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Abstract

Many structured information extraction tasks employ collective graphical models that capture inter-
instance associativity by coupling them with various clique potentials. We propose tractable fam-
ilies of such potentials that are invariant under permutations of their arguments, and call them
symmetric clique potentials. We present three families of symmetric potentials—MAX , SUM, and
MAJORITY.

We propose cluster message passing for collective inference with symmetric clique potentials,
and present message computation algorithms tailored to such potentials. Our first message com-
putation algorithm, calledα-pass, is sub-quadratic in the clique size, outputs exact messages for
MAX , and computes13

15-approximate messages for Potts, a popular member of theSUM family. Em-
pirically, it is upto two orders of magnitude faster than existing algorithms based on graph-cuts or
belief propagation. Our second algorithm, based on Lagrangian relaxation, operates onMAJORITY

potentials and provides close to exact solutions while being two orders of magnitude faster. We
show that the cluster message passing framework is more principled, accurate and converges faster
than competing approaches.

We extend our collective inference framework to exploit associativity of more generalintra-
domain propertiesof instance labelings, which opens up interesting applications in domain adaptation.
Our approach leads to significant error reduction on unseen domains without incurring any over-
head of model retraining.

Keywords: graphical models, collective inference, clique potentials, cluster graphs, message
passing

1. Introduction

Markov Random Fields (MRFs) are the models of choice in various structured information extrac-
tion (IE) tasks such as part-of-speech tagging, NP-chunking, text segmentation, and named entity
recognition. The goal of IE is to mark each token in a sentence with a label from a discrete set, like
Person, Location, and Other. As illustrated in Figure 1(c), the basic MRF extraction model defines
edge potentials between labels of adjacent words to capture first-order dependencies (Lafferty et al.,
2001). The resulting chain model allows tractable exact inference that is,computing the maximum
a-posteriori (MAP) labeling of the sentence is easy.
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Apart from traditional settings, IE is now being increasingly used in many web scenarios, such
as query-driven extraction (Gupta and Sarawagi, 2009; Carlson et al., 2010) and constructing on-
the-fly relations from semi-structured web sources (Elmeleegy et al., 2009). However these setups
are characterized by limited training data, which restricts the robustness of the resulting MRFs
during deployment. One promising way to increase the robustness of MRFs during deployment
is to strengthen the first-order dependencies of the model with extra long-range dependencies ,
resulting in more robust labelings. The goal of this paper is to exploit long-range dependencies in a
principled manner.

There has been a lot of work on capturing long-range dependencies between labels of non-
adjacent words. This typically includes dependencies of the form—if a token repeats in a document,
then the labels of the repetitions should ideally be the same (Sutton and McCallum, 2004; Bunescu
and Mooney, 2004; Krishnan and Manning, 2006; Finkel et al., 2005). In Figure 1(d), we show
an example where the extra dotted edges join unigram recurrences. Suchlong-range dependencies
are termedassociativesince they introduce positive couplings between labels of token pairs. Apart
from textual tokens, associative dependencies have also been exploited while labeling documents
(Lu and Getoor, 2003; Chakrabarti et al., 1998), image pixels (Taskaret al., 2004), and annotating
Web documents (Kulkarni et al., 2009). Due to these couplings, MAP inference is done collectively
across all sentences so as to maximize the sum of sentence-specific and long-range associative
potentials. This joint MAP computation task is traditionally calledcollective inference.

Previous work on collective inference can be broadly classified into two categories. The first
category defines a separate associative potential over every inter-instance edge (i.e., dotted edge
in Figure 1(d)). Inference on such graphs is performed by viewing it as a graphical model with
pairwise potentials. A variety of generic approximation algorithms have been used to solve this
typically intractable inference task, including Loopy Belief propagation (Bunescu and Mooney,
2004; Sutton and McCallum, 2004), and Gibbs sampling (Finkel et al., 2005). The second category
defines an associative potential for each clique that is created from all repetitions of a unigram
and the potentials can take more general forms like the Majority function (Krishnan and Manning,
2006). Collective inference on this category of models is performed usinglocal search algorithms
such as Iterative Conditional Mode fitting (ICM) (Lu and Getoor, 2003; Chakrabarti et al., 1998) or
two stage algorithms (Krishnan and Manning, 2006).

This paper unifies various collective extraction tasks with different formsof associative poten-
tials under a single framework. We do this by employing a cluster graph representation of the collec-
tive model. Figure 1(e) illustrates the cluster graph for our toy example. Thecluster graph comprises
of one cluster per MRF-instance, and one cluster per clique with its corresponding associative po-
tential. As in the traditional collective extraction models, we assume that a clique comprises of all
the occurrences of a particular token. We emphasize that instead of clusters for chain models, the
framework can also define clusters for any tractable component, such asa bipartite matching or an
alignment, but since our interest is in IE tasks, we shall focus on chain models.

Collective inference in our model then simply corresponds to message passing in this cluster
graph. This view of collective inference offers several advantagesover earlier approaches. First,
it allows us to plug in and study various clique potentials cleanly under the same cluster message
passing umbrella. Second, it allows us to exploit special properties of the associative potentials to
design combinatorial algorithms that are both more accurate and more efficient than existing al-
gorithms. Specifically, we show that most associative potentials used in practice aresymmetric
clique potentials. Symmetric clique potentials are invariant under any permutation of their argu-
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ments. So the value of a symmetric potential depends only on the counts of its distinct arguments,
and not their position in the clique. For example in Figure 1(d), the clique potential on ‘Iraq’ would
give a low score if its end vertices had different labels, regardless of which ‘Iraq’ vertex gets what
label. We present three families of symmetric clique potentials that capture labelassociativity in
different ways—MAX , SUM (which subsumes the popular Potts potential), andMAJORITY. The
most crucial component of the collective inference problem is then to efficiently compute outgoing
messages from clique clusters governed by symmetric potentials. We denote this sub-problem as
clique inference.

1.1 Contributions

We show that the overall collective inference problem is intractable even for the case of two labels.
We therefore concentrate on designing efficient and accurate messagepassing algorithms on our
special cluster graph. We present a suite of efficient combinatorial algorithms tailored to specific
symmetric clique potentials for the clique inference sub-problem. We devised acombinatorial al-
gorithm calledα-pass that computes exact outgoing messages for cliques withMAX potentials, and
also for any arbitrary symmetric clique potential over two labels. We show thatα-pass provides
a 13

15-approximation for clique inference with the well-known and NP-hard Potts potential with the
SUM family. We show that this analysis is tight, and that the corresponding clique inference bound
by alternative schemes likeα-expansion, LP-rounding, TRW-S and ICM are either1

2. or at best lo-
cally optimal. Further, the runtime ofα-pass isO(mnlogn) wheren is the clique size, andm is the
number of labels. We also show thatα-pass can be generalized to provide a better approximation of
8
9, but with a runtime ofO(m2nlogn). Alternative clique inference approaches such as the graph-cut
algorithm of Boykov et al. (2001) and the tree-reweighted message passing (TRWS) algorithm of
Kolmogorov (2006) are quadratic inn. We present a new Lagrangian-relaxation based algorithm,
called LR, forMAJORITY potentials. The LR algorithm is nearly exact in practice but is usually two
orders of magnitude faster than an exact LP-based algorithm.

Our experiments show that computing a rich set of messages leads to significantly more accuracy
gains over other collective inference approaches that do not compute such messages, for example,
Krishnan and Manning (2006). We also show that decomposing the problem over the cluster graph
and employing fast message computation algorithms helps our collective inference scheme converge
one-order faster than alternatives like loopy belief propagation. In short, we show that it makes more
sense to compute messages at a cluster level, and we provide fast and accurate algorithms to do so.

We then extend our collective inference framework to capture associativity of a more general
kind than just labels of unigram repetitions. We encourage associativity ofpropertiesof labelings of
records appearing as a group. We apply this framework to domain adaptation, where a model trained
on one or more domains is deployed on a different but related domain. For example, a model trained
for extracting fields of a bibliographic records is deployed on all records coming from the homepage
of a single author. The bibliographic entries from the same author’s publications homepage would
predominantly have the same style, such as order of labels, say Title followedby Author(s) followed
by Venue, or the HTML tag before a Title. While we do not know the propertyvalues across the
records apriori, we do know that they will be largely unimodal across records within a given domain.
We use this collective signal to couple together the labelings of intra-domain records, and show
how our collective inference framework naturally extends to this scenarioand provides significant
reduction in error.
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War in Iraq continues..

US troops in Iraq suffered..

..coalition troops enter Iraq..

(a) Input sentences (b) Base Model (c) Structured Model (MRF)

(d) Collective Model

troops

Iraq

(e) Cluster graph for the collective model

Figure 1: Various models for named-entity recognition illustrated on a small corpus. Figure 1(e)
shows the cluster graph for the collective model of (d) with one cluster persentence
(shown as flat chains), and one cluster per associative clique (shownas big circles).

At this point, we note that our previous work (Gupta et al., 2007) focusedprimarily on theα-
pass algorithm along with a sketch of some of its properties. This paper presents a detailed treatment
of the algorithm and its generalized version, with rigorous proofs of their approximation bounds,
including some new bounds for a variant of the clique inference objectivewith Potts potential. In
addition, new material in this paper includes the LR algorithm for theMAJORITY potential, exten-
sion of our framework to include properties-based associativity, and empirical studies of various
collective inference techniques.

We also note that subsequent to our work (Gupta et al., 2007), there hasbeen an abundance of
research on higher order clique potentials in last few years, primarily by the computer vision com-
munity. While their applications and basic graph structure are different (grids vs chains), many of
their ideas are highly relevant—either in terms of special algorithms for clique/collective inference
(Komodakis et al., 2007a; Komodakis and Paragios, 2009; Kumar and Torr, 2008a; Werner, 2008),
reduction of clique potentials to pairwise potentials (Kohli et al., 2009; Ishikawa, 2009), and special
families of clique potentials (Potetz and Lee, 2008; Rother et al., 2009; Tarlow et al., 2010). We will
present theoretical and empirical comparisons and draw parallels with the relevant schemes later on
in this paper.

1.2 Outline

In Section 2, we present the MRF model for extraction and define the collective inference problem
in the traditional setup of unigrams. We show that even with this setup, collective inference remains
NP-hard. In Section 3, we discuss the cluster message passing algorithm for collective inference,
and introduce theclique inferencesub-problem which formalizes the task of computing outbound
messages from clique clusters. Then in Section 4, we describe theMAX , SUM, andMAJORITY fami-
lies of symmetric potentials. In Section 5 we present theα-pass and LR clique inference algorithms,
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and analyze their approximation quality. In Section 6, we extend our framework to capture more
general associative properties. Section 7 contains experimental resultsof three types: (a) quality
of the α-pass and LR algorithms; (b) effect of modeling more general associative properties in a
domain adaptation task; and (c) collective inference via cluster message passing vs alternatives. Fi-
nally, Section 8 discusses prior art and Section 9 contains conclusions and a discussion of future
work.

2. Collective Inference with MRFs

We now review the basic first-order MRF model for information extraction, and then formally define
the collective inference problem over various coupled MRFs. We denotea sentence by boldx, and
its labeling vector byy. Consequently,xi andyi denote theith token inx and its label respectively.
The MRF defines a log-linear model parameterized by a weight vectorw, where the conditional
probability of a labeling is given by:

logP(y|x,w) = ∑
i

φi(yi ,yi−1;x,w)− logZw.

Hereφi(yi ,yi−1;w) is the log of the potential on the edge between tokensi andi−1, These potentials
are local, that is, they depend only on the labels of the edge and logZw is the normalization factor.
During inference, we compute the most probable labeling ofx:

argmax
y

logP(y|x,w) = argmax
y ∑

i

φi(yi ,yi−1;x,w).

If there arempossible labels at each token, andn tokens inx, then exact inference can be done using
max-product message passing inO(nm2) time.

We now move to the collective model whose toy example is illustrated in Figure 1(d). Let there
beN sentences{x1, . . . ,xN}. Correspondingly, we haveN conditional distributionsP(yk|xk,w), k=
1, . . . ,N. We use the shorthandφk

i (y
k
i ,y

k
i−1) to refer toφk

i (y
k
i ,y

k
i−1;xk,w).

Let t denote a token that repeats across the sentences, and letT denote the set of all such tokens.
For a repeating tokent, let D(t) be the set of all (sentence-id, token-id) locations where it occurs in
theN sentences, that is,D(t) = {(k, i)|xk

i = t}. We express the conformance in the label assigned to
positions inD(t) with a higher order clique potential Ct({yk

i }(k,i)∈D(t)). Our collective MRF model
that couples sentences using unigrams is then given by (up to a normalizationconstant):

logP({yk}Nk=1|{xk}Nk=1,w) ≈
N

∑
k=1

logP(yk|xk,w)+ ∑
t∈T

Ct({yk
i }(k,i)∈D(t)) (1)

≈
(

N

∑
k=1

|xk|

∑
i=1

φk
i (y

k
i ,y

k
i−1)

)

+ ∑
t∈T

Ct({yk
i }(k,i)∈D(t)).

The clique potential Ct has two important properties: First, it is invariant under any permutation
of its arguments—that is, it is asymmetricfunction of its input. Thus, if there arem possible
labels, we can represent the arguments with anm-bin histogram. For example, ifm= 3 and input
is {1,2,1,1,2,3,2}, then Ct(S) depends on the 3-bin histogram with values 3,3,1. Second, Ct is
associative—that is, it favors agreement of labels in its argument set, and it maximized when all
arguments have the same label.
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All collective extraction methods proposed in the literature fit the above framework. The earliest
and the most popular collective model used associative potentials over every pair of occurrences of
t (Sutton and McCallum, 2004; Finkel et al., 2005). This pairwise potential was a Potts potential—1
if the pair had matching labels and 0 otherwise. Clearly, we can define an appropriate Ct that mimics
this behavior while staying symmetric. Consider the clique potential:

Ct({yk
i |(k, i) ∈ D(t)}) = ∑

(k,i), (l , j)∈D(t)

δ(yk
i = yl

j).

This is equivalent to all the pairwise potentials fort. Also, using the histogram view, this can be
re-written up to a constant as∑m

α=1n2
α, wherenα is the bin count for labelα in the histogram cor-

responding to{yk
i |(k, i) ∈ D(t)}. Other known collective models like the ones proposed by Lu and

Getoor (2003) and Krishnan and Manning (2006) can also be cast using the ‘Majority’ symmetric
clique potential as we shall see in later sections.

Having defined our collective model, and shown that it subsumes popular collective models, we
are ready to define the collective inference objective.

Definition 1 (Collective Inference)Collective inference is the task of finding labelingsy1, . . . ,yN

that jointly maximize the probability of the collective model (Equation 1):

arg max
y1,...,yN

(

N

∑
k=1

|xk|

∑
i=1

φk
i (y

k
i ,y

k
i−1)

)

+ ∑
t∈T

Ct({yk
i }(k,i)∈D(t)). (2)

In general terms, collective inference corresponds to labeling the nodes of a generic cyclic graph.
However, our graph has a special structure—it is composed of chains and cliques, and although the
intra-chain edge potentialsφ can be arbitrary, the clique potentials are associative and symmetric.
However we next prove that even in this setup, collective inference is NP-hard.

Theorem 2 The collective inference problem is NP-hard even with just two labels.

Proof We reduce the well-known NP-hard problem of finding MAX-CUTs in an arbitrary graphG
to our collective inference problem (called CI). For each nodeu∈G define a 2-node chainu1 u2 in
CI where each node can take binary labels and with edge potentialφu(y,y′) = Mδ(y 6= y′). M is a
large positive number> 2E, whereE is the number of edges inG. For an edge(u,v) ∈ G, we add
three cliques:(u1,v1),(u1,v2) and(u2,v1). All three clique potentials are Ct({y,y′}) = δ(y= y′).

The key observation is thatG has a cut of size≥ k iff CI has a map score of≥Mn+E+k where
n is the number of nodes inG.

SupposeG has a cut(A,B) of size≥ k. Define a labeling in CI where all variables inA′ ,
{v1|v∈ A}∪{v2|v∈ B} are labeled 0 and the restB′ are labeled 1. Then for everyu∈ G, (u1,u2)
are labeled differently, thus the total contribution from the edge potentials within chains of CI is
Mn. For an edge(u,v) ∈ G that is part of the cut(A,B) with u ∈ A,v ∈ B, two cliques(u1,v2)
and(u2,v1) have both their arguments labeled the same whereas for all other edges onlyone of the
cliques(u1,v1) reaches such conformance. Thus, the total contribution from clique potentials is
E+k. The converse holds the same way. SinceM is sufficiently large, the edge(u1,u2) in CI will
always have both ends labeled differently. So given a labeling in CI, we can define a cut inG by the
subset of verticesv for whichv1 is labeled 0 in CI.
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At this point we note that our collective inference objective is related to various bodies of work
on joint inference, primarily in computer vision tasks. For the sake of continuity we defer our
discussion of all related work to Section 8 and instead present our framework for maximizing the
collective inference objective.

3. Cluster Graph based Collective Inference Framework

Having established that optimizing the objective in Equation 2 is NP-hard, one natural choice for
approximating it is ordinary pairwise belief propagation on the collective graphical model. This
involves passing messages along edges inside the chains, as well as alongthe clique edges. How-
ever this approach is not suitable due to many reasons. First, some symmetric potentials like the
Majority potential cannot be decomposed along the clique edges, so we cannot compute the cor-
responding messages. Second, the approach does not exploit the special nature of the clusters and
the symmetric potentials. Third, this approach is not tenable if we wish to extend the framework to
capture associativities of more general properties of the kind discussedin Section 6.

Hence we adopt message passing on a special cluster graph where every chain and clique cor-
responds to a cluster. The clique cluster for a unigram is adjacent to all thechains that contain that
unigram, as shown via singleton separator vertices in Figure 1(e). This setup of message passing
on the cluster graph allows us to exploit potential-specific algorithms at the cliques, and at the same
time work with any arbitrary symmetric clique potentials. Cluster graphs have been used effectively
for message passing elsewhere as well (Yedidia et al., 2003; Duchi et al., 2007).

Let mk→t andmt→k denote message vectors from chaink to an incident cliquet and vice-versa.
A chain is said to be incident on a clique if there exists a positionj in chaink which matches term
t, that is,(k, j) ∈ D(t). We assume thatD(t) is created such that from any chain only one position
belongs to it. We next discuss how these messages are computed.

3.1 Message from an Instance to a Clique

The messagemk→t(y) for a (k, j) ∈ D(t) is given by:

mk→t(y) = max
yk:yk

j=y

(|xk|

∑
i=1

φk(yk
i , yk

i−1)+ ∑
t ′ 6=t∈T ,(k, j ′)∈D(t ′)

mt ′→k(y
k
j ′)

)

.

To computemk→t(y), we need to absorb the incoming messages from other incident cliquest ′ 6= t,
and do the maximization while freezing the label of positionj in chaink to y for a (k, j) ∈ D(t). A
cliquet ′ is incident to chaink via only a singleton vertex so we can easily absorb the messagemt ′→k

by including it in the node potential of this vertex. After absorption,mk→t can be computed using
the same inference algorithm applicable to the chain.
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3.2 Message from a Clique to an Instance

The more interesting message computation is that formt→k given a(k, j) ∈ D(t). Let the cliquet
haven vertices. Then the message computation can be written as:

mt→k(y) = max
(y1,...,yk=y,...,yn)

∑
(k′, j ′)∈D(t) k′ 6=k

mk′→t(yk′)+Ct({y1, . . . ,yn}). (3)

The maximization in Equation 3 can be re-written as

−mk→t(y)+ max
(y1,...,yk=y,...,yn)

(

∑
(k′, j ′)∈D(t)

mk′→t(yk′)+Ct({y1, . . . ,yn})
)

. (4)

The maximization term is an instance of the generalclique inference problemdefined as:

Definition 3 (Clique Inference) Given a clique over n vertices, with a symmetric clique potential
C(y1, . . . ,yn), and vertex potentialsψ jy for all j ≤ n and labels y. Compute a labeling of the clique
vertices that maximizes:

max
y1,...,yn

n

∑
j=1

ψ jy j +C(y1, . . . ,yn). (5)

Thus the second term in Equation 4 can be seen as clique inference by defining ψ jy , mj→t(y) and
C, Ct . To computemt→k(y), we can solve the clique inference problem with the easily enforceable
constraintyk = y. From now on, we refer to outbound message computation at the cliques as clique
inference.

4. Symmetric Clique Potentials

Having established cluster message passing as our collective inference paradigm, and clique infer-
ence as our message computation tool, we turn our attention towards various families of symmetric
clique potentials. As seen in Section 2, these associative clique potentials depend only on the
histogram of label counts{ny|y= 1, . . . ,m} over the clique,ny being the number of clique vertices
labeledy. Thus for ease of notation, we will denote the arguments of a symmetric potential Ct by ei-
ther the vertex labelsyt = (y1, . . . ,yn) or by its corresponding count histogramn(yt) = (n1, . . . ,nm).
Here we clarify thatn is used to denote the entire count histogram,ny to denote the count for labely,
while n denotes the clique size. An associative symmetric clique potential is thus maximizedwhen
ny = n for somey, that is, one label is given to all the clique vertices.

We consider specific families of clique potentials, many of which are currentlyused in real-life
tasks. In Section 5 we will look at various potential-specific exact and approximate clique inference
algorithms that exploit the specific structure of the potential at a clique.

In particular, we consider the three types of symmetric clique potentials listed in Table 1. They
differ in the manner in which they reward skew in the count histogramn.

4.1 MAX Clique Potentials

These clique potentials are of the form:

C(n1, . . . ,nm) = max
y

fy(ny).
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Name Form Remarks
MAX maxy fy(ny) fy is a non-decreasing function.
SUM ∑y fy(ny) fy non-decreasing. Includes Potts =λ∑yn2

y.
MAJORITY fa(n), wherea= argmaxyny A popular form isfa(n) = ∑ywayny.

Table 1: Three kinds of symmetric clique potentials considered in this paper.n = (n1, . . . ,nm) de-
notes the counts of various labels among the clique vertices.

for arbitrary non-decreasing functionsfy. When fy(ny), ny, we get themakespanclique potential
which has roots in the job-scheduling literature. This potential depends onlyon the biggest label
count and ignores the other labels. Truncated version of this potential have been recently used in
computer vision (Kohli et al., 2009).

In Section 5.1, we present theα-pass algorithm that computes messages forMAX clique poten-
tials exactly inO(mnlogn) time. MAX potentials are tractable and relatively simpler potentials, but
most importantly, they provide key insights to deal with the more complexSUM potentials.

4.2 SUM Clique Potentials

SUM clique potentials are of the form:

C(n1, . . . ,nm) = ∑
y

fy(ny).

This family of potentials includes functions that aggregate the histogram skewover bins, for exam-
ple, the entropy potential wherefy(ny) ∝ ny logny. One very interesting member is the case when
the well-known Potts model is applied homogeneously on all edges of a clique.Let λ > 0 be the
pairwise reward of assigning the same label to two nodes of an edge. The summation of these terms
over a clique is equivalent (up to a constant) to the clique potential:

CPotts(n1, . . . ,nm) = λ∑
y

n2
y.

This corresponds to the gini entropy of the histogram. We will show that the clique inference
problem is NP-hard with the above potential and provide a13

15-approximation in Section 5.
We note that the traditional usage of Potts is in a minimization setting, that is, edges are pe-

nalized by some costγ if their end vertices are labeled differently. The corresponding cost version
of Potts is then Cmin(y1, . . . ,yn;γ) , γ∑ j>i δ(yi 6= y j). It is easy to see that these two versions are
related by:

CPotts(y1, . . . ,yn;λ) = λn2−Cmin(y1, . . . ,yn;2λ).

We show that our algorithm provides a3
2 approximation for the minimization version of the problem.

4.3 MAJORITY Clique Potentials

A MAJORITY potential is defined as:

C(n1, . . . ,nm) = fa(n), a= argmaxy ny. (6)
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An important special subclass is the linear majority potentials defined as:

CMaj = ∑
y

wayny, a= argmaxy ny.

This potential has been used for a variety of tasks such as link-based classification of web-pages
(Lu and Getoor, 2003) and named-entity extraction (Krishnan and Manning, 2006). The role of the
parametersway is to capture the co-existence of some label pairs in the same clique. Co-existence
allows us to downplay ‘strict associativity’ viz. it permits a few cliques vertices to have similar
but not necessarily the same labels. For example, consider a clique made from occurrences of the
unigram ‘America’. However, some occurrences of America correspond to Location, while others
might correspond to an Organization, say Bank of America. Also, it is rarefor a location name
to be shared with a person name. This can be captured by allowing a higher value ofwαy for the
(Location, Organization) pair than for the (Location, Person) pair.

Unlike Potts potential,MAJORITY potential cannot be represented using edge potentials. We
will present an exact polynomial time algorithm and several efficient approximations in Section 5.3.

5. Algorithms for Clique Inference

We will useF(y1, . . . ,yn) to denote the clique inference objective in Equation 5. As short-hand,
we will denoteF(y1, . . . ,yn) by F(y) = ψ(y) +C(y), whereψ(y) is the vertex score (i.e., node
potential) of the clique labelingy and the second term is the clique score (i.e., clique potential).
Wlog assume that all the vertex termsψiy are positive. Otherwise a constant can be added to all of
them and that will not affect the maximization. The MAP clique labeling will be denoted byy∗, and
ŷ will denote a possibly sub-optimal labeling.

We show that the clique inference is easy foranyC() with just two labels and in Section 5.1 we
present an exact algorithm calledα-pass for this case. We show that the same algorithm generalizes
to give an exact solution forMAX potentials. We address theSUM andMAJORITY clique potentials
respectively in Sections 5.2 and 5.3. Finally, in Section 5.4 we show how to extend the clique
inference algorithms to efficiently batch the computation of multiple max-marginals.

5.1 α-pass Algorithm

We begin withMAX potentials. Recall that aMAX potential is of the form C(n(y)) = maxy fy(ny).
We propose an exact inference procedure calledα-pass (Algorithm 1) for such potentials.

Theα-pass algorithm guesses that the dominant label iny∗ is α, with a count ofk. Of course
we do not knowα or k so all(α,k) combinations are tried out. For each(α,k) combination,α-pass
computes the bestk vertices to assign the labelα. Thesek vertices are obtained by sorting all the
vertices according to the criteriaψ.α−maxβ6=α ψ.β, and picking the top-k vertices. Every remaining
vertex u is labeled with the best non-α label as per the vertex score, that is, with argmaxβ ψuβ.
Let ŷαk denote the clique labeling thus obtained in the(α,k)th combination. Trying out all(α,k)
combinations,α-pass returns thêyαk whose scoreF(ŷαk) is the highest.

It is straightforward to see thatα-pass runs inO(mnlogn) time by incrementally computing
F(ŷαk) from F(ŷα(k−1)), that is, for eachα, we can sort the vertices just once for allk = 1, . . . ,n.
For clique potentials that are decomposable over the edges, as in Potts, this runtime is much better
than ordinary belief propagation, which would costO(m2n2).

We now look at properties ofα-pass.
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Input : Vertex scoresψ, Clique Potential C
Output : Labelingŷ
Best =−∞;
foreach label α ∈ {1, . . . ,m} do

Sort the vertices in descending order according to the metric ψ.α−maxβ 6=α ψ.β;
foreachk∈ {1, . . . ,n} do

Assign the firstk sorted vertices the labelα;
Assign the remaining vertices their individual best non-α label;
s← score of this labeling underF();
if s> Bestthen

Best← s;
ŷ← current labeling;

end
end

end
return ŷ;

Algorithm 1 : Theα-pass algorithm

Claim 5.1 Assignment̂yαk has the maximum vertex score over ally where k vertices are assigned
label α, that is,ψ(ŷαk) = maxy:nα(y)=kψ(y).

Claim 5.2 For MAX potentials, C(ŷαk)≥ fα(k).

Proof Labelα has a count ofk and theMAX potential considers the maximum over all label counts,
which is at leastk.

Theorem 4 Theα-pass algorithm solves the clique inference problem exactly forMAX clique po-
tentials in O(mnlogn) time.

Proof Let y∗ be the true MAP and letβ = argmaxy fy(ny(y∗)), ℓ = nβ(y∗). Let ŷ be the labeling
returned byα-pass. We have:

F(ŷ) = max
1≤α≤m,1≤k≤n

F(ŷαk)

≥ F(ŷβℓ)

= ψ(ŷβℓ)+C(ŷβℓ)

≥ ψ(ŷβℓ)+ fβ(ℓ) (by Claim 5.2)

= ψ(ŷβℓ)+C(y∗)

≥ ψ(y∗)+C(y∗) (by Claim 5.1)

= F(y∗).

Although we had initially designed theα-pass algorithm forMAX potentials, a similar argu-
ment can be used to show thatα-pass performs exact clique inference foranyarbitrary symmetric
potential when we have two labels.

Claim 5.3 α-pass is exact for arbitrary symmetric potentials over two labels.
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Proof Let the MAP y∗ have label countsn1 and n− n1, and a vertex score ofψ(y∗). Let ŷ
be the labeling returned byα-pass. Then we getF(ŷ) ≥ F(ŷ1n1) = ψ(ŷ1n1) +C(n1,n− n1) ≥
ψ(y∗)+C(n1,n−n1) = F(y∗). SinceC is arbitrary, the result follows.

We also note that in some real-life tasks the vertex terms tend to heavily dominate theclique
term. In such a case too,α-pass will provide an exact solution. This follows immediately from
Claim 5.1 and the observation thatF(y)≈ ψ(y).

5.2 Clique Inference for SUM Potentials

We focus on the Potts potential, the most popular member of theSUM family. Potts potential is
given by CPotts(y) = λ∑yn2

y and the clique inference objective is:

max
y1,...,yn

n

∑
j=1

ψ jy j +λ∑
y

n2
y. (7)

In the above,λ > 0 since we are interested in the associative case which encourages agreement
among labels. It is well known that inference with Potts potentials over general graphs, is NP-hard
(Boykov et al., 2001) when number of labels is> 2 even withλ > 0. So we will first show that the
task remains NP-hard even for cliques. Then, we will prove thatα-pass achieves an approximation
ratio of 4

5, followed by a more complex proof for a better and tight approximation ratio of13
15. We

will then generalize theα-pass algorithm, which will result in an improved ratio of8
9 at a cost of

higher runtime. In contrast, theα-expansion algorithm of Boykov et al. (2001) will be shown to
have a ratio of only12.

Theorem 5 When C(y) = λ∑yn2
y,λ > 0, clique inference is NP-hard.

Proof We prove hardness by reduction from the NP-completeExact Cover by 3-setsproblem (Pa-
padimitriou and Steiglitz, 1982). In an instance of Exact Cover by 3-sets, we are given a universe
U of elements, a setSof subsets ofU where each subset has three elements, and the goal is to find
S′ ⊆ S that coversU , while minimizing |S′|. We create an instance of clique inference as follows.
We let elements ofU correspond to vertices, and each set inS to a label. Assignψiy = 2nλ if ele-
menti belongs to sety, and zero otherwise (setλ > 0 arbitrarily). Consider the problem of deciding
if exactly n

3 out of m subsets coverU . The MAP score in the constructed clique inference instance
will be (2n2+32 n

3)λ iff we can find an exact cover.

The above proof establishes that there cannot be an algorithm that is polynomial in bothn andm.
But we have not ruled out algorithms with complexity that is polynomial inn but exponential inm,
say of the formO(2mnk) for a constantk.

We next analyze the approximation guarantees provided by theα-pass algorithm. We first
present an easy proof for a weaker bound of4

5 and then move on to a more detailed proof for
13
15. Recall that the optimal labeling isy∗ and the labeling output byα-pass iŝy.

Theorem 6 F(ŷ)≥ 4
5F(y∗).
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Proof Without loss of generality assume that the label counts ofy∗ aren1 ≥ n2 ≥ . . . ≥ nm. Then
C(y∗) = λ∑yn2

y ≤ λn1 ∑yny = λnn1.

F(ŷ) ≥ F(ŷ1n1) = ψ(ŷ1n1)+C(ŷ1n1)

≥ ψ(y∗)+C(ŷ1n1) (from Claim 5.1)

≥ ψ(y∗)+λn2
1 (sinceλ > 0)

≥ ψ(y∗)+C(y∗)−λn1n+λn2
1

≥ F(y∗)−λn2/4. (8)

Now consider the two cases whereF(y∗)≥ 5
4λn2 andF(y∗)< 5

4λn2. For the first case we get from
above thatF(ŷ) ≥ F(y∗)−λn2/4≥ 4

5F(y∗). For the second case, we know that the scoreF(ŷmn)
where we assign all vertices the last label is at leastλn2 (because all vertex scores are assumed to
be non-negative) and thusF(ŷ)≥ 4

5F(y∗).

We stress that non-negativity of the vertex scores is important for the multiplicative bound of45,
else one can construct examples whereF(y∗) = 0. At the same time, Equation 8 provides a useful
additive bound that holds for arbitrary vertex scores.

We now state the more involved proof for showing thatα-pass actually provides a tight approx-
imation bound of13

15 for clique inference with Potts when the vertex scores are non-negative.

Theorem 7 F(ŷ)≥ 13
15F(y∗). Further, this ratio is tight.

Proof See Appendix A.

We next present a generalization of theα-pass algorithm that provides provably better guarantees
for Potts.

5.2.1 GENERALIZED α-PASSALGORITHM

In α-pass, for each labelα, we go over each countk and find the best vertex score withk vertices
assigned labelα. We generalize this to go over all label subsets of size no more thanq, a parameter
of the algorithm that is fixed based on the desired approximation guarantee.

For each label subsetA⊆ {1, . . . ,m} of size no more thanq, and for each countk, maximize
vertex scores with exactlyk vertices assigned a label fromA. For this, we sort the vertices in
decreasing order of maxα∈A ψiα−maxy6∈A ψiy, assign the topk vertices their best label inA and the
remaining their best label not inA. The best solution over all combinations(A,k) with |A| ≤ q is
returned as the final labelinĝy. It is easy to see that this algorithm reduces toα-pass whenq= 1.

The complexity of this algorithm isO(nmq logn) because there are
(m

q

)

choices for the setA.
In practice, we can use heuristics to prune the number of label subsets. Further, we can make the
following claims about the quality of its output.

Theorem 8 Generalizedα-pass enjoys an approximation bound of8
9, that is, F(ŷ)≥ 8

9F(y∗).

Proof The bound is achieved withq= 2. We provide the details in Appendix A.

Weconjecturethat the bound for generalq is 4q
4q+1. This bound is not tight as forq= 1 we have

already shown that the45 bound can be tightened to13
15. With q= 2 we get a bound of89 which is

better than13
15.
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5.2.2 α-EXPANSION ALGORITHM

In general graphs, a popular method that provides the approximation guarantee of 1/2 for the Potts
model is the graph-cut basedα-expansion algorithm (Boykov et al., 2001). We explore the behavior
of this algorithm for clique inference with Potts potentials.

In this scheme, we start with any initial labeling—for example, all vertices are assigned the first
label, as suggested in Boykov et al. (2001). Next, for each labelα we perform anα-expansion phase
where we switch the labeling of an optimal set of vertices from their currentlabel toα. We repeat
this in a round over them labels, until no vertices switch their labeling in a complete round.

For graphs whose edge potentials form a metric, an optimalα-expansion move is based on the
use of the mincut algorithm of Boykov et al. (2001) which for the case of cliques can beO(n3).
We next show how to perform optimalα-expansion moves more efficiently (inO(mn2) time) for all
kinds ofSUM potentials.
An α-expansion move:Let ỹ be the labeling at the start of this move. For each labely 6= α create a
sorted listSy of vertices assignedy in ỹ in decreasing order ofψiα−ψiy. If in an optimal move, we
moveky vertices fromy to α, then it is clear that we need to pick the topky vertices fromSy. Let r i

be the rank of a vertexi in Sy. Our remaining task is to decide the optimal numberky to take from
eachSy. We find these using dynamic programming. Without loss of generality assumeα = m. Let
D j(k) denote the best score whenk vertices with current labels in 1. . . j switch toα. We compute

D j(k) = max
l≤k, l≤n j (ỹ)

D j−1(k− l)+ f j(n j(ỹ)− l)+ ∑
i′:r i′≤l

ψi′α + ∑
i′:r i′>l

ψi′ j ,

wheren j() is the usual cardinality of labelj in the labeling. Now we can find the optimal number
of vertices to switch toα as argmaxk≤n−nα(ỹ)Dm−1(k)+ fα(k+nα(ỹ)).

5.2.3 COMPARISON WITH EXISTING APPROXIMATION BOUNDS

As mentioned earlier, the CPotts clique potential is equivalent to the sum of Potts potentials over
edges of a complete graph. For arbitrary graphs with homogeneous Potts potential on edges, the
alpha expansion algorithm of Boykov et al. (2001) and the LP relaxation algorithm of Kleinberg
and Tardos (2002) provide a factor of 2 approximation guarantee for aminimization version of the
objective. For cliques with homogeneous edge potentials, their objective reduces to an energy-based
formulation (using their notation):

min
y ∑

j

θ j(y j)+ γ ∑
i, j>i

δ(y j 6= yi)≡min
y ∑

j

θ j(y j)+
γ
2
(n2−∑

y
n2

y), (9)

whereθ j(y j) denotes node energy and is assumed to be positive andγ denotes the homogeneous
Potts parameter.

First we show thatα-expansion provides an approximation bound of 2 even for the special case
of cliques. Symmetrically, we also show that theα-expansion algorithm provides a bound of1

2
for our original max-version of the clique inference problem. Next, we show thatα-pass provides
a bound of3

2 for even the minimization objective above. Thus, for both the minimization and
maximization objectives,α-pass improves upon the guarantees obtained by existing algorithms.

Theorem 9 Theα-expansion algorithm provides no better approximation guarantee than 2 for the
minimization objective (9).
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Proof An instance where this occurs is as follows. There aren nodes andn+1 labelsy0, . . . ,yn. The
vertex energy for(xi ,y0) is 2n−2 and for(xi ,yi) it is 0. All other vertex energies are∞, andγ = 1.
Suppose initially all nodes are assigned labely0. Then the clique energy is 0 and vertex energy is
n(2n− 2). Now considering any other labelyi , i >= 1, the optimal set of nodes to switch is just
xi . But this reduces vertex energy by 2n−2 but increases clique energy by the same amount, so no
switching is done. However the optimal solution hasxi labeled withyi , which has a total energy of
n2−n.

Theorem 10 Theα-expansion algorithm provides no better approximation guarantee than 1/2for
the maximization objective (7).

Proof Consider an instance wherem=
√

n+1, andλ = 1. Let ψu1 = 2
√

n for all u. Divide the
vertices into

√
n groups of size

√
n each, and letψu,i+1 = 2n for every vertexu in the ith group.

All other vertex scores are zero. Consider the solution where every vertex is assigned label 1. This
labeling is locally optimal wrt anyα-expansion move, and its score isn2(1+2/

√
n). However, the

exact solution assigns every vertex group its label, with a scoren2(2+1/
√

n) , thus giving a ratio
of 1/2 in the limit.

Theorem 11 Theα-pass algorithm achieves an approximation ratio of3
2 for the minimization ob-

jective 9.

Proof Supposek=maxyny is the highest count in the optimal labeling. Consider two cases,k≥ n/2
andk< n/2.

If k≥ n/2, the clique energy is at leastγ(n2− (k2+(n−k)2)) = γ2k(n−k). The clique energy
in α-pass is at mostγ(2n2− k2− (n− k)) = γ(n− k)(n+ k−1). The vertex energy in the optimal
labeling cannot be smaller than that inα-pass. Sincek>= n/2,(n+k−1)/2k≤ 3/2.

If k ≤ n/2, then the clique energy in the optimal labeling is at leastγ(n2− nk) = γn(n− k).
Therefore the ratio is again at most(n+k−1)/n≤ 3/2.

As expected, generalizedα-pass provides a superior approximation ratio for Objective 9.

Theorem 12 The generalizedα-pass algorithm with two labels (q= 2) achieves an approximation
ratio of 1+

√
2

2 for objective 9.

Proof We omit the complete proof as it is quite detailed and give only a brief sketch. Wlog assume
that 1 and 2 are the two most dominant labels in the optimal labeling OPT, with countsn1,n2≤ n1.
Consider two solutions—one given byα-pass (i.e.,q= 1) when label 1 has countn1, and another
given by generalizedα-pass withq= 2 when counts of labels 1 and 2 aren1+n2. The node energies
of these two labelings cannot be worse than that of OPT (Claim 5.1). So the approximation bound
depends only on the ratios of the clique energies. Therefore wlog assumethatγ = 2 in Objective 9.

The clique energies of the two solutions cannot exceed(n2−n2
1) and(n2− (n1+n2)

2

2 ) respectively. We
can now work out the two cases whethern2

1≤ (n1+n2)
2/2 or not, and get the desired approximation

bound through contradictions. The analysis also shows that the bound is tight, and is achieved when
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n1 = n/
√

2 andn2 = n−n/
√

2.

5.2.4 ENTROPY POTENTIALS AND THE α-PASSALGORITHM

As an aside, let us explore the behavior ofα-pass on another family of additive potentials—entropy
potentials. Entropy potentials are of the form:

C(n(y)) = λ∑
y

ny logny, whereλ > 0.

The main reasonα-pass provides a good bound for Potts potentials is that it guarantees a clique
potential of at leastn2

1 wheren1 is the count of the most dominant label in the optimal solutiony∗.
The quadratic term compensates for possible sub-optimality of counts of other labels. If we had a
sub-quadratic term instead, sayn1 logn1 for the entropy potentials, the same bound would not have
held. In fact the following theorem shows that for entropy potentials, even thoughα-pass guarantees
a clique potential of at leastn1 logn1, that is not enough to provide a good approximation ratio.

Theorem 13 α-pass does not provide a bound better than1
2 for entropy potentials.

Proof Consider a counter example where there arem= n+ logn labels. Divide the labels into two
sets—A with logn labels andB with n labels. The vertex scores are as follows: the vertices are
divided into logn chunks of sizen/ logn each. If thej th vertex lies in theyth chunk, then let it have
a vertex score of logn with labely in A and a vertex score of logn+ ε with the j th label inB. Let all
other vertex scores be zero. Also, letλ = 1.

Consider the labeling which assigns theyth label in A to theyth chunk. Its score is 2nlogn−
nlog logn. Now considerα-pass, withα ∈ A. Initially vertexy will be set to theyth label inB. The
best labeling found byα-pass will assign every vertex toα, for a total score of roughlyn+nlogn.
If α ∈ B, then again the best labeling will assign everything toα for a total score of roughly(n+
1) logn.

Thus the bound is no better than1
2 asn→ ∞.

Thus,α-pass provides good approximations when the clique potential is heavily dominated by
the most dominating label. We now look atMAJORITY potentials, which are linear in the counts
{ny}y. Looking at Theorem 13, we expect thatα-pass will not have decent approximation guarantees
for MAJORITY. This is indeed the case. We will prove in Section 5.3 that neitherα-pass nor a natural
modification ofα-pass enjoy good approximation guarantees.

5.3 Clique Inference for MAJORITY Potentials

Recall thatMAJORITY potentials are of the form C= fa(n), a = argmaxy ny. We consider linear
majority potentials wherefa(n) = ∑ywayny. The matrixW = {wyy′} is not necessarily diagonally
dominant or symmetric.

We show that exact MAP for linear majority potentials can be found in polynomial time. We
also present a modification to theα-pass algorithm to serve as an efficient heuristic, but without
approximation guarantees. Then we present a Lagrangian relaxation based approximation, whose
runtime is competitive withα-pass, but which provides much more accurate solutions.
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5.3.1 MODIFIED α-PASSALGORITHM

Assume that we magically know the majority labelα in advance. Then for linear majority potentials,
we can incorporate the linear clique termwαyny in the various vertex scores, and this leads to the
following natural modifications to theα-pass algorithm: (a) While making iterations for the label
α, sort the vertices according to the modified metricψiα+wαα−maxy6=α(ψiy+wαy), and (b) While
sweeping the list forα with varying values ofk, discard all candidate solutions whose majority label
is notα.

However even after these modifications,α-pass does not provide the same approximation guar-
antee as for homogeneous Potts potentials, as we prove next.

Theorem 14 The modifiedα-pass algorithm cannot have an approximation ratio better than1
2 on

linear majority potentials with arbitrary W.

Proof Consider the degenerate example where all vertex scores are zero. Let β andγ be two fixed
labels and let the matrixW be defined as follows:wβγ = M+ ε, wβy = M ∀y 6= β,γ and all the other
entries inW are zero.

In modifiedα-pass, whenα 6= β, the labeling returned will have a zero score. Whenα = β, all
vertices will prefer the labelγ, soα-pass will have to assign exactlyn/2 vertices toβ to make it
the majority label, thus returning a score of(M+ε)n

2 . However, consider the labeling which assigns
n/mvertices to each value, with a score of(m−1)Mn/m. Hence the approximation ratio cannot be
better than1

2.

5.3.2 EXACT ALGORITHM

SinceMAJORITY potentials are linear, we can pose the optimization problem in terms of Integer
Programs (IPs). Assume that we know the majority labelα. Then, the optimization problem corre-
sponds to the IP:

max
z ∑

i,y

(ψiy +wαy)ziy,

s.t.∀y : ∑
i

ziy ≤∑
i

ziα,

∀i : ∑
y

ziy = 1, ziy ∈ {0,1}. (10)

We can solvem such IPs by guessing various labels as the majority label, and reporting the best
overall labeling as the output. However, Equation 10 cannot be tightly relaxed to a linear program.
This can be easily shown using a counter example: Consider a 3-vertex, 3-label clique with a zeroW
matrix. Let the vertex score vectors beψ0 = (1,4,0), ψ1 = (4,0,4), ψ2 = (3,4,0). While solving
for α = 0, the best IP labeling is 1,0,0 with a score of 11. However the LP relaxation has the
solutionz= (0,1,0;1,0,0;1/2,1/2,0) with a score of 11.5.
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This issue can be resolved by making the constraint matrix totally unimodular as follows. Guess
the majority labelα, its countk= nα, and solve the following IP:

max
z ∑

i,y

(ψiy +wαy)ziy,

s.t.∀y 6= α : ∑
i

ziy ≤ k,

∑
i

ziα = k,

∀i : ∑
y

ziy = 1, ziy ∈ {0,1}. (11)

This IP solves the degree constrained bipartite matching problem, which can be solved exactly in
polynomial time. Indeed, it can be shown that the constraint matrix of this IP is totally unimodular,
so its LP relaxation will have an integral solution. We refer the reader to Gupta et al. (2009) for the
details. Thus we solveO(mn) such problems by varyingα andk, and report the best solution. We
believe that the above LP is concave ink, so the system for a fixedα should be efficiently solvable
using golden section search.

5.3.3 LAGRANGIAN RELAXATION BASED ALGORITHM FOR MAJORITY POTENTIALS

Solving the linear system in Equation 11 is very expensive because we need to solveO(mn) LPs,
whereas the system in Equation 10 cannot be solved exactly using a linear relaxation. Here, we
look at a Lagrangian Relaxation based approach (LR), where we solvethe system in Equation 10
but bypass the troublesome constraint∀y 6= α : ∑i ziy ≤ ∑i ziα.

We use Lagrangian relaxation to move this constraint to the objective function. Any violation
of this constraint is penalized by a positive penalty term. Consider the following modified program,
also called the Lagrangian:

L(γ) = L(γ1, . . . ,γm) = max
z ∑

i,y

(ψiy +wαy)ziy + ∑
y

γy(∑
i

ziα−∑
i

ziy),

s.t.∀i : ∑
y

ziy = 1, ziy ∈ {0,1}. (12)

Forγ≥ 0, and feasiblez, L(γ) is an upper bound for our objective in Equation 10. Thus, we compute
the lowest such upper bound:

L∗ = min
γ≥0

L(γ). (13)

Further, the penalty term in Equation 12 is linear inz, so we can merge it with the first term to get
another set of modified vertex potentials:

ψα
iy , ψiy +wαy− γy+

{

∑y′ γy′ y= α
0 y 6= α .

Equation 12 can now be rewritten in terms ofψα, with the only constraint thatz correspond to
a valid labeling:

max
y ∑

i,y

ψα
iyziy,

s.t.∀i : ∑
y

ziy = 1, ziy ∈ {0,1}.
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Hence,L(γ) can be computed by independently assigning each vertexi to its best label viz. argmaxyψα
iy.

We now focus on computingL∗. We use an iterative approach, beginning withγ = 0, and
carefully choose a newγ at each step to get a non-increasing sequence ofL(γ)’s. We describe
the method of choosing a newγ later in this section, and instead outline sufficient conditions for
termination and detection of optimality.

Theorem 15 z∗ andγ∗ are optimum solutions to Equations 10 and 13 respectively if they satisfy the
conditions:

∀y : ∑
i

z∗iy ≤∑
i

z∗iα, (14)

∀y : |γ∗y(∑
i

z∗iy−∑
i

z∗iα)|= 0. (15)

Theorem 15 holds only for fractionalz∗. To see how, consider an example with three vertices and
two labels. Letψi1+wα1 > ψi2+wα2 for all i andα. During Lagrangian relaxation withα = 2,
initially γ = 1 will cause all vertices to be assigned label 1, violating Equation 14. Since thecount
difference∑i zi1−∑i zi2 ∈ {±1,±2,±3}, any non-zeroγ1 will violate Equation 15. Subsequent
reduction ofγ1 to zero will again cause the original violation of Equation 14. Consequently,one of
Equations 14 and 15 will never be satisfied and the algorithm will oscillate.

To tackle this, we relax Equation 15 to|γy(∑i z
∗
iy−∑i z

∗
iα)| ≤ ε, whereε is a small fraction of an

upper bound onγy. This helps in reporting labelings that respect the majority constraint in Equation
14 and are close to the optimal.

The outline of the algorithm is described in Figure 2.
We now discuss a somewhat conservative approach to select a newγ at every step. We ini-

tially attempted subgradient optimization and golden search to compute step direction and sizes for
changingγ. However, we ran into various practical difficulties. Subgradient optimization required
very careful tweaking of the step size across iterations, an issue exacerbated by the discrete na-
ture of our problem. On the other hand, golden search was too aggressive in practice, leading to
many avoidable label flips and consequently many more iterations. So instead we implemented a
conservative approach which we describe next.

5.3.4 CONSERVATIVE COORDINATE DESCENT

We perform conservative coordinate descent which avoids large changes and thus too many label
flips. Lety be the worst violating label in the current iteration. We will first consider thecase when
its count exceeds that ofα, so that Equation 14 does not hold.

To decrease the count ofy, we need to increaseγy. Let i be a vertex currently assignedy
and letβ(i) be its second most preferred label under the vertex potentialsψα

i . The vertex j =
argmaxi:ziy=1ψα

iβ(i)−ψα
iy is the easiest to flip. So we increaseγy just enough to make this flip happen.

The new value ofγy is therefore given by:

γy = min
i:ziy=1

{

∆ψ(i,y,β(i))+ γβ(i) β(i) 6= α
1
2(∆ψ(i,y,α)−∑y′ 6=y γy′) β(i) = α , (16)

where∆ψ(i,y,y′) denotesψiy +wαy−ψiy′ −wαy′ . It is possible that by flipping vertexj, β( j) now
violates Equation 14. Moreover, increasingγy also increasesψα

iα, so some other vertices that are not
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assignedy may also move toα. However since the change is conservative, we expect this behavior
to be limited. In our experiments, we found that this conservative scheme converges much faster
than golden search over a variety of data.

We now look at the case when Equation 14 is satisfied by all labels but Equation 15 is violated
by some labely. In this scenario, we need to decreaseγy to decrease the magnitude of the violation.
Here too, we conservatively decreaseγy barely enough to flip one vertex toy. If i is any vertex not
assigned labely andβ(i) is its current label, then the new value ofγy is given by:

γy = max
i:ziy 6=1

{

∆ψ(i,y,β(i))+ γβ(i) β(i) 6= α
1
2(∆ψ(i,y,α)−∑y′ 6=y γy′) β(i) = α . (17)

Note that the arguments of Equations 16 and 17 are the same. In this case too,in spite of a conser-
vative move, more than one vertex markedα may flip to some other value, although at most one of
them will be flipped toy. As before, the small magnitude of the change restricts this behavior in
practice.

Input : ψ,W,α,maxIters,tolerance
Output : approximately best assignmentŷ
γ← 0;
iter← 0;
ẑ← Assignment with all vertices assignedα;
while iter < maxItersdo

ComputeL(γ) (Equation 12), letz be the solution;
if F(z)> F(ẑ) then

ẑ← z;
end
(y,∆)←Worst violator and violation (Equations 14 and 15);
if ∆ < tolerancethen

We are done,L∗ = L(γ);
break;

else
Modify γy using conservative coordinate descent;

end
iter← iter+1;

end
Construct assignmentŷ from ẑ;
return ŷ

Algorithm 2 : LR Algorithm for Majority potentials

5.4 Computing All Node Max-marginals

In this section, we discuss an important optimization that speeds up message-passing in a cluster
graph. We show that for symmetric potentials we can compute max-marginals inO(m2) calls to the
clique inference algorithm in practice, as opposed to the expectednm invocations. Cliques can be
arbitrarily big, so removing the dependence onn is very helpful in practice.

Our basic strategy is as follows. For label pairsα,β, define a modified clique potential function
Cαβ that adds “1” to the count for labelβ and subtracts “1” from the count of labelα:

Cαβ(y) = C(n1(y), . . . ,nα(y)−1, . . . ,nβ(y)+1, . . .nm).
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Find MAP labelingyαβ using the modified scoring functionFαβ(y) = ψ(y)+Cαβ(y). Let v be a
vertex whose label inyαβ is α, then the max marginalMvβ , maxy:yv=β F(y) = Fαβ(yαβ)−ψvα +
ψvβ. The outgoing messagemt→v(β) is then simplyMvβ−mv→t(β) as per Equation 4. A proof of
correctness of this optimization is as follows.

Theorem 16 maxy:yv=β F(y) = Fαβ(yαβ)−ψvα +ψvβ.

Proof

max
y

Fαβ(y) = max
y:yv=α

Fαβ(y) sincev is labeledα in yαβ

= max
y:yv=α

ψ(y)+Cαβ(y)

= max
y:yv=β

ψ(y)−ψvβ +ψvα +C(y)

= max
y:yv=β

F(y)−ψvβ +ψvα.

We invoke the above strategy for all label pairsα,β when some vertex in the original MAP gets
labelα. There is no guarantee that allnmmessages would be generated by the above scheme. The
ones that are not covered are computed using separate invocations of MAP.

This concludes the description of our various clique inference algorithms and their theoret-
ical properties. The discussion until now had focused on the traditional unigram-clique collec-
tive inference model. We now switch tracks and describe an extension of the collective inference
framework—one which captures richer kinds of associativity that is oftenpresent in the data. We
will see that the same cluster message passing setup and collective inferencealgorithms can be used
almost as is in this more general scenario.

6. Properties-based Collective Inference Framework

We broaden the notion of collective inference to encourage richer formsof associativity amongst the
labelings of multiple records. This more general framework has applications indomain adaptation.
We illustrate this via an example.
Example:Consider extracting bibliographic information from an author’s publicationshomepage
using a model trained on a different set of pages. The labels of interestare Title, Author, Venue, and
Date. Typically, within each homepage (a domain) we expect consistency in the style of individual
publication records. For example, we expect the following properties to belargely uni-valuedinside
a domain:

1. The ordering of labels in the labelings (e.g., Title→ Author*→ Venue).

2. The token preceding the Title, or ‘Start’ if Title occurs at the beginning.

3. The label appearing after the Venue, or ‘End’ if Venue occurs at the end.

4. Label of the token ‘IEEE’.
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A Simulator for estimating Railway Line Capacity .
In APORS - 2003.

(Start, Date,<b>) Bhardwaj, P. (2001). Delegating Pricing Decisions.
Marketing Science20(2). 143-169.

(‘.’, Volume, <li>)

Scheduling Loosely Connected Task Graphs. Jour-
nal of Computer and System Sciences , August 2003
.

(Start, Date,<b>) Balasubramaniam, S. and P. Bhardwaj (2004). When
not all conflict is bad: Manufacturing marketing con-
flict and strategic incentive design.Management Sci-
ence50(4). 489-502.

(‘.’, Volume, <li>)

Devanagari Pen-written Character Recognition. In
ADCOM - 2001.

(Start, Date,<b>) Bhardwaj, P. and S. Balasubramaniam (2005). Man-
aging Channel Profits: The Role of Managerial Incen-
tives. ForthcomingQuantitative Marketing and Eco-
nomics.

(‘.’, End, <li>)

Table 2: Two publications pages with different styles. Text in parentheses shows the values of three
properties on the correct labelings: (i) Token before Title (ii) First non-Other label after
Venue (iii) HTML tag containing Title. The properties are largely uni-modal inside a page,
but the mode varies across pages.

Note that ‘IEEE’ will tend to recur across multiple records, so the last property corresponds to the
unigram-based cliques that we modeled thus far. It is clear now that we cangain a lot more if we
couple the records together according to ‘richer’ properties than just unigrams.

Of course the choice of properties is crucial. For all the properties illustrated above, we expect
that the labelings inside the domain agree on the property value, without caring for what the value
actually is (which varies from domain to domain). This allows us to use the same property on
different domains, with varying formatting and authoring styles. Table 2 illustrates this for two
publications pages with different styles. It shows three properties that take on largely similar values
across records inside a domain, but the dominant value changes acrossdomains. Thus we can
reward associativity of these property values using the same symmetric potentials that we have used
for unigram cliques.

Now assume that we have an array of such conformance-promoting properties, and a basic
MRF trained on some labeled domains. An effective way of deploying this MRFon a previously
unseen domain is by labeling the records in the new domain collectively while encouraging the
individual labelings to agree on our set of properties. If the propertiescontinue to remain associative
in the unseen domain, then collective inference can be expected to correct a significant number of
errors. This provides us with an inference-only approach, in contrast to many existing solutions for
domain adaptation which require model re-training (Blei et al., 2002; Blitzer et al., 2006; Mann and
McCallum, 2007).

We now give an intuitive description of how the introduction of properties causes only minor
changes in our collective inference framework. The modified collective inference objective is now
given by:

arg max
y1,...,yN

(

N

∑
k=1

|xk|

∑
i=1

φk
i (y

k
i ,y

k
i−1)

)

+ ∑
g∈G

Cg({g(xk,yk)}k),

instead of Equation 2. HereG is the set of properties, each of which defines an associative clique.
We reuse the cluster message passing setup in this collective inference scenario. We define one clus-
ter per chain, one per property, while separators remain singleton—they correspond to the property
value. The new messages are of the kindmg→k(v) andmk→g(v), wherev is a possible value output
by the property g(). The property-to-chain messages are computed as before using our potential-
specific clique inference algorithms. However the chain-to-property messagesmk→g cannot be com-
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puted for arbitrary properties. To illustrate, say g(xk,yk) = Number of tokens marked Author inyk.
Computing chain messages for this property is quite expensive, if not hard. So for computational
reasons we restrict ourselves toMarkovian properties, that is, properties whose chain-to-property
messages can be computed with a first-order algorithm like Viterbi or max-product. Examples of
Markovian properties include—Token before Title, and Label after Author. A sample message for
the second property would be, say,mk→g(Title), which can be computed by running Viterbi with
the first-order constraint that Author be followed by Title. In general, values of Markovian prop-
erties depend only on the Markovian blanket of a part of the chain, whichleads to tractability of
message computation. We refer the reader to Gupta et al. (2009) for the formal technical details of
chain-to-property message computation for Markovian properties.

We stress that such a support for Markovian properties is not possiblein alternative collective
inference approaches like TRW-S. This is because even with Potts potentials over properties, the
inter-cluster separators still remain complete chain labelings instead of scalarproperty values, so
the cluster model cannot be represented as a pairwise graphical model.

In Section 7.3 we will look at the effect of introducing associative properties in the context of
domain adaptation on a citation extraction task.

7. Experiments

Our goal is to empirically demonstrate that cluster message passing is indeed a more accurate and
efficient framework for doing collective inference. Once this is established, it would necessitate
the design of fast and accurate message computation algorithms that work for symmetric clique
potentials. This would justify our design and analysis of the various clique inference algorithms
presented in this paper. After illustrating the effectiveness of cluster message passing, we will show
that the extension of collective inference to capture richer associative properties leads to significant
boosts in domain adaptation tasks. Keeping these goals in mind, we present results of three dif-
ferent experiments—clique inference, collective inference, and the extension to general Markovian
properties.

First, in Section 7.1 we compare our clique inference algorithms against applicable alternatives
in the literature. We compare the algorithms on computation speed and accuracyof the MAP assign-
ments. For Potts potentials, we show thatα-pass provides similar MAPs as the various alternatives
but is up to two orders faster. For linearMAJORITY potentials (Equation 6), we compare our al-
gorithms against the exact LP-based approach of Section 5.3.2 and the ICM algorithm. For other
clique potentials that are not decomposable along the clique edges, we compare α-pass against the
ICM algorithm.

Second, in Section 7.2 we show that message passing on the cluster graph isa more effective
method for collective inference than its alternatives. For collective models with Potts potentials, we
compare cluster message passing against belief propagation that decomposes Potts along the clique
edges. In the case of linearMAJORITY potentials, we compare against the stacking based approach
of Krishnan and Manning (2006).

Finally, in Section 7.3 we demonstrate the application of our generalized collective framework
on domain adaptation. On a citation extraction task, we show that capturing the associativity of
richer properties leads to significant reduction in test error.
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λ ICM α-pass α2-pass α-exp DP α-exp FastCut FastPD TRW-S DD
Clique MAP scores

0.50 4866.7 4862.3 4864.2 4866.0 4867.0 4867.2 4866.7 4866.4 4833.3
0.55 4878.0 4872.6 4875.5 4878.5 4879.6 4879.7 4879.1 4878.6 4838.1
0.60 4899.8 4893.8 4895.8 4898.0 4900.9 4900.8 4900.7 4899.7 4865.6
0.65 4914.9 4909.4 4911.6 4913.3 4915.9 4916.9 4914.6 4915.1 4881.3
0.70 4919.6 4913.0 4916.7 4916.6 4921.5 4923.1 4920.6 4919.6 4891.2
0.75 4930.0 4934.7 4936.9 4928.8 4935.1 4936.8 4938.2 4938.4 4926.8
0.80 4965.0 4969.3 4972.5 4959.5 4959.5 4971.2 4954.3 4971.4 4961.7
0.85 4977.3 5009.6 5010.0 4995.5 4988.3 5002.8 4997.7 5007.0 4999.9
0.90 5018.5 5082.3 5082.3 5073.9 5081.2 5081.1 5080.1 5079.0 5049.1
0.95 5053.5 5155.9 5155.9 5154.4 5154.9 5155.1 5154.9 5150.7 5100.9
1.00 5137.2 5264.3 5264.3 5264.3 5264.3 5264.3 5264.3 5262.1 5161.9
1.05 5279.4 5417.1 5417.1 5417.1 5417.1 5417.1 5417.1 5417.1 5269.5
1.10 5383.8 5528.1 5528.1 5528.1 5528.1 5528.1 5528.1 5528.1 5358.1
All 65223.5 65812.5 65831.2 65794.0 65813.5 65844.2 65816.6 65833.4 65137.3

Running Time (ms)
0.50 24 38 464 155 5900 7910 2510 12170 117180
0.55 27 38 455 174 6610 8010 2930 13290 117480
0.60 28 38 454 160 8140 8810 3640 16290 118270
0.65 29 38 452 157 8700 9120 4190 17740 117050
0.70 35 43 470 162 11680 9630 5210 19480 118360
0.75 34 41 460 155 13770 10460 7180 21730 117170
0.80 42 39 459 153 16710 11060 8650 22660 117450
0.85 38 44 464 139 18260 11310 7360 22610 117730
0.90 42 42 462 163 19100 14980 7280 20170 117670
0.95 49 39 458 127 16450 13640 6620 17910 117070
1.00 58 39 456 85 11280 11200 6320 10670 117240
1.05 59 39 458 82 10730 10800 5810 5280 116780
1.10 50 39 467 82 10490 10420 6000 3400 116920
All 514 519 5979 1795 157820 137350 73700 203400 1526370

Table 3: Clique MAP scores and runtimes of various clique inference algorithms for Potts potential.
Each number is an aggregate over 25 cliques for the correspondingλ.

7.1 Clique Inference Experiments

For clique potentials decomposable over clique edges, we compare our clique inference algorithms
against sequential tree re-weighted message passing (TRW-S), graph-cut based inference (α-exp),
the ICM algorithm, and recent advancements including the faster graph-cut algorithm of Alahari
et al. (2008) (FastCut), the fast primal-dual algorithm of Komodakis and Tziritas (2007) (FastPD),
and the dual-decomposition scheme of Komodakis et al. (2007a) (DD). Fornon-decomposable po-
tentials, we present comparisons against the ICM algorithm. We present comparison results on
running time and quality of the MAP. Our experiments were performed on both synthetic and real
data.
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(a) POTTS: Runtime vsλ (b) CoNLL with Potts:α-pass vs TRW-S

Figure 2: Potts potential: (a) Runtime ofα-pass vs TRW-S, Graph-cut and FastPD aggregated on
25 cliques asλ is varied in the synthetic data setPOTTS(b) Comparingα-pass and TRW-S
on MAP scores and runtimes for each CoNLL clique.

Synthetic Data Set:We generated cliques with 100 vertices andm= 24 labels by choosing vertex
potentials at random from[0,2] for all vertex-label pairs. A Potts version (POTTS) was created by
gradually varyingλ, and generating 25 cliques for every value ofλ. We also created analogousEN-
TROPY, MAKESPAN andMAKESPAN2 versions of the data set by choosing entropy (λ∑yny logny),
linear makespan (λmaxyny) and square makespan (λmaxyn2

y) clique potentials respectively.
For linearMAJORITY potentials we generated two kinds of data sets (parameterized byλ): (a)

MAJ-DENSEobtained by generating a random symmetricW for each clique, whereWyy= λ was the
same for ally andWyy′ ∈ [0,2λ] (y 6= y′), and (b)MAJ-SPARSEfrom symmetricW with Wyy′ ∈ [0,2λ]
for all y,y′, roughly 70% of whose entries were zeroed. This sparse data set is supposed to mirror
the sparseness ofW in real-life data sets.
CoNLL Data Set:The CoNLL 2003 data set1 is a popular choice for demonstrating the benefit of
collective labeling in named entity recognition tasks. We used the BIOU encoding of the entities,
that resulted in 20 labels. We took a subset of 1460 records from the testset of CoNLL, and selected
all 233 cliques of size 10 and above. The smaller cliques were ignored as the algorithms hardly differ
in performance over them. The median and largest clique sizes were 16 and259 respectively. The
vertex potentials of the cliques were set by a sequential Conditional Random Field trained on a
separate training set. We created a Potts version by settingλ = 0.9/n using the development set,
wheren is the clique size. Such aλ allowed us to balance the vertex and clique potentials for each
clique. A majority version was also created by learningW discriminatively in the training phase.

We developed Java implementations for all our algorithms—α-pass, generalizedα-pass with
q = 2, dynamic programming basedα-expansion of Section 5.2.2 (denotedα-exp DP), modified
α-pass, Lagrangian relaxation, and the Exact LP-based algorithm for Majority potentials. We used
publicly available C++ implementations for TRW-S,2 (Boykov et al., 2001; Szeliski et al., 2006;
Kolmogorov and Zabih, 2004; Boykov and Kolmogorov, 2004), FastCut(Alahari et al., 2008), and
FastPD (Komodakis and Tziritas, 2007; Komodakis et al., 2008). In addition, we implemented DD

1. This data set can be found athttp://cnts.uia.ac.be/conll2003/ner/ .
2. This code can be found athttp://www.adastral.ucl.ac.uk/ ˜ vladkolm/papers/TRW-S.html and http://

vision.middlebury.edu/MRF/ .
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Figure 3: Comparing the MAP quality ofα-pass vs ICM on non-decomposable potentials. Plotted
point (r, f ) denotes that for a fractionf of the cliques,α-pass returned a MAP score at
leastr times that of ICM.

in C++ and ICM in Java. All experiments were performed on a Pentium-IV 3.0 GHz machine with
8 GB of RAM.

7.1.1 EDGE DECOMPOSABLEPOTENTIALS

Table 3 compares the various clique inference algorithms on thePOTTS data set. We vary the
Potts parameterλ uniformly in the range[0.5,1.1]. This range is of special interest because it
allows maximal contention between the clique and vertex potentials. Forλ outside this range, the
MAP is usually a trivial assignment, viz. one which either individually assignseach vertex to its
best label (optimizing vertex potential), or assigns all vertices to a single label (optimizing clique
potential). Each number in the upper half of Table 3 is the aggregate MAP score of 25 cliques for
that particularλ, while the bottom half reports the aggregate clique inference time rounded to the
nearest millisecond.

We observe that apart from ICM and DD, all the other algorithms return MAP scores in a small
interval (0.5%) of each other. In particularα-pass performs almost identical toα-exp and FastPD in
this regard. FastCut provides the best aggregate MAP scores, butα2-pass and TRW-S are quite close
as well. We note that the three expansion algorithmsα-exp,α-exp DP, and FastCut return different
MAP scores, primarily because they employ different bootstrapping steps. Further we observe that
DD returns significantly low MAP scores, because even with suitable step-size selection heuristics
such as the one proposed by Komodakis et al. (2007a), DD convergesvery slowly and invariably
hits the maximum iteration limit of 30 with a sub-par MAP. ICM also returns lower MAPscores, as
expected, due to its highly local updates.

In terms of runtime, Table 3 shows a clear separation of the algorithms. ICM and α-pass are
the fastest, whileα-exp, FastCut, FastPD, and TRW-S are 150-400 times slower. This is because in
contrast toα-pass, the other algorithms perform multiple costly iterations (e.g., an iteration ofTRW-
S isO(n2)). The cut-based algorithms and FastPD are faster than TRW-S, while DD is the slowest,
at 3000 timesα-pass. This is because DD has to deal withO(n) spanning trees which is costly, and
leads to slow convergence. Consequently DD hits the iteration limit every time. Our α2-pass and
dynamic programming basedα-expansion (α-exp DP) algorithms are ten and three times slower
thanα-pass respectively, but still more than an order faster than the other algorithms. Finally we
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see that whileα-pass andα2-pass take almost a constant time irrespectively ofλ, the other schemes
take up more time (as they iterate more) around the “maximal contention range” of[0.7,1.0] for
λ. Figure 2(a) illustrates this behavior, where we varyλ and plot the runtimes ofα-pass, FastPD,
TRW-S, and FastCut. Note thatα-pass lies very close to the x-axis, illustrating its small runtime.

Figure 2(b) presents the results on Potts cliques from the CoNLL data set. For simplicity we only
compareα-pass with TRW-S as the other algorithms behave analogous to the synthetic scenario. For
each clique, we plot (a) the ratio of theα-pass MAP score with that of TRW-S, and (b) ratio of TRW-
S runtime vsα-pass runtime. While both the algorithms report the same MAP,α-pass is still more
than 10 times faster on more than one-third of the cliques, and is never slower. This ratio is not as
bad as for synthetic cliques mainly because the median clique size here is much smaller at 16.

7.1.2 NON-DECOMPOSABLEPOTENTIALS

In this case, we cannot compare against the TRW-S or graph-cut based algorithms. Hence we
compare with the ICM algorithm that has been popular in such scenarios (Luand Getoor, 2003).
The scheme of Potetz and Lee (2008) is another alternative, but we omit a comparison with it as it
is bound to be quite expensive inm (see discussion in Section 8).

We variedλ with increments of 0.02 in [0.7,1.1) and generated 500 cliques each fromMAJ-
DENSE, MAJ-SPARSE, ENTROPY, MAKESPAN and MAKESPAN2. We measure the ratio of MAP
score ofα-pass with ICM and for each ratior we plot the fraction of cliques whereα-pass returns
a MAP score at leastr times that of ICM. Figure 3 shows the results on all the potentials except
MAJORITY, which will be presented later. The curves for linear and square makespan lie totally to
the right ofratio = 1, which is expected becauseα-pass will always return the true MAP for those
potentials. In contrast ICM can only return a locally optimal solution. For entropy, α-pass was
found to be significantly better than ICM in all the cases. The runtimes of ICM and α-pass were
similar.

7.1.3 MAJORITY POTENTIALS

In Figures 4(a) and 4(b), we compare ICM, Lagrangian Relaxation (LR) and modified-α-pass (Sec-
tion 5.3.1, denoted ModAlpha) against the LP-based exact method (LP) onsynthetic data. Each
curve plots, for each MAP ratior, the fraction of cliques on which ICM (or LR or ModAlpha) re-
turns a MAP score better thanr times the optimal MAP score. An ideal algorithm’s curve would
just be a dot at(1,1) indicating that it retrieves the true MAP for all the cliques.

We observe that onMAJ-DENSE, both ModAlpha and ICM return a MAP score better than 0.85
of the true MAP, with ICM being slightly better. However, LR out-performs both of them, providing
a MAP ratio always better than 0.97 and returning the true MAP in more than 70%of the cases. In
MAJ-SPARSEtoo, LR dominates the other two algorithms, returning the true MAP in more than 80%
of the cases, with a MAP ratio always better than 0.92. Further it can be derived that on average, LR
returns a MAP score 1.15 times that of ICM. Thus, LR performs much better than its competitors
across dense as well as sparse majority potentials.

The results on CoNLL data set, whoseW matrix is 85% sparse, are displayed in Figure 4(c).
ICM, ModAlpha, and LR return the true MAP in 87%, 95% and 99% of the cliques respectively,
with the worst case MAP ratio of LR being 0.97 as opposed to 0.94 and 0.74 for ModAlpha and
ICM respectively. Figure 4(d) displays runtime ratios on all CoNLL cliquesfor all three inexact
algorithms vs LP. ICM and ModAlpha are roughly 100-10000 times faster than LP, while LR is
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(a) MAJ-DENSE (b) MAJ-SPARSE

(c) CoNLL (d) Time(CoNLL)

Figure 4: (a)-(c) MAP quality of modifiedα-pass, ICM, LR vs LP onMAJORITY potentials over
MAJ-DENSE, MAJ-SPARSE, and CoNLL. To be interpreted in the same way as Figure 3.
(d) Runtime ratios vs LP of these algorithms for each CoNLL clique.

only 3−5 times more expensive than ICM and ModAlpha on average. Thus, for practical majority
potentials, LR and ModAlpha quickly provide highly accurate solutions.

7.2 Collective Labeling of Repeated Words

We now establish that for collective inference setups like the one in Figure 1(d), message passing on
the cluster graph (denoted CI) is a better option than the alternatives. This would justify the design
of special clique inference algorithms such asα-pass and LR.

We consider information extraction over text records, and define cliquesover repeated occur-
rences of words. We create two versions of the experiment—with Potts andMAJORITY potentials
on the cliques respectively. Message computation at those cliques will be done usingα-pass and
LR respectively, as we have already established their efficiency and accuracy in Section 7.1.

For the edge-decomposable Potts version, we compare CI against TRW-Son the giant pairwise
graph. Other algorithms such as FastPD, FastCut, andα-exp are not applicable as none of the chain
edge potentials in the giant graph are semi-metric or submodular. For theMAJORITY version, we
compare CI against the stacking approach of Krishnan and Manning (2006).

We report results on three data sets—the Address data set consisting of roughly 400 non-US
postal addresses, the Cora data set (McCallum et al., 2000) containing 500 bibliographic records,
and the CoNLL’03 data set. The training splits were 30%, 10% and 100% respectively for the three

3124



COLLECTIVE INFERENCE FORJOINT EXTRACTION WITH SYMMETRIC CLIQUE POTENTIALS

data sets, and the parameterλ for Potts was set to 0.2,1 and 0.05 using cross-validation on a held out
split. TheMAJORITY parameterW was learnt generatively through label co-occurrence statistics in
the cliques present in the training data. We report the token-F1 scores asa measure of accuracy of
the various approaches.

Figure 5 reports the combined token-F1 over all labels except ‘Other’. Unless specified oth-
erwise, all the approaches post statistically significant gains over the base model. The accuracies
show only modest improvements over the base model. This is because our cliques are of a highly
limited form and so we cannot expect to correct too many errors using a collective model. We will
look at more complex cliques in Section 7.3. Coming back to Figure 5, forMAJORITY potentials,
CI is superior to the stacking based approach. The difference is statistically significant for Cora
and CoNLL’03. For the Potts version, TRW-S and CI provide similar gains over Address and Cora.
We could not run TRW-S on CoNLL’03, as the resulting graph was too big for the TRW-S code to
handle.

We now compare the different approaches on running time. In Figure 6 weplot the accuracy of
the two methods versus the number of iterations. CI achieves its best accuracy after just one round
of message passing, whereas TRW-S takes around 20 iterations. In termsof clock time, an iteration
of TRW-S costs∼ 3.2s for CORA, and that of CI costs 3s, so CI is roughly an order of magnitude
faster than TRW-S for the same accuracy levels. The comparison was similarfor the Address data
set.

Potential Model Addr Cora CoNLL
Base 81.5 88.9 87.0

Potts CI 81.9 89.7 88.8
TRW-S 81.9 89.7 -

Majority CI 82.2 89.6 88.8
Stacking 81.7∗ 87.5↓ 87.8

Figure 5: Token-F1 of various collective inference schemes. F1 averaged over five splits for Ad-
dress and Cora. ‘*’ and↓ denote statistically insignificant difference and significant loss
over Base respectively.

7.3 Domain Adaptation

We move on to a generalization of our collective inference framework, andshow that capturing
associativity of a richer set of properties can help us in domain adaptation.We focus on a citation
extraction task, where the aim is to adapt a sequential model across widely varying publications
pages of authors. Our data set consists of 433 bibliographic entries from the web-pages of 31 au-
thors, hand-labeled with 14 labels such as Title, Author, Venue, Location and Year. Bibliographic
entries across different authors differ in many aspects like label-ordering, missing labels, punctua-
tion, HTML formatting and bibliographic style.

A fraction of the 31 domains were used to train a baseline sequential model. The model was
trained with the LARank algorithm of Bordes et al. (2007), using the BCE encoding for the labels.
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Figure 6: F1 vs iterations for CI vs TRW-S on Cora and Address.

We used standard extraction features in a window around each token, along with label transition
features (Peng and McCallum, 2004).

For our collective framework, we used the following Markovian properties:

g1(x,y) = First non-Other label iny

g2(x,y) = Token before the Title segment iny

g3(x,y) = First non-Other label after Title iny

g4(x,y) = First non-Other label after Venue iny

Inside a domain, any one of the above properties will predominantly favor one value, for example,
g3 might favor the value ‘Author’ in one domain, and ‘Date’ in another. Thus these properties
encourage consistent labeling around the Title and Venue segments. We use Potts potential for each
property, settingλ = 1 using cross-validation.

We reiterate that there are no alternative collective inference schemes for this property-based
framework. This is primarily because other algorithms like TRW-S or ordinarybelief propagation
cannot deal with property-based separators (ref. Section 6).

The performance results of CI with the above properties versus the baseline model are presented
in Figure 7. For the test domains, we report token-F1 of the important labels—Title, Author and
Venue. The accuracies are averaged over five trials. CI leads to upto 25% reduction over the base
test error for Venue and Title, labels for which we had defined related properties. The gain is
statistically significant (p< 0.05). Though the improvement is more prominent when only a few
domains are available for training, we continue to see an improvement even withmore training
domains as there invariably are new styles in the test data. Figure 8 shows theerror reduction on
individual test domains for one particular train-test split of five and 26 domains respectively. The
errors are computed from the combined token F1 scores of Title, Venue and Author. For some
domains the errors are reduced by more than 50%. Collective inference increases errors in only two
domains. Such an increase happens when most of the records in the domaintake on wrong property
values, so collective inference ends up reinforcing those errors by wrongly biasing the remaining
minority of the records that have correct property values.

Finally, we mention that for this task, applying the classical collective inference setup with
cliques over word repetitions leads to very minor gains. This is because mostof the word cliques
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already agree on their vertex labels under the base model, so collective inference with word cliques
does not add too much value. In this context, the generalized collective inference framework is
indeed a much more accurate mechanism for joint labeling.

Train Title Venue Author
(%) Base CI Base CI Base CI
5 70.7 74.8 58.8 62.5 74.1 74.3
10 78.0 82.1 69.2 72.2 75.6 75.9
20 85.8 88.6 76.7 78.9 80.7 80.7
30 91.7 93.0 81.5 82.6 87.7 88.0
50 92.3 94.2 83.5 84.5 89.4 90.0

Figure 7: Token-F1 of CI and Base

8. Related Work

We group the known approaches into various categories and compare them with our collective
inference framework.

8.1 Generic Collective Inference Approaches

Collective graphical models have been used to capture associativity in manytext mining tasks such
as IE, entity labeling, and document classification (Sutton and McCallum, 2004; Finkel et al., 2005;
Bunescu and Mooney, 2004; Krishnan and Manning, 2006; Kulkarniet al., 2009; Chakrabarti et al.,
1998; Lu and Getoor, 2003; Taskar et al., 2004). However these models use generic algorithms
like ordinary belief propagation (Sutton and McCallum, 2004; Bunescu andMooney, 2004; Taskar
et al., 2004), Gibbs sampling (Finkel et al., 2005), local search (Lu andGetoor, 2003) or multi-stage
schemes (Krishnan and Manning, 2006). Our framework is general enough to support various clique
potentials, yet exploits the structure of the potential to efficiently compute a fullset of messages for
collective inference.

Figure 8: Per-domain F1-error
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8.2 MAP Inference on Pairwise Models

We provide only a brief overview of the many recent advances in inference over pairwise graphs
since our main interest lies in higher-order potentials. These approachesfall under two broad cat-
egories. The first category has message passing algorithms that solve thedual of an LP relaxation,
including TRW-S (Kolmogorov, 2006), max-sum diffusion (Werner, 2009), and other convergent
alternatives (Meltzer et al., 2009; Ravikumar et al., 2010). These LP relaxations, that only im-
pose local pairwise constraints, have been tightened in various ways using cycle and higher order
marginal constraints (Sontag et al., 2008; Werner, 2009; Komodakis andParagios, 2008; Kumar
et al., 2009). The second category includes combinatorial algorithms based on graph-cuts. For bi-
nary labels, two well known methods are the graph-cut method for submodular potentials (Boykov
et al., 2001) and the Quadratic Pseudo-Boolean Optimization method (QPBO) for getting a partial
solution for arbitrary potentials (Boros and Hammer, 2002; Kovtun, 2003;Kolmogorov and Rother,
2007). For multi-label models with metric edge potentials, theα-expansion algorithm of Boykov
et al. (2001) provides a 1/2-approximation.α-expansion has subsequently been generalized, ana-
lyzed and optimized (Veksler, 2007; Kumar and Torr, 2008b; Lempitsky etal., 2007; Komodakis and
Tziritas, 2005; Komodakis et al., 2007b; Alahari et al., 2008). In particular, the FastPD algorithm of
Komodakis et al. (2007b) is a primal-dual generalization which works evenwith semi-metric edge
potentials. However our chain edge potentials are not even semi-metric. Similarly the partial opti-
mality guarantee of QPBO is of limited appeal, as our model has a large fraction of non-submodular
edges.

8.3 Alternate Collective Inference Frameworks

Recently, two inference frameworks, the LP relaxation of Werner (2008) and the dual-decomposition
framework of Komodakis and Paragios (2009) have been extended to handle higher-order potentials.
In the LP relaxation framework, a max-sum diffusion algorithm is used to solve the dual and each
step of the algorithm requires the computation of max-marginals from the higher-order cliques. In
the dual-decomposition framework, the model is decomposed into tractable components and the
component MAPs or marginals are used to construct a sub-gradient of the collective inference LP.
Like cluster message passing, these frameworks also allow the plugging-in of arbitrary algorithms
for computing max-marginals at each clique. Thus, our clique inference algorithms can be used un-
changed in these two frameworks. However, while these alternative frameworks provide interesting
new ways of looking at inference, they do not necessarily provide faster convergence guarantees.
For example, as noted in Werner (2009), max-sum diffusion convergesvery slowly as compared to
TRW-S even for binary potentials. We showed in Section 7.1 that dual decomposition is significantly
slower thanα-pass when used for clique inference.

8.4 Transforming Higher-Order Cliques to Pairwise Potentials

A lot of recent work on higher-order clique potentials in vision deals with reducing these potentials
to pairwise and then applyingα-expansion or QPBO as applicable (Ishikawa, 2009; Kohli et al.,
2008; Ramalingam et al., 2008; Rother et al., 2009; Kohli and Kumar, 2010). These transformations
add auxiliary nodes, which are few in number when the potentials are truncated and sparse (Rother
et al., 2009). However our potentials are dense and not truncated. Consequently these techniques
will introduce too many extra nodes, for example, exponential inn (Ishikawa, 2009), orO(mn)
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(Kohli et al., 2008). Similarly, the method of Kohli and Kumar (2010) will expand the node set by
a factor equal to the number of functions used to approximate our potential (and this can be quite
large). Too many auxiliary nodes makes inference usingα-expansion/QPBO quite expensive. In
contrast we perform clique inference without any transformation, and our clique inference bounds
are better than the alternatives.

We also note that there are transformations that extendα-expansion to metric potentials over
triangles (Kolmogorov and Zabih, 2004), and truncated versions of Pottspotentials over arbitrarily
large cliques (Kohli et al., 2007, 2009). Our symmetric potentials are not truncated so the same
transformations cannot be applied to our model.

8.5 Special Higher-Order Potentials

An orthogonal body of work deals with special higher-order potentials that allow efficient message
computation, such as linear-constrained potentials (Potetz and Lee, 2008), convex and order-based
potentials (Tarlow et al., 2010), and decomposable potentials (Chen et al., 2008). Although our
cluster graph can seamlessly incorporate these potentials and their clique inference algorithms, it is
fruitful to compare some of these potentials with ours. Linear-constrained potentials assume that
the labels are numeric and the potential’s value depends only on a linear combination of node labels.
Such potentials allowO(nm2) message computation using clever variable substitution during belief
propagation. When we have only two labels, our symmetric potentials can be encoded as linear-
constrained potentials, thus leading toO(n) clique inference as compared toO(nlogn) usingα-
pass. However, this encoding does not have an inexpensive generalization to discretemulti-label
cliques. Also, representing multi-label potentials using a collection of linear-constrained potentials
can make clique inference exponential inm (Potetz and Lee, 2008). Chen et al. (2008) propose
decomposable potentialsthat are sums of a few sub-potentials, each of which is a product of low-
arity functions. This includes theVoting Potential, which combines associativity scores additively
along edges unlike multiplicatively as in Potts.3 For some decomposable potentials, including the
Voting Potential, exact messages can be computed in closed form.

Symmetric potentials have been used in special ways in other inference taskstoo. Jaimovich
et al. (2007) proposed a framework for inference over relational data where symmetric potentials
are used to collapse large instance-level factor graphs into template-levelgraphs. Similarly, Milch
et al. (2008) proposes lifting techniques with counting potentials. In our framework we have a mix
of symmetric potentials, individual node and non-symmetric edge potentials. Wetherefore cannot
perform any kind of collapsing or lifted inference.

9. Conclusions and Future Work

We presented a general collective inference framework that exploits theassociativity of a rich set of
properties of instances and their labelings. We argued that cluster message passing, which exploits
the special associative structure and computes a complete set of messages, is a more principled in-
ference mechanism than other cluster-oblivious or message-oblivious approaches. We demonstrated
the effectiveness of the framework on a real-life domain adaptation task.

3. Although Potts decomposes additively along the clique edges, the probability P(y|x) is exponential in the clique
potential term, which makes it multiplicative.
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We presented potential-specific combinatorial algorithms for message computation in associa-
tive cliques. We presented theα-pass algorithm which is sub-quadratic in the clique size and gives
the exact MAP for allMAX clique potentials, and any symmetric potential with two labels, and a
tight approximation guarantee of13

15 on the Potts potential. We showed thatα-pass is significantly
faster while providing the same or better accuracy than alternatives such as TRW-S, graph-cuts, and
their recently proposed improved versions. We gave a Lagrangian relaxation method for generating
messages from a clique with majority potential. This algorithm is at least two orders of magnitude
faster than an exact algorithm and more accurate than other approximate approaches.

Our future work includes automated property induction to figure out rich associative properties
in unlabeled domains. We are also interested in applying symmetric potentials to general dense
subgraphs instead of cliques. We believe that this might help in semi-supervised learning tasks.

Appendix A. Proofs

Theorem 7 F(ŷ)≥ 13
15F(y∗). Further, this ratio is tight.

Proof The proof is by contradiction. Suppose there is an instance whereF(ŷ) < 13
15F(y∗). Wlog

assume thatλ = 1 andn1 ≥ n2 ≥ . . . ≥ nk > 0, (2≤ k≤m) be the non-zero counts in the optimal
solution and letψ∗ be its vertex score. ThusF(y∗) = ψ∗+n2

1+n2
2+ . . .+n2

k.

Now, F(ŷ) is at leastψ∗+n2
1 (ref. Claim 5.1). This implies ψ∗+n2

1
ψ∗+n2

1+...+n2
k
≤ 13

15, that is, 2(ψ∗+
n2

1)< 13(n2
2+ . . .+n2

k) or

ψ∗ <
13
2
(n2

2+ . . .+n2
k)−n2

1. (18)

Sincek labels have non-zero counts, and the vertex score isψ∗, at leastψ∗/k of the vertex score
is assigned to one label. Considering a solution where all vertices are assigned to this label, we get
F(ŷ)≥ ψ∗/k+n2.

ThereforeF(y∗)> 15/13(n2+ψ∗/k).
SinceF(y∗) = ψ∗+n2

1+ . . .+n2
k, we get:

ψ∗ >
15kn2−13k(n2

1+ . . .+n2
k)

13k−15
. (19)

We show that Equations 18 and 19 contradict each other. It is sufficientto show that for all
n1≥ . . .≥ nk ≥ 1,

15kn2−13k(n2
1+ . . .n2

k)

13k−15
≥ 13

2
(n2

2+ . . .+n2
k)−n2

1.

Simplifying, this is equivalent to

kn2− 13
2
(k−1)(n2

2+ . . .+n2
k)−n2

1≥ 0.

Consider a sequencen1, . . . ,nk for which the expression on the left hand side is minimized. If
ni > ni+1 then we must havenl = 1 ∀l ≥ i +2. Otherwise, replaceni+1 by ni+1+1 and decrement
n j by 1, wherej is the largest index for whichn j > 1. This gives a new sequence for which the
value of the expression is smaller. Therefore the sequence must be of theform ni = n1 for 1≤ i < l
andni = 1 for i > l , for somel ≥ 2. Further, considering the expression as a function ofnl , it is
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quadratic with a negative second derivative. So the minimum occurs at oneof the extreme values
nl = 1 ornl = n1. Therefore we only need to consider sequences of the formn1, . . . ,n1,1, . . . ,1 and
show that the expression is non-negative for these.

In such sequences, differentiating with respect ton1, the derivative is positive forn1≥ 1, which
means that the expression is minimized for the sequence 1, . . . ,1. Now it is easy to verify that it is
true for such sequences. The expression is zero only for the sequence 1,1,1, which gives the worst
case example.

We now illustrate the tightness of this ratio through a pathological instance where the solution
of α-pass is exactly13

15 of the optimal. The clique is constructed as follows. Letm= n+ 3 and
λ = 1. For the firstn/3 vertices letψu1 = 4n/3, for the nextn/3 vertices letψu2 = 4n/3, and
for the remainingn/3 let ψu3 = 4n/3. Also for all vertices letψu(u+3) = 4n/3. All other vertex
scores are zero. The optimal solution is to assign the first three labelsn/3 vertices each, yielding a
score of 4n2/3+3(n

3)
2 = 5n2/3. The firstα-pass withα = 1, where initially a vertexu is assigned

its vertex optimal labelu+3, will assign the firstn/3 vertices label 1. This keeps the sum of to-
tal vertex scores unchanged at 4n2/3, the clique score increases ton2/9+2n/3 and total score =
4n2/3+ n2/9+ 2n/3 = 13n2/9+ 2n/3. No subsequent combinations with any other labelα can
improve this score. Thus, the score ofα-pass is13

15 of the optimal in the limitn→ ∞.

Theorem 8 Generalizedα-pass enjoys an approximation bound of8
9, that is, F(ŷ)≥ 8

9F(y∗).

Proof This bound is achieved if we run the algorithm withq = 2. Let the optimal solution have
countsn1≥ n2≥ . . .≥ nm and let its vertex score beψ∗. For simplicity leta= n1/n, b= n2/n and

c= ψ∗/n2. ThenF(y∗)/n2≤ c+a2+b(1−a), F(ŷ)/n2≥ c+a2 andF(ŷ)/n2≥ c+ (a+b)2

2 .

Case 1: a2 ≥ (a+b)2

2 . ThenF(y∗)−F(ŷ) ≤ bn2(1−a). For a given value ofa, this is maximized
when b is as large as possible. For Case 1 to hold, the largest possible value ofb is given by

a2 = (a+b)2

2 , which givesb= a(
√

2−1). ThereforeF(y∗)−F(ŷ) ≤ n2(
√

2−1)
4 < n2

8 ≤
F(ŷ)

8 , that is,
F(ŷ)≥ 8

9F(y∗).

Case 2: a2≤ (a+b)2

2 . This holds ifb≥ (
√

2−1)a. Sincea+b≤ 1, this is possible only ifa≤ 1/
√

2.

Now F(y∗)−F(ŷ)
n2 ≤ a2+b(1−a)− (a+b)2/2= a2−4ab+2b−b2

2 .
For a givena, this expression is quadratic inb with a negative second derivative. This is max-

imized (by differentiating) forb = 1− 2a. Sinceb ≤ a, this value is possible only ifa ≥ 1/3.
Similarly, for case 2 to hold with this value ofb, we must havea≤

√
2−1. Substituting this value

of b, the difference in scores is5a2−4a+1
2 .

Since this is quadratic with a positive second derivative, it is maximized whena has either the
minimum or maximum possible value. Fora = 1/3 this value is 1/9, while for a =

√
2−1, it is

10−7
√

2. In both cases, it is less than 1/8.
If a≤ 1/3 the maximum is achieved whenb = a. In this case, the score difference is at most

(a−2a2) which is maximized fora= 1/4, where the value is 1/8. (This is the worst case).
For
√

2−1 < a≤ 1/
√

2, the maximum will occur forb = (
√

2−1)a. Substituting this value
for b, the score difference is(

√
2−1)(a−a2), which is maximized fora= 1/2, where its value is

(
√

2−1)/4< 1/8.
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