Journal of Machine Learning Research 11 (2010) 1353-1390 bmited 3/09; Revised 12/09; Published 4/10

Learning Translation Invariant Kernels for Classification

Kamaledin Ghiasi-Shirazi GHIASI@AUT.AC.IR
Reza Safabakhsh SAFA@AUT.AC.IR
Computer Engineering Department

Amirkabir University of Technology

Tehran, 15914, Iran

Mostafa Shamsi M_SHAMSI@AUT.AC.IR
Faculty of Mathematics and Computer Science

Amirkabir University of Technology

Tehran, 15914, Iran

Editor: John Shawe-Taylor

Abstract

Appropriate selection of the kernel function, which imfilicdefines the feature space of an algo-
rithm, has a crucial role in the success of kernel methodshignpaper, we consider the problem
of optimizing a kernel function over the class of translatiovariant kernels for the task of binary
classification. The learning capacity of this class is iraatrwith respect to rotation and scaling of
the features and it encompasses the set of radial kernelshve that how translation invariant
kernel functions can be embedded in a nested set of suleslassl consider the kernel learning
problem over one of these sub-classes. This allows the elafian appropriate sub-class based
on the problem at hand. We use the criterion proposed by lrggtak al. (2004) to obtain a func-
tional formulation for the problem. It will be proven thatetloptimal kernel is a finite mixture of
cosine functions. The kernel learning problem is then fdatea as a semi-infinite programming
(SIP) problem which is solved by a sequence of quadraticalhstrained quadratic programming
(QCQP) sub-problems. Using the fact that the cosine kesnaf iank two, we propose a formula-
tion of a QCQP sub-problem which does not require the kerraétioes to be loaded into memory,
making the method applicable to large-scale problems. \&e atidress the issue of including
other classes of kernels, such as individual kernels anrbgio Gaussian kernels, in the learning
process. Another interesting feature of the proposed rdeththat the optimal classifier has an
expansion in terms of the number of cosine kernels, insteadaport vectors, leading to a remark-
able speedup at run-time. As a by-product, we also genertiliz kernel trick to complex-valued
kernel functions. Our experiments on artificial and reaHdidenchmark data sets, including the
USPS and the MNIST digit recognition data sets, show theulrsess of the proposed method.

Keywords: kernel learning, translation invariant kernels, capacitytrol, support vector ma-
chines, classification, semi-infinite programming

1. Introduction

Kernel-based methods, such as support vector machines (SVM) amel keincipal component
analysis (KPCA), increase the flexibility of machine learning algorithms by implicitypping
the input data into a feature space and performing the algorithm in that. spaceflexibility is
achieved by a so called kernel function which substitutes the dot-progecation in an ordinary
algorithm. The kernel function, by implicitly defining the feature space, pdagsicial role in the
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success of kernel methods. In fact, as shown by Xiong et al. (2dG5g kernel function is not
chosen appropriately, it may even worsen the performance of an algorithis significant impact
on the performance of the kernel-based algorithms and the fact thatghepaipte feature space is
problem-dependent, have driven researchers to devise variouttatgpto learn the kernel function
from the problem data.

The earliest method for learning a kernel function is cross-validationiwikigery slow and is
only applicable to kernels with a small number of parameters. Cristianini et%88] proposed an
algorithm for adapting kernel functions with only one unconstrainedmpatar. Instead of optimiz-
ing the parameters of a kernel, Amari and Wu (1999) suggested corftranaformation of the
kernel function and proposed an algorithm for learning the parameiténs aew kernel. Chapelle
et al. (2002) devised a gradient-based algorithm for local optimizatiorkefrael with multiple un-
constrained parameters. Glasmachers and Igel (2005) proposadiengtbased method for learn-
ing the covariance matrix of Gaussian kernels (Note that since the cosamaatrix of a Gaussian
kernel is constrained to be positive semi-definite, the method of Chapelle(2082) cannot be
used for learning this matrix). Ong et al. (2005) introduced the notion pétkernels and used it
for kernel learning. They formulated the kernel learning problem ametional with three terms:
an empirical quality functional, a regularization term that penalizes the furgciioa reproducing
kernel Hilbert space (RKHS), and another regularization term thalies the kernels in a hyper
reproducing kernel Hilbert space.

A milestone in the kernel learning literature is the introduction of the multiple kéeaehing
(MKL) framework by Lanckriet et al. (2004). They considered thelgpem of finding the optimal
convex combination of multiple kernels and formulated it as a quadraticallyiradmed quadratic
programming (QCQP) problem. They also introduced a generalized peniae measure which
encompasses the hard-margin, 1-norm soft-margin, and 2-norm safirparformance measures
as special cases. Although these performance measures havevekensen used for learning
the optimal separating hyperplane in SVMs, their use as performance ree&siukernel selection
was unprecedented. Since the formulation of the resulting QCQP reqtorexysseveral kernel
matrices in memory, their method was only applicable to problems with a small numtrainrfig
samples. Bach et al. (2004) introduced an SMO-based algorithm to widenarige of solvable
MKL problems by using the Moreau-Yosida regularization technique. Saourg et al. (2005,
2006) reformulated the MKL problem as a semi-infinite linear program (Bittich was then re-
duced to training a sequence of classical SVMs with a single kernel frhveleveral sophisticated
large-scale algorithms exist. Rakotomamonjy et al. (2008) argued that theliffeinlty with the
SILP formulation of Sonnenburg et al. (2006) is that its objective fundsaron-smooth and intro-
duced an equivalent convex formulation with a smooth objective functi@ndJonvexity of the
problem and the smoothness of the objective function, they proposeilieect gradient algorithm
for MKL which is also applicable to large-scale problems. The weaknetiseafeduced gradient
algorithm is that, in contrast to to the SILP algorithm, it does not use the informatilbected in
the previous points in the calculation of the next point. Combining the strenftihe SILP method
of Sonnenburg et al. (2006) with those of the reduced gradient methBdlkmtomamonjy et al.
(2008), Xu et al. (2008) proposed an extended level method whichmarkably faster than both
methods.

In their seminal work, Micchelli and Pontil (2005) generalized the classdaofissible kernels
to convex combination of an infinite number of kernels indexed by a compaeansl applied their
method to the problem of learning radial kernels (Argyriou et al., 20086 20T hey used a classical
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result proved by Schoenberg (1938) which states that every consmadial kernel belongs to the
convex hull of radial Gaussian kernels. They also proposed areeffidC programming algorithm
for numerically learning radial kernels in Argyriou et al. (2006). Gehled Nowozin (2008) refor-
mulated the optimization problem of Argyriou et al. (2006) as a semi-infiniterproming problem
and proposed the IKL (infinite kernel learning) framework for solvingunerically.

In this work, we consider the class of translation invariant kernel funstiwhich encompasses
the class of radial kernels as well as the class of anisotropic Gaussizal kenctions. This class
contains exactly those kernels which can be defined solely based onfdrenltie of kernel argu-
ments; that is, the kernel functions with the property:

k(x,2) = k(x—2).

The general form of continuous translation invariant kernel&Bmvas discovered by Bochner
(1933). He proved that every function of the fdrm

n

K(x,2) = K(x—2) = / eV (-2 gy (y) L)

is positive semi-definite, where V(.) is a monotonically increasing boundesdiin and the integra-
tion is in the Lebesgue-Stieltjes sense. He also proved that, conversslycentinuous translation
invariant positive semi-definite kernel function can be represented ialtbee form. In statistics,
the translation invariance property is referred to as the stationarity of tinelk®inction. Genton
(2001) and Schikopf and Smola (2002) give a list of the properties of this class along witbimp
tant examples of stationary kernel functions, including the Gaussiaanergial, rational quadratic,
andBy, spline kernels.

The rest of the paper proceeds as follows: Table 1 lists the choice diamstdor familiar
concepts in the field. Notations specific to this paper will be introduced in thrse®f discussions.
Although the kernel learning formulation of Micchelli and Pontil (2005) tedms a regularization
term for controlling the complexity of the RKHS associated with the kerneltfancthere is no
mechanism for controlling the capacity of the class of admissible kernelaurlfoomulation, we
have provisioned a mechanism for controlling the complexity of the classrofsaible kernels
which is described in Section 2. The idea is to multiply a vanishing function inselatagral of
Equation (1). In addition to controlling the capacity of the learning machinectiuge substitutes
the compactness assumption of the integration region made by Micchelli anidl 2665). In
Section 3, we propose a learning criterion which is essentially a reformulatitire @eneralized
performance measure of Lanckriet et al. (2004). The proposediantensures the compactness
of the parameter space of SVM, and gives a probabilistic meaning to thiariegtion parameter
of the 2-norm soft-margin SVM. The problem of finding an optimal kernkiclw minimizes this
criterion over the class of translation invariant kernels leads to (4) whidirignain variational
problem.

In Section 4, we prove some important theorems which pave the way forauitligic solution
to this problem. First, in Section 4.1 we prove the existence of an optimal solotigndblem (4).

1. In this paper we will represent translation invariant kernels botk:aR9 x RY — C with two arguments and as
k:RY — C with only one argument.
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In Section 4.2, we prove that the min and max operations in (4) can be ingethaprovided
that the integration region is replaced by a compact set. In addition, it willhbers that the
optimal kernel is a finite mixture of the basic kernels of the fdgtx,z) = exp(jy" (x—2)). In
Section 4.3, it will be proved that the integration region can indeed be eplag a compact set.
To solve problem (4) numerically, we introduce a semi-infinite programming)(®rmulation in
Section 4.4. In Section 4.5, using a topological argument, the issue of inglother classes of
kernels in the learning process will be addressed. It is well known teattjularization parameter
of the 2-norm SVM, usually denoted liycan be regarded as the weight of a Kronecker delta kernel
function, which is incidently a translation invariant kernel, as well. In Sectidrwe introduce the
semi-infinite programming problem (19) which is our main numerical optimizatiobleno and
corresponds to the simultaneous learning of the optimal translation invagamgllas well as the
parameter. As another application of the discussion of Section 4.5, in Section 4.7 we trdltince

a method for learning the best combination of stabilized translation invariam:lkeand isotropic
Gaussian kernels.

In Section 5, we address the problem of numerically solving (19) on a ciemgthe proposed
optimization algorithm is a variant of the class of local-reduction-basedidigm for solving SIP
problems. An important feature of the proposed optimization algorithm is that# dot require
loading the kernel matrices into memory and so it is applicable to large-scdlleepra As stated
above, it will be shown in Section 4.2 that the optimal kernel is complex-val8aate algorithms
are usually designed for real Euclidean spaces, this complicates theasippliof the kernel trick
to the optimal kernel (consider for example an algorithm that checks theosmot product). In
Section 6, we show that the feature space induced by the real partoofiplex-valued kernel is
essentially equivalent to the original complex-valued kernel and ddtiatéhe optimal real-valued
kernel is a mixture of cosines. Yet another astounding feature of tipped method is concerned
with the evaluation time of the classifier which is even faster than a classical 8ifia single
Gaussian kernel. Usually, multiple kernel learning methods yield a modelesdwaduation time is
in the order of the number of kernels times the number of support vectoSedtion 7, we show
that the evaluation time of the optimal translation invariant kernel is propottioriae number of
cosine kernels, regardless of the number of support vectors. lioB8&; using a learning theory
discussion, we show the necessity of controlling the complexity of the classnsfiation invariant
kernels.

In Section 9, we will assess the practical usefulness of the proposeddnathseveral data
sets. In Section 9.1, we first perform some experiments on 13 artificiatestevorld data sets
collected from the UCI, DELVE, and STATLOG benchmark repositorieRaisch et al. (2001).In
Section 9.2, we perform experiments on the USPS handwritten digit recogddia set, compar-
ing the proposed method with the MKL of Chapelle et al. (2002). In Sectionv@e3compare
the proposed method with the DC method of Argyriou et al. (2006) on the NINi&dwritten
digit recognition data set. In Section 9.4, we experimentally assess the ithie cdpacity control
mechanism of Section 2. Finally, we conclude the paper in Section 10.

2. A Hierarchy of Classes for Translation Invariant Kernels

It is well-known in learning theory that to have a small generalization ethare should be a
problem-dependent compromise between the complexity of the learning maciuiiee empirical
error on the training data (Vapnik, 1998; Cucker and Zhou, 2007)hdrprevious section we saw

1356



LEARNING TRANSLATION INVARIANT KERNELS FORCLASSIFICATION

Symbol Meaning Symbol Meaning
n  input space dimension I number of training data
1 number of training data with label +1] I number of training data with label -1
X input space F  Feature space
® feature map®: X —F nsv  number of support vectors
a lagrange multipliers in SVM C regularization parameter in SVM
k  the kernel function A maximal margin
C* the set of data with label +1 C~ the set of data with label -1
m  number of kernels in MKL framewor} p  weight of kernels in MKL
R  radius of the smallest ball surrounding [O(z) real part of the complex number
the data in the feature space j  unitimaginary numberi/—1
z  the complex conjugate af S the complement of s&

Table 1: Notations

that Equation (1) captures the general form of the large class of ttiamslavariant kernels. To
obtain the best tradeoff between approximation and estimation errors, wduné a hierarchy of
classes of translation invariant kernels. The appropriate class fac#isgproblem is then chosen
by cross-validation. It must be mentioned that the idea of controlling the caitypld the class
of admissible kernels has been previously used by Ong et al. (200Bafming the kernels with
hyperkernels. Although this type of complexity control is not provisiongd/icchelli and Pontil
(2005), we, based on our experiments, believe that it is an importantiiegtef the framework. To
restrict the class of translation invariant kernels, we propose to limit theflégbency components
of the kernel function. This is similar to the use of stabilizer functions in regaon theory (see
Girosi et al., 1993). But, instead of adding a stabilizer function to the ofsgeitinctional, which
requires the determination of both the stabilizer and the regularization paramvetexplicitly
define a nested class of translation invariant keraglas:

Kp = {k(x, 2) :/ eV - 2Gy(|ly|)dp(y) : pis a probablity measure dﬂﬁ”}
]Rn

where is defined on an ordered set, aGg : R, — [0,1] is a decreasing continuous function
with Gg(0) = 1 andGg(«) = 0. In addition, to ensure that these classes of kernels are nested, we
require thatGg, (r) > Gg,(r) for everyr > 0 andB; < 2. Important candidates fdgg(||y||) are

exp(—B|y||) and|ly|| ~® for B > 0. Note that we have left the choice of the norm to the application.
Two important candidates atg andL, norms. In Section 5, we will also assume that the function
Gg(|lyl)) is differentiable with respect tp

3. Kernel Selection Criterion

In the process of learning the kernel function, one needs a criteriah@msing a kernel (or equiv-
alently, feature space) from the class of admissible kernels. In the alasisifi task, the ideal
criterion is the misclassification error. But since the probability density of dat@aknown, this
criterion cannot be computed. This problem has been circumvented ppging upper bounds
on the misclassification error which hold with high probability (see for exampfmik, 1999 and
Chapter 4 of Cristianini and Shawe-Taylor, 2000). In Chapelle et @04, several criteria have
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been studied and the authors suggested minimizing the radius-margin {Rdx)d as the preferred
criterion.

Consider the training set of a classification task consisting of the inputioypiis
{(x1,y1),--,(%,¥1)}, with y; € {—1,1}. For a fixed kernel, support vector machines compute the
maximal hard/soft margin separating hyperplane. By generalizing hagimarnorm soft margin,
and 2-norm soft-margin objective functions, Lanckriet et al. (20@4ined the following general-
ized criterion for YA2? (which must be minimized):

I
wWo (k)= max 20 e— Z z Auayyuyvk(Xy, %) — Ta T 2)
a:0<a<C, =1v=1
a'y=0

wheree is then x 1 vector of ones and the prime sign is used to distinguish the parameters from
those used in this paper. (€',1') is equal to(x,0) ,(C',0) , and(«,1/C’), one obtains hard
margin, 1-norm soft margin, and 2-norm soft-margin performance messespectively. Our first
change to this criterion is adding the constraifiie = 2. It has been shown (Crisp and Burges,
1999; Mavroforakis and Theodorodis, 2006) that by adjusting tharnpatrersC and the offseb
appropriately, this new constraint does not change the separatingpleype However, the new
constraint plustTy = 0 givesSic.c- @i = icc+ @i = 1, which makes the exposition of our method
simpler. Furthermore, we divide (2) by-At’ and definer := 1}7 So, in this paper we use the
criterion:

acAa

I
we (k) = min{(l—r) Z Z 00y YuYWK(Xy, Xy ) + Ta 0(} (3)

whereq:={aeR': 0<a<C,aTy=0,a"e=2}. Note that in the new criterion m@%, %} <

C <2and 0< 1 < 1. This criterion works well for a fixed kernel by maximizing the margirBut

in general, to minimize the radius-margin boufi®yYA)?, one must impose some constraint on the
radius R, as well. For translation invariant kernels we Ha&e- || ®(x)||? = k(x,x) = k(0). Hence,
bounding the radiuRis equivalent to boundink(0). One can easily verify that boundingrce{K },
whereK is the kernel matrix in the transductive framework (see Lanckriet et &4,2bquation 17),
also leads to a bound JQO) Since by explodindR andtrace{K}, the marginA also explodes by
the same amount, whilst the radius-margin bound remains constant, we fiommmassume that
k(O) 1 and obtain the following optimization problem:

Lo
supmin { (1-1 Z Zuua\,yuy\,k(xu,x\,)er 0(}

Kk aeAa =1v=1

st k2 = [ eV Aey(ly)av(y)

[ v =

V is monotonically increasing

2. Note that sincd is a complex-valued positive semi-definite kernel, the objective functioeakvalued and non-
negative.
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or equivalently

sup min/ aH(y)adp(y) (4)
pET(R“) aecAq n

where?(I") denotes the set of all probability measuresg amdH (y) is defined below. LeG(y) be
thel x | matrix whose(u, v)th entry isyuyvexp(jy" (xa—%))Gg(|lyl|). DefineH (y) := (1—1)G(y) +
Tl; wherel, is thel x | identity matrix. The following equation shows &l ) computational method
for computinga™ G(y)a:

2

Ga(lIvID- (5)
2

|
GTG(V)G = z auYueXF“VTXu)
u=1

4. Variational Optimization

In this section, we first prove the existence of a solution to problem (4xt We prove that (4)
can be written as a min-max problem with integration replaced by summation. Thisalkto
introduce a SIP formulation of the problem. We then introduce another ®litgmn for learning
the optimal kernel and parameter

4.1 Replacing Sup with Max

We will prove that the sup operation in (4) can be substituted by the maxtaperdote that all the
variability in the choice of a probability measupdrom P(R") collapses to the choice of dnx |
matrix [z H(y) dp(y) from S(C"), whereS(C') is the space of all x | Hermitian complex-valued
matrices. So, it is sufficient to prove that the set of all these matrices is abmpaich ensures
that any sequence of these matrices has a convergent subseaueisah)sequently, the supremum
value is achieved. Furthermore, by compacting the parameter spacg€3) there is no need to
assume that the kernel matrices are strictly positive definite, as was doaenma. 2 of Micchelli
and Pontil (2005).

LetCo(IR"™) denote the function space of all continuous complex-valued functionsediedinR"
which vanish at infinity, that is, liy_.. g(y) = 0 for anyg € Co(R"). By Theorem 3.17 of Rudin
(1987), the function spad&)(R") with the norm

gl :zggﬁxlg(v)!

is a Banach space. Note that the use of max operation is justified by the dynéind vanish-
ing properties ofj € Co(R"). Considering the above discussions, we need to prove the following
theorem.

Theorem 1 For any fixed sample data Z {(x,y1),-.., (X, ¥1)}, the set
= { [ ) :pe @]
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is a compact subset of 8').2

Proof Consider any sequenc¢e,) in P(R"). Define positive linear functional, : Co(R") — C

by Tag := [Rrn9(Y) dpn(Y). SO, Ty € C4(R"), the dual space d@(R"). Since for eac, ||To|| = 1,

by Banach-Alaoglu theorem (see for example Theorem 3.15 of Ruddi, di9page 237 of Royden,
1988), there exists sonte € Cj(R") with || T|| <1 and a subsequen¢&y,) such thafly, — T in
weak* topology. This means that for evagy Co(RR"), we havel,,g — Tg. Since, each element of
the matrixH (y) belongs taCo(R"), it follows that [ H (y) dRn(y) — TH. One can easily prove by
contradiction thaf|T|| = 1 andT is in fact a positive linear functional. By the Riesz representation
theorem (see Theorem 6.19 of Rudin, 1987), the functidnahn be represented uniquely by a
complex Borel measune,with [r.d|y = ||T|| = 1, in the sense that

Tg:/ gdu for everyg € Co(R").
Rn

The positivity of T implies thatu is a positive real measure. Sfg,»dpu= 1 and consequently
is also a probability measure @f'. Thus,

H(y) dpm(y) — / H(y) di(y)
R" R"

which indicates that the s&7 is compact. |

4.2 Interchanging themin and maxOperations

We first prove a theorem about interchanging the min and max operatidob i8han abstracted
and generalized version of Theorem 20 in Micchelli and Pontil (2005).

Theorem 2 Assume thak is a compact Hausdorff space and the functiormgx R' — R is con-
tinuous in the first parameter and convex and differentiable in the secaraneter. LetE and [
be finite index sets ,jawhere ic £ZU I, be | x 1 vectors, and fp where iec ‘£U I, be real-valued
scalars. Considering problem (6), assume that the Slater’s conditemBeyd and Vandenberghe,
2004) holds, that is, there exists somsuch that &cx =Dbjforalli € £ and arTO( <bjforallieI.
Then there exist a discrete probability measfire 2(I") with at most - 1 atoms and some feasible
pointd which solve the max-min problem

max min [ atvodpty (6)
peP () u:alT(x:biforief, r ( ) ()

ala>bforier

and the min-max problem

min max/g y,a)dp(y @)
a:ala=DbforieE, peP)Jr () dly)

ala>biforier

simultaneously. In addition, each atomfbfs a global maximum of(g, &) as a function ofy.

3. Note that the topology cB(C') is the same as that @'*.An | x | hermitian matrix containk real-valued diagonal
elements anéfz;' independent complex-valued off-diagonal element.
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Proof Assume thati andg'solve the problem (7). Define the function

¢o:R' - R
@(a) = maxer {g(v, )}

and the set

M :={y:yer,g(y,a) =@a)}.

By Lemma 24 of Micchelli and Pontil (2005), the directional derivativepaong the direction
d € R', denoted byp, (a;d), is given by:

@, (a;d) = g;g}{dT Oag(y, ) }-

Sinced minimizes (7), we have

@, (6;d) = max{d" Uag(¥, o) |ua } = 0 (8)
for any directiond such thag'd = 0 fori € £ anda/d > O fori € I*, wherel* :={ic I: aa =
bi}.

Let M be the convex hull of the set of vectafg := {0qg(Y,0)|e—g : YET*} C R'. Since
M C R', by the Caratheodory theorem (see for example Section 17 of Rockafdiz0) every
vector inM can be expressed as a convex combination of at mpatelements of\’. We claim
that the set

O::{ Z Aig )\izoforalliel*}
ieEUT*

intersectsM'. Assume, on the contrary, thaf andO are distinct. Sinceé is convex and compact
and O is convex and closed, by the strict separating hyperplane theorencqsatary 11.4.2 of
Rockafellar, 1970), there exists a separating hyperpdme+b =0, we R', b e R, such that

Aw'a +b>0, VA: Aj >Oforie I*
ieEUI*

and

w' Oag(y, ) |g=a +b <O, vyerl™. (9)

The first condition, foix = 0 implies thato > 0 and since\; can take any real value fore E
and any nonnegative value foe 7*, we have
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w'a =0, Viez,
w'a >0, Vier.

By combining these results with (9), we get

maxw' Oqg(Y, ) |q—g < O.
yelr*
This means thaw is a feasible descent direction@tvhich contradicts (8). So, the safsand
M intersect. This means that there exist real numhers € £, nonnegative numbeds, i€ I*,
and a discrete probability measysevith at mostl + 1 atoms such that

Na = [ Cag(y.a)dp. (10)
e EUT* r

Now, we turn our attention to the solution of problem (6) foe= p. This is a convex opti-
mization problem. Since by assumption the Slater’s condition holds, the KKTitcomlprovide a
necessary and sufficient condition for optimality (see Boyd and Varedghb, 2004, page 244) and
therefore a solution to problem (6) is found by solving the following KKT conditions:

By definingf\i =0fori e I'\ I*, using (10), and recalling the definition &f, it can be seen that
a, A are the unique solution to the above KKT conditions. Thus; 6 andp'= p solve problems
(6) and (7) simultaneously and the theorem follows. |

Corollary 3 Assume thaf is any compact subset @&" and the parameter C is chosesuch
that C > max{I i 11 Then, there exisi € R" and p € ?(I') that solve problems (11) and (12)
S|multaneously Furthermor@ is a discrete probability measure with at mosgt1 atoms and each
atom off is a global maximum ai"H (y)a.

prenT%Qllg /r o' H(y)adp(y), (11)
min max [ a H(y)adp(y). (12)

aeApeP(l)Jr

4. For a similar constraint in the contextw{SVMs see Section 4 of Crisp and Burges (1999).
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Proof It is sufficient to show that the Slater’s condition holds, that is, there exist®' such that
ale=2, aTy: 0,a > 0, anda < C. One can easily verify that the choiag = % fori e C*t and

o = % fori € C~ satisfies these conditions. |
In the rest of the paper, we assume @at max{, ;- }.

4.3 Confining Integration to a Compact Region

To write (4) as a min-max optimization problem, we first proved in Section 4.1 teatip operation

can be replaced by the max operation. In the previous section we pravetlaty 3 which asserts
that if the integration region of (4) could have been replaced by a conspicthen the max and
min operations could also be interchanged. In this section, we show thatéeaition region of

(4) can safely be confined to a compact subsd@'dbfLet us first prove two useful lemmas.

Lemma 4 For arbitrary domains X and Y and every functionX xY — R, the following inequal-
ity holds:

supinf f X, < inf supf X,Y).
xeX YeY ( Y) TyeY XeX ( Y)
Proof Assume on the contrary that

supinf f(x,y) > inf supf(x,y).
supinf (xy) > Inf sup (x,y)

Then, there exist € X andy’e Y such that

inf f(X,y) > supf(x,y
inf 1(%,y) > supf(x.y)

which contradicts with the existence dfX, ¥). [

Lemma 5 If T < 1, then there exists some compact subgedf R", independent ofi, where ally's
that maximizex™H (y)a lie in it.>

Proof For eachn € R we have

2

Gp(|lyll) ¢ +1a’a. (13)
2

maxaH (y)a = (1—1)max

|
T
a ex X
ma ma u§:l uYuexp(jy’ Xu)

Lett(a) denote the maximum value of the term in the braces in the above equation.Ggince
is continuous andg(0) = 1, there is an open ball around zeral®fi such thaiGg(||y||) > 0. This
fact plus the conditiom’ e = 2, ensure that the coefficient of at least one of the exponential terms
in (13) is nonzero. Hence, the term in the braces in (13), as a functigrisofiever identically zero
and thug(a) > 0. For all values ofy with Gg(|ly||) < & we have

5. Note that by (3), the choice= 1 is unrealistic.
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2

a'H(y)a—ta’a = Gp(lIvll) < 4Gg(lIvi)) <t(a)

|
z aluyuexp(jy' xu)
u=1

and the lemma’s assertion follows frdim;_.G(r) = 0. [ |

Theorem 6 There exists an optimal solutiofd, f) to problem (4) which is also a solution to it
when the integration domain is confined to the compaci get

Proof Let (G, p) be a solution to problems (6) and (7) withreplaced by g. By Lemma 4 and
Corollary 3, we have the following sequence of inequalities:

max min [ o H(y)ad <
pe?(rﬁ)aeﬂ/rB (Yadp(y) <

) v <
pgg%)(r}rgg/ _a H(y)adp(y) <

i TH d <
gnelgperg%) /]R _arH(y)adp(y) <

i T
min Mma maxa ' H od —
aelfq pe?(]l%(") RN ye]R%( (y) p(y)

minmaxaH (y)a =
acA4yeR"

min max [ a'H(y)adp(y).
AL (vjardp(y)

However, the first and the last terms are equal by Corollary 3.

4.4 Semi-infinite Programming Formulation

We have not yet addressed the problem of how (12) is to be really solvedmachine. In this
section, we reformulate (12) as a semi-infinite programming problem for whaahy algorithms
have been proposed (see Hettich and Kortanek, 1993; Reemtserdemat, 3998, for two reviews
on the subject).

Theorem 7 Let & andf be a solution to the semi-infinite programming problem (14) and define
the seﬂ'g(a) = {ye Mp:a H(y)a= ma&erBaTH(y)a}. Let (Q) be the QCQP problem that is
obtained by replacing g by FE (@) ={v1,..-,¥Ym} in (14) and lefy, ..., fin be a set of Lagrange mul-
tipliers associated with the constraintsta’H(y)a, 1 <i < m which optimize the dual problem

of (Q). If f is the discrete probability measure definedity ) := i i =1,...,m, thend and p solve

the problem (4). In addition, there exists a solution p@it, §*) such thaty* contains at most+ 1
nonzero atoms.
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mingt t
st. t>a'H(y)a forall yerlg
0<a<C (14)
a'ly=0
ale=2.

Proof Since for ally ¢ I’E(d) the strict inequalityf > G"H(y)d holds,& andf also solve the fol-
lowing QCQP problem:

mingt t
st. t>a'H(ya i=1,..m
0<a<C
a'y=0
ale=2.
In addition, fromf = @"H (y1)& = ... = @ H(ym)d, it follows thatd andf also solve the follow-
ing problem:
T m
min _ma a iH a 15
UL i;M (V) (15)

By Theorem 17 of Lanckriet et al. (2004),|ifi§ chosen as specified by the statement of this
theorem, ther and|l simultaneously solve the min-max problem (15) and the following max-min

problem:
T m
max mina iH a
p>0, v, h=laeAa i;“‘ (W)
which can also be written as
; T
max min [ a H(y)adP
pe’P(FE‘(&))GEﬂ/ V) V)
The first assertion of the theorem follows from the following inequalities:
f= max min/aTH(y)a dP(y) <
peP(If (&) aca

max min [ a'H(y)adP(y) <
pe?(rp)aelﬂl/ (V) (V) -

gnelgpg,?é)/a (v)adP(y) =t
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where the last equality follows from a simple reformulation of problem (14)e Iast part of the
theorem follows from Corollary 3 and reversing the above proof. |

4.5 Including Other Kernels in the Learning Process

Although the focus of this paper is on the task of learning translation invak&nels, it is easy
to furnish the set of admissible kernels with other kernel functions. Famele, one may want to
find the best convex combination of stabilized translation invariant kertoelg avith isotropic/non-

isotropic Gaussian kernels, and polynomial kernels with degrees onefb fivgeneral, assume
that we haveM classes of kernels

Kii={k/(x2): yeri} i=1..M

wherel 1, ...,y are distinct compact Hausdorff spaces. Ferd,...,M let G(y) be thel x | matrix
whose(u,V)’s entry isyyyvky(Xu, %,) and defineHi(y) := (1—1)G;i(y) +1l;. The problem of learning
the best convex combination of kernels from these classes for clasisifieegith support vector
machines can be stated as

sup min/ a Ho(y)adp(y) (16)
peP(o) ¥€A/To

wherelg:=TU...ully and

Hi(y) ifyerl
Hao(y) ifyerl:
Ho(y) = :
Hu(y) ifyerlm

The results of the previous sections will hold for this combined class otkeifwe prove that
o is a compact Hausdoff space and thaty, a) := aTHo(y)a is continuous with respect tp Let
7 denote the topology oh fori € 1,...,M. Define the sefj of subsets of ¢ as:

To:= {OlLJOz...UOM 01€,0,€D,...,0y € ‘TM}.
Proposition 8 7y is a topology.

Proof Clearlyl'g € 79. Next we must show thal is closed under arbitrary union. L&t= J;c5 O
whereQ; € 7y and3J is an arbitrary index set. We have

0= UM}<Uomr,->

ied

6. Although the class of translation invariant kernels includes the setwbEo/non-isotropic Gaussian kernels, it is
not the case for the stabilized cla&g.
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which shows thaO € 7y. Finally, we should show that finite intersection of closed sets is a closed
set. Assume tha = {_;Ci, wherer € IN andC’ € 7y . We have

c= U o= U U enm.

ie{l,...r} ie{l,...,r}je{l,...M}

SinceC? andr j are both open iffj, the seC NI j is open inZ;. By the properties of topologies
T1, ...,y and the definition of topology it follows thatC® € 75 which shows tha€ is closed in
T. [ |

Proposition 9 Assume that the functiong(fta) : i x R — R defined as Hy,a) = a’H;(y)a,
where i=1,...,M, are continuous in the first parameter. Then, the functigfy,fat) : o x R —
R defined as fiy,a) = aTH(y)a ,where the topology dfg is 7o, is also continuous in the first
parameter.

Proof Fix o to any value and definig(y) := h(y,a) fori =0,...,M. Let O be an open subset &.
We must show thdhal(O) is open in topologyZy. We have

0= | (hponr)= |J hYo).
1

i=1,..M i=1,..,

Since the seh%(0) is open in7; for eachi € {1,...,M}, it follows from the definition ofZy
that the union of these sets is also opeernSo,hgl(O) is open in7p and the result follows. W

Proposition 10 The sef o with topology7p is compact in itself.

Proof Let O = {O; :i € I} be an open covering dfp, where Ip is some index set. Lej be
any number in the seftl,...,M}. Sincelj C Ig, the setO is also an open covering fdr;. By
compactness dfj, there exists a finite index sét C I such that the sefQ; :i € I;} is an open
subcovering of" ;. Thus, the se{O; i€ 1U...U v} is a finite open subcovering afy which
proves thatf g is compact. |

Proposition 11 Assume that topologieg, ..., 7y are Hausdorff. Then, so is the topology.

Proof We must prove that for any two poings, y» € I'g there are disjoint open se@3 andO, such
thaty; € O; andy, € O,. If y; andy, belong to the same sét; for somej € 1,...,M, then the
assertion follows from the Hausdorffness propertyZof Without loss of generality, assume that
y1 € 1 andy, € Mo, The choiceD; = 1 andO, = ', completes the proof. [ |

Theorem 12 Assume thaf y,...,I'y are compact Hausdorff spaces and the matricgsak¢ as
defined previously in this section. Furthermore, assume that#fef...,M the functions j(y,a) :
M — R' defined by f(y,a) := a"H;(y)a are continuous in the first parameter. L&tandf be a
solution to the semi-infinite programming problefTp,...,v), which is defined as
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Mingt t
st.  t>aTHy(y)a forall yerl;

m(y)a forall yerly a7

Define the seftf! (a) := {y e I'; : aTHj(y)a = maxer;aHj(y)a}. Let (Q) be the QCQP prob-
lem that is obtained by replacing every with j=1,...,M by I"j*(d) = {y{, ...,yﬂnj} in (17). For
any je {1,....M} let njl,...,ﬂ.jnj be a set of Lagrange multipliers associated with the constraints
t> aTHj(yij)a, 1 <'i < mj which optimize the dual problem of (Q).ffis the discrete probability
measure defined bﬁr(yij) = ﬂij i=1..m j=1,..,M, then the pair(a, p) solves the problem
(16). In addition, there exists a solution pdiii*, p*) such thatp* contains at most+ 1 nonzero
atoms.

Proof The result is immediately obtained by replacing thelselby ' in Theorem 7. |

4.6 Automatic Adjustment of the Parametert

In this section, we consider the following problem:

i TH P(y). 1
oggﬂ%é (Rn)gglg / _a H(y)adP(y) (18)

It is well known that the parametercan be envisioned as the weight of the ked{&l z), where
0 is the Kronecker delta function. So, the problem of learning the paramaseequivalent to
choosing the best convex combination of the set of translation invariamtlkeaugmented with the
delta kerneb(x, z). By using Theorem 12 we get the following corollary.

Corollary 13 Letd andt be a solution to the semi-infinite programming probleftTR), where for
each compact sét the problem RT") is defined by (19). Define the set

rg(a) = {ye Mg o' G(y)a = ma&erBaTG(y)a}.

Let (Q) be the QCQP problem that is obtained by replad‘lrtg/rg(d) ={V1,...,¥m} in (19) and let
flu, ..., fim be a set of Lagrange multipliers associated with the constraiptsi G(y,)a, 1<i<m
which optimize the dual problem of (Q). In addition, lgtbe a Lagrange multiplier associated with
the constraint t> a' a in the dual problem of (Q). Ip is the discrete probability measure defined
by p(yi) ;= i=1,...,m andi := [y, thend, T, and p solve the problem (18). In addition, there
exist some solutiod*, T, and p* such thatd* contains at most+ 1 nonzero atoms.
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ming: t
st. t>a'G(y)a forall yerl

t>a"a
()= 0<a<C (19)
a'y=0

ale=2

Proof Let wy ¢ I'g and assign the kerné(x,z) to this point. The corollary is proved by applying
theorem 12 to the sef§ and{wo}. [

4.7 Furnishing the Class of Admissible Kernels with Isotropic Gaussian Kenels

Although the class of translation invariant kernels encompasses the tlassissian kernels with
arbitrary covariance matrices, the stabilized class of translation invagamtls %z does not. So, it
may be advantageous to combine the cl&gsvith the class of Gaussian kernels. In this section, we
consider learning the best convex combination of kernels of the cl&gsasd the stabilized class
of isotropic Gaussian kernels

K = {k(x, 2) :/ e WP nlol® gpey) : pis a probablity measure de}
R

wheren > 0. We also learn the parametesiutomatically. The proof that there exists some compact
setQ;,, € Rwhere we can confine the integration to it parallels the discussion of SecB@nd is
omitted. By using Theorem 12, it follows that the expansion of the optimalekelong with the
weight of each kernel can be obtained by solving the SIP prolBigins, Q,), whereP(I',Q) is
defined as:

ming¢ t

st. t>a'G(y)a forall yerl
I

2 2
>35S auayyuyve e nlel® forall we Q
—1v=1

—

P(l,Q):=

5. Optimization Algorithm

We now turn to the problem of numerically solving the nonlinear convex senmidi@forogramming
problemP;(Tg).” The term semi-infinite stems from the fact that whilst the number of variables is

7. Modifying the proposed algorithm to solve probl&ail’, Q) is straightforward.
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finite, there is an infinite number of constraints which are indexed by the atirsgifig. Hopefully,
for each finite seff C I'g, the problen®; (") is QCQP and therefore convex. Hence, in principle, one
can construct a sequence of QCQP problems with an increasing nuntdogrstrfaints such that their
solutions converge to the solution of probl®tl ). This is the principle used by discretization and
exchange algorithms (see Hettich and Kortanek, 1993; Reemtsencandr(G1998). On the other
hand, by Corollary 13, only a finite number of constraints will be active iolat®n. Furthermore,

it is easy to show that this property is not limited to a solution point, and the adhi&raints at a
solution also identify the active constraints in a neighborhood of it. This isriheiple behind the
methods based on local reduction (see Reemtsen anikeG 1998; Hettich and Kortanek, 1993).
Reemtsen and@ner (1998) proposed that to further speed up the methods basezhoreliuction,
the set of active constraints be locally adapted. Combining these ideas widrows experiments,
we arrived at Algorithm 1. This algorithm is very similar to Algorithm 7 in Reemtaed Girner
(1998) which is based on local reduction.

5.1 Choosing the Initial Value ofa

We choose the initial value af such that maximizing the criterion (3) with respect to the kernel
function k and the parameter correspond to maximizing the distance of the means of the two
classes in a feature space. Let us first write the distance between méaoglasses in the feature
space of some kernkl

1 1
2
I =P = = 5 D)~ = Y P(x)
1yecH 2 EC-
1
=0 k’(xu,x\,)+2W Z k’(xu,x\,)Jr|2 z Z K (Xu, Xy)-
1 ueCtveC- 112 yec+véee- 2 ueC—veC-

By choosingo; = 1/I; fori € C™ anda; = 1/1, fori € C~, we have

I
I —mp|? = 5 5 auoyuyek (X, %)
u=1lv=1

Comparing the above equation with (3), we see that maximizing the criteriont{8jegpect to
the kernel functiork and the parametearis equivalent to maximizing the distance between means
of the samples of the two classes in the feature space of Ké(ret) = k(x,z) + 10(X, z). Note that
this choice fora also satisfies the required conditiamnbe = 2, aTy =0, and ma*%, %} <a<C;
and thusx € 4.

5.2 Global Search for Local Maxima ofa™ G(y)a

The algorithm presented in this section attempts to gather a subset of undatsfgtraints to be
considered in the next iteration of Algorithm 1. Although at the solution pditite set of active
constraints globally maximiz&' G(y)d, for other choices ofi it is possible that the constraints
be violated by the local maxima of the functiol G(y)a. So, in Algorithm 2, we try to find the
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values ofy which locally maximize the function” G(y)a for givena. Here we also assume that the
functionGg(||y||) is differentiable with respect tp The choice of limited-memory BFGS algorithm
(Nocedal, 1980; Liu and Nocedal, 1989; Nocedal and Wright, 2006)his optimization is very
important. For large-scale problems with largehe memory needed to store the Hessian matrix
and the associated computations become prohibitive. Although a gradeemtadgorithm does
not compute the Hessian matrix, its convergence rate is very slow. The limitetmdFGS
algorithm provides an excellent practical compromise between the compstatieach step and
the number of iterations till convergence, without storing the full Hessianixriatmemory.

Algorithm 1 General Optimization Algorithm
Require: Ty
1.TO—{} 10141
{A lower bound for parameter t is the minimum valueodfa for o € 4}
2. Initialize a(? as described in Section 5.1
3. fori=1,2,...do
4. setRsuch that for aly with ||y|| > R, the relatiora™ G(y)a < ti~1) holds for alla
5. Ty « GlobalSearchForLocal® (% R)
{denote the maximum value obtained by the global searcfjy
rd —ri-vyry
7. Solve problenf;(I'Y) to obtain the optimal parameted, o’ andpl’
{see Section 53
8. Locally adapﬂ'é') andué'
{see Section 54
9. th etV a® gl
10.  Construci? andr () by eliminating zero indices qf' along with the corresponding vectors
inr "
11.  if t0 —t0-D < (=D orj = Ty then
12. terminate algorithm with the kernk(x,z) := 3", pg') cos((x— z)Tyﬁ')>

) to obtain the optimal parametet[@, Gl(i), Fl(i) andpi(i)

{we assume thai) = {y&i), ,yﬁ?} and thatuﬁi) is the Lagrange multiplier associated

with the constrainthG(ygi))a <t in problempP; (I )}
13.  endif
14. end for

5.3 Solving the ProblemP, (") for Finite Set I

Letl” = {y1,...,ym} be a finite subset dfg. Sincer is finite, the problenP; (") can be written as
the following QCQP problem:
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Algorithm 2 GlobalSearchForLocals

Require: a, R, T, andT;
1. Mr={},i=0
2. for j=1,2,...do
3. generate arandom poire R"

4. generate a random numbee [0,R]
5 Yo+ rﬁ
6. starting fromyp and using the limited-memory BFGS algorithm find a local maximyim
for functiona’ G(y)a
7. if Y erl then
8. i — i+ 1 {count the number of repeating local maxima
9. endif
10. [ —ruyd
11. if (i—|[|) > T, or j =Tz then
12. return
13. endif
14. end for

Ming ¢
st.

This problem has been studied in Section 4.6 of Lanckriet et al. (20@4) has been suggested
to store thd x | kernel matricess(y1), ..., G(Ym) in memory and solve the problem with general
purpose software packages. But, the memory requirement of this apdnwiéts its applicability to

small-sized problems. However, the facts that

a’O{G(y)}a=0

and

O{G(Y)} = Ve(y) Ve (y) + Vs(y) T vs(V),

Ve(y) := [yicogy' x1), yocosy xo), ...

,yicogy'x)] ,
yisin(y' )]

Vs(Y) = [yasin(y"x1), yzsin(y'xo), ...
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whered{z} and {z} are the real and imaginary parts nfrespectively, show that the kernel
matricesG(y1), ..., G(ym) appearing in problem (20) are effectivlgf rank two. This allows us to
reformulate (20) as a new QCQP problem as follows:

minGJ’c’s t
st.  t>c+& i=1..m

|
6= aiyicosyx) i=1..m
u=1

|

s=Y aiyisin(yx) i=1,.,m (21)
u=1

t>a'a

0<a<C

a'ly=0

ale=2.

Now, there is no need to load the kernel matrices into memory and so genepakp QCQP
solvers such as Mosek (Andersen and Andersen, 2000) can tdaiselve (21) even when the
training set size is huge.

5.4 Local Adaptation

As stated in the previous section, for any finitelSet {y1, ...,ym} € I'g, the problent; (") is convex
and so every local solution is also globally optimal. But, if we consider the sglue., yn as points
in the spac&k", we get the following non-convex optimization problem:

min§ po'G a+uoa a. (22)
p>0pe 1, “eﬂzl

yl 7m€]Rn

Now, we can use the the solution of the problBfI") obtained in the previous section as the
starting point for problem (22) and locally improve it by an ascent methodurBglling (22), we
obtain the following optimization problem:

max  J(WV1,....Ym) St p>0u'e=1 (23)
HeRM™,
y]_,..., mE]Rn

where

8. In this paper, we say that a matfixis effectively of rankr if there exists some matrid of rankr such that for all
vectorsa € 4 we havea Ga = o' Ha.
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‘](u7yla "‘7ym) =

_ I m N L
ggg{uzlvzlauavyuyviZiMGs(II\/'H)COS(vi (X —%)) +uOuZlau}- (24)

Problem (23), corresponds to adapting the kernel paramgtersym andpo, ..., im of the kernel
functionk(x,2) = 3, pi cogY! (X—2)) + Hod(X — 2) for the task of SVM classification, whe®
denotes the Kronecker delta function. This problem has been previstuslied by Chapelle et al.
(2002) for general kernel functions with unconstrained parameterthey proved that the function
JA(.) is differentiable provided that problem (24) has a unique sol@idhey also proposed a simple
gradient-based iterative algorithm for adapting the kernel parametesenily, Rakotomamonjy
et al. (2008) performed a more detailed analysis of this problem in MKL aoplgsed a reduced
gradient algorithm with line search. They reasoned that since the computétios functionJ is
costly!? the overhead of a line search preserves the effort.

To avoid the difficulties of the constrained optimization, we replace the camstraecto by

the unconstrained vectgr, connected by the relatign = pﬁizp, i =0,...m, and rewrite (23) as the
following problem:
max ‘J(p7yl7 ~--;ym) (25)
peR™,
yl7...,ym 6 ]RI’]
where
‘](p7y1) "'aym) =
1 S < 2 T 2w 2
min 5 u;v;auavyuyvi;pi Gg ([Ivill) cos(y (Xu—Xv))erouZlGu ' (26)

We use the limited-memory BFGS algorithm to numerically solve (25). Our expeténoen
MKL tasks show that the method proposed in this section is several times tlaasethe reduced
gradient algorithm of Rakotomamonijy et al. (2088)lt has been also stated by Rakotomamonjy
et al. (2008) that their method could be improved if the Hessian matrix couldimputed ef-
ficiently. This is not the case for the problem (25) withx (n+ 1) variables; where, even for
moderate size problems, the storage of the Hessian matrix requires lots ofynemor

5.5 Solving the Intermediate SVM Problem and Its Gradient

To compute the functiod(.) defined by Equation (26), we have to solve the following constrained
guadratic programming problem:

9. Truely speaking, the proof should be credited to Danskin (1966).
10. Although the definition of the functiod in Rakotomamonjy et al. (2008) differs from (24), computation of both
functions corresponds to training a single-kernel SVM.
11. We leave this comparison along with some theoretical results to anather. p
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m 2
ming o' PGy +&a a
o (i_ (Vi) oo

PP
st. 0<a<cC (27)
a'y=0
ale=2.

Although the traditional algorithms for solving quadratic programming probleod) as active
set methods, are fast, they need to store the kernel matrix in memory whigmtséheir application
in large-scale problems. So, various algorithms for large-scale trainii®y/dfs, such as SMO
(Platt, 1999) oSV M-9"t (Joachims, 1999), have been proposed. Again, since the effeatikef

the kernel$G(y1), ..., G(Ym) is two, we can re-state the problem (27) in a memory efficient manner
as:

MiNgcs —— 21 (+<)

st. Z auyucosy %) i=1,..,m
u=1

|
s=3 auyusin(y' x,) i=1,...,m
u=1

0<a<C
a'y=0
ale=2.

In our experiments we have used the optimization software Mosek (Andars® Andersen,
2000) to solve this problem. After computing the value of the funcliohand obtaining a solution
a to (26), we compute the gradient using the following formulas:

2 .
Op)d = 2% { TG(y,)a sm, 6 TG(y) (ppop)aTa} j=1,...m (29)

Note that, in general, the computational complexity of computing formulas (28)Y29) is
O(mx nx ns¥) as was pointed out by Rakotomamonijy et al. (2068)he following formulas
show anO(mx (nsv+ n)) method for computing the gradient of functidq).

2 .
0y 9 = ot (G +) 0yGa(IMDly- yj+2 (s-swdcj)emnvjm j=1,..m
09,3 = 2835 { (G +)Ga (Vi) — 3 H5(E + )Gy (i) - FodTd} j=1,...m

where

12. Note that in Rakotomamonjy et al. (2008) the functi¢r) has onlym variables, while here the number of variables
ismx (n+1).
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nsv

cj= Y duucosyx) j=1,...m
u=1

nsv

Sj = Z aquSIn(y-erU) J = 17"'7m7
u=1

nsv

¢j=—Y Guwausiny[x) j=1,..m,
u=1

nsv

=Y duywxucosyx) j=1,..,m
u=1

5.6 Convergence Analysis

In this section, we study the convergence properties of Algorithm 1. We tite contents of this
section help the reader to get a better feeling of this algorithm. For any finitdinite setl", we
denote the solution of probleR(I") by S(I"). Let us first prove a useful lemma.

Lemma 14 If the loop inside Algorithm 1 is executed for the i'th iteration, théﬁl(g) =g(ry,
In other words, removing the constraints where their associated Lagramultipliers are zero, does
not change & ).

Proof Assume thal'l(i) = {y1,...,Ym}. Without loss of generality, we assume thét = {yi, ...,V },
wherem’ < m. Denote the Lagrangian G{(I'I(')) by £(a,t,,A), wherepy, ..., um are the Lagrange
multipliers associated with the constraintsG(y;)a <t, ... G(ym)a < t, respectively, andl € A

denotes the Lagrange multipliers associated with all other constraints. Btrﬁ(ﬁié) is convex, by
the strong duality we have

(i) . % gk Yok ok
)= max minL(a,t,A,n) = L(a* t* A
S( | ) L>0AEA at ( )by 7“) ( AR 7“ )

where it is assumed that',t*,A*, and* are a solution to problerﬁ(rl(i)). Sincepyy, ;- My are
zero, we also have

ry = max min (et AL,
X M1>0,... lyy >0A€N Ot (@, t,A, 1)

Since the strong duality also holds fB("("), the last expression is equal 8 )) and the
lemma follows. |

Now, we prove that for ang > 0 the Algorithm 1 converges, even without limiting the maximum
number of iterations.

Proposition 15 The sequence of numbef®1t(Y), ... generated by Algorithm 1 is increasing and
bounded.
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Proof By steps 6 and 8 of Algorithm 1, it follows th& T (-1)) < S(I'(i)) andS(Fé”) < S(r(i))

Lemma 14,S(F|(i)) =9r®). so,t0-1 = gri-Hy < gri) =t By Equation (5) and the fact
thata'e = 2, it follows thata'a < 4 andchG(y)a < 4 for all ch0|ces ofa andy; and thus, the
sequence is bounded. |

Defineg(a,y) := a’G(y)a . The following theorem is essentially Theorem 7.2 of Hettich and
Kortanek (1993), where its proof is reconstructed here for the Sad@napleteness.

Theorem 16 Assume that in every run of step 5 of Algorithm 1 at least one global nzedof the
function ga~1,y) is found and that the steps 10-13 of the algorithm are omitted (Note that the
key point is the omission of step 10). kebe any accumulation point of the sequen¢®, a(?

and assume that't ~t. Then the pair(a,t) is a solution of R(I'g).

Proof First note that since) € 4 and 4 is compact, a point of accumulation for the sequence
al®,alD, ... always exists. Recall the definition ©f from Section 4.6 and define the functigfw)
as:

g(a) := maxa' G(y)a
YeQg

For simplicity, assume that) — a. Let (a*,t*) denote a solution of problef (I'g). Clearly
t <t*. If t = t* then the theorem is proved. Assume on the contrarytthat'. Then, there exists
y € Qg such thatt < g(a,y) = g (a). But sincea o <t, it follows thaty € I'g. Fori=0,1,...
chooseyV) € Qg such thag(al,yl) = ). We have

9@ = [g(a) ~] + [0(@ — g(@™)] = [o@®y") -] + [g@ -g@)]  (30)
On the other hand, by omission of step 10 from Algorithm 1, all constrainteeprevious

iterations will continue to appear in the next iterations. Sig@e y) is continuousg is a feasible
point for all problems (F'")), wherei = 0,1, ..., 0. Therefore,

g@y?)> sup tV =t forall i=0,1,.. (31)

Using (31) in (30) we obtain

0@ ~t= [9(a® v ~ ] + [9(@) — g(a)]
o o . (32)
< |o(a®,y) —g(@ )] + [o@ — g(a)] .

By continuity ofg(.,.), the right hand side of (32) tends to zero, which contradicts the assump-
tiont < g(a). |
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6. Generalizing the Kernel Trick to Complex-valued Kernels

Consider a machine learning algorithm designed for a real-valued Euclipeae. The kernel trick
for real-valued kernels states that if all geometric concepts of an algositrefined solely based
on the dot-product operation, then by replacing all of these dot-ptsdiyca kernel functiotk, we
arrive at a version of the very algorithm running in a feature spacecedsd with kernek. For
complex-valued kernels, the dot-product of any two vectors may be camplaed which makes
the application of these kernels to machine learning algorithms more tricky. Weantmduce
a generalization of the kernel trick for complex-valued kernels. Assumtk(R,z) is a complex-
valued kernel. Then there exists at least one complex feature spaée,aa a mapping@: X — F
such thak(x,z) = (®(x), P(z)). Each axis in the complex feature sp&cean be substituted by
two real-valued axes, one representing the real part and the other tgmamyapart. Let us call
this real-valued spad8. To use the kernel trick, we replace the complex feature spasih the
equivalent real feature spaG Now, we show that the dot product between elements o&n be
computed by the real-valued kernel functigrik(x, 2) },** where(1{z} is the real part of.

Theorem 17 Let F be a complex Hilbert space of dimension N (possibly infinite) and Gadive-
sponding2N-dimensional Hilbert space obtained by representing real and imagiparts of F in
separate real axes. Theéwr',Z); = O{(x,2)r } , where Xis the2N-dimensional vector obtained by
concatenating real and imaginary parts of x.

Proof For finiteN we have

{(%2F} = Dglx.a—mzm + ™ (Z° - j2™)
— zi rez:'e+)(:mz:m lez X Z’

If F is infinite dimensional, then it has an orthonormal basis (see Kreyszig, 1.988) and
x andz can have at most countably many nonzero elements (see Kreyszig, 195 which we
indicate by index sei. So,

O{(x2r} =03 %7 =0Y (§°+ x")(2° - 2"

i€J i€J
= 3 06 4e A" = 5 X7 = (X2
i€eJ i€J
[ |

After fully developing the paper based on the complex-valued form o§kation invariant ker-
nels, one of the reviewers introduced us to the real-valued form of keesels as was discovered by
Bochner (1955). He proved that every continuous real-valuedl&téos invariant positive definite
kernel inR" has the general form

13. The fact that real part of a complex kernel is a real kerneltisew (see Saikopf and Smola, 2002 page 31). But,
as far as we know, the relation between the corresponding Hilbertspecstated in the theorem, is new.
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k(x,z) = k(x—2) = / ) coy/’ (x—2)dV(y).

It is interesting that after applying the appropriate kernel trick to bothvalaled and complex-
valued forms of translation invariant kernels, the optimal kernel is foure t® mixture of cosines.

7. The Method at Runtime

One frequently denounced feature of SVMs is that the resulting cladsiféeain expansion based on

support vectors. Although support vectors are considered to bbgesimethe training set, the result-

ing classifier is usually slower than other competing methods such as netwalrks (Scblkopf

et al., 1998). In general, the computation of a support vector classfigiresO(n x nsy) steps.

The problem becomes more severe when the kernel function becomesbation of several ker-

nels, where the computational complexity of evaluating the classifier grows Qfm x n x nsy).

For some kernels, such as the Gaussian kernel with isotropic covarizaice, the computation

time can be reduced t0((m+n) x nsv). Our method has the eminent property that the result-

ing classifier is not expanded based on support vectors at all. Congidbe SVM classifier
f(X) = o ouyuk(x,xy) + b, we have

nsv nsv

- Zlauyuk(x,xu)er: Zlauyu (iu COS(VF(X—XU))GBOMH)) +b

nsv

_ZMGB i) zauyu cogy] X) CoSj Xu) +Sin(y ) sin(y xu)) +b

+b.

- _ZmlMGB(HViH) [(E\;GuyuCOS(ViTXu)> cogyf x) + (gauYuSin(viTXu)> sin(y x)

But Th%Y auyucosyy x) and 1% ayyusin(y x,) are constant values. So, the computational
complexity of evaluating the classifier of the proposed method(i® x n). Note that the clas-
sifier has an expansion based on the number of kernels, instead afrsupptors. In addition,
by Theorem 2, the number of kernels is limitedlt¢ 1. Furthermore, since the deletion of non-
support vector samples from the training set has no effect on the optiassifeer, it follows that
m < nsv+ 1. Although, theoretically, the number of kernels can reach the numbeppbst vec-
tors, our experiments show that the number of kernels is usually a fra¢tiba oumber of support
vectors.

8. A Learning Theory Perspective

A common feature between the class of radial kernels, considered by&llicand Pontil (2005),
and the class of translation invariant kernels, considered here, is th&ethels of both classes
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have the property th&i(x,x) = 1 for everyx € R".** Micchelli et al. (2005b) used this feature along
with a result from Yiming and Zhou (2007) to obtain a probably approximataigect (PAC) upper
bound on the generalization error of their kernel learning framewoek the class of radial kernel
functions. They concluded that the regularization parameter of a siegteklearning machine
is sufficient for controlling the complexity of the class of radial kernelgating the use of an
auxiliary method for controlling the complexity of the class of radial kernels.

But, the situation for translation invariant kernels is completely different. wal-known that
the VC-dimension of the class of cosine functions with arbitrary frequsrngi@finite (see Vapnik,
1998, page 160). In addition, the finiteness of the VC-dimension is asegesnd sufficient condi-
tion for distribution independent learning of binary classification taskes \e@nik, 1998, Theorem
4.5). So, controlling the complexity of the class of translation invariant keis@ necessary ingre-
dient of our framework. This discussion will be experimentally verified ioti®e 9, where we will
show the vital role of the complexity control mechanism of Section 2.

9. Experimental Results

In this section we report the results of our experiments on several aftdimireal-world bench-
mark data sets. In addition, we will experimentally investigate the role of the caitypt@ntrol
mechanism of Section 2. In all the experiments we hav€seteo, T; = 1000, T, = 4, T3 = 500,
Gg([lvll2) = exp(—B||yl|3)) and the parametaris automatically learnt according to Algorithm 1.
The implementation of this paper is packaged in the SIKL (Stabilized infinite kieraring) tool-
box and is available dtttp://www.mloss.orgWe obtained the implementation of the limited mem-
ory BFGS algorithm from the websitettp://www.chokkan.org/software/liblbfgghich is a C++
translation of the original implementation made available by Nocedal in Fortrai-Gi7limited-
memory BFGS algorithm, the 17 most recent curvature information are usktharmaximum
number of line-search tries is set to 20. We also changed the stoppingi@orad the algorithm
from HUDTT\H < e to||0x|| < € to avoid the degradation of the accuracy of the global search algorithm
for points far from the origin. The QCQP sub-problem of Algorithm 1 aral @P problem of
Section 5.5 are solved by the optimization software Mosek (Andersen addrgen, 2000). All
the experiments have been performed on a 2.8GHz Pentium D computer witm2@Bry and

running the Linux operating system.

9.1 Experiments on Small-size Benchmark Data Sets

In this section, we report our experiments on the benchmark data setsrguidpy Ritsch et al.
(2001). This benchmark consists of 13 data sets and there exist 100aé@ish data set into
training and test sets. The classification error for each data set is abtgirsveraging the classifi-
cation error over these splits. For this experiment weese0.001. The comparison is among the
following methods:

e Single Gaussian (SGRatsch et al. (2001) performed experiments with a single isotropic
Gaussian kernel. The variance parametef the isotropic Gaussian kernel and the parameter
C of the 1-norm soft-margin SVM are optimized by performing 5-fold crosieation on the
first five instances of the training set.

14. In fact, the classes of radial/translation invariant kernel functionsain kernels with arbitrary positive values for
k(x,x). But, the constrairk(x,x) = 1 is imposed for reasons stated in Section 3.
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e Gaussian Mixture (GM) A generalization of the method of Gehler and Nowozin (2008)
is implemented and used for learning the optimal kernel over the &gssThe number
of Gaussian kernelsy, their parameters, and the parameatere learnt automatically. The
parametern is set to 0001 and the paramet€ris learnt by performing 5-fold cross validation
on the first five instances of the training set.

e Cosine Mixture (CM) Here, the method of Section 4.6 is used. The number of cosine kernels
m, their parameters, and the paramatere learnt automatically. The paramegis fixed
to oo and the parametd¥ is optimized by performing 5-fold cross validation on the first five
instances of the training set.

e Cosine and Gaussian Mixture (CGM)Here, the method of Section 4.7 is used. The number
of cosine kernelm, the number of Gaussian kernetsthe parameters of cosine and Gaussian
kernels, and the parameteiare learnt automatically. The paramegis set toc and the
parametern is set to 003. The parametddis optimized by performing 5-fold cross validation
on the first five instances of the training set.

To compare the training and evaluation times of these methods, we repeatggdehments of
Ratsch et al. (2001) on our machine. For training a single-kernel SVMsegd the implementation
of SMO algorithm (Platt, 1999) contained in the Statistical Pattern Recognitidb&@ab To keep
the results reported bydgsch et al. (2001) as reference, we neglect the accuracies obitgirtieel
SG method.

Table 2 summarizes the test error rates and training times of the methods oratasétdIt can
be seen that the GM method has the worst performance and does ride@ny improvement over
other methods. The only benefit of the GM over SG is that while the latter esysirecifying the
kernel function by hand, GM learns the kernel function automatically. S&end CM are the only
methods of this experiment that do not store the kernel matrices in memorthahdre applicable
to large-scale problems. In addition, they have also the best training timesr $arprise, although
the CM method solves a musch more difficult problem than SG, it has also intptiogeraining
time in some data sets. Considering the test error rates, the CGM method hastlovdrall
performance. But, the SG method on t8olardata set, and CM method on thyroid data set
provide significantly better results. For tRéngnormdata set, the CM method has obtained a high
error rate of &%. Interestingly, the number of training and testing samples oRthgnormdata
set are exactly equal to thevonormdata set, for which the CM method has even improved the
accuracy. The essential difference betweerniienormand theRingnormdata sets, where in both
data sets each class has a multivariate normal distribution, is thatTwiihrermdata set the classes
have separate means, whilst in Riemgnormdata set the classes have separate covariance matrices.
So, it seems that the Gaussian kernel is inherently much more suitable forgstile Ringnorm
data set than the cosine kernel. In fact, this is exactly why combining $éegreels is important.
By combining the cosine and Gaussian kernels, the CGM method providesshedsformance.

Table 3 compares the methods in terms of the evaluation time. For each methadidine that
influence the evaluation time are also reported. As can be seen, excépt Ringnormdata set,
the CM is significantly faster at run-time than all other methods, including aicdd<s8VM with
Gaussian kernel. The best speedup is forfitvenormdata set for which, in addition to a lower test

15. Available ahttp://cmp.felk.cvut.cz/cmp/software/stprtool
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Single Gaussian Cosine Cosme_&
Data Set ) . . Gaussian
Gaussian Mixture Mixture .
Mixture
error training error training error training error training
(%) (se9 (%) (se9 (%) (se9 (%) (seg
Banana 115+0.7 11| 105+05 264 | 10.7+0.5 35| 104+05 213
B. Cancer| 26.0+4.7 0.2 | 26.7£5.0 27 | 26.2+4.9 12 | 258+4.7 4.2
Diabetis 235+17 16| 237+1.7 75| 232+1.9 23| 232+18 16.5
F. Solar 324+18 9.1 | 354+1.7 154 | 333+18 12| 339+18 57.7
German 236+21 44 | 253+25 354 | 241+22 35| 237+£22 539
Heart 16.0+3.3 0.1 | 170£32 14| 156+32 11| 16.0+3.2 28
Image 3.0+£0.6 16.0 3.6+13 1789 25+05 10571 25+05 7796
Ringnorm | 1.7+0.1 29 17+01 9.7 85+09 1927 17401 177
Splice 10.9+0.7 4454 | 11.14+0.7 918 9.7+0.4 433 9.3+0.5 1870
Thyroid 48+22 0.1 46+22 18 37+22 34 48+21 31
Titanic 224+10 01| 232+13 10| 229+12 09| 229+1.2 26
Twonorm 3.0+0.2 0.4 2.7+£0.2 79 24+0.1 54 27+0.2 179
Waveform| 9.94+0.4 58| 9.8404 85| 10.0+0.5 26| 97404 17.7

Table 2: Test errors and training times of SG, GM, CM, and CGM methods odataesets col-
lected by Ratsch et al. (2001)

Data Set Singlg Ggussian Cpsine Cqsine &
Gaussian Mixture Mixture Gaussian Mixture

testing nsv | testing nsv m testing m testing nsv m m

(ms) (m9g Gauss| (m9 cos (mg cos Gauss
Banana 1447 1531 | 6159 3757 21 134 136 | 6113 3931 20 25
B. Cancer 22 1223 4.8 2000 18 0.4 3.6 0.5 2000 43 01
Diabetis 199 2633 47.6 4648 21 0.8 7.0 3.8 4662 58 0.2
F. Solar 499 5079 | 3540 6660 16 0.6 21 13 666 110 0.0
German 314 4260 | 1207 6964 29 10 6.6 76.3 7000 116 18
Heart 2.2 843 6.4 1631 19 0.3 1.8 51 1698 16 15
Image 2054 70Q7 | 7651 10304 44 56.6 1602 | 5032 7127 652 38
Ringnorm | 1202 644 | 4870 1562 19| 2285 917 | 6108 2002 00 2.0
Splice 3577 3854 | 16477 8795 23 514 308 | 12936 7557 135 16
Thyroid 0.5 220 31 843 30 0.4 6.4 31 1120 10 21
Titanic 359 895 785 1500 15 15 25 148 1500 25 0.3
Twonorm | 3326 1674 | 4557 1806 15 35 1.0 | 5821 2262 00 15
Waveform| 1343 1045 | 5874 2905 19 6.0 29| 7319 3747 10 16

Table 3: Experimentally measured evaluation times along with the parameterstratitally de-
termine the evaluation times of SG, GM, CM, and CGM methods on the data setsamllec
by Ratsch et al. (2001)

error rate, the evaluation of the CM method is 95 times faster than a classivaivgl Gaussian
kernel. This speedup in the evaluation of the classifiers can be vemy f@edpplications targeted
at small computers with limited computational power.
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Figure 1: Evolution of the valuas, nsy t(), s, training error, and test error during training of the
proposed method on the USPS data set.

9.2 Experiments on the USPS Data Set

In this section, we show the applicability of the proposed methtwa real-world digit recognition
problem. We consider the problem of classifying digits 0-4 against 5-9 @tU8PS handwritten
digit recognition data set as considered by Chapelle et al. (2002)dtrating their kernel learning
method. This data set consists of 7291 training examples and 2007 testlexarhgdigit images
of size 16x 16. With polynomial kernel and 256 scaling factors, Chapelle et al. (2@@2e able
to get a test error rate of @o. We trained the proposed method with the parameter9.001,
andf = 3.0. After two hours of training, the algorithm produced a model with 244 eokéarnels
and 790 support vectors. It took3lof a second to test the model on the 2007 test samples and
we obtained a test error rate o3 which is significantly better than the09% result reported by
Chapelle et al. (2002). Figure 1 shows the evolution of the vatyesy t(), s, training error, and
test error during training of the USPS data set, wisétendt!) are defined in Algorithm 1.

9.3 Experiments on the MNIST Data Set

While many algorithms for kernel learning consider the combination of a finieben of kernels,
learning translation invariant kernels corresponds to combining an infinitébar of kernels. In

16. From this section onward, the proposed method refers to the cosingermethod.
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this section, we compare the proposed algorithm with the DC method propggedyriou et al.
(2006) which is based on the theory developed by Micchelli and Ponfi5R0 hey considered the
problem of finding an optimal kernel over the whole class of radial Kewvlich is equivalent to
the problem of learning the best convex combination of Gaussian keritblgotropic covariance
matrices.

Argyriou et al. (2006) performed a series of experiments on the MNI&& det by using the
first 500 training examples for training and the first 1000 test examples/&duation. The MNIST
data set contains 2828 images of handwritten digits which are divided into 60,000 training and
10,000 test examples. In addition, the results reported by the DC method éewebtained by
splitting each image into four sub-images which is a use of extra information.elfirdt exper-
iment, we use the first,B00 training examplé$ for training both systems and evaluate them on
the whole test set. As Argyriou et al. (2006), we consider the tasks se$ifying digits 3 vs.

8, 4 vs. 7, and odds vs. evens. We downloaded the implementation of the Eodrfeom
http://www.cs.ucl.ac.uk/staff/a.argyriou/code/ud chose the randg@5,25000 for the parameter

o of the Gaussian kernel which is the largest range considered byiduggt al. (2006). The pa-
rameteru of the DC method and the paramefeof the CM method were optimized by hand. The
parameteie was set to the value.@01. The first three rows of Table 4 show the results of this
experiment. It can be seen that the main benefit of the DC method is its slmirngrame, while
the CM method has superiority in terms of the evaluation time.

Another remarkable feature of the CM method is its applicability to large-scaldgms. To
illustrate this fact, we increased the size of the training set of the previgesiments from 3000
to 10,000. We also increased the parametéiom 0.001 to 001 to decrease the training time. The
DC method could not handle this size of training samples and ran out of meifioeylast three
rows and columns of Table 4 show the results of the experiments with the CM dnefiigure 2
depicts the evolution of the values nsy, t(), s¥), training error, and test error during training of
CM algorithm on the ods vs even task with, 000 training samples. Note that the model produced
by the CM method on the larger training set is more accurate and fastealtat/ than the best
model that the DC algorithm could produce. We think that the capabilities of Bhen€thod and
DC method are complementary. The DC method works with full-rank matricest lange-scale,
converges fast, and its model takes more time to compute. On the other ha@t¥ thethod works
with low-rank matrices, is large-scale, converges slowly, and its moddbeavaluated very fast.
One open problem is that whether these methods can be combined in a wie thanefits of both
methods are achieved.

9.4 Assessing the Effect of the Proposed Complexity Control Mealmism

In Section 8 we provided theoretical support for the necessity of diingahe complexity of the
class of translation invariant kernels. Here we support this claim byremgeting on theHeart
data set chosen from the benchmark produced &igdh et al. (2001). This data set contains 170
train patterns and 100 test patterns of dimension 13. The experiments aétheus section show
that the proposed method was completely successful in obtaining a lownmstage on this data
set. In addition, the mean error rate of the proposed method on the trairld€i% which is close

to the mean error rate of 13 obtained on the test set. The left plot of Figure 3 illustrates the
trajectories of the train and test errors of the proposed method duringpngain theHeart data set.

17. This is approximately the largest possible train-set size where thediiidthdid not ran out of memory.
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Data Set DC method Cosine mixture
Task sy error tra?n test error tra.in test
(%)  (min (seg | (%) (min (seq
odd vs even 300( 31 11 601 3.2 37 101
3vs8 3000 0.7 9 248 0.8 192 26
4vs7 3000 04 16 261 0.5 122 25
odd vs even 10000 - - - 2.0 63 a1
3vs8 10000 - - - 0.4 1133 53
4vs7 10000 - - - 0.2 649 31

Table 4: Test errors of the proposed method (CM) and the DC method fenedif tasks on the
MNIST data set. The dash sign indicates running out of memory.

In another experiment we disabled our complexity control mechanism bygpt#nl0° and
instead tried to control the capacity of the learning machine by adjusting thenpterC.1® We
optimized the paramet& using the 5-fold cross-validation method described in the previous sec-
tion. After testing on all the 100 splits of théeart data set we obtained a mean test error rate of
20.8% and a mean train error rate of.4%. The right plot of Figure 3 illustrates the trajectories of
the train and test error rates of this experiment orHbart data set. This experiment confirms the
usefulness of controlling the complexity of the class of translation invarimigts, as was claimed
in Section 8.

10. Conclusions

In this paper we addressed the problem of learning a translation invagem| function for the
task of binary classification with SVM. We proposed a mechanism for clingéhe complexity of
the class of translation invariant kernels which was found to be verylisgiractice. The criterion
proposed by Lanckriet et al. (2004) was modified to ensure the congssotfithe parameter space
of SVM and to give a probabilistic meaning to the regularization parameter d-titgm SVM.
We then introduced a semi-infinite programming formulation of the problem. Tdpoped method
can automatically learn the regularization parameter of the 2-norm SVM, ks We have also
shown that how other classes of kernels can be included in the learrdnggst To numerically
solve the SIP problem on a computer, we introduced a large-scale algavitich is applicable
to problems with both huge number of training samples and large nhumber ofdeat8ince the
optimal translation invariant kernel is complex-valued, we then introduaeeéthod for applying
the kernel trick to complex-valued kernels. It revealed that the optimadiaaon invariant kernel
is a mixture of cosine kernels. An interesting feature of the proposed mgthioat there is a very
fast way for evaluating the classifier at run-time. While an ordinary MKloatgm with m kernels
requiresO(m x nsvx n) steps for computing the classifier, the optimal classifier of the proposed
method can be computed @(m x n) steps.

In continuation of this work, we plan to extend it in several directions. Riwstintend to gen-
eralize the proposed kernel learning method from binary classificatiothés earning problems,
including regression, multiclass classification, clustering, and kernel. B8éond, we will try to
propose a novel large-scale algorithm that combines the benefits ofltharfit Gaussian and the

18. Setting3 = 0 (exactly) allowed the global search algorithm to find points at infinity whaised problems.
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Figure 2: Evolution of the valuas, nsy; t(), s, training error, and testing error during training of
the proposed method with the first, 000 samples of the MNIST data set for the task of

classifying odds vs. evens.
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Figure 3: Comparison between the paramefeasidC for controlling the capacity of the class of
translation invariant kernels on tihteart data set.
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low-rank cosine kernels. Third, we intend to investigate the applicability ofdéa of Xu et al.
(2008) about adding a regularization term that smoothes the fluctuatirayibah of SILP algo-
rithms, to the proposed SIP algorithm. We hope that this study would greatlgasecthe training
time of the proposed method. Another direction is to support the complexityoteanéchanism
of Section 2 by introducing upper bounds for the generalization errtbreoproposed method. Our
long time plan is to investigate the use of other low-rank kernels and make it eetiogppopular
technology.
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