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Abstract

We introduce novel results for approximate inference omgaraphical models using the loop
calculus framework. The loop calculus (Chertkov and Chakny006a) allows to express the
exact partition function of a graphical model as a finite sditeonms that can be evaluated once the
belief propagation (BP) solution is known. In general, Bummation over all correction terms is
intractable. We develop an algorithm for the approach prteskin Chertkov et al. (2008) which
represents an efficient truncation scheme on planar grapgha aew representation of the series
in terms of Pfaffians of matrices. We analyze the performaridbe algorithm for models with
binary variables and pairwise interactions on grids andmgptanar graphs. We study in detail both
the loop series and the equivalent Pfaffian series and shavihté first term of the Pfaffian series
for the general, intractable planar model, can provide aeourate approximations. The algorithm
outperforms previous truncation schemes of the loop saridsis competitive with other state of
the art methods for approximate inference.

Keywords: belief propagation, loop calculus, approximate inferempaetition function, planar
graphs, Ising model

1. Introduction

Graphical models are popular tools widely used in many areas which regodleling of uncer-
tainty. They provide an effective approach through a compact reptaison of the joint probability
distribution. The two most common types of graphical models are Bayesian nket(&N) and
Markov random fields (MRFs).

The partition function of a graphical model, which plays the role of normaliratimnstant
in a MRF or probability of evidence (likelihood) in a BN is a fundamental quantitych arises
in many contexts such as hypothesis testing or parameter estimation. Exacttatbompof this
guantity is only feasible when the graph is not too complex, or equivalentlgnvits tree-width is
small. Currently many methods are devoted to approximate this quantity.

The belief propagation (BP) algorithm (Pearl, 1988) is at the core of robimese approximate
inference methods. Initially thought as an exact algorithm for tree grajpisswidely used as an
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approximation method for loopy graphs (Murphy et al., 1999; Frey ancKdg, 1998). The exact
partition function is explicitly related to the BP approximation through the loop ta@damework
introduced by Chertkov and Chernyak (2006a). Loop calculus allowgpcess the exact partition
function as a finite sum of terms (loop series) that can be evaluated onB® th&ution is known.
Each term maps uniquely to a subgraph, also denoted as a generalizedheop the connectivity

of any node within the subgraph & leastdegree two. Summation of the entire loop series is a
hard combinatorial task since the number of generalized loops is typicalgnergial in the size

of the graph (see also Watanabe and Fukumizu, 2009). Howeverediffepproximations can be
obtained by considering different subsets of generalized loops in épdgr

It has been shown empirically ez et al., 2007; Chertkov and Chernyak, 2006b) that trun-
cating this series may provide efficient corrections to the initial BP approximatiore precisely,
whenever BP performs satisfactorily, which occurs in the case of uitig weak interactions be-
tween variables (or short-range influence of loops), accountingiigraosmall number of terms is
sufficient to recover the exact result. On the other hand, for thoss edsere BP requires many
iterations to converge, many terms of the series are required to improviustidity the approxi-
mation. Nevertheless, a formal characterization of the classes of probleitis are tractable via
loop calculus still remains an open question.

A step toward this goal with a focus on the class of planar graphs hasdoeenin Chertkov
et al. (2008). A graph is said to be planar if it can be embedded into a pli#imeuvcrossing edges.
Chertkov et al. (2008) showed that under this condition summation of c¢ldege) subset of terms
can be performed in polynomial time via mapping to the problem of countingqierigtchings. A
perfect matching is a subset of edges where every vertex has exaethytached edge in the subset.
Furthermore, the full loop series can be expressed as a sum ovén €ddffians (or determinants),
where each Pfaffian may account for a large number of loops and etdeln polynomial time as
well.

The approach of Chertkov et al. (2008) builds upon classical resatts Fisher (1961), Kaste-
leyn (1961) and Temperley and Fisher (1961) who addressed thiouefscounting the number of
perfect matchings on a planar grid, also known as the dimer coveringeprob statistical physics.
These classical results are consistent with the following related statemeparthion function of
aplanar graphical model defined in terms of binary variabtes be solved in polynomial time by
computing an appropriate Pfaffian under the key restriction that pairwiseagtions only depend
on agreement or disagreement between the signs of their variablesptam their individual val-
ues. Such a model is known in statistical physics as planar Ising model wéktarnal field and
in the machine learning community as planar, binary MRF with pure interactiomjite Notice
that exact inference for a general binary graphical model on a pgmagh, namely Ising model
with external field, is intractable, in particular #P (Barahona, 1982). A gerdeview of counting
perfect matchings in planar graphs can be found in Jerrum (2003).

Recently, other inference methods models based on the Fisher-Temigad®mfeyn (FTK)
method have been introduced in the machine learning community. Globersdaakidla (2007)
obtained upper bounds on the partition function for non-planar grajthsbinary variables by
decomposition of the partition function into a weighted sum over partition furEtdrspanning
tractable (zero field) planar models. The resulting problem is a convex optiorizproblem and,
since exact inference can be done in each planamodel via the FTK method, the bound can be
calculated in polynomial time.
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Another example is the work of Schraudolph and Kamenetsky (2008) vpinihides a frame-
work for exact inference on a restricted class of planar graphs wkiagtly the FTK approach.
Since a planar Ising model can be transformed to a medhbut external field at the cost of in-
troducing additional edges, one can allow local fields for a suBsaftvariables. If the graphical
model isB—outerplanar, which means that there exists a planar embedding in whichotbet8u
of the nodes lie on the same face, the FTK technique can still be applied.

Contrary to these two approaches, which rely on exact inference @attaltte planar model,
the loop calculus directly leads to a framework for approximate inferengeoeral planar graphs.
Truncating the loop series according to Chertkov et al. (2008) alreiadg the exact result in the
zero external field case. In the general planar case, however, uhisatron may result into an
accurate approximation that can be incrementally corrected by consideitasgquent terms in the
series.

In the next Section we review the main theoretical results of the loop calcplu®ach for
planar graphs and introduce the proposed algorithm for approximatingattiéon function and
single-variable marginals. In Section 3 we provide experimental resultedotar grids and other
types of planar graphs. We focus on a planar-intractable binary mattelswmmetric pairwise
interactions but nonzero single variable potentfald/e end this manuscript with conclusions and
discussion of future work in Section 4.

2. Belief Propagation and Loop Series for Planar Graphs

We consider the Forney graph representation, also called geneie wavdel (Jr., 2001; Loeliger,
2004), of a probability distributiomp(o) defined over a vectas of binary variables (vectors are
denoted using bold symbols). Forney graphs are associated with bgragrhical models which
subsume other factor graphs, for instance those correspondentstalBNMRFs. In Appendix A
we explain how our approach is related to the more common bipartite factdr gragel.

A binary Forney graphg := (v, E) consists of a set of nodeB where each noda € V
represents an interaction and each e@gb) € ‘£ represents a binary variatdé which take values
Oap:= {£1}. We denota the set of neighbors of node Interactionsf, (0,) are arbitrary functions
defined over typically small subsets of variables whayés the vector of variables associated with
nodea, that is,0, := (Oan,, Oan,, - - - ) Whereb; € a.

The joint probability distribution of such a model factorizes as:

p@)=2z" [ fa(oa), Z=35 T[] fa(0a), 1)

acV 0 ac?

whereZ is the normalization factor, also called the partition function.

From a variational perspective, a fixed point of the BP algorithm repitesa stationary point
of the Bethe "free energy” approximation under proper constraintdifi@ et al., 2000). In the
Forney style notation:

757 = exp(—F®F), 2)
FEP_y oZra (0a)In G:Eg:;) - bzz Tab (Oab) INTap (Tap),

1. The source code used in this paper is freely availatfetat; / / wwv. mbf ys. ru. nl / st af f/v. gonez/ .
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wheret,(0,) andtan(0ap) are the beliefs (pseudo-marginals) associated with eachanede and
edge(a,b) € £. For graphs without loops, Equation (2) coincides with the Gibbs "freegri and
thereforezBP coincides with the exact partition functi@h If the graph contains loop&PF is just
an approximation critically dependent on how strong the influence of the lisop

We introduce now some convenient definitions related to the loop calculusirark.

Definition 1 A generalized loop in a graph G := (7, E) is any subgraph C= (V' E’), V' C
V,E' C (V' xV')NE such that each node in"\has degree two or larger.

For simplicity, we will use the term ”"loop”, instead of "generalized loop”, in test of this
manuscript. Loop calculus allows to represgrgxplicitly in terms of the BP approximation via
the loop series expansion:

Z2=278P.z z= |1+ m), rc =[] Haz: 3)

where( is the set of all the loops within the graph amglthe set of neighbors of nodewithin the
loopC. Each ternrc is a product of termgiy . associated with every no@eof the loopC:

Er, [Hbea‘c (Cab— mab)]
v/ Mbeae Vare,,(Tab)
where we have us€d; [-] to denote expectation with respect to the pseudo-marginal distribution

Equation (4) states that all terms of the expansion can be written as condlatittions between
associated variables defined on the BP pseudo-marginals. In the dasg}odlphabet we have:

Ha:ac = Mab = Er,, [Gab] ) (4)

Mo — 26a (Ta (Ga) Mbea (Oab— mab)) ’ M = Tab(+1) — Tan(—1). )
[Nbeac \ 1- mgb

In this work we consider planar graphs where nodes have degreesathmee, that isac| < 3.
We denote byriplet a node with degree exactly three in the graph. In Appendix A.2 we showahow
graphical model stated in a bipartite factor graph representation cambertsx to a Forney graph
which satisfies this constraint at the cost of introducing auxiliary nodes.

Definition 2 A 2-regular loop is a loop in which all nodes have degreractlytwo.

Definition 3 The 2-regular partition function Zy is the truncated form of3) which sums alR-
regular loops only?

Zy= 2% 29, (6)
=1+ 5 rc
Cec,
lac|=2,VaeC

As an example, Figure 1a shows a small Forney graph and Figure 1c slesen loops found in
the corresponding 2-regular partition function.

2. Notice that this is theingle-connected partition function Chertkov et al. (2008). We use the term 2-regular partition
function instead because loops with more than one connected compoeeaiso included in this part of the series.
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Figure 1: Example(a) A Forney graph.(b) Corresponding extended grap{t) Loops (in bold)
included in the 2-regular partition functior{d) Loops (in bold) not included in the 2-
regular partition function. Marked nodes denote triplets. Grouped in ggagres, the
loops considered in different subsépsof triplets: (d.1)¥ = {c,h}, (d.2)¥ = {e |},
(d.3)W={h,1}, (d.4)¥Y = {c,e} and (d.5)¥ = {c,e h,|} (see Section 2.3).

Definition 4 Consider the set P of all permutatiowsof the set§ = {1,...,2n} in pairs: a =
(i1,]1),-.-,(in, Jn)), ik < jk,Vk = 1,...,n. The Pfaffian of a skew-symmetric matrisAA; ) 1<i<j<on
with (Aj = —Aji) is:

i,j)ea

Pfaffian(A) = zpsign(a) [1 A
ac (

where the sign of a permutati@nis —1 if the number of transpositions to getfrom § is odd and
+1 otherwise. The following identity allows to obtain the Pfaffigmto a signby computing the
determinant:

Pfaffiarf(A) = Det(A).
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Figure 2: Fisher's ruleqTop) A nodea of degree two ing is split in two nodes iNGey. (Bottom)
A nodea of degree three i is split in three nodes itjext. The squares on the right
indicate all possible matchings iGex: related to nodex. Note that the rules preserve
planarity.

2.1 Computing the2-regular Partition Function Using Perfect Matchings

In Chertkov et al. (2008) it has been shown that computatioAyah a Forney graphg can be
mapped to the computation of the sum of all weighted perfect matchings withthearextended
weighted graphGext := (V.. Egex)- A perfect matching is defined as a subset of edges such that
each node neighbors exactly one edge from the subset and its weigbatpeottuct of weights of
edges in it. The key idea of this mapping is that 2-regular loops are in one-to-one correspon-
dence to perfect matchings e (See Figures 1b and c for an illustration). géx is planar, the
sum of its weighted perfect matchings can be calculated in polynomial time vialtkepproach,
evaluating the Pfaffian of an associated matrix. Here we reproducerdsests with little variations
and emphasis on the algorithmic aspects.

Given a Forney graplg; and the BP approximation, we obtain the 2-coregoby removing
nodes of degree 1 recursively. The 2-core excludes all nodeddhatt appear in any loop. After
this step,G is either the null graph (and then BP is exact) or it is only composed of vertite
degree two or three.

To constructGext we split each node iy according to the rules introduced by Fisher (1966)
and illustrated in Figure 2. The procedure results in an extended graglgf < 3/%| nodes and
|Eg..| < 3|E| edges. To see that each 2-regular loogiis associated with a perfect matching in
Gext consider, for instance, the vertex of degree three in the bottom of Fgu@ven a 2-regular
loopC, vertexa can appear in four different configurations: either nadi®es not appear i@, orC
contains one of the following three path$-a-c-, -b-a-d- or -c-a-d-. These four cases correspond
to node terms in a loop with values [ (b}, Ha(bd} @ndpacq) respectively, and coincide with
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the matchings iGex: shown within the box on the bottom-right. An simpler argument applies to the
vertex of degree two of the top portion of Figure 2.

Therefore, if we associate to each internal edge (new edggdmot in G) of each split noda
the corresponding weiglpt.a. of Equation (4) and to the external edges (existing edges already in
G) weight 1, the sum over all weighted perfect matchings defined&iis preciselyzy:

2= z perfect matchings iex:.

The 2-regular partition functiody is obtained using Equation (6).

Kasteleyn (1963) provided a method to compute this sum in polynomial time foapdgaphs.
First, edges are properly oriented in such a way that for every fawege possibly the external
face) the number of clockwise oriented edges is odd. We use the linear tiorétatgin Karpinski
and Rytter (1998) described here as Algorithm 1 to produce such amatig. It receives an
undirected graplgjex: and constructs a copyy; := ('Vg‘éxu Eg,,) With properly oriented edges;, .

It is convenient thatey: is bi-connected, that is, has no articulation points. If needed, we adsedg
with zero weight which do not altet.

Algorithm 1 Pfaffian orientation
Arguments: undirected bi-connected extended grafk.
1: Construct a planar embeddidfgy; Of Gex-
2: Construct a spanning trdeof Gext. _
3: Construct a graphl having vertices corresponding to the faces/pf:
Connect two vertices il if the respective face boundaries share an edge nbt in
H is a tree. RooH to the external face.
D Gext =T
. Orient all edges inGy,, arbitrarily.
. for all face (vertex irH) traversed in post-ordeio
Add to Gy, the unique edge not iGly.
Orient it such that the number of clock-wise oriented edges is odd.
. end for
10: RETURN directed bi-connected extended gragfy,.

© o N o 0 A

Second, denotg; the weight of the edge between nodesdj in G, and define the following
skew-symmetric matrix:

[t iG] e 2,
Aj =1~ if (j,0) € Egy,
0 otherwise

The Pfaffian ot&ij is the weighted sum of all perfect matchings. Calculatiogafan be performed
in time O(NZ, ):

Zp = 1/ Det(A).

For the tractable case, namely, Ising model without external field or paRF with pure
interaction potentials, the 2-regular partition function coincides with the @eatition functionZ =
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Zp = ZBP . 7y since other terms in the loop series vanish. In this case, it can be shovail tieams
HMa;{b.cd) associated with tripleta (vertices with degree three ig) are zero using the following
argument: first, note that a BP fixed point is attained when all variablesze@emagnetizations,
that is, uniform beliefsap(0ap) = 1/2, which reduces Equation (5) to:

Ha;{b,c.d} = z Ta(0a) OabOacOad- (7)
Oa

Second, since by construction pseudo-marginals on the trip/éts) only depend on agree-
ment or disagreement between the variables:

1(02) = Ta(=), for Oah= Oac = Oad;
e Ta(#), otherwise

it suffices to see that for each tema{(0,)0ap0acOad in the sum, the "symmetric” term wheogp, Oac
andao,q are replaced by their opposite values, has same absolute value budrdiffigm, therefore
the sum (7) is zero.

2.2 Computing Estimates of Marginal Distributions

Given the estimat&p, estimates for the marginafs,(0ap) can be obtained:

_ 0l09Zp(Bap)

Pap(0Oap) = 3Bab(0a0) |5, 0 where  Zp(Bap) = ;exp(eaboab) |_| fa(0a)

ac?

is the partition sum of the network perturbed with respect to an additiondlfieipotential®;
of variableoggp.

Alternatively, one can compute different partition functions for difféiitings of the variables
zg*»=" andzg®="", and derive the marginals from respective ratios:

Zgab:""l
Z@Uab:‘i‘l 4 Zgab:_l ’

wherez‘gé‘b:+l indicates the 2-regular partition function calculated from the same modeiticond

ing on variableoy,, that is, with variableoy, fixed (clamped) tot+1. Therefore, approximation
errors in the computation of any marginal can be related to approximations @rrive computation
of Zp. In the following we will mainly focus on evaluating, although marginal probabilities will
be discussed as well.

Pab(Oab = +1) =

2.3 Computing the Full Loop Series Using Perfect Matchings

Chertkov et al. (2008) established tlagis just the first term of a finite sum involving Pfaffians. We
briefly reproduce their results here and provide an algorithm for congpthifull loop series as a
Pfaffian series.

ConsiderZ defined as the set of all possible triplets in the original grgpliror each possible
subse € 7, including anevennumber of triplets, there exists a unique correspondence between
loops in G including the triplets i and perfect matchings in another extended grggh, con-
structed after removal of the triple# in G. Using this representation the full loop series can be
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represented as a Pfaffian series, where eachZgris tractable and is a product of the respective
Pfaffian and thei, 3 terms associated with each triplet\sf®

z="3% Zy Zy =2y |_Lkla;a‘ (8)
'y ac
2y = sign(Pfaffian(By)) - Pfaffian(Ay) .

whereBy corresponds to the original Kasteleyn matrix with weights instead of+;; jand-1
instead of—u and we make explicit use of the Pfaffians to correct for the sign. Thedon
S|gn(Pfaff|ar(BqJ)) is necessary because loop terms can be negative and even evalusffiag(Rf, )
with the correct sign would only give the contribution up to a sign. In theiptsvSubsection, we
assumedy positive.

The 2-regular partition function thus correspond&te- 0. We refer to the remaining terms of
the series¢ +# 0) as higher order terms. Notice that matrides and By depend on the removed
triplets and therefore eady requires different matrices and different edge orientations. In addition
after removal of vertices i, the resulting extended graph may be disconnected. As before, in these
cases we add dummy edges with zero weight sodlatremains bi-connected.

Figure 1d shows loops corresponding to the higher order Pfaffian tarrmosr illustrative exam-
ple. The first and second subsets of triplets (d.1 and d.2) include summegiowo loops whereas
the remaining Pfaffian terms include uniquely one loop.

Exhaustive enumeration of all subsets of triplets leads t atine algorithm, which is pro-
hibitive. However, many triplet combinations may lead to forbidden configuratiBxperimentally,
we found that a principled way to look for higher order Pfaffian terms witdaontribution is to
search first for pairs of triplets, then groups of four, and so on.|dfge graphs, this also becomes
intractable. However, the key advantage of the Pfaffian representatiobatZ, is always the term
that accounts for the largest number of loop terms in the series. In thiswedo not derive any
heuristic for searching higher order Pfaffian terms with larger contribgtibhstead, in Section 3.1
we study the full Pfaffian series and subsequently we restrict our attetiotisnalyze the accuracy
of Zp.

Algorithm 2 describes the procedure for computing all terms using Equa&)oitfle main loop
of the algorithm can be interrupted at any time, thus leading to a sequenig@oframs producing
corrections incrementally.

3. Experiments

In this Section we study numerically the proposed algorithm. To facilitate the ai@iuand the
comparison with other algorithms we focus on the pairwise binary Ising mogekt@ular case of

the model (1) where factors only depend on the disagreement betweainies and take the form:

log fa (Oap, Oac) = @a0an0ac. We consider also nonzero local potentials in all variables parameter-
ized by: logfa (0ap) = Ban0ap SO that the model becomes planar-intractable.

We create different inference problems by choosing different intierescg, and local field
parameter®,,. To generate them we draw independent samples from a normal distrilpytion
A(0,B/2) and Bz, ~ A(0,O), where® andf3 determine how difficult the inference problem is.
Generally, for® = 0 the planar problem is tractable (zero field). Bor- 0, small values of result

3. We omit the loop index in the triplet term;z because nodes have at most degree three and therefore dlevsays
coincide in all loops which contain that triplet.
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Algorithm 2 Pfaffian series
Arguments: Forney graphg

1. z:=0.

2: forall {We 7,|W|ever} do

3:  Build extended graplgex, applying rules of Figure 2.
Set Pfaffian orientation iy, according to Algorithm 1.
Build matricesA andB.
Compute Pfaffian with sign correctiag according to Equation (8).
2:=Z+ 29 [acy Haa
8: end for
9: RETURN ZBP.z

N o gk

in weakly coupled variables (easy problems) and large valugsinfstrongly coupled variables
(hard problems). Larger values &fresult in easier inference problems.

In the next Subsection we analyze the full Pfaffian series using a snaalipgg and compatre it
with the original representation based on the loop series. Next, we commaaggorithm with the
following ones?

Truncated Loop-Series for BP (TLSBP) (Gdmez et al., 2007), which accounts for a certain num-
ber of loops by performing depth-first-search on the factor graphtarmmerging the found
loops iteratively. We adapted TSLBP as an any-time algoritanyLSBP) in a way that
the length of the loop is used as the only parameter instead of the two paraBatet
(see ®dmez et al., 2007, for details). This is equivalent to settvhg- O and discarding.

In this way, anyTLSBP does not compute all possible loops of a certaithi€imgparticular,
complex loop? are not included), but search can be performed faster.

Cluster Variation Method (CVM-Loopk ) A double-loop implementation of CVM (Heskes et al.,
2003). This algorithm is a special case of generalized belief propag@fesidia et al.,
2005) with convergence guarantees. We use as outer clusters all (M)asictars together
with loops of four (k=4) or six (k=6) variables in the factor graph.

Tree-Structured Expectation Propagation (TreeEP) (Minka and Qi, 2004). This method per-
forms exact inference on a base tree of the graphical model andxapptes the other inter-
actions. The method yields good results if the graphical model is veryespars

When possible, we also compare with the following two variational methods winashde upper
bounds on the partition function:

Tree Reweighting (TRW) (Wainwright et al., 2005) which decomposes the parameterization of a
probabilistic graphical model as a mixture of spanning trees of the modethandises the
convexity of the partition function to get an upper bound.

Planar graph decomposition (PDC) (Globerson and Jaakkola, 2007) which decomposes the pa-
rameterization of a probabilistic graphical model as a mixture of tractablergjaapghs (with
zero local field).

4. \We use the libDAl library (Mooij, 2008) for algorithn@VM-Loopk , TreeEP andTRW.
5. A complex loop is defined as a loop which can not be expressed asitireaf two or more circuits or simple loops.
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To evaluate the accuracy of the approximations we consider errdrariia, when possible, compu-
tational cost as well. As shown in@nez et al. (2007), errors i, obtained from a truncated form
of the loop series, are very similar to errors in single variable marginabpibties, which can be
obtained by conditioning over the variables under interest. We only cartsaitable instances for
which Z can be computed via the junction tree algorithm (Lauritzen and Spiegelh&88) @ising
8GB of memory.

The error measure for a given approximatigrof Z is:

|logZ —logZ/|

errorZ =
logZ

)

and givenP) (0ap) estimates for the exact margin&lg,(0ap), the error is:

error marginals= mear@aﬁb)eg\Pgb(Gab) — Pap(0ap) |-
Oap==11

As in Gomez et al. (2007), we use four different message updates for Bfet dind random
sequential updates, parallel (or synchronous) updates, and akbiglief propagation (RBP), a
method proposed by Elidan et al. (2006) which selects the next messageaupalated which has
maximumresidual a quantity defined as an upper bound on the distance of the curreragesss
from the fixed point. We report non-convergence when none of teeiqus methods converged.
We report convergence at iteratiorwhen the maximum absolute value of the updates of all the
messages from iteratidn- 1 tot is smaller than a threshoftl= 1014,

3.1 Full Pfaffian Series

In the previous Section we have described two equivalent represastétiZ in terms of the loop
series and the Pfaffian series. Here we analyze numerically how thesepvesentations differ
using an example, shown in Figure 3 as a bipartite factor graph, for whitdrms of both series
can be computed. We analyze a single instance, parameterizedausifgl and different pairwise
interactiong3 € {0.1,0.5,1.5}.

Figure 3: Planar bipartite factor graph used to compare the full Pfaffidaesswith the loop series.
Circles and black squares denote variables and factors respectively.
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Figure 4: Comparison between the full loop series and the full PfaffisesseEach row corre-
sponds to a different value of the interaction strer§tH_eft column shows the error,
considering loop term&T-SBR 1) in log-log scale. Shaded regions include all loop terms
(not necessarily 2-regular loops) required to achieve the same (or)lsttairacy than
the accuracy of the 2-regular partition functiégn Middle column shows the error con-
sidering Pfaffian term&”f(p) also in log-log scale. The first Pfaffian term corresponds
to Zp, marked by a circleRight column shows the values of the first 100 Pfaffian terms
sorted in descending order By| and excludingy.

We use TLSBP to retrieve all loops, 8123 for this example, and Algorithm @rpate all Pfaf-
fian terms. To compare the two approximations we sort all contributions, édathies or Pfaffians,
by their absolute values in descending order, and then analyze howdthe a&e corrected as more
terms are included in the approximation. We define partition functions for tineated series in
the following way:

TLSBR/|) _7BP _ Pf(p) =zBP e
o ge) 2w (g )

ThenZT'SBR1) accounts for thé most contributing loops and”f(p) accounts for thep most con-
tributing Pfaffian terms. In all cases, the Pfaffian term with largest atesealueZy, corresponds
to zp.

Figure 4 shows the err@"SBP (first column) andzP (second column) for both representa-
tions. For weak interaction® (= 0.1) BP converges fast and provides an accurate approximation
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with an error of order 10*. Summation of less than 50 loop terms (top-left panel) is enough to ob-
tain machine precision accuracy. Notice that the error is almost reducéd vath Zp (top-middle
panel). In this scenario, higher order terms of the Pfaffian seriesegiigible (top-right panel).

As we increas@, the quality of the BP approximation decreases. The number of loop eorrec
tions required to correct the BP error then increases. In this exampliatdomediate interactions
(B = 0.5) the first Pfaffian ternzy improves considerably, more than five orders of magnitude, on
the BP error, whereas approximately 100 loop terms are required to achiswvnilar correction
(gray region of middle-left panel).

For strong interactiong3(= 1.5) BP converges after many iterations and gives a poor approx-
imation. In this scenario also a larger proportion of loop terms (bottom-letlp&inecessary to
correct the BP result up to machine precision. Looking at the bottom-Ieétl pee find that approx-
imately 200 loop terms are required to achieve the same correction as thetaimedtbyZy, which
is quite accurate (bottom-middle panel).

As the right panels show, higher order Pfaffian contributions changgressively from a flat
sequence of small terms to an alternating sequence of positive and eegatins which grow in
absolute value g8 increases. These oscillations are also present in the loop seriesiexpans

In general, we conclude that tiZg correction to the BP approximation can give a significant
improvement even in hard problems for which BP converges after manyidgtesa Notice again
that calculatingZp, the most contributing term in the Pfaffian series, does not require exg@ith
for loop nor Pfaffian terms.

3.2 Grids

After analyzing the full Pfaffian series on a small random example we @stvict our attention

to the first Pfaffian correction using grids (nearest neighbor cdivitgy. First, we compare this
approximation, for botiZy and single-variable marginals, with other inference methods for different
types of interactions (attractive or mixed) and then study the scalability of thieochevith the size

of the graphs.

3.2.1 ATTRACTIVE INTERACTIONS

We first focus on binary models with "ferromagnetic” tendency, whiclofawalignment of neigh-
boring variablesp, > 0. If local fields are also positivB,, > 0, Sudderth et al. (2007) showed
that, under some additional condition, the BP approximation givewer-boundfor the exact par-
tition function and all loops (and therefore Pfaffian terms too) have the samé Although this
is not formally proved for general models with attractive interactions tdgss of the sign of the
local fields, numerical results suggest that this property holds as weHifomore general type of
models.

We generate grids with positive interactions and local fields, tHejis- A (0,3/2) and|0p| ~
A(0,B©), and study performance of the algorithms for various value®, afs well as for strong
© =1 and weal® = 0.1 local fields.

Figure 5 shows the average error over 50 instances reported nediffeethods. For this setup,
BP converged in all instances using random sequential updates of teagaes The error curves
of all methods show an initial growth and a subsequent decrease, exfaeained by the phase

6. The condition is that all single variable beliefs at the BP fixed point massfg my, = Tap(+1) — Tap(—1) >
0,Y(a,b) € £

1285



GOMEZ, KAPPEN AND CHERTKOV

o errorZ (©=1) o error Z (©=0.1)
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——BP
—O— TreeEP
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error marginals (© = 0.1) error marginals (© = 0.1)

10°

Figure 5: 7x7 gricattractiveinteractions and positive local fields. BP converged always. Errers a
averages over 50 random instances for figeghd®. Error in partition functionZ for
(a) strong local field®© = 1 and(b) weak local field$9 = 0.1. Error in marginals fofc)
strong local field® = 1 and(d) weak local field® = 0.1.

transition for®@ = 0 andp =~ 1 (Mooij and Kappen, 2005). Figures suggest that errors arerlarge
as© approaches zero. Notice that = Z for © = 0.

We observe that for all the instancggis always an improvememver the BP approximation.
Corrections are most significant for weak interactifins 1 and strong local fields. For strong
interactiong3 > 1 and weak local fields, the improvement is less significant.

It appears that th&, approximation performs better than TreeEP in all cases except for very
strong couplings, where the two algorithms show very similar results. Fok Veeal fieldsZy
performs similar to CVM-Loop4 which is known to be a very accurate appration for this type
of model, see Yedidia et al. (2000) for instance. Selecting larger olustecs such as loops of
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length 6 does not necessarily leads to improvements although it leads to didriacraase in the
computational cost.

The methods which provide upper bounds 6 PDC and TRW) report the largest average
error. PDC performs slightly better than TRW, as was shown in Globemsddaakkola (2007) for
the case of mixed interactions. We note that the worse performance of ®#3¥@rdng couplings
might be attributed to implementation artifacts, sinceffor 4 the algorithm suffers from numerical
precision errors. In general, both empirical upper bounds are sigmifycless tight than the lower
bounds provided by BP ari.

Finally, bottom plots show that errors in marginals behave very similar toseimar.

3.2.2 MIXED INTERACTIONS

We now analyze a more general Ising model where interactions and leftd Gian have mixed
signs. In that cas&BP andZzy are no longer lower bounds @hand loop terms can be positive or
negative. Figure 6 shows results for this setup.

For strong local fields (subplots a,c,e), we observeZhahprovements over BP results become
less significant af increases. It is important to note thaf always improves the BP result, even
when the couplings are very stron@ £ 10) and BP fails to converge for a small percentage of
instancesZy performs very similar to CVM-Loop4 and substantially better than Tree ERBrail
and intermediatg8. As in the case of attractive interactions, the best results are attained using
CVM-loop4. CVM-loop6 gives worse estimates for> 1.

For the case of weak local fields (subplots b,d7,is the best approximation in the weak
coupling regime. BP fails to converge near the transition to the spin-glase pheor3 = 10,

BP converges only in less than 25% of the instances. In the most difficolaido3 > 22, all
methods under consideration give similar results (all comparable to BPedMer, it may happen
thatZy degrades th&BP approximation because loops of alternating signs have major influence in
the series. This result was also reported ami&z et al. (2007) when loop terms, instead of Pfaffian
terms, where considered.

Finally, as in the case of attractive interactions, errors in marginals befailar to errors irzZ.

3.2.3 SALING WITH GRAPH SIZE

We now study how the accuracy of tlHg approximation changes as we increase the size of the
grid. We generate random grids with mixed couplingsod = {4, ..., 18} and focus on a regime
of very weak local field® = 0.01 and strong couplingd = 1, a difficult configuration according
to the previous results. We compaigalso with anyTLSBP, a variant of our previous algorithm for
truncating the loop series. We run anyTLSBP by selecting loops shorteatigéazen length, and
the length is increased progressively. To provide a fair comparisorekettyoth methods, we run
anyTLSBP for the same amount of CPU time as the one required to afptain

Figure 7a shows a comparison of the errors reported by the diffdgaritams. Since variabil-
ity in the errors is larger than before, we take the median for comparisoardbr of increasing
accuracy we get BP, TreeEP, anyTLSBP, CVM-Loop6, CVM-Loapdl Zy. We note again that
using larger clusters in CVM does not necessarily result in better peafoce.

Overall, we can see that results are roughly independent of the nesizarkl in almost all
methods that we compare. The error of anyTLSBP starts being the smaltesbdn increases
because the proportion of loops captured decreases very fasN Eor64, anyTLSBP performs
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Figure 6: 7x7 gridnixedinteractions and positive local fields. Errors are averages ovemgidna
instances for fixe@ and®. Error in partition functiorZ for (a) strong local field® = 1
and (b) weak local fields® = 0.1. Error in marginals fo(c) strong local field€® = 1
and(d) weak local fields2 = 0.1. Bottom panels show percentage of cases when BP
converges using at least one of the methods described abdeg $tmong local fields and
(f) weak local fields.

worse than CVM. Th&y correction, on the other hand, stays flat and we can conclude thaleis sca
reasonably well. Interestingly, althou@p and anyTLSBP use different ways to truncate the loop
series, both methods show similar scaling behaviour for large graphs.

Figure 7b shows the CPU time for all the tested approaches averagedlioer cases. The
CPU time of the junction tree method quickly increases with the tree-width of thghgraFor
large enoughN, exact solution via the junction tree method is no longer feasible because of th
memory requirements. In contrast, for all the approximate inference methnedsory demands do
not represent a limitation.

In order of increasing cost we have B&, with anyTLSBP, TreeEP, CVM-Loop4 and CVM-
Loop6. TheZy therefore is a very efficient correction Z5F.
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Figure 7: Results on regular grids: scaling with grid size for strong intiersc = 1 and very
weak local fields® = 0.01. Error medians over 50 random instances. BP converged
always.(a) Partition functionZ error. (b) CPU time to computé&.

3.3 Radial Grid Graphs

In the previous Subsection we analyzed the quality ofaheorrection for graphs with a regular
grid structure. Here, we carry over the analysis of Zzecorrection using planar graphs which
consist of concentric polygons with a variable number of sides. Figure Srdlies these spider-
web graphs. We generate them as factor graphs with pairwise interasfiicis we subsequently
convert to an equivalent Forney graph using the procedure deddritAppendix A.2. Again, local
field potentials are parameterized us@g- 0.01 and interactions usirfg)= 1. We analyze the error
in Z as a function of the degrekof the central node.

Figure 9a shows the median of errors4anfor 50 random instances. First, we see that the
variability of all the methods, in particular anyTLSBP, is larger than in theleegyrid scenario.
CVM-Loop6 does not converge for instances with> 4 before 16 seconds and it is thus not
included in the analysis. We can say that all approaches scale rebsaetiband asd grows, the
errors become independentaf

TheZy approximation is the best method compared to the other tested approach@spidve-
ments ofZy over CVM-Loop4 (the second best method) can be more than two orfleragmitude
and more than three orders of magnitude compared to BP.

Computational costs are shown in 9b. Again, for larger graphs, emhtdtan via the junction
tree is not feasible due to the large tree-width dgdepresent the most efficient correction which
improves BP of all approximate methods we compared.
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Two examples of planar graphs used for comparison betwetbonase We fix the num-
ber of concentric polygons to 9 and change the dedretthe central node within the
range[3,...,25). (left) Graph ford = 3. (right) Graph ford = 25. Here nodes represent
variables and edges pairwise interactions. We also add external fields gdpend on
the state of each node (not drawn).

error Z (b) cpu-time Z (seconds)

-5

10 ¢

-2

10 "

——BP

—O— TreeEP

—\/— CVM-Loop4

—_—

= = = any-TLSBP
—¥— JuncTree

107 : : : : 10" : :

5 10 15 20 25 5 10 15 20 25
d d

—6

10 ¢

Results on spider-web graphs: scaling with the deyodéhe central node fg8 = 1 and
© = 0.01. BP converged alway$a) Median of the error in the partition functiahover
50 random instancegb) CPU time required to comput&
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4. Discussion

We have presented an approximate algorithm based on the exact loolugdtamework for in-
ference on planar graphical models defined in terms of binary variables.proposed approach
improves the estimate for the partition function provided by BP without an expéeitch for loops.

The algorithm is illustrated on the example of ordered and disordered Isidiglma a pla-
nar graph. Performance of the method is analyzed in terms of its dependeribe system size.
The complexity of the partition function computation is exponential in the gewass, unless the
local fields are zero, when it becomes polynomial. We tested our algorithragutar grids and
planar graphs with different structures. Our experiments on reglitds ghow that significant im-
provements over BP are always obtained if single variable potentials (lo@ghetic fields) are
sufficiently large. The quality of this correction degrades with decreatbeiamplitude of external
field, to become exact at zero external fields. This suggests that tloeiithffof the inference task
changes from very easy, with no local fields, to very hard, with small lsglds, and then decays
again as external fields become larger.

TheZy correction turns out to be competitive with other state of the art methodspooxdmate
inference of the partition function. First of all, we showed thais much more accurate than upper
bounds based methods such as TRW or PDC, illustrating that such methudsatdhe cost of
accuracy. We have also shown that for the case of grids with attragtwenstric interactions and
positive local fields, the lower bound provided Byis the most accurate.

We also found thaZy performs much better than treeEP for weak and intermediate interactions
and similar for strong interactions. Comparing with CVM, we have foundZpairesented better
results for very small local fields. Using larger outer clusters in CVM dudshecessarily lead to
better approximations.

Finally, we have presented a comparisorZgfwvith TLSBP, which is another algorithm based
on the loop series expansion for BP that uses the loop length as truncatameter. On one hand,
the calculation ofZy involves are-summatiorof many loop terms which in the case of TLSBP
are summed individually. This consideration favors Heapproach. On the other hangdy is
restricted to the class of 2-regular loops whereas TLSBP also accaurésrhs corresponding to
more complex loop structures in which nodes can have degree larger tha®wsrall, for planar
graphs, we have shown evidence that Zgeapproach is better than TLSBP when the size of the
graphs is not very small. We emphasize, however, that TLSBP can liecafipnon-planar binary
graphical models too.

Although planarity is a severe restriction, we emphasize that planar gagplesr in many con-
texts such as computer vision and image processing, magnetic and optaralimgc or network
routing and logistics. We have focused on inference problems definpthoar graphs with sym-
metric pairwise interactions and, to make the problems difficult, we have inteddiocal field
potentials. Notice however, that the algorithm can also be used to solve mvtteilaore complex
interactions, that is, more than pairwise typical from the Ising model (seekzlv et al., 2008, for
a discussion of possible generalizations). This makes our approachappieable than other ap-
proaches, namely, (Globerson and Jaakkola, 2007; Schraudalgkaamenetsky, 2008), designed
specifically for the pairwise interaction case.

Summarizing, among the compared methods and models, the introduced appaisad orzy
represents the best estimate to the partition function as long as the givéndgep not deviate
too much from perfect planarity, that is, we are in the small local field regitnalso represents
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an efficient correction to the BP estimate of the partition function, being muchk efficient than
CVM, the second best method we have analyzed. Finally, we have shatvestimates of single-
variable marginals calculated usidg are comparable to state of the art inference methods.

Acknowledgments

We acknowledge J. M. Mooij, A. Windsor and A. Globerson for providihgir software, V. Y.
Chernyak, J. K. Johnson and N. Schraudolph for interesting distissand anonymous reviewers
for valuable suggestions. This research is part of the Interactivelfoofitive Information Systems
(ICIS) project, supported by the Dutch Ministry of Economic Affairs,rdr@SIK03024. The work
at LANL was carried out under the auspices of the National Nucleanr@g@dministration of the
U.S. Department of Energy at LANL under Contract No. DE-AC52-88B8396.

Appendix A. Bipartite Factor Graph Representation

The Forney graph representation is convenient because each loomuteses naturally in terms
associated with nodes which have the same analytical form of Equatiaddqdjever, probabilistic
models are more frequently represented as bipartite factor graphs. Kpiéndix we first show
how the presented approach differs when it is directly applied to a bipatiterfgraph and second,
how to convert a bipartite factor graph to a Forney graph.

We consider binary variablésvhich take values; € {1} and factor functionga(xa) defined
over subsets of variables which take valueg, := {x|i € a}. On a bipartite factor graplysg :=
(V1g: Etg), the setlq consists of variable nodés I and factor nodea € A4, with an edge between
i andaiff i € a, that isi appears in the factor functiap,.

The joint probability distribution of vector := {x;|i € V} is specified as:

p(X)_T I_l Wa (Xa), (UJ)—Z |_| Wa (Xa),

l‘IJ) acAa X acAa

where we have stressed the dependen@ @i the potential functiong.

A.1 Loop Calculus for Standard Factor-Graph Model

Following Sudderth et al. (2007), one can use the reparameterized moieiria of the factor
pseudo-marginals,(xa) and the variable pseudo-marginaj6s;) associated with the minimum of
the Bethe free energy:

I = Ta(Xa)
p<X)_ﬁ|eITI(XI)agﬂ njearj(xj)’

and express the relation between the ex&(d) and the Bethe partition functiong®”(y;1) as
Z(W)/Z(1) = ZBP(y;1). The loop series correction becomes:

Z()=1+ 3 =, <= []w@T]HO).

CeC
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where each terrg: is associated with a loop and can be specified as a product betweengé@ns
andy; (C) corresponding to factor nodesand variable nodesin C respectively:

o Eta [Hiea,iec (Xi - m)] _ _ : i
Ha(C) = Micaicc Varg (%) H(C) =y [(X' ~m)’ (C)} ’

whered;(C) is the degree of variable nodé the loopC andmy is againEy, [x;]. For thex; = {+1}
alphabet, we havey = 1;(+1) — Ti(—1) and the formulas become:

- ¥ xa Ta(Xa) [icaicc (X — M)

Hiea,ieCTi<+l)(l—m)2+Ti(—1)(—l—m)2
_ Y xa Ta(Xa) [Ticajec (X — M)

[Ticajicc HTm(l_m)2+l_Tm(l+ m; )2
_ IxaTa(*a) [icaicc (6 —M)

Hiea,iec (1_n\2) ’

W(C) =1(+1)(1-m)*© + 1 (-1)(-1-m)4©
_1+m 1-m

5 (L=m)(L=m)FO 4 =2 (14 m) (~)FO (14 m) 4O

- 1_2”‘2 ((@=m)* O (—1HO) (14-m)4©). 4o

Ha(C)

(9)

One can recover the original formulation of Chertkov and ChernyaB§20Pag.5) reallocating the
denominator of (9) to (10) and simplifying.

Now consider Figure 2 where the construction of the extended gfapis described. Clearly,
the one-to-one correspondence from 2-regular loogatimperfect matchings ifex: is independent
of whetherg is expressed as a bipartite factor graph or a Forney graph. For diteifactor graph,
the terms of Equation (5) are replaced with terms given by Equation (10) égbanded node is a
variable or by Equation (9) if the expanded node is a factor. As prelyictated, the Forney style
allows to express in the same form the weights of the extended gigph

A.2 Converting a Bipartite Factor Graph to a Forney-Style Factor Graph.

We show here how to convert a bipartite factor graph defined in terms afjbuariables to a more
general Forney graph representation, for which the presentedthfgaran be directly applied to.
We label variable and factor nodes using numbers and capital lettersctiespy. Thusi €
I,i:={1,2,...} represents a variable and= {A,B, ... },a€ 4 a factor. GivenGsq := (¥4, Etg),
a direct way to obtain an equivalent Forney graph= (7, E) is: first, to create a nod® € v for
each variable nodee 74, and second, to associate a new binary variafzavith valuesos, =
{+1} to edgeq(d;,a) € E. Nodesd; € ¥ areequivalent factor nodedenoting the characteristic
function: f5(05) =1 if 054 = 05, Va,b € & and zero otherwise. Finally, factor nodes 7%
with associated functiong(x;) correspond to the same factor nodgs 7’ with same associated
functionsfc(o) and defined in terms of the new variab@s, Vi € c. Figure 10 shows an example
of this transformation. Notice that, although we impose a direction in the edgs,|#iey remain
undirected: §,a) = (a,6;), V&, a € V. For variables € 74 which only appear in two factors, such
as variable 3 in Figure 10a, the corresponding nidis redundant and can be removed. The joint
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Figure 10: (a) Bipartite factor graplgsg where squares represent factors and circles represent vari-
ables.(b) Equivalent Forney-style factor graghwhere factors reside in the nodes and
variables in the edges.

distribution of G4 is related to the joint distribution af by:

1
ZqJA(Xl)qJB(XZ)qJC(XL X2)Wp (X1, X3) WE (X2, X3)

1
= fa(05,4) fB(05,8) fc(05,c, O5,c) To (05,0, 05,0) fE (05, O5,E)

f5, (05, 05,¢:05,0) T5, (05,8, 05,c, O5,E ) T5, (05,05 O, ) -

Once G has been generated following the previous procedure it may be the eashdmodes

0 € ¥ have degree three or larger. This happens if a variadgdpears in more than three factors on
Gtg- Itis easy to converg; to a graph were aB nodes have maximum degree three by introducing
new auxiliary variables;,, §;,, ... and new equivalent nodes. For instance, if variakld’s4 appears

in four factorsA, B,C, D:

f5i (05iA705iB705iC705iD) = f6i1 (GéiA7 05i5705i1) f5i2 (05i1705iC705iD)'

Notice that although the models are equivalent, the number of loogsrray be larger than
in Gtg. In the case that a factor iitg involves more than three variables, as sketched in Chertkov
et al. (2008), one could split the node of degkemto auxiliary nodes of degrd¢ — 1 and compute
Zp on the transformed model. Alternatively, one can reduce the number iables that enter a
factor conditioning over the variables.
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