

carefully choose a new at each step to get a non-increasing sequendeyfs. We describe

the method of choosing a neyater in this section, and instead outline sufficient conditions for

termination and detection of optimality.

Theorem 15 Z andy* are optimum solutions to Equations 10 and 13 respectively if they satisfy the
conditions:

W S%<S 7 (14)
Wi (S 7Y g =0 (15)

Theorem 15 holds only for fractionat. To see how, consider an example with three vertices and
two labels. Leti; +wq1 > Yi2 + W2 for all i anda. During Lagrangian relaxation withh = 2,
initially y = 1 will cause all vertices to be assigned label 1, violating Equation 14. Sinceotire
differencey;z1 — 3;z2 € {£1,+£2,£3}, any non-zeroy; will violate Equation 15. Subsequent
reduction ofy; to zero will again cause the original violation of Equation 14. Consequeamityof
Equations 14 and 15 will never be satisfied and the algorithm will oscillate.

To tackle this, we relax Equation 15/(3 3z, — ¥iZ,)| < & wheree is a small fraction of an
upper bound oy. This helps in reporting labelings that respect the majority constraint intlegua
14 and are close to the optimal.

The outline of the algorithm is described in Figure 2.

We now discuss a somewhat conservative approach to select g aeevery step. We ini-
tially attempted subgradient optimization and golden search to compute step diceatigizes for
changingy. However, we ran into various practical difficulties. Subgradient optitiwinaequired
very careful tweaking of the step size across iterations, an issuerbadee by the discrete na-
ture of our problem. On the other hand, golden search was too aggrésractice, leading to
many avoidable label flips and consequently many more iterations. So instegdplemented a
conservative approach which we describe next.

5.3.4 (ONSERVATIVE COORDINATE DESCENT

We perform conservative coordinate descent which avoids largegesaand thus too many label
flips. Lety be the worst violating label in the current iteration. We will first considerctmse when
its count exceeds that of, so that Equation 14 does not hold.

To decrease the count gf we need to increasg. Leti be a vertex currently assigned
and letf(i) be its second most preferred label under the vertex potenjifalsThe vertexj =

argmamzy:lwi“ﬁ(i) — g‘, is the easiest to flip. So we increaggust enough to make this flip happen.
The new value ofy is therefore given by:
) AW, Y, B() + Vg B(i) #a
= min . . , 16
¥ iiZyl{ %(AUJ(hyaG)_ZY#yVy') B(i)=a (16)

whereAy(i,y,y') denotespiy +Wqay — Wiy —Wqy . It is possible that by flipping vertek B(j) now

violates Equation 14. Moreover, increasifgalso increaseg , so some other vertices that are not
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assigned may also move ta. However since the change is conservative, we expect this behavior
to be limited. In our experiments, we found that this conservative schenverg@as much faster
than golden search over a variety of data.

We now look at the case when Equation 14 is satisfied by all labels but Equdtis violated
by some labey. In this scenario, we need to decreggsto decrease the magnitude of the violation.
Here too, we conservatively decreagédarely enough to flip one vertex Yo If i is any vertex not
assigned labef and(i) is its current label, then the new valueywfis given by:

— AW(i,y, B(i)) + Ya() B(i) #a
/ 'rgi)i{ %(AUJ(i,y,Ol)—zy;#yyy) Bli)=a - 17)

Note that the arguments of Equations 16 and 17 are the same. In this cagestute of a conser-
vative move, more than one vertex marleday flip to some other value, although at most one of
them will be flipped toy. As before, the small magnitude of the change restricts this behavior in
practice.

Input: Y, W, a,maxlters,tolerance
Output: approximately best assignment
y<O0;
iter + O;
Z + Assignment with all vertices assigned
while iter < maxltersdo
ComputeL(y) (Equation 12), lez be the solution;
if F(z) > F(2) then
2+ 7z
end
(y,A) + Worst violator and violation (Equations 14 and 15);
if A < tolerancethen
We are donel.* = L(y);

break;
else
Modify yy using conservative coordinate descent;

end
iter < iter+1;
end
Construct assignmefjtfrom z;

return §
Algorithm 2: LR Algorithm for Majority potentials

5.4 Computing All Node Max-marginals

In this section, we discuss an important optimization that speeds up messsgjegpin a cluster
graph. We show that for symmetric potentials we can compute max-margir@ls®) calls to the
clique inference algorithm in practice, as opposed to the expectadvocations. Cliques can be
arbitrarily big, so removing the dependenceros very helpful in practice.

Our basic strategy is as follows. For label pait$, define a modified clique potential function
Cqp that adds “1” to the count for lab@land subtracts “1” from the count of labe

Cap(y) = C(m(Y),..-.Na(y) —1,....ng(Y) +1,...Nm).
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Find MAP labelingy®® using the modified scoring functidfyg(y) = Y(y) +CGB(y). Letv be a
vertex whose label iy®? is a, then the max margind¥lyg = max,.y,—p F (Y) = Fap(Y*®) — Yva +
Wg. The outgoing messaga .v(B) is then simplyM,z — my_¢(B) as per Equation 4. A proof of
correctness of this optimization is as follows.

Theorem 16 max,.y,—p F (Y) = Fap(Y*®) — Yo + Y.

Proof
myaxFaB(y) = yryﬁx Fap(y) sincevis labeleda in yoP
= maxu(y) + Cap(y)
= maxu(y) — g+ b +C(Y)
= ynQvaXF(y) Pvg + Y-

We invoke the above strategy for all label pair§3 when some vertex in the original MAP gets
labela. There is no guarantee that ath messages would be generated by the above scheme. The
ones that are not covered are computed using separate invocatiodg?of M

This concludes the description of our various clique inference algorithmdsttzeir theoret-
ical properties. The discussion until now had focused on the traditiarigtam-clique collec-
tive inference model. We now switch tracks and describe an extensioe abtlective inference
framework—one which captures richer kinds of associativity that is gitesent in the data. We
will see that the same cluster message passing setup and collective infggrdbms can be used
almost as is in this more general scenario.

6. Properties-based Collective Inference Framework

We broaden the notion of collective inference to encourage richer fofassociativity amongst the
labelings of multiple records. This more general framework has applicatiaitniain adaptation.
We illustrate this via an example.

Example: Consider extracting bibliographic information from an author’s publicattommepage
using a model trained on a different set of pages. The labels of infesitle, Author, Venue, and
Date. Typically, within each homepage (a domain) we expect consistenoy siytle of individual
publication records. For example, we expect the following propertiestartpely uni-valuednside
a domain:

1. The ordering of labels in the labelings (e.g., TiteAuthor* — Venue).
2. The token preceding the Title, or ‘Start’ if Title occurs at the beginning.
3. The label appearing after the Venue, or ‘End’ if Venue occurseaétid.

4. Label of the token ‘IEEE’.
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A Simulator for estimating Railway Line Capacity . (Start, Date<b>) Bhardwaj, P. (2001). Delegating Pricing Decisions. (‘., Volume, <li>)
In APORS - 2003 Marketing Scienc@0(2). 143-169.
Scheduling Loosely Connected Task GraphsJour- (Start, Date<b>) Balasubramaniam, S. and P. Bhardwaj (2004). When(*”, Volume, <li>)

nal of Computer and System Sciences , August 2003 not all conflict is bad: Manufacturing marketing con-
. flict and strategic incentive desigManagement Sci-
ence50(4). 489-502.

Devanagari Pen-written Character Recognition In (Start, Date<b>) Bhardwaj, P. and S. Balasubramaniam (2005). Man-(*., End, <li>)
ADCOM - 2001 aging Channel Profits: The Role of Managerial Incen-

tives. ForthcomingQuantitative Marketing and Eco-

nomics.

Table 2: Two publications pages with different styles. Text in parenth&sews the values of three
properties on the correct labelings: (i) Token before Title (ii) First @iher label after
Venue (iii) HTML tag containing Title. The properties are largely uni-moddbies page,
but the mode varies across pages.

Note that ‘IEEE’ will tend to recur across multiple records, so the lastgntgorresponds to the
unigram-based cliques that we modeled thus far. It is clear now that wgatam lot more if we
couple the records together according to ‘richer’ properties than fuigtams.

Of course the choice of properties is crucial. For all the properties ilkestr@bove, we expect
that the labelings inside the domain agree on the property value, withoug d¢ariwhat the value
actually is (which varies from domain to domain). This allows us to use the saopenty on
different domains, with varying formatting and authoring styles. Table 2 ifitessr this for two
publications pages with different styles. It shows three properties tkebtalargely similar values
across records inside a domain, but the dominant value changes dormams. Thus we can
reward associativity of these property values using the same symmetri¢igistémat we have used
for unigram cliques.

Now assume that we have an array of such conformance-promotingriesy and a basic
MRF trained on some labeled domains. An effective way of deploying this MiRE previously
unseen domain is by labeling the records in the new domain collectively whilsusaging the
individual labelings to agree on our set of properties. If the propestinEnue to remain associative
in the unseen domain, then collective inference can be expected tot@sigmificant number of
errors. This provides us with an inference-only approach, in cdritrasany existing solutions for
domain adaptation which require model re-training (Blei et al., 2002; Blitzai,2006; Mann and
McCallum, 2007).

We now give an intuitive description of how the introduction of propertiassea only minor
changes in our collective inference framework. The modified collectiiezence objective is now
given by:

N XK
arg_max (Z Z@(%Jﬁ)) + 3G90,y h),
YooY \K=1i= geg
instead of Equation 2. Her@ is the set of properties, each of which defines an associative clique.
We reuse the cluster message passing setup in this collective inferenad@cé/e define one clus-
ter per chain, one per property, while separators remain singleton—éhespond to the property
value. The new messages are of the kimd,«(v) andmy_,¢(Vv), wherev is a possible value output
by the property g(). The property-to-chain messages are computesfas lising our potential-
specific clique inference algorithms. However the chain-to-propertyagessy._,qy cannot be com-
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puted for arbitrary properties. To illustrate, sgx'gy*) = Number of tokens marked Author if.
Computing chain messages for this property is quite expensive, if not Barfor computational
reasons we restrict ourselvesNtarkovian propertiesthat is, properties whose chain-to-property
messages can be computed with a first-order algorithm like Viterbi or mauptro Examples of
Markovian properties include—Token before Title, and Label after &uth sample message for
the second property would be, say_,q(Title), which can be computed by running Viterbi with
the first-order constraint that Author be followed by Title. In generdljes of Markovian prop-
erties depend only on the Markovian blanket of a part of the chain, whanhs to tractability of
message computation. We refer the reader to Gupta et al. (2009) forrthal technical details of
chain-to-property message computation for Markovian properties.

We stress that such a support for Markovian properties is not possibleernative collective
inference approaches like TRW-S. This is because even with Potts plstevi&s properties, the
inter-cluster separators still remain complete chain labelings instead of pcajserty values, so
the cluster model cannot be represented as a pairwise graphical model.

In Section 7.3 we will look at the effect of introducing associative prigetin the context of
domain adaptation on a citation extraction task.

7. Experiments

Our goal is to empirically demonstrate that cluster message passing is indeed acoarate and
efficient framework for doing collective inference. Once this is estabtislit would necessitate
the design of fast and accurate message computation algorithms that wanknfmetric clique
potentials. This would justify our design and analysis of the various cliqudnte algorithms
presented in this paper. After illustrating the effectiveness of clusteragesmssing, we will show
that the extension of collective inference to capture richer associatipegies leads to significant
boosts in domain adaptation tasks. Keeping these goals in mind, we presdid of three dif-
ferent experiments—clique inference, collective inference, and ttemgion to general Markovian
properties.

First, in Section 7.1 we compare our clique inference algorithms against alplelialternatives
in the literature. We compare the algorithms on computation speed and acofttaeWAP assign-
ments. For Potts potentials, we show thgbass provides similar MAPs as the various alternatives
but is up to two orders faster. For linesrJORITY potentials (Equation 6), we compare our al-
gorithms against the exact LP-based approach of Section 5.3.2 andihaldGrithm. For other
clique potentials that are not decomposable along the clique edges, werearvess against the
ICM algorithm.

Second, in Section 7.2 we show that message passing on the cluster gaaplorie effective
method for collective inference than its alternatives. For collective modeisRetts potentials, we
compare cluster message passing against belief propagation that deesrRptts along the clique
edges. In the case of linesrnJORITY potentials, we compare against the stacking based approach
of Krishnan and Manning (2006).

Finally, in Section 7.3 we demonstrate the application of our generalized codié@imework
on domain adaptation. On a citation extraction task, we show that capturinggbeiativity of
richer properties leads to significant reduction in test error.
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A ICM a-pass o?Z-pass a-exp DP a-exp FastCut FastPD TRW-S DD
Clique MAP scores
0.50 4866.7 4862.3 4864.2 4866.0 4867.0 4867.2  4866.7 48664833.3
0.55 4878.0 4872.6 48755 4878.5 4879.6 4879.7 4879.1 @8784838.1
0.60 4899.8 4893.8 4895.8 4898.0 4900.9 4900.8 4900.7 4899.4865.6
0.65 49149 49094 4911.6 4913.3 4915.9 4916.9 49146  #9154881.3
0.70  4919.6 4913.0 4916.7 4916.6  4921.5 4923.1 4920.6 @9194891.2
0.75  4930.0 4934.7 4936.9 4928.8 4935.1 4936.8 4938.2 49384926.8
0.80 4965.0 4969.3 49725 49595 4959.5 4971.2  4954.3 49714961.7
0.85 4977.3 5009.6 5010.0 49955  4988.3 5002.8 4997.7 ©007.4999.9
0.90 50185 5082.3 5082.3 5073.9 5081.2 5081.1 5080.1 ©079.5049.1
0.95 50535 51559 5155.9 5154.4 51549 5155.1 51549 $1505100.9
1.00 5137.2 5264.3 5264.3 5264.3 5264.3 5264.3 5264.3 52625161.9
1.05 5279.4 5417.1 54171 5417.1 54171 5417.1 5417.1 54175269.5
1.10 5383.8 5528.1 55281 5528.1 5528.1 55628.1 5528.1 55285358.1
All 652235 65812.5 65831.2 65794.0 65813.5 65844.2 6%31@®5833.4 65137.3
Running Time (ms)

0.50 24 38 464 155 5900 7910 2510 12170 117180
0.55 27 38 455 174 6610 8010 2930 13290 117480
0.60 28 38 454 160 8140 8810 3640 16290 118270
0.65 29 38 452 157 8700 9120 4190 17740 117050
0.70 35 43 470 162 11680 9630 5210 19480 118360
0.75 34 41 460 155 13770 10460 7180 21730 117170
0.80 42 39 459 153 16710 11060 8650 22660 117450
0.85 38 44 464 139 18260 11310 7360 22610 117730
0.90 42 42 462 163 19100 14980 7280 20170 117670
0.95 49 39 458 127 16450 13640 6620 17910 117070
1.00 58 39 456 85 11280 11200 6320 10670 117240
1.05 59 39 458 82 10730 10800 5810 5280 116780
1.10 50 39 467 82 10490 10420 6000 3400 116920

All 514 519 5979 1795 157820 137350 73700 203400 1526370

Table 3: Clique MAP scores and runtimes of various clique inferenceittiges for Potts potential.
Each number is an aggregate over 25 cliques for the correspohding

7.1 Cligue Inference Experiments

For clique potentials decomposable over clique edges, we compare owr icifgeence algorithms
against sequential tree re-weighted message passing (TRW-S);ariabhsed inferencax{exp),
the ICM algorithm, and recent advancements including the faster grapdguarithm of Alahari
et al. (2008) (FastCut), the fast primal-dual algorithm of Komodakis azidtds (2007) (FastPD),
and the dual-decomposition scheme of Komodakis et al. (2007a) (DDhdfedecomposable po-
tentials, we present comparisons against the ICM algorithm. We presemtacison results on
running time and quality of the MAP. Our experiments were performed on lyotihetic and real
data.
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Figure 2: Potts potential: (a) Runtime ofpass vs TRW-S, Graph-cut and FastPD aggregated on
25 cliques aa is varied in the synthetic data sabTTS(b) Comparingx-pass and TRW-S
on MAP scores and runtimes for each CoNLL clique.

Synthetic Data SetWe generated cliques with 100 vertices ane- 24 labels by choosing vertex
potentials at random fron®, 2] for all vertex-label pairs. A Potts versior@TTS was created by
gradually varying\, and generating 25 cliques for every value\oiVe also created analogoBs-
TROPY, MAKESPAN andMAKESPAN2 versions of the data set by choosing entrapy (n, logny),
linear makespam(max, ny) and square makespakrgax, n§) cligue potentials respectively.

For linearMAJORITY potentials we generated two kinds of data sets (parameteriza)l &)
MAJ-DENSEobtained by generating a random symmetvi¢or each clique, wheré{, = A was the
same for aly andW,y € [0,2A] (y#Y'), and (b)MAJ-SPARSEfrom symmetridV with W,y € [0, 2A]
for all y,y', roughly 70% of whose entries were zeroed. This sparse data seipiessd to mirror
the sparseness W in real-life data sets.

CoNLL Data SetThe CoNLL 2003 data skis a popular choice for demonstrating the benefit of
collective labeling in named entity recognition tasks. We used the BIOU ergaditne entities,
that resulted in 20 labels. We took a subset of 1460 records from treetasftCoNLL, and selected

all 233 cliques of size 10 and above. The smaller cliques were ignored algytirithms hardly differ

in performance over them. The median and largest clique sizes were hamdspectively. The
vertex potentials of the cliques were set by a sequential Conditional Rakdkld trained on a
separate training set. We created a Potts version by sétting.9/n using the development set,
wheren is the clique size. SuchXallowed us to balance the vertex and clique potentials for each
clique. A majority version was also created by learrigliscriminatively in the training phase.

We developed Java implementations for all our algorithmspass, generalized-pass with
g = 2, dynamic programming basedexpansion of Section 5.2.2 (denotaekxp DP), modified
o-pass, Lagrangian relaxation, and the Exact LP-based algorithmdjmrity potentials. We used
publicly available C++ implementations for TRWZS(Boykov et al., 2001; Szeliski et al., 2006;
Kolmogorov and Zabih, 2004; Boykov and Kolmogorov, 2004), Fas{@lathari et al., 2008), and
FastPD (Komodakis and Tziritas, 2007; Komodakis et al., 2008). In additierimplemented DD

1. This data set can be foundktdip://cnts.uia.ac.be/conll2003/ner/ .
2. This code can be found attp://lwww.adastral.ucl.ac.uk/ ~ vladkolm/papers/TRW-S.html and http://
vision.middlebury.edu/MRF/
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Figure 3: Comparing the MAP quality of-pass vs ICM on non-decomposable potentials. Plotted
point (r, f) denotes that for a fractioh of the cliquesa-pass returned a MAP score at
leastr times that of ICM.

in C++ and ICM in Java. All experiments were performed on a Pentium-IV 31@ @achine with
8 GB of RAM.

7.1.1 BEDGE DECOMPOSABLEPOTENTIALS

Table 3 compares the various clique inference algorithms orptiers data set. We vary the
Potts parametek uniformly in the rang€0.5,1.1]. This range is of special interest because it
allows maximal contention between the clique and vertex potentialsA Batside this range, the
MAP is usually a trivial assignment, viz. one which either individually assepush vertex to its
best label (optimizing vertex potential), or assigns all vertices to a singlé (apiémizing clique
potential). Each number in the upper half of Table 3 is the aggregate MAR e€@5 cliques for
that particularA, while the bottom half reports the aggregate clique inference time rounded to th
nearest millisecond.

We observe that apart from ICM and DD, all the other algorithms returriPMgores in a small
interval (0.5%) of each other. In particularpass performs almost identicaldeexp and FastPD in
this regard. FastCut provides the best aggregate MAP scores>paiss and TRW-S are quite close
as well. We note that the three expansion algoritlrexp, a-exp DP, and FastCut return different
MAP scores, primarily because they employ different bootstrapping.stepther we observe that
DD returns significantly low MAP scores, because even with suitable s&esslection heuristics
such as the one proposed by Komodakis et al. (2007a), DD convesgeslowly and invariably
hits the maximum iteration limit of 30 with a sub-par MAP. ICM also returns lower M&bres, as
expected, due to its highly local updates.

In terms of runtime, Table 3 shows a clear separation of the algorithms. |CMigass are
the fastest, whiler-exp, FastCut, FastPD, and TRW-S are 150-400 times slower. This iadmeita
contrast tax-pass, the other algorithms perform multiple costly iterations (e.g., an iteraticdRW§
Sis O(nz)). The cut-based algorithms and FastPD are faster than TRW-S, while DB stothiest,
at 3000 timesx-pass. This is because DD has to deal v@i{tm) spanning trees which is costly, and
leads to slow convergence. Consequently DD hits the iteration limit every timeoa®pass and
dynamic programming basexd-expansion -exp DP) algorithms are ten and three times slower
thana-pass respectively, but still more than an order faster than the otheitlaigs. Finally we
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see that while-pass andi?>-pass take almost a constant time irrespectively, dfie other schemes
take up more time (as they iterate more) around the “maximal contention rang@7af.0] for
A. Figure 2(a) illustrates this behavior, where we vargnd plot the runtimes afi-pass, FastPD,
TRW-S, and FastCut. Note thatpass lies very close to the x-axis, illustrating its small runtime.
Figure 2(b) presents the results on Potts cliques from the CoNLL datasetinfplicity we only
comparen-pass with TRW-S as the other algorithms behave analogous to the synteetciec For
each clique, we plot (a) the ratio of thepass MAP score with that of TRW-S, and (b) ratio of TRW-
S runtime vsu-pass runtime. While both the algorithms report the same MAPass is still more
than 10 times faster on more than one-third of the cliques, and is never sibiigratio is not as
bad as for synthetic cliques mainly because the median clique size here ismaltdr it 16.

7.1.2 NON-DECOMPOSABLEPOTENTIALS

In this case, we cannot compare against the TRW-S or graph-cull ladgerithms. Hence we
compare with the ICM algorithm that has been popular in such scenarioand @etoor, 2003).
The scheme of Potetz and Lee (2008) is another alternative, but we oomt@adison with it as it
is bound to be quite expensivernm(see discussion in Section 8).

We variedA with increments of M2 in [0.7,1.1) and generated 500 cliques each frem-
DENSE, MAJ-SPARSE ENTROPY, MAKESPAN and MAKESPAN2. We measure the ratio of MAP
score ofa-pass with ICM and for each ratiowe plot the fraction of cliques where-pass returns
a MAP score at least times that of ICM. Figure 3 shows the results on all the potentials except
MAJORITY, which will be presented later. The curves for linear and square makeptotally to
the right ofratio = 1, which is expected becauaepass will always return the true MAP for those
potentials. In contrast ICM can only return a locally optimal solution. Forogmira-pass was
found to be significantly better than ICM in all the cases. The runtimes of |168/oapass were
similar.

7.1.3 MAJORITY POTENTIALS

In Figures 4(a) and 4(b), we compare ICM, Lagrangian Relaxation dod modifieda-pass (Sec-
tion 5.3.1, denoted ModAlpha) against the LP-based exact method (LByrdhetic data. Each
curve plots, for each MAP ratip, the fraction of cliques on which ICM (or LR or ModAlpha) re-
turns a MAP score better thantimes the optimal MAP score. An ideal algorithm’s curve would
just be a dot at1, 1) indicating that it retrieves the true MAP for all the cliques.

We observe that omAJ-DENSE, both ModAlpha and ICM return a MAP score better tha®5)
of the true MAP, with ICM being slightly better. However, LR out-performshbaf them, providing
a MAP ratio always better than 0.97 and returning the true MAP in more thanof @86 cases. In
MAJ-SPARSEtL00, LR dominates the other two algorithms, returning the true MAP in more than 80%
of the cases, with a MAP ratio always better tha®2) Further it can be derived that on average, LR
returns a MAP score.15 times that of ICM. Thus, LR performs much better than its competitors
across dense as well as sparse majority potentials.

The results on CoNLL data set, whadématrix is 85% sparse, are displayed in Figure 4(c).
ICM, ModAlpha, and LR return the true MAP in 87%, 95% and 99% of the @gjtespectively,
with the worst case MAP ratio of LR being9¥ as opposed to.®4 and 074 for ModAlpha and
ICM respectively. Figure 4(d) displays runtime ratios on all CoNLL cligtersall three inexact
algorithms vs LP. ICM and ModAlpha are roughly 100-10000 times fastar L& while LR is
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Figure 4: (a)-(c) MAP guality of modifiedi-pass, ICM, LR vs LP omAJORITY potentials over
MAJ-DENSE, MAJ-SPARSE and CoNLL. To be interpreted in the same way as Figure 3.
(d) Runtime ratios vs LP of these algorithms for each CoNLL clique.

only 3— 5 times more expensive than ICM and ModAlpha on average. Thus,dotigal majority
potentials, LR and ModAlpha quickly provide highly accurate solutions.

7.2 Collective Labeling of Repeated Words

We now establish that for collective inference setups like the one in Figdyertessage passing on
the cluster graph (denoted Cl) is a better option than the alternatives. dhld justify the design
of special clique inference algorithms suchoapass and LR.

We consider information extraction over text records, and define cliquessrepeated occur-
rences of words. We create two versions of the experiment—with PottsiandrITY potentials
on the cliques respectively. Message computation at those cliques willneeudinga-pass and
LR respectively, as we have already established their efficiency adaay in Section 7.1.

For the edge-decomposable Potts version, we compare Cl against THRMAS giant pairwise
graph. Other algorithms such as FastPD, FastCutpagxb are not applicable as none of the chain
edge potentials in the giant graph are semi-metric or submodular. FeraherITY version, we
compare Cl against the stacking approach of Krishnan and Mannifg)20

We report results on three data sets—the Address data set consistimggbfyr 400 non-US
postal addresses, the Cora data set (McCallum et al., 2000) contaBfngjtdiographic records,
and the CoNLL'03 data set. The training splits were 30%, 10% and 10086ctgely for the three
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data sets, and the parametdor Potts was set to 0.2,1 and 0.05 using cross-validation on a held out
split. TheMAJORITY parameteW was learnt generatively through label co-occurrence statistics in
the cliques present in the training data. We report the token-F1 scosesiaasure of accuracy of
the various approaches.

Figure 5 reports the combined token-F1 over all labels except ‘Othanledsd specified oth-
erwise, all the approaches post statistically significant gains over tleenbadel. The accuracies
show only modest improvements over the base model. This is because oesdiguof a highly
limited form and so we cannot expect to correct too many errors usintiegtoee model. We will
look at more complex cliques in Section 7.3. Coming back to Figure SwAGIORITY potentials,
Cl is superior to the stacking based approach. The difference is stdlystigmificant for Cora
and CoNLL'03. For the Potts version, TRW-S and CI provide similar gaues Address and Cora.
We could not run TRW-S on CoNLL'03, as the resulting graph was toodrighfe TRW-S code to
handle.

We now compare the different approaches on running time. In Figure@atéhe accuracy of
the two methods versus the number of iterations. Cl achieves its best@catter just one round
of message passing, whereas TRW-S takes around 20 iterations. Irofariosk time, an iteration
of TRW-S costs~ 3.2s for CORA, and that of CI costs 3s, so Cl is roughly an order of iz
faster than TRW-S for the same accuracy levels. The comparison was donitae Address data
set.

Potential | Model Addr | Cora | CoNLL
Base 81.5 | 88.9 87.0

Potts Cl 819 | 89.7 | 8838
TRW-S | 81.9 | 89.7 -
Majority | CI 82.2 | 80.6 | 8838

Stacking| 81.7 | 87.5) 87.8

Figure 5: Token-F1 of various collective inference schemes. Flagedrover five splits for Ad-
dress and Cora. *’ ang denote statistically insignificant difference and significant loss
over Base respectively.

7.3 Domain Adaptation

We move on to a generalization of our collective inference framework,s&iod/ that capturing
associativity of a richer set of properties can help us in domain adaptatieriocus on a citation
extraction task, where the aim is to adapt a sequential model across walglgpgs publications
pages of authors. Our data set consists of 433 bibliographic entriestifi®web-pages of 31 au-
thors, hand-labeled with 14 labels such as Title, Author, Venue, LocatidrYaar. Bibliographic
entries across different authors differ in many aspects like labeliogjemnissing labels, punctua-
tion, HTML formatting and bibliographic style.

A fraction of the 31 domains were used to train a baseline sequential modelmdtiel was
trained with the LARank algorithm of Bordes et al. (2007), using the BGiodimg for the labels.
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We used standard extraction features in a window around each tokenq, with label transition
features (Peng and McCallum, 2004).
For our collective framework, we used the following Markovian propsrtie

= First non-Other label iy

= Token before the Title segmentyn
= First non-Other label after Title in
= First non-Other label after Venue yn

(o}

1

(o]

2

(o]

(X,y)
(X,y)
3(X,Y)
(X,y)

(e}

4

Inside a domain, any one of the above properties will predominantly fawwvalue, for example,
g; might favor the value ‘Author’ in one domain, and ‘Date’ in another. Thusséhproperties
encourage consistent labeling around the Title and Venue segmentse\Wetts potential for each
property, setting. = 1 using cross-validation.

We reiterate that there are no alternative collective inference schemtgsgsf@roperty-based
framework. This is primarily because other algorithms like TRW-S or ordibatief propagation
cannot deal with property-based separators (ref. Section 6).

The performance results of Cl with the above properties versus thérgas®del are presented
in Figure 7. For the test domains, we report token-F1 of the important {afiélle, Author and
Venue. The accuracies are averaged over five trials. Cl leads to b@aatuction over the base
test error for Venue and Title, labels for which we had defined relatedepties. The gain is
statistically significant (p< 0.05). Though the improvement is more prominent when only a few
domains are available for training, we continue to see an improvement evemwaith training
domains as there invariably are new styles in the test data. Figure 8 shoessdaheeduction on
individual test domains for one particular train-test split of five and 2®alas respectively. The
errors are computed from the combined token F1 scores of Title, Verdidathor. For some
domains the errors are reduced by more than 50%. Collective inferecreases errors in only two
domains. Such an increase happens when most of the records in the dakeaon wrong property
values, so collective inference ends up reinforcing those errorsrbgighy biasing the remaining
minority of the records that have correct property values.

Finally, we mention that for this task, applying the classical collective infaresetup with
cliques over word repetitions leads to very minor gains. This is becauseafits word cliques
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already agree on their vertex labels under the base model, so collecévenoé with word cliques
does not add too much value. In this context, the generalized collectivenofe framework is
indeed a much more accurate mechanism for joint labeling.

Train Title Venue Author
(%) | Base CI |Base CIl|Base CI
5 70.7 74.8/ 58.8 625 741 743
10 | 78.0 82.1| 69.2 72.2| 75.6 75.9
20 | 858 88.6| 76.7 78.9| 80.7 80.7
30 | 91.7 93.0H 815 826| 87.7 88.0
50 | 92.3 94.2| 83.5 84.5 89.4 90.0

Figure 7: Token-F1 of Cl and Base

8. Related Work

We group the known approaches into various categories and companentitie our collective
inference framework.

8.1 Generic Collective Inference Approaches

Collective graphical models have been used to capture associativity intexdmgining tasks such
as IE, entity labeling, and document classification (Sutton and McCallum; Fatkel et al., 2005;
Bunescu and Mooney, 2004; Krishnan and Manning, 2006; Kullgrai., 2009; Chakrabarti et al.,
1998; Lu and Getoor, 2003; Taskar et al., 2004). However theselmade generic algorithms
like ordinary belief propagation (Sutton and McCallum, 2004; BunesclMuowhey, 2004; Taskar
et al., 2004), Gibbs sampling (Finkel et al., 2005), local search (Luzetdor, 2003) or multi-stage
schemes (Krishnan and Manning, 2006). Our framework is genesabérto support various clique
potentials, yet exploits the structure of the potential to efficiently compute adtulif messages for
collective inference.

50
Base

40 + mCl

30 4

100-F1%

20 4

10

0 4
Al 2 4 6 8 10 12 14 16 18 20 22 24 26
Domain Identifiers

Figure 8: Per-domain F1-error
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8.2 MAP Inference on Pairwise Models

We provide only a brief overview of the many recent advances in inderewer pairwise graphs
since our main interest lies in higher-order potentials. These approfathesder two broad cat-
egories. The first category has message passing algorithms that sotiteattod an LP relaxation,
including TRW-S (Kolmogorov, 2006), max-sum diffusion (Werner, 20@&nd other convergent
alternatives (Meltzer et al., 2009; Ravikumar et al., 2010). These LRat&as, that only im-
pose local pairwise constraints, have been tightened in various waypaysite and higher order
marginal constraints (Sontag et al., 2008; Werner, 2009; Komodakifarapios, 2008; Kumar
et al., 2009). The second category includes combinatorial algorithmd basgraph-cuts. For bi-
nary labels, two well known methods are the graph-cut method for subniqubitentials (Boykov
et al., 2001) and the Quadratic Pseudo-Boolean Optimization method (QBB@8tfing a partial
solution for arbitrary potentials (Boros and Hammer, 2002; Kovtun, 2B08Bnogorov and Rother,
2007). For multi-label models with metric edge potentials, dhexpansion algorithm of Boykov
et al. (2001) provides a 1/2-approximatiom-expansion has subsequently been generalized, ana-
lyzed and optimized (Veksler, 2007; Kumar and Torr, 2008b; Lempitshi;,e2007; Komodakis and
Tziritas, 2005; Komodakis et al., 2007b; Alahari et al., 2008). In pddicthe FastPD algorithm of
Komodakis et al. (2007b) is a primal-dual generalization which works extmsemi-metric edge
potentials. However our chain edge potentials are not even semi-metric. Sitttiwpartial opti-
mality guarantee of QPBO is of limited appeal, as our model has a large frattiom&ubmodular
edges.

8.3 Alternate Collective Inference Frameworks

Recently, two inference frameworks, the LP relaxation of Werner (@08 the dual-decomposition
framework of Komodakis and Paragios (2009) have been extendeddtetdgher-order potentials.
In the LP relaxation framework, a max-sum diffusion algorithm is used teesble dual and each
step of the algorithm requires the computation of max-marginals from the hagtier cliques. In
the dual-decomposition framework, the model is decomposed into tractableonentp and the
component MAPs or marginals are used to construct a sub-gradierdg obllective inference LP.
Like cluster message passing, these frameworks also allow the pluggifigiibitoary algorithms
for computing max-marginals at each clique. Thus, our clique inferenogitllgns can be used un-
changed in these two frameworks. However, while these alternativevirarke provide interesting
new ways of looking at inference, they do not necessarily providerfasnvergence guarantees.
For example, as noted in Werner (2009), max-sum diffusion converygsslowly as compared to
TRW-S even for binary potentials. We showed in Section 7.1 that duahtgasition is significantly
slower tham-pass when used for clique inference.

8.4 Transforming Higher-Order Cliques to Pairwise Potentials

A lot of recent work on higher-order clique potentials in vision deals wittuoing these potentials
to pairwise and then applying-expansion or QPBO as applicable (Ishikawa, 2009; Kohli et al.,
2008; Ramalingam et al., 2008; Rother et al., 2009; Kohli and Kumar,)20h@se transformations
add auxiliary nodes, which are few in number when the potentials are tathaad sparse (Rother
et al., 2009). However our potentials are dense and not truncatecde@aently these techniques
will introduce too many extra nodes, for example, exponentiai {fshikawa, 2009), oO(mn)
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(Kohli et al., 2008). Similarly, the method of Kohli and Kumar (2010) will exddahe node set by

a factor equal to the number of functions used to approximate our poteariliiis can be quite

large). Too many auxiliary nodes makes inference usirexpansion/QPBO quite expensive. In
contrast we perform clique inference without any transformation, amdalaque inference bounds

are better than the alternatives.

We also note that there are transformations that extesslpansion to metric potentials over
triangles (Kolmogorov and Zabih, 2004), and truncated versions of pattiitials over arbitrarily
large cliques (Kohli et al., 2007, 2009). Our symmetric potentials are notated so the same
transformations cannot be applied to our model.

8.5 Special Higher-Order Potentials

An orthogonal body of work deals with special higher-order potentiasahow efficient message
computation, such as linear-constrained potentials (Potetz and Lee, 20083x and order-based
potentials (Tarlow et al., 2010), and decomposable potentials (Chen e0@&). 2Although our
cluster graph can seamlessly incorporate these potentials and their cliguenod algorithms, it is
fruitful to compare some of these potentials with ours. Linear-constraiotzhfials assume that
the labels are numeric and the potential’s value depends only on a linear etimiviof node labels.
Such potentials allod(nr?) message computation using clever variable substitution during belief
propagation. When we have only two labels, our symmetric potentials cancbeeshas linear-
constrained potentials, thus leading@gn) clique inference as compared @(nlogn) usinga-
pass. However, this encoding does not have an inexpensive geaigoa to discretemulti-label
cliques. Also, representing multi-label potentials using a collection of lineastcained potentials
can make clique inference exponentialnm(Potetz and Lee, 2008). Chen et al. (2008) propose
decomposable potentialbat are sums of a few sub-potentials, each of which is a product of low-
arity functions. This includes th¥oting Potential which combines associativity scores additively
along edges unlike multiplicatively as in Pottszor some decomposable potentials, including the
Voting Potential, exact messages can be computed in closed form.

Symmetric potentials have been used in special ways in other inferencadask¥ximovich
et al. (2007) proposed a framework for inference over relationt d@ere symmetric potentials
are used to collapse large instance-level factor graphs into templategtapdls. Similarly, Milch
et al. (2008) proposes lifting techniques with counting potentials. In @undiwork we have a mix
of symmetric potentials, individual node and non-symmetric edge potentialshéfefore cannot
perform any kind of collapsing or lifted inference.

9. Conclusions and Future Work

We presented a general collective inference framework that exploigstueiativity of a rich set of
properties of instances and their labelings. We argued that cluster ragsssging, which exploits
the special associative structure and computes a complete set of messagesre principled in-
ference mechanism than other cluster-oblivious or message-oblipposaches. We demonstrated
the effectiveness of the framework on a real-life domain adaptation task.

3. Although Potts decomposes additively along the clique edges, thebiligh&(y|x) is exponential in the clique
potential term, which makes it multiplicative.
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We presented potential-specific combinatorial algorithms for message cdimputsassocia-
tive cligues. We presented tloepass algorithm which is sub-quadratic in the clique size and gives
the exact MAP for allivax clique potentials, and any symmetric potential with two labels, and a
tight approximation guarantee ég on the Potts potential. We showed thapass is significantly
faster while providing the same or better accuracy than alternatives sidRvg-S, graph-cuts, and
their recently proposed improved versions. We gave a Lagrangiaratilaxnethod for generating
messages from a clique with majority potential. This algorithm is at least twoad@nagnitude
faster than an exact algorithm and more accurate than other approxirpatactpes.

Our future work includes automated property induction to figure out risb@ative properties
in unlabeled domains. We are also interested in applying symmetric potentialsdmbdanse
subgraphs instead of cliques. We believe that this might help in semi-sugxbtgarning tasks.

Appendix A. Proofs
Theorem 7 F(y) > %F(y*). Further, this ratio is tight.

Proof The proof is by contradiction. Suppose there is an instance whgre< 13F(y ). Wlog
assumethat =1landng>ny>...>n >0, (2<k< m) be the non-zero counts in the optimal
solution and lety* be its vertex score. Thus(y*) = @* +nZ +n3+...+ng.

Now, F(¥) is at leasty* + n? (ref. Claim 5.1). This mpheswA < 13 thatis, 2Y* +

+..+n — 15’
n?) < 13(n3+...+n2) or

. 13
W <7(n§+...+n§)—n§. (18)

Sincek labels have non-zero counts, and the vertex scapé,iat leasty* /k of the vertex score
is assigned to one label. Considering a solution where all vertices araedsmthis label, we get
(§) > ¢ /k+ 2.
ThereforeF (y*) > 15/13(r? 4 * /K).
SinceF (y*) = W* + N2+ ... +n2, we get:

*

15kr? — 13k(nZ + ...+ n)
13k —15 '

(19)

We show that Equations 18 and 19 contradict each other. It is suffimestiow that for all
n>...>n>1,
15kn? — 13k(n2 +...n2) - 13(
13k —15 -2
Simplifying, this is equivalent to

ng+.. "’nk)_nl

13
Kk —?(k 1)(N3+...4+nd)—n2>0.

Consider a sequenas, ..., Ny for which the expression on the left hand side is minimized. If
n; > ni 1 then we must hava| =1VI > i+ 2. Otherwise, replace, 1 by ni; 1 + 1 and decrement
nj by 1, wherej is the largest index for which; > 1. This gives a new sequence for which the
value of the expression is smaller. Therefore the sequence must befoffrthig = n; for 1 <i < |
andn; = 1 fori > I, for somel > 2. Further, considering the expression as a function oit is
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guadratic with a negative second derivative. So the minimum occurs aifdhe extreme values
n = 1 orn, = ny. Therefore we only need to consider sequences of the fgrm.,n1,1,...,1 and
show that the expression is non-negative for these.

In such sequences, differentiating with respeatitahe derivative is positive fan; > 1, which
means that the expression is minimized for the sequence, 1. Now it is easy to verify that it is
true for such sequences. The expression is zero only for the semidnl, which gives the worst
case example.

We now illustrate the tightness of this ratio through a pathological instancesvifiersolution
of a-pass is exactlyll—g of the optimal. The clique is constructed as follows. bet n+ 3 and
A = 1. For the firstn/3 vertices lety,; = 4n/3, for the nextn/3 vertices lety,, = 4n/3, and
for the remainingn/3 let Y3 = 4n/3. Also for all vertices leth 3 = 4n/3. All other vertex
scores are zero. The optimal solution is to assign the first three lafilgertices each, yielding a
score of 4?/3+ 3(3)? = 5n?/3. The firsta-pass witha = 1, where initially a vertex is assigned
its vertex optimal labeli+ 3, will assign the firsh/3 vertices label 1. This keeps the sum of to-
tal vertex scores unchanged a’43, the clique score increasesrit/9 -+ 2n/3 and total score =
4n?/3+n?/9+ 2n/3 = 13n?/9+ 2n/3. No subsequent combinations with any other labean
improve this score. Thus, the scorecepass isi—g of the optimal in the limitn — oo, |

Theorem 8 Generalizedx-pass enjoys an approximation bounoLofthat is, Hy) > gF(y ).

Proof This bound is achieved if we run the algorithm wih= 2. Let the optimal solution have
countsn; > np > ... > Ny and let its vertex score hg*. For simplicity leta=n;/n, b= n2/n and
c=*/n?. ThenF(y*)/n? < c+a?+b(l—a), F(§)/n? > c+a?andF(¥)/n?> > c+ (a+b)

Case 1: 8 > %. ThenF(y*) — F(§) < br?(1—a). For a given value oé, this is maX|mized
whenb is as large as possible. For Case 1 to hold, the largest possible valués @fiven by
a2 = a—%b)z, which givesb = a(v/2—1). ThereforeF (y*) — F(9) < ”2(‘[ Voo FW) , that is,
F(§) > gF(y*).

Case2: & < a+b) . This holds ifb > (v/2—1)a. Sincea+b < 1, this is possible only id < 1/+/2.
Now EYLFE) < a2+b(1—a)— (a+b)2/2 = ¥-sabizb b

For a givena, this expression is quadratic inwith a negative second derivative. This is max-
imized (by differentiating) folb = 1— 2a. Sinceb < a, this value is possible only i& > 1/3.
Similarly, for case 2 to hold with this value bf we must have < V2-1. Substituting this value
of b, the difference in scores =i,

Since this is quadratic with a positive second derivative, it is maximized \atiers either the
minimum or maximum possible value. Far= 1/3 this value is 19, while fora= /21, itis
10— 7+/2. In both cases, it is less thayigl

If a < 1/3 the maximum is achieved whén= a. In this case, the score difference is at most
(a— 2a?) which is maximized foa = 1/4, where the value is/B. (This is the worst case).

Forv2—1<a<1/v2, the maximum will occur fob = (v/2— 1)a. Substituting this value
for b, the score difference i6/2 — 1)(a— a?), which is maximized foe = 1/2, where its value is

(V2-1)/4<1/8. n

—
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