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Abstract
Appropriate selection of the kernel function, which implicitly defines the feature space of an algo-
rithm, has a crucial role in the success of kernel methods. Inthis paper, we consider the problem
of optimizing a kernel function over the class of translation invariant kernels for the task of binary
classification. The learning capacity of this class is invariant with respect to rotation and scaling of
the features and it encompasses the set of radial kernels. Weshow that how translation invariant
kernel functions can be embedded in a nested set of sub-classes and consider the kernel learning
problem over one of these sub-classes. This allows the choice of an appropriate sub-class based
on the problem at hand. We use the criterion proposed by Lanckriet et al. (2004) to obtain a func-
tional formulation for the problem. It will be proven that the optimal kernel is a finite mixture of
cosine functions. The kernel learning problem is then formulated as a semi-infinite programming
(SIP) problem which is solved by a sequence of quadraticallyconstrained quadratic programming
(QCQP) sub-problems. Using the fact that the cosine kernel is of rank two, we propose a formula-
tion of a QCQP sub-problem which does not require the kernel matrices to be loaded into memory,
making the method applicable to large-scale problems. We also address the issue of including
other classes of kernels, such as individual kernels and isotropic Gaussian kernels, in the learning
process. Another interesting feature of the proposed method is that the optimal classifier has an
expansion in terms of the number of cosine kernels, instead of support vectors, leading to a remark-
able speedup at run-time. As a by-product, we also generalize the kernel trick to complex-valued
kernel functions. Our experiments on artificial and real-world benchmark data sets, including the
USPS and the MNIST digit recognition data sets, show the usefulness of the proposed method.

Keywords: kernel learning, translation invariant kernels, capacitycontrol, support vector ma-
chines, classification, semi-infinite programming

1. Introduction

Kernel-based methods, such as support vector machines (SVM) and kernel principal component
analysis (KPCA), increase the flexibility of machine learning algorithms by implicitlymapping
the input data into a feature space and performing the algorithm in that space. This flexibility is
achieved by a so called kernel function which substitutes the dot-productoperation in an ordinary
algorithm. The kernel function, by implicitly defining the feature space, playsa crucial role in the
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success of kernel methods. In fact, as shown by Xiong et al. (2005),if the kernel function is not
chosen appropriately, it may even worsen the performance of an algorithm. This significant impact
on the performance of the kernel-based algorithms and the fact that the appropriate feature space is
problem-dependent, have driven researchers to devise various algorithms to learn the kernel function
from the problem data.

The earliest method for learning a kernel function is cross-validation which is very slow and is
only applicable to kernels with a small number of parameters. Cristianini et al. (1998) proposed an
algorithm for adapting kernel functions with only one unconstrained parameter. Instead of optimiz-
ing the parameters of a kernel, Amari and Wu (1999) suggested conformal transformation of the
kernel function and proposed an algorithm for learning the parameters of the new kernel. Chapelle
et al. (2002) devised a gradient-based algorithm for local optimization of akernel with multiple un-
constrained parameters. Glasmachers and Igel (2005) proposed a gradient-based method for learn-
ing the covariance matrix of Gaussian kernels (Note that since the covariance matrix of a Gaussian
kernel is constrained to be positive semi-definite, the method of Chapelle et al. (2002) cannot be
used for learning this matrix). Ong et al. (2005) introduced the notion of hyperkernels and used it
for kernel learning. They formulated the kernel learning problem as a functional with three terms:
an empirical quality functional, a regularization term that penalizes the functions in a reproducing
kernel Hilbert space (RKHS), and another regularization term that penalizes the kernels in a hyper
reproducing kernel Hilbert space.

A milestone in the kernel learning literature is the introduction of the multiple kernellearning
(MKL) framework by Lanckriet et al. (2004). They considered the problem of finding the optimal
convex combination of multiple kernels and formulated it as a quadratically constrained quadratic
programming (QCQP) problem. They also introduced a generalized performance measure which
encompasses the hard-margin, 1-norm soft-margin, and 2-norm soft-margin performance measures
as special cases. Although these performance measures have extensively been used for learning
the optimal separating hyperplane in SVMs, their use as performance measures for kernel selection
was unprecedented. Since the formulation of the resulting QCQP requires storing several kernel
matrices in memory, their method was only applicable to problems with a small number oftraining
samples. Bach et al. (2004) introduced an SMO-based algorithm to widen the range of solvable
MKL problems by using the Moreau-Yosida regularization technique. Sonnenburg et al. (2005,
2006) reformulated the MKL problem as a semi-infinite linear program (SILP) which was then re-
duced to training a sequence of classical SVMs with a single kernel for which several sophisticated
large-scale algorithms exist. Rakotomamonjy et al. (2008) argued that the maindifficulty with the
SILP formulation of Sonnenburg et al. (2006) is that its objective functionis non-smooth and intro-
duced an equivalent convex formulation with a smooth objective function. Using convexity of the
problem and the smoothness of the objective function, they proposed a reduced gradient algorithm
for MKL which is also applicable to large-scale problems. The weakness ofthe reduced gradient
algorithm is that, in contrast to to the SILP algorithm, it does not use the information collected in
the previous points in the calculation of the next point. Combining the strengths of the SILP method
of Sonnenburg et al. (2006) with those of the reduced gradient method of Rakotomamonjy et al.
(2008), Xu et al. (2008) proposed an extended level method which is remarkably faster than both
methods.

In their seminal work, Micchelli and Pontil (2005) generalized the class ofadmissible kernels
to convex combination of an infinite number of kernels indexed by a compact set and applied their
method to the problem of learning radial kernels (Argyriou et al., 2005, 2006). They used a classical
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result proved by Schoenberg (1938) which states that every continuous radial kernel belongs to the
convex hull of radial Gaussian kernels. They also proposed an efficient DC programming algorithm
for numerically learning radial kernels in Argyriou et al. (2006). Gehlerand Nowozin (2008) refor-
mulated the optimization problem of Argyriou et al. (2006) as a semi-infinite programming problem
and proposed the IKL (infinite kernel learning) framework for solving itnumerically.

In this work, we consider the class of translation invariant kernel functions which encompasses
the class of radial kernels as well as the class of anisotropic Gaussian kernel functions. This class
contains exactly those kernels which can be defined solely based on the difference of kernel argu-
ments; that is, the kernel functions with the property:

k(x,z) = k̃(x−z).

The general form of continuous translation invariant kernels onRn was discovered by Bochner
(1933). He proved that every function of the form1

k(x,z) = k̃(x−z) =
Z

Rn
ejγT(x−z) dV(γ) (1)

is positive semi-definite, where V(.) is a monotonically increasing bounded function and the integra-
tion is in the Lebesgue-Stieltjes sense. He also proved that, conversely, every continuous translation
invariant positive semi-definite kernel function can be represented in theabove form. In statistics,
the translation invariance property is referred to as the stationarity of the kernel function. Genton
(2001) and Scḧolkopf and Smola (2002) give a list of the properties of this class along with impor-
tant examples of stationary kernel functions, including the Gaussian, exponential, rational quadratic,
andBn spline kernels.

The rest of the paper proceeds as follows: Table 1 lists the choice of notations for familiar
concepts in the field. Notations specific to this paper will be introduced in the course of discussions.
Although the kernel learning formulation of Micchelli and Pontil (2005) contains a regularization
term for controlling the complexity of the RKHS associated with the kernel function, there is no
mechanism for controlling the capacity of the class of admissible kernels. In our formulation, we
have provisioned a mechanism for controlling the complexity of the class of admissible kernels
which is described in Section 2. The idea is to multiply a vanishing function inside the integral of
Equation (1). In addition to controlling the capacity of the learning machine, thischoice substitutes
the compactness assumption of the integration region made by Micchelli and Pontil (2005). In
Section 3, we propose a learning criterion which is essentially a reformulation of the generalized
performance measure of Lanckriet et al. (2004). The proposed criterion ensures the compactness
of the parameter space of SVM, and gives a probabilistic meaning to the regularization parameter
of the 2-norm soft-margin SVM. The problem of finding an optimal kernel which minimizes this
criterion over the class of translation invariant kernels leads to (4) which isour main variational
problem.

In Section 4, we prove some important theorems which pave the way for an algorithmic solution
to this problem. First, in Section 4.1 we prove the existence of an optimal solution for problem (4).

1. In this paper we will represent translation invariant kernels both ask : Rd×Rd → C with two arguments and as
k̃ : Rd→C with only one argument.
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In Section 4.2, we prove that the min and max operations in (4) can be interchanged, provided
that the integration region is replaced by a compact set. In addition, it will be shown that the
optimal kernel is a finite mixture of the basic kernels of the formkγ(x,z) = exp( jγT(x− z)). In
Section 4.3, it will be proved that the integration region can indeed be replaced by a compact set.
To solve problem (4) numerically, we introduce a semi-infinite programming (SIP) formulation in
Section 4.4. In Section 4.5, using a topological argument, the issue of including other classes of
kernels in the learning process will be addressed. It is well known that the regularization parameter
of the 2-norm SVM, usually denoted byτ, can be regarded as the weight of a Kronecker delta kernel
function, which is incidently a translation invariant kernel, as well. In Section4.4 we introduce the
semi-infinite programming problem (19) which is our main numerical optimization problem and
corresponds to the simultaneous learning of the optimal translation invariant kernel as well as the
parameterτ. As another application of the discussion of Section 4.5, in Section 4.7 we will introduce
a method for learning the best combination of stabilized translation invariant kernels and isotropic
Gaussian kernels.

In Section 5, we address the problem of numerically solving (19) on a computer. The proposed
optimization algorithm is a variant of the class of local-reduction-based algorithms for solving SIP
problems. An important feature of the proposed optimization algorithm is that it does not require
loading the kernel matrices into memory and so it is applicable to large-scale problems. As stated
above, it will be shown in Section 4.2 that the optimal kernel is complex-valued. Since algorithms
are usually designed for real Euclidean spaces, this complicates the application of the kernel trick
to the optimal kernel (consider for example an algorithm that checks the signof a dot product). In
Section 6, we show that the feature space induced by the real part of a complex-valued kernel is
essentially equivalent to the original complex-valued kernel and deducethat the optimal real-valued
kernel is a mixture of cosines. Yet another astounding feature of the proposed method is concerned
with the evaluation time of the classifier which is even faster than a classical SVMwith a single
Gaussian kernel. Usually, multiple kernel learning methods yield a model whose evaluation time is
in the order of the number of kernels times the number of support vectors. In Section 7, we show
that the evaluation time of the optimal translation invariant kernel is proportional to the number of
cosine kernels, regardless of the number of support vectors. In Section 8, using a learning theory
discussion, we show the necessity of controlling the complexity of the class oftranslation invariant
kernels.

In Section 9, we will assess the practical usefulness of the proposed method on several data
sets. In Section 9.1, we first perform some experiments on 13 artificial andreal-world data sets
collected from the UCI, DELVE, and STATLOG benchmark repositories byRätsch et al. (2001).In
Section 9.2, we perform experiments on the USPS handwritten digit recognition data set, compar-
ing the proposed method with the MKL of Chapelle et al. (2002). In Section 9.3, we compare
the proposed method with the DC method of Argyriou et al. (2006) on the MNIST handwritten
digit recognition data set. In Section 9.4, we experimentally assess the role ofthe capacity control
mechanism of Section 2. Finally, we conclude the paper in Section 10.

2. A Hierarchy of Classes for Translation Invariant Kernels

It is well-known in learning theory that to have a small generalization error,there should be a
problem-dependent compromise between the complexity of the learning machineand the empirical
error on the training data (Vapnik, 1998; Cucker and Zhou, 2007). Inthe previous section we saw
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Symbol Meaning Symbol Meaning
n input space dimension l number of training data
l1 number of training data with label +1 l2 number of training data with label -1
X input space F Feature space
Φ feature map:Φ : X→ F nsv number of support vectors
α lagrange multipliers in SVM C regularization parameter in SVM
k the kernel function ∆ maximal margin

C+ the set of data with label +1 C− the set of data with label -1
m number of kernels in MKL framework µ weight of kernels in MKL
R radius of the smallest ball surrounding ℜ(z) real part of the complex numberz

the data in the feature space j unit imaginary number:
√
−1

z̄ the complex conjugate ofz Sc the complement of setS

Table 1: Notations

that Equation (1) captures the general form of the large class of translation invariant kernels. To
obtain the best tradeoff between approximation and estimation errors, we introduce a hierarchy of
classes of translation invariant kernels. The appropriate class for a specific problem is then chosen
by cross-validation. It must be mentioned that the idea of controlling the complexity of the class
of admissible kernels has been previously used by Ong et al. (2005) forlearning the kernels with
hyperkernels. Although this type of complexity control is not provisioned by Micchelli and Pontil
(2005), we, based on our experiments, believe that it is an important ingredient of the framework. To
restrict the class of translation invariant kernels, we propose to limit the highfrequency components
of the kernel function. This is similar to the use of stabilizer functions in regularization theory (see
Girosi et al., 1993). But, instead of adding a stabilizer function to the objective functional, which
requires the determination of both the stabilizer and the regularization parameter, we explicitly
define a nested class of translation invariant kernelsKβ as:

Kβ :=

{

k(x,z) =
Z

Rn
ejγT(x−z)Gβ(‖γ‖)dp(γ) : p is a probablity measure onRn

}

whereβ is defined on an ordered set, andGβ : R+ → [0,1] is a decreasing continuous function
with Gβ(0) = 1 andGβ(∞) = 0. In addition, to ensure that these classes of kernels are nested, we
require thatGβ1(r) ≥ Gβ2(r) for every r > 0 andβ1 ≤ β2. Important candidates forGβ(‖γ‖) are

exp(−β‖γ‖2) and‖γ‖−β for β > 0. Note that we have left the choice of the norm to the application.
Two important candidates areL1 andL2 norms. In Section 5, we will also assume that the function
Gβ(‖γ‖) is differentiable with respect toγ.

3. Kernel Selection Criterion

In the process of learning the kernel function, one needs a criterion for choosing a kernel (or equiv-
alently, feature space) from the class of admissible kernels. In the classification task, the ideal
criterion is the misclassification error. But since the probability density of datais unknown, this
criterion cannot be computed. This problem has been circumvented by proposing upper bounds
on the misclassification error which hold with high probability (see for example Vapnik, 1999 and
Chapter 4 of Cristianini and Shawe-Taylor, 2000). In Chapelle et al. (2002), several criteria have
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been studied and the authors suggested minimizing the radius-margin bound(R/∆)2 as the preferred
criterion.

Consider the training set of a classification task consisting of the input-output pairs
{(x1,y1), ...,(xl ,yl )}, with yi ∈ {−1,1}. For a fixed kernel, support vector machines compute the
maximal hard/soft margin separating hyperplane. By generalizing hard margin, 1-norm soft margin,
and 2-norm soft-margin objective functions, Lanckriet et al. (2004) obtained the following general-
ized criterion for 1/∆2 (which must be minimized):

ω′C′,τ′(k) := max
α : 0≤ α≤C′,

αTy = 0

{

2αTe−
l

∑
u=1

l

∑
v=1

αuαvyuyvk(xu,xv)− τ′αTα

}

(2)

wheree is then×1 vector of ones and the prime sign is used to distinguish the parameters from
those used in this paper. If(C′,τ′) is equal to(∞,0) ,(C′,0) , and (∞,1/C′), one obtains hard
margin, 1-norm soft margin, and 2-norm soft-margin performance measures, respectively. Our first
change to this criterion is adding the constraintαTe = 2. It has been shown (Crisp and Burges,
1999; Mavroforakis and Theodorodis, 2006) that by adjusting the parametersC and the offsetb
appropriately, this new constraint does not change the separating hyperplane. However, the new
constraint plusαTy = 0 gives∑i∈C− αi = ∑i∈C+ αi = 1, which makes the exposition of our method
simpler. Furthermore, we divide (2) by 1+ τ′ and defineτ := τ′

1+τ′ . So, in this paper we use the
criterion:

ωC,τ(k) := min
α∈A

{

(1− τ)
l

∑
u=1

l

∑
v=1

αuαvyuyvk(xu,xv)+ ταTα

}

(3)

whereA :=
{

α ∈Rl : 0≤ α≤C, αTy = 0, αTe= 2
}

. Note that in the new criterion max{ 1
l1
, 1

l2
}≤

C≤ 2 and 0≤ τ≤ 1. This criterion works well for a fixed kernel by maximizing the margin∆. But
in general, to minimize the radius-margin bound(R/∆)2, one must impose some constraint on the
radius R, as well. For translation invariant kernels we haveR2 = ‖Φ(x)‖2 = k(x,x) = k̃(0). Hence,
bounding the radiusR is equivalent to bounding̃k(0). One can easily verify that boundingtrace{K},
whereK is the kernel matrix in the transductive framework (see Lanckriet et al., 2004, Equation 17),
also leads to a bound oñk(0). Since by explodingR andtrace{K}, the margin∆ also explodes by
the same amount, whilst the radius-margin bound remains constant, we from now on assume that
k̃(0) = 1 and obtain the following optimization problem:2

sup
k

min
α∈A

{

(1− τ)
l

∑
u=1

l

∑
v=1

αuαvyuyvk(xu,xv)+ ταTα

}

s.t. k(x,z) =
Z

Rn
ejγT (x−z)Gβ(‖γ‖)dV(γ)

Z

Rn
dV(γ) = 1,

V is monotonically increasing

2. Note that sincek is a complex-valued positive semi-definite kernel, the objective function isreal-valued and non-
negative.
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or equivalently

sup
p∈P (Rn)

min
α∈A

Z

Rn
αTH(γ)α dp(γ) (4)

whereP (Γ) denotes the set of all probability measures onΓ andH(γ) is defined below. LetG(γ) be
thel× l matrix whose(u,v)th entry isyuyvexp( jγT(xu−xv))Gβ(‖γ‖). DefineH(γ) := (1−τ)G(γ)+
τIl whereIl is thel× l identity matrix. The following equation shows anO(l) computational method
for computingαTG(γ)α:

αTG(γ)α =

∥

∥

∥

∥

∥

l

∑
u=1

αuyuexp( jγTxu)

∥

∥

∥

∥

∥

2

2

Gβ(‖γ‖). (5)

4. Variational Optimization

In this section, we first prove the existence of a solution to problem (4). Next we prove that (4)
can be written as a min-max problem with integration replaced by summation. This allows us to
introduce a SIP formulation of the problem. We then introduce another SIP problem for learning
the optimal kernel and parameterτ.

4.1 Replacing Sup with Max

We will prove that the sup operation in (4) can be substituted by the max operation. Note that all the
variability in the choice of a probability measurep from P (Rn) collapses to the choice of anl × l
matrix

R

Rn H(γ)dp(γ) from S(Cl ), whereS(Cl ) is the space of alll × l Hermitian complex-valued
matrices. So, it is sufficient to prove that the set of all these matrices is compact, which ensures
that any sequence of these matrices has a convergent subsequence,and subsequently, the supremum
value is achieved. Furthermore, by compacting the parameter spaceA in (3) there is no need to
assume that the kernel matrices are strictly positive definite, as was done in Lemma 2 of Micchelli
and Pontil (2005).

LetC0(R
n) denote the function space of all continuous complex-valued functions defined onRn

which vanish at infinity, that is, lim‖γ‖→∞ g(γ) = 0 for anyg∈C0(R
n). By Theorem 3.17 of Rudin

(1987), the function spaceC0(R
n) with the norm

‖g‖ := max
γ∈Rn
|g(γ)|

is a Banach space. Note that the use of max operation is justified by the continuity and vanish-
ing properties ofg∈C0(R

n). Considering the above discussions, we need to prove the following
theorem.

Theorem 1 For any fixed sample data Z= {(x1,y1), ...,(xl ,yl )}, the set

KZ :=

{

Z

Rn
H(γ)dp(γ) : p∈ P (Rn)

}
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is a compact subset of S(Cl ).3

Proof Consider any sequence(pn) in P (Rn). Define positive linear functionalsTn : C0(R
n)→ C

by Tng :=
R

Rn g(γ)dpn(γ). So,Tn ∈C′0(R
n), the dual space ofC0(R

n). Since for eachn, ‖Tn‖= 1,
by Banach-Alaoglu theorem (see for example Theorem 3.15 of Rudin, 1991 or page 237 of Royden,
1988), there exists someT ∈C′0(R

n) with ‖T‖ ≤ 1 and a subsequence(Tm) such thatTm→ T in
weak* topology. This means that for everyg∈C0(R

n), we haveTmg→ Tg. Since, each element of
the matrixH(γ) belongs toC0(R

n), it follows that
R

Rn H(γ)dPm(γ)→ TH. One can easily prove by
contradiction that‖T‖= 1 andT is in fact a positive linear functional. By the Riesz representation
theorem (see Theorem 6.19 of Rudin, 1987), the functionalT can be represented uniquely by a
complex Borel measureµ ,with

R

Rn d|µ|= ‖T‖= 1, in the sense that

Tg=
Z

Rn
gdµ for everyg∈C0(R

n).

The positivity ofT implies thatµ is a positive real measure. So,
R

Rn dµ= 1 and consequentlyµ
is also a probability measure onRn. Thus,

Z

Rn
H(γ)dpm(γ)−→

Z

Rn
H(γ)dµ(γ)

which indicates that the setKZ is compact.

4.2 Interchanging themin and maxOperations

We first prove a theorem about interchanging the min and max operations which is an abstracted
and generalized version of Theorem 20 in Micchelli and Pontil (2005).

Theorem 2 Assume thatΓ is a compact Hausdorff space and the function g: Γ×Rl → R is con-
tinuous in the first parameter and convex and differentiable in the second parameter. LetE andI
be finite index sets , ai , where i∈ E ∪ I , be l×1 vectors, and bi , where i∈ E ∪ I , be real-valued
scalars. Considering problem (6), assume that the Slater’s condition (see Boyd and Vandenberghe,
2004) holds, that is, there exists someα such that aTi α = bi for all i ∈ E and aT

i α < bi for all i ∈ I .
Then there exist a discrete probability measurep̃∈ P (Γ) with at most l+1 atoms and some feasible
point α̃ which solve the max-min problem

max
p∈P (Γ)

min
α : aT

i α = bi for i ∈ E ,
aT

i α≥ bi for i ∈ I

Z

Γ
g(γ,α)dp(γ) (6)

and the min-max problem

min
α : aT

i α = bi for i ∈ E ,
aT

i α≥ bi for i ∈ I

max
p∈P (Γ)

Z

Γ
g(γ,α)dp(γ) (7)

simultaneously. In addition, each atom ofp̃ is a global maximum of g(γ, α̃) as a function ofγ.

3. Note that the topology ofS(Cl ) is the same as that ofRl2
.An l × l hermitian matrix containsl real-valued diagonal

elements andl
2−l
2 independent complex-valued off-diagonal element.
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Proof Assume that̂α and p̂ solve the problem (7). Define the function

φ : Rl →R

φ(α) := maxγ∈Γ {g(γ,α)}

and the set

Γ∗ := {γ : γ ∈ Γ,g(γ, α̂) = φ(α̂)} .

By Lemma 24 of Micchelli and Pontil (2005), the directional derivative ofφ along the direction
d ∈Rl , denoted byφ′+(α;d), is given by:

φ
′
+(α;d) = max

γ∈Γ∗

{

dT∇αg(γ,α)
}

.

Sinceα̂ minimizes (7), we have

φ
′
+(α̂;d) = max

γ∈Γ∗

{

dT∇αg(γ,α) |α=α̂
}

≥ 0 (8)

for any directiond such thataT
i d = 0 for i ∈ E andaT

i d≥ 0 for i ∈ I ∗, whereI ∗ := {i ∈ I : aT
i α =

bi}.
Let M be the convex hull of the set of vectorsN := {∇αg(γ,α) |α=α̂ : γ ∈ Γ∗} ⊆ Rl . Since

M ⊆ Rl , by the Caratheodory theorem (see for example Section 17 of Rockafellar, 1970) every
vector inM can be expressed as a convex combination of at mostl +1 elements ofN . We claim
that the set

O :=

{

∑
i∈E∪I ∗

λiai : λi ≥ 0 for all i ∈ I ∗
}

intersectsM . Assume, on the contrary, thatM andO are distinct. SinceM is convex and compact
andO is convex and closed, by the strict separating hyperplane theorem (seecorollary 11.4.2 of
Rockafellar, 1970), there exists a separating hyperplanewTα+b = 0, w∈Rl , b∈R, such that

∑
i∈E∪I ∗

λiw
Tai +b > 0, ∀λ : λi ≥ 0 for i ∈ I ∗

and

wT∇αg(γ,α) |α=α̂ +b < 0, ∀γ ∈ Γ∗. (9)

The first condition, forλ = 0 implies thatb > 0 and sinceλi can take any real value fori ∈ E
and any nonnegative value fori ∈ I ∗, we have
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wTai = 0, ∀i ∈ E ,

wTai ≥ 0, ∀i ∈ I ∗.

By combining these results with (9), we get

max
γ∈Γ∗

wT∇αg(γ, α̂) |α=α̂ < 0.

This means thatw is a feasible descent direction atα̂ which contradicts (8). So, the setsO and
M intersect. This means that there exist real numbersλ̂i , i ∈ E , nonnegative numberŝλi , i ∈ I ∗,
and a discrete probability measure ˆp with at mostl +1 atoms such that

∑
i∈E∪I ∗

λ̂iai =
Z

Γ
∇αg(γ, α̂)dp̂. (10)

Now, we turn our attention to the solution of problem (6) forp = p̂. This is a convex opti-
mization problem. Since by assumption the Slater’s condition holds, the KKT conditions provide a
necessary and sufficient condition for optimality (see Boyd and Vandenberghe, 2004, page 244) and
therefore a solutioňα to problem (6) is found by solving the following KKT conditions:

∑
i∈E∪I

λ̌iai =
Z

Γ
∇αg(γ, α̌)dp̂

aT
i (α̌) = 0, i ∈ E
aT

i (α̌)≥ 0, i ∈ I
λ̌i ≥ 0, i ∈ I

λ̌i
(

aT
i α̌−bi

)

= 0, i ∈ I .

By definingλ̂i = 0 for i ∈ I \I ∗, using (10), and recalling the definition ofI ∗, it can be seen that
α̂, λ̂ are the unique solution to the above KKT conditions. Thus,α̃ = α̂ and p̃ = p̂ solve problems
(6) and (7) simultaneously and the theorem follows.

Corollary 3 Assume thatΓ is any compact subset ofRn and the parameter C is chosen4 such
that C> max{ 1

l1
, 1

l2
}. Then, there exist̃α ∈ Rn and p̃ ∈ P (Γ) that solve problems (11) and (12)

simultaneously. Furthermore,̃p is a discrete probability measure with at most l+1 atoms and each
atom ofp̃ is a global maximum of̃αTH(γ)α̃.

max
p∈P (Γ)

min
α∈A

Z

Γ
αTH(γ)α dp(γ), (11)

min
α∈A

max
p∈P (Γ)

Z

Γ
αTH(γ)α dp(γ). (12)

4. For a similar constraint in the context ofν-SVMs see Section 4 of Crisp and Burges (1999).
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Proof It is sufficient to show that the Slater’s condition holds, that is, there existsα ∈Rl such that
αTe= 2, αTy = 0, α > 0, andα < C. One can easily verify that the choiceαi = 1

l1
for i ∈C+ and

αi = 1
l2

for i ∈C− satisfies these conditions.

In the rest of the paper, we assume thatC > max{ 1
l1
, 1

l2
}.

4.3 Confining Integration to a Compact Region

To write (4) as a min-max optimization problem, we first proved in Section 4.1 that the sup operation
can be replaced by the max operation. In the previous section we proved Corollary 3 which asserts
that if the integration region of (4) could have been replaced by a compactset, then the max and
min operations could also be interchanged. In this section, we show that the integration region of
(4) can safely be confined to a compact subset ofRn. Let us first prove two useful lemmas.

Lemma 4 For arbitrary domains X and Y and every function f: X×Y→R, the following inequal-
ity holds:

sup
x∈X

inf
y∈Y

f (x,y)≤ inf
y∈Y

sup
x∈X

f (x,y).

Proof Assume on the contrary that

sup
x∈X

inf
y∈Y

f (x,y) > inf
y∈Y

sup
x∈X

f (x,y).

Then, there exist ˜x∈ X andỹ∈Y such that

inf
y∈Y

f (x̃,y) > sup
x∈X

f (x, ỹ)

which contradicts with the existence off (x̃, ỹ).

Lemma 5 If τ < 1, then there exists some compact subsetΓβ ofRn, independent ofα, where allγ’s
that maximizeαTH(γ)α lie in it.5

Proof For eachα ∈Rl we have

max
γ∈Rn

αTH(γ)α = (1− τ)max
γ∈Rn







∥

∥

∥

∥

∥

l

∑
u=1

αuyuexp( jγTxu)

∥

∥

∥

∥

∥

2

2

Gβ(‖γ‖)







+ ταTα. (13)

Let t(α) denote the maximum value of the term in the braces in the above equation. SinceGβ
is continuous andGβ(0) = 1, there is an open ball around zero inRn such thatGβ(‖γ‖) > 0. This
fact plus the conditionαTe= 2, ensure that the coefficient of at least one of the exponential terms
in (13) is nonzero. Hence, the term in the braces in (13), as a function ofγ, is never identically zero
and thust(α) > 0. For all values ofγ with Gβ(‖γ‖) < t

4 we have

5. Note that by (3), the choiceτ = 1 is unrealistic.
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αTH(γ)α− ταTα =

∥

∥

∥

∥

∥

l

∑
u=1

αuyuexp( jγTxu)

∥

∥

∥

∥

∥

2

Gβ(‖γ‖)≤ 4Gβ(‖γ‖) < t(α)

and the lemma’s assertion follows fromlimr→∞G(r) = 0.

Theorem 6 There exists an optimal solution(α̃, p̃) to problem (4) which is also a solution to it
when the integration domain is confined to the compact setΓβ.

Proof Let (α̃, p̃) be a solution to problems (6) and (7) withΓ replaced byΓβ. By Lemma 4 and
Corollary 3, we have the following sequence of inequalities:

max
p∈P (Γβ)

min
α∈A

Z

Γβ

αTH(γ)α dp(γ)≤

max
p∈P (Rn)

min
α∈A

Z

Rn
αTH(γ)α dp(γ)≤

min
α∈A

max
p∈P (Rn)

Z

Rn
αTH(γ)α dp(γ)≤

min
α∈A

max
p∈P (Rn)

Z

Rn
max
γ∈Rn

αTH(γ)α dp(γ) =

min
α∈A

max
γ∈Rn

αTH(γ)α =

min
α∈A

max
p∈P (Γβ)

Z

Γβ

αTH(γ)α dp(γ).

However, the first and the last terms are equal by Corollary 3.

4.4 Semi-infinite Programming Formulation

We have not yet addressed the problem of how (12) is to be really solvedon a machine. In this
section, we reformulate (12) as a semi-infinite programming problem for whichmany algorithms
have been proposed (see Hettich and Kortanek, 1993; Reemtsen and Görner, 1998, for two reviews
on the subject).

Theorem 7 Let α̃ and t̃ be a solution to the semi-infinite programming problem (14) and define

the setΓH
β (α) :=

{

γ ∈ Γβ : αTH(γ)α = maxγ∈ΓβαTH(γ)α
}

. Let (Q) be the QCQP problem that is

obtained by replacingΓβ byΓH
β (α̃)≡ {γ1, ...,γm} in (14) and letµ̃1, ..., µ̃m be a set of Lagrange mul-

tipliers associated with the constraints t≥ αTH(γi)α, 1≤ i ≤m which optimize the dual problem
of (Q). If p̃ is the discrete probability measure defined byp̃(γi) := µ̃i i = 1, ...,m, thenα̃ and p̃ solve
the problem (4). In addition, there exists a solution pair(α̃∗, p̃∗) such thatp̃∗ contains at most l+1
nonzero atoms.
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minα,t t

s.t. t ≥ αTH(γ)α for all γ ∈ Γβ

0≤ α≤C

αTy = 0

αTe= 2.

(14)

Proof Since for allγ /∈ ΓH
β (α̃) the strict inequalitỹt > α̃TH(γ)α̃ holds,α̃ and t̃ also solve the fol-

lowing QCQP problem:

minα,t t

s.t. t ≥ αTH(γi)α i = 1, ...,m

0≤ α≤C

αTy = 0

αTe= 2.

In addition, fromt̃ = α̃TH(γ1)α̃ = ... = α̃TH(γm)α̃, it follows thatα̃ andt̃ also solve the follow-
ing problem:

min
α∈A

max
µ≥0, ∑m

i=1 µi=1
αT

[

m

∑
i=1

µiH(γi)

]

α (15)

By Theorem 17 of Lanckriet et al. (2004), if ˜µ is chosen as specified by the statement of this
theorem, theñα andµ̃ simultaneously solve the min-max problem (15) and the following max-min
problem:

max
µ≥0, ∑m

i=1 µi=1
min
α∈A

αT

[

m

∑
i=1

µiH(γi)

]

α

which can also be written as

max
p∈P (ΓH

β (α̃))
min
α∈A

Z

αTH(γ)α dP(γ)

The first assertion of the theorem follows from the following inequalities:

t̃ = max
p∈P (ΓH

β (α̃))
min
α∈A

Z

αTH(γ)α dP(γ)≤

max
p∈P (Γβ)

min
α∈A

Z

αTH(γ)α dP(γ)≤

min
α∈A

max
p∈P (Γβ)

Z

αTH(γ)α dP(γ) = t̃
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where the last equality follows from a simple reformulation of problem (14). The last part of the
theorem follows from Corollary 3 and reversing the above proof.

4.5 Including Other Kernels in the Learning Process

Although the focus of this paper is on the task of learning translation invariant kernels, it is easy
to furnish the set of admissible kernels with other kernel functions. For example, one may want to
find the best convex combination of stabilized translation invariant kernels along with isotropic/non-
isotropic Gaussian kernels, and polynomial kernels with degrees one to five.6 In general, assume
that we haveM classes of kernels

Ki :=
{

kγ(x,z) : γ ∈ Γi
}

i = 1, ...,M

whereΓ1, ...,ΓM are distinct compact Hausdorff spaces. Fori ∈ 1, ...,M let Gi(γ) be thel × l matrix
whose(u,v)’s entry isyuyvkγ(xu,xv) and defineHi(γ) := (1−τ)Gi(γ)+τIl . The problem of learning
the best convex combination of kernels from these classes for classification with support vector
machines can be stated as

sup
p∈P (Γ0)

min
α∈A

Z

Γ0

αTH0(γ)α dp(γ) (16)

whereΓ0 := Γ1∪ ...∪ΓM and

H0(γ) :=



















H1(γ) i f γ ∈ Γ1

H2(γ) i f γ ∈ Γ2
...

HM(γ) i f γ ∈ ΓM

.

The results of the previous sections will hold for this combined class of kernels if we prove that
Γ0 is a compact Hausdoff space and thath0(γ,α) := αTH0(γ)α is continuous with respect toγ. Let
Ti denote the topology onΓi for i ∈ 1, ...,M. Define the setT0 of subsets ofΓ0 as:

T0 := {O1∪O2...∪OM : O1 ∈ T1,O2 ∈ T2, ...,OM ∈ TM} .

Proposition 8 T0 is a topology.

Proof ClearlyΓ0∈ T0. Next we must show thatT0 is closed under arbitrary union. LetO=
S

i∈IOi

whereOi ∈ T0 andI is an arbitrary index set. We have

O =
[

j∈{1,...,M}

(

[

i∈I

Oi ∩Γ j

)

6. Although the class of translation invariant kernels includes the set of isotropic/non-isotropic Gaussian kernels, it is
not the case for the stabilized classKβ.
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which shows thatO∈ T0. Finally, we should show that finite intersection of closed sets is a closed
set. Assume thatC =

Tr
i=1Ci , wherer ∈N andCc

i ∈ T0 . We have

Cc =
[

i∈{1,...,r}
Cc

i =
[

i∈{1,...,r}

[

j∈{1,...,M}
(Cc

i ∩Γ j) .

SinceCc
i andΓ j are both open inT j , the setCc

i ∩Γ j is open inT j . By the properties of topologies
T1, ...,TM and the definition of topologyT0 it follows thatCc ∈ T0 which shows thatC is closed in
T0.

Proposition 9 Assume that the functions hi(γ,α) : Γi ×Rl → R defined as hi(γ,α) = αTHi(γ)α,
where i= 1, ...,M, are continuous in the first parameter. Then, the function h0(γ,α) : Γ0×Rl →
R defined as h0(γ,α) = αTH(γ)α ,where the topology ofΓ0 is T0, is also continuous in the first
parameter.

Proof Fix α to any value and definēhi(γ) := hi(γ,α) for i = 0, ...,M. Let O be an open subset ofR.
We must show that̄h−1

0 (O) is open in topologyT0. We have

h̄−1
0 (O) =

[

i=1,...,M

(

h̄−1
0 (O)∩Γi

)

=
[

i=1,..,M

h̄−1
i (O).

Since the set̄h−1
i (O) is open inTi for eachi ∈ {1, ...,M}, it follows from the definition ofT0

that the union of these sets is also open inT0. So,h̄−1
0 (O) is open inT0 and the result follows.

Proposition 10 The setΓ0 with topologyT0 is compact in itself.

Proof Let O = {Oi : i ∈ I0} be an open covering ofΓ0, whereI0 is some index set. Letj be
any number in the set{1, ...,M}. SinceΓ j ⊆ Γ0, the setO is also an open covering forΓ j . By
compactness ofΓ j , there exists a finite index setI j ⊆ I0 such that the set

{

Oi : i ∈ I j
}

is an open
subcovering ofΓ j . Thus, the set{Oi : i ∈ I1∪ ...∪ IM} is a finite open subcovering ofT0 which
proves thatΓ0 is compact.

Proposition 11 Assume that topologiesT1, ...,TM are Hausdorff. Then, so is the topologyT0.

Proof We must prove that for any two pointsγ1,γ2 ∈ Γ0 there are disjoint open setsO1 andO2 such
that γ1 ∈ O1 andγ2 ∈ O2. If γ1 andγ2 belong to the same setΓ j for some j ∈ 1, ...,M, then the
assertion follows from the Hausdorffness property ofT j . Without loss of generality, assume that
γ1 ∈ Γ1 andγ2 ∈ Γ2. The choiceO1 = Γ1 andO2 = Γ2 completes the proof.

Theorem 12 Assume thatΓ1, ...,ΓM are compact Hausdorff spaces and the matrices Hj are as
defined previously in this section. Furthermore, assume that for j= 1, ...,M the functions hj(γ,α) :
Γ j → Rl defined by hj(γ,α) := αTH j(γ)α are continuous in the first parameter. Letα̃ and t̃ be a
solution to the semi-infinite programming problem P(Γ1, ...,ΓM), which is defined as
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minα,t t

s.t. t ≥ αTH1(γ)α for all γ ∈ Γ1

...

P(Γ1, ...,ΓM) := t ≥ αTHM(γ)α for all γ ∈ ΓM (17)

0≤ α≤C

αTy = 0

αTe= 2.

Define the setΓH
j (α) :=

{

γ ∈ Γ j : αTH j(γ)α = maxγ∈Γ j αTH j(γ)α
}

. Let (Q) be the QCQP prob-

lem that is obtained by replacing everyΓ j with j = 1, ...,M by ΓH
j (α̃) ≡

{

γ j
1, ...,γ

j
mj

}

in (17). For

any j∈ {1, ...,M} let µ̃j
1, ..., µ̃

j
mj be a set of Lagrange multipliers associated with the constraints

t ≥ αTH j(γ
j
i )α, 1≤ i ≤mj which optimize the dual problem of (Q). Ifp̃ is the discrete probability

measure defined bỹp(γ j
i ) := µ̃j

i i = 1, ...,mj j = 1, ...,M, then the pair(α̃, p̃) solves the problem
(16). In addition, there exists a solution pair(α̃∗, p̃∗) such thatp̃∗ contains at most l+ 1 nonzero
atoms.

Proof The result is immediately obtained by replacing the setΓβ by Γ0 in Theorem 7.

4.6 Automatic Adjustment of the Parameterτ

In this section, we consider the following problem:

max
0≤τ≤1,p∈P (Rn)

min
α∈A

Z

Rn
αTH(γ)α dP(γ). (18)

It is well known that the parameterτ can be envisioned as the weight of the kernelδ(x,z), where
δ is the Kronecker delta function. So, the problem of learning the parameterτ is equivalent to
choosing the best convex combination of the set of translation invariant kernels augmented with the
delta kernelδ(x,z). By using Theorem 12 we get the following corollary.

Corollary 13 Let α̃ andt̃ be a solution to the semi-infinite programming problem Pτ(Γβ), where for
each compact setΓ the problem Pτ(Γ) is defined by (19). Define the set

ΓG
β (α) :=

{

γ ∈ Γβ : αTG(γ)α = maxγ∈ΓβαTG(γ)α
}

.

Let (Q) be the QCQP problem that is obtained by replacingΓ byΓG
β (α̃)≡{γ1, ...,γm} in (19) and let

µ̃1, ..., µ̃m be a set of Lagrange multipliers associated with the constraints t≥ αTG(γi)α, 1≤ i ≤m
which optimize the dual problem of (Q). In addition, letµ̃0 be a Lagrange multiplier associated with
the constraint t≥ αTα in the dual problem of (Q). If̃p is the discrete probability measure defined
by p̃(γi) := µ̃i i = 1, ...,m andτ̃ := µ̃0, thenα̃, τ̃, and p̃ solve the problem (18). In addition, there
exist some solutioñα∗, τ̃∗, and p̃∗ such thatp̃∗ contains at most l+1 nonzero atoms.
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Pτ(Γ) :=

minα,t t

s.t. t ≥ αTG(γ)α for all γ ∈ Γ
t ≥ αTα
0≤ α≤C

αTy = 0

αTe= 2.

(19)

Proof Let ω0 /∈ Γβ and assign the kernelδ(x,z) to this point. The corollary is proved by applying
theorem 12 to the setsΓβ and{ω0}.

4.7 Furnishing the Class of Admissible Kernels with Isotropic Gaussian Kernels

Although the class of translation invariant kernels encompasses the class of Gaussian kernels with
arbitrary covariance matrices, the stabilized class of translation invariant kernelsKβ does not. So, it
may be advantageous to combine the classKβ with the class of Gaussian kernels. In this section, we
consider learning the best convex combination of kernels of the classesKβ and the stabilized class
of isotropic Gaussian kernels

Kη :=

{

k(x,z) =
Z

R

e−ω‖xu−xv‖2e−η‖ω‖2 dp(ω) : p is a probablity measure onR

}

whereη > 0. We also learn the parameterτ automatically. The proof that there exists some compact
setΩη ⊆ R where we can confine the integration to it parallels the discussion of Section 4.3 and is
omitted. By using Theorem 12, it follows that the expansion of the optimal kernel along with the
weight of each kernel can be obtained by solving the SIP problemPτ(Γβ,Ωη), wherePτ(Γ,Ω) is
defined as:

Pτ(Γ,Ω) :=

minα,t t

s.t. t ≥ αTG(γ)α for all γ ∈ Γ

t ≥
l

∑
u=1

l

∑
v=1

αuαvyuyve
−ω‖x−z‖2e−η‖ω‖2 for all ω ∈Ω

t ≥ αTα
0≤ α≤C

αTy = 0

αTe= 2.

5. Optimization Algorithm

We now turn to the problem of numerically solving the nonlinear convex semi-infinite programming
problemPτ(Γβ).7 The term semi-infinite stems from the fact that whilst the number of variables is

7. Modifying the proposed algorithm to solve problemPτ(Γ,Ω) is straightforward.
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finite, there is an infinite number of constraints which are indexed by the compact setΓβ. Hopefully,
for each finite setΓ⊆Γβ, the problemPτ(Γ) is QCQP and therefore convex. Hence, in principle, one
can construct a sequence of QCQP problems with an increasing number ofconstraints such that their
solutions converge to the solution of problemPτ(Γβ). This is the principle used by discretization and
exchange algorithms (see Hettich and Kortanek, 1993; Reemtsen and Görner, 1998). On the other
hand, by Corollary 13, only a finite number of constraints will be active in a solution. Furthermore,
it is easy to show that this property is not limited to a solution point, and the active constraints at a
solution also identify the active constraints in a neighborhood of it. This is the principle behind the
methods based on local reduction (see Reemtsen and Görner, 1998; Hettich and Kortanek, 1993).
Reemtsen and G̈orner (1998) proposed that to further speed up the methods based on local reduction,
the set of active constraints be locally adapted. Combining these ideas with numerous experiments,
we arrived at Algorithm 1. This algorithm is very similar to Algorithm 7 in Reemtsenand G̈orner
(1998) which is based on local reduction.

5.1 Choosing the Initial Value ofα

We choose the initial value ofα such that maximizing the criterion (3) with respect to the kernel
function k and the parameterτ correspond to maximizing the distance of the means of the two
classes in a feature space. Let us first write the distance between means of two classes in the feature
space of some kernelk′

‖m1−m2‖2 =

∥

∥

∥

∥

∥

1
l1

∑
u∈C+

Φ(xu)−
1
l2

∑
v∈C−

Φ(xv)

∥

∥

∥

∥

∥

2

=
1

l2
1

∑
u∈C+

∑
v∈C−

k′(xu,xv)+2
1

l1l2
∑

u∈C+
∑

v∈C−
k′(xu,xv)+

1

l2
2

∑
u∈C−

∑
v∈C−

k′(xu,xv).

By choosingαi = 1/l1 for i ∈C+ andαi = 1/l2 for i ∈C−, we have

‖m1−m2‖2 =
l

∑
u=1

l

∑
v=1

αuαvyuyvk
′(xu,xv).

Comparing the above equation with (3), we see that maximizing the criterion (3) with respect to
the kernel functionk and the parameterτ is equivalent to maximizing the distance between means
of the samples of the two classes in the feature space of kernelk′(x,z) = k(x,z)+τδ(x,z). Note that
this choice forα also satisfies the required conditionsαTe= 2, αTy = 0, and max{ 1

l1
, 1

l2
} ≤ α≤C;

and thusα ∈ A .

5.2 Global Search for Local Maxima ofαTG(γ)α

The algorithm presented in this section attempts to gather a subset of unsatisfied constraints to be
considered in the next iteration of Algorithm 1. Although at the solution pointα̃ the set of active
constraints globally maximizẽαTG(γ)α̃, for other choices ofα it is possible that the constraints
be violated by the local maxima of the functionαTG(γ)α. So, in Algorithm 2, we try to find the
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values ofγ which locally maximize the functionαTG(γ)α for givenα. Here we also assume that the
functionGβ(‖γ‖) is differentiable with respect toγ. The choice of limited-memory BFGS algorithm
(Nocedal, 1980; Liu and Nocedal, 1989; Nocedal and Wright, 2006) for this optimization is very
important. For large-scale problems with largen, the memory needed to store the Hessian matrix
and the associated computations become prohibitive. Although a gradient-ascent algorithm does
not compute the Hessian matrix, its convergence rate is very slow. The limited-memory BFGS
algorithm provides an excellent practical compromise between the computations at each step and
the number of iterations till convergence, without storing the full Hessian matrix in memory.

Algorithm 1 General Optimization Algorithm
Require: T1

1. Γ(0)←{} , t(0)← 1
l1

+ 1
l2

{A lower bound for parameter t is the minimum value ofαTα for α ∈ A}
2. Initialize α(0) as described in Section 5.1
3. for i = 1,2, ... do
4. setR such that for allγ with ‖γ‖> R, the relationαTG(γ)α < t(i−1) holds for allα
5. Γ(i)

g ←GlobalSearchForLocals(α(i−1),R)
{denote the maximum value obtained by the global search bys(i)}

6. Γ(i)
s ← Γ(i−1) S

Γ(i)
g

7. Solve problemPτ(Γ
(i)
s ) to obtain the optimal parameterst(i)s ,α(i)

s andµ(i)
s

{see Section 5.3}
8. Locally adaptΓ(i)

s andµ(i)
s to obtain the optimal parameterst(i)l ,α(i)

l ,Γ(i)
l andµ(i)

l
{see Section 5.4}

9. t(i)← t(i)l , α(i)← α(i)
l

10. Constructµ(i) andΓ(i) by eliminating zero indices ofµ(i)
l along with the corresponding vectors

in Γ(i)
l

11. if t(i)− t(i−1) < εt(i−1) or i = T1 then
12. terminate algorithm with the kernelk(x,z) := ∑m

j=1µ(i)
j cos

(

(x−z)Tγ(i)
j

)

{we assume thatΓ(i) =
{

γ(i)
1 , ...,γ(i)

m

}

and thatµ(i)
j is the Lagrange multiplier associated

with the constraintαTG(γ(i)
j )α≤ t in problemPτ(Γ(i))}

13. end if
14. end for

5.3 Solving the ProblemPτ(Γ) for Finite Set Γ

Let Γ = {γ1, ...,γm} be a finite subset ofΓβ. SinceΓ is finite, the problemPτ(Γ) can be written as
the following QCQP problem:
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Algorithm 2 GlobalSearchForLocals
Require: α, R, T2, andT3

1. Γ = {}, i = 0
2. for j = 1,2, ... do
3. generate a random pointx∈Rn

4. generate a random numberr ∈ [0,R]
5. γ0← r x

‖x‖
6. starting fromγ0 and using the limited-memory BFGS algorithm find a local maximumγ(i)

for functionαTG(γ)α
7. if γ(i) ∈ Γ then
8. i← i +1 {count the number of repeating local maxima}
9. end if

10. Γ← Γ∪ γ(i)

11. if (i−|Γ|)≥ T2 or j = T3 then
12. return Γ
13. end if
14. end for

minα,t t

s.t. t ≥ αTG(γi)α for all i = 1, ...,m

t ≥ αTα
0≤ α≤C

αTy = 0

αTe= 2.

(20)

This problem has been studied in Section 4.6 of Lanckriet et al. (2004) and it has been suggested
to store thel × l kernel matricesG(γ1), ...,G(γm) in memory and solve the problem with general
purpose software packages. But, the memory requirement of this approach limits its applicability to
small-sized problems. However, the facts that

αTℑ{G(γ)}α = 0

and

ℜ{G(γ)}= vc(γ)Tvc(γ)+vs(γ)Tvs(γ),
vc(γ) :=

[

y1cos(γTx1), y2cos(γTx2), . . . ,yl cos(γTxl )
]

,

vs(γ) :=
[

y1sin(γTx1), y2sin(γTx2), . . . ,yl sin(γTxl )
]
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whereℜ{z} and ℑ{z} are the real and imaginary parts ofz, respectively, show that the kernel
matricesG(γ1), ...,G(γm) appearing in problem (20) are effectively8 of rank two. This allows us to
reformulate (20) as a new QCQP problem as follows:

minα,t,c,s t

s.t. t ≥ c2
i +s2

i i = 1, ...,m

ci =
l

∑
u=1

αiyi cos(γT
i xu) i = 1, ...,m

si =
l

∑
u=1

αiyi sin(γT
i xu) i = 1, ...,m

t ≥ αTα
0≤ α≤C

αTy = 0

αTe= 2.

(21)

Now, there is no need to load the kernel matrices into memory and so general-purpose QCQP
solvers such as Mosek (Andersen and Andersen, 2000) can be used to solve (21) even when the
training set size is huge.

5.4 Local Adaptation

As stated in the previous section, for any finite setΓ = {γ1, ...,γm}⊆Γβ, the problemPτ(Γ) is convex
and so every local solution is also globally optimal. But, if we consider the valuesγ1, ...,γm as points
in the spaceRn, we get the following non-convex optimization problem:

max
µ≥ 0,µTe= 1,
γ1, ...,γm∈Rn

min
α∈A

m

∑
i=1

µiαTG(γi)α+µ0αTα. (22)

Now, we can use the the solution of the problemPτ(Γ) obtained in the previous section as the
starting point for problem (22) and locally improve it by an ascent method. Byunrolling (22), we
obtain the following optimization problem:

max
µ∈Rm+1,

γ1, ...,γm∈Rn

Ĵ(µ,γ1, ...,γm) s.t. µ≥ 0,µTe= 1 (23)

where

8. In this paper, we say that a matrixG is effectively of rankr if there exists some matrixH of rank r such that for all
vectorsα ∈ A we haveαTGα = αTHα.
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Ĵ(µ,γ1, ...,γm) :=

min
α∈A

{

l

∑
u=1

l

∑
v=1

αuαvyuyv

m

∑
i=1

µiGβ (‖γi‖)cos(γT
i (xu−xv))+µ0

l

∑
u=1

α2
u

}

. (24)

Problem (23), corresponds to adapting the kernel parametersγ1, ...,γm andµ0, ...,µm of the kernel
function k(x,z) = ∑m

i=1µi cos(γT
i (x−z)) + µ0δ(x− z) for the task of SVM classification, whereδ

denotes the Kronecker delta function. This problem has been previouslystudied by Chapelle et al.
(2002) for general kernel functions with unconstrained parameters and they proved that the function
Ĵ(.) is differentiable provided that problem (24) has a unique solution.9 They also proposed a simple
gradient-based iterative algorithm for adapting the kernel parameters. Recently, Rakotomamonjy
et al. (2008) performed a more detailed analysis of this problem in MKL and proposed a reduced
gradient algorithm with line search. They reasoned that since the computationof the functionĴ is
costly,10 the overhead of a line search preserves the effort.

To avoid the difficulties of the constrained optimization, we replace the constrained vectorµ by

the unconstrained vectorρ, connected by the relationµi =
ρ2

i
ρT ρ , i = 0, ...m, and rewrite (23) as the

following problem:

max
ρ ∈Rm+1,

γ1, ...,γm∈Rn

J(ρ,γ1, ...,γm) (25)

where

J(ρ,γ1, ...,γm) :=

min
α∈A

1
ρTρ

{

l

∑
u=1

l

∑
v=1

αuαvyuyv

m

∑
i=1

ρ2
i Gβ (‖γi‖)cos(γT

i (xu−xv))+ρ2
0

l

∑
u=1

α2
u

}

. (26)

We use the limited-memory BFGS algorithm to numerically solve (25). Our experiments on
MKL tasks show that the method proposed in this section is several times fatserthan the reduced
gradient algorithm of Rakotomamonjy et al. (2008).11 It has been also stated by Rakotomamonjy
et al. (2008) that their method could be improved if the Hessian matrix could be computed ef-
ficiently. This is not the case for the problem (25) withm× (n+ 1) variables; where, even for
moderate size problems, the storage of the Hessian matrix requires lots of memory.

5.5 Solving the Intermediate SVM Problem and Its Gradient

To compute the functionJ(.) defined by Equation (26), we have to solve the following constrained
quadratic programming problem:

9. Truely speaking, the proof should be credited to Danskin (1966).
10. Although the definition of the functionJ in Rakotomamonjy et al. (2008) differs from (24), computation of both

functions corresponds to training a single-kernel SVM.
11. We leave this comparison along with some theoretical results to another paper.
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minα αT

(

m

∑
i=1

ρ2
i

ρTρ
G(γi)

)

α+
ρ2

0

ρTρ
αTα

s.t. 0≤ α≤C

αTy = 0

αTe= 2.

(27)

Although the traditional algorithms for solving quadratic programming problems,such as active
set methods, are fast, they need to store the kernel matrix in memory which prevents their application
in large-scale problems. So, various algorithms for large-scale training ofSVMs, such as SMO
(Platt, 1999) orSVMLight (Joachims, 1999), have been proposed. Again, since the effective rank of
the kernelsG(γ1), ...,G(γm) is two, we can re-state the problem (27) in a memory efficient manner
as:

minα,c,s
ρ2

0

ρTρ
αTα+

m

∑
i=1

ρ2
i

ρTρ
(

c2
i +s2

i

)

s.t. ci =
l

∑
u=1

αuyucos(γT
i xu) i = 1, ...,m

si =
l

∑
u=1

αuyusin(γT
i xu) i = 1, ...,m

0≤ α≤C

αTy = 0

αTe= 2.

In our experiments we have used the optimization software Mosek (Andersen and Andersen,
2000) to solve this problem. After computing the value of the functionJ(.) and obtaining a solution
α̃ to (26), we compute the gradient using the following formulas:

∇γ j J =
ρ2

j

ρT ρ ∇γ
{

α̃TG(γ)α̃
}

|γ=γ j j = 1, ...,m, (28)

∇ρ j J = 2 ρ j

ρT ρ

{

α̃TG(γ j)α̃−∑m
i=1

ρ2
i

(ρT ρ)
α̃TG(γi)α̃− ρ2

0
(ρT ρ)

α̃T α̃
}

j = 1, ...,m. (29)

Note that, in general, the computational complexity of computing formulas (28) and (29) is
O(m× n× nsv2) as was pointed out by Rakotomamonjy et al. (2008).12 The following formulas
show anO(m× (nsv+n)) method for computing the gradient of functionJ(.).

∇γ j J =
ρ2

j

ρT ρ

(

c2
j +s2

j

)

∇γGβ(‖γ‖)|γ=γ j +2
ρ2

j

ρT ρ

(

s′jsj +c′jc j

)

Gβ(‖γ j‖) j = 1, ...,m,

∇ρ j J = 2 ρ j

ρT ρ

{

(c2
j +s2

j )Gβ(‖γ j‖)−∑m
i=1

ρ2
i

ρT ρ(c2
j +s2

j )Gβ(‖γ j‖)− ρ2
0

ρT ρ α̃T α̃
}

j = 1, ...,m

where

12. Note that in Rakotomamonjy et al. (2008) the functionJ(.) has onlym variables, while here the number of variables
is m× (n+1).
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c j =
nsv

∑
u=1

α̃uyucos(γT
j xu) j = 1, ...,m,

sj =
nsv

∑
u=1

α̃uyusin(γT
j xu) j = 1, ...,m,

c′j =−
nsv

∑
u=1

α̃uyuxusin(γT
j xu) j = 1, ...,m,

s′j =
nsv

∑
u=1

α̃uyuxucos(γT
j xu) j = 1, ...,m.

5.6 Convergence Analysis

In this section, we study the convergence properties of Algorithm 1. We hope the contents of this
section help the reader to get a better feeling of this algorithm. For any finite orinfinite setΓ, we
denote the solution of problemPτ(Γ) by S(Γ). Let us first prove a useful lemma.

Lemma 14 If the loop inside Algorithm 1 is executed for the i’th iteration, then S(Γ(i)
l ) = S(Γ(i)).

In other words, removing the constraints where their associated Lagrange multipliers are zero, does

not change S(Γ(i)
l ).

Proof Assume thatΓ(i)
l = {γ1, ...,γm}. Without loss of generality, we assume thatΓ(i) = {γ1, ...,γm′},

wherem′ < m. Denote the Lagrangian ofPτ(Γ
(i)
l ) byL(α, t,µ,λ), whereµ1, ...,µm are the Lagrange

multipliers associated with the constraintsαTG(γ1)α≤ t, ...,αTG(γm)α≤ t, respectively, andλ ∈ Λ
denotes the Lagrange multipliers associated with all other constraints. SincePτ(Γ

(i)
l ) is convex, by

the strong duality we have

S(Γ(i)
l ) = max

µ≥0,λ∈Λ
min
α,t

L(α, t,λ,µ) = L(α∗, t∗,λ∗,µ∗)

where it is assumed thatα∗, t∗,λ∗, andµ∗ are a solution to problemS(Γ(i)
l ). Sinceµ∗m′+1, ...,µ

∗
m are

zero, we also have

S(Γ(i)
l ) = max

µ1≥0,...,µm′≥0,λ∈Λ
min
α,t

L(α, t,λ,µ).

Since the strong duality also holds forPτ(Γ(i)), the last expression is equal toS(Γ(i)) and the
lemma follows.

Now, we prove that for anyε > 0 the Algorithm 1 converges, even without limiting the maximum
number of iterations.

Proposition 15 The sequence of numbers t(0), t(1), ... generated by Algorithm 1 is increasing and
bounded.
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Proof By steps 6 and 8 of Algorithm 1, it follows thatS(Γ(i−1))≤ S(Γ(i)
s ) andS(Γ(i)

s )≤ S(Γ(i)
l ). By

Lemma 14,S(Γ(i)
l ) = S(Γ(i)). So,t(i−1) = S(Γ(i−1)) ≤ S(Γ(i)) = t(i). By Equation (5) and the fact

that αTe= 2, it follows thatαTα ≤ 4 andαTG(γ)α ≤ 4 for all choices ofα andγ; and thus, the
sequence is bounded.

Defineg(α,γ) := αTG(γ)α . The following theorem is essentially Theorem 7.2 of Hettich and
Kortanek (1993), where its proof is reconstructed here for the sake of completeness.

Theorem 16 Assume that in every run of step 5 of Algorithm 1 at least one global maximizer of the
function g(α(i−1),γ) is found and that the steps 10-13 of the algorithm are omitted (Note that the
key point is the omission of step 10). Letᾱ be any accumulation point of the sequenceα(0),α(1), ...
and assume that t(i)ր t̄ . Then the pair(ᾱ, t̄) is a solution of Pτ(Γβ).

Proof First note that sinceα(i) ∈ A andA is compact, a point of accumulation for the sequence
α(0),α(1), ... always exists. Recall the definition ofΩβ from Section 4.6 and define the functiong(α)
as:

g(α) := max
γ∈Ωβ

αTG(γ)α

For simplicity, assume thatα(i)→ ᾱ. Let (α∗, t∗) denote a solution of problemPτ(Γβ). Clearly
t̄ ≤ t∗. If t̄ = t∗ then the theorem is proved. Assume on the contrary thatt̄ < t∗. Then, there exists
γ̄ ∈ Ωβ such that̄t < g(ᾱ, γ̄) = g(ᾱ). But, sinceᾱT ᾱ ≤ t̄, it follows that γ̄ ∈ Γβ. For i = 0,1, ...

chooseγ(i) ∈Ωβ such thatg(α(i),γ(i)) = g(α(i)). We have

g(ᾱ)− t̄ =
[

g(α(i))− t̄
]

+
[

g(ᾱ)−g(α(i))
]

=
[

g(α(i),γ(i))− t̄
]

+
[

g(ᾱ)−g(α(i))
]

(30)

On the other hand, by omission of step 10 from Algorithm 1, all constraints ofthe previous
iterations will continue to appear in the next iterations. Sinceg(α,γ) is continuous,̄α is a feasible
point for all problemsPτ(Γ(i)), wherei = 0,1, ...,∞. Therefore,

g(ᾱ,γ(i))≥ sup
j=1,...,∞

t( j) = t̄ for all i = 0,1, ... (31)

Using (31) in (30) we obtain

g(ᾱ)− t̄ =
[

g(α(i),γ(i))− t̄
]

+
[

g(ᾱ)−g(α(i))
]

≤
[

g(α(i),γ(i))−g(ᾱ,γ(i))
]

+
[

g(ᾱ)−g(α(i))
]

.
(32)

By continuity ofg(., .), the right hand side of (32) tends to zero, which contradicts the assump-
tion t̄ < g(ᾱ).
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6. Generalizing the Kernel Trick to Complex-valued Kernels

Consider a machine learning algorithm designed for a real-valued Euclidean space. The kernel trick
for real-valued kernels states that if all geometric concepts of an algorithmare defined solely based
on the dot-product operation, then by replacing all of these dot-products by a kernel functionk, we
arrive at a version of the very algorithm running in a feature space associated with kernelk. For
complex-valued kernels, the dot-product of any two vectors may be complex-valued which makes
the application of these kernels to machine learning algorithms more tricky. We now introduce
a generalization of the kernel trick for complex-valued kernels. Assume that k(x,z) is a complex-
valued kernel. Then there exists at least one complex feature space, say F , and a mappingΦ : X→F
such thatk(x,z) = 〈Φ(x),Φ(z)〉F . Each axis in the complex feature spaceF can be substituted by
two real-valued axes, one representing the real part and the other the imaginary part. Let us call
this real-valued spaceG. To use the kernel trick, we replace the complex feature spaceF with the
equivalent real feature spaceG. Now, we show that the dot product between elements ofG can be
computed by the real-valued kernel functionℜ{k(x,z)},13 whereℜ{z} is the real part ofz.

Theorem 17 Let F be a complex Hilbert space of dimension N (possibly infinite) and G thecorre-
sponding2N-dimensional Hilbert space obtained by representing real and imaginary parts of F in
separate real axes. Then〈x′,z′〉G = ℜ{〈x,z〉F} , where x′ is the2N-dimensional vector obtained by
concatenating real and imaginary parts of x.

Proof For finiteN we have

ℜ{〈x,z〉F}= ℜ
N

∑
i=1

xi z̄i = ℜ
N

∑
i=1

(xre
i + jxim

i )(zre
i − jzim

i )

=
N

∑
i=1

(xre
i zre

i +xim
i zim

i ) =
2N

∑
i=1

x′iz
′
i = 〈x′,z′〉G

If F is infinite dimensional, then it has an orthonormal basis (see Kreyszig, 1989p.168) and
x andz can have at most countably many nonzero elements (see Kreyszig, 1989 p.165) which we
indicate by index setI. So,

ℜ{〈x,z〉F}= ℜ ∑
i∈I

xi z̄i = ℜ ∑
i∈I

(xre
i + jxim

i )(zre
i − jzim

i )

= ∑
i∈I

(xre
i zre

i +xim
i zim

i ) = ∑
i∈I

x′iz
′
i = 〈x′,z′〉G.

After fully developing the paper based on the complex-valued form of translation invariant ker-
nels, one of the reviewers introduced us to the real-valued form of thesekernels as was discovered by
Bochner (1955). He proved that every continuous real-valued translation invariant positive definite
kernel inRn has the general form

13. The fact that real part of a complex kernel is a real kernel is not new (see Scḧolkopf and Smola, 2002 page 31). But,
as far as we know, the relation between the corresponding Hilbert spaces, as stated in the theorem, is new.
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k(x,z) = k̃(x−z) =
Z

Rn
cosγT(x−z)dV(γ).

It is interesting that after applying the appropriate kernel trick to both real-valued and complex-
valued forms of translation invariant kernels, the optimal kernel is found tobe a mixture of cosines.

7. The Method at Runtime

One frequently denounced feature of SVMs is that the resulting classifierhas an expansion based on
support vectors. Although support vectors are considered to be sparse in the training set, the result-
ing classifier is usually slower than other competing methods such as neural networks (Scḧolkopf
et al., 1998). In general, the computation of a support vector classifier requiresO(n×nsv) steps.
The problem becomes more severe when the kernel function becomes a combination of several ker-
nels, where the computational complexity of evaluating the classifier grows upto O(m×n×nsv).
For some kernels, such as the Gaussian kernel with isotropic covariancematrix, the computation
time can be reduced toO((m+ n)× nsv). Our method has the eminent property that the result-
ing classifier is not expanded based on support vectors at all. Considering the SVM classifier
f (x) = ∑nsv

u=1 αuyuk(x,xu)+b, we have

f (x) =
nsv

∑
u=1

αuyuk(x,xu)+b =
nsv

∑
u=1

αuyu

(

m

∑
i=1

µi cos(γT
i (x−xu))Gβ(‖γi‖)

)

+b

=
m

∑
i=1

µiGβ(‖γi‖)
nsv

∑
u=1

αuyu
(

cos(γT
i x)cos(γT

i xu)+sin(γT
i x)sin(γT

i xu)
)

+b

=
m

∑
i=1

µiGβ(‖γi‖)
[(

nsv

∑
u=1

αuyucos(γT
i xu)

)

cos(γT
i x)+

(

nsv

∑
u=1

αuyusin(γT
i xu)

)

sin(γT
i x)

]

+b.

But ∑nsv
u=1 αuyucos(γT

i xu) and ∑nsv
u=1 αuyusin(γT

i xu) are constant values. So, the computational
complexity of evaluating the classifier of the proposed method isO(m× n). Note that the clas-
sifier has an expansion based on the number of kernels, instead of support vectors. In addition,
by Theorem 2, the number of kernels is limited tol + 1. Furthermore, since the deletion of non-
support vector samples from the training set has no effect on the optimal classifier, it follows that
m≤ nsv+1. Although, theoretically, the number of kernels can reach the number of support vec-
tors, our experiments show that the number of kernels is usually a fraction of the number of support
vectors.

8. A Learning Theory Perspective

A common feature between the class of radial kernels, considered by Micchelli and Pontil (2005),
and the class of translation invariant kernels, considered here, is that the kernels of both classes
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have the property thatk(x,x) = 1 for everyx∈Rn.14 Micchelli et al. (2005b) used this feature along
with a result from Yiming and Zhou (2007) to obtain a probably approximately correct (PAC) upper
bound on the generalization error of their kernel learning framework over the class of radial kernel
functions. They concluded that the regularization parameter of a single-kernel learning machine
is sufficient for controlling the complexity of the class of radial kernels, rejecting the use of an
auxiliary method for controlling the complexity of the class of radial kernels.

But, the situation for translation invariant kernels is completely different. It iswell-known that
the VC-dimension of the class of cosine functions with arbitrary frequencies is infinite (see Vapnik,
1998, page 160). In addition, the finiteness of the VC-dimension is a necessary and sufficient condi-
tion for distribution independent learning of binary classification tasks (see Vapnik, 1998, Theorem
4.5). So, controlling the complexity of the class of translation invariant kernels is a necessary ingre-
dient of our framework. This discussion will be experimentally verified in Section 9, where we will
show the vital role of the complexity control mechanism of Section 2.

9. Experimental Results

In this section we report the results of our experiments on several artificial and real-world bench-
mark data sets. In addition, we will experimentally investigate the role of the complexity control
mechanism of Section 2. In all the experiments we have setC = ∞, T1 = 1000,T2 = 4, T3 = 500,
Gβ(‖γ‖2) = exp(−β‖γ‖22)) and the parameterτ is automatically learnt according to Algorithm 1.
The implementation of this paper is packaged in the SIKL (Stabilized infinite kernel learning) tool-
box and is available athttp://www.mloss.org. We obtained the implementation of the limited mem-
ory BFGS algorithm from the websitehttp://www.chokkan.org/software/liblbfgswhich is a C++
translation of the original implementation made available by Nocedal in Fortran 77. For limited-
memory BFGS algorithm, the 17 most recent curvature information are used and the maximum
number of line-search tries is set to 20. We also changed the stopping condition of the algorithm
from ‖∇x‖

‖x‖ < ε to ‖∇x‖ < ε to avoid the degradation of the accuracy of the global search algorithm
for points far from the origin. The QCQP sub-problem of Algorithm 1 and the QP problem of
Section 5.5 are solved by the optimization software Mosek (Andersen and Andersen, 2000). All
the experiments have been performed on a 2.8GHz Pentium D computer with 2GBmemory and
running the Linux operating system.

9.1 Experiments on Small-size Benchmark Data Sets

In this section, we report our experiments on the benchmark data sets prepared by R̈atsch et al.
(2001). This benchmark consists of 13 data sets and there exist 100 splitsof each data set into
training and test sets. The classification error for each data set is obtained by averaging the classifi-
cation error over these splits. For this experiment we setε = 0.001. The comparison is among the
following methods:

• Single Gaussian (SG)Rätsch et al. (2001) performed experiments with a single isotropic
Gaussian kernel. The variance parameterσ of the isotropic Gaussian kernel and the parameter
C of the 1-norm soft-margin SVM are optimized by performing 5-fold cross-validation on the
first five instances of the training set.

14. In fact, the classes of radial/translation invariant kernel functions contain kernels with arbitrary positive values for
k(x,x). But, the constraintk(x,x) = 1 is imposed for reasons stated in Section 3.
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• Gaussian Mixture (GM) A generalization of the method of Gehler and Nowozin (2008)
is implemented and used for learning the optimal kernel over the classKη. The number
of Gaussian kernels ¯m, their parameters, and the parameterτ are learnt automatically. The
parameterη is set to 0.001 and the parameterC is learnt by performing 5-fold cross validation
on the first five instances of the training set.

• Cosine Mixture (CM) Here, the method of Section 4.6 is used. The number of cosine kernels
m, their parameters, and the parameterτ are learnt automatically. The parameterC is fixed
to ∞ and the parameterβ is optimized by performing 5-fold cross validation on the first five
instances of the training set.

• Cosine and Gaussian Mixture (CGM)Here, the method of Section 4.7 is used. The number
of cosine kernelsm, the number of Gaussian kernels ¯m, the parameters of cosine and Gaussian
kernels, and the parameterτ are learnt automatically. The parameterC is set to∞ and the
parameterη is set to 0.03. The parameterβ is optimized by performing 5-fold cross validation
on the first five instances of the training set.

To compare the training and evaluation times of these methods, we repeated the experiments of
Rätsch et al. (2001) on our machine. For training a single-kernel SVM we used the implementation
of SMO algorithm (Platt, 1999) contained in the Statistical Pattern Recognition Toolbox.15 To keep
the results reported by Rätsch et al. (2001) as reference, we neglect the accuracies obtainedby the
SG method.

Table 2 summarizes the test error rates and training times of the methods on each data set. It can
be seen that the GM method has the worst performance and does not provide any improvement over
other methods. The only benefit of the GM over SG is that while the latter requires specifying the
kernel function by hand, GM learns the kernel function automatically. TheSG and CM are the only
methods of this experiment that do not store the kernel matrices in memory; andthus are applicable
to large-scale problems. In addition, they have also the best training times. Toour surprise, although
the CM method solves a musch more difficult problem than SG, it has also improved the training
time in some data sets. Considering the test error rates, the CGM method has the best overall
performance. But, the SG method on theF.Solardata set, and CM method on theThyroiddata set
provide significantly better results. For theRingnormdata set, the CM method has obtained a high
error rate of 8.5%. Interestingly, the number of training and testing samples of theRingnormdata
set are exactly equal to theTwonormdata set, for which the CM method has even improved the
accuracy. The essential difference between theTwonormand theRingnormdata sets, where in both
data sets each class has a multivariate normal distribution, is that in theTwonormdata set the classes
have separate means, whilst in theRingnormdata set the classes have separate covariance matrices.
So, it seems that the Gaussian kernel is inherently much more suitable for solving theRingnorm
data set than the cosine kernel. In fact, this is exactly why combining several kernels is important.
By combining the cosine and Gaussian kernels, the CGM method provides the best performance.

Table 3 compares the methods in terms of the evaluation time. For each method, the factors that
influence the evaluation time are also reported. As can be seen, except for theRingnormdata set,
the CM is significantly faster at run-time than all other methods, including a classical SVM with
Gaussian kernel. The best speedup is for theTwonormdata set for which, in addition to a lower test

15. Available athttp://cmp.felk.cvut.cz/cmp/software/stprtool.
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Data Set
Single

Gaussian
Gaussian
Mixture

Cosine
Mixture

Cosine&
Gaussian
Mixture

error
(%)

training
(sec)

error
(%)

training
(sec)

error
(%)

training
(sec)

error
(%)

training
(sec)

Banana 11.5±0.7 1.1 10.5±0.5 26.4 10.7±0.5 3.5 10.4±0.5 21.3
B. Cancer 26.0±4.7 0.2 26.7±5.0 2.7 26.2±4.9 1.2 25.8±4.7 4.2
Diabetis 23.5±1.7 1.6 23.7±1.7 7.5 23.2±1.9 2.3 23.2±1.8 16.5
F. Solar 32.4±1.8 9.1 35.4±1.7 15.4 33.3±1.8 1.2 33.9±1.8 57.7
German 23.6±2.1 4.4 25.3±2.5 35.4 24.1±2.2 3.5 23.7±2.2 53.9
Heart 16.0±3.3 0.1 17.0±3.2 1.4 15.6±3.2 1.1 16.0±3.2 2.8
Image 3.0±0.6 16.0 3.6±1.3 178.9 2.5±0.5 1057.1 2.5±0.5 779.6
Ringnorm 1.7±0.1 2.9 1.7±0.1 9.7 8.5±0.9 192.7 1.7±0.1 17.7
Splice 10.9±0.7 445.4 11.1±0.7 91.8 9.7±0.4 43.3 9.3±0.5 187.0
Thyroid 4.8±2.2 0.1 4.6±2.2 1.8 3.7±2.2 3.4 4.8±2.1 3.1
Titanic 22.4±1.0 0.1 23.2±1.3 1.0 22.9±1.2 0.9 22.9±1.2 2.6
Twonorm 3.0±0.2 0.4 2.7±0.2 7.9 2.4±0.1 5.4 2.7±0.2 17.9
Waveform 9.9±0.4 5.8 9.8±0.4 8.5 10.0±0.5 2.6 9.7±0.4 17.7

Table 2: Test errors and training times of SG, GM, CM, and CGM methods on thedata sets col-
lected by R̈atsch et al. (2001)

Data Set
Single

Gaussian
Gaussian
Mixture

Cosine
Mixture

Cosine &
Gaussian Mixture

testing nsv testing nsv m̄ testing m testing nsv m m̄
(ms) (ms) Gauss (ms) cos (ms) cos Gauss

Banana 144.7 153.1 615.9 375.7 2.1 13.4 13.6 611.3 393.1 2.0 2.5
B. Cancer 2.2 122.3 4.8 200.0 1.8 0.4 3.6 0.5 200.0 4.3 0.1
Diabetis 19.9 263.3 47.6 464.8 2.1 0.8 7.0 3.8 466.2 5.8 0.2
F. Solar 49.9 507.9 354.0 666.0 1.6 0.6 2.1 1.3 666 11.0 0.0
German 31.4 426.0 120.7 696.4 2.9 1.0 6.6 76.3 700.0 11.6 1.8
Heart 2.2 84.3 6.4 163.1 1.9 0.3 1.8 5.1 169.8 1.6 1.5
Image 205.4 700.7 765.1 1030.4 4.4 56.6 160.2 503.2 712.7 65.2 3.8
Ringnorm 120.2 64.4 487.0 156.2 1.9 228.5 91.7 610.8 200.2 0.0 2.0
Splice 357.7 385.4 1647.7 879.5 2.3 51.4 30.8 1293.6 755.7 13.5 1.6
Thyroid 0.5 22.0 3.1 84.3 3.0 0.4 6.4 3.1 112.0 1.0 2.1
Titanic 35.9 89.5 78.5 150.0 1.5 1.5 2.5 14.8 150.0 2.5 0.3
Twonorm 332.6 167.4 455.7 180.6 1.5 3.5 1.0 582.1 226.2 0.0 1.5
Waveform 134.3 104.5 587.4 290.5 1.9 6.0 2.9 731.9 374.7 1.0 1.6

Table 3: Experimentally measured evaluation times along with the parameters that theoretically de-
termine the evaluation times of SG, GM, CM, and CGM methods on the data sets collected
by Rätsch et al. (2001)

error rate, the evaluation of the CM method is 95 times faster than a classical SVM with Gaussian
kernel. This speedup in the evaluation of the classifiers can be very useful for applications targeted
at small computers with limited computational power.
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Figure 1: Evolution of the valuesm, nsv, t(i), s(i), training error, and test error during training of the
proposed method on the USPS data set.

9.2 Experiments on the USPS Data Set

In this section, we show the applicability of the proposed method16 to a real-world digit recognition
problem. We consider the problem of classifying digits 0-4 against 5-9 on the USPS handwritten
digit recognition data set as considered by Chapelle et al. (2002) for evaluating their kernel learning
method. This data set consists of 7291 training examples and 2007 test examples of digit images
of size 16×16. With polynomial kernel and 256 scaling factors, Chapelle et al. (2002) were able
to get a test error rate of 9.0%. We trained the proposed method with the parametersε = 0.001,
andβ = 3.0. After two hours of training, the algorithm produced a model with 244 cosine kernels
and 790 support vectors. It took 1.3 of a second to test the model on the 2007 test samples and
we obtained a test error rate of 3.4% which is significantly better than the 9.0% result reported by
Chapelle et al. (2002). Figure 1 shows the evolution of the valuesm, nsv, t(i), s(i), training error, and
test error during training of the USPS data set, wheres(i) andt(i) are defined in Algorithm 1.

9.3 Experiments on the MNIST Data Set

While many algorithms for kernel learning consider the combination of a finite number of kernels,
learning translation invariant kernels corresponds to combining an infinite number of kernels. In

16. From this section onward, the proposed method refers to the cosine mixture method.
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this section, we compare the proposed algorithm with the DC method proposed by Argyriou et al.
(2006) which is based on the theory developed by Micchelli and Pontil (2005). They considered the
problem of finding an optimal kernel over the whole class of radial kernels which is equivalent to
the problem of learning the best convex combination of Gaussian kernels with isotropic covariance
matrices.

Argyriou et al. (2006) performed a series of experiments on the MNIST data set by using the
first 500 training examples for training and the first 1000 test examples forevaluation. The MNIST
data set contains 28×28 images of handwritten digits which are divided into 60,000 training and
10,000 test examples. In addition, the results reported by the DC method have been obtained by
splitting each image into four sub-images which is a use of extra information. In the first exper-
iment, we use the first 3,000 training examples17 for training both systems and evaluate them on
the whole test set. As Argyriou et al. (2006), we consider the tasks of classifying digits 3 vs.
8, 4 vs. 7, and odds vs. evens. We downloaded the implementation of the DC method from
http://www.cs.ucl.ac.uk/staff/a.argyriou/code/dcand chose the range[75,25000] for the parameter
σ of the Gaussian kernel which is the largest range considered by Argyriou et al. (2006). The pa-
rameterµ of the DC method and the parameterβ of the CM method were optimized by hand. The
parameterε was set to the value 0.001. The first three rows of Table 4 show the results of this
experiment. It can be seen that the main benefit of the DC method is its short training time, while
the CM method has superiority in terms of the evaluation time.

Another remarkable feature of the CM method is its applicability to large-scale problems. To
illustrate this fact, we increased the size of the training set of the previous experiments from 3,000
to 10,000. We also increased the parameterε from 0.001 to 0.01 to decrease the training time. The
DC method could not handle this size of training samples and ran out of memory.The last three
rows and columns of Table 4 show the results of the experiments with the CM method. Figure 2
depicts the evolution of the valuesm, nsv, t(i), s(i), training error, and test error during training of
CM algorithm on the ods vs even task with 10,000 training samples. Note that the model produced
by the CM method on the larger training set is more accurate and faster-to-evaluate than the best
model that the DC algorithm could produce. We think that the capabilities of the CM method and
DC method are complementary. The DC method works with full-rank matrices, is not large-scale,
converges fast, and its model takes more time to compute. On the other hand, theCM method works
with low-rank matrices, is large-scale, converges slowly, and its model canbe evaluated very fast.
One open problem is that whether these methods can be combined in a way thatthe benefits of both
methods are achieved.

9.4 Assessing the Effect of the Proposed Complexity Control Mechanism

In Section 8 we provided theoretical support for the necessity of controlling the complexity of the
class of translation invariant kernels. Here we support this claim by experimenting on theHeart
data set chosen from the benchmark produced by Rätsch et al. (2001). This data set contains 170
train patterns and 100 test patterns of dimension 13. The experiments of the previous section show
that the proposed method was completely successful in obtaining a low test error rate on this data
set. In addition, the mean error rate of the proposed method on the train set is14.0% which is close
to the mean error rate of 15.5% obtained on the test set. The left plot of Figure 3 illustrates the
trajectories of the train and test errors of the proposed method during training on theHeart data set.

17. This is approximately the largest possible train-set size where the DC method did not ran out of memory.
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Data Set DC method Cosine mixture

Task #tr
error
(%)

train
(min)

test
(sec)

error
(%)

train
(min)

test
(sec)

odd vs even 3000 3.1 11 60.1 3.2 37 10.1
3 vs 8 3000 0.7 9 24.8 0.8 192 2.6
4 vs 7 3000 0.4 16 26.1 0.5 122 2.5
odd vs even 10000 - - - 2.0 63 9.1
3 vs 8 10000 - - - 0.4 1133 5.3
4 vs 7 10000 - - - 0.2 649 3.1

Table 4: Test errors of the proposed method (CM) and the DC method on different tasks on the
MNIST data set. The dash sign indicates running out of memory.

In another experiment we disabled our complexity control mechanism by setting β = 10−6 and
instead tried to control the capacity of the learning machine by adjusting the parameterC.18 We
optimized the parameterC using the 5-fold cross-validation method described in the previous sec-
tion. After testing on all the 100 splits of theHeart data set we obtained a mean test error rate of
20.8% and a mean train error rate of 17.4%. The right plot of Figure 3 illustrates the trajectories of
the train and test error rates of this experiment on theHeart data set. This experiment confirms the
usefulness of controlling the complexity of the class of translation invariant kernels, as was claimed
in Section 8.

10. Conclusions

In this paper we addressed the problem of learning a translation invariantkernel function for the
task of binary classification with SVM. We proposed a mechanism for controlling the complexity of
the class of translation invariant kernels which was found to be very useful in practice. The criterion
proposed by Lanckriet et al. (2004) was modified to ensure the compactness of the parameter space
of SVM and to give a probabilistic meaning to the regularization parameter of the2-norm SVM.
We then introduced a semi-infinite programming formulation of the problem. The proposed method
can automatically learn the regularization parameter of the 2-norm SVM, as well. We have also
shown that how other classes of kernels can be included in the learning process. To numerically
solve the SIP problem on a computer, we introduced a large-scale algorithmwhich is applicable
to problems with both huge number of training samples and large number of features. Since the
optimal translation invariant kernel is complex-valued, we then introduced amethod for applying
the kernel trick to complex-valued kernels. It revealed that the optimal translation invariant kernel
is a mixture of cosine kernels. An interesting feature of the proposed methodis that there is a very
fast way for evaluating the classifier at run-time. While an ordinary MKL algorithm withmkernels
requiresO(m× nsv× n) steps for computing the classifier, the optimal classifier of the proposed
method can be computed inO(m×n) steps.

In continuation of this work, we plan to extend it in several directions. First,we intend to gen-
eralize the proposed kernel learning method from binary classification to other learning problems,
including regression, multiclass classification, clustering, and kernel PCA. Second, we will try to
propose a novel large-scale algorithm that combines the benefits of the full-rank Gaussian and the

18. Settingβ = 0 (exactly) allowed the global search algorithm to find points at infinity which caused problems.
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Figure 2: Evolution of the valuesm, nsv, t(i), s(i), training error, and testing error during training of
the proposed method with the first 10,000 samples of the MNIST data set for the task of
classifying odds vs. evens.

Figure 3: Comparison between the parametersβ andC for controlling the capacity of the class of
translation invariant kernels on theHeart data set.
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low-rank cosine kernels. Third, we intend to investigate the applicability of theidea of Xu et al.
(2008) about adding a regularization term that smoothes the fluctuating behaviour of SILP algo-
rithms, to the proposed SIP algorithm. We hope that this study would greatly decrease the training
time of the proposed method. Another direction is to support the complexity control mechanism
of Section 2 by introducing upper bounds for the generalization error ofthe proposed method. Our
long time plan is to investigate the use of other low-rank kernels and make it a competing popular
technology.
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