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Abstract

We present posterior regularization, a probabilistic #amrk for structured, weakly supervised
learning. Our framework efficiently incorporates indireajpervision via constraints on posterior
distributions of probabilistic models with latent variabl Posterior regularizatiGeparatesnodel
complexity from the complexity of structural constraintgsidesired to satisfy. By directly impos-
ing decomposable regularization on the posterior momdrttent variables during learning, we
retain the computational efficiency of the unconstrainediehavhile ensuring desired constraints
hold in expectation. We present an efficient algorithm farhéng with posterior regularization and
illustrate its versatility on a diverse set of structurahswaints such as bijectivity, symmetry and
group sparsity in several large scale experiments, inatudiulti-view learning, cross-lingual de-
pendency grammar induction, unsupervised part-of-speeitittion, and bitext word alignme#t.
Keywords: posterior regularization framework, unsupervised leagnlatent variables models,
prior knowledge, natural language processing

1. Introduction

In unsupervised problems where data has sequential, recursitia),sgdational, and other kinds
of structure, we often employ structured statistical models with latent varisblesse apart the
underlying dependencies and induce meaningful semantic categoriespéiaised part-of-speech
and grammar induction, and word and phrase alignment for statistical machirsation in nat-
ural language processing are examples of such aims. Generative rfdéiabilistic grammars,

1. A preliminary version of the PR framework appeared in Graga eR@D7). Various extensions and applications
appeared in Ganchev et al. (2008a), Ganchev et al. (2008b) h@aet al. (2009), Graca et al. (2009a) and Graca
etal. (2010).
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graphical models, etc.) are usually estimated by maximizing the likelihood of trexvaosdata
by marginalizing over the hidden variables, typically via the Expectation MaxtioizdEM) al-
gorithm. Because of computational and statistical concerns, generatd@snsed in practice are
very simplistic models of the underlying phenomena; for example, the syntactatise of lan-
guage or the language translation process. A pernicious problem whmsaatels is that marginal
likelihood may not guide the model towards the intended role for the latentolesiainstead fo-
cusing on explaining irrelevant but common correlations in the data. Sineeenostly interested
in the distribution of the latent variables in the hope that they capttieadedregularities without
direct supervision, controlling this latent distribution is critical. Less diredhods such as clever
initialization, ad hoc procedural modifications, and complex data transfomsadi@ often used to
affect the posteriors of latent variables in a desired manner.

A key challenge for structured, weakly supervised learning is devedapfiexible, declarative
framework for expressing structural constraints on latent variablssm@ifrom prior knowledge
and indirect supervision. Structured models have the ability to capturey aiglerarray of possible
relationships, but adding complexity to the model often leads to intractablender In this article,
we present the posterior regularization (PR) framework (Graga e0al7) 2whichseparatesnodel
complexity from the complexity of structural constraints it is desired to satigfjyike parametric
regularization in a Bayesian framework, our approach incorporatasddgendent constraints that
are easy to encode as information about mpasteriorson the observed data, but may be difficult
to encode as information about model parameters through Bayps@s. In Sections 5-8 we
describe a variety of such useful prior knowledge constraints in akapplication domains.

The contributions of this paper are:

e A flexible, declarative framework for structured, weakly supervisednieg via posterior
regularization.

¢ An efficient algorithm for model estimation with posterior regularization.

e An extensive evaluation of different types of constraints in severakdas: multi-view learn-
ing, cross-lingual dependency grammar induction, unsupervisedfpapeech induction,
and bitext word alignment.

e A detailed explanation of the connections between several other remgrasals for weak
supervision, including structured constraint-driven learning (Chaag,e2007), generalized
expectation criteria (Mann and McCallum, 2008, 2007) and Bayesian megasats (Liang
etal., 2009).

The rest of this paper is organized as follows. Section 2 describes #beripo regularization
framework and Section 3 illustrates the range of different types of wep&rsision constraints
representable in our framework. Section 4 describes the relationshipdreposterior regulariza-
tion and other related frameworks. Sections 5-8 describe applicatiorR® td Beveral problems:
word alignment (85), multi-view learning (86), cross-lingual projection) @nd inducing sparsity
structure (88). Section 9 concludes the paper and presents aréaisiferwork.

2. Posterior Regularization Framework

In this section we describe the posterior regularization framework, whichporates side-informa-
tion into parameter estimation in the form of linear constraints on posterior extjpets. As we will
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show, this allows tractable learning and inference even when the cotstnanld be intractable
to encode directly in the model parameters. By defining a flexible languagpdaifying diverse
types of problem-specific prior knowledge, we make the framework affyiida a wide variety
of probabilistic models, both generative and discriminative. In Section2.Z.e will focus on
generative models, and describe the case of discriminative models in S2@&iokVe will use a
problem from natural language processing as a running example ingbsigan:

Running Example The task is part-of-speech (POS) tagging with limited or no training data.
Suppose we know that each sentence should have at least one gexfdeast one noun, and
would like our model to capture this constraint on the unlabeled sentefdes. model we
will be using is a first-order hidden Markov model (HMM).

We describe four other applications with empirical results in Sections 5t8t Wwill be easier
to illustrate key concepts using this simple example.

2.1 Preliminaries and Notation

We assume that there is a natural division of variables into “input” variaddesl “target” variables
y for each data instance, whex& are always observed. We denote the set of all instances of
unlabeled data aX. In case of semi-supervised learning, we have some labeled data asngell, a
we will use the notatioriX., Y ) to denote all the labeled instances.

The starting point for using the PR framework is a probabilistic modelSlbet the parameters
of the model. For now we assume a generative mpgled,y), and we use(0) = log pe (XL, YL) +
logyy pe(X,Y)+logp(8) to denote the parameter-regularized log-likelihood of the data.

Running Example In the POS tagging example from above, we wouldusg Xy, Xz, . . . Xy }
to denote a sentence (i.e., a sequence of woydswly = {y1,Y»,...y|x } to denote a possible
POS assignment. Using an HMM, it is defined in the normal way as:

X|

Pa(X,y) = [l Pa(YilYi-1) Pa(Xi|¥i),

with 8 representing the multinomial distributions directly, and whegéyplyo) = pe(y1) rep-
resents a set of initial probabilities. Suppose we have a small labeledis@pd a larger
unlabeled corpus. For a generative model such as an HMM, the log-ldedili+ log-prior)
is:

£(6) = ogpo(X1, Y1) +10g 3 po(X.Y) +Iogp(®).

where corpus probabilities are products over instanceg(xpy) = [ pPe(X,y) and analo-
gously forX,,Y; and where (90) is a prior distribution over the parametefs

2.2 Regularization via Posterior Constraints

The goal of the posterior regularization framework is to restrict the sphtiee model posteriors
on unlabeled data as a way to guide the model towards desired behavios $ection we describe
a version of PR specified with respect to a set of constraints. In this pasterior information is
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specified with set® of allowed distributions over the hidden variabjed/Ne will defineQ in terms
of constraintfeaturesp(X,Y) and their expectatiorfs.

Running Example Recall that in our running example, we want to bias learning so that each
sentence is labeled to contain at least one verb. To encode this formaltiefime a feature
o(x,y) = “number of verbs iry”, and require that this feature has expectation at least 1. For
consistency with the rest of the exposition and standard optimization literaterevill use

the equivalentp(x,y) = “negative number of verbs iy” and require this has expectation at
most -13

Q&= {ax(y) : Eqlo(x,y)] < -1}

Note that we enforce the constraint only in expectation, so there might lekrg with non-
zero probability that does not contain a verb. To actually enforce thistcaingin the model
would break the first-order Markov property of the distributibin order to also require at
least one noun per sentence in expectation, we would add anotheraioh&ature, so that
@would be a function from, y pairs toR?.

We defineQ, the set of valid distributions, with respect to #ectationsf constraint features,
rather than their probabilities, so that our objective leads to an efficieatitim. As we will see
later in this section, we also require that the constraint features decorapa@ssum in order to
ensure an efficient algorithm. More generally than in the running examplejlhdefine constraints
over an entire corpus:

Constrained Posterior Set Q={a(Y) : Eql@(X,Y)] < b}.

In words, Q denotes the region where constraint feature expectations are bdmbdedddi-
tionally, it is often useful to allow small violations whose norm is bounded byO:

Constrained Set(with slack): Q= {q(Y): 3, Eq[@(X,Y)]—b <§;

Elg<e @

Here¢ is a vector of slack variables anfd||; denotes some norm. Note that the PR method we
describe will only be useful i) is non-empty:

Assumption 2.1 Q is non-empty.

We explore several types of constraints in Sections 5-8, including:tredms similar to the
running example, where each hidden state is constrained to appear abmmesin expectation;
constraints that bias two models to agree on latent variables in expectatiwstraiots that en-
force a particular group-sparsity of the posterior moments. The consttidefined in Equation 1
is usually referred to as inequality constraints with slack, since settind enforces inequality
constraints strictly. The derivations for equality constraints are very sitailthre derivations for
inequality so we leave them out in the interest of space. Note also that wencade equality

2. Note: the constraint features do not appear anywhere in the mbtted.rhodel has a log-linear form, then it would
be defined with respect to a different senebdelfeatures, not related to tlwnstraintfeatures we consider here.

3. Note that the distributiogy and @y depend orx because the featuregx, y) might depend on the particular example
X

4. At every position in the sentence, we would need to know whether avastused at any other position.
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Symbol Meaning
X (observed) input variables for a particular example
y (usually hidden) output variables for a particular example
X,Y  xandy for the entire unlabeled portion of the corpus
XL, YL xandy for the entire labeled portion of the corpus (possibly empty)
Pe(X,y) agenerative, joint model with parametérs
L(8) data log-likelihood and parameter prior: lpg(X.,Y ) +10g5y pe(X,Y)+logp(6)
Q, Q  posterior regularization set: constrained set of desired data-condiidistrébutions

@(x,y) constraint features: used to encode posterior regularization
b bounds on the desired expected values of constraint features
& slack variables used to allow small violations of constraints

Jq(B)  posterior regularized likelihoodt (6) — KL (Q, || pe(Y|X))

Table 1: Summary of notation used.

constraints by adding two inequality constraints, although this will leave us wittetas many
variables in the dual. The assumption of linearity of the constraints is compw@yiégmportant,
as we will show below. For now, we do not make any assumptions aboutalerésp(x,y), but
if they factor in the same way as the model, then we can use the same infelgoiGthras in
PR training as we use for the original model (see Proposition 2.2). In RRodhlikelihood of a
model is penalized with the KL-divergence between the desired distributamegpand the model
posteriors,
KL (@ po(Y X)) = minKL (a(Y) || pe(Y|X)).

The posterior-regularized objective is:
Posterior Regularized Likelihood:  Jo(8) = £(8) —KL (Q || pe(Y|X)). (2)

The objective trades off likelihood and distance to the desired postefispage (modulo getting
stuck in local maxima) and provides an effective means of controlling thepoas. In many cases,
prior knowledge is easy to specify in terms of posteriors, and much moreuttitio specify as priors
on model parameters or by explicitly adding constraints to the model. A keytay@of using reg-
ularization on posteriors is that the learned model itself remains simple andtegatdile during
learning it is driven to obey the constraints through setting appropriateneder®. The advantage
of imposing the constraints via KL-divergence from the posteriors is tleatltfective above can be
optimized using a simple EM scheme described in Section 2.6. It is also possilde tosimilar
algorithm to maximize£(6) — oKL (Q || pe(Y | X)), for a € [0,1]. See Appendix A for details.
Note that the algorithm we will present in Section 2.6 will not allow us to optimize lFeactive
with a > 1, and this leads us to have both a KL-penalty term in Equation 2 and also tttiplye
have slack in the definition of the constraint et We do not need to allow slack in the objective,
as long as we are sure that the constraint@és non-empty. At increased computational cost, it
is also possible to eliminate the KL-penalty portion of the objective, insteadtlgimmnstraining
the model’'s posterior distribution to be inside the constrainipgéY |X) € Q. See Section 4 for
details. Figure 1 illustrates the objective in Equation 2. Normal maximum likelihcoding is
equivalent to minimizing the KL distance between the distribution concentrat¥damd the set of
distributions representable by the model. Any particular setting of the modaingéers results in
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P(X) | p(Y)
representable
by model
T )
Po(X)ps ™ 5(X m@\\pe\‘{\,__ q(Y)
Ko --=
eu(x) ptY | X)
Negative Log-Likelihood Posterior Regularization

Figure 1: An illustration of the PR objective for generative models, as acfuwo KL terms. The
symbol© represents the set of possible model parame?€xs, is a distribution that puts
probability 1 onX and 0 on all other assignments. ConsequeKtly(d(X)||pe(X)) =
L(8). (We ignore the parameter prior and additional labeled data in this figuctaftty.)

the posterior distributiomg(Y|X). PR adds to the maximum likelihood objective a corresponding
KL distance for this distribution. 1€ has only one distribution, then we recover labeled maximum
likelihood training. This is one of the justifications for the use and the partidirdaction of the KL
distance in the penalty term.

Running Example In order to represent a corpus-wide constraint ggfor our POS prob-
lem, we stack the constraint features into a function flor pairs (sentences, part-of-speech
sequences) t&R2X|, where|X| is the number of sentences in our unlabeled corpus. For the
POS tagging example, the PR objective penalizes parameters that dsigst each sentence

at least one verb and one noun in expectation.

For PR to be successful, the mod®l(Y|X) has to be expressive enough to ensure that the
learned model has posteriqug(Y|X) in or nearly inQ. Even if that is the case, the same parameters
might not ensure that the constraints are satisfied on a test corpus, cmuldealso use(Y) =
argming.q KL (4 (Y) || pe(Y[X)) for prediction instead opg(Y|X). We will see in Sections 5
and 7 that this sometimes results in improved performance. Chang et al) (2p@ft similar
results for their constraint-driven learning framework.

2.3 Slack Constraints vs. Penalty

In order for our objective to be well define@, must be non-empty. When there are a large number
of constraints, or when the constraint featugesre defined by some instance-specific process, it
might not be easy to choose constraint valnend slacke that lead to satisfiable constraints. It
is sometimes easier to penalize slack variables instead of setting a bourttieir norm. In these
cases, we add a slack penalty to the regularized likelihood objective irtig2a

L) - nin- KL @(Y) [l pe(Y[X)) +0llE]lg

(3)
st Eql@X,Y)]—b <&,
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The slack-constrained and slack-penalized versions of the objeatiegjuivalent in the sense
that they follow the same regularization path: for evetlgere exists some that results in identical
parameterd. Note that while we have used a notffi|; to impose a cost on violations of the
constraints, we could have used any arbitrary convex penalty funétiomhich the minimalq is
easily computable.

2.4 Computing the Posterior Regularizer

In this subsection, we describe how to compute the objective we have in&ddor fixed parame-
tersB. The regularization term is stated in Equations 2 and 3 in terms of an optimizatiblepr.
We assume that we have algorithms to do inferericehe statistical model of interespg. We
describe the computation of the regularization term for the inequality cortstrain

rgizn KL (a(Y) [l pe(Y[X)) st EqloX,Y)]-b<& [EEllg<e. (4

Proposition 2.1 The regularization problems for PR with inequality constraints in Equation 4 can
be solved efficiently in its dual form. The primal solutidrigjunique since KL divergence is strictly
convex and is given in terms of the dual solutidrby:

_ palY[X)exp{-\" - @(X.Y)}
Z(A\¥)

where ZN*) = Sy pe(Y|X)exp{—A*-@(X,Y)}. Define||-
of the problem in Equation 4 is:

q(Y) (5)

g- as the dual norm of|-|[s. The dual

max —b-A—logZ(A) —€||Al|p- -
nax 9Z(\) —e[Allg

(6)

The proof is included in Appendix B using standard Lagrangian dualityitseeand strict convex-
ity of KL (e.g., Bertsekas, 1999). The dual form in Equation 6 is typicallgnpatationally more
tractable than the primal form (Equation 4) because there is one dudblegper expectation con-
straint, while there is one primal variable per labeliig For structured models, this is typically
intractable. An analogous proposition can be proven for the objectivepeithlties (Equation 3),
with almost identical proof. We omit this for brevity.

2.5 Factoredq(Y) for Factored Constraints

The form of the optimat) with respect tgpg(Y | X) and@ has important computational implications.

Proposition 2.2 If pg('Y|X) factors as a product of clique potentials over a set of cliqdesind
@(X,Y) factors as a sum over some subset of those cliques, then the optifrii¢¢iof Equation 5
will also factor as a product of potentials of cliquesdn

This is easy to show. Our assumptions are a factorizatiopgor

Factored Posteriors  p(Y | X) = |_| WX, Ye)

ceC

Z(X)

5. Specifically, we need to be able to compute marginal distributions efficien
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po(Y[X)
0
— min A
M — Step : E’ — Step :
F
max F(q,0) Zneaé{ (¢,0)
N—

q(Y)

Figure 2: Modified EM for optimizing generative PR objectitéd) — KL (Q || pe(Y|X)).

and the same factorization for

Factored Features @(X,Y) = Z @X,Yec)

ceC

which imply thatg*(Y) will also factor as a product over the cliqué€s

Factored Solution: q*(Y) = o5 |_| WX, Ye) exp{—A-@(X,Ye)}

-z [V

where/ (X, Y¢) = W(X,Yc)exp{—A-@(X,Y¢)} andZ'(X) = Z(X)Z(A).

2.6 Generative Posterior Regularization via Expectation Maximization

This section presents an optimization algorithm for the PR objective. Thethlgowe present is
a minorization-maximization algorithm akin to EM, and both slack-constrainedlank-penalized
formulations can be optimized using it. To simplify the exposition, we focus firstack-constrained
version, and leave a treatment of optimization of the slack-penalized veos®ection 2.7.

Recall the standard expectation maximization (EM) algorithm used to optimize rabligaii-
hood £(8) =logyy pe(X,Y). Again, for clarity of exposition, we ignore lqg®), the prior ong,
as well as logg(X, Y ), the labeled data term, as they are simple to incorporate, just as in regular
EM. Neal and Hinton (1998) describe an interpretation of the EM algoriterbl@ck coordinate
ascent on a function that lower-bound§9), which we also use below. By Jensen’s inequality, we
define a lower-boun# (q,0) as

pe(X,Y)
q(y)

£(6) = log a(Y) > alv)log pe((XY’; ) _F(q.0).

q
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we can re-writé-(q,0) as
F(q Zq )log(ps(X)pe(Y[X)) Zq )logq(Y)

= £(0)- Fal¥)loo G

= L(6) =KL (a(Y)[[pe(Y |X))-

Using this interpretation, we can view EM as performing coordinate aseeRt @ 6). Starting
from an initial parameter estima@d, the algorithm iterates two block-coordinate ascent steps until
a convergence criterion is reached:

E: g =argmax (q,6') = argminkL (q(Y) || pe:(Y | X)),
q q

M : 6" = argmaxF (g *1,6) = argmadE 1 [log ps(X, Y)]. 7)
0 0

It is easy to see that the E-step sgits'(Y) = pg: (Y |X).
The PR objective (Equation 2) is
Jo(8) = maxF(q,0) = £L(6) — min KL (g(Y Y |X)),
a(8) =maxF(q,8) = £(8) — min KL (a(Y)][Pe(Y[X))
whereQ = {q(Y) : 3¢, Eq[@(X,Y)]—b <&; [[{]|[g < &}. In order to optimize this objective, it
suffices to modify the E-step to include the constraints:

E': g = argma (,6') = argmirkL (q(Y) || pe:(Y[X)). (8)
9eQ 9eQ
The projected posteriorg*1(Y) are then used to compute sufficient statistics and update the
model’'s parameters in the M-step, which remains unchanged, as in Equatithi¥ scheme is
illustrated in Figure 2.

Proposition 2.3 The modified EM algorithm illustrated in Figure 2, which iterates the modified E-
step (Equation 8) with the normal M-step (Equation 7), monotonically irsaedhe PR objective:
3o (671) > 3o (8)).

Proof: The proof is analogous to the proof of monotonic increase of the staldrdbjective.
Essentially,
JQ(etJrl) — F(qt+27et+l) > F(qt+17et+l) > F(qt+1,et) — JQ(GI)

The two inequalities are ensured by testep and M-stepE’-step sets 1 = arg max,q F(a, eh),
hencelq (8!) = F(qt*1,6!). The M-step set®'*! = argmayF(q'1,6), henceF (qit1,6t+1) >
F(g™L,8Y). Finally, Jg (8""1) = maxgeq F(q,61) > F (g1, 6'1) m

Note that the proposition is only meaningful whenis non-empty and is well-defined.
As for standard EM, to prove that coordinate ascent¢q,0) converges to stationary points of
Jqo(8), we need to make additional assumptions on the regularity of the likelihoodidorend
boundedness of the parameter space as in Tseng (2004). This aoalybis easily extended to our
setting, but is beyond the scope of the current paper.

We can use the dual formulation of Proposition 2.1 to perform the projeddamposition 2.2
implies that we can use the same algorithms to perform inference in our pobjecidelq as we
did in our original modepg. We illustrate this with the running example.
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Running Example For the POS tagging example with zero slack, the optimization problem
we need to solve is:

argmin KL (q(Y) || pe(Y|X)) st Eql@X,Y)]<-1
q
wherel is a vector of with 1 in each entry. The dual formulation is given by

argmax 1-A—logZ(A\) with q'(Y)= Po(Y[X) exp{ —A"- ¢(X, Y)}
A>0 Z(A*)
We can solve the dual optimization problem by projected gradient aschatHMM model
can be factored as products over sentences, and each sentenceodsiet jof emission prob-
abilities and transition probabilities.

(9)

|
[i—1 Pe(Yilyi—1) Pa(Xi|yi)
X) = 10
po(y | X) e (10)
where p(y1]Yo) = pe(y1) are the initial probabilities of our HMM. The constraint features
@ can be represented as a sum over sentences and further as a suiposité@ns in the

sentence:

x| x [(—=1,0)" ify;isaverbinsentence
oxy) = Zlcn(x,yi) = Zl (0,—1)7 ifyjisanouninsentence  (11)
= = 10,007 otherwise

combining the factored Equations 10 and 11 with the definitior{6f ave see that ¢¥') must
also factor as a first-order Markov model for each sentence:

|

aMO ] |'lpe(yi!yi_l)pe(xi\yi)e*“-mx,yi)_
xeXi=

Hence ¢(Y) is just a first-order Markov model for each sentence, and we can etape
normalizer Z\*) and marginals @y;) for each example using forward-backward. This allows
computation of the dual objective in Equation 9 as well as its gradient effigidrhe gradient

of the dual objective i§ — Eq[@(X,Y)]. We can use projected gradient (Bertsekas, 1999) to
perform the optimization, and the projection can be done sentence-bgnserallowing for
online optimization such as stochastic gradient. Optimization for non-zerk skse can be
done using projected subgradient (since the norm is not smooth).

Note that onunseerunlabeled data, the learned parame@emight not satisfy the constraints
on posteriors exactly, although typically they are fairly close if the modethasgh capacity.

2.7 Penalized Slack via Expectation Maximization

If our objective is specified using slack-penalty such as in Equation 8, weeneed a slightly
different E-step. Instead of restrictinge Q, the modifiedE’-step adds a cost for violating the
constraints
E':min KL (a(Y) [| pe(Y X)) + al[€]lg
a8 (12)
st Eql@X,Y)]—b<&.
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An analogous monotonic improvement of modified EM can be shown for thk-plamalized ob-
jective. The dual of Equation 12 is

max —b-A—logZ(:) st ||A
A>0

g- = O.

2.8 PR for Discriminative Models

The PR framework can be used to guide learning in discriminative models agasvg#nerative
models. In the case of a discriminative model, we only hga(g|x), and the likelihood does not
depend on unlabeled data. Specifically,

£P(8) =logpe(Y|XL) +logp(®),

where(Y |, X ) are any available labeled data and f§g) is a prior on the model parameters. With
this definition of £(8) for discriminative models we will optimize the discriminative PR objective
(zero-slack case):

Discriminative PR Likelihood :  Jg(8) = L°(8) — KL (Q || ps(Y|X)). (13)

In the absence of both labeled data and a prior on paramgt@ysthe objective in Equation 2 is
optimized (equal to zero) for ange(Y | X) € Q. If we employ a parametric prior o, then we
will prefer parameters that come close to satisfying the constraints, whedenity is measured by
KL-divergence.

Running Example For the POS tagging example, our discriminative model might be a first
order conditional random field. In this case we model:

Po(ylx) = eXp{Z (f)(())(’y)}

where 3(x) = y,exp{8-f(x,y)} is a normalization constant anfgx, y) are themodelfea-
tures. We will use the same constraint features as in the generative@asg) = “negative
number of verbs iry”, and defineQy and ¢ also as before. Note thditare features used
to define the model and do not appear anywhere in the constraints glafte constraint
features that do not appear anywhere in the model.

Traditionally, the EM algorithm is used for learning generative models (theshwaeh condition
on a subset of observed variables, but it must define a distributionsomee observed variables).
The reason for this is that EM optimizes marginal log-likelihogadrf our notation) of the observed
dataX according to the model. In the case of a discriminative mopigly|X), we do not model
the distribution of the observed data, the valuec8fas a function ob depends only on the para-
metric prior p(6) and the labeled data. By contrast, the PR objective uses the KL term and the
corresponding constraints to bias the model parameters. These cdastegiend on the observed
dataX and if they are sufficiently rich and informative, they can be used to traisaichinative
model. In the extreme case, consider a constrainQsttat contains only a single distributiap
with q(Y*) = 1. So,qis concentrated on a particular labeli¥g. In this case, the PR objective in
Equation 13 reduces to

J5(8) = £P(8) +log pg(Y*|X) = log p(6) + log po(Y LX) +log ps(Y*|X).
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8# | Problem Gen/Disc| p/q| Summary of Structural Constraints

85 | Word Alignment G g | Translation process is symmetric and bijective

86 | Multi-view learning D g | Multiple views should agree on label distribution

87 | Dependency Parsing G+D p | Noisy, partially observed labels encodedpiandb

88 | Part-of-speech induction G p | Sparsity structure independent of model parameters:
each word should be generated by a small number of
POS tags

Table 2: Summary of applications of Posterior Regularization described impaipisr. Gen/Disc
refers to generative or discriminative models. T column shows whether we use the
original modelp or the projected distributiog at decode time.

Thus, if Q is informative enough to uniquely specify a labeling of the unlabeled dat®Rhebjec-
tive reduces to the supervised likelihood objective. Whespecifies a range of distributions, such
as the one for multi view learning (Section 6), PR biases the discriminativelmoldave pg (Y |X)
close toQ.

Equation 13 can also be optimized with a block-coordinate ascent, leadind=td atyle algo-
rithm very similar to the one presented in Section 2.6. We define a lower baufutiotion:

Po(Y[X)
qy)

F'(9,8) = =KL (q(Y) [l pa(Y[X)) = ZQ(YNOQT

Clearly, maxcq F'(9,0) = —KL (Q || pe(Y|X)) soF’(q,8) < —KL (Q || pe(Y|X)) forqe Q.
The modifiedE’ andM’ steps aré:

E': g™t = argmax’'(q,6') = argmirkL (q(Y) || pe (Y [X)),
geQ geEQ
M’: 8! = argmax’ (g1, 8) = argmaE 41 [log pe(Y |X)]. (14)
0 0

Here the difference between Equation 7 and Equation 14 is that now theveyenerative compo-

nentin the lower-bounB’(q,8) and hence we have a discriminative update to the model parameters
in Equation 14.

3. Summary of Applications

Because the PR framework allows very diverse prior information to befggkin a single formal-
ism, the application Sections (85-88) are very diverse in nature. THisis@ttempts to summarize
their similarities and differences without getting into the details of the problerticagipns and
intuition behind the constraints. Table 2 summarizes the applications and ausstiescribed in
the rest of the paper while Table 3 summarizes the meanings of the vanalylesd@(X,Y) as
well as the optimization procedures used for the applications presentedsadhel.

In the statistical word alignment application described in Section 5, the goadlsritfy pairs or
sets of words that are direct translations of each other. The statisticalsusgel suffer from what

6. As with theM-stepin Equation 7 we have ignored the prip(8) on model parameters and the labeled data terms,
which can be easily incorporated in thE step.
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Application Symbol Meaning
Word X Pair of sentences that are translations of each other.
Alignment y Set of alignment links between words in the sentences (expgnen-
tially many possibilities).
¢(x,y) Bijective: number of times each source word is used in the align-
menty.
Symmetric: expected difference in number of times each link is used
by source~target model and target-source model.
OpT Bijective: projected gradient. Symmetric: L-BFGS.
Multi-view X Varies by application.

learning y Varies by application.
@(x,y) Indexed by label:1 if only one model predicts the label, and O if
both or none predict the label.
OpT Closed form.
Dependency X Natural language sentence as a sequence of words.
Parsing y Dependency parse tree (set of edges from one word to anothar, for
ing a tree).
@(x,y) Number of edges iy that are in the set of translated edges.
OpPT Line search.
Part-of-speech  x Natural language sentence as a sequence of words.
induction y Sequence of syntactic categories, one for each word.

®(X,Y) Indexed byw,i,s; 1 if theit" occurrence of wordv in the corpus is
tagged with syntactic categosyand O otherwise.
OpPT Projected gradient.

Table 3: Summary of input and output variable meanings as well as mearficgsstraint features
and optimization methods used#@ for the applications summarized in Table 2.

is known as a garbage collector effect: the likelihood function of the simplistitstation models
used prefers to align sections that are not literal translations to rareswatter than leaving them
unaligned (Brown et al., 1993). This results in each rare word in a edanguage being aligned
to 4 or 5 words in the target language. To alleviate this problem, we introdutsraint features
that count how many target words are aligned to each source wordsarfeR to encourage models
where this number is small in expectation. Modifying the model itself to includie aureference
would break independence and make it intractable.

The multi-view learning application described in Section 6 leverages two or stanees of
input (“views”) along with unlabeled data. The requirement is to train two rsodme for each
view, such that they usually agree on the labeling of the unlabeled dataamocthis using PR,
and we recover the Bhattacharyya distance as a regularizer. ThepRbielp also extends naturally
to structured problems, and cases where we only want partial agreement.

The grammar induction application of Section 7 takes advantage of an existingrfdor a
resource-rich language to train a comparable resource for a respoot language. Because the
two languages have different syntactic structures, and errors inaligriment abound, using such
out-of-language information requires the ability to train with missing and noisslitedy This is
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achieved using PR constraints that guide learning to prefer models thabtagree with the noisy
labeling wherever it is provided, while standard regularization guidesileggato be self-consistent.

Finally, Section 8 describes an application of PR to ensure a particulaitgpructure, which
can be independent of the structure of the model. Section 8 focuses protiiem of unsuper-
vised part-of-speech induction, where we are given a sample of tdxar@required to specify a
syntactic category for each token in the text. A well-known but difficult tptaee piece of prior
knowledge for this problem is that each word type should only occur withallswumber of syn-
tactic categories, even though there are some syntactic categories thatvitbcmany different
word types. By using a#;//., norm on constraint features we are able to encourage the model to
have precisely this kind of sparsity structure, and greatly increaseragré with human-generated
syntactic categories.

Table 2 also shows for each application whether we use the distributiorhimgen variables
given by the model parametepg(Y |X) to decode, or whether we first project the distribution to the
constraint set and usgY ) to decode. In general we found that when applying the constraints on the
labeled data is sensible, performing the projection before decoding temmdpriove performance.
For the word alignment application and the multi-view learning application wedfdecoding with
the projected distribution improved performance. By contrast, for degr@ydparsing, we do not
have the English translations at test time and so we cannot perform atjnojé€or part-of-speech
induction the constraints are over the entire corpus, and differentarézation strengths might be
needed for the training and test sets. Since we did not want to tune addegperparameter, we
instead decoded with.

4. Related Frameworks

The work related to learning with constraints on posterior distributions igitbesidn chronological

order in the following three subsections. An overall summary is most eadilgratood in reverse
chronological order though, so we begin with a few sentences detailirgptireections to it in that
order. Liang et al. (2009) describe how we can view constraints aeposdistributions as mea-
surements in a Bayesian setting, and note that inference using such itiborisantractable. By

approximating this problem, we recover either the generalized expectatistra@iots framework of
Mann and McCallum (2007), or with a further approximation we recoveregial case of the pos-
terior regularization framework presented in Section 2. Finally, a diffeapproximation recovers
the constraint driven learning framework of Chang et al. (2007). &dtst of our knowledge, we
are the first to describe all these connections.

4.1 Constraint Driven Learning

Chang et al. (2007, 2008) describe a framework called constraimrdiearning (CODL) that can
be viewed as an approximation to optimizing the slack-penalized version oRtbéjective (Equa-
tion 3). Chang et al. (2007) are motivated by hard-EM, where the ditisibg is approximated by
a single sample at the mode of Ipg(Y |X). Chang et al. (2007) propose to augmentpeQy | X)
by adding to it a penalty term based on some domain knowledge. When tHeypgemas are well-
behaved, we can view them as adding a cost for violating expectatiomsstraint featureg. In
such a case, CODL can be viewed as a “hard” approximation to the PRiobjec

argmax £(8) —min (KL (a(Y) | Po(Y[X) + o [Eqlo(X,Y)] b )
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whereM is the set of distributions concentrated on a singldhe modified E-Step becomes:
CODL E'-step : rga*og pe(Y[X) — all@(X,Y)—Dbl[s.

Because the constraints used by Chang et al. (2007) do not allow teaatédrence, they use
a beam search procedure to optimize the min-KL problem. Additionally theyidema K-best
variant where instead of restricting themselves to a single point estimatetfogy use a uniform
distribution over the top K samples.

Carlson et al. (2010) train several named entity and relation extractacsigently in order
to satisfy type constraints and mutual exclusion constraints. Their algorithetaied to CODL
in that hard assignments are made in a way that guarantees the consteasdatisiied. However,
their algorithm is motivated by adding these constraints to algorithms that |esenpextractors: at
each iteration, they make assignments only to the highest confidence entitiels ane then used to
extract high confidence patterns for use in subsequent iterationsoriésast hard EM and CODL
would make assignments to every instance and change these assignmenimavedaumé |l
(2008) also use constraints to filter out examples for self-training andialsot change the labels.

4.2 Generalized Expectation Criteria

Generalized expectation criteria (GE) allow a user to specify prefeseatmmut model expectations
in the form of linear constraints on some feature expectations (Mann a@aiMao, 2007, 2008).
As with PR, a set of constraint featur@sare introduced, and a penalty term is added to the log-
likelihood objective. The GE objective is

max £(8) — o ||Epy [@(X,Y)] —bl|- (15)

where|H|B is typically thel, norm (Druck et al., 2009 usi) or a distance based on KL diver-
gence (Mann and McCallum, 2008), and the model is a log-linear modeksuttaximum entropy
ora CRF.

The idea leading to this objective is the following: Suppose that we only haulgbrresources
to make a very small number of measurements when collecting statistics abouiethiestribution
p*(y|x). If we try to create a maximum entropy model using these statistics we will endthp w
a very impoverished model. It will only use a small number of features angeguently will fail
to generalize to instances where these features cannot occur. htotdgEn a more feature-rich
model, GE defines a wider set ofodelfeaturesf and uses the small number of estimates based
on constraint featuregto guide learning. By usint regularization on model parameters, we can
ensure that a richer set of model features are used to explain theddegiectations.

Druck et al. (2009) use a gradient ascent method to optimize the objedtinéortunately,
because the second term in the GE objective (Equation 15) couples steadatfeatureg and the
model parameter8, the gradient requires computing the covariance between model fettamds
the constraint featuregunderpg:

OBy [@(X, Y)]
08

Because of this coupling, the complexity of the dynamic program neededpute the gradient is
higher than the complexity of the dynamic program for the model. In the cag@phical models

= Epe [f(X,Y)(p(X,Y)] - Epe [(P(X,Y)]Epe [f(X7Y)]
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wheref and @ have the same Markov dependencies, computing this gradient usuallesdha
running time of the dynamic program. A more efficient dynamic program mighbisible (Li and
Eisner, 2009; Pauls et al., 2009), however current implementationsaribiively slower than PR
when there are many constraint features.

In order to avoid the costly optimization procedure described above, Bataal. (2009) pro-
pose a variational approximation. Recall that at a high level, the difficultyptimizing Equa-
tion 15 is because the last term couples the constraint feaquvgth the model parametel@.

In order to separate out these quantities, Bellare et al. (2009) intrafueexiliary distribution
q(Y) =~ pe(Y|X), which is used to approximate the last term in Equation 15. The variational-obje
tive contains three terms instead of two:

argmax £(6) —min (KL (a(Y)1[pe(Y[X)) + 0| [Eqle(X,Y)] =b][ ). (16)

This formulation is identical to the slack-penalized version of PR, and Betiaed. (2009) use
the same optimization procedure (described in Section 2). Because both trézation and the
maximization steps implement minimum Kullback-Leibler projections, Bellare et ad9Refer
to this algorithm as alternating projections. Note that PR can also be trainedbmiiaa fashion,
and Ganchev et al. (2009) use an online optimization for this objective tcatid@pendency parser.
These experiments are described in Section 7.

Closely related to GE, is the work of Quadrianto et al. (2009). The auttessribe a setting
where the constraint valuds, are chosen as the empirical estimates on some labeled data. They then
train a model to have high likelihood on the labeled data, but also match theaioh&atures on
unlabeled data. They show that for appropriately chosen constratntés, the estimated constraint
values should be close to the true means, and show good experimentaléemerds on an image
retrieval task.

4.3 Measurements in a Bayesian Framework

Liang et al. (2009) approach the problem of incorporating prior inféionaabout model posteriors
from a Bayesian point of view. They motivate their approach using thewailp caricature. Sup-
pose we have log-linear modps(y|x) O exp(8-f(y,x)). In addition to any labeled data,,Y),
we also have performed some additional experiméisparticular, we have observed the expected
values of some constraint featurg, Y) on some unlabeled da¥a Because there is error in mea-
surement, they obsenex @(X,Y). Figure 3 illustrates this setting. The leftmost nodes represent
(x,y) pairs from the labeled datX,Y ). The nodes directly to the right 6frepresent unlabeled
(x,y) pairs from the unlabeled da¥a All the data are tied together by the dependence on the model
parameter®. The constraint features take as input the unlabeled daXaaetvell as a full labeling
Y, and produce some valugX,Y), which is never observed directly. Instead, we observe some
noisy versiorb ~ @X,Y). The measured valuédsare distributed according to some noise model
pn(blje(X,Y)). Liang et al. (2009) note that the optimization is convex for log-concaiserand
use box noise in their experiments, givinginiform probability in some range ne@fX,Y).

In the Bayesian setting, the model parametes well as the observed measurement values
b are random variables. Liang et al. (2009) use the mode& @fX,,Y,X,b) as a point estimate

7. In their exposition, Liang et al. (2009) incorporate labeled data bydirjLthe labels among experiments. We prefer
to separate these types of observations because full label obses\ddioot require approximations.
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Xr P(X,Y)

Onv

Figure 3: The model used by Liang et al. (2009), using our notation. &¥e separated treatment
of the labeled dat&X, Y ) from treatment of the unlabeled data

Y,

for ©:
argmax p(e|XL7YL7X7b) = argmax Z p(euY7b|x7XLvYL)7
6 6

with equality becausp(8|X(, Y, X,b) O p(6,b|XL,Y,X) =Sy p(6,Y,b|X,X.,YL). Liang et al.
(2009) focus on computing(0,Y,b|X,X.,Y). They define their model for this quantity as fol-
lows:

P(B,Y,bIX, XL, YL) = pOIXL,YL) pe(Y[X) pn(b|e(X,Y)) (17)

where theY andX are particular instantiations of the random variables in the entire unlabeleasco
X. Equation 17 is a product of three terms: a prioBpthe model probabilityg(Y|X), and a noise
modelpn(b|@). The noise model is the probability that we observe a vdluef the measurement
featuregp, given that its actual value wggX,Y). The idea is that we model errors in the estimation
of the posterior probabilities as noise in the measurement process. Liah@g2&09) use a uniform
distribution over@(X,Y) + €, which they call “box noise”. Under this model, observindarther
thane from @(X,Y) has zero probability. In log space, the exact MAP objective, becomes:

max £(8) +10gEpvix) [Pr(blo(X,Y))]. (18)

Unfortunately with almost all noise models (including no noise), and box nipigarticular, the
second term in Equation 18 makes the optimization problem intractdlimg et al. (2009) use a
variational approximation as well as a further approximation based oe@srisequality to reach
the PR objective, which they ultimately optimize for their experiments. We also thlkeireframe-
work to GE and CODL. If we approximate the last term in Equation 18 by moviegtpectation
inside the probability:

Epu(vix) [ Pu(D | 00X, Y))] = P (B | Epycvix) (90X, Y] )

we end up with an objective equivalent to GE for appropriate noise modelparticular Gaus-
sian noise corresponds Itg)regularization in GE, since the log of a Gaussian is squared Euclidean
distance (up to scaling). This approximation can be motivated by the casepyf¥é|X) is con-
centrated on a particular labeling: pg(Y|X) = &(Y*). In this special case the is an equality.

8. For very special noise, such as noise that completely obscureigiad sve can compute the second term in Equa-
tion 18.
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10gE[ N (b[o)]

Q

log pn (bIE[¢])

variational : . ;
. . Posterior variational Generalized
Measurements approximation;— .. - - .
. . Regularization | approximation | Expectation
Jensen’s inequality

MAP MAP
Model | maxg L(9)+... approximation approximation
PR [ ming log pn (b]Eqy)[@(X, Y)]) — KL (c[[pe) N
M l0gE oy |x) [pN(b](p(X Y))] Constraint
GE log pn (b]Epe YIX) (p(X Y)]) Driven
CODL | miny logpn (b|@(X,Y)) —KL (3(Y)||pe) Learning

Figure 4: A summary of the different models. We ysgY|X) to denote the model probability,
q(Y) to denote a proposal distribution, apg for the noise model. The symbd(Y)
denotes a distribution concentrated ¥on The approximations are described in the text:
M—GE near Equation 19, GEPR near Equation 16, PRCODL at the end of Sec-
tion 4.3.

This approximation is also used in Liang et al. (2009). This provides ampietation of GE as an
approximation to the Bayesian framework proposed by Liang et al. (2009)

max £(8) -+logp (b|Epyvi[0(X, Y)]) (19)

Note that the objective in Equation 19 is a reasonable objective in and of iessiéntially
stating that the measured valuesire not dependent on any particular instantiation of the hidden
variables, but rather represent the integral over all their possibignassnts. Liang et al. (2009)
also use a variational approximation similar to the one of Bellare et al. (200®psthe objective
they optimize is exactly the PR objective, although their optimization algorithm is sligHitirent
from the one presented in Section 2. Finally, if we restrict the set of alleadibtributions further
to be concentrated on a single labelivigwe recover the CODL algorithm. Figure 4 summarizes
the relationships.

5. Statistical Word Alignments

Word alignments, introduced by Brown et al. (1994) as hidden variableoabilistic models for
statistical machine translation (IBM models 1-5), describe the correspoadetween words in
source and target sentences. We will denote each target sentetiee @, ..., X,...,x) and each
source sentence a8= (x3,.. ,xf, ,X3). A word alignment will be represented as a matrix with
entriesy;; indicating that target Wordls a translation of source word Although the original IBM
models are no longer competitive for machine translation, the resulting wordvadigts are still a
valuable resource. Word alignments are used primarily for extracting miniavadlation units for

machine translation, for example, phrases in phrase-based translaiemsyKoehn et al., 2003)
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and rules in syntax-based machine translation (Galley et al., 2004; CHiahg2005), as well as
for MT system combination (Matusov et al., 2006). But their importance hasrgfar beyond
machine translation: for instance, transferring annotations betweenagegly projecting POS
taggers, NP chunkers and parsers through word alignment (YayamskNgai, 2001; Rogati et al.,
2003; Hwa et al., 2005; Ganchev et al., 2009); discovery of pasaglsr(Bannard and Callison-
Burch, 2005; Callison-Burch, 2007, 2008); and joint unsuper®@& and parser induction across
languages (Snyder and Barzilay, 2008; Snyder et al., 2009).

Here we describe two types of prior knowledge that when introducedresgraints in different
word alignment models significantly boost their performance. The two @nttrare: (i) bijec-
tivity: “one word should not translate to many words”; and (ii) symmetry: “dli@nal alignments
of one model should agree with those of another model”. A more extenseserigtion of these
constraints applied to the task of word alignments and the quality of the resulgngants can be
found in Graga et al. (2010).

5.1 Models

We consider two models below: IBM Model 1 proposed by Brown et al94)}%nd the HMM
model proposed by Vogel et al. (1996). Both models can be exprassed

PO,y [ %%) = [ Palyi | 1,Yi-0)pe(X] 1 5,),
J

wherey is the alignment ang; is the index of the hidden state (source language index) generating
the target language word at indgxThe models differ in their definition of the distortion probability
pa(y;j | J,¥j—1). Model 1 assumes that the target words are generated independehthgsigns
uniform distortion probability. The HMM model assumes that only the distarted®en the current
and previous source word index is importgaty; | j,yj-1) = pa(y;j | ¥; —Yj-1). Both models are
augmented by adding a special “null” word to the source sentence.

The likelihood of the corpus, marginalized over possible alignments, is eerfoa Model 1,
but not for the HMM model (Brown et al., 1994; Vogel et al., 1996). Both models though, stan-
dard training using the Expectation Maximization algorithm (Dempster et al.,) #€ks model
parameter® that maximize the log-likelihood of the parallel corpus.

On the positive side, both models are simple and complexity of inferer@é ig J) for IBM
Model 1 andO(l x J?) for the HMM. However there are several problems with the models that arise
from their directionality.

e Non-bijective: Multiple target words can align to a single source word with no penalty.

e Asymmetric: Swapping the source and target languages can produce very mlifédign-
ments, since only constraints and correlations between consecutive positi@ne side are
enforced by the models.

The top row of Figure 5 shows an example of the posterior distribution foaligament be-
tween an English and a French sentence using the HMM model. The le& §gaws the alignment
in the English to French direction where the rows are source words dmehige are target words,
while the right figure shows the alignment posteriors of the opposite direcfiba first observa-
tion we make is that the posteriors are concentrated around particulaeseards (rare words
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Figure 5: Posterior distributions on an English to French sentence usindMive model. Left:
EN—FR model.Right: FR— EN model. Top: Regular EM posteriorsMiddle: After
applying bijective constrainBottom: After applying symmetric constrainSurealign-
ments are squares with bordepsissiblealignments are squares without borders. Circle
size indicates probability value. See Graca et al. (2010) for a descrifttbe difference
between sure and possible alignments. Circle color in the middle and bottoninaiws
cates difference in posterior from the top row. Green (light gray) -drigiobability, red
(dark gray) - lower probability.

S

occurring less than 5 times in the corpus) in both directions, instead of bgiegdsacross differ-
ent words. This is a well known problem when training using EM, called gagltfage collector
effect” (Brown et al., 1993). That is, rare words in the source lagguend up aligned to too many
words in the target language because the generative model has to thstrdmslation probability
for each source word among all candidate target words. Since thegaree word occurs in only
a few sentences it needs to spread its probability mass over fewer comgaegiagwords. In this
case, choosing to align the rare word to all of these target words leadghter Hikelihood than
correctly aligning them or aligning them to the speciall word, since it increases the likelihood
of this sentence without lowering the likelihood of many other sentencesedwer, by correcting
the garbage collector effect we increase the overall performanceeaothmon words, since now
these common words can be aligned to the correct words. For this paroufars, 6.5% of the
English tokens and 7.7% of the French tokens are rare.

5.2 Bijectivity Constraints

Bijectivity constraints are based on the observation that in most gold alignmertss are aligned
one-to-one (98% for the sure alignments in the Hansard corpus). Wel likeito introduce this
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trend into the model, but adding it directly requires large factors (bredakimiylarkov property). In
fact, summing over one-to-one or near one-to-one weighted matchingsassical #P-Complete
problem (Valiant, 1979). However, introducing alignment degree caingin expectatiorin the
PR framework is easy and tractable. We simply add inequality consti&pts,y)] < 1 where we
have one feature for each source wgttiat counts how many times it is aligned to a target word in
the alignmeny:

Bijective Features.  @;(X,y) = Zl Yi=]).

For example, in the alignment at the top right of Figure 5, the posteriorstiogesource word
schisnrclearly sum to more than 1. The effect of applying PR constraints to therforstis shown in
the second row. Enforcing the one to (at most) one constraint clearlyaéiexthe garbage collector
effect. Moreover, when distributing the probability mass to the other wandst of the probability
mass goes into the correct positions (as can be seen by comparison tddtladigronents). Note
that the bijectivity constraints only hold approximately in practice and so weaxpat having a
KL-based penalty for them might be better than ensuring that the modelesaitis$im, since we can
violate bijectivity in order to achieve higher likelihood. Another way to untéerd what is going
on is to see how the parameters are affected by the bijectivity constrairdrtioysar the translation
table becomes much cleaner, having a much lower entropy. The avetaggyeor the translation
probability, averaged over all source language words for EM traini@gli2.6 bits, depending on
the direction. When we train using PR with the bijectivity constraint, this entroppsto 0.6
for both directions. We see that while the model does not have any partgadameter that can
enforce bijectivity, in practice the model is expressive enough to learefargnce for bijectivity
by appropriately setting the existing model parameters.

5.3 Symmetry Constraints

Word alignment should not depend on translation direction, but this prinsptéearly violated
by the directional models. In fact, each directional model makes diffenesttkes. The standard
approach is to train two models independently and then intersect their pradi¢@zh and Ney,
2003)9 However, we show that it is much better to train two directional models cosatlyy cou-
pling their posterior distributions over alignments with constraints that foraa tbepproximately
agree. The idea of training jointly has also been explored by Matusov(@0&84) and Liang et al.
(2006), although their formalization is quite different.

Let the directional models be defined a‘é'e(V) (forward) anﬁe(V) (backward). We sup-
press dependence &handx! for brevity. Definey to range over the union of all possible directional
alignmentsy Uy We then define a mixture modpg(y) = 1 Fg(y) + 3P e(y) whereg(y) =0
and vice-versa (i.e., the alignment of one dlrectlonal model has probalslityaccording to the
other model). We then define the following feature for each target-s@asigon pain, j:

+1 yeVyandy =j
Symmetric Features ~ @j(x,y) =4 -1 ye ¥ and§j =i
0 otherwise

The feature takes the value zero in expectation if a wordippis aligned with equal probability in
both directions. So the constraint we want to impodegi#; (x,y)] = 0 (possibly with some small

9. Sometimes union or a heuristic is used instead of intersection.
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violation). Note that this constraint is only feasible if the posteriors are bigctClearly these
features are fully factored, so to compute expectations of these featatesthe moded| we only
need to be able to compute them under each directional model, as we shaw beleee this, we
have by the definition ofj, and pe,

Baly | %)+ Boly | %) exp{-A-@xy)) TV I35+ TY0ak
(Y |x)= > Z - 2z ’

where we have defined:

qly 1% = Zlawy,x)exp{x-cp(x,y)} with Zg = 3 Bo(yx)exp{—A-axy)},
y

Tqly|x) = zlﬁ Po(y.x)exp{—A-@(x,y)} with Zg = Poa(y.x)exp{-A-@(x.y)},
y

1 Zﬁ Zﬁ
‘= 2 (Be<x> " m<x>> |
All these quantities can be computed separately in each model.

The last row in Figure 5 shows both directional posteriors after imposingyimenetric con-
straint. Note that the projected posteriors are equal in the two models. Alscan see that in most
cases the probability mass was moved to the correct place with the exceptiewvadrd paiinter-
nal/le; this is because the woidternal does not appear on the French side, but the model still has

to spread around the probability mass for that word. In this case the mecided to accumulate it
on the worde instead of moving it to theaull word.

5.4 Algorithm for Projection

Because both the symmetric and bijective constraints decompose overcesntand the model
distributionp(Y|X) decomposes as a product distribution over instances, the projectedutiistrib
q(Y) will also decompose as a product over instances. Furthermore, leetteusonstraints for
different instances do not interact, we can project the sentenced anéve and we do not need
to store the posteriors for the whole corpus in memory at once. We com@utéor each sentence
pair x using projected gradient ascent for the bijective constraints and LSBieGthe symmetric

constraints.

5.5 Results

We evaluated the constraints using the Hansard corpus (Och and N3§), @OEnglish/French.
Following prior work by Och and Ney (2003), we initialize the Model 1 tratigfatable with
uniform probabilities over word pairs that occur together in same sent&éheeHMM is initialized
with the translation probabilities from Model 1 and with uniform distortion pholities. We train
M1 for 5 iterations and train the HMM model until no further improvement ortigien and recall

is seen on standard (small) development set for this corpus. We notehbatuging regular EM
training this requires around 4 iterations, while just 2 iterations sufficesywseng PR. This is
likely due to the added information that the constraints provide. We use ad0maximum length
cutoff for training sentences and train all models on, D00 sentences, testing precision and recall
on the standard test set.
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Figure 6: Precision vs Recall curves of both models using standard EhhtygRegular) versus
PR with bijective constraints (Bijective) and symmetry constraints (Symmetrecidn
ferent decoding types: decoding without any projection (NP), doingtbife projection
before decoding (BP), and doing symmetric projection before decodRry. Data is
100k sentences of the Hansard corpus. Highest label in the legenredponds to highest
line in the graph, second highest label to second highest line, and so on.

Figure 6 shows the precision vs recall curves of both models (EN-FRERihdependently)
when training using standard EM versus PR with both constraints, andgbksref additionally
applying the constraints at decode time in order to tease apart the effing obnstraints during
training vs. during testing. The first observation is that training with PR sagmifly boosts the
performance of each model. Moreover using the projection at decodeltragsaincreases perfor-
mance. Comparing both constraints, it seems that the bijective constraintésuseful at training
time. Note that using this constraint at decode time with regular training yieldsewesults than

just training with the same constraint using PR. On the other hand, the symnmtstraint is
stronger at decode time.

A comprehensive comparison of the word alignment application is presani&daca et al.
(2010), where in six different languages the use of these constrhimtgssignificantly outperforms
the simpler unconstrained HMM model. Moreover, in 9 out of 12 times usingthesstraints
outperforms the more complex model IBM M4 (Brown et al., 1994). The alignsnare also
evaluated in the task of statistical machine translation where they are usethdgbstep to extract
parallel phrases used for translation. Using these constraints lead#tdo thenslation quality.
Finally, the different alignments are tested on the task of transferringimémnotations, which
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is described in the next section. The new alignments increase the numherexftly transferred
edges.

6. Multi-view learning

Multi-view learning refers to a set of semi-supervised methods which exgditndant views of
the same input data (Blum and Mitchell, 1998; Collins and Singer, 1999¢BIreft al., 2005;
Sindhwani et al., 2005). These multiple views can come in the form of coatekspelling features
in the case of text processing and segmentation, hypertext link text anonént contents for
document classification, and multiple cameras or microphones in the caseewhsand vision.
Multi-view methods typically begin by assuming that each view alone can yieldd gredictor.
Under this assumption, we can regularize the models from each view biraioigy the amount
by which we permit them to disagree on unlabeled instances. This regtitamizan lead to better
convergence by significantly decreasing the effective size of owthggis class (Balcan and Blum,
2005; Kakade and Foster, 2007; Rosenberg and Bartlett, 2007)id€hiss related to the symmetry
constraints described in Section 5.

In this section, we use PR to derive a multi-view learning algorithm. The ideayssimple:
train a model for each view, and use constraints that the models shoul@ytke label distribu-
tion. Where our work is most similar to co-regularization schemes, a minimum KigHbeibler
(KL) distance projection can be computed in closed form resulting in anitiigothat performs
better than both CoBoosting and two view Perceptron on several natugaldge processing tasks.
In this case, the resulting regularizer is identical to adding a penalty terd lbathe Bhattacharyya
distance (Kailath, 1967) between models trained using different views.

In addition, this framework allows us to use different labeled training sethéatwo classifiers,
in the case where they have different label sets. That is, we dowirectipat our two views are both
on the same labeled corpus. In that case, we can reduce the hypoplaesidy preferring pairs of
models that agree aompatibldabeling of some additional unlabeled data rather thaientical
labeling, while still minimizing KL in closed form. When the two views come from modesg th
differ not only in the label set but also in the model structure of the oufpades our framework can
still encourage agreement, but the KL minimization cannot be computed in ¢trsedFinally, this
method uses soft assignments to latent variables resulting in a more stable dpimpracedure.

6.1 Stochastic Agreement

Note that the constraint in this section is similar to the one described in Sectiohlerde we focus
on discriminative learning and the formulation is slightly different. For notatiooavenience,
we focus on two view learning in this exposition, however the generalizationaie than two
views is fairly straightforward. Also, we focus on two discriminative log-éinenodels and start
by considering the setting of complete agreement. In this setting we have a catesiged output
for the two models and we believe that each of the two views is sufficiently riphedict labels
accurately. We can leverage this knowledge by restricting our search &l pasp;, p2 that satisfy
p1(y | X) = p2(y | X). Sincep; and p; each define a distribution over labels, we will consider the
product distributionps (Y1) p2(y2) and define constraint features such that our proposal distribution
q(y1,y2) will have the same marginal fgg andy,. In particular, we will have one constraint feature
for each labey:

®(y1,y2) =0(y1=Yy) —d(y2=Y).
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Whered(-) is the 0-1 indicator function. The constraint &&t= {q: Eq[¢] = 0} will require that the
marginals over the two output variables are identegagh) = q(y2). It will be useful in the sequel
to define an agreement between two models dgiep,) as

agre¢py, p2) = argqmin KL (a(y1,y2)[Ip1(y1)p2(y2)) st Egl@ =0. (20)

Proposition 6.1 relates the Bhattacharyya regularization term to the value optimization prob-
lem in Equation 20. The Bhattacharyya distance is a very natural, symmetrstirees difference
between distributions which has been used in many signal detection appkcgtaitath, 1967). It
is also related to the well-known Hellinger distance.

Proposition 6.1 The Bhattacharyya distancelogyy \/pi(y)pz(y) is equal to% of the value of
the convex optimization problem

Q;ig KL (a(y1,Y2)|lpa(y1) p2(y2)) 21)

where Q= {q:Eq[d(y1=Yy)—3(y2=Y)] =0Vy},

and whered(cond) is 1 if cond is true and otherwise. Furthermore, the minimizer decomposes as

a(y1,Y2) = di(y1)9z(y2) and is given by dy) O v/ pa(y) p2(Y)-

Proof Taking the dual of the optimization problem in Equation 21 we get

argmax-log % p(y1,y2)expA- @)
A Y1,¥2

with q(y1,y2) O p(y1,Y2) exp(A - @(y1,Y2)). Where@(y1,y2) is a vector of features of the form
d(y1=Y) — d(y2 =y) with one entry for each possible labelNoting that the features decompose
into @(y1) — @(y2), we know thatq(yi,y2) decomposes ag(y1)gz(y2). Furthermore, our con-
straints require thag (y) = d2(y)'y S0 we havej(y1)q(y2) 0 p1(y1) exp(A - ¢ (y1)) pa(y2) exp(—A-

@ (y2)). Lettingy; = y» we haveq(y)? = p1(y)p2(y) which gives us a closed form computation of
agre€ps, p2) O v/ p1(y)p2(y). Substituting this solution into the problem of Proposition 6.1, and
performing algebraic simplification yields the desired result. |

Replacing the minimum KL term in Equation 2 with a Bhattacharyya regularizationy&ids
the objective

min £1(81) + £2(62) + Eu [B(P1(81), 2(82))]

where £ = E[—log(pi(Yi|x;6:))] + §|]6i||2 for i = 1,2 are the standard regularized log likelihood
losses of the modelp; and py, EUI[B(pl, p2)] is the expected Bhattacharyya distance (Kailath,
1967) between the predictions of the two models on the unlabeled datajsadonstant defining
the relative weight of the unlabeled data relative to the labeled data.

Our regularizer extends to full agreement for undirected graphical imdaethe case wherp;
andp, have the same structur@— agreéps, p2) will share this structure and the projection can be
computed in closed form.
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Proposition 6.2 Suppose Y |X),i € {1,2} factor as a set of clique potentials from a set of cliques
C.
1
(YIX) = =—— i(X,Ye),
pl( ‘ ) Z|(X) ngl( C)
then q(Y) also factors as a product over clique potentialsdnand can be computed in closed
form modulo normalization as(¥1,Y2) = q1(Y1)gz(Y2) with

qI(Y‘X) - Z/ELX) rl \/qu(XaYC)LIJZ(XvYC>'

ceC

Proof The proof is simple algebraic manipulation. We start with Equation 22, an appiicaf
Proposition 6.1.

G(Y)> O pu(YX)p2(Y|X) (22)
= Z7'Z [ wa(X, Yo)wa(X, Ye)

. 2
- <Z’(X)|:| \/llJl(X,Yc)llJz(XaYc)> :

Note that Proposition 6.2 is not a special case of Proposition 2.2 becaulsawy defined one
constraint featuregy, for each possible labeling and these do not decompose according t&Ve
could alternatively have proven that ensuring agreement on cliquetiad$ds identical to ensuring
agreement on labelings. In the case of log-linear Markov random figlds;lique potentials are
stored in log space so computiggorresponds to averaging the values before computing normal-
ization.

6.2 Partial Agreement and Hierarchical Labels

Our method extends naturally to partial-agreement scenarios. For examg@wencourage two
part-of-speech taggers with different tag sets to produce compatilileqgiapeech, such as noun
in tag set one and singular-noun in tag set 2, as opposed to noun in tharsgtverb in tag set 2.

In particular, suppose we have a mapping from both label sets into a conpaca where it makes
sense to encourage agreement. For the part-of-speech tagging exdispteuld mean mapping
all nouns from both tag sets into a single class, all verbs into another ¢cldssozon. In general
suppose we have functiogs(y1) andgy(y2) that map variables for the two models onto the same
space{z}. Then,pi(yi) andg; induce a distribution:

= > ply) and pi(yilz) =pi(yi)/pi(2)-
yidily)=z

We can encouragp; (z) ~ p2(z) by adding a feature for each label in the joint space:

1 ifi=1andgi(y1)

@(yi) =4 -1 ifi=2andg(y2)
0 otherwise

=z
=z (23)
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In this case our objective becomes:
min £4(01) + L2(82) + CEy [B(p1(2), p2(2))] -

In the special case where some labels are identical for the two models amnd ath incompatible,

we haveg:(z;) mapping the incompatible labels into one bin and the others into their own special
bins. Proposition 6.3 along with the optimization algorithm described in Sectionl@vésaus to
optimize this objective.

Proposition 6.3 The Bhattacharyya distancelogy,+/pi(z)p2(z) is % the value of the convex
optimization problem
min KL (a(Y1,Y2)[[pa(Y1)p2(Y2))

where the constraint featuregare defined as in Equation 23. Furthermore, the minimizer decom-

poses as @r'1,Y2) = du(Y1/21)d1(21)02(Y2|22)d2(22), where g(z1) = G2(22) O v/ pa(z1) p2(22)
and q(Yilz) = pi(Yilz) 1 € {1,2}.

Note that the computation of agtg®, pz) is still in closed form if our models are unstructured.
Unfortunately, if we collapse some labels for structured mod#M¢) might not have the same
Markov properties ap(z). For example, consider the case wherés a distribution over three
states (1,2,3) that assigns probability 1 to the sequence (1,2,3,1,2,3,.. pradability zero to
other sequences. This is a first-order Markov chain. If the mapping-slland 23 +— 0 then
p(y) assigns probability 1 to (1,0,0,1,0,0,...), which cannot be representetirasorder Markov
chain. Essentially, the original chain relied on being able to distinguish bettiweallowable
transition (2,3) and the disallowed transition (3,2). When we collapse the ,skatts of these
transitions map to (0,0) and cannot be distinguished. Consequently, tieel étwm solution given
in Proposition 6.3 is not usable. Potentially, we could compute some approxintatffyr) and
from that compute an approximationdo Instead, we re-formulate our constraints to require only
that the marginals of each clique p3 and p, match each other rather than requiring the joint to
have the same probability:

1 ifi=21andgi(y1)c=2c
Gz (Y1,Y2)=<¢ -1 ifi=2andgx(y2)c =2z (24)
0 otherwise

By Proposition 2.2, the features in Equation 24 lead tpthat respects the Markov properties of
the original models.

6.3 Relation to Other Multi-View Learning

To avoid a long detour from PR, we describe here only CoBoosting (CallidsSinger, 1999) and
two view Perceptron (Brefeld et al., 2005), the frameworks with which meigcally compare
our method in the next section. Since these methods are based on ditibjective functions
from ours it is worth examining where each one works best. Altun et ab3R0ompare log-loss
and exp-loss for sequential problems. They find that the loss functies dot have as great an
effect on performance as the feature choice. However, they alsdhaitexp-loss is expected to
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Figure 7: Different Loss Function3op: Bhattacharyya distance regularizati@uottom left: Exp-
loss regularizationBottom right : Least squares regularization.

perform better for clean data, while log-loss is expected to perform lvettien there is label noise.
The intuition behind this is in the rate of growth of the loss functions. Exp-lossgexponentially

with misclassification margin while log-loss grows linearly. Consequently whene ik label noise,

AdaBoost focuses more on modeling the noise. Since CoBoosting optimiresegwdarized exp-

loss while our work optimizes a co-regularized log-loss we expect to dor lwetteroblems where
the labels are noisy.

To get more intuition about this, Figure 7 shows the co-regularization losgifuns for our
method, CoBoosting, and co-regularized least squares (Sindhwalni2205). For two underlying
binary linear classifiersy = sign(w; - X) andy, = sign(w- - X), the horizontal axes represent the val-
uesyi andyb, while the vertical axis is the loss. If we consider the plane parallel to the, pagsee
how the different co-regularizers penalize the classifiers when thagmie and are equally confi-
dent in their decision. Restricted to this plane, all three co-regularizevsajrthe same asymptotic
rate as the loss functions for the individual models: Linearly for our werponentially for Co-
Boosting and quadratically for co-RLS. If we look at the area where thentadels agree (the flat
part of the CoBoosting graph) we see what the penalty is when the clesaijiee but have different
confidence. In this case co-RLS is harshest since it penalizes diffesén the dot product equally
regardless of the absolute value of the dot product. Intuitively, this islalggm. If one model pre-
dicts 1 with confidence 0.5 and the other predicts -1 with confidence 0.5 tbelysagreeing while
if they both predict 1 with confidence 1000 and 1001 respectively, theyagreeing on the label
and are very close in their confidence estimates. At the other extreme p€iiBpimposes almost
no penalty whenever the two classifiers agree, regardless of theidenoéi. The Bhattacharyya
distance co-regularizer lies between these extremes, penalizing diffsranconfidence near the
origin but is more lenient when the classifiers are both very confidenaguregb.

Finally, if we have labeled data from one domain but want to apply it to anatberain we
can use any of the co-training frameworks mentioned earlier, includingwar to perform do-
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Domains MIRA | Boost| Perc || mx-ent| SCL | CoBoost| coPerc| PR
books—dvds 772 | 72.0 74 78.5 | 75.8 78.8 75.5 | 79.8
dvds—books 72.8 | 74.8 | 745 80.3 | 79.7 79.8 745 | 81.3
books—electr 70.8 | 70.3 | 73.3 725 | 75.9 77.0 69.3 | 755
electr—books 70.7 | 62.5 73 72.8 | 75.4 71.0 675 | 74.3
books—kitchn 745 | 76.3 | 73.5 77.8 | 78.9 78.0 76.5 | 81.0
kitchn—books 709 | 66.5 | 67.3 70.3 | 68.6 69.8 66 72.8
dvds—electr 73.0 | 73.2 | 73.5 755 | 74.1 75.3 71.2 | 76.5
electr—dvds 70.6 | 66.3 | 64.8 69.3 | 76.2 73.5 63.3 | 73.0
dvds—kitchn 740 | 755 | 78.3 80.5 | 81.4 79.0 78.25 | 82.8
kitchn—dvds 72.7 | 61.8 64 69.5 | 76.9 70.1 60.5 | 72.8
elect—kitchn 84.0 | 73.2 81 86.5 | 85.9 85.0 83.3 | 85.8
kitchn—electr 82.7 | 66.3 81 82.8 | 86.8 83.0 80.5 | 855
Average improvemenf -1.87 | -6.47 | -3.18| N/A | 1.61 0.33 -4.16 | 2.07
Standard deviation | 3.04 | 4.73 | 2.21 N/A | 3.31 2.03 212 | 1.27

Table 4: Performance of several methods on a sentiment classificatisfetrégarning task. Re-
views of objects of one type are used to train a classifier for reviewsjettshof another
type. The abbreviations in the column names are as follows. Boost: Adaglgosithm,
Perc: Perceptron, mx-ent: maximum entropy, SCL: structural comelgmee learning,
CoBoost: CoBoosting, coPerc: two view Perceptron, PR: this work.bElseaccuracy is
shown in bold for each task. The last two rows of the table show the avé@rggovement
over maximum entropy (the best performing supervised method), and alstatidard
deviation of the improvement.

main transfer. For sentiment classification we will see that our method pesfoomparably with
Structural Correspondence Learning (Blitzer et al., 2006), whichsedban Alternating Structure
Optimization (Ando and Zhang, 2005).

6.4 Experiments

Our first set of experiments is for transfer learning for sentiment cleagn. We use the data
from Blitzer et al. (2007). The two views are generated from a randaincf the features. We
compare our method to several supervised methods as well as CoBodabitig and Singer,
1999), two view Perceptron (Brefeld et al., 2005) and structurakspondence learning (Blitzer
etal., 2007). Results are in Table 4. The column labeled “SCL” containestedsults from Blitzer
et al. (2007), and is not directly comparable with the other methods sincesitsosne extra knowl-
edge about the transfer task to choose auxiliary problems. For all theiégmwomethods we weigh
the total labeled data equally with the total unlabeled data. We regularize the nmaémtvopy
classifiers with a unit variance Gaussian prior. Out of the 12 transfenitgptasks, our method per-
forms best in 6 cases, SCL in 4, while CoBoosting performs best only. dree view Perceptron
never outperforms all other methods. One important reason for thessuoteur method is the
relative strength of the maximum entropy classifier relative to the otherdagpdmethods for this
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particular task. We expect that CoBoosting will perform better than ouraundthsituations where
Boosting significantly out-performs maximum entropy.

The next set of our experiments are on named entity disambiguation. Gisendd already
segmented named entities, we want to predict what type of named entity eaéh oie use the
training data from the 2003 CoNLL shared task (Sang and Meulder) 2088 two views comprise
content versus context features. The content features are iR&stags and character n-grams of
length 3 for all tokens in the named entity, while context features the samerlibtée words before
and after the named entity. We used 2000 examples as test data and rdu@og &s unlabeled
(train) data. Table 5 shows the results for different amounts of labelgddeta. For this data,
we choose the variance of the Gaussian prior as well as the relativetingigh the labeled and
unlabeled data by cross validation on the train set. In order to test whegreavhntage our method
gets is from the joint objective or from the use of agmep,), which is an instance of logarithmic
opinion pools, we also report the performance of using dgree,) when the two views; and
p2 have been trained only on the labeled data. In the column labeled pagveesee that for this
data set the benefit of our method comes from the joint objective functibarrthan from the use
of logarithmic opinion pools.

Data size| mx-ent| agreg | PR | RRE
500 740 | 744 | 76.4| 9.2%
1000 80.0 | 80.0 | 81.7 | 8.5%
2000 83.4 | 83.4 | 84.8| 8.4%

Table 5: Named entity disambiguation. Prior variance amhosen by cross validation. aggee
refers to performance of two view model before first iteration of EM. RREeduction in
error relative to error of MaxEnt model.

In order to investigate the applicability of our method to structured learningpply & to the
shallow parsing task of noun phrase chunking. We our experimentsnatieeoEnglish training
portion of the CoNLL 2000 shared task (Sang and Buchholz, 2000)sélgt 500 sentences as
test data and varying amounts of data for training; the remainder was sis@tbeled (train) data.
We use content and context views, where the content view is the cuwvoedtand POS tag while
the context view is the previous and next words and POS tags. We riegulae CRFs with a
variance 10 Gaussian prior and weigh the unlabeled data so that it hasribeatal weight as the
labeled data. The variance value was chosen based on preliminarjynesspisrwith the data. Table
6 shows the F-1 scores of the different models. We compare our methoshém@lithic CRF as
well as averaged Perceptron the two view Perceptron of Brefeld &2Q15§ with averaging. The
Perceptron models were trained for 20 iterations. Preliminary experimemtstbat performance
on held out data does not change after 10 iterations so we believe the madelsomverged. Both
two view semi-supervised methods show gains over the correspondingtudbrvised method for
10-100 sentences of training data, but do not improve further as theraofdabeled data increases.
The method presented in this paper out-performs two view Perceptrontivi@mount of labeled
data is very small, probably because regularized CRFs perform bettePgraeptron for small
amounts of data. As the number of training sentences increases, two vieapfen performs
as well as our method, but at this point it has little or no improvement over thesiupervised
Perceptron.
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size | CRF | SAR(RRE) || Perc| coPerc
10 | 73.2 | 78.2(19%) || 69.4| 71.2
20 | 79.4 | 84.2(23%) || 74.4| 76.8
50 | 86.3 | 86.9 (4%) | 80.1| 84.1
100 | 88.5| 88.9 (3%) || 86.1| 88.1
200 | 89.6 | 89.6 (0%)|| 89.3| 89.7
500 | 91.3 | 90.6 (-8%)|| 90.8| 90.9
1000 | 91.6 | 91.1 (-6%)| 91.5| 91.8

Table 6: F-1 scores for noun phrase chunking with context/contensviéest data comprises 500
sentences, with 8436 sentences divided among labeled and unlabelathteaiifhe best
score is shown in bold for each train data size.

7. Cross Lingual Projection

For English and a handful of other languages, there are large, wedkated corpora with a variety
of linguistic information ranging from named entity to discourse structure ottumhately, for the
vast majority of languages very few linguistic resources are availabie.sithation is likely to per-
sist because of the expense of creating annotated corpora thaerkogliristic expertise (Abeillé,
2003). On the other hand, parallel corpora between many resoaadgmguages and resource-
rich languages are ample, motivating recent interest in transferring lirgytesources from one
language to another via parallel text.

Dependency grammars are one such resource. They are usdandoage modeling, textual
entailment and machine translation (Haghighi et al., 2005; Chelba et al.; Q@K et al., 2005;
Shen et al., 2008), to name a few tasks. Dependency grammars arelpargoee robust to transfer
than constituent grammars, since syntactic relations between aligned ipatalel sentences are
better conserved in translation than phrase structure (Fox, 2002; Halta 2005). The two main
challenges to accurate training and evaluation from aligned bitext arerr@k¥ in word alignments
and source language parses, (2) unaligned words due to non-liteliatant translation.

Hwa et al. (2005) proposed to learn generative dependency gramsiagCollins’ parser (Collins,
1999) by constructing full target parses via projected dependeri@esddress challenge (1), they
introduced on the order of one to two dozen language-specific tramsfion rules. To address
challenge (2), they used a set of tree-completion rules. We presenaheailternative approach to
dependency grammar transfer. Our approach uses a single, intuitigcerRaint to guide gram-
mar learning. With this constraint, we avoid the need for complex tree completies and many
language-specific rules, yet still achieve acceptable parsing agcurac

It should be noted that while our source of supervision, a bitext, is the santleat of Hwa
et al. (2005), our learning method is more closely related to that of Druak €2009). They use
the GE framework to train a dependency parser. Their source of\gsipercomes in the form of
corpus-wide expected values of linguistic rules provided by a linguisticrimdiot.

In what follows, X will indicate parallel part-of-speech tagged sentences in a bitext gorpus
along with a dependency parse of the source langu¥geill indicate the dependency parses for
the target language sentences.
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El sector avicola tiene caracteristicas muy especificas .

The poultry sector has very specific characteristics .
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Figure 8: (a) An example word-aligned sentence pair with perfectly pegedependencies. (All
dependency edges are conserved in this case.) (b) Overview ofamnr induction
approach via bitext: the source (English) is parsed and word-alignedtavgbt; after
filtering, projected dependencies define constraints over targettpeesspace, providing
weak supervision for learning a target grammar.

7.1 Approach

Figure 8(a) shows an aligned sentence pair example where depersdamcperfectly “conserved
across the alignment. An edge from English paretd child c is called conserved if worg aligns
to word p’ in the second language aligns toc’ in the second language, apis the parent ot’.
Note that we are not restricting ourselves to one-to-one alignmentsfhergy’, andc’ can all also
align to other words. Unfortunately the sentence in Figure 8(a) is highlguaiin its amount of
dependency conservation, so we need to do more than directly traosareed edges to get good
parsing accuracy.

The key to our approach is a single PR constraint, which ensures thatgbeted proportion
of conserved edges in a sentence pair is at lgg#he exact proportion we used was 0.9, which
was determined using unlabeled data as described in the experiments sepiedifically, leiCy
be the set of directed edges projected from English for a given semenithen given a parsg,
the proportion of conserved edgesg,y) = |071X\ Yyey 1(y € Cx) and the expected proportion of
conserved edges under distributipfy | x) is

Epl(x.y)] = ,CX1| 3 oy 1,
ye

Consider how this constraint addresses errors in word alignment ancedanguage parses, chal-
lenge (1) from above. First, note that we are constraining groupsgefsachther than a single edge.
For example, in some sentence pair we might find 10 edges that have bgboiatslaligned and
can be transferred. Rather than requiring our target languagetparsetain each of the 10 edges,
we require that the expected number of edges from this set is at lepsTQi® gives the parser free-
dom to have some uncertainty about which edges to include, or alternativelyose to exclude
some of the transferred edges.

Our constraint does not address unaligned words due to non-liteditant translation, chal-
lenge (2), as directly. Yet, we find that the constraint sufficiently limits theibigion over possible
parses of unaligned words, such that the parser still makes reaschaides for them. It is also
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. . Basic Bi-gram Features In Between POS Features
Basic Uni-gram Features

, _ X;-word, X;-pos,X;-word, X;-pos X;-pos,b-pos,x;j-pos
X :xvvg:g,x.-pos Xi-pOS,X; -word,xjj—pos J | |
Q-pos Xi-word, Xj-word, Xj-pos Surrounding Word POS Features
Xi-word, x;-pos X-word, X;-pos,X;-pos Xi-P0s,Xi-pos+1x;-pos-1,Xj-pos
xj-—word, ! Xi-word, X;-pos,X;-word Xi-pos-1,X-pos,X;-pos-1,Xj-pos
xJ-—pos xi-word, xj-word Xi-pOS,X;-POS+1 X;-pos,X;-pos+1

! X{-POS,X;-pos Xi-pos-1,X-pos,X;-pos,Xj-pos+1

Table 7: Features used by the MSTParser. For each @dgex;-word is the parent word and -
word is the child word, analogously for POS tags. The +1 and -1 denetegding and
following tokens in the sentence, whitedenotes tokens betweenandx;.

worth noting that if we wished to more directly address challenge (2), wiel @ald additional con-
straint features to the PR framework. For example, it seems intuitive thhagjuee words might
tend to be leaves (e.g., articles that are dropped in some languages bubtioérs). Thus, one
constraint we could enforce would be to restrict the number of childremaligned words to fall
below some threshold.

For both models, we compute the projection onto the constraint set using a §meearch.
This is possible since there is only one constraint per sentence and #teagtis do not interact.

At a high level our approach is illustrated in Figure 8(b). A parallel celipword-level aligned
using the method described in Section 5, where we train an alignment model ugiRFsymmetry
constraints. The source (English) is parsed using a dependen@r PsicDonald et al., 2005).
Then, the filtering stage eliminates low-confidence alignments such as nwenbt@lignments,
restricts the training set to exclude possible sentence fragments, andsfatievimethod of Klein
and Manning (2004) in stripping out punctuation. We then learn a probabpisrsing model using
PR. In our experiments we evaluate the learned models on dependernugnkedNivre et al.,
2007).

7.2 Parsing Models

We explored two parsing models: a generative model used by sevéharadior unsupervised
induction and a discriminative model previously used for fully supervisaditrg.

The discriminative parser is based on the edge-factored model ancbfeatthe MSTParser (Mc-
Donald et al., 2005). The parsing model defines a conditional distribption| x) over each pro-
jective parse treg for a particular sentence parameterized by a vectér The probability of any
particular parse is

po(y | ) O[]0,
yey

wherey is a directed edge contained in the parse yraedf is a feature function. In the fully super-
vised experiments we run for comparison, parameter estimation is perfosnstoldnastic gradient
ascent on the conditional likelihood function, similar to maximum entropy modet®mditional
random fields. One needs to be able to compute expectations of the fégguxg¢sinder the dis-
tribution pg(y | X). A version of the inside-outside algorithm (Lee and Choi, 1997) perfahiss
computation. Viterbi decoding is done using Eisner’s algorithm (Eisn&6)L9
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We also used a generative model based on dependency model withevidézio and Manning,
2004). Under this model, the probability of a particular parsed a sentence with part-of-speech
tagsx is given by

Pa(Y,X) = Proot(r (X)) -

( |_| pﬁstop(YpaYdaVy) pchild(YpaYdJC)) :
yey

( |_| pStOp(Xv left,v) pStOp(Xu right, Vr))

XeX

wherer (x) is the part-of-speech tag of the root of the parse yreeis an edge from parery, to
childy; in directionyy, either left or right, andy, indicates valency—false ¥f, has no other children
further from it in directionyy thany, true otherwise. The valencigs/v; are marked as true ¥has
any children on the left/right iy, false otherwise.

We regularize the models by parameter pridog p(6) = R(6), wherep(0) is Gaussian for the
discriminative model and Dirichlet for the generative.

7.3 Experiments

We evaluate our approach by transferring from an English parseet¢ran the Penn treebank to
Bulgarian and Spanish. We evaluate our results on the Bulgarian andsBganpora from the
CoNLL X shared task. The Bulgarian experiments transfer a parser Eoglish to Bulgarian,
using the OpenSubtitles corpus (Tiedemann, 2007). The Spanish experinamsfer from English
to Spanish using the Spanish portion of the Europarl corpus (Koel¥g)20-or both corpora,
we performed word alignments with the open source PostCAT (Graga eD@Bpptoolkit. We
used the Tokyo tagger (Tsuruoka and Tsuijii, 2005) to POS tag the Engkshgpoand generated
parses using the first-order model of McDonald et al. (2005) with ptiggedecoding, trained on
sections 2-21 of the Penn treebank with dependencies extracted usihgatthegules of Yamada
and Matsumoto (2003). For Bulgarian we trained the Stanford POS tafm#afova et al., 2003)
on the Bulgtreebank corpus from CoNLL X. The Spanish Europarl deatss POS tagged with
the FreeLing language analyzer (Atserias et al., 2006). The discrimenaiddel used the same
features as MSTParser, summarized in Table 7. Our model uses cassifire form: the expected
proportion of conserved edges in a sentence pair is atriea20%:1°

In order to better evaluate our method, we construct a baseline inspirdavaaet al. (2005).
The baseline creates a full parse tree from the incomplete and possifiligtomptransferred edges
using a simple random process. We start with no edges and try to addadgata time verifying
at each step that it is possible to complete the tree. We first try to add theetradlsédges in
random order, then for each orphan node we try all possible pateotts ih random order). We
then use this full labeling as supervision for a parser. Note that this basehmery similar to the
first iteration of our model, since for a large corpus the different remdboices made in different
sentences tend to smooth each other out. We also tried to create rules fdopti@m of orphans,
but the simple rules we tried added bias and performed worse than the bageliaport.

10. We chose in the following way: We split the unlabeled parallel text into two portions. Weée models with
differentn on one portion and ran it on the other portion. We chose the model with thedtifraction of conserved
constraints on the second portion.
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Figure 9: Learning curves. Each graph compares transferring ke ¢reg of edges (baseline) and
transferring all possible projected edges (our method). The models va@redron sen-
tences of length up to 20 and tested on CoNLL train sentences of length QpRadctu-
ation was stripped at train tim@op: Bulgarian.Bottom: SpanishLeft: Discriminative
model. Right: Generative model. The non-monotonicity of the (such as bottom left)
is because each point is based on a single random sample of sentehéesantdiom
selection can greatly affect performance when the number of sentisraraall.

7.3.1 RESULTS

Models are evaluated based on attachment accuracy—the fraction d$ awssigned the correct
parent. Figure 9 shows that models generally improve with more transfedta. It also shows
our method consistently outperforms the baseline. Note that each point éngtegshs is based on
a single random subsample of the data, which leads to some non-monotonicigyl@ftthalf of
some of the curves. The exact accuracy numbers for the 10k traimenses point of Figure 9
are given in Table 8. Link-left baselines for these corpora are mucbrlo88.8% and 27.9% for
Bulgarian and Spanish respectively.

7.3.2 (ENERATIVE PARSER

The generative model we use is a state of the art model for unsupepéassdg. Before evaluating,
we smooth the resulting models by addierg® to each learned parameter, merely to remove the
chance of zero probabilities for unseen events. (We did not botheradhigwvalue at all as it makes
very little difference for final parses.) Unfortunately, we found gatiee model performance was
disappointing in the unsupervised setting. Using the initialization procedome Kiein and Man-
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Figure 10: Posteriors of two Spanish sentences from Europarl. Theemnon each edge indicates

the edge’s posterior probability. Edges with probability less than 0.25 drghoavn.
Darker (more saturated) edges are higher probability. Green (witrdbaxeber) in-
dicates a correct edge, red (no box) an incorrect. Dotted edgesmrserged.(a) The
gold source and target parses and their alignm@tUnsupervised model initialized
as per Klein and Manning (2004) and trained for 100 EM iteratigosPR projection
applied to the posteriors of the middle figure, forclBgC] > C+n = 3x0.9, whereC

is the number of conserved edges.
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Discriminative Generative
Bulgarian Spanish Bulgarian Spanish
Baseline 63.8 67.6 66.5 68.2
Post.Reg| 66.9 70.6 67.8 69.5

Table 8: Accuracy values at the 10k training sentences point of Figure 9

ning (2004), the maximum unsupervised accuracy it achieves is 55.4Btufgarian and 41.7% for

Spanish, and these results are not stable. Changing the initialization pasaordtaining sample

drastically affects the results, even for samples with several thousatehses. But when we use
the transferred information to constrain the learning, EM stabilizes andvastieuch better perfor-

mance, also beating the Hwa et al. (2005)-inspired baseline. With thedrestsinformation, even

setting all parameters equal at the outset does not prevent the maddeaiming the dependency
structure of the aligned language. Figure 10 shows an example of howdptpn helps better

estimate posteriors of two example sentences.

7.3.3 DSCRIMINATIVE PARSER

We trained our discriminative parser for 100 iterations of online EM with asSian prior variance
of 100. The transfer system performs better than the unsupervisetbgjga model and the baseline
model for both Bulgarian and Spanish. We observed another desiraplerfy of the discriminative
model: While the generative model can get confused and perform pabey the training data
contains very long sentences, the discriminative parser does notrdppgeave this drawback. In
fact we observed that as the maximum training sentence length increaspdrsimg performance
also improved.

8. Enforcing Sparsity Structure

Many important NLP tasks (e.g., tagging, parsing, named-entity recognitienlye word classi-
fication. Often, we know a priori that a word type might belong to a small tetasses (where
the class of a specific instance depends on its context) and should eéweg ko any of the many
possible classes outside this small set. The part-of-speech tagging ¢askipdd in the running
example, is one instance of this phenomenon. For example, consider tthéywerrrun”. It might
belong to the verb class in some instances and the noun class in othersyiliuiéver be an ad-
jective, adverb, conjunction, determiner, etc. Learning algorithms typiaayme that each word
type can be associated with any existing tag, even though in reality eachtypards only ever
associated with a few tags.

Unsupervised induction of this latent structure is normally performed usanghh algorithm,
but it has exhibited disappointing performance in previous work. Onekmelvn reason for this is
that EM tends to allow each word to be generated by most POS tags some of thimtigradity, we
would like most words to have a small number of possible POS tags. Prevarihas attempted
to solve this problem by applying the Bayesian approach, using a priorctougage sparsity in
the modelparameters(Gao and Johnson, 2008; Johnson, 2007; Goldwater and Griffiflt§)) 2
However, this approach has the drawback of enforcing sparsity in thegadirection; sparsity
at the parameter level encodes a preference that each POS tag shoerldtg only a few words,
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Figure 11: Anillustration of; //. regularization. Left panel: initial tag distributions (columns) for
15 instances of a word. Middle panel: optimal regularization paramgtezach row
sums too = 20. Right panelq concentrates the posteriors for all instances on the NN
tag, reducing thé; /¢, norm from just under 4 to a little over 1.

instead of encoding that each word should generate only a few POS kge. we explore the
problem of biasing unsupervised models to favor the correct sparsiymbyuraging the model to
achieveposteriorsparsity on unlabeled training data.

8.1 /1/¢. Regularization

We focus on the slack-penalized formulation of Section 2.3 for this task. W&ese the PR con-
straint to encourage each word to be associated with only a few parteedtsplLet the constraint
featureg,i(X,Y) have value 1 whenever th€ occurrence of wordv has part-of-speech tagand
value 0 otherwise. For every word, we would like there to be only a few POS tagsuch that
there are occurrencésvheret has nonzero probability. This can be achieved if it “costs” a lot the
first time an occurrence of a word takes a particular tag, but afterviatdiee occurrences of the
word can receive that same tag for free. More precisely, for eact typew, we would like the
sum {1 norm), over tags, of the maximum 4. norm), over all occurrences; of w, of p(w; | t),
to be small; we wany, ,,max p(w; | t) to be small. Note that in contrast to previous applications,
these constraints are corpus-wide instead of instance-specific. Edional simplicity we will
write @ui(X,Y) = @umi(Y), since any dependence #nis captured in the subscripts @fy;.

Formally, this objective is an example of the slack-penalized formulation (aguiati®n 3), but
for simplicity we will use the notation:

min KL(quHo%c\m st Eq[@uwi] < Ct.

Mapping this notation to the original equation we hafge:= 0 and regularization strength The
constraints on the featureg: and the summation ovey,; together encode th@ /., norm. The
variablesc,; represent thé, norm of @i, Cwt = ||@uti|,_, While the summation is thé norm of
cat- The dual of this objective has a very simple form:

rpza:)x —log (; pe(Y)exp(—)\-(p(Y))> s.t. Z)\Wti <o, (25)
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whereY ranges over assignments to the hidden tag variables for all of the oacesriz the training
data,@(Y) is the vector ofp.i constraint feature values for assignm&nt\ is the vector of dual
parameterd:i, and the primal parameters ayeY' ) O pa(Y)exp(—X- @(Y)).

An advantage of using slack penalties in this case isfhidt, as a slack constraint in the primal
would lead to a non-differentiable dual penalty term, which somewhat corgsicgtimization.
Using a slack penalty makes sparsity regularization a primal penalty, yieldialgstmplex con-
straints, solvable efficiently via projected gradient, as described bydkar41999). Note that the
simplex constraints in Equation 25 can be interpreted a&.afh norm, which is the dual of the
01/ leo.

Figure 11 illustrates how th@ /¢., norm operates on a toy example. For simplicity suppose we
are only regularizing one word and our mogbglis just a product distribution over 15 instances of
the word. The left panel in Figure 11 shows the posteriors upglewe would like to concentrate
the posteriors on a small subset of rows. The center panel of the fijares the\ values deter-
mined by Equation 25, and the right panel shows the projected distribgitiwhich concentrates
most of the posterior on the bottom row. Note that we are not requiring thtepars to be sparse,
which would be equivalent to preferring that the distribution is peakatgrawe want a word to
concentrate its tag posterior on a few tags across all instances of the Wmaoieked, most of the
instances (columns) become less peaked than in the original posterior topaléd@rior mass to
be redistributed away from the outlier tags. Since they are more numerauththautliers, they
moved less. This also justifies only regularizing relatively frequent ewermisr model.

8.2 Results

In this section we present an empirical comparison of first-order HMNiseidawith three different
methods: classic EM (EMY,1/¢.. PR (Sparse), and Bayesian estimation using a variational ap-
proximation described in Johnson (2007) and Gao and Johnson (RQCEBY)). Models are trained
and tested on three different corpora: the Wall Street Journal patitthre Penn treebank (Marcus
et al., 1993) using a reduced set of 17 tags (Smith et al., 2005) (PTBE/Bosque subset of the
Portuguese Floresta Sinta(c)tica Treebank (Afonso et al., 20082d for the ConLL X shared task
on dependency parsing (PT-CoN[&)and the Bulgarian BulTreeBank (Simov et al., 2002) (Bul-
Tree) with 12 coarse tags. All words that occurred only once welaaeg by the token “unk”. To
measure model sparsity, we compute the avefagé, norm over words occurring more than 10
times; the label ‘L1LMax’ denotes this measure in figures. Table 9 givéiststa for each corpus
as well as the sparsity for a first-order HMM trained on the labeled data.

Following Gao and Johnson (2008), the parameters were initialized witheaidpsE-step” as
follows: we filled the expected count matrices with numbessX x U (0,1), whereU(0,1) is a
random number between 0 and 1 axXds a parameter. These matrices are then fed to the M-
step; the resulting “random” transition and emission probabilities are uselddirst real E step.
For VEM X was set to 0.0001 (almost uniform) since this showed a significant improteémen
performance. On the other hand EM showed less sensitivity to initializatiahywanusedX = 1
which resulted in the best results. The models were trained for 200 iterasdoager runs did not
significantly change the results. For VEM we tested 4 different prior coatioins based on the
results of Johnson (2007); in later work Gao and Johnson (2008)damed a wider range of values

11. The subset can be foundrat p: / / www. | i nguat eca. pt/ Fl oresta/ .
12. The task can be foundfatt p: / / next ens. uvt. nl/~conl | /.

2039



GANCHEYV, GRACA, GILLENWATER AND TASKAR

Types Tokens Unk Tags/;/lw
PTB17 23768 | 950028, 2% 17| 1.23
PT-Conll | 11293 | 206678| 8.5% 22| 1.14
BulTree | 12177 | 174160| 10% 12| 1.04

Table 9: Corpus statistics. All words with only one occurrence wheraced by the ‘unk’ token.
The third column shows the percentage of tokens repladed(., is the value of the
sparsity for a fully supervised HMM trained in all available data.

but did not identify definitely better choices. Sparse was initialized with thenpaters obtained by
running EM for 30 iterations, followed by 170 iterations of the new trainiracpdure. Predictions
were obtained using posterior decoding since this consistently showedismedvements over
Viterbi decoding.

We compare the models by measuring the mutual information between the distriitidden
states and the distribution of the truth. Ideally, a perfect method would hatgahinformation
equal to the entropy of both distributions. The farther the distribution thatthaderoduces is
from the truth the smaller the information gain is. We also evaluate the accurt®yraodels using
two established mappings between hidden states and POS1alglsiny) maps each hidden state
to the tag with which it co-occurs the mo4t1 (Haghighi and Klein, 2006) greedily picks a tag for
each state under the constraint of never using the same tag twice. THis r@sun approximation
of the optimal 1-1 mapping. If the numbers of hidden states and tags areersarie, some hidden
states will be unassigned (and hence always wrong) or some tagsedbtinsall our experiments
the number of hidden states is the same as the number of POS tags.

Figure 12 (Top Left) shows mutual information between the hidden state disbribof each
method and the truth. The entropy of the true distribution are: BulTree 3BEORILL 3.49 and
PTB17 3.22. Sparse is the method that achieves the biggest informatiorcgzse all corpora, and
is not particularly sensitive to the strength of regularization used. Iniegds VEM often has the
smallest/; /.., even though mutual information is often worst than EM.

Figure 12 (Top Right) shows the different average values of the L Matistics for each
method across corpora. We see that both VEM and Sparse achieve oBlyé/., close to the gold
standard, on the other hand EM as expected as bigger values whichreotife intuition that EM
allows each word to be generated by most of the possible POS tags.

Figure 12 (Bottom Left) shows errors for all methods on the differenpa@@ after 10 random
initializations using the 1-Many mapping. For both VEM and Sparse we picknpater settings
resulting in the best average performance. A first conclusion is thag tisev, /¢, constraint
consistently and significantly improves the results when compared with thetathenethods.

Figure 12 (Bottom Right) shows the same errors for the 1-1 mapping. In disis Sparse
still beats the EM but does not always outperform VEM. One reasothfetbehavior is that this
metric is very sensitive to the number of word types associated with eacmistlte. VEM tends
to encourage some large hidden states with many word types, which isglefeising the 1-1
mapping for large word categories such as nouns. On the other hamseSpads to spread the
nouns over 4 different hidden states. This difference is particuladgqaunced for the condensed
tag sets (PTB17, PT-CoNLL) where different kinds of nouns are ginto one large tag. Also this
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Figure 12: (Top Left) Mutual information in bits between gold tag distributiod hiilden state
distribution. The maximum is the entropy of the gold set (BulTree 3.05, PTECoN
3.49 and PTB17 3.22), (Top Right) /¢ value, and average (Bottom Left) 1-Many
error, (Bottom Right) 1-1 error over 10 different runs (same seedd tor each model)
for 200 iterations. Error bars are standard deviation for the 10 rudismddels are
first order HMMs: EM trained using expectation maximization, VEM trained gisin
variational EM using 0.1 state to state prior and (01,0.0001) observation Bparse
trained using PR with constraint strengtlk= 10,32 100.

difference is bigger for VEM when the observation prior is set to biggéres (0.1), leading at the
same time to worse results in 1-Many mapping.

9. Conclusion

In this paper we have presented posterior regularization (PR), a teehfoq regularizing mod-
els by encoding prior knowledge in constraints on model posteriors. Oalglogithmic side, we
have shown that PR can be solved efficiently in dual form, and that thiarégation can be easily
incorporated into a variant of the classical EM optimization method. In relagRimilar frame-
works, we have clarified its main advantages: faster optimization speed witbateto generalized
expectation (Mann and McCallum, 2007, 2008), and greater distributistiahation accuracy with
respect to constraint-driven learning (Chang et al., 2007). To theobesr knowledge, we are the
first to link all these learning frameworks by explicitly stating a sense in whiep &l approximate
the Bayesian perspective that motivates Liang et al. (2009). An integestanue for future work
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includes an exploration of the tradeoff between computational complexitaeadacy of the dif-
ferent approximations presented in this and related work (Figure 4)ex@mple, is there a large
performance drop as we go from GE to PR and from PR to CODL, or areatiegional and MAP
approximations accurate in practice?

In addition to discussing PR’s theoretical potential, we have demonstrateil kiras up to
this potential in a wide variety realistic applications. The applications we fonug this paper
are word alignment, multi-view learning, dependency parsing, and pafedch tagging. Yet PR
can express such a wide variety of prior knowledge that can be ethdndéinctions of model
posteriors, and there remains a vast array of unexplored possibieagiops for this technique.

In addition to using PR in other applications, we would like to investigate altemafitimiza-
tion methods. The main optimization bottleneck that PR implementations encountenigsingie
time required for projecting the posterior distribution into the constrained passpace. Each
evaluation of the objective or its gradient requires inference in the otigiodel. One direction for
exploration is the use of second order or approximate second-ortieization methods. Another
potential direction is to use approximate inference in some parts of the optimiztaticexample
fully factored variational inference. Finally, for applications where saomstraints span multiple
instances, but others do not not, it would be interesting to combine onlinleaald methods.

A last key extension to the current PR work is to explore the case whetistraint set),
is not easily specified using linear constraints on some constraint fegiur€bus far we have
only developed theory and applications for linear constraints. It woulthteeesting to explore
applications and derive efficient learning methods when the constramiwalinear, for example,
applications with semi-definite or polynomial constraints.
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Appendix A. Scaling the Strength of PR

This appendix describes how to optimize a version of our objective withdgalsterior regular-
ization strength. In this case, we will use a modified EM algorithm that maximizes:

F'(0,8) = L(8) —aKL (a(Y) [ pe(Y | X))  stgeQ

wherea € [0, 1]. The optimization procedure closely follows the one in Section 2.6. Wheonperf
ing the M-step, we use a mixture of the projected postefamsd the model posteriogs (Y |X) to
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update the model parameters. The updated EM algorithm is:
E’—step: maxF’(q,6) = minKL (a(Y) || ps(Y X)),
q qgeQ
M’ — step: meaxF’(q, 0) = meax(l— a)Ep, [logps(X,Y)]+aEq[logps(X,Y)].

Note that theE’-step is identical to the one in Equation 8.

Appendix B. Proof of Proposition 2.1

The modified E-step involves a projection step that minimizes the Kullback-Lelhergence:

argmin KL (GY) | pa(YX)) st EoXY)l-b<E [Elly<e
g,

Assuming the seQ = {q(Y) : 3 : Eq[@(X,Y)] b <&; |[|€||s < &} is non-empty, the correspond-
ing Lagrangian is

in L(g(Y).E.\
A20650y qir)E @), &:A.0Y),

where

L(a,&,A,a,y) =KL (a(Y) [| pe(Y[X))  +A- (Eq[@(X,Y)]—b—&)

+a([[gllg—e) +V<ZQ(Y)—1> :

In order to compute the dual of this Lagrangian, we first represent
all&llg = mnaxE~r] st |[nllg <a.
This results in a variational Lagrangian

max max min L(q(Y),& A,a,y,n),
A>0,0>0y ”nHB*SG q(Y).E (q( ) Vr])

with L(q(Y),&,A,a,y,n) defined as

L(a,&A,a,y,n) = KL (a(Y) I pe(Y[X))  +A-(Eq[@(X,Y)] =b—¢)

+&-n—ae +V<ZQ(Y)1>,

logq(Y)+21—logpe(Y|X)+A-@X,Y)+y=0

oL(a(Y).&A.a,y,n)

0q(Y)
_ Pe(Y[X)exp(—A - ¢(X,Y))
= qY)= cexpy) ,
aL(Q(Y)vza}\,G;Vﬂ) — ni_)\i :0 s n:)\ (26)

0¢;
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Note that Equation 26 implies that we have the constrgikifz. < a and also the positive and
negativeA - & cancel each other out. PluggingY), n = A in L(q(Y),&,A,a,y,n) and taking the
derivative with respect tg

ALay) o poYX)em A -0X.Y) |
oy _Z eexp(y) 1=0
. y—log (zv pe(YIX)ezp(—A-cp(x,z))> '

From there we can simplifg(Y) = pe(Y‘x)exg(;M"(x’Y)) whereZy, = Sy pa(Y|X) exp(—A- @(X,Y))
ensures thag(Y) is properly normalized. Plugginginto L(A, a,y)

L(A,a) = —log(Zy) —b-A—ae.
Now our objective is:

max —log(Zy)—b-A—ae st Al <a.
\max 9(Zy) [[Aflg: <

We can analytically see that the optimum of this objective with respectda = [|A[|5. and placing
this inL(A, a) we get the dual objective:

DualE': argmax —b-A—log(Zy) —€l[[|s-
A>0

as desired.
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