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Abstract
This paper develops algorithms to train support vector machines when training data are distributed
across different nodes, and their communication to a centralized processing unit is prohibited due
to, for example, communication complexity, scalability, or privacy reasons. To accomplish this
goal, the centralized linear SVM problem is cast as a set of decentralized convex optimization sub-
problems (one per node) with consensus constraints on the wanted classifier parameters. Using
the alternating direction method of multipliers, fully distributed training algorithms are obtained
without exchanging training data among nodes. Different from existing incremental approaches, the
overhead associated with inter-node communications is fixed and solely dependent on the network
topology rather than the size of the training sets availableper node. Important generalizations to
train nonlinear SVMs in a distributed fashion are also developed along with sequential variants
capable of online processing. Simulated tests illustrate the performance of the novel algorithms.1

Keywords: support vector machine, distributed optimization, distributed data mining, distributed
learning, sensor networks

1. Introduction

Problems calling fordistributed learningsolutions include those arising when training data are
acquired by different nodes, and their communication to a central processing unit, often referred to
as fusion center (FC), is costly or even discouraged due to, for example, scalability, communication
overhead, or privacy reasons. Indeed, in applications involving wireless sensor networks (WSNs)
with battery-operated nodes, transferring each sensor’s data to the FCmaybe prohibited due to
power limitations. In other cases, nodes gathering sensitive or private information needed to design
the classifier may not be willing to share their training data.

Forcentralized learningon the other hand, the merits of support vector machines (SVMs) have
been well documented in various supervised classification tasks emerging inapplications such as
medical imaging, bio-informatics, speech, and handwriting recognition, to name a few (Vapnik,
1998; Scḧolkopf and Smola, 2002; El-Naqa et al., 2002; Liang et al., 2007; Ganapathiraju et al.,
2004; Li, 2005; Markowska-Kaczmar and Kubacki, 2005). Centralized SVMs are maximum-margin
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linear classifiers designed based on a centrally available training set comprising multidimensional
data with corresponding classification labels. Training an SVM requires solving a quadratic opti-
mization problem of dimensionality dependent on the cardinality of the training set. The resulting
linear SVM discriminant depends on a subset of elements from the training set, known as support
vectors (SVs). Application settings better suited for nonlinear discriminants have been also con-
sidered by mapping vectors at the classifier’s input to a higher dimensionalspace, where linear
classification is performed. In either linear or nonlinear SVMs designed withcentrally available
training data, the decision on new data to be classified is based solely on the SVs.

For this reason, recent designs ofdistributed SVMclassifiers rely on SVs obtained from local
training sets (Flouri et al., 2006, 2008; Lu et al., 2008). These SVs obtained locally per node are
incrementally passed on to neighboring nodes, and further processed at the FC to obtain a discrimi-
nant function approaching the centralized one obtained as if all training sets were centrally available.
Convergence of theincrementaldistributed (D) SVM to the centralized SVM requires multiple SV
exchanges between the nodes and the FC (Flouri et al., 2006); see alsoFlouri et al. (2008), where
convergence of a gossip-based DSVM is guaranteed when classes are linearly separable. Without
updating local SVs through node-FC exchanges, DSVM schemes can approximate but not ensure
the performance of centralized SVM classifiers (Navia-Vazquez et al., 2006).

Another class of DSVMs deals withparallel designs of centralized SVMs—a direction well
motivated when training sets are prohibitively large (Chang et al., 2007; Doand Poulet, 2006; Graf
et al., 2005; Bordes et al., 2005). Partial SVMs obtained using small training subsets are combined
at a central processor. These parallel designs can be applied to distributed networked nodes, only if
a central unit is available to judiciously combine partial SVs from intermediate stages. Moreover,
convergence to the centralized SVM is generally not guaranteed for anypartitioning of the aggregate
data set (Graf et al., 2005; Bordes et al., 2005).

The novel approach pursued in the present paper trains an SVM in afully distributedfashion that
does not require a central processing unit. The centralized SVM problem is cast as a set of coupled
decentralized convex optimization subproblems with consensus constraints imposed on the desired
classifier parameters. Using the alternating direction method of multipliers (ADMoM), see, for
example, Bertsekas and Tsitsiklis (1997), distributed training algorithms that are provably conver-
gent to the centralized SVM are developed based solely on message exchanges among neighboring
nodes. Compared to existing alternatives, the novel DSVM classifier offers the following distinct
features.

• Scalability and reduced communication overhead. Compared to approaches having dis-
tributed nodes communicate training samples to an FC, the DSVM approach hererelies on
in-networkprocessing with messages exchanged only among single-hop neighboringnodes.
This keeps the communication overhead per node at an affordable level within its neigh-
borhood, even when the network scales to cover a larger geographical area. In FC-based
approaches however, nodes consume increased resources to reach the FC as the coverage area
grows. Different from, for example, Lu et al. (2008), and without exchanging SVs, the novel
DSVM incurs a fixed overhead for inter-node communications per iteration regardless of the
size of the local training sets.

• Robustness to isolated point(s) of failure. If the FC fails, an FC-based SVM design will fail
altogether—a critical issue in tactical applications such as target classification. In contrast, if a
single node fails while the network remains connected, the proposed algorithm will converge
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to a classifier trained using the data of nodes that remain operational. But even if the net-
work becomes disconnected, the proposed algorithm will stay operationalwith performance
dependent on the number of training samples per connected sub-network.

• Fully decentralized network operation. Alternative distributed approaches include incre-
mental and parallel SVMs. Incremental passing of local SVs requires identification of a
Hamiltonian cycle (going through all nodes once) in the network (Lu et al., 2008; Flouri
et al., 2006). And this is needed not only in the deployment stage, but also every time a
node fails. However, Hamiltonian cycles do not always exist, and if they do, finding them is
an NP-hard task (Papadimitriou, 2006). On the other hand, parallel SVM implementations
assume full (any-to-any) network connectivity, and require a centralunit defining how SVs
from intermediate stages/nodes are combined, along with predefined inter-node communica-
tion protocols; see, for example, Chang et al. (2007), Do and Poulet (2006) and Graf et al.
(2005).

• Convergence guarantees to centralized SVM performance. For linear SVMs, the novel
DSVM algorithm isprovably convergentto a centralized SVM classifier, as if all distributed
samples were available centrally. For nonlinear SVMs, it converges to the solution of a mod-
ified cost function whereby nodes agree on the classification decision for a subset of points.
If those points correspond to a classification query, the network “agrees on” the classifica-
tion of these points with performance identical to the centralized one. For other classification
queries, nodes provide classification results that closely approximate the centralized SVM.

• Robustness to noisy inter-node communications and privacy preservation. The novel
DSVM scheme is robust to various sources of disturbance that maybe present in message
exchanges. Those can be due to, for example, quantization errors, additive Gaussian receiver
noise, or, Laplacian noise intentionally added for privacy (Dwork et al.,2006; Chaudhuri and
Monteleoni, 2008).

The rest of this paper is organized as follows. To provide context, Section 2 outlines the central-
ized linear and nonlinear SVM designs. Section 3 deals with the novel fully distributed linear SVM
algorithm. Section 3.1 is devoted to an online DSVM algorithm for synchronousand asynchronous
updates, while Section 4 generalizes the DSVM formulation to allow for nonlinear classifiers using
kernels. Finally, Sections 5 and 6 present numerical results and concluding remarks.

General notational conventions are as follows. Upper (lower) bold face letters are used for
matrices (column vectors);(·)T denotes matrix and vector transposition; theji -th entry of a matrix
( j-th entry of a vector) is denoted by[·] ji ([·] j ); diag(x) denotes a diagonal matrix withx on its main
diagonal; diag{·} is a (block) diagonal matrix with the elements in{·} on its diagonal;| · | denotes set
cardinality;� (�) element-wise≥ (≤); {·} ([·]) a set (matrix) of variables with appropriate elements
(entries);‖·‖ the Euclidean norm;1 j (0 j ) a vector of all ones (zeros) of sizeNj ; IM stands for the
M ×M identity matrix; E{·} denotes expected value; andN (m,Σ) for the multivariate Gaussian
distribution with meanm, and covariance matrixΣ.

2. Preliminaries and Problem Statement

With reference to Figure 1, consider a network withJ nodes modeled by an undirected graph
G(J ,E) with verticesJ := {1, . . . ,J} representing nodes, and edgesE describing links among com-
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Figure 1: Network example where connectivity among nodes, represented by colored circles, is
denoted by a line joining them.

municating nodes. Nodej ∈ J only communicates with nodes in its one-hop neighborhood (ball)
B j ⊆ J . The graphG is assumed connected, that is, any two nodes inG are connected by a (perhaps
multihop) path inG . Notice that nodes do not have to be fully connected (any-to-any), andG is al-
lowed to contain cycles. At every nodej ∈ J , a labeled training setS j := {(x jn,y jn) : n= 1, . . . ,Nj}
of sizeNj is available, wherex jn ∈ X is a p×1 data vector belonging to the input spaceX ⊆ R

p,
andy jn ∈ Y := {−1,1} denotes its corresponding class label.2

GivenS j per nodej, thegoal is to find a maximum-margin linear discriminant functiong(x) in
a distributed fashion, and thus enable each node to classify any new inputvectorx to one of the two
classes{−1,1} without communicatingS j to other nodesj ′ 6= j. Potential application scenarios
include but are not limited to the following ones.

Example 1 (Wireless sensor networks).Consider a set of wireless sensors deployed to infer the
presence or absence of a pollutant over a geographical area at anytime tn. Sensorj measures
and forms a local binary decision variabley jn ∈ {1,−1}, wherey jn = 1(−1) indicates presence
(absence) of the pollutant at the position vectorx j := [x j1, x j2, x j3]

T . (Each sensor knows its
positionx j using existing self-localization algorithms Langendoen and Reijers, 2003.) The goal
is to have each low-cost sensor improve the performance of local detection achieved based on
S j = {([xT

j , tn]
T ,y jn) : n = 1, . . . ,Nj}, and through collaboration with other sensors approach the

global performance attainable if each sensor had available all other sensors data. Stringent power
limitations prevent sensorj to send its setS j to all other sensors or to an FC, if the latter is available.
If these sensors are acoustic and are deployed to classify underwaterunmanned vehicles, divers or
submarines, then low transmission bandwidth and multipath effects further discourage incremental
communication of the local data sets to an FC (Akyildiz et al., 2005).

Example 2 (Distributed medical databases).Suppose thatS j are patient data records stored at a
hospital j. Eachx jn here contains patient descriptors (e.g., age, sex or blood pressure),andy jn is a
particular diagnosis (e.g., the patient is diabetic or not). The objective is to automatically diagnose

2. Although not included in this model for simplicity,K-ary alphabetsY with K > 2 can be considered as well.
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(classify) a patient arriving at hospitalj with descriptorx, using all available data{S j}
J
j=1, rather

thanS j alone. However, a nonchalant exchange of database entries(xT
jn,y jn) can pose a privacy risk

for the information exchanged. Moreover, a large percentage of medical information may require
exchanging high resolution images. Thus, communicating and processing large amounts of high-
dimensional medical data at an FC may be computationally prohibitive.

Example 3 (Collaborative data mining). Consider two different government agencies, a local
agency A and a nation-wide agency B, with corresponding databasesSA andSB. Both agencies
are willing to collaborate in order to classify jointly possible security threats. However, lower clear-
ance level requirements at agency A prevents agency B from granting agency A open access toSB.
Furthermore, even if an agreement granting temporary access to agencyA were possible, databases
SA andSB are confined to their current physical locations due to security policies.

If {S j}
J
j=1 were all centrally available at an FC, then the global variablesw∗ andb∗ describing

thecentralizedmaximum-margin linear discriminant functiong∗(x) = xTw∗+b∗ could be obtained
by solving the convex optimization problem; see, for example, Schölkopf and Smola (2002, Ch. 7)

{w∗,b∗} = arg min
w,b,{ξ jn}

1
2
‖w‖2 +C

J

∑
j=1

Nj

∑
n=1

ξ jn

s.t. y jn(wTx jn +b) ≥ 1−ξ jn ∀ j ∈ J , n = 1, . . . ,Nj

ξ jn ≥ 0 ∀ j ∈ J , n = 1, . . . ,Nj

(1)

where the slack variablesξ jn account for non-linearly separable training sets, andC is a tunable
positive scalar.

Nonlinear discriminant functionsg(x) can also be found along the lines of (1) after mapping
vectorsx jn to a higher dimensional spaceH ⊆ R

P, with P > p, via a nonlinear transformation
φ : X →H . The generalized maximum-margin linear classifier inH is then obtained after replacing
x jn with φ(x jn) in (1), and solving the following optimization problem

{w∗,b∗} = arg min
w,b,{ξ jn}

1
2
‖w‖2 +C

J

∑
j=1

Nj

∑
n=1

ξ jn

s.t. y jn(wTφ(x jn)+b) ≥ 1−ξ jn ∀ j ∈ J , n = 1, . . . ,Nj

ξ jn ≥ 0 ∀ j ∈ J , n = 1, . . . ,Nj .

(2)

Problem (2) is typically tackled by solving its dual. Lettingλ jn denote the Lagrange multiplier
corresponding to the constrainty jn(wTφ(x jn)+b) ≥ 1−ξ jn, the dual problem of (2) is:

max
{λ jn}

−
1
2

J

∑
j=1

J

∑
i=1

Nj

∑
n=1

Ni

∑
m=1

λ jnλimy jnyimφT(x jn)φ(xim)+
J

∑
j=1

Nj

∑
n=1

λ jn

s.t.
J

∑
j=1

Nj

∑
n=1

λ jny jn = 0 (3)

0≤ λ jn ≤C ∀ j ∈ J , n = 1, . . . ,Nj .
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Using the Lagrange multipliersλ∗
jn optimizing (3), and the Karush-Kuhn-Tucker (KKT) optimality

conditions, the optimal classifier parameters can be expressed as

w∗ =
J

∑
j=1

Nj

∑
n=1

λ∗
jny jnφ(x jn),

b∗ =y jn −w∗Tφ(x jn) (4)

with x jn in (4) satisfyingλ∗
jn ∈ (0,C). Training vectors corresponding to non-zeroλ∗

jn’s constitute
the SVs. Once the SVs are identified, all other training vectors withλ∗

jn = 0 can be discarded
since they do not contribute tow∗. From this vantage point, SVs are the most informative elements
of the training set. Solving (3) does not require knowledge ofφ but only inner product values
φT(x jn)φ(xim) := K(x jn,xim), which can be computed through a pre-selected positive semi-definite
kernel K : X × X → R; see, for example, Schölkopf and Smola (2002, Ch. 2). Although not
explicitly given, the optimal slack variablesξ∗jn can be found through the KKT conditions of (2) in
terms ofλ∗

jn (Scḧolkopf and Smola, 2002). The optimal discriminant function can be also expressed
in terms of kernels as

g∗(x) =
J

∑
j=1

Nj

∑
n=1

λ∗
jny jnK(x jn,x)+b∗ (5)

whereb∗ = y jn − ∑J
i=1 ∑Ni

m=1 λ∗
imyimK(xim,x jn) for any SV x jn with λ∗

jn ∈ (0,C). This so-called
kernel trick allows finding maximum-margin linear classifiers in higher dimensional spaces without
explicitly operating in such spaces (Schölkopf and Smola, 2002).

The objective here is to developfully distributedsolvers of the centralized problems in (1) and
(2) while guaranteeing performance approaching that of a centralized equivalent SVM. Although
incremental solvers are possible, the size of information exchanges required might be excessive,
especially if the number of SVs per node is large (Flouri et al., 2008; Lu etal., 2008). Recall that
exchanging all local SVs among all nodes in the network several times is necessary for incremental
DSVMs to approach the optimal centralized solution. Moreover, incrementalschemes require a
Hamiltonian cycle in the network to be identified in order to minimize the communication overhead.
Computing such a cycle is an NP-hard task and in most cases a sub-optimal cycle is used at the
expense of increased communication overhead. In other situations, communicating SVs directly
might be prohibited because of the sensitivity of the information bore, as already mentioned in
Examples 2 and 3.

3. Distributed Linear Support Vector Machine

This section presents a reformulation of the maximum-margin linear classifier problem in (1) to an
equivalent distributed form, which can be solved using the alternating direction method of multipli-
ers (ADMoM) outlined in Appendix A. (For detailed exposition of the ADMoM,see, for example,
Bertsekas and Tsitsiklis, 1997.)

To this end, consider replacing the common (coupling) variables(w,b) in (1) with auxiliary
per-node variables{(w j ,b j)}

J
j=1, and adding consensus constraints to force these variables to agree

across neighboring nodes. With proper scaling of the cost byJ, the proposedconsensus-based
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reformulation of (1) becomes

min
{w j ,b j ,ξ jn}

1
2

J

∑
j=1

∥∥w j
∥∥2

+JC
J

∑
j=1

Nj

∑
n=1

ξ jn

s.t. y jn(wT
j x jn +b j) ≥ 1−ξ jn ∀ j ∈ J , n = 1, . . . ,Nj

ξ jn ≥ 0 ∀ j ∈ J , n = 1, . . . ,Nj

w j = wi , b j = bi ∀ j ∈ J , i ∈ B j .

(6)

From a high-level view, problem (6) can be solved in a distributed fashionbecause each nodej
can optimize only thej-dependent terms of the cost, and also meet all the consensus constraints
w j = wi , b j = bi , by exchanging messages only with nodesi in its neighborhoodB j . What is more,
network connectivity ensures that consensus in neighborhoods enables network-wide consensus.
And thus, as the ensuing lemma asserts, solving (6) is equivalent to solving (1) so long as the
network remains connected.

Lemma 1 If {(w j ,b j)}
J
j=1 denotes a feasible solution of(6), and the graphG is connected, then

problems(1) and (6) are equivalent, that is,w j = w and bj = b ∀ j = 1, . . . ,J, where(w,b) is a
feasible solution of(1).

Proof See Appendix B.

To specify how (6) can be solved using the ADMoM, define for notationalbrevity the aug-
mented vectorv j := [wT

j , b j ]
T , the augmented matrixX j := [[x j1, . . . ,x jN j ]

T ,1 j ], the diagonal label
matrixY j := diag([y j1, . . . ,y jN j ]), and the vector of slack variablesξ j := [ξ j1, . . . ,ξ jN j ]

T . With these
definitions, it follows readily thatw j = (I p+1−Πp+1)v j , whereΠp+1 is a(p+1)× (p+1) matrix
with zeros everywhere except for the(p+ 1, p+ 1)-st entry, given by[Πp+1](p+1)(p+1) = 1. Thus,
problem (6) can be rewritten as

min
{v j ,ξ j ,ω ji}

1
2

J

∑
j=1

vT
j (I p+1−Πp+1)v j +JC

J

∑
j=1

1T
j ξ j

s.t. Y jX jv j � 1 j −ξ j ∀ j ∈ J

ξ j � 0 j ∀ j ∈ J

v j = ω ji , ω ji = vi ∀ j ∈ J , ∀i ∈ B j

(7)

where the redundant variables{ω ji} will turn out to facilitate the decoupling of the classifier pa-
rametersv j at nodej from those of their neighbors at neighborsi ∈ B j .

As in the centralized case, problem (7) will be solved through its dual. Toward this objective, let
α ji1 (α ji2) denote the Lagrange multipliers corresponding to the constraintv j = ω ji (respectively
ω ji = vi), and consider what we term surrogate augmented Lagrangian function

L({v j},{ξ j},{ω ji},{α jik})=
1
2

J

∑
j=1

vT
j (I p+1−Πp+1)v j+JC

J

∑
j=1

1T
j ξ j+

J

∑
j=1

∑
i∈B j

αT
ji1(v j−ω ji )

+
J

∑
j=1

∑
i∈B j

αT
ji2(ω ji−vi)+

η
2

J

∑
j=1

∑
i∈B j

∥∥v j−ω ji
∥∥2

+
η
2

J

∑
j=1

∑
i∈B j

∥∥ω ji−vi
∥∥2

(8)
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where the adjective “surrogate” is used becauseL does not include the set of constraintsW :=
{Y jX jv j � 1 j − ξ j , ξ j � 0 j}, and the adjective “augmented” becauseL includes two quadratic
terms (scaled by the tuning constantη > 0) to further regularize the equality constraints in (7). The
role of these quadratic terms||v j −ω ji ||

2 and||ω ji −vi ||
2 is twofold: (a) they effectstrict convexity

of L with respect to (w.r.t.)ω ji , and thus ensure convergence to the unique optimum of the global
cost (whenever possible), even when the local costs are convex butnot strictly so; and (b) through
the scalarη, they allow one to trade off speed of convergence for steady-state approximation error
(Bertsekas and Tsitsiklis, 1997, Ch. 3).

Consider now solving (7) iteratively by minimizingL in a cyclic fashion with respect to one
set of variables while keeping all other variables fixed. The multipliers{α ji1,α ji2} must be also
updated per iteration using gradient ascent. The iterations required per node j are summarized in
the following lemma.

Lemma 2 The distributed iterations solving(7) are

{v j(t+1),ξ j(t+1)} = arg min
{v j ,ξ j}∈W

L({v j},{ξ j},{ω ji (t)},{α jik(t)}), (9)

{ω ji (t+1)} = arg min
{ω ji}

L({v j(t+1)},{ξ j(t+1)},{ω ji},{α jik(t)}), (10)

α ji1(t+1) = α ji1(t)+η(v j(t+1)−ω ji (t+1)) ∀ j ∈ J , ∀i ∈ B j , (11)

α ji2(t+1) = α ji2(t)+η(ω ji (t+1)−vi(t+1)) ∀ j ∈ J , ∀i ∈ B j . (12)

and correspond to the ADMoM solver reviewed in Appendix A.

Proof See Appendix C.

Lemma 2 links the proposed DSVM design with the convergent ADMoM solver,and thus en-
sures convergence of the novel MoM-DSVM to the centralized SVM classifier. However, for the
particular problem at hand it is possible to simplify iterations (9)-(12). Indeed, simple inspection
of (8) confirms that with all other variables fixed, the cost in (10) is linear-quadratic inω ji ; hence,
ω ji (t + 1) can be found in closed form per iteration, and the resulting closed-form expression can
be substituted back to eliminateω ji from L . Furthermore, Appendix D shows that the two sets
of multipliers α ji1 andα ji2 can be combined into one setα j after appropriate initialization of the
iterations (11) and (12), as asserted by the following lemma.

Lemma 3 Selectingα ji1(0) = α ji2(0) = 0(p+1)×1 as initialization∀ j ∈ J , ∀i ∈ B j , iterations(9)-
(12) reduce to

{v j(t+1),ξ j(t+1)} = arg min
{v j ,ξ j}∈W

L ′({v j},{ξ j},{v j(t)},{α j(t)}), (13)

α j(t +1) = α j(t)+
η
2 ∑

i∈B j

[v j(t +1)−vi(t +1)] ∀ j ∈ J (14)
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whereα j(t) := ∑i∈B j
α ji1(t), andL ′ is given by

L ′({v j},{ξ j},{v j(t)},{α j(t)}) =
1
2

J

∑
j=1

vT
j (I p+1−Πp+1)v j +JC

J

∑
j=1

1T
j ξ j

+2
J

∑
j=1

αT
j (t)v j +η

J

∑
j=1

∑
i∈B j

∥∥∥∥v j −
1
2
[v j(t)+vi(t)]

∥∥∥∥
2

. (15)

Proof See Appendix D.

The optimization problem in (13) involves the reduced LagrangianL ′ in (15), which is linear-
quadratic inv j and ξ j . In addition, the constraint setW is linear in these variables. To solve
this constrained minimization problem through its dual, letλ j := [λ j1, . . . ,λ jN j ]

T denote Lagrange
multipliers per node corresponding to the constraintsY jX jv j � 1 j − ξ j . Solving the dual of (13)
yields the optimalλ j at iterationt + 1, namelyλ j(t + 1), as a function ofv j(t) andα j(t); while
the KKT conditions provide expressions forv j(t + 1) as a function ofα j(t), and the optimal dual
variablesλ j(t + 1). Notwithstanding, the resultant iterations are decoupled across nodes. These
iterations and the associated convergence guarantees can be summarizedas follows.

Proposition 1 Consider the per node iteratesλ j(t), v j(t) andα j(t), given by

λ j(t +1) = arg max
λ j : 0 j�λ j�JC1 j

−
1
2

λT
j Y jX jU−1

j XT
j Y jλ j +

(
1 j +Y jX jU−1

j f j(t)
)T

λ j , (16)

v j(t +1) = U−1
j

[
XT

j Y jλ j(t +1)− f j(t)
]
, (17)

α j(t +1) = α j(t)+
η
2 ∑

i∈B j

[v j(t +1)−vi(t +1)] (18)

whereU j := (1+2η|B j |)I p+1−Πp+1, f j(t) := 2α j(t)−η∑i∈B j
[v j(t)+vi(t)], η > 0, and arbitrary

initialization vectorsλ j(0), v j(0), andα j(0) = 0(p+1)×1. The iteratev j(t) converges to the solution
of (7), call it v∗, as t→ ∞; that is, limt→∞ v j(t) = v∗.

Proof See Appendix E.

Similar to the centralized SVM algorithm, if[λ j(t)]n 6= 0, then[xT
jn,1]T is an SV. Findingλ j(t +

1) as in (16) requires solving a quadratic optimization problem similar to the one thata centralized
SVM would solve, for example, via a gradient projection algorithm or an interior point method; see
for example, Scḧolkopf and Smola (2002, Ch. 6). However, the number of variables involved in
(16) per iteration per node is considerably smaller when compared to its centralized counterpart,
namelyNj versus∑J

j=1Nj . Also, the optimal local slack variablesξ∗j can be found via the KKT
conditions for (13).

The ADMoM-based DSVM (MoM-DSVM) iterations (16)-(18) are summarized as Algorithm
1, and are illustrated in Figure 2. All nodes have availableJC andη. Also, every node computes
its localNj ×Nj matrixY jX jU−1

j XT
j Y j , which remains unchanged throughout the entire algorithm.

Every node then updates its local(p+1)×1 estimatesv j(t) andα j(t); and theNj ×1 vectorλ j(t).
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At iterationt +1, nodej computes vectorf j(t) locally to obtain its localλ j(t +1) via (16). Vector
λ j(t + 1) together with the local training setS j are used at nodej to computev j(t + 1) via (17).
Next, node j broadcasts its newly updated local estimatesv j(t + 1) to all its one-hop neighbors
i ∈ B j . Iterationt + 1 resumes when every node updates its localα j(t + 1) vector via (18). Note
that at any given iterationt of the algorithm, each nodej can evaluate its own local discriminant
functiong(t)

j (x) for any vectorx ∈ X as

g(t)
j (x) = [xT ,1]v j(t) (19)

which from Proposition 1 is guaranteed to converge to the same solution across all nodes ast → ∞.
Simulated tests in Section 5 will demonstrate that after a few iterations the classification perfor-
mance of (19) outperforms that of the local discriminant function obtained based on the local train-
ing set alone. The effect ofη on the convergence rate of MoM-DSVM will be tested numerically in
Section 5.

Figure 2: Visualization of iterations (16)-(18): (left) every nodej ∈ J computesλ j(t +1) to obtain
v j(t + 1), and then broadcastsv j(t + 1) to all neighborsi ∈ B j ; (right) once every node
j ∈ J has receivedvi(t +1) from all i ∈ B j , it computesα j(t +1).

Remark 1 The messages exchanged among neighboring nodes in the MoM-DSVM algorithm cor-
respond to local estimatesv j(t), which together with the local multiplier vectorsα j(t), convey
sufficient information about the local training sets to achieve consensus globally. Per iteration and
per node a message offixed size(p+1)×1 is broadcasted (vectorsα j are not exchanged among
nodes.) This is to be contrasted with incremental DSVM algorithms in, for example, Lu et al. (2008),
Flouri et al. (2006) and Flouri et al. (2008), where the size of the messages exchanged between
neighboring nodes depends on the number of SVs found at each incremental step. Although the
SVs of each training set may be few, the overall number of SVs may remain large, thus consuming
considerable power when transmitting SVs from one node to the next.

Remark 2 Real networks are prone to node failures, for example, sensors in a WSNmay run out of
battery during operation. Thanks to its fully decentralized mode of operation,the novel MoM-DSVM
algorithm guarantees that the remaining nodes in the network will reach consensus as long as the
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Algorithm 1 MoM-DSVM
Require: Randomly initializev j(0), andα j(0) = 0(p+1)×1 for every j ∈ J

1: for t = 0,1,2, . . . do
2: for all j ∈ J do
3: Computeλ j(t +1) via (16).
4: Computev j(t +1) via (17).
5: end for
6: for all j ∈ J do
7: Broadcastv j(t +1) to all neighborsi ∈ B j .
8: end for
9: for all j ∈ J do

10: Computeα j(t +1) via (18).
11: end for
12: end for

node that fails, say jo ∈ J , does not correspond to acut-vertexof G . In this case, the operational
network graphGo :=G− jo remains connected, and thus surviving nodes can percolate information
throughoutGo. Of course,S jo will not participate in training the SVM. If jo is a cut-vertexof G ,
the algorithm will remain operational in each connected component of the resulting sub-graphGo,
reaching consensus among nodes in each of the connected components.

3.1 Online Distributed Support Vector Machine

In many distributed learning tasks data arrive sequentially, and possibly asynchronously. In addition,
the processes to be learned may change with time. In such cases, training examples need to be added
or removed from each local training setS j . Training sets of increasing of decreasing size can be
expressed in terms oftime-varyingaugmented data matricesX j(t), and corresponding label matrices
Y j(t). An online version of DSVM is thus well motivated when a new training examplex jn(t)
along with its labely jn(t) acquired at timet are incorporated intoX j(t) andY j(t), respectively. The
corresponding modified iterations are given by (cf. (16)-(18))

λ j(t +1) = arg max
λ j : 0 j (t+1)�λ j�JC1 j (t+1)

−
1
2

λT
j Y j(t +1)X j(t +1)U−1

j X j(t +1)TY j(t +1)λ j

+
(

1 j −Y j(t +1)X j(t +1)U−1
j f j(t)

)T
λ j , (20)

v j(t +1) = U−1
j

(
X j(t +1)TY j(t +1)λ j(t +1)−2α j(t)+η ∑

i∈B j

[v j(t)+vi(t)]

)
, (21)

α j(t +1) = α j(t)+
η
2 ∑

i∈B j

[v j(t +1)−vi(t +1)]. (22)

Note that the dimensionality ofλ j must vary to accommodate the variable number ofS j elements
at every time instantt. The online MoM-DSVM classifier is summarized as Algorithm 2. For this
algorithm to run, no conditions need to be imposed on how the setsS j(t) increase or decrease. Their
changes can be asynchronous and may comprise multiple training examples atonce. In principle,
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Algorithm 2 Online MoM-DSVM
Require: Randomly initializev j(0), andα j(0) = 0(p+1)×1 for every j ∈ J .

1: for t = 0,1,2, . . . do
2: for all j ∈ J do
3: UpdateY j(t +1)X j(t +1)U−1

j X j(t +1)TY j(t +1).
4: Computeλ j(t +1) via (20).
5: Computev j(t +1) via (21).
6: end for
7: for all j ∈ J do
8: Broadcastv j(t +1) to all neighborsi ∈ B j .
9: end for

10: for all j ∈ J do
11: Computeα j(t +1) via (22).
12: end for
13: end for

the parametersη andC can also become time-dependent. The effect of these parameters will be
discussed in Section 5.

Intuitively speaking, if the training sets remain invariant across a sufficient number of time
instants,v j(t) will closely track the optimal linear classifier. Rigorous convergence analysis of
Algorithm 2 for any given rate of change of the training set goes beyondthe scope of this work.
Simulations will however demonstrate that the modified iterations in (20)-(22) are able to track
changes in the training sets even when these occur at every time instantt.

Remark 3 Compared to existingcentralizedonline SVM alternatives in, for example, Cauwen-
berghs and Poggio (2000) and Fung and Mangasarian (2002), the online MoM-DSVM algorithm
of this section allows seamless integration of both distributed and online processing. Nodes with
training sets available at initialization and nodes that are acquiring their trainingsets online can
be integrated to jointly find the maximum-margin linear classifier. Furthermore, whenever needed,
the online MoM-DSVM can return a partially trained model constructed with examples available to
the network at any given time. Likewise, elements of the training sets can be removed without hav-
ing to restart the MoM-DSVM algorithm. This feature also allows adapting MoM-DSVM to jointly
operate with algorithms that account for concept drift (Klinkenberg and Joachims, 2000). In the
classification context, concept drift defines a change in the true classification boundaries between
classes. In general, accounting for concept drift requires two main steps, which can be easily han-
dled by the online MoM-DSVM: (i) acquisition of updated elements in the trainingset that better
describe the current concept; and (ii) removal of outdated elements from the training set.

4. Distributed Nonlinear Support Vector Machine

In Section 3, problem (1) was reformulated to allow all nodes to consent onv∗. However, applying
an identical reformulation to the nonlinear classification problem in (2) would require updates in
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(16)-(18) to be carried inH . As the dimensionalityP of H increases, the local computation and
communication complexities become increasingly prohibitive.

Our approach to mitigate this well-known “curse of dimensionality” is to enforceconsensus
of the local discriminantsg∗j on a subspace of reduced rankL < P. To this end, we project the
consensus constraints corresponding to (2) and consider the optimizationproblem (cf. (6))

min
{w j ,b j ,ξ j}

1
2

J

∑
j=1

‖w j‖
2 +JC

J

∑
j=1

1T
j ξ j

s.t. Y j(Φ(X j)w j +1 jb j) � 1 j −ξ j ∀ j ∈ J

ξ j � 0 j ∀ j ∈ J

Gw j = Gwi ∀ j ∈ J , i ∈ B j

b j = bi ∀ j ∈ J , i ∈ B j

(23)

whereΦ(X j) := [φ(x j1), . . . ,φ(x jN j )]
T , andG := [φ(χ1), . . . ,φ(χL)]

T is a fat L×P matrix com-
mon to all nodes with preselected vectors{χl}

L
l=1 specifying its rows. Eachχl ∈ X corresponds to a

φ(χl )∈H , which at the optimal solution{w∗
j ,b

∗
j}

J
j=1 of (23), satisfiesφT(χl )w

∗
1 = · · ·= φT(χl )w

∗
J =

φT(χl )w
∗. The projected constraints{Gw j = Gwi} along with{b j = bi} force all nodes to agree

on the value of the local discriminant functionsg∗j (χl ) at the vectors{χl}
L
l=1, but not necessarily for

all x ∈ X . This is the price paid for reducing the computational complexity of (23) to an affordable
level. Clearly, the choice of vectors{χl}

L
l=1, their numberL, and the local training setsS j deter-

mine how similar the local discriminant functionsg∗j are. If G = IP, then (23) reduces to (6), and
g∗1(x) = . . . = g∗J(x) = g∗(x), ∀x ∈ X , but the high dimensionality challenge appears. At the end of
this section, we will provide different design choices for{χl}

L
l=1, and test them via simulations in

Section 5.
Because the cost in (23) is strictly convex w.r.t.w j , it guarantees that the set of optimal vectors

{w∗
j} is unique even whenG is a ‘fat’ matrix (L < P) and/or ill-conditioned (Bertsekas, 1999, Prop.

5.2.1). As in (2), having{w∗
j} known is of limited use, since the mappingφ may be unknown, or if

known, evaluating vectorsφ(x) may entail an excessive computational cost. Fortunately, the result-
ing discriminant functiong∗j (x) admits a reduced-complexity solution because it can be expressed
in terms of kernels, as shown by the following theorem.

Theorem 4 For every positive semi-definite kernel K(·, ·), the discriminant functions g∗j (x) =

φT(x)w∗
j +b∗j with {w∗

j ,b
∗
j} denoting the optimal solution of(23), can be written as

g∗j (x) =
Nj

∑
n=1

a∗jnK(x,x jn)+
L

∑
l=1

c∗jl K(x,χl )+b∗j , ∀ j ∈ J (24)

where{a∗jn} and{c∗jl } are real-valued scalar coefficients.

Proof See Appendix F.

The space of functionsg j described by (24) is fully determined by the span of the kernel function
K(·, ·) centered at training vectors{x jn,n = 1, . . . ,Nj} per node, and also at the vectors{χl}

L
l=1

which are common to all nodes. Thus, similarity of the discriminant functionsg∗j across nodes is
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naturally constrained by the correspondingS j . Theorem 1 also reveals the effect of{χl}
L
l=1 on the

{g∗j}. By introducing vectors{χl}
L
l=1 common to all nodes, a subset of basis functions common to

all local functional spaces is introduced a fortiori. Coefficientsa∗jn andc∗jl are found so that all local
discriminantsg∗j agree on their values at points{χl}

L
l=1. Intuitively, at every node these coefficients

summarize the global information available to the network.
Theorem 1 is an existence result whereby each nonlinear discriminant functiong∗j is expressible

in terms ofS j and{χl}
L
l=1. However, finding the coefficientsa∗jn, c∗jl andb∗j in a distributed fashion

remains an issue. Next, it is shown that these coefficients can be obtained iteratively by applying
the ADMoM solver to (23).

Similar to (7), introduce auxiliary variables{ω ji} ({ζ ji}) to decouple the constraintsGw j = Gwi

(b j = bi) across nodes, andα jik (β jik) denote the corresponding Lagrange multipliers (cf. (8)). The
surrogate augmented Lagrangian for problem (23) is then

L({w j},{ξ j},{ω ji},{α jik},{ζ ji},{β jik})=
1
2

J

∑
j=1

‖w j‖
2+JC

J

∑
j=1

1T
j ξ j+

J

∑
j=1

∑
i∈B j

αT
ji1(Gw j−ω ji )

+
J

∑
j=1

∑
i∈B j

αT
ji2(ω ji−Gwi)+

J

∑
j=1

∑
i∈B j

β ji1(b j−ζ ji )+
J

∑
j=1

∑
i∈B j

β ji2(ζ ji−bi)

+
η
2

J

∑
j=1

∑
i∈B j

∥∥Gw j−ω ji
∥∥2

+
η
2

J

∑
j=1

∑
i∈B j

∥∥ω ji−Gwi
∥∥2

+
η
2

J

∑
j=1

∑
i∈B j

∥∥b j−ζ ji
∥∥2

+
η
2

J

∑
j=1

∑
i∈B j

∥∥ζ ji−bi
∥∥2

.

Following the steps of Lemma 2, and with{α jik} and{β jik} initialized at zero, the ADMoM
iterations take the form

{w j(t+1),b j(t+1),ξ j(t+1)}=arg min
{w j,b j,ξ j}∈W

L ′({w j},{b j},{ξ j},{α j(t)},{β j(t)}), (25)

α j(t+1)=α j(t)+
η
2 ∑

i∈B j

G[w j(t +1)−wi(t +1)], (26)

β j(t+1)=β j(t)+
η
2 ∑

i∈B j

[b j(t +1)−bi(t +1)] (27)

whereL ′ is defined similar to (8),α j(t) as in Lemma 3, andβ j(t) := ∑i∈B j
β ji1(t). The ADMoM

iterations (25)-(27) will not be explicitly solved since iteratesw j(t) lie in the high-dimensional
spaceH . Nevertheless, our objective is not to findw∗

j , but rather the discriminant functiong∗j (x).
To this end, letΓ := [χ1, . . . ,χL]

T , and define the kernel matrices with entries

[K(X j ,X j)]n,m := K(x jn,x jm), (28)

[K(X j ,Γ)]n,l := K(x jn,χl ), (29)

[K(Γ,Γ)]l ,l ′ := K(χl ,χl ′). (30)

From Theorem 1 it follows that each local updateg(t)
j (x) = φT(x)w j(t)+b j(t) admits per iterationt

a solution expressed in terms of kernels. The latter is specified by the coefficients{a jn(t)}, {c jl (t)}
and{b j(t)} that can be obtained in closed form, as shown in the next proposition.
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Proposition 2 Let λ j := [λ j1, . . . ,λ jN j ]
T denote the Lagrange multiplier corresponding to the con-

straintY j(Φ(X j)w j +1 jb j)� 1 j −ξ j , andw̃ j(t) := Gw j(t). The local discriminant function g(t)j (x)
at iteration t is

g(t)
j (x) =

Nj

∑
n=1

a jn(t)K(x,x jn)+
L

∑
l=1

c jl (t)K(x,χl )+b j(t) (31)

wherea j(t) := [a j1(t), . . . ,a jN j (t)]
T , c j(t) := [c j1(t), . . . ,c jL(t)]T , and bj(t) are given by

a j(t) := Y jλ j(t), (32)

c j(t) := 2η|B j |Ũ−1
j [K(Γ,Γ)f j(t)−K(Γ,X j)Y jλ j(t)]− f̃ j(t), (33)

b j(t) :=
1

2η|B j |

[
1T

j Y jλ j(t)−h j(t)
]

(34)

with λ j(t) denoting the vector multiplier update available at iteration t,Ũ j := IL +2η|B j |K(Γ,Γ),
f̃ j(t) := 2α j(t)−η∑i∈B j

[w̃ j(t)+ w̃i(t)] and hj(t) := 2β j(t)−η∑i∈B j
[b j(t)+bi(t)].

Proof See Appendix G.

Proposition 2 asserts that in order to finda j(t), c j(t) andb j(t) in (32), (33) and (34), it suffices
to obtainλ j(t), w̃ j(t), b j(t), α j(t), andβ j(t). Note that finding theL×1 vectorw̃ j(t) from w j(t)
incurs complexity of orderO(L). The next proposition shows how to iteratively updateλ j(t), w̃ j(t),
b j(t), α j(t), andβ j(t) in a distributed fashion.

Proposition 3 The iteratesλ j(t), w̃ j(t), bj(t), α j(t) andβ j(t) can be obtained as

λ j(t +1)=arg max
λ j : 0 j�λ j�JC1 j

−
1
2

λT
j Y j

(
K(X j ,X j)− K̃(X j ,X j)+

1 j1T
j

2η|B j |

)
Y jλ j +1T

j λ j

−

(
f̃T

j (t)
(

K(Γ,X j)−K̃(Γ,X j)
)

+h j(t)
1T

2η|B j |

)
Y jλ j , (35)

w̃ j(t +1)=
[
K(Γ,X j)− K̃(Γ,X j)

]
Y jλ j(t +1)−

[
K(Γ,Γ)−K̃(Γ,Γ)

]
f̃ j(t), (36)

b j(t +1)=
1

2η|B j |

[
1T

j Y jλ j(t +1)−h j(t)
]
, (37)

α j(t +1)=α j(t)+
η
2 ∑

i∈B j

[w̃ j(t +1)− w̃i(t +1)], (38)

β j(t +1)=β j(t)+
η
2 ∑

i∈B j

[b j(t +1)−bi(t +1)] (39)

where K̃(Z,Z′) := 2η|B j |K(Z,Γ)Ũ−1
j K(Γ,Z′). With arbitrary initialization λ j(0), w̃ j(0), and

b j(0); and α j(0) = 0L×1 and β j(0) = 0, the iterates{a jn(t)}, {c jl (t)} and {b j(t)} in (32), (33)
and(34)converge to{a∗jn}, {c∗jl } and{b∗j} in (24), as t→ ∞, ∀ j ∈ J ,n= 1, . . . ,Nj , and l= 1, . . . ,L.

Proof See Appendix H.
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Algorithm 3 MoM-NDSVM
Require: Randomly initializew̃ j(0) andb j(0); andα j(0) = 0L×1 andβ j(0) = 0 for every j ∈ J .

1: for t = 0,1,2, . . . do
2: for all j ∈ J do
3: Computeλ j(t +1) via (35).
4: Computew̃ j(t +1) via (36).
5: Computeb j(t +1) via (37).
6: end for
7: for all j ∈ J do
8: Broadcast̃w j(t +1) andb j(t +1) to all neighborsi ∈ B j .
9: end for

10: for all j ∈ J do
11: Computeα j(t +1) via (38).
12: Computeβ j(t +1) via (39).
13: Computea j(t), c j(t) andb j(t) via (32), (33) and (34), respectively.
14: end for
15: end for

The iterations comprising the ADMoM-based non-linear DSVM (MoM-NDSVM) are summa-
rized as Algorithm 3. It is important to stress that Algorithm 3 starts by having all nodes agree on
the common quantitiesΓ, JC, η, andK(·, ·). Also, each node computes its local kernel matrices
as in (28)-(30), which remain unchanged throughout. Subsequently, Algorithm 3 runs in a manner
analogous to Algorithm 1, with the difference that every node communicates an (L+1)×1 vector
(instead of(p+1)×1) for its neighbors to receivẽw j(t) andb j(t).

4.1 On the Optimality of NDSVM and the Selection of Common Vectors

By construction, Algorithm 3 produces local discriminant functions whosepredictions for{χl}
L
l=1

are the same for all nodes in the network; that is,g∗1(χl ) = . . . = g∗J(χl ) = g∗(χl ) for l = 1, . . . ,L,
whereg∗(χl ) = φT(χl )w

∗ + b∗, and{w∗,b∗} are the optimal solution of the centralized problem
(2). Viewing {χl}

L
l=1 as a classification query, the proposed MoM-NDSVM algorithm can be im-

plemented as follows. Having this query presented at any nodej entailing a set of unlabeled vectors
{χl}

L
l=1, the novel scheme first percolates{χl}

L
l=1 throughout the network.3 Problem (23) is subse-

quently solved in a distributed fashion using Algorithm 3. Notice that in this procedure no database
information is shared.

Although optimal in the sense of being convergent to its centralized counterpart, the algorithm
just described needs to be run for every new classification query. Alternatively, one can envision
procedures to find discriminant functions in a distributed fashion that classify new queries without
having to re-run the distributed algorithm. The key is to pre-select afixed set{χl}

L
l=1 for which

g∗ in (5) is (approximately) equivalent tog∗j in (24) for all j ∈ J . From Theorem 1, we know
that all local functionsg∗j share a common space spanned by theχl -induced kernels{K(·,χl )}. If
the spaceH whereg∗ lies is finite dimensional, for example, when adopting linear or polynomial

3. Percolating{χ}L
l=1 in a distributed fashion through the network can be carried in a finite numberof iterations at most

equal to the diameter of the network.
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kernels in (5), one can always find a finite-size set{χl}
L
l=1 such that the space spanned by the

set of kernels{K(·,χl )} containsH , and thusg∗1(x) = . . . = g∗J(x) = g∗(x) ∀x ∈ X (Predd et al.,
2006). Indeed, when using linear kernels, the MoM-NDSVM developedhere boils down to the
MoM-DSVM developed in Section 3 for a suitable finite-size set{χl}

L
l=1.

In general, however, the space spanned by{K(·,χl )} may have lower dimensionality thanH ;
thus, local functionsg∗j do not coincide at every point. In this case, MoM-NDSVM finds local
approximations to the centralizedg∗ which accommodate information available to all nodes. The
degree of approximation depends on the choice of{χl}

L
l=1. In what follows, we describe two alter-

natives to constructing such a set{χl}
L
l=1.

• Grid-based designs. Consider every entryk of the training vectors{x jn}, and form the
intervals Ik := [xmin

k ,xmax
k ], k = 1, . . . , p, wherexmin

k := min j∈J , n=1,...,Nj [x jn]k and xmax
k :=

maxj∈J , n=1,...,Nj [x jn]k. Take for convenienceL = Mp, and partition uniformly eachIk to ob-
tain a set ofM equidistant pointsQk := {qk1, . . . ,qkM}. The set{χl}

L
l=1 can be formed by

taking allMp possible vectors with entries drawn from the Cartesian productQ1× . . . ,×Qp.
One possible set we use for generating the{χl}

L
l=1 vectors is obtained by selecting thek-th

entry of thel -th vector as[χl ]k = q
k,
(

l
Mk−1 modM

)
+1

, wherel = 1, . . . ,Mp andk = 1, . . . , p. In

this case, MoM-NDSVM performs a global consensus step on the entry-wise maxima and
minima of the training vectors{x jn}. Global consensus on the entry-wise maxima and min-
ima can be computed exactly in a finite number of iterations equal to at most the diameter of
the graphG .

• Random designs. Once again, we consider every entryk of the training vectors{x jn}. MoM-
NDSVM starts by performing a consensus step on the entry-wise maxima and minima of the
local training vectors{x jn}. The set{χl}

L
l=1 is formed by drawing elementsχl randomly

from a uniformp-dimensional distribution with extreme points per entry given by the extreme
pointsxmin

k andxmax
k , k = 1, . . . , p. To agree on the set{χl}

L
l=1, all nodes in the network are

assumed to share a common seed used to initialize the random sampling algorithms.

As mentioned earlier, the number of pointsL affects how close local functions are to each other
as well as to the centralized one. The choice ofL also depends on the kernel used, prior knowledge
of the discriminant function, and the available local training dataNj . IncreasingL guarantees that
local functions will be asymptotically close to each other regardless ofNj ; however, the commu-
nication cost and computational complexity per node will increase accordingto L [cf. Algorithm
3]. On the other hand, a smallL reduces the communication overhead at the price of increasing the
disagreement among theg∗j ’s. This trade-off will be further explored in the ensuing section through
simulated tests.

5. Numerical Simulations

In this section, we analyze the performance of both MoM-DSVM and MoM-NDSVM algorithms
using different networks with synthetic and real-world training sets. Although we focus on the
binary classification case, it is worth remembering thatK-ary classification problems withK > 2
can be solved via binary classification schemes, for example, by using oneversus all classifiers, or
all versus all classifiers (Duda et al., 2002, Ch. 5).

1679



FORERO, CANO AND GIANNAKIS

5.1 Linear Classifiers

In this section, we present experiments on synthetic and real data to illustratethe performance of
our distributed method for training linear SVMs.

5.1.1 TEST CASE 1: SYNTHETIC TRAINING SET

Consider a randomly generated network withJ = 30 nodes. The network is connected with algebraic
connectivity 0.0448 and average degree per node 3.267. Each node acquires labeled training exam-
ples from two different classesC1 andC2 with corresponding labelsy1 = 1 andy2 = −1. Classes
C1 andC2 are equiprobable and consist of random vectors drawn from a two-dimensional Gaussian
distribution with common covariance matrixΣ = [1, 0; 0, 2], and mean vectorsm1 = [−1, −1]T

andm2 = [1, 1]T , respectively. Each local training setS j consists ofNj = N = 10 labeled examples
and was generated by: (i) randomly choosing classCk, k = 1,2; and, (ii) randomly generating a la-
beled example(xT

jn,y jn = Ck) with x jn ∼N (mk,Σ). Thus, the global training set containsJN= 300
training examples. Likewise, a test setSTest := {(x̃n, ỹn), n = 1, . . . ,NT} with NT = 600 examples,
drawn as in (i) and (ii), is used to evaluate the generalization performance ofthe classifiers. The
Bayes optimal classifier for this 2-class problem is linear (Duda et al., 2002, Ch. 2), with risk
RBayes= 0.1103. The empirical risk of the centralized SVM in (1) is defined as

Rcentral
emp :=

1
NT

NT

∑
n=1

1
2
|ỹn− ŷn|

whereŷn is the predicted label for̃xn. The average empirical risk of the MoM-DSVM algorithm as
a function of the number of iterations is defined as

Remp(t) :=
1

JNT

J

∑
j=1

NT

∑
n=1

1
2
|ỹn− ŷ jn(t)| (40)

whereŷ jn(t) is the label prediction at iterationt and nodej for x̃n, n = 1, . . . ,NT using the SVM
parameters inv j(t). The average empirical risk of the local SVMs across nodesRlocal

emp is defined as
in (40) with ŷ jn found using only locally-trained SVMs.

Figure 3 (left) depicts the risk of the MoM-DSVM algorithm as a function of thenumber of
iterationst for different values ofJC. In this test,η = 10 and a total of 500 Monte Carlo runs
are performed with randomly drawn local training and test sets per run. The centralized and local
empirical risks withC = 10 are included for comparison. The average local prediction performance
is also evaluated. Clearly, the risk of the MoM-DSVM algorithm reduces as the number of iterations
increases, quickly outperforming local-based predictions and approaching that of the centralized
benchmark. To further visualize this test case, Figure 3 (right) shows theglobal training set, along
with the linear discriminant functions found by the centralized SVM and the MoM-DSVM at two
different nodes after 400 iterations withJC= 20 andη = 10. Local SVM results for two different
nodes are also included for comparison.

5.1.2 TEST CASE 2: MNIST TRAINING SET

Here, the MoM-DSVM is tested on the MNIST database of handwritten images (Lecun et al., 1998).
The MNIST database contains images of digits 0 to 9. All images are of size 28 by 28 pixels. We
consider the binary problem of classifying digit 2 versus digit 9 using a linear classifier. For this
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Figure 3: Evolution of the test error(RTest) and prediction error(RPred) of MoM-DSVM for a two-
class problem using synthetic data and a network withJ = 30 nodes. Centralized SVM
performance and average local SVMs performance are also plot for comparison (left).
Decision boundary comparison among MoM-DSVM, centralized SVM and local SVM
results for synthetic data generated from two Gaussian classes (right).

experiment each image is vectorized to a 784 by 1 vector. In particular, we take 5,900 training
samples per digit, and a test set of 1,000 samples per digit. Both training and test sets used are as
given by the MNIST database, that is, there is no preprocessing of the data. For simulations, we
consider two randomly generated networks withJ = 25, algebraic connectivity 3.2425, and average
degree per node 12.80; andJ = 50 nodes, algebraic connectivity 1.3961, and average degree per
node 15.92. The training set is equally partitioned across nodes, thus every node in the network
with J = 25 hasNj = 472 training vectors, and every node in the network withJ = 50 hasNj = 236
samples. The distribution of samples across nodes influences the training phase of MoM-DSVM.
For example, if data per node are biased toward one particular class, thenthe training phase may
require more iterations to percolate appropriate information across the network. In the simulations,
we consider the two extreme cases: (i) training data are evenly distributed across nodes, that is,
every node has the same number of examples from digit 2 and from digit 9; and, (ii) highly biased
local data, that is, every node has data corresponding to a single digit; thus, a local binary classifier
cannot be constructed.

The figures in this section correspond to one run of the MoM-DSVM for a network with noise-
less communication links. Figure 4 shows the evolution of the test error for thenetwork with 25
nodes and highly biased local data. Likewise, Figure 5 shows the evolutionof the test error for
the network with 50 nodes and highly biased local data. Different values for the penaltiesJC and
η were used to illustrate their effect on both the classification performance and the convergence
rate of MoM-DSVM. The parameterJC controls the final performance of the classifier; but for a
finite number of iterations,η also influences the final performance of the classifier. Larger values
of η may be desirable; however, ifη is too large, the algorithm first focuses on reaching consensus
across nodes disregarding the classification performance. Although, MoM-DSVM is guaranteed to
converge for allη, a very large choice forη may hinder the convergence rate.
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Figure 4: Evolution of the test error(RTest) of MoM-DSVM, with penalty coefficientsJC= 1 (left)
andJC= 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data set
unevenly distributed across nodes, and a network withJ = 25 nodes.

Figure 5: Evolution of the test error(RTest) of MoM-DSVM, with penalty coefficientsJC= 1 (left)
andJC= 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data set
unevenly distributed across nodes, and a network withJ = 50 nodes.

Next, the dispersion of the solutions after 3,000 iterations for different values ofη is tested.
For our experiment, dispersion refers to how similar are the localv j(t) at every node. The mean-
squared error (MSE) of the solution across nodes is defined as∆(t) := 1

J ∑J
j=1 ||v j(t)− v̄(t)||2 where

v̄(t) := 1
J ∑J

j=1v j(t). Table 1 shows∆(t) at t = 3,000 for different values ofη andJC. Note that
larger values ofη lead to smaller dispersion in the solution; however, as illustrated in Figure 5, they
do not imply faster convergence rates.
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∆(t) at t = 3,000
J = 25 J = 50

η JC= 1 JC= 5 JC= 1 JC= 5
1 3.1849×10−7 3.1870×10−7 2.3749×10−7 2.3227×10−7

5 1.5591×10−8 1.4760×10−8 2.6613×10−8 2.6646×10−8

10 2.9280×10−10 2.9112×10−10 3.6028×10−9 3.6207×10−9

Table 1: MSE∆(t) with MNIST data set and biased local data for different values ofη andJC.

Consider next data that are evenly distributed across nodes. The MNIST training set is parti-
tioned across nodes ensuring that every node has an equal number ofexamples from digit 2 and
digit 9. Figure 6 shows the evolution of the test error for the network withJ = 25 nodes and Figure
7 shows the evolution of the test error for the network withJ = 50 nodes for different values for
the penaltiesJC andη. In this case, local classifiers achieve low test error after one iteration of
the MoM-DSVM. In subsequent iterations MoM-DSVM forces all local classifiers to consent, but
the test error does not decrease monotonically across iterations. This variation is small, ranging
between 0.015 and 0.02, since all local classifiers already have low test error. Both Figures 6 and
7 show that between iterations 500 and 2,000, the global test reaches a minimum value, then it
increases and converges to a larger value. This non-monotonic behavior can be attributed to the fact
that the MoM-DSVM iterates are not guaranteed to be monotonic. Moreover, before consensus is
reached across all nodes the test error at any given node and iteration index does not necessarily
need to be greater than the centralized one.

It is also worth noticing the resemblance of the curves in the left and right panels of Figures 4,
5, 6 and 7. Although the test error is nearly identical forJC= 1 andJC= 5, this does not imply that
the v j(t) are nearly identical across iterations. Furthermore, the insensitivity w.r.t. small changes
in JC reveals that in order to affect the classifier performance, the parameterJC must vary in the
order ofJ. Relating the distributed setting with its centralized counterpart, it follows that with, for
example,J = 25 a change inJC from 1 to 5 in the distributed setup of (6), corresponds to a change
in C from 0.04 to 0.20 for the centralized setting of (1). Such a small change inC explains why the
classification performance of the equivalent centralized scenarios is nearly identical as reflected in
the figures.

In both biased and evenly distributed data, after a few iterations, MoM-DSVM yields an average
performance close to the optimal one. It is also interesting to note that in the biased data case, nodes
alone cannot construct an approximate classifier since they do not havesamples from both classes.
If an incremental approach were used it would need at least one full cycle through the network to
enable construction of local estimators per node.

Finally, the effect of network connectivity on the performance of MoM-DSVM is explored. In
this experiment, we consider a network withJ = 25 nodes, ring topology and biased data distribution
as before. The performance of MoM-DSVM is illustrated by Figure 8. It isclear that in this
case a largerη improves the convergence rate. Also, note that after a few iterations the average
performance of the classifier across the network is close to the optimal. In practice, a small reduction
of performance over the centralized classifier may be acceptable in which case MoM-DSVM can
stop after a small number of iterations. Note that the communication cost of MoM-DSVM can be
easily computed at any iteration in terms of the number of scalars transmitted across the network.
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Figure 6: Evolution of the test error(RTest) of MoM-DSVM, with penalty coefficientsJC= 1 (left)
andJC= 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data set
evenly distributed across nodes, and a network withJ = 25 nodes.

Figure 7: Evolution of the test error(RTest) of MoM-DSVM, with penalty coefficientsJC= 1 (left)
andJC= 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data set
evenly distributed across nodes, and a network withJ = 50 nodes.

For the MNIST data set, the total communication cost up to iterationt is 785Jt scalars (cf. Section
3).

5.1.3 TEST CASE 3: SEQUENTIAL OPERATION

Consider a network withJ = 10 nodes, algebraic connectivity 0.3267, and average degree per node
2.80. Data from two classes arrive sequentially at each node in the following fashion: att = 0
each node has available one labeled training example drawn from the class distributionsC1 andC2
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Figure 8: Evolution of the test error(RTest) of MoM-DSVM, with penalty coefficientsJC= 1, for
a two-class problem using digits 2 and 9 from the MNIST data set unevenly distributed
across nodes, and a network with ring topology andJ = 25 nodes.

described in Test Case 1. Fromt = 0 to t = 19, each node acquires a new labeled training example
per iteration from this same distribution. Fromt = 20 tot = 99, no new training example is acquired.
After iteration t = 99, the distribution from which training examples in classC1 were generated
changes to a two-dimensional Gaussian distribution with covariance matrixΣ1 = [1, 0; 0, 2], and
mean vectorm1 = [−1, 5]T . From t = 100 tot = 119, each node acquires a new labeled training
example per iteration using the new class-conditional distribution ofC1, while the class-conditional
distribution ofC2 remains unchanged. During these iterations, we remove the training examples
from C1 that were generated during the intervalt = 0 to t = 19, one per iteration. Fromt = 120
to t = 299 nodes do not acquire new labeled training examples. From iterationt = 300 tot = 499,
we include 8 new training examples per node and per iteration drawn only from classC1 with the
same class-conditional distribution as the one used at the beginning of the algorithm t = 0. Finally,
at iterationt = 500 all labeled training samples drawn fromt = 300 tot = 499 are removed at each
node at once, returning to the global data set available prior to iterationt = 300. The algorithm
continues without any further change in the training set until convergence.

Figure 10 illustrates the tracking capabilities of the online MoM-DSVM scheme for different
values ofη. A total of 100 Monte Carlo runs were performed. The figure of merit in this case is
V (t) := 1

J ∑J
j=1

∥∥v j(t)−vc(t)
∥∥, wherevc(t) contains the coefficients of the centralized SVM using

the training set available at timet. The peaks in Figure 10 correspond to the changes described in our
experiment. MoM-DSVM rapidly adapts the coefficients after the local training sets are modified.
Clearly, the parameterη can be tuned to control the speed with which MoM-DSVM adapts. Notice
that a largeη may cause over-damping effects hindering the final performance of the algorithm.
Figure 9 shows snapshots, for a single run of MoM-DSVM andη = 30, of the global training set
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and local discriminant functions at different iterations. The solid training examples correspond to
the current global SVs found by the online MoM-DSVM algorithm.

Figure 9: Snapshots of the global training data set and local linear discriminant g(t)
j (x) obtained

with MoM-DSVM at all nodes for a synthetic training set evolving in time.

5.1.4 TEST CASE 4: COMMUNICATION COST COMPARISON

In this section, a comparison with the incremental SVM (ISVM) approach in Luet al. (2008) is
presented. The network withJ = 30 nodes is considered again, where each nodej has available
a local training set withNj = N = 20 with training vectors generated as in Test Case 1. A global
test set withNT = 1,200 was used, and 100 Monte Carlo runs were performed. The MoM-DSVM
algorithm usedJC= 20. The network topology is a ring; thus, ISVM entails no extra overhead due
to inter-node communications. Nevertheless, in more general network topologies such overhead
might dramatically increase the total communication cost incurred by ISVM. Thecommunication
cost is measured in terms of the number of scalars communicated per node. For MoM-DSVM, this
cost is fixed per iteration and equal to 3J scalars; recall that per iteration every node broadcasts
v j(t) to its neighborhood (cf. Algorithm 1). The ISVM approach locally trains anSVM and passes
its local SVs to the next node in the cycle; the algorithm continues traversing the network until no
SVs are shared among neighboring nodes. Thus, the communication cost per iteration depends on
the number of SVs found at each node, that is, 3×{# of SVs at nodej}. A contingency strategy to
prevent SVs from being transmitted multiple times by the same node as well as to prevent repetition
of training set elements at individual nodes is run in parallel with the ISVM algorithm.

Figure 11 depicts the cumulative communication cost for MoM-DSVM and ISVMas a function
of their classification performance. In this particular case and with the most favorable network
topology for an incremental approach, we observe that MoM-DSVM achieves a comparable risk to
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Figure 10: Average errorV (t) of MoM-DSVM for a synthetic training set evolving in time evalu-
ated for various values ofη. The peaks correspond to iteration indexes where the local
training sets were modified.

ISVM with a smaller number of transmitted scalars. Specifically, to achieve a riskof 0.1159, MoM-
DSVM communicates on average 1,260 scalars whereas ISVM communicates on average 8,758
scalars. MoM-DSVM can largely reduce the amount of communications throughout the network,
a gain that translates directly to lower power consumption, and thus, in the context of WSNs (see
Example 1), longer battery life for individual nodes.

5.2 Nonlinear Classifier

In this section, we present experiments on synthetic and real data to illustratethe performance of
our distributed method for training nonlinear SVMs.

5.2.1 TEST CASE 5: SYNTHETIC TRAINING SET

Consider the same network as in Test Case 1. Each node acquires labeledtraining examples
from two different equiprobable classesC1 andC2. ClassC1 contains now examples from a two-
dimensional Gaussian distribution with covariance matrixΣ1 = [0.6,0;0,0.4], and mean vector
m1 = [0,0]T . ClassC2 is a mixture of Gaussian distributions with mixing parametersπ21 = 0.3
andπ22 = 0.7; mean vectorsm2 = [−1,−1]T andm3 = [2,2]T ; and, equal covariance matrixΣ. The
optimal Bayes classifier here is clearly nonlinear.

We generate a matrixΓ with rows taken from a uniform two-dimensional grid ofL points. The
extreme values of the grid are chosen equal to the extreme points of the global training set. Local
training sets are of sizeNj = 10 ∀ j ∈ J , and are generated from the distributions described in the
previous paragraph. Each node uses its local training sets as well as thematrix Γ to build the local
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Figure 11: Communication cost, measured in terms of the number of scalars transmitted, of MoM-
DSVM and ISVM for a network with ring topology andJ = 30.

classifier, as described in (24). A Gaussian kernel withσ2 = 0.9 andη = 10 was employed to
construct a global nonlinear classifier. Figure 12 (left) shows the classification performance on the
points{χl}

L
l=1; that is, the classification performance when the testing set is given by{(χl ,yl ) :

l = 1, . . . ,L}, whereyl indicates the class from whichχl was originally drawn. For comparison,
we have also included the Bayes risk, the centralized SVM empirical risk, and the local SVM
risk. As expected, the classification performance of the distributed classifier approaches that of the
centralized one.

Figure 12 (right) illustrates the performance of MoM-NDSVM on a randomly-generated test
set of sizeNT = 600 for various choices ofL andJC. Matrix Γ was taken from a uniform two-
dimensional grid ofL points as before. A total of 500 Monte Carlo runs were performed. Clearly,
the asymptotic performance of MoM-NDSVM rapidly outperforms the average performance of a
locally-trained SVM and closely converges to the centralized SVM for larger values ofL with all
other parameters fixed. However, it is worth observing that the choice ofthe parameterJC also
influences the performance. Large values forJC promote reduced number of prediction errors
on the training set (possibly) leading to over-fitting. Various strategies, such as cross validation,
can be implemented to select optimal values for bothJC andσ2 at the expense of training with
MoM-NDSVM multiple times. To visualize the results, Figures 13 and 14 depicts theform of the
discriminant function for several values ofL at 6 different nodes in the network. Centralized and
local discriminant functions are also included as benchmarks. Even though the nodes do not exactly
agree on the final form ofg j(x) at all points, their classification performance closely converges to
the one obtained by the centralized SVM benchmark.
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Figure 12: Evolution of prediction error(RPred), where matrixΓ is considered a classification query
of sizeL (left); and test error(RTest), where matrixΓ is constructed as a random grid
with L points (right), for MoM-NDSVM applied to a two-class problem using synthetic
data and a network withJ = 30 nodes.

Figure 13: Comparison of the discriminant functions found by a centralizedSVM, local SVMs,
and the MoM-NDSVM algorithm at 6 different nodes of a network withJ = 30 using
synthetic data. A penalty termJC= 20 and a random grid withL = 100 were used.

5.2.2 TEST CASE6: UCI TRAINING SETS

Four data sets from the UCI repository have been chosen to test our MoM-NDSVM algorithm: Iris,
Wine, Puma Indians Diabetes, and Parkinsons (Asuncion and Newman, 2007). A brief description
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Figure 14: Comparison of the discriminant functions found by a centralizedSVM, local SVMs,
and the MoM-NDSVM algorithm at 6 different nodes of a network withJ = 30 using
synthetic data. A penalty termJC= 60 and a random grid withL = 100 were used.

Data set Classes Dim. Features Size Train. Set Test Set
Iris 3 4 150 12 40

Wine 3 13 178 12 40
Diabetes 2 8 768 50 200

Parkinsons 2 23 197 12 40

Table 2: UCI data sets

of each of the data sets is shown in Table 2. Examples from the data sets are randomly split among
J = 5 nodes in a fully-connected network. Focusing on the binary classification problem, only
classes 2 and 3 from the Iris data set and classes 1 and 2 from the Wine data set are used. For
simulation purposes, each local training set as well as the testing set have the same number of
examples from each class.

Table 3 compares performance of the classifiers constructed via MoM-NDSVM with the average
performance of the 5 local classifiers trained with local training sets only, and with the one of
a centralized SVM trained with the training set available to the whole network. A total of 100
Monte Carlo runs were performed per data set, where both training and testing sets were drawn
randomly per run. The MoM-NDSVM parametersJC andη were chosen via cross-validation for
every training set as in Hastie et al. (2009, Ch. 7). Gaussian kernels asin the previous section were
used. The local and centralized SVMs were trained using the Spider toolbox for MATLAB (Weston
et al., 2006). To evaluate the local performance of the classifiers, eachnode trains a local SVM and
its performance is compared with the one obtained via MoM-NDSVM. For eachtraining set we
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Data set Local Centralized MoM-NDSVM MoM-NDSVM Class. Query
L = 150 L = 300

Iris 8.39% 4.43% 5.15% 5.26% 4.28%
Wine 15.71% 6.17% 7.37% 7.33% 6.60%

Diabetes 34.52% 24.40% 29.69% 28.92% 23.76%
Parkinsons 1 33.76% 18.45% 30.14% 31.13% 18.56%
Parkinsons 2 34.78% 18.86% 23.60% 24.05% 20.28%

Table 3: UCI data sets centralized versus local versus distributed performance comparison fort =
1,000. Parkinsons 2 is the normalized Parkinsons training set.

explore two cases: (i) local classifiers at each node; and (ii)Γ as a classification query. Figure 15
plots the training evolution of MoM-NDSVM for the Puma Indians Diabetes data set.

Figure 15: Evolution of test error(RTest) for Puma Indians Diabetes data set taken from the UCI
repository, and a fully connected network withJ = 5 nodes.

The performance of MoM-NDSVM for (i) depends heavily on the choice of Γ. To illustrate
this point, the size of the local training sets per node has been chosen small when compared to the
dimensionality of the feature space. Letxmin

k andxmax
k correspond to the smallest and largest values

that thek-th feature can take. The row-elements of matrixΓ are chosen randomly and independently
over the interval[xmin

k ,xmax
k ] per component. Two different values ofL were chosen to compare the

performance of MoM-NDSVM. For small values ofp, Γ can be chosen as a grid ofM uniformly
spaced points per dimension; therefore,L = Mp. The results summarized in Table 3 highlight
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η = 10 η = 20
L p0 = 49 p0 = 81 p0 = 49 p0 = 81

400 0.370% 1.246% 0.504% 1.448%
800 0.136% 0.242% 0.234% 0.654%

Table 4: Average MoM-NDSVM risk (Gaussian kernel) at iterationt = 3,000 for compressed
MNIST data set with dimensionalityp0.

the fact that the classification performance at each node remains limited by thetraining examples
available locally. However, in this extremely challenging case, collaboration among nodes improves
the overall classification performance of the network.

Table 3 also illustrates how conditioning of the data together with the choice for the kernel func-
tion can impact the performance of MoM-NDSVM. In particular, its last two rows compare the clas-
sification performance achieved for the Parkinsons training set without normalization (Parkinsons
1) and with its features normalized to have maximum absolute size unity (Parkinsons 2). Although
both centralized and local performance remain nearly unchanged, the MoM-NDSVM performance
improves about 7% for bothL = 150 andL = 300. An intuitive explanation follows from look-
ing closer at the values of the features in the Parkinsons training set. Some features take values in
the order of 102 while others take values in the order of 10−3; thus, a Gaussian kernel that spans
symmetrically along all directions is not the best kernel choice for this case.After normalization, a
smaller numberL of Gaussian kernels can be used to obtain a better representation of the decision
surface. In conclusion, data across nodes must be preprocessed whenever possible to achieve a better
trade off between classification performance and the computational complexity of MoM-NDSVM.

Note that the classification performance for case (ii) approaches the centralized SVM one. After
a few iterations, the classification accuracy returned by the network surpasses that of locally trained
SVMs. The speed of convergence might be hindered ifL is chosen large. Fine tuning ofη can
achieve a desirable trade-off between speed of convergence and performance in terms of test error.

5.2.3 TEST CASE 7: MNIST TRAINING SET

Consider a network withJ = 25, algebraic connectivity 3.2425, and average degree per node 12.8.
Local training sets have been constructed based on the MNIST data set using digits 2 and 9 only. The
nodes wish to train a nonlinear global classifier using a Gaussian kernel via MoM-NDSVM. Each
node j has available a training setS j with 472 examples from one class only, thus individual nodes
cannot construct a classifier locally. The large size of the images in MNISTleads to an excessively
large choice forL = L0 ≫ 784, hindering the convergence of MoM-NDSVM. Instead, each image
has been compressed via principal component analysis (PCA) to vectorsof dimensionalityp0 <
784. It was observed experimentally that after compression, the two classes become separable.
Indeed, the centralized equivalent SVM yields test error zero. Figure16 depicts the performance of
MoM-NDSVM for various choices ofη and p0. Note thatη = 20 leads to slower convergence of
the average risk across the network. Table 4 summarizes the classification performance of MoM-
NDSVM after 3,000 iterations. A larger value forL improves the average classification performance
of the network. However, the number of iterations required for MoM-NDSVM to converge increases
with L.
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Figure 16: Average evolution of MoM-NDSVM risk (Gaussian kernel) for compressed MNIST
data set forL = 400 (left), andL = 800 (right) in a network withJ = 25 nodes. MNIST
images have been compressed to dimensionalityp0 via PCA.

5.3 Noisy Inter-node Communications

This subsection presents robustness tests of the novel distributed classification scheme with noisy
inter-node exchanges. Such noise is due to, for example, quantization error, additive Gaussian noise
at the receiving ends, or, Laplacian noise intentionally added to transmitted samples in order to
guarantee data privacy (Chaudhuri and Monteleoni, 2008; Dwork etal., 2006). Although focus is
placed on MoM-DSVM, the results also carry over to MoM-NDSVM.

5.3.1 TEST CASE 8: MOM-DSVM WITH PERTURBEDTRANSMISSIONS

In this setting, per iterationt, each nodej purposely introduces a perturbationε j(t) to the variable
v j(t) before transmission. Perturbed transmissions can be used to preserve data privacy (Dwork
et al., 2006). Consider an eavesdropper accessing the noisy versions ofv j(t). The form and variance
level Σ j of the local perturbationsε j(t) can be adjusted per node to prevent the eavesdropper from
learningS j . For instance, Dwork et al. (2006) suggests introducing zero-mean Laplacian random
variable whose variance depends on the sensitivity ofv j(t) as a function ofS j .

The MoM-DSVM iterations, withJC = 5 andη = 10, are modified by introducing local per-
turbationsε j(t) to v j(t). Eachε j(t) is zero-mean Laplacian distributed and white across time and
space, that is,E{ε j(t1)εT

j (t2)} = 0 if t1 6= t2 andE{εi(t)εT
j (t)} = 0 if i 6= j ∀i, j ∈ J . The resulting

MoM-DSVM iterations are

λ j(t +1) = arg max
λ j : 0 j�λ j�JC1 j

−
1
2

λT
j Y jX jU−1

j XT
j Y jλ j+

(
1 j+Y jX jU−1

j f j(t)
)T

λ j ,

v j(t +1) = U−1
j

[
XT

j Y jλ j(t +1)− f j(t)
]
,

α j(t +1) = α j(t)+
η
2 ∑

i∈B j

[(v j(t +1)+ ε j(t))− (vi(t +1)+ εi(t))]

whereU j = (1+2η|B j |)I p+1−Πp+1 andf j(t) := 2α j(t)−η∑i∈B j
[v j(t)+ε j(t)+vi(t)+εi(t)] (cf.

Proposition 1). In this case, MoM-DSVM operates in an analogous mannerto Algorithm 1, differing
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only in their broadcasting step. In the perturbed transmissions case, every node j broadcasts a per-
turbed vectorv j(t)+ ε j(t) (instead ofv j(t) alone) to its one-hop neighbors. Note that neighboring
nodesi ∈ B j only “see” the aggregate perturbed vectorv j(t)+ ε j(t) from nodej.

Figure 17 illustrate the performance of MoM-DSVM after 100 Monte Carlo runs with perturbed
transmissions for a network withJ = 8 nodes, algebraic connectivity 0.4194, and average degree
per node 2.5. Nodes collect observations from 2 classesC1 andC2, whereC1 is N (m1,Σ1) with
m1 = [0, 0]T , andΣ1 = [0.6, 0; 0, 0.4], andC2 isN (m2,Σ2) with m2 = [2, 2]T , andΣ2 = [1, 0; 0, 2].
Each node collects an equal number of observations per class for a totalof Nj = N = 50 observations.
The noiseε j(t), inserted per transmission per node, has covariance matrix given byσ2I3. The
optimal classifier is determined byv∗ = [−1.29, −0.76, 1.78]T , which is the one obtained by MoM-
DSVM with σ2 = 0. Interestingly, the average risk in the presence of perturbed transmissions
remains close to the perturbation-free risk. Even for a large perturbationσ2 = 1, the average risk
hovers around 0.1075. Furthermore, the risk variance remains small. Indeed, it can be shown that
the proposed scheme yields estimatesv j(t) with bounded variance.

Figure 17: Average risk (left) and risk variance (right) for a network with J = 8, and a finite variance
perturbation added tov j(t) before it is broadcasted.

5.3.2 TEST CASE 9: NOISY COMMUNICATION L INKS

The MoM-DSVM is also robust to non-ideal inter-node links corrupted byadditive noise due to,
for example, quantization or additive Gaussian receiver noise. In this case, the noise is added at the
receiver side. The MoM-DSVM must be modified to obtain a bounded variance on the estimates
v j(t), and the local Lagrange multipliersα ji (t) := α ji1(t) must be exchanged among neighboring
nodes; see Zhu et al. (2009) for similar approaches. Each communicationlink between nodej and
nodei ∈ B j introduces additive noiseεv

ji (t) (εα
ji (t)) to the variablev j(t) (α ji ). The perturbations

{εv
ji (t)} ({εα

ji (t)}) are zero-mean random variables with covariance matrixΣv
ji (Σα

ji ), white across
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Algorithm 4 MoM-DSVM with noisy links
Require: Randomly initializev j(0), andα ji (0) = 0(p+1)×1 ∀ j ∈ J ∀i ∈ B j

1: for t = 0,1,2, . . . do
2: for all j ∈ J do
3: Computeλ j(t +1) via (41).
4: Computev j(t +1) via (42).
5: end for
6: for all j ∈ J do
7: Broadcastv j(t +1) to all neighborsi ∈ B j .
8: end for
9: for all j ∈ J , i ∈ B j do

10: Computeα ji (t +1) via (43).
11: end for
12: for all j ∈ J , i ∈ B j do
13: Transmitα ji (t +1) to i ∈ B j .
14: end for
15: end for

time and space. The modified MoM-DSVM iterations are

λ j(t +1) = arg max
λ j : 0 j�λ j�JC1 j

−
1
2

λT
j Y jX jU−1

j XT
j Y jλ j +

(
1 j +Y jX jU−1

j f j(t)
)T

λ j , (41)

v j(t +1) = U−1
j

[
XT

j Y jλ j(t +1)− f j(t)
]
, (42)

α ji (t +1) = α ji (t)+
η
2
[v j(t +1)− (vi(t +1)+ εv

i j (t))] (43)

wheref j(t) := ∑i∈B j

{
α ji (t)− (αi j (t)+ εα

i j (t))−η[v j(t)+(vi(t)+ εv
i j (t))]

}
. The resulting MoM-

DSVM algorithm with noisy links is summarized as Algorithm 4.

The left panels of Figures 18 and 19 depict the average performance after 100 Monte Carlo runs
of MoM-DSVM for the same network of Test Case 8. As seen, the variance of the estimatesv j(t)
yielded by the modified MoM-DSVM algorithm remains bounded.

Incremental approaches are hindered by noisy communication links because noise added to the
SVs perturbs and accumulates in the local training sets. In ISVM, SVs are bound to percolate across
the network, and even to come back to the node where they originated. Due tothe noise, however,
nodes cannot recognize noisy feature vectors already inS j . This is problematic since the size of local
problems being solved per node increases linearly with the size of the trainingset, thus requiring a
heuristic size-control scheme. The right panels of Figures 18 and 19 show the performance of an
ISVM for different levels of noise variance. Noise is added to the SVs and noisy labels are rounded
to 1 or−1. Different from MoM-DSVM, the performance of ISVM quickly deteriorates, even for
low noise levels since the average risk approaches 0.5 after a few iterations, which amounts to pure
guessing of the binary classifier.
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Figure 18: Average risk for a network withJ = 8, and noisy communication links using a synthetic
data set. MoM-DSVM (left) and incremental SVM approach (right).

Figure 19: Risk variance for a network withJ = 8 and noisy communication links corresponding to
average risk in Figure 18. MoM-DSVM (left) and incremental SVM approach (right).

6. Conclusions

This work developed distributed SVM algorithms by reformulating the centralized SVM training
problem into per-node separable sub-problems linked via consensus constraints, which can be
solved using decentralized optimization tools. The novel algorithms are well suited for applica-
tions involving data that cannot be shared among collaborating nodes, which possibly operate under
stringent resources, and may thus desire to reduce overhead of inter-node message exchanges.

Based on distributed training sets, the novel MoM-DSVM algorithm constructs a maximum-
margin linear classifier iteratively. At every iteration, locally updated classifier vectors are ex-
changed among neighboring nodes. Convergence to the centralized linearSVM formulation is
guaranteed. The approach lends itself naturally to online and asynchronous variants, which allow
adaptation of the proposed DSVM to scenarios when elements of the local training sets become
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available sequentially, or, when outdated elements need to be removed. Furthermore, the MoM-
DSVM can be generalized to construct distributed nonlinear discriminant functions. The resulting
iterative MoM-NDSVM algorithm is provably convergent to its centralized counterpart, and its
complexity is kept at a manageable level by using the kernel trick. Local classifiers are limited by
the span of their local training sets, and a set of basis common to all nodes.

Although not formally treated, the novel distributed classification algorithms can be readily
extended to solve distributed support vector regression (DSVR) problems. The main characteristics
of the present approach, such as its convexity, remain unchanged. Therefore, it is expected that
linear and nonlinear estimators developed for MoM-DSVR, will enjoy convergence claims similar to
those proved here for MoM-DSVM and MoM-NDSVM classifiers. To complement the distributed
supervised classifiers introduced here, our current research deals with consensus-based distributed
versions of the unsupervisedk-means and expectation-maximization clustering algorithms.
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Appendix A. The Alternating Direction Method of Multipliers

The ADMoM is a distributed optimization algorithm solving the following problem

min
v

F1(v)+F2(Av) (44)

s.t. v ∈ P1, Av ∈ P2

whereF1 : R
p1 → R andF2 : R

p2 → R are convex functions,A is a p2× p1 matrix, whileP1 ⊂ R
p1

andP2 ⊂ R
p2 denote non-empty polyhedral sets.

Upon introducing the auxiliary variableω ∈ R
p2, ADMoM solves the separable problem

min
v,ω

F1(v)+F2(ω)

s.t. Av = ω (45)

v ∈ P1, ω ∈ P2
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which is clearly equivalent to (44). Withα ∈ R
p2 denoting the Lagrange multiplier corresponding

to the constraintAv = ω, the augmented Lagrangian corresponding to (45) is

L(v,ω,α) = F1(v)+F2(ω)+αT(Av−ω)+
η
2
‖Av−ω‖2 (46)

where the parameterη > 0 controls the impact of the constraint violation in (45). The ADMoM
minimizes alternatelyL in (46) w.r.t. the primal variablev, then w.r.t. the auxiliary variableω, and
after each cycle it uses these iterates to update the multiplier. Specifically, witht denoting iteration
index, the ADMoM iterates att +1 are given by

v(t +1) = arg min
v∈P1

L(v,ω(t),α(t)), (47)

ω(t +1) = arg min
ω∈P2

L(v(t +1),ω,α(t)), (48)

α(t +1) = α(t)+η(Av(t +1)−ω(t +1)) . (49)

Thanks to the auxiliary variableω, each of the optimization problems (47) and (48) can be run sep-
arately, possibly by different processors. The following proposition states the main claim regarding
convergence of the ADMoM iterates, and its proof can be found in Bertsekas and Tsitsiklis (1997,
Ch. 3, Proposition 4.2).

Proposition 4 Assume that the optimal solution set v∗ of (44) is non-empty, and eitherP1 is
bounded, or,ATA is nonsingular. Then, a sequence{v(t),ω(t),α(t)} generated by the iterations
(47)-(49) is bounded, and every limit point of{v(t)} is an optimal solution of(44). Furthermore,
{α(t)} converges to an optimal solutionα∗ of the dual problem [cf.(45)]

min
α∈R

p2
H1(α)+H2(α)

where for allα ∈ R
p2

H1(α) := inf
v∈P1

[F1(v)+αTAv],

H2(α) := inf
ω∈P2

[F2(ω)−αTω] .

Appendix B. Proof of Lemma 1

First, the equality constraints{w j = wi} and{b j = bi} will be shown equivalent tow1 = · · · = wJ

andb1 = · · · = bJ, respectively, for any feasible solution of (6). Consider any two nodes j0 and jk
both in J . Since the network is connected, there exists a path{ j0 j1 . . . jk−1 jk} of length at least
one, which connects nodesj0 and jk. Becausejℓ+1 ∈ Bℓ for ℓ = 0,1, . . . ,k−1, it is immediate that
w jℓ = w j1 = · · · = w jk−1 = w jk. Since jℓ, jk ∈ J are arbitrary, it follows readily thatw1 = · · · = wJ.
A similar argument leads tob1 = · · · = bJ.

As any feasible solution of (6) satisfiesw1 = · · · = wJ = w andb1 = . . . = bJ = b, problem (6)
becomes

min
w,b,{ξ j}

J

(
1
2
‖w‖2 +C

J

∑
j=1

1T
j ξ j

)

s.t. Y j(X jw+b1 j) � 1 j −ξ j ∀ j ∈ J

ξ j � 0 j

(50)

which is equivalent to (1), since the constantJ can be dropped from the cost function in (50).
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Appendix C. Proof of Lemma 2

The objective here is to cast (7) in the form of (45), and thus show that iterations (9)-(12) correspond
to the ADMoM iterations (47)-(49) in Appendix A. First, it will be shown that the set of consensus
constraints in (7), namely{v j = ω ji , ω ji = vi : ∀ j ∈ J , ∀i ∈ B j}, can be written as the equality
constraintAv = ω in (45). With this objective in mind, consider listing the constraintsv j = ω ji

across nodesj ∈ J and neighborsi ∈ B j as follows

{v1 = ω1i}i∈B1
...

{vJ = ωJi}i∈BJ .

(51)

Since for everyv j there are|B j | constraints, the total number of equalities in (51) is∑J
j=1 |B j | =

2|E |, where|E | is the number of edges in the network. The factor 2 in 2|E | is because for every
edgej ↔ i there are two constraints, namelyv j = ω ji andvi = ωi j .

The set of equalities in (51) can be written in matrix-vector form as

|B1| vectors





|BJ| vectors








v1
...

v1
...

vJ
...

vJ




=







I p+1
...

I p+1




︸ ︷︷ ︸
A1:=

. . . 


I p+1
...

I p+1




︸ ︷︷ ︸
AJ:=




︸ ︷︷ ︸
A′:=




v1
...

vJ




︸ ︷︷ ︸
v:=

=




{ω1i}i∈B1
...

{ωJi}i∈BJ




︸ ︷︷ ︸
ω′:=

(52)

whereA′v replicatesv in accordance with the left-hand-side (l.h.s.) of (51). MatrixA′ in (52) is
block-diagonal with block entriesA j := [I p+1, . . . , I p+1]

T containing|B j | identity matrices of size
(p+1)× (p+1). Sincev j andω ji are(p+1)×1 vectors,v has size(p+1)J×1, andω′ has size
2(p+1)|E |×1.

Equation (52) shows that the constraints of the formv j = ω ji can be compactly written as

A′v = ω′. (53)

Consider now the remaining constraints, which are of the formω ji = vi , and can be listed explicitly
as [cf. (51)]

{v1 = ω j1} j∈B1
...

{vJ = ω jJ} j∈BJ .

(54)

Since the l.h.s. of (54) coincides with the l.h.s. of (51), the set of equations in(54) can be likewise
written as [cf. (53)]

A′v = ω′′ (55)
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where nowω′′ := [{ωT
j1} j∈B1, . . . ,{ωT

jJ} j∈BJ ]
T . Notice thatω′′ is a permuted version ofω′, since it

can be obtained fromω′ by replacing vectorω ji in ω′ with vectorωi j . Hence, using a 2|E |×2|E |
permutation matrixE and letting⊗ denote the Kronecker product,ω′′ can be related toω′ as

ω′′ = (E⊗ I p+1)ω′ (56)

whereE := [{e1i}i∈B1, . . . ,{eJi}i∈BJ ], andeji is a 2|E |×1 indicator vector given by

eji :=




e( ji)
1

...

e( ji)
J




with sub-blockse( ji)
i′ := [{δ( j − j ′, i − i′)} j ′∈Bi′

]T , andδ(·, ·) denoting Kronecker’s delta function.
Intuitively, eji identifies with a one the position whereω ji in ω′ is to be re-allocated inω′′.

Substituting (56) into (55) yields

A′v = (E⊗ I p+1)ω′. (57)

Concatenating (53) and (57) one arrives at

Av = E′ω′ (58)

where

A :=

[
A′

A′

]
and E′ :=

[
I2(p+1)|E |

E⊗ I p+1

]
. (59)

Using (58), problem (7) can be re-written as

min
v,ω,{ξ j}

1
2

J

∑
j=1

vT
j (I p+1−Πp+1)v j +JC

J

∑
j=1

1T
j ξ j

s.t. Y jX jv j � 1 j −ξ j ∀ j ∈ J

ξ j � 0 j ∀ j ∈ J

Av = E′ω′.

(60)

It is known that the slack variables{ξ j} can be eliminated by introducing the hinge loss func-
tion ℓ(y, [xT ,1]v) := max{0,1−y[xT ,1]v} (Scḧolkopf and Smola, 2002), which reduces (60) to its
equivalent form

min
v,ω

1
2

J

∑
j=1

vT
j (I p+1−Πp+1)v j +JC

J

∑
j=1

Nj

∑
n=1

ℓ(y jn, [xT
jn,1]v j)

s.t. Av = E′ω′.

(61)
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Comparing the latter with (45), it follows readily that (61), which is equivalent to (7), belongs to the
ADMoM-solvable class since (61) is subsumed by (45) with the special choices

F1(v) :=
1
2

J

∑
j=1

vT
j (I p+1−Πp+1)v j +JC

J

∑
j=1

Nj

∑
n=1

ℓ(y jn, [xT
jn,1]v j),

F2(ω) := 0,

P1 := R
(p+1)J,

P2 := {ω ∈ R
4(p+1)|E ||ω = E′ω′ for someω′ ∈ R

2(p+1)|E |} (62)

whereω := E′ω′ is now placed in the constraint setP2.

So far it has been proved that the problem in (7) can be cast as (45). The ADMoM iterations
for (45) are (47)-(49), with corresponding iteratesv(t), ω(t) and α(t). Given the constraint set
P2 in (62), for every iterateω(t) there exists a uniqueω′(t) satisfyingω(t) = E′ω′(t), due to the
fact thatE′ in (59) is full column rank. Hence,ω(t) can be replaced byE′ω′(t) in iterations (47)-
(49). Iteration (9) then follows by re-introducing the slack variables{ξ j(t)}. Iteration (10) follows
because nowω′ is unconstrained. Finally, iterations (11) and (12) follow from (49) by splitting α(t)
into appropriate sub-groups of vectors{α ji1(t)} and{α ji2(t)}, respectively.

Appendix D. Proof of Lemma 3

The goal of this appendix is to show that iterations (9)-(12) reduce to (13)-(14). To start, notice that
the cost in (10) is linear-quadratic w.r.t.ω ji . Thus, setting the derivative ofL w.r.t. ω ji equal to
zero,ω ji (t +1) can be found in closed form as

ω ji (t +1) =
1

2η
(α ji1(t)−α ji2(t))+

1
2
(v j(t +1)+vi(t +1)). (63)

Substituting (63) into (11) and (12), yields

α ji1(t +1) =
1
2
(α ji1(t)+α ji2(t))+

η
2
(v j(t +1)−vi(t +1)), (64)

α ji2(t +1) =
1
2
(α ji1(t)+α ji2(t))+

η
2
(v j(t +1)−vi(t +1)). (65)

Suppose now thatα ji1(t) and α ji2(t) are initialized identically to zero at every nodej; that is,
α ji1(0) = α ji2(0) = 0(p+1)×1 ∀ j ∈ J and∀i ∈B j . From (64) and (65), it follows easily thatα ji1(1) =
α ji2(1). Similarly, if α ji1(t −1) = α ji2(t −1), then by inductionα ji1(t) = α ji2(t). Thus, only one
set of multipliers, say{α ji1}, needs to be stored and updated per nodej.

Upon substitutingω ji (t +1) = (1/2)(v j(t +1)+vi(t +1)) into the objective function of (9) and
usingα ji1(t) = α ji2(t), one obtains

L ′({v j},{ξ j},{v j(t)},{α ji1(t)}) =
1
2

J

∑
j=1

vT
j (I p+1−Πp+1)v j+JC

J

∑
j=1

1T
j ξ j

+
J

∑
j=1

∑
i∈B j

αT
ji1(t)(v j−vi)+

η
2

J

∑
j=1

∑
i∈B j

∥∥∥∥v j−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2

+
η
2

J

∑
j=1

∑
i∈B j

∥∥∥∥vi−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2

.

(66)
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The first double sum in the right hand side (r.h.s.) of (66) can be rewrittenas

J

∑
j=1

∑
i∈B j

αT
ji1(t)(v j −vi) =

J

∑
j=1

∑
i∈B j

vT
j (α ji1(t)−αi j1(t))

= 2
J

∑
j=1

vT
j ∑

i∈B j

α ji1(t) (67)

where the first equality follows because∑J
j=1 ∑i∈B j

αT
ji1(t)vi = ∑J

j=1 ∑i∈B j
αT

i j1(t)v j . Intuitively, the
r.h.s. computes the sum by fixing a nodej and adding the inner products ofv j with the incoming
Lagrange multipliersαi j1(t); while the left hand side performs the same sum by fixing a nodej
and adding the inner products of outgoing Lagrange multipliersα ji1(t) and the correspondingvi

neighbors. The second equality on (67) holds because the all-zero initialization of the multipliers
implies thatα ji1(t) = −αi j1(t) ∀t [cf. from (64)-(65)]. Likewise, the second and third double sums
in the r.h.s. of (66) can be simplified to

η
2

J

∑
j=1

∑
i∈B j

[∥∥∥∥v j−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2

+

∥∥∥∥vi−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2
]

=η
J

∑
j=1

∑
i∈B j

∥∥∥∥v j−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2

.

(68)

Lemma 3 follows after substituting (67) and (68) into (66), and definingα j(t) := ∑i∈B j
α ji1(t).

Appendix E. Proof of Proposition 1

Lettingλ j := [λ j1, . . . ,λ jN j ]
T andµj := [µj1, . . . ,µjN j ]

T denote Lagrange multipliers associated with
the constraintsY jX jv j � 1 j −ξ j andξ j � 0 j , respectively, the Lagrangian corresponding to (13) is
given by

L ′′({v j},{ξ j},{λ j},{µj},{v j(t)},{α j(t)})

=
1
2

J

∑
j=1

vT
j (I p+1−Πp+1)v j +JC

J

∑
j=1

1T
j ξ j −

J

∑
j=1

λT
j (Y jX jv j −1 j +ξ j)

−
J

∑
j=1

µT
j ξ j +2

J

∑
j=1

αT
j (t)v j +η

J

∑
j=1

∑
i∈B j

∥∥∥∥v j −
1
2
[v j(t)+vi(t)]

∥∥∥∥
2

.

(69)

The KKT conditions yield per iteration the primal and dual variables in (69) asfollows

v j(t +1) = U−1
j

(
XT

j Y jλ j(t +1)−2α j(t)+η ∑
i∈B j

(v j(t)+vi(t))

)
, (70)

0 j = JC1 j −λ j −µj (71)

whereλ j(t + 1) is the optimal Lagrange multiplier after iterationt + 1, and the inverse ofU j :=
(1+2η|B j |)I p+1−Πp+1 always exists.

The KKT conditions also requireλ j � 0 j andµj � 0 j , which allows (71) to be replaced by
0 j � λ j � JC1 j . To carry out the iteration (70) at every node, the optimal valuesλ j(t + 1) of the
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Lagrange multipliersλ j are found by solving the Lagrange dual problem associated with (69). The
pertinent dual function is given by

Lλ({λ j}) =
J

∑
j=1

−
1
2

λT
j Y jX jU−1

j XT
j Y jλ j +

(
1 j −Y jX jU−1

j f j(t)
)T

λ j (72)

where f j(t) := 2α j(t)− η∑i∈B j
[v j(t) + vi(t)]. Note that the Lagrange multipliers{µj} are not

present inLλ. From (72), the Lagrange dual problem can be decoupled if each node j has access to
thevi(t) estimates of its neighboring nodes. Thus,λ j(t +1) is given by

λ j(t +1) = arg max
λ j : 0 j�λ j�JC1 j

−
1
2

λT
j Y jX jU−1

j XT
j Y jλ j +

(
1 j −Y jX jU−1

j f j(t)
)T

λ j (73)

The dual variable update in (73) and the primal variable update in (70) coming from the KKT opti-
mality, are precisely iterations (16) and (17) of Proposition 1, which together with (18) correspond
to iterations (13) and (14). Lemma 3 shows that (13) and (14) are equivalent to (9)-(12). Lemma 2
establishes that (9)-(12) in turn correspond to the ADMoM iterations (47)-(49) of Appendix A. As
stated in Proposition 4 in Appendix A, convergence of the ADMoM iterations (47)-(49) is guaran-
teed so long as: (i)P1 is bounded; or, (ii)ATA is nonsingular. Since for the problem at hand matrix
A in (59) satisfies condition (ii), the iterates for (16)-(18) in Proposition 1 converge to the optimal
solution of (7) for anyη > 0.

Appendix F. Proof of Theorem 1

For simplicity, this theorem will be proved for purely linear discriminant functions g(x) = wTx.
Consider the reproducing kernel Hilbert space (RKHS)H of functionsg(x) with corresponding
positive semi-definite kernelK : X ×X → R, defined as

H :=

{
g(·) =

N

∑
n=1

γnK(·,xn) : N ∈ N, γ1, . . . ,γN ∈ R, x1, . . . ,xN ∈ X

}

with A denotes the completion of the setA .
The parameter optimization problem (23) can be written in terms of the Hinge loss function

ℓ(y,g(x)) := max{0,1− yg(x)}, and the RKHS-induced norm‖g‖2
H

as a regularized optimization
problem to obtain, (see, e.g., Schölkopf and Smola, 2002)

min
{g j∈H }

1
2

J

∑
j=1

∥∥g j
∥∥2
H

+JC
J

∑
j=1

Nj

∑
n=1

ℓ(y jn,g j(x jn))

s.t.g j(χl ) = gi(χl ) ∀ j ∈ J , i ∈ B j , l = 1, . . . ,L.

(74)

Given the optimal Lagrange multipliersς∗jil for the constraints{g j(χl ) = gi(χl )}, the solution
{g∗j} of (74) can be obtained from its Lagrangian as

{g∗j} = arg min
{g j∈H }

1
2

J

∑
j=1

∥∥g j
∥∥2
H

+JC
J

∑
j=1

Nj

∑
n=1

ℓ(y jn,g j(x jn))+
J

∑
j=1

∑
i∈B j

L

∑
l=1

ς∗jil (g j(χl )−gi(χl )). (75)
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Arguing as in (67), the last term in (75) can be written as

J

∑
j=1

∑
i∈B j

L

∑
l=1

ς∗jil (g j(χl )−gi(χl )) =
J

∑
j=1

∑
i∈B j

L

∑
l=1

(ς∗jil − ς∗i jl )g j(χl )

thus rendering the cost in (75) separable acrossj. Hence, eachg∗j can be obtained per node as

g∗j = arg min
g j∈H

V(x j1, . . . ,x jN j ,y j1, . . . ,y jN j ,{χl},g j)+
1
2

∥∥g j
∥∥2
H

(76)

whereV(x j1, . . . ,x jN j ,y j1, . . . ,y jN j ,{χl},g j) := JC∑Nj

n=1ℓ(y jn,g j(x jn))+∑i∈B j ∑L
l=1(ς∗jil −ς∗i jl )g j(χl ).

Applying the Representer Theorem to (76) as in Wahba (1990) and Schölkopf and Smola (2002)
one readily arrives at

g∗j (x) =
Nj

∑
n=1

a∗jnK(x,x jn)+
L

∑
l=1

c∗jl K(x,χl ). (77)

Appendix G. Proof of Proposition 2

Recall thatµj := [µj1, . . . ,µjN j ]
T denotes the Lagrange multiplier associated with the constraintξ j �

0 j (cf. Appendix E). The Lagrangian corresponding to (25) is given by

L ′′({w j},{b j},{ξ j},{λ j},{µj},{w j(t)},{b j(t)},{α j(t)},{β j(t)})

=
1
2

J

∑
j=1

‖w j‖
2 +JC

J

∑
j=1

1T
j ξ j −

J

∑
j=1

λT
j (Y jΦ(X j)w j −1 jb j +ξ j)

−
J

∑
j=1

µT
j ξ j +2

J

∑
j=1

αT
j (t)Gw j +2

J

∑
j=1

β j(t)b j

+η
J

∑
j=1

∑
i∈B j

∥∥∥∥G
[
w j −

1
2
(w j(t)+wi(t))

]∥∥∥∥
2

+η
J

∑
j=1

∑
i∈B j

∥∥∥∥b j −
1
2
[b j(t)+bi(t)]

∥∥∥∥
2

.

From the KKT conditions for (25) it follows that

w j(t +1) = Ũ−1
j

{
ΦT(X j)Y jλ j(t +1)−GT

[
2α j(t)−η ∑

i∈B j

G(w j(t)+wi(t))

]}
, (78)

b j(t +1) =
1

2η|B j |

[
1T

j Y jλ j(t +1)−2β j(t)+η ∑
i∈B j

(β j(t)+βi(t))

]
(79)

whereλ j(t + 1) is the optimal Lagrange multiplier at iterationt + 1, andŨ j := IP + 2η|B j |GTG.
Using the Sherman-Morrison-Woodbury formula (Golub and Van Loan, 1996)

Ũ−1
j = IP−2η|B j |GT(IL +2η|B j |GGT)−1G. (80)

Substituting (80) into (78), left-multiplying byφT(x), and recalling thatφT(x)φT(x′) = K(x,x′),
yields

φT(x)w j(t +1) =
(

kT(x,X j)−2η|B j |kT(x,Γ)Ũ−1
j K(Γ,X j)

)
Y jλ j(t +1)

−
(

kT(x,Γ)−2η|B j |kT(x,Γ)Ũ−1
j K(Γ,Γ)

)
f̃ j(t +1) (81)
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where the entries of the kernel vector are[k(x,X j)]n := K(x,x jn) and[k(x,Γ)]l := K(x,χl ).

Note thatg(t)
j (x) in (31) follows from (77) and can be written asg(t)

j (x) = φT(x)w j(t)+ b j(t).
Grouping terms in (81) that right-multiplykT(x,X j) and those that right-multiplykT(x,Γ), yields
a j(t) as in (32) andc j(t) as in (33), respectively. Finally,b j(t) in (34) is given by (79).

Appendix H. Proof of Proposition 3

To obtain iteration (35), consider first the dual problem for (25), that is

λ j(t+1) = arg max
λ j : 0 j�λ j�JC1 j

−
1
2

λT
j Y j

(
Φ(X j)Ũ−1

j ΦT(X j)+
11T

2η|B j |

)
Y jλ j

+

(
1 j−Y jΦ(X j)Ũ−1

j GT f̃ j(t)−
h j(t)1T

2η|B j |

)T

λ j (82)

whereŨ−1
j is given by (80), and̃f j(t) as in Proposition 2. Using (80), the termΦ(X j)Ũ−1

j ΦT(X j)
can be written in terms of inner products, and summarized via kernels as

Φ(X j)Ũ−1
j ΦT(X j) = K(X j ,X j)−2η|B j |K(X j ,Γ)Ũ−1

j K(Γ,X j). (83)

Likewise, the termΦ(X j)Ũ−1
j GT f̃ j(t) can be expressed as

Φ(X j)Ũ−1
j GT f̃ j(t) =

(
K(X j ,Γ)−2η|B j |K(X j ,Γ)Ũ−1

j K(Γ,Γ)
)

f̃ j(t). (84)

Plugging (83) and (84) into (82), yields (35).
To obtain iteration (36), left-multiplyw j(t +1) in (78) byG to arrive at

w̃ j(t +1) = GŨ−1
j ΦT(X j)Y jλ j −GŨ−1

j GT

[
2α j(t)−η ∑

i∈B j

(w̃ j(t)+ w̃i(t))

]
. (85)

The termsGŨ−1
j ΦT(X j) andGŨ−1

j GT can be respectively written as

GŨ−1
j ΦT(X j) = K(Γ,Γ)−2η|B j |K(Γ,Γ)Ũ−1

j K(Γ,X j) (86)

and
GŨ−1

j GT = K(Γ,Γ)−2η|B j |K(Γ,Γ)Ũ−1
j K(Γ,Γ) . (87)

Substituting (86) and (87) into (85), yields (36), and completes the proof of the proposition.
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