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Abstract
We introduce novel results for approximate inference on planar graphical models using the loop
calculus framework. The loop calculus (Chertkov and Chernyak, 2006a) allows to express the
exact partition function of a graphical model as a finite sum of terms that can be evaluated once the
belief propagation (BP) solution is known. In general, fullsummation over all correction terms is
intractable. We develop an algorithm for the approach presented in Chertkov et al. (2008) which
represents an efficient truncation scheme on planar graphs and a new representation of the series
in terms of Pfaffians of matrices. We analyze the performanceof the algorithm for models with
binary variables and pairwise interactions on grids and other planar graphs. We study in detail both
the loop series and the equivalent Pfaffian series and show that the first term of the Pfaffian series
for the general, intractable planar model, can provide veryaccurate approximations. The algorithm
outperforms previous truncation schemes of the loop seriesand is competitive with other state of
the art methods for approximate inference.
Keywords: belief propagation, loop calculus, approximate inference, partition function, planar
graphs, Ising model

1. Introduction

Graphical models are popular tools widely used in many areas which requiremodeling of uncer-
tainty. They provide an effective approach through a compact representation of the joint probability
distribution. The two most common types of graphical models are Bayesian networks (BN) and
Markov random fields (MRFs).

The partition function of a graphical model, which plays the role of normalization constant
in a MRF or probability of evidence (likelihood) in a BN is a fundamental quantitywhich arises
in many contexts such as hypothesis testing or parameter estimation. Exact computation of this
quantity is only feasible when the graph is not too complex, or equivalently, when its tree-width is
small. Currently many methods are devoted to approximate this quantity.

The belief propagation (BP) algorithm (Pearl, 1988) is at the core of manyof these approximate
inference methods. Initially thought as an exact algorithm for tree graphs, it is widely used as an
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approximation method for loopy graphs (Murphy et al., 1999; Frey and MacKay, 1998). The exact
partition function is explicitly related to the BP approximation through the loop calculus framework
introduced by Chertkov and Chernyak (2006a). Loop calculus allows toexpress the exact partition
function as a finite sum of terms (loop series) that can be evaluated once theBP solution is known.
Each term maps uniquely to a subgraph, also denoted as a generalized loop, where the connectivity
of any node within the subgraph isat leastdegree two. Summation of the entire loop series is a
hard combinatorial task since the number of generalized loops is typically exponential in the size
of the graph (see also Watanabe and Fukumizu, 2009). However, different approximations can be
obtained by considering different subsets of generalized loops in the graph.

It has been shown empirically (Ǵomez et al., 2007; Chertkov and Chernyak, 2006b) that trun-
cating this series may provide efficient corrections to the initial BP approximation. More precisely,
whenever BP performs satisfactorily, which occurs in the case of sufficiently weak interactions be-
tween variables (or short-range influence of loops), accounting for only a small number of terms is
sufficient to recover the exact result. On the other hand, for those cases where BP requires many
iterations to converge, many terms of the series are required to improve substantially the approxi-
mation. Nevertheless, a formal characterization of the classes of problemswhich are tractable via
loop calculus still remains an open question.

A step toward this goal with a focus on the class of planar graphs has beendone in Chertkov
et al. (2008). A graph is said to be planar if it can be embedded into a plane without crossing edges.
Chertkov et al. (2008) showed that under this condition summation of certain(large) subset of terms
can be performed in polynomial time via mapping to the problem of counting perfect matchings. A
perfect matching is a subset of edges where every vertex has exactly one attached edge in the subset.
Furthermore, the full loop series can be expressed as a sum over certain Pfaffians (or determinants),
where each Pfaffian may account for a large number of loops and is solvable in polynomial time as
well.

The approach of Chertkov et al. (2008) builds upon classical results from Fisher (1961), Kaste-
leyn (1961) and Temperley and Fisher (1961) who addressed the question of counting the number of
perfect matchings on a planar grid, also known as the dimer covering problem in statistical physics.
These classical results are consistent with the following related statement: thepartition function of
a planar graphical model defined in terms of binary variablescan be solved in polynomial time by
computing an appropriate Pfaffian under the key restriction that pairwise interactions only depend
on agreement or disagreement between the signs of their variables, and not on their individual val-
ues. Such a model is known in statistical physics as planar Ising model without external field and
in the machine learning community as planar, binary MRF with pure interaction potentials. Notice
that exact inference for a general binary graphical model on a planar graph, namely Ising model
with external field, is intractable, in particular #P (Barahona, 1982). A gentleoverview of counting
perfect matchings in planar graphs can be found in Jerrum (2003).

Recently, other inference methods models based on the Fisher-Temperley-Kasteleyn (FTK)
method have been introduced in the machine learning community. Globerson andJaakkola (2007)
obtained upper bounds on the partition function for non-planar graphs with binary variables by
decomposition of the partition function into a weighted sum over partition functions of spanning
tractable (zero field) planar models. The resulting problem is a convex optimization problem and,
since exact inference can be done in each planarsub-model via the FTK method, the bound can be
calculated in polynomial time.
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Another example is the work of Schraudolph and Kamenetsky (2008) whichprovides a frame-
work for exact inference on a restricted class of planar graphs usingdirectly the FTK approach.
Since a planar Ising model can be transformed to a modelwithout external field at the cost of in-
troducing additional edges, one can allow local fields for a subsetB of variables. If the graphical
model isB−outerplanar, which means that there exists a planar embedding in which the subsetB
of the nodes lie on the same face, the FTK technique can still be applied.

Contrary to these two approaches, which rely on exact inference on a tractable planar model,
the loop calculus directly leads to a framework for approximate inference ongeneral planar graphs.
Truncating the loop series according to Chertkov et al. (2008) already gives the exact result in the
zero external field case. In the general planar case, however, this truncation may result into an
accurate approximation that can be incrementally corrected by consideringsubsequent terms in the
series.

In the next Section we review the main theoretical results of the loop calculus approach for
planar graphs and introduce the proposed algorithm for approximating thepartition function and
single-variable marginals. In Section 3 we provide experimental results forregular grids and other
types of planar graphs. We focus on a planar-intractable binary model with symmetric pairwise
interactions but nonzero single variable potentials.1 We end this manuscript with conclusions and
discussion of future work in Section 4.

2. Belief Propagation and Loop Series for Planar Graphs

We consider the Forney graph representation, also called general vertex model (Jr., 2001; Loeliger,
2004), of a probability distributionp(σσσ) defined over a vectorσσσ of binary variables (vectors are
denoted using bold symbols). Forney graphs are associated with general graphical models which
subsume other factor graphs, for instance those correspondent to BNs and MRFs. In Appendix A
we explain how our approach is related to the more common bipartite factor graph model.

A binary Forney graphG := (V ,E) consists of a set of nodesV where each nodea ∈ V
represents an interaction and each edge(a,b) ∈E represents a binary variableabwhich take values
σab := {±1}. We denote ¯a the set of neighbors of nodea. Interactionsfa(σσσa) are arbitrary functions
defined over typically small subsets of variables whereσσσa is the vector of variables associated with
nodea, that is,σσσa := (σab1,σab2, . . .) wherebi ∈ ā.

The joint probability distribution of such a model factorizes as:

p(σσσ) = Z−1 ∏
a∈V

fa(σσσa), Z = ∑
σσσ

∏
a∈V

fa(σσσa), (1)

whereZ is the normalization factor, also called the partition function.
From a variational perspective, a fixed point of the BP algorithm represents a stationary point

of the Bethe ”free energy” approximation under proper constraints (Yedidia et al., 2000). In the
Forney style notation:

ZBP = exp
(

−FBP) , (2)

FBP = ∑
a

∑
σσσa

τa(σσσa) ln

(

τa(σσσa)

fa(σσσa)

)

− ∑
b∈ā

∑
σab

τab(σab) lnτab(σab),

1. The source code used in this paper is freely available athttp://www.mbfys.ru.nl/staff/v.gomez/.
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whereτa(σσσa) andτab(σab) are the beliefs (pseudo-marginals) associated with each nodea∈ V and
edge(a,b) ∈E . For graphs without loops, Equation (2) coincides with the Gibbs ”free energy” and
thereforeZBP coincides with the exact partition functionZ. If the graph contains loops,ZBP is just
an approximation critically dependent on how strong the influence of the loops is.

We introduce now some convenient definitions related to the loop calculus framework.

Definition 1 A generalized loop in a graphG := 〈V ,E〉 is any subgraph C:= 〈V ′,E′〉, V′ ⊆
V ,E′ ⊆ (V ′×V ′)∩E such that each node in V′ has degree two or larger.

For simplicity, we will use the term ”loop”, instead of ”generalized loop”, in therest of this
manuscript. Loop calculus allows to representZ explicitly in terms of the BP approximation via
the loop series expansion:

Z = ZBP ·z, z=

(

1+ ∑
C∈C

rC

)

, rC = ∏
a∈C

µa;āC, (3)

whereC is the set of all the loops within the graph and ¯aC the set of neighbors of nodea within the
loopC. Each termrC is a product of termsµa;āC associated with every nodea of the loopC:

µa;āC =
Eτa

[

∏b∈āC
(σab−mab)

]

√

∏b∈āC
Varτab(σab)

, mab = Eτab [σab] , (4)

where we have usedEτ [·] to denote expectation with respect to the pseudo-marginal distributionτ.
Equation (4) states that all terms of the expansion can be written as correlation functions between
associated variables defined on the BP pseudo-marginals. In the case of{±1} alphabet we have:

µa;āC =
∑σσσa

(

τa(σσσa)∏b∈āC
(σab−mab)

)

∏b∈āC

√

1−m2
ab

, mab = τab(+1)− τab(−1). (5)

In this work we consider planar graphs where nodes have degree at most three, that is|āC| ≤ 3.
We denote bytriplet a node with degree exactly three in the graph. In Appendix A.2 we show howa
graphical model stated in a bipartite factor graph representation can be converted to a Forney graph
which satisfies this constraint at the cost of introducing auxiliary nodes.

Definition 2 A 2-regular loop is a loop in which all nodes have degreeexactlytwo.

Definition 3 The2-regular partition function Z/0 is the truncated form of(3) which sums all2-
regular loops only:2

Z/0 = ZBP ·z/0, (6)

z/0 = 1+ ∑
C∈C ,

|āC|=2,∀a∈C

rC.

As an example, Figure 1a shows a small Forney graph and Figure 1c shows seven loops found in
the corresponding 2-regular partition function.

2. Notice that this is thesingle-connected partition functionin Chertkov et al. (2008). We use the term 2-regular partition
function instead because loops with more than one connected componentare also included in this part of the series.
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Figure 1: Example.(a) A Forney graph.(b) Corresponding extended graph.(c) Loops (in bold)
included in the 2-regular partition function.(d) Loops (in bold) not included in the 2-
regular partition function. Marked nodes denote triplets. Grouped in graysquares, the
loops considered in different subsetsΨ of triplets: (d.1)Ψ = {c,h}, (d.2) Ψ = {e, l},
(d.3)Ψ = {h, l}, (d.4)Ψ = {c,e} and (d.5)Ψ = {c,e,h, l} (see Section 2.3).

Definition 4 Consider the set P of all permutationsα of the setS = {1, . . . ,2n} in pairs: α =
(i1, j1), . . . ,(in, jn)), ik < jk,∀k = 1, . . . ,n. The Pfaffian of a skew-symmetric matrix A= (Ai j )1≤i< j≤2n

with (Ai j = −A ji ) is:

Pfaffian(A) = ∑
α∈P

sign(α) ∏
(i, j)∈α

Ai j ,

where the sign of a permutationα is −1 if the number of transpositions to getα from S is odd and
+1 otherwise. The following identity allows to obtain the Pfaffianup to a signby computing the
determinant:

Pfaffian2(A) = Det(A).
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Figure 2: Fisher’s rules.(Top) A nodea of degree two inG is split in two nodes inGext. (Bottom)
A nodea of degree three inG is split in three nodes inGext. The squares on the right
indicate all possible matchings inGext related to nodea. Note that the rules preserve
planarity.

2.1 Computing the2-regular Partition Function Using Perfect Matchings

In Chertkov et al. (2008) it has been shown that computation ofZ/0 in a Forney graphG can be
mapped to the computation of the sum of all weighted perfect matchings within another extended
weighted graphGext := (VGext,EGext). A perfect matching is defined as a subset of edges such that
each node neighbors exactly one edge from the subset and its weight is the product of weights of
edges in it. The key idea of this mapping is that 2-regular loops inG are in one-to-one correspon-
dence to perfect matchings inGext (see Figures 1b and c for an illustration). IfGext is planar, the
sum of its weighted perfect matchings can be calculated in polynomial time via the FTK approach,
evaluating the Pfaffian of an associated matrix. Here we reproduce theseresults with little variations
and emphasis on the algorithmic aspects.

Given a Forney graphG and the BP approximation, we obtain the 2-core ofG by removing
nodes of degree 1 recursively. The 2-core excludes all nodes thatdo not appear in any loop. After
this step,G is either the null graph (and then BP is exact) or it is only composed of vertices of
degree two or three.

To constructGext we split each node inG according to the rules introduced by Fisher (1966)
and illustrated in Figure 2. The procedure results in an extended graph of|VGext| ≤ 3|V | nodes and
|EGext| ≤ 3|E | edges. To see that each 2-regular loop inG is associated with a perfect matching in
Gext consider, for instance, the vertex of degree three in the bottom of Figure2. Given a 2-regular
loopC, vertexa can appear in four different configurations: either nodea does not appear inC, orC
contains one of the following three paths: -b-a-c-, -b-a-d- or -c-a-d-. These four cases correspond
to node terms in a loop with values 1,µa;{b,c}, µa;{b,d} andµa;{c,d} respectively, and coincide with
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the matchings inGext shown within the box on the bottom-right. An simpler argument applies to the
vertex of degree two of the top portion of Figure 2.

Therefore, if we associate to each internal edge (new edge inGext not inG ) of each split nodea
the corresponding weightµa;āC of Equation (4) and to the external edges (existing edges already in
G ) weight 1, the sum over all weighted perfect matchings defined onGext is preciselyz/0:

z/0 = ∑perfect matchings inGext.

The 2-regular partition functionZ/0 is obtained using Equation (6).
Kasteleyn (1963) provided a method to compute this sum in polynomial time for planar graphs.

First, edges are properly oriented in such a way that for every face (except possibly the external
face) the number of clockwise oriented edges is odd. We use the linear time algorithm in Karpinski
and Rytter (1998) described here as Algorithm 1 to produce such an orientation. It receives an
undirected graphGext and constructs a copyG ′

ext := (VG ′
ext

,EG ′
ext

) with properly oriented edgesEG ′
ext

.
It is convenient thatGext is bi-connected, that is, has no articulation points. If needed, we add edges
with zero weight which do not alterZ.

Algorithm 1 Pfaffian orientation
Arguments: undirected bi-connected extended graphGext.

1: Construct a planar embeddinḡGext of Gext.
2: Construct a spanning treeT of Ḡext.
3: Construct a graphH having vertices corresponding to the faces ofḠext:

Connect two vertices inH if the respective face boundaries share an edge not inT.
H is a tree. RootH to the external face.

4: G ′
ext := T.

5: Orient all edges inG ′
ext arbitrarily.

6: for all face (vertex inH) traversed in post-orderdo
7: Add toG ′

ext the unique edge not inG ′
ext.

8: Orient it such that the number of clock-wise oriented edges is odd.
9: end for

10: RETURN directed bi-connected extended graphG ′
ext.

Second, denoteµi j the weight of the edge between nodesi and j in G ′
ext and define the following

skew-symmetric matrix:

Âi j =











+µi j if (i, j) ∈ EG ′
ext

−µi j if ( j, i) ∈ EG ′
ext

0 otherwise

.

The Pfaffian ofÂi j is the weighted sum of all perfect matchings. Calculation ofz/0 can be performed
in timeO(N3

Gext
):

z/0 =

√

Det(Â).

For the tractable case, namely, Ising model without external field or pairwise MRF with pure
interaction potentials, the 2-regular partition function coincides with the exactpartition functionZ =
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Z/0 = ZBP ·z/0 since other terms in the loop series vanish. In this case, it can be shown thatall terms
µa;{b,c,d} associated with tripletsa (vertices with degree three inG ) are zero using the following
argument: first, note that a BP fixed point is attained when all variables havezero magnetizations,
that is, uniform beliefsτab(σab) = 1/2, which reduces Equation (5) to:

µa;{b,c,d} = ∑
σσσa

τa(σσσa)σabσacσad. (7)

Second, since by construction pseudo-marginals on the tripletsτa(σσσa) only depend on agree-
ment or disagreement between the variables:

τa(σσσa) =

{

τa(=), for σab = σac = σad,

τa(6=), otherwise,

it suffices to see that for each termτa(σσσa)σabσacσad in the sum, the ”symmetric” term whereσab,σac

andσad are replaced by their opposite values, has same absolute value but different sign, therefore
the sum (7) is zero.

2.2 Computing Estimates of Marginal Distributions

Given the estimateZ/0, estimates for the marginalsPab(σab) can be obtained:

Pab(σab) =
∂ logZ/0(θab)

∂θab(σab)

∣

∣

∣

∣

θab→0
, where Z/0(θab) := ∑

σσσ
exp(θabσab) ∏

a∈V
fa(σσσa)

is the partition sum of the network perturbed with respect to an additional local field potentialθab

of variableσab.
Alternatively, one can compute different partition functions for different settings of the variables

Zσab=+1
/0 andZσab=−1

/0 , and derive the marginals from respective ratios:

Pab(σab = +1) =
Zσab=+1

/0

Zσab=+1
/0 +Zσab=−1

/0
,

whereZσab=+1
/0 indicates the 2-regular partition function calculated from the same model condition-

ing on variableσab, that is, with variableσab fixed (clamped) to+1. Therefore, approximation
errors in the computation of any marginal can be related to approximation errors in the computation
of Z/0. In the following we will mainly focus on evaluatingZ/0, although marginal probabilities will
be discussed as well.

2.3 Computing the Full Loop Series Using Perfect Matchings

Chertkov et al. (2008) established thatz/0 is just the first term of a finite sum involving Pfaffians. We
briefly reproduce their results here and provide an algorithm for computing the full loop series as a
Pfaffian series.

ConsiderT defined as the set of all possible triplets in the original graphG . For each possible
subsetΨ ∈ T , including anevennumber of triplets, there exists a unique correspondence between
loops inG including the triplets inΨ and perfect matchings in another extended graphGextΨ con-
structed after removal of the tripletsΨ in G . Using this representation the full loop series can be
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represented as a Pfaffian series, where each termZΨ is tractable and is a product of the respective
Pfaffian and theµa;ā terms associated with each triplet ofΨ:3

z= ∑
Ψ

ZΨ ZΨ = zΨ ∏
a∈Ψ

µa;ā (8)

zΨ = sign
(

Pfaffian
(

B̂Ψ
))

·Pfaffian
(

ÂΨ
)

.

whereB̂Ψ corresponds to the original Kasteleyn matrix with weights+1 instead of+µi j and−1
instead of−µi j and we make explicit use of the Pfaffians to correct for the sign. The correction
sign(Pfaffian(B̂Ψ)) is necessary because loop terms can be negative and even evaluating Pfaffian(ÂΨ)
with the correct sign would only give the contribution up to a sign. In the previous Subsection, we
assumedz/0 positive.

The 2-regular partition function thus corresponds toΨ = /0. We refer to the remaining terms of
the series (Ψ 6= /0) as higher order terms. Notice that matricesÂΨ andB̂Ψ depend on the removed
triplets and therefore eachzΨ requires different matrices and different edge orientations. In addition,
after removal of vertices inG , the resulting extended graph may be disconnected. As before, in these
cases we add dummy edges with zero weight so thatGext remains bi-connected.

Figure 1d shows loops corresponding to the higher order Pfaffian termson our illustrative exam-
ple. The first and second subsets of triplets (d.1 and d.2) include summation over two loops whereas
the remaining Pfaffian terms include uniquely one loop.

Exhaustive enumeration of all subsets of triplets leads to a 2|T | time algorithm, which is pro-
hibitive. However, many triplet combinations may lead to forbidden configurations. Experimentally,
we found that a principled way to look for higher order Pfaffian terms with large contribution is to
search first for pairs of triplets, then groups of four, and so on. Forlarge graphs, this also becomes
intractable. However, the key advantage of the Pfaffian representationis thatZ/0 is always the term
that accounts for the largest number of loop terms in the series. In this workwe do not derive any
heuristic for searching higher order Pfaffian terms with larger contributions. Instead, in Section 3.1
we study the full Pfaffian series and subsequently we restrict our attention to analyze the accuracy
of Z/0.

Algorithm 2 describes the procedure for computing all terms using Equation (8). The main loop
of the algorithm can be interrupted at any time, thus leading to a sequence of algorithms producing
corrections incrementally.

3. Experiments

In this Section we study numerically the proposed algorithm. To facilitate the evaluation and the
comparison with other algorithms we focus on the pairwise binary Ising model, aparticular case of
the model (1) where factors only depend on the disagreement between variables and take the form:
log fa(σab,σac) = φaσabσac. We consider also nonzero local potentials in all variables parameter-
ized by: logfa(σab) = θabσab so that the model becomes planar-intractable.

We create different inference problems by choosing different interactions φa and local field
parametersθab. To generate them we draw independent samples from a normal distributionφa ∼
N (0,β/2) andθab ∼ N (0,βΘ), whereΘ andβ determine how difficult the inference problem is.
Generally, forΘ = 0 the planar problem is tractable (zero field). ForΘ > 0, small values ofβ result

3. We omit the loop index in the triplet termµa;ā because nodes have at most degree three and therefore the set ¯a always
coincide in all loops which contain that triplet.
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Algorithm 2 Pfaffian series
Arguments: Forney graphG

1: z := 0.
2: for all {Ψ ∈ T , |Ψ|even} do
3: Build extended graphGextΨ applying rules of Figure 2.
4: Set Pfaffian orientation inGextΨ according to Algorithm 1.
5: Build matricesÂ andB̂.
6: Compute Pfaffian with sign correctionzΨ according to Equation (8).
7: z := z+zΨ ∏a∈Ψ µa;ā.
8: end for
9: RETURN ZBP ·z.

in weakly coupled variables (easy problems) and large values ofβ in strongly coupled variables
(hard problems). Larger values ofΘ result in easier inference problems.

In the next Subsection we analyze the full Pfaffian series using a small example and compare it
with the original representation based on the loop series. Next, we compareour algorithm with the
following ones:4

Truncated Loop-Series for BP (TLSBP) (Ǵomez et al., 2007), which accounts for a certain num-
ber of loops by performing depth-first-search on the factor graph andthen merging the found
loops iteratively. We adapted TSLBP as an any-time algorithm (anyTLSBP) in a way that
the length of the loop is used as the only parameter instead of the two parametersS andM
(see Ǵomez et al., 2007, for details). This is equivalent to settingM = 0 and discardingS.
In this way, anyTLSBP does not compute all possible loops of a certain length (in particular,
complex loops5 are not included), but search can be performed faster.

Cluster Variation Method (CVM-Loopk ) A double-loop implementation of CVM (Heskes et al.,
2003). This algorithm is a special case of generalized belief propagation(Yedidia et al.,
2005) with convergence guarantees. We use as outer clusters all (maximal) factors together
with loops of four (k=4) or six (k=6) variables in the factor graph.

Tree-Structured Expectation Propagation (TreeEP) (Minka and Qi, 2004). This method per-
forms exact inference on a base tree of the graphical model and approximates the other inter-
actions. The method yields good results if the graphical model is very sparse.

When possible, we also compare with the following two variational methods which provide upper
bounds on the partition function:

Tree Reweighting (TRW ) (Wainwright et al., 2005) which decomposes the parameterization of a
probabilistic graphical model as a mixture of spanning trees of the model, andthen uses the
convexity of the partition function to get an upper bound.

Planar graph decomposition (PDC) (Globerson and Jaakkola, 2007) which decomposes the pa-
rameterization of a probabilistic graphical model as a mixture of tractable planar graphs (with
zero local field).

4. We use the libDAI library (Mooij, 2008) for algorithmsCVM-Loopk , TreeEPandTRW .
5. A complex loop is defined as a loop which can not be expressed as the union of two or more circuits or simple loops.
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To evaluate the accuracy of the approximations we consider errors inZ and, when possible, compu-
tational cost as well. As shown in Gómez et al. (2007), errors inZ, obtained from a truncated form
of the loop series, are very similar to errors in single variable marginal probabilities, which can be
obtained by conditioning over the variables under interest. We only consider tractable instances for
which Z can be computed via the junction tree algorithm (Lauritzen and Spiegelhalter, 1988) using
8GB of memory.

The error measure for a given approximationZ′ of Z is:

errorZ′ =
| logZ− logZ′|

logZ
,

and givenP′
ab(σab) estimates for the exact marginalsPab(σab), the error is:

error marginals= mean(a,b)∈E
σab=±1

|P′
ab(σab)−Pab(σab)|.

As in Gómez et al. (2007), we use four different message updates for BP: fixed and random
sequential updates, parallel (or synchronous) updates, and residual belief propagation (RBP), a
method proposed by Elidan et al. (2006) which selects the next message to be updated which has
maximumresidual, a quantity defined as an upper bound on the distance of the current messages
from the fixed point. We report non-convergence when none of the previous methods converged.
We report convergence at iterationt when the maximum absolute value of the updates of all the
messages from iterationt −1 to t is smaller than a thresholdϑ = 10−14.

3.1 Full Pfaffian Series

In the previous Section we have described two equivalent representations forZ in terms of the loop
series and the Pfaffian series. Here we analyze numerically how these tworepresentations differ
using an example, shown in Figure 3 as a bipartite factor graph, for which all terms of both series
can be computed. We analyze a single instance, parameterized usingΘ = 0.1 and different pairwise
interactionsβ ∈ {0.1,0.5,1.5}.

Figure 3: Planar bipartite factor graph used to compare the full Pfaffian series with the loop series.
Circles and black squares denote variables and factors respectively.
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Figure 4: Comparison between the full loop series and the full Pfaffian series. Each row corre-
sponds to a different value of the interaction strengthβ. Left column shows the error,
considering loop termsZTLSBP(l) in log-log scale. Shaded regions include all loop terms
(not necessarily 2-regular loops) required to achieve the same (or better) accuracy than
the accuracy of the 2-regular partition functionZ/0. Middle column shows the error con-
sidering Pfaffian termsZP f(p) also in log-log scale. The first Pfaffian term corresponds
to Z/0, marked by a circle.Right column shows the values of the first 100 Pfaffian terms
sorted in descending order in|ZΨ| and excludingz/0.

We use TLSBP to retrieve all loops, 8123 for this example, and Algorithm 2 to compute all Pfaf-
fian terms. To compare the two approximations we sort all contributions, eitherloops or Pfaffians,
by their absolute values in descending order, and then analyze how the errors are corrected as more
terms are included in the approximation. We define partition functions for the truncated series in
the following way:

ZTLSBP(l) =ZBP

(

1+ ∑
i=1...l

rCi

)

, ZP f(p) =ZBP

(

∑
i=1...p

ZΨi

)

.

ThenZTLSBP(l) accounts for thel most contributing loops andZP f(p) accounts for thep most con-
tributing Pfaffian terms. In all cases, the Pfaffian term with largest absolute valueZΨ1 corresponds
to z/0.

Figure 4 shows the errorZTLSBP (first column) andZP f (second column) for both representa-
tions. For weak interactions (β = 0.1) BP converges fast and provides an accurate approximation
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with an error of order 10−4. Summation of less than 50 loop terms (top-left panel) is enough to ob-
tain machine precision accuracy. Notice that the error is almost reduced totally with Z/0 (top-middle
panel). In this scenario, higher order terms of the Pfaffian series are negligible (top-right panel).

As we increaseβ, the quality of the BP approximation decreases. The number of loop correc-
tions required to correct the BP error then increases. In this example, for intermediate interactions
(β = 0.5) the first Pfaffian termz/0 improves considerably, more than five orders of magnitude, on
the BP error, whereas approximately 100 loop terms are required to achieve a similar correction
(gray region of middle-left panel).

For strong interactions (β = 1.5) BP converges after many iterations and gives a poor approx-
imation. In this scenario also a larger proportion of loop terms (bottom-left panel) is necessary to
correct the BP result up to machine precision. Looking at the bottom-left panel we find that approx-
imately 200 loop terms are required to achieve the same correction as the one obtained byZ/0, which
is quite accurate (bottom-middle panel).

As the right panels show, higher order Pfaffian contributions change progressively from a flat
sequence of small terms to an alternating sequence of positive and negative terms which grow in
absolute value asβ increases. These oscillations are also present in the loop series expansion.

In general, we conclude that theZ/0 correction to the BP approximation can give a significant
improvement even in hard problems for which BP converges after many iterations. Notice again
that calculatingZ/0, the most contributing term in the Pfaffian series, does not require explicitsearch
for loop nor Pfaffian terms.

3.2 Grids

After analyzing the full Pfaffian series on a small random example we now restrict our attention
to the first Pfaffian correction using grids (nearest neighbor connectivity). First, we compare this
approximation, for bothZ/0 and single-variable marginals, with other inference methods for different
types of interactions (attractive or mixed) and then study the scalability of the method with the size
of the graphs.

3.2.1 ATTRACTIVE INTERACTIONS

We first focus on binary models with ”ferromagnetic” tendency, which favors alignment of neigh-
boring variables,φa > 0. If local fields are also positiveθab > 0, Sudderth et al. (2007) showed
that, under some additional condition, the BP approximation gives alower-boundfor the exact par-
tition function and all loops (and therefore Pfaffian terms too) have the samesign.6 Although this
is not formally proved for general models with attractive interactions regardless of the sign of the
local fields, numerical results suggest that this property holds as well for this more general type of
models.

We generate grids with positive interactions and local fields, that is|φa| ∼N (0,β/2) and|θab| ∼
N (0,βΘ), and study performance of the algorithms for various values ofβ, as well as for strong
Θ = 1 and weakΘ = 0.1 local fields.

Figure 5 shows the average error over 50 instances reported by different methods. For this setup,
BP converged in all instances using random sequential updates of the messages. The error curves
of all methods show an initial growth and a subsequent decrease, a factexplained by the phase

6. The condition is that all single variable beliefs at the BP fixed point must satisfy mab = τab(+1)− τab(−1) >

0,∀(a,b) ∈ E .
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Figure 5: 7x7 gridattractiveinteractions and positive local fields. BP converged always. Errors are
averages over 50 random instances for fixedβ andΘ. Error in partition functionZ for
(a) strong local fieldsΘ = 1 and(b) weak local fieldsΘ = 0.1. Error in marginals for(c)
strong local fieldsΘ = 1 and(d) weak local fieldsΘ = 0.1.

transition forΘ = 0 andβ ≈ 1 (Mooij and Kappen, 2005). Figures suggest that errors are larger
asΘ approaches zero. Notice thatZ/0 = Z for Θ = 0.

We observe that for all the instancesZ/0 is always an improvementover the BP approximation.
Corrections are most significant for weak interactionsβ < 1 and strong local fields. For strong
interactionsβ > 1 and weak local fields, the improvement is less significant.

It appears that theZ/0 approximation performs better than TreeEP in all cases except for very
strong couplings, where the two algorithms show very similar results. For weak local fieldsZ/0
performs similar to CVM-Loop4 which is known to be a very accurate approximation for this type
of model, see Yedidia et al. (2000) for instance. Selecting larger outer-clusters such as loops of
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length 6 does not necessarily leads to improvements although it leads to a dramatic increase in the
computational cost.

The methods which provide upper bounds onZ (PDC and TRW) report the largest average
error. PDC performs slightly better than TRW, as was shown in Globerson and Jaakkola (2007) for
the case of mixed interactions. We note that the worse performance of PDC for strong couplings
might be attributed to implementation artifacts, since forβ > 4 the algorithm suffers from numerical
precision errors. In general, both empirical upper bounds are significantly less tight than the lower
bounds provided by BP andZ/0.

Finally, bottom plots show that errors in marginals behave very similar to errors inZ.

3.2.2 MIXED INTERACTIONS

We now analyze a more general Ising model where interactions and local fields can have mixed
signs. In that case,ZBP andZ/0 are no longer lower bounds onZ and loop terms can be positive or
negative. Figure 6 shows results for this setup.

For strong local fields (subplots a,c,e), we observe thatZ/0 improvements over BP results become
less significant asβ increases. It is important to note thatZ/0 always improves the BP result, even
when the couplings are very strong (β = 10) and BP fails to converge for a small percentage of
instances.Z/0 performs very similar to CVM-Loop4 and substantially better than TreeEP forsmall
and intermediateβ. As in the case of attractive interactions, the best results are attained using
CVM-loop4. CVM-loop6 gives worse estimates forβ > 1.

For the case of weak local fields (subplots b,d,f),Z/0 is the best approximation in the weak
coupling regime. BP fails to converge near the transition to the spin-glass phase. Forβ = 10,
BP converges only in less than 25% of the instances. In the most difficult domain, β > 22, all
methods under consideration give similar results (all comparable to BP). Moreover, it may happen
thatZ/0 degrades theZBP approximation because loops of alternating signs have major influence in
the series. This result was also reported in Gómez et al. (2007) when loop terms, instead of Pfaffian
terms, where considered.

Finally, as in the case of attractive interactions, errors in marginals behavesimilar to errors inZ.

3.2.3 SCALING WITH GRAPH SIZE

We now study how the accuracy of theZ/0 approximation changes as we increase the size of the
grid. We generate random grids with mixed couplings for

√
N = {4, ...,18} and focus on a regime

of very weak local fieldsΘ = 0.01 and strong couplingsβ = 1, a difficult configuration according
to the previous results. We compareZ/0 also with anyTLSBP, a variant of our previous algorithm for
truncating the loop series. We run anyTLSBP by selecting loops shorter than a given length, and
the length is increased progressively. To provide a fair comparison between both methods, we run
anyTLSBP for the same amount of CPU time as the one required to obtainZ/0.

Figure 7a shows a comparison of the errors reported by the different algorithms. Since variabil-
ity in the errors is larger than before, we take the median for comparison. Inorder of increasing
accuracy we get BP, TreeEP, anyTLSBP, CVM-Loop6, CVM-Loop4andZ/0. We note again that
using larger clusters in CVM does not necessarily result in better performance.

Overall, we can see that results are roughly independent of the networksizeN in almost all
methods that we compare. The error of anyTLSBP starts being the smallest but soon increases
because the proportion of loops captured decreases very fast. ForN > 64, anyTLSBP performs
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Figure 6: 7x7 gridmixedinteractions and positive local fields. Errors are averages over 50 random
instances for fixedβ andΘ. Error in partition functionZ for (a) strong local fieldsΘ = 1
and (b) weak local fieldsΘ = 0.1. Error in marginals for(c) strong local fieldsΘ = 1
and (d) weak local fieldsΘ = 0.1. Bottom panels show percentage of cases when BP
converges using at least one of the methods described above for(e)strong local fields and
(f) weak local fields.

worse than CVM. TheZ/0 correction, on the other hand, stays flat and we can conclude that it scales
reasonably well. Interestingly, althoughZ/0 and anyTLSBP use different ways to truncate the loop
series, both methods show similar scaling behaviour for large graphs.

Figure 7b shows the CPU time for all the tested approaches averaged overall the cases. The
CPU time of the junction tree method quickly increases with the tree-width of the graphs. For
large enoughN, exact solution via the junction tree method is no longer feasible because of the
memory requirements. In contrast, for all the approximate inference methods,memory demands do
not represent a limitation.

In order of increasing cost we have BP,Z/0 with anyTLSBP, TreeEP, CVM-Loop4 and CVM-
Loop6. TheZ/0 therefore is a very efficient correction toZBP.
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Figure 7: Results on regular grids: scaling with grid size for strong interactions β = 1 and very
weak local fieldsΘ = 0.01. Error medians over 50 random instances. BP converged
always.(a) Partition functionZ error. (b) CPU time to computeZ.

3.3 Radial Grid Graphs

In the previous Subsection we analyzed the quality of theZ/0 correction for graphs with a regular
grid structure. Here, we carry over the analysis of theZ/0 correction using planar graphs which
consist of concentric polygons with a variable number of sides. Figure 8 illustrates these spider-
web graphs. We generate them as factor graphs with pairwise interactionswhich we subsequently
convert to an equivalent Forney graph using the procedure described in Appendix A.2. Again, local
field potentials are parameterized usingΘ = 0.01 and interactions usingβ = 1. We analyze the error
in Z as a function of the degreed of the central node.

Figure 9a shows the median of errors inZ for 50 random instances. First, we see that the
variability of all the methods, in particular anyTLSBP, is larger than in the regular grid scenario.
CVM-Loop6 does not converge for instances withd > 4 before 104 seconds and it is thus not
included in the analysis. We can say that all approaches scale reasonably well, and asd grows, the
errors become independent ofd.

TheZ/0 approximation is the best method compared to the other tested approaches. The improve-
ments ofZ/0 over CVM-Loop4 (the second best method) can be more than two orders of magnitude
and more than three orders of magnitude compared to BP.

Computational costs are shown in 9b. Again, for larger graphs, exact solution via the junction
tree is not feasible due to the large tree-width andZ/0 represent the most efficient correction which
improves BP of all approximate methods we compared.
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4. Discussion

We have presented an approximate algorithm based on the exact loop calculus framework for in-
ference on planar graphical models defined in terms of binary variables.The proposed approach
improves the estimate for the partition function provided by BP without an explicitsearch for loops.

The algorithm is illustrated on the example of ordered and disordered Ising model on a pla-
nar graph. Performance of the method is analyzed in terms of its dependence on the system size.
The complexity of the partition function computation is exponential in the generalcase, unless the
local fields are zero, when it becomes polynomial. We tested our algorithm onregular grids and
planar graphs with different structures. Our experiments on regular grids show that significant im-
provements over BP are always obtained if single variable potentials (localmagnetic fields) are
sufficiently large. The quality of this correction degrades with decrease inthe amplitude of external
field, to become exact at zero external fields. This suggests that the difficulty of the inference task
changes from very easy, with no local fields, to very hard, with small local fields, and then decays
again as external fields become larger.

TheZ/0 correction turns out to be competitive with other state of the art methods for approximate
inference of the partition function. First of all, we showed thatZ/0 is much more accurate than upper
bounds based methods such as TRW or PDC, illustrating that such methods come at the cost of
accuracy. We have also shown that for the case of grids with attractive symmetric interactions and
positive local fields, the lower bound provided byZ/0 is the most accurate.

We also found thatZ/0 performs much better than treeEP for weak and intermediate interactions
and similar for strong interactions. Comparing with CVM, we have found thatZ/0 presented better
results for very small local fields. Using larger outer clusters in CVM doesnot necessarily lead to
better approximations.

Finally, we have presented a comparison ofZ/0 with TLSBP, which is another algorithm based
on the loop series expansion for BP that uses the loop length as truncation parameter. On one hand,
the calculation ofZ/0 involves are-summationof many loop terms which in the case of TLSBP
are summed individually. This consideration favors theZ/0 approach. On the other hand,Z/0 is
restricted to the class of 2-regular loops whereas TLSBP also accounts for terms corresponding to
more complex loop structures in which nodes can have degree larger than two. Overall, for planar
graphs, we have shown evidence that theZ/0 approach is better than TLSBP when the size of the
graphs is not very small. We emphasize, however, that TLSBP can be applied to non-planar binary
graphical models too.

Although planarity is a severe restriction, we emphasize that planar graphsappear in many con-
texts such as computer vision and image processing, magnetic and optical recording, or network
routing and logistics. We have focused on inference problems defined onplanar graphs with sym-
metric pairwise interactions and, to make the problems difficult, we have introduced local field
potentials. Notice however, that the algorithm can also be used to solve modelswith more complex
interactions, that is, more than pairwise typical from the Ising model (see Chertkov et al., 2008, for
a discussion of possible generalizations). This makes our approach moreapplicable than other ap-
proaches, namely, (Globerson and Jaakkola, 2007; Schraudolph and Kamenetsky, 2008), designed
specifically for the pairwise interaction case.

Summarizing, among the compared methods and models, the introduced approach based onZ/0
represents the best estimate to the partition function as long as the given graph does not deviate
too much from perfect planarity, that is, we are in the small local field regime.It also represents
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an efficient correction to the BP estimate of the partition function, being much more efficient than
CVM, the second best method we have analyzed. Finally, we have shown that estimates of single-
variable marginals calculated usingZ/0 are comparable to state of the art inference methods.
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Appendix A. Bipartite Factor Graph Representation

The Forney graph representation is convenient because each loop decomposes naturally in terms
associated with nodes which have the same analytical form of Equation (4).However, probabilistic
models are more frequently represented as bipartite factor graphs. In thisAppendix we first show
how the presented approach differs when it is directly applied to a bipartite factor graph and second,
how to convert a bipartite factor graph to a Forney graph.

We consider binary variablesi which take valuesxi ∈ {±1} and factor functionsψa(xa) defined
over subsetsa of variables which take valuesxa := {xi |i ∈ a}. On a bipartite factor graphG f g :=
(V f g,E f g), the setV f g consists of variable nodesi ∈ I and factor nodesa∈A , with an edge between
i anda iff i ∈ a, that isi appears in the factor functionψa.

The joint probability distribution of vectorx := {xi |i ∈ V } is specified as:

p(x) =
1

Z(ψ) ∏
a∈A

ψa(xa), Z(ψ) = ∑
x

∏
a∈A

ψa(xa),

where we have stressed the dependency ofZ on the potential functionsψ.

A.1 Loop Calculus for Standard Factor-Graph Model

Following Sudderth et al. (2007), one can use the reparameterized model interms of the factor
pseudo-marginalsτa(xa) and the variable pseudo-marginalsτi(xi) associated with the minimum of
the Bethe free energy:

p(x) =
1

Z(τ) ∏
i∈I

τi(xi) ∏
a∈A

τa(xa)

∏ j∈a τ j(x j)
,

and express the relation between the exactZ(ψ) and the Bethe partition functionsZBP(ψ;τ) as
Z(ψ)/Z(τ) = ZBP(ψ;τ). The loop series correction becomes:

Z(τ) = 1+ ∑
C∈C

sC, sC = ∏
a∈C

µa(C)∏
i∈C

µi(C),
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where each termsC is associated with a loop and can be specified as a product between termsµa(C)
andµi(C) corresponding to factor nodesa and variable nodesi in C respectively:

µa(C) =
Eτa

[

∏i∈a,i∈C (xi −mi)
]

∏i∈a,i∈C Varτi (xi)
µi(C) = Eτi

[

(xi −mi)
di(C)

]

,

wheredi(C) is the degree of variable nodei in the loopC andmi is againEτi [xi ]. For thexi = {±1}
alphabet, we havemi = τi(+1)− τi(−1) and the formulas become:

µa(C) =
∑xa

τa(xa)∏i∈a,i∈C (xi −mi)

∏i∈a,i∈C τi(+1)(1−mi)2 + τi(−1)(−1−mi)2

=
∑xa

τa(xa)∏i∈a,i∈C (xi −mi)

∏i∈a,i∈C
1+mi

2 (1−mi)2 + 1−mi
2 (1+mi)2

=
∑xa

τa(xa)∏i∈a,i∈C (xi −mi)

∏i∈a,i∈C (1−m2
i )

, (9)

µi(C) = τi(+1)(1−mi)
di(C) + τi(−1)(−1−mi)

di(C)

=
1+mi

2
(1−mi)(1−mi)

di(C)−1 +
1−mi

2
(1+mi)(−1)di(C)(1+mi)

di(C)−1

=
1−m2

i

2

(

(1−mi)
di(C)−1 +(−1)di(C)(1+mi)

di(C)−1
)

. (10)

One can recover the original formulation of Chertkov and Chernyak (2006a, Pag.5) reallocating the
denominator of (9) to (10) and simplifying.

Now consider Figure 2 where the construction of the extended graphGext is described. Clearly,
the one-to-one correspondence from 2-regular loops inG to perfect matchings inGext is independent
of whetherG is expressed as a bipartite factor graph or a Forney graph. For a bipartite factor graph,
the terms of Equation (5) are replaced with terms given by Equation (10) if theexpanded node is a
variable or by Equation (9) if the expanded node is a factor. As previously stated, the Forney style
allows to express in the same form the weights of the extended graphGext.

A.2 Converting a Bipartite Factor Graph to a Forney-Style Factor Graph.

We show here how to convert a bipartite factor graph defined in terms of binary variables to a more
general Forney graph representation, for which the presented algorithm can be directly applied to.

We label variable and factor nodes using numbers and capital letters respectively. Thusi ∈
I , i := {1,2, . . .} represents a variable anda = {A,B, . . .},a∈ A a factor. GivenG f g := (V f g,E f g),
a direct way to obtain an equivalent Forney graphG := (V ,E) is: first, to create a nodeδi ∈ V for
each variable nodei ∈ V f g, and second, to associate a new binary variableδia with valuesσδia =
{±1} to edges(δi ,a) ∈ E . Nodesδi ∈ V areequivalent factor nodesdenoting the characteristic
function: fδi

(σσσδi
) = 1 if σδia = σδib, ∀a,b ∈ δ̄i and zero otherwise. Finally, factor nodesc ∈ V f g

with associated functionsψc(xc) correspond to the same factor nodesc in V with same associated
functions fc(σσσc) and defined in terms of the new variablesδic, ∀i ∈ c̄. Figure 10 shows an example
of this transformation. Notice that, although we impose a direction in the edge labels, they remain
undirected: (δi ,a) = (a,δi), ∀δi ,a∈V . For variablesi ∈V f g which only appear in two factors, such
as variable 3 in Figure 10a, the corresponding nodeδ3 is redundant and can be removed. The joint
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Figure 10: (a) Bipartite factor graphG f g where squares represent factors and circles represent vari-
ables.(b) Equivalent Forney-style factor graphG where factors reside in the nodes and
variables in the edges.

distribution ofG f g is related to the joint distribution ofG by:

1
Z

ψA(x1)ψB(x2)ψC(x1,x2)ψD(x1,x3)ψE(x2,x3)

≡1
Z

fA(σδ1A) fB(σδ2B) fC(σδ1C,σδ2C) fD(σδ1D,σδ3D) fE(σδ2E,σδ3E)

fδ1(σδ1A,σδ1C,σδ1D) fδ2(σδ2B,σδ2C,σδ2E) fδ3(σδ3D,σδ3E).

OnceG has been generated following the previous procedure it may be the case that the nodes
δi ∈V have degree three or larger. This happens if a variablei appears in more than three factors on
G f g. It is easy to convertG to a graph were allδi nodes have maximum degree three by introducing
new auxiliary variablesδi1,δi2, ... and new equivalent nodes. For instance, if variablei ∈V f g appears
in four factorsA,B,C,D:

fδi
(σδiA,σδiB,σδiC,σδiD) ≡ fδi1

(σδiA,σδiB,σδi1
) fδi2

(σδi1
,σδiC,σδiD).

Notice that although the models are equivalent, the number of loops inG may be larger than
in G f g. In the case that a factor inG f g involves more than three variables, as sketched in Chertkov
et al. (2008), one could split the node of degreeN into auxiliary nodes of degreeN−1 and compute
Z/0 on the transformed model. Alternatively, one can reduce the number of variables that enter a
factor conditioning over the variables.
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