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Abstract

This paper develops algorithms to train support vector nmeshwhen training data are distributed
across different nodes, and their communication to a cigdchprocessing unit is prohibited due

to, for example, communication complexity, scalability, grivacy reasons. To accomplish this

goal, the centralized linear SVM problem is cast as a set ¢édtealized convex optimization sub-

problems (one per node) with consensus constraints on theed/@lassifier parameters. Using

the alternating direction method of multipliers, fully ttibuted training algorithms are obtained

without exchanging training data among nodes. Differeartifexisting incremental approaches, the
overhead associated with inter-node communications id fixal solely dependent on the network
topology rather than the size of the training sets availpklenode. Important generalizations to
train nonlinear SVMs in a distributed fashion are also dewetl along with sequential variants

capable of online processing. Simulated tests illustizegerformance of the novel algorithrhs.

Keywords: support vector machine, distributed optimization, dittéd data mining, distributed
learning, sensor networks

1. Introduction

Problems calling fodistributed learningsolutions include those arising when training data are
acquired by different nodes, and their communication to a central giogesnit, often referred to
as fusion center (FC), is costly or even discouraged due to, for exasgplability, communication
overhead, or privacy reasons. Indeed, in applications involvingegisesensor networks (WSNs)
with battery-operated nodes, transferring each sensor’'s data to thmealyGe prohibited due to
power limitations. In other cases, nodes gathering sensitive or privatgriafion needed to design
the classifier may not be willing to share their training data.

For centralized learningn the other hand, the merits of support vector machines (SVMs) have
been well documented in various supervised classification tasks emergapglinations such as
medical imaging, bio-informatics, speech, and handwriting recognition, rieerea few (Vapnik,
1998; Sclhilkopf and Smola, 2002; El-Naga et al., 2002; Liang et al., 2007; Ganiagja et al.,
2004; Li, 2005; Markowska-Kaczmar and Kubacki, 2005). Centrdl&€éMs are maximum-margin
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linear classifiers designed based on a centrally available training setisorgpnultidimensional

data with corresponding classification labels. Training an SVM requidegigoa quadratic opti-

mization problem of dimensionality dependent on the cardinality of the trainingrse resulting

linear SVM discriminant depends on a subset of elements from the traininknesvn as support
vectors (SVs). Application settings better suited for nonlinear discriminames lb@en also con-
sidered by mapping vectors at the classifier's input to a higher dimensspaak, where linear
classification is performed. In either linear or nonlinear SVMs designed aeititrally available

training data, the decision on new data to be classified is based solely onghe SV

For this reason, recent designsdi$tributed SVMclassifiers rely on SVs obtained from local
training sets (Flouri et al., 2006, 2008; Lu et al., 2008). These SVsrmutdocally per node are
incrementally passed on to neighboring nodes, and further processedrC to obtain a discrimi-
nant function approaching the centralized one obtained as if all trainisgveee centrally available.
Convergence of thimcrementaldistributed (D) SVM to the centralized SVM requires multiple SV
exchanges between the nodes and the FC (Flouri et al., 2006); sddalsicet al. (2008), where
convergence of a gossip-based DSVM is guaranteed when classiasearly separable. Without
updating local SVs through node-FC exchanges, DSVM schemes paoxapate but not ensure
the performance of centralized SVM classifiers (Navia-Vazquez etGg)2

Another class of DSVMs deals witharallel designs of centralized SVMs—a direction well
motivated when training sets are prohibitively large (Chang et al., 200&ndd?oulet, 2006; Graf
et al., 2005; Bordes et al., 2005). Partial SVMs obtained using small tggsnibsets are combined
at a central processor. These parallel designs can be applied toudedritetworked nodes, only if
a central unit is available to judiciously combine partial SVs from intermediatgstavioreover,
convergence to the centralized SVM is generally not guaranteed fqraatifioning of the aggregate
data set (Graf et al., 2005; Bordes et al., 2005).

The novel approach pursued in the present paper trains an SVMlig distributedfashion that
does not require a central processing unit. The centralized SVM pnableast as a set of coupled
decentralized convex optimization subproblems with consensus constraitseidhgn the desired
classifier parameters. Using the alternating direction method of multipliers (ADl\Visee, for
example, Bertsekas and Tsitsiklis (1997), distributed training algorithms thgiravably conver-
gent to the centralized SVM are developed based solely on messagegasia@nong neighboring
nodes. Compared to existing alternatives, the novel DSVM classifiersdfiie following distinct
features.

e Scalability and reduced communication overhead Compared to approaches having dis-
tributed nodes communicate training samples to an FC, the DSVM approachelieseon
in-networkprocessing with messages exchanged only among single-hop neighbodes.
This keeps the communication overhead per node at an affordable lahél ws neigh-
borhood, even when the network scales to cover a larger geographéga In FC-based
approaches however, nodes consume increased resourcesittheeR€ as the coverage area
grows. Different from, for example, Lu et al. (2008), and withoutrexaging SVs, the novel
DSVM incurs a fixed overhead for inter-node communications per iteragigardless of the
size of the local training sets.

e Robustness to isolated point(s) of failurelf the FC fails, an FC-based SVM design will fail
altogether—a critical issue in tactical applications such as target classifichticontrast, if a
single node fails while the network remains connected, the proposed atgavithconverge

1664



CONSENSUSBASED DISTRIBUTED SUPPORTVECTORMACHINES

to a classifier trained using the data of nodes that remain operational. Buifebhe net-
work becomes disconnected, the proposed algorithm will stay operatidthaberformance
dependent on the number of training samples per connected sub-network

Fully decentralized network operation. Alternative distributed approaches include incre-
mental and parallel SVMs. Incremental passing of local SVs requiretifidation of a
Hamiltonian cycle (going through all nodes once) in the network (Lu et aD82&louri

et al., 2006). And this is needed not only in the deployment stage, but sy tme a
node fails. However, Hamiltonian cycles do not always exist, and if theyimding them is
an NP-hard task (Papadimitriou, 2006). On the other hand, parallel SV\&imgmtations
assume full (any-to-any) network connectivity, and require a ceatraldefining how SVs
from intermediate stages/nodes are combined, along with predefined aoteicammunica-
tion protocols; see, for example, Chang et al. (2007), Do and Pouleé)2ihd Graf et al.
(2005).

Convergence guarantees to centralized SVM performanceFor linear SVMs, the novel
DSVM algorithm isprovably convergentb a centralized SVM classifier, as if all distributed
samples were available centrally. For nonlinear SVMs, it converges toliosn of a mod-
ified cost function whereby nodes agree on the classification decisi@endiobset of points.
If those points correspond to a classification query, the network “agyeéthe classifica-
tion of these points with performance identical to the centralized one. Fard#ssification
queries, nodes provide classification results that closely approximateritralized SVM.

Robustness to noisy inter-node communications and privacy presvation. The novel
DSVM scheme is robust to various sources of disturbance that maybenpri& message
exchanges. Those can be due to, for example, quantization errditby@baussian receiver
noise, or, Laplacian noise intentionally added for privacy (Dwork e2806; Chaudhuri and
Monteleoni, 2008).

The rest of this paper is organized as follows. To provide context, $eZtmitlines the central-

ized linear and nonlinear SVM designs. Section 3 deals with the novel fuliytiited linear SVM
algorithm. Section 3.1 is devoted to an online DSVM algorithm for synchroandsasynchronous
updates, while Section 4 generalizes the DSVM formulation to allow for nonltiassifiers using
kernels. Finally, Sections 5 and 6 present numerical results and comghainarks.

General notational conventions are as follows. Upper (lower) bold feiters are used for

matrices (column vectorsj;)" denotes matrix and vector transposition; jh¢h entry of a matrix
(j-th entry of a vector) is denoted Iy;i ([-];); diag(x) denotes a diagonal matrix withon its main
diagonal; diag-} is a (block) diagonal matrix with the elements{ir} on its diagonal|- | denotes set
cardinality;= (=) element-wise> (<); {-} ([:]) a set (matrix) of variables with appropriate elements
(entries);||-|| the Euclidean norml; (0;) a vector of all ones (zeros) of si2g; I stands for the

M x M identity matrix; E{-} denotes expected value; add(m,X) for the multivariate Gaussian
distribution with meamm, and covariance matrix.

2. Preliminaries and Problem Statement

With reference to Figure 1, consider a network wittnodes modeled by an undirected graph
G(J,E) with verticesy :={1,...,J} representing nodes, and edgedescribing links among com-
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Figure 1: Network example where connectivity among nodes, represbgteolored circles, is
denoted by a line joining them.

municating nodes. Nodge J only communicates with nodes in its one-hop neighborhood (ball)
B; C 7. The graphg is assumed connected, that is, any two nod&p &me connected by a (perhaps
multihop) path inG. Notice that nodes do not have to be fully connected (any-to-any)gandl-
lowed to contain cycles. At every noges 7, a labeled training sefj := {(Xjn,Yjn) :n=1,...,N;}
of sizeN; is available, where, € X is ap x 1 data vector belonging to the input spake_ RP,
andyj, € 9 := {—1,1} denotes its corresponding class label.

Given Sj per nodej, thegoalis to find a maximum-margin linear discriminant functigfx) in
a distributed fashion, and thus enable each node to classify any newagtatx to one of the two
classes{—1,1} without communicatings; to other nodeg’ # j. Potential application scenarios
include but are not limited to the following ones.

Example 1 (Wireless sensor networksiConsider a set of wireless sensors deployed to infer the
presence or absence of a pollutant over a geographical area &itrents. Sensorj measures
and forms a local binary decision variabtg € {1,—1}, whereyj, = 1(—1) indicates presence
(absence) of the pollutant at the position vectpr= [Xj1, Xj2, Xj3]". (Each sensor knows its
positionx; using existing self-localization algorithms Langendoen and Reijers, 200%) gbal

is to have each low-cost sensor improve the performance of local detextlieved based on
Sj= {([XJT,tn]T,yjn) :n=1,...,N;}, and through collaboration with other sensors approach the
global performance attainable if each sensor had available all othesrsetata. Stringent power
limitations prevent sensqgrto send its ses; to all other sensors or to an FC, if the latter is available.
If these sensors are acoustic and are deployed to classify undeanatanned vehicles, divers or
submarines, then low transmission bandwidth and multipath effects furtheudige incremental
communication of the local data sets to an FC (Akyildiz et al., 2005).

Example 2 (Distributed medical databasesBuppose thas; are patient data records stored at a
hospitalj. Eachxj, here contains patient descriptors (e.g., age, sex or blood preszulg), is a
particular diagnosis (e.g., the patient is diabetic or not). The objective ig¢matically diagnose

2. Although not included in this model for simplicitif-ary alphabets” with K > 2 can be considered as well.
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(classify) a patient arriving at hospitalwith descriptorx, using all available dat@s; Ll' rather
thans; alone. However, a nonchalant exchange of database e@tf,i,eyjn) can pose a privacy risk
for the information exchanged. Moreover, a large percentage of médficemation may require
exchanging high resolution images. Thus, communicating and procesgjegalaounts of high-
dimensional medical data at an FC may be computationally prohibitive.

Example 3 (Collaborative data mining). Consider two different government agencies, a local
agency A and a nation-wide agency B, with corresponding datal¥asasd Sg. Both agencies
are willing to collaborate in order to classify jointly possible security threatsvever, lower clear-
ance level requirements at agency A prevents agency B from gram@rngy A open access .
Furthermore, even if an agreement granting temporary access to ayarerg possible, databases
Sa andS$g are confined to their current physical locations due to security policies.

If {S; }]’:1 were all centrally available at an FC, then the global variabfeandb* describing

thecentralizednaximum-margin linear discriminant functigi(x) = x" w* +b* could be obtained
by solving the convex optimization problem; see, for examplep&opf and Smola (2002, Ch. 7)

J N;
{w*, b*}—arg m|n 7HW|| +CZ ZEJ”
b.{&jn} S )
S.t. yjn(w Xin+b)>1-¢&;n VjeJ, n=1,...,N;
&in=>0 Vieg,n=1,...,N;

where the slack variablesn account for non-linearly separable training sets, @nd a tunable
positive scalar.

Nonlinear discriminant functiong(x) can also be found along the lines of (1) after mapping
vectorsxj, to a higher dimensional spack C RP, with P > p, via a nonlinear transformation
©: X — 7. The generalized maximum-margin linear classifietirs then obtained after replacing
Xjn With @(x;jn) in (1), and solving the following optimization problem

J N;
w* b*l=arg min =|w||“+C &
{ } ng{EJn} H H Z1nzl " 2
S.t. yjn(w @Xjn) +b) >1-&jn Vies, n=1,...,N;
&in=>0 Vied,n=1,...)N;.

Problem (2) is typically tackled by solving its dual. Letting, denote the Lagrange multiplier
corresponding to the constraih (WT(p(Xjn) +b) > 1—&;n, the dual problem of (2) is:

J J NN J N
?)?]ai( - ZZ Zl Zl)\jn)\lmyjn)ﬁmq) Xjn)@(Xim) + ZL zl)\jn
n n=1lm=
J N;j
CY Z inYjin =0 3)
j=1n=1
0<Ajp<C Vied,n=1,....N;.
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Using the Lagrange multipliers;, optimizing (3), and the Karush-Kuhn-Tucker (KKT) optimality
conditions, the optimal classifier parameters can be expressed as

AjnYin®(Xjn),

HM_Z.

P PL

b* =Yjn — W' T @(Xjn) (4)

with xjn in (4) satisfyingAj, € (0,C). Training vectors corresponding to non-zarg's constitute
the SVs. Once the SVs are identified, all other training vectors Wjuh: 0 can be discarded
since they do not contribute t@*. From this vantage point, SVs are the most informative elements
of the training set. Solving (3) does not require knowledgepdiut only inner product values
@ (Xjn)@(Xim) := K(Xjn,Xim), Which can be computed through a pre-selected positive semi-definite
kernelK : X x X — R; see, for example, Soétkopf and Smola (2002, Ch. 2). Although not
explicitly given, the optimal slack variabl€s, can be found through the KKT conditions of (2) in
terms ofAj, (Scrblkopf and Smola, 2002). The optimal discriminant function can be als@ezpd
in terms of kernels as

J N

Z z)‘JnYJnK(XJm X) +b* (5)

=1n=1

whereb* = yj, — Zle Z#Ll)\TinmK(Xim,Xjn) for any SV x;, with )\]-“n € (0,C). This so-called
kernel trick allows finding maximum-margin linear classifiers in higher dimensapsces without
explicitly operating in such spaces (Stkopf and Smola, 2002).

The objective here is to develdplly distributedsolvers of the centralized problems in (1) and

(2) while guaranteeing performance approaching that of a centralquedadent SVM. Although
incremental solvers are possible, the size of information exchangeseguight be excessive,
especially if the number of SVs per node is large (Flouri et al., 2008; lak e2008). Recall that
exchanging all local SVs among all nodes in the network several timesessmy for incremental
DSVMs to approach the optimal centralized solution. Moreover, incremsnt@mes require a
Hamiltonian cycle in the network to be identified in order to minimize the communicatiahead.
Computing such a cycle is an NP-hard task and in most cases a sub-optaoigalscysed at the
expense of increased communication overhead. In other situations, cécating SVs directly
might be prohibited because of the sensitivity of the information bore, aadgirmentioned in
Examples 2 and 3.

3. Distributed Linear Support Vector Machine

This section presents a reformulation of the maximum-margin linear classifiglepran (1) to an
equivalent distributed form, which can be solved using the alternatingtidinemethod of multipli-
ers (ADMoM) outlined in Appendix A. (For detailed exposition of the ADMo#&e, for example,
Bertsekas and Tsitsiklis, 1997.)

To this end, consider replacing the common (coupling) variabhe®) in (1) with auxiliary
per-node variable§(w;,bj)}{_;, and adding consensus constraints to force these variables to agree
across neighboring nodes. With proper scaling of the cosl,lthe proposedonsensus-based
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reformulation of (1) becomes

i ZZ wi | +JCZ zzm

j=1n=1

st Yin(WiXjn+b) >1-&pn  Vjeg, n=1_. N (6)
EjnZO Vieg,n=1,...N
wj =Ww;, bj =b Vi€, ieB.

From a high-level view, problem (6) can be solved in a distributed fasb@rause each node

can optimize only thg-dependent terms of the cost, and also meet all the consensus constraints
wj = w;, bj = bj, by exchanging messages only with nodesits neighborhoods;. What is more,
network connectivity ensures that consensus in neighborhood¢esnatwork-wide consensus.

And thus, as the ensuing lemma asserts, solving (6) is equivalent to sobirep (ong as the
network remains connected.

Lemmal If {(Wj,bj)}‘;:l denotes a feasible solution ¢6), and the graphg is connected, then
problems(1) and (6) are equivalent, that iswy; =w and b =b Vj =1,...,J, where(w,b) is a
feasible solution of1).

Proof See Appendix B. |

To specify how (6) can be solved using the ADMoM, define for notatidmavity the aug-
mented vectov; := [w], bj]T, the augmented matriX; := [[xj1,...,Xjy;]",1j], the diagonal label
matrixY j := diag([yj1, - - -, Yjn;]), and the vector of slack variablés:= [y, ..., &in,]T. With these
definitions, it follows readily thatv; = (I py.1 — Mpy1)Vvj, wherelp, g is a(p+1) x (p+ 1) matrix
with zeros everywhere except for thp+ 1, p+ 1)-st entry, given byMp.1](pi1y(pr1) = 1. Thus,
problem (6) can be rewritten as

J
{VjTjivr(])ji} ;JZVJT(I pr1=MMp:2)Y, +JCZ lTEJ
S.t. YijVjtlj—Ej vVieyg @)
& =0 vieJs
Vj = Wji, Wji =V VieJ, vie B

where the redundant variablée; } will turn out to facilitate the decoupling of the classifier pa-
rameters/j at nodej from those of their neighbors at neighbors 3;.

As in the centralized case, problem (7) will be solved through its dual. fbtkiés objective, let
aji1 (aji2) denote the Lagrange multipliers corresponding to the conswaiatw; (respectively
wji = Vi), and consider what we term surrogate augmented Lagrangian function

J

J J
L({vi}, (&} (o} {aji}) = z p+1—ﬂp+1>vj+J021?Ej+;Zam —wji)

i€Bj

+z S alp(o—vi)+ gi 3 - o +zZ S oy @

J=LlieB; 1=1lieB;
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where the adjective “surrogate” is used becatisdoes not include the set of constraimis :=
{YiXjvj = 1; =&, & = 0}, and the adjective “augmented” becausencludes two quadratic
terms (scaled by the tuning constant- 0) to further regularize the equality constraints in (7). The
role of these quadratic ternisj — wji||? and||wji — vi||? is twofold: (a) they effecstrict convexity

of L with respect to (w.r.t.w;i, and thus ensure convergence to the unique optimum of the global
cost (whenever possible), even when the local costs are conveobsirictly so; and (b) through

the scalamn, they allow one to trade off speed of convergence for steady-statexapytion error
(Bertsekas and Tsitsiklis, 1997, Ch. 3).

Consider now solving (7) iteratively by minimizing in a cyclic fashion with respect to one
set of variables while keeping all other variables fixed. The multip{erg,,a;i>} must be also
updated per iteration using gradient ascent. The iterations requirec@elj mre summarized in
the following lemma.

Lemma 2 The distributed iterations solvin@) are

{vi(t+1),&;(t+1)} = afg{v_Eh}igwﬁ({vj}v{ﬁj},{wji(t)}a{ajik(t)})v 9)
{wit+1)} = arg{rg_ii?L({Vj(tJrl)}a{Ej(tJFl)}a{wji}v{ajik(t)})v (10)

(inl('[—i-l) = ajil(t)+r](vj(t+1)—oo,-i(t+1)) Vje€J,Vvie B, (11)
Aji2(t+1) = ajio(t) +n(wji(t+1) —vi(t+1))  Vje g, Vie B. (12)

and correspond to the ADMoM solver reviewed in Appendix A.
Proof See Appendix C. [ |

Lemma 2 links the proposed DSVM design with the convergent ADMoM soared, thus en-
sures convergence of the novel MoM-DSVM to the centralized SVM iflassHowever, for the
particular problem at hand it is possible to simplify iterations (9)-(12). éadesimple inspection
of (8) confirms that with all other variables fixed, the cost in (10) is lirpaaeratic inw;; hence,
wji (t+ 1) can be found in closed form per iteration, and the resulting closed-fapression can
be substituted back to eliminatg; from £. Furthermore, Appendix D shows that the two sets
of multipliersaji; andaji> can be combined into one sef after appropriate initialization of the
iterations (11) and (12), as asserted by the following lemma.

Lemma 3 Selectingaji1(0) = aji2(0) = Op11)x1 as initializationVj € 7, Vi € Bj, iterations(9)-
(12) reduce to

Wit+D.g (1)} = arg min £({vi} &) v O} {a 0. (13)
aj(t+1) = a,-(t)+%Z[v,-(t+1)—vi(t+1)] Vied (14)
i€B
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wherea(t) := Yiep ajir(t), and L' is given by

J J
.ﬂwm&¢wm»mmmzigﬂmﬂ—wmw+m;ﬂa
i= =

J 2

J
+2yajtyvi+ny Yy
=1 i

=lieB;

vi— 3O+l . as)

Proof See Appendix D. |

The optimization problem in (13) involves the reduced Lagrangiam (15), which is linear-
quadratic inv; andEj. In addition, the constraint s’ is linear in these variables. To solve
this constrained minimization problem through its dual Net= [)\j]_,...,)\ij]T denote Lagrange
multipliers per node corresponding to the constrainXv; = 1; —&;. Solving the dual of (13)
yields the optimal\; at iterationt + 1, namelyA;(t + 1), as a function o (t) anda;(t); while
the KKT conditions provide expressions fo(t 4+ 1) as a function ofx;(t), and the optimal dual
variablesAj(t + 1). Notwithstanding, the resultant iterations are decoupled across notlese T
iterations and the associated convergence guarantees can be sumamfitieivs.

Proposition 1 Consider the per node iterat@s(t), vj(t) anda;(t), given by

Ai(t+1)=arg max —1)\TY-X-U*1XTY-)\-+(1-+Y-X-U*1f- t )T)\- (16)

i( ) = A?:ojjxjgcq SN YIRIY TR YA j XU fi(t) i

Vi(t+1) = U XTY A (t+1) —fi(1)] (17)

0j(t+1) = oy(t)+ 3 ¥ [Vj(t+1) —vi(t+1) (18)
i€B;

whereU; := (1+2n|B;|)l pr1 —Mpy1, fj () == 20(t) —N Tiep [vj(t) +Vi(t)], n > 0, and arbitrary
initialization vectors\(0), vj(0), anda;(0) = 0(p,1).1. The iteratevj(t) converges to the solution
of (7), call it v*, as t— oo; that is, lim;_.. vj(t) = v*.

Proof See Appendix E. |

Similar to the centralized SVM algorithm, [k (t)]n # 0, then[x],, 1]T is an SV. Finding\; (t +
1) as in (16) requires solving a quadratic optimization problem similar to the one tettralized
SVM would solve, for example, via a gradient projection algorithm or animt@oint method; see
for example, Schlkopf and Smola (2002, Ch. 6). However, the number of variables iadoir
(16) per iteration per node is considerably smaller when compared to itslizedr counterpart,
namelyN,; versuszf:1 N;. Also, the optimal local slack variablég can be found via the KKT
conditions for (13).

The ADMoM-based DSVM (MoM-DSVM) iterations (16)-(18) are summadzs Algorithm
1, and are illustrated in Figure 2. All nodes have availalleandn. Also, every node computes
its localNj x Nj matrix'Y ;X Uj‘lijYj, which remains unchanged throughout the entire algorithm.
Every node then updates its lo¢@l+ 1) x 1 estimatey;(t) anda(t); and theN; x 1 vectorA(t).
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At iterationt + 1, nodej computes vectafj(t) locally to obtain its locah;(t + 1) via (16). Vector
Aj(t+1) together with the local training sy are used at nodgto computev(t + 1) via (17).
Next, nodej broadcasts its newly updated local estimatgs$ + 1) to all its one-hop neighbors
i € B;. Ilterationt + 1 resumes when every node updates its logé@ + 1) vector via (18). Note
that at any given iteratioh of the algorithm, each nodgcan evaluate its own local discriminant
function ggt) (x) for any vectorx € X as

g’ () = X", 2Jvj 1) (19)
which from Proposition 1 is guaranteed to converge to the same soluticssadtmodes als— oo.
Simulated tests in Section 5 will demonstrate that after a few iterations the clagsifiparfor-
mance of (19) outperforms that of the local discriminant function obtaiasddon the local train-

ing set alone. The effect of on the convergence rate of MoM-DSVM will be tested numerically in
Section 5.

t+1 /7% (t+1) v, (t + 1)‘ hf/v_,z (t+ 1)
\S =Xl \&laitr) @
wit1)| .
\\ \\

Figure 2: Visualization of iterations (16)-(18): (left) every node 7 computes\;(t + 1) to obtain
vj(t+1), and then broadcastg(t + 1) to all neighbors € B;; (right) once every node
j € J has received;(t +1) fromalli € B;, it computesxj(t +1).

Remark 1 The messages exchanged among neighboring nodes in the MoM-Dg§uflithan cor-
respond to local estimateg;(t), which together with the local multiplier vectors;(t), convey
sufficient information about the local training sets to achieve conseriebalty. Per iteration and
per node a message €@iked size(p+ 1) x 1is broadcasted (vectors; are not exchanged among
nodes.) This is to be contrasted with incremental DSVM algorithms in, forgeatu et al. (2008),
Flouri et al. (2006) and Flouri et al. (2008), where the size of the sages exchanged between
neighboring nodes depends on the number of SVs found at each @mtedratep. Although the
SVs of each training set may be few, the overall number of SVs mainrnrge, thus consuming
considerable power when transmitting SVs from one node to the next.

Remark 2 Real networks are prone to node failures, for example, sensors in ardé$Nun out of

battery during operation. Thanks to its fully decentralized mode of operatiemovel MoM-DSVM
algorithm guarantees that the remaining nodes in the network will reackartsus as long as the
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Algorithm 1 MoM-DSVM

Require: Randomly initializev(0), andaj(0) = O(p1)x1 for everyj € J
1. fort=0,1,2,...do

forall j€ Jdo

3 Computeh(t + 1) via (16).

4 Computev(t+ 1) via (17).

5. end for

6. forall je jdo

7.

8

9

Broadcasv(t + 1) to all neighbors € 3;.
end for
. forall jegdo
10: Computea;(t + 1) via (18).
11:  end for
12: end for

node that fails, say,je 7, does not correspond to@ut-vertexof G. In this case, the operational
network graphg, := G — jo remains connected, and thus surviving nodes can percolate information
throughoutg,. Of course,S;, will not participate in training the SVM. Ifjis a cut-vertexof G,

the algorithm will remain operational in each connected component ofethelting sub-graplg,,
reaching consensus among nodes in each of the connected contgonen

3.1 Online Distributed Support Vector Machine

In many distributed learning tasks data arrive sequentially, and possibigta®nously. In addition,
the processes to be learned may change with time. In such cases, traanimgex need to be added
or removed from each local training sgt Training sets of increasing of decreasing size can be
expressed in terms time-varyingaugmented data matric¥s(t), and corresponding label matrices
Y;(t). An online version of DSVM is thus well motivated when a new training exarmpl¢t)
along with its labey;s (t) acquired at time are incorporated intX; (t) andY (t), respectively. The
corresponding modified iterations are given by (cf. (16)-(18))

1 _
Ajt+1) = )\ja:.%gj](tﬂ);r/l\?j)(mlj(tﬂ)—é)\jTYj(t—i-l)Xj(t—i-1)Uj It +1)TY -+ DA,
+(1,—fvj(t+1)x,-(t+1)u;1f,-(t))T>\,-, (20)
vit+1) = U,-1<Xj<t+1)TYj(t+1>M(t+1>—2aj(t>+n Z[vj(t>+vi(t)]>, (21)
IEB;
ajt+1) = O(j(t)—i—giezgj[vj(t—i—l)—vi(tJrl)]. (22)

Note that the dimensionality &f, must vary to accommodate the variable numbef;@lements
at every time instarit The online MoM-DSVM classifier is summarized as Algorithm 2. For this
algorithm to run, no conditions need to be imposed on how theSsétsincrease or decrease. Their
changes can be asynchronous and may comprise multiple training examplegatn principle,
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Algorithm 2 Online MoM-DSVM
Require: Randomly initializev;(0), andaj(0) = O(p 1)1 for everyj € 7.
1. fort=0,1,2,...do
forall je Jdo
UpdateY (t+1)X;(t + DU Xt +1)TY;(t+1).
Computeh(t + 1) via (20).
Computev(t+ 1) via (21).
end for
forall je 7do
Broadcasv(t + 1) to all neighbors ¢ B;.
end for
10 forall je€ 7do
11: Computea(t + 1) via (22).
12:  end for
13: end for

N

© 0N AW

the parameterg andC can also become time-dependent. The effect of these parameters will be
discussed in Section 5.

Intuitively speaking, if the training sets remain invariant across a sufficiamber of time
instants,v;(t) will closely track the optimal linear classifier. Rigorous convergence arsabf
Algorithm 2 for any given rate of change of the training set goes beybadcope of this work.
Simulations will however demonstrate that the modified iterations in (20)-(22pkle to track
changes in the training sets even when these occur at every time instant

Remark 3 Compared to existingentralizedonline SVM alternatives in, for example, Cauwen-
berghs and Poggio (2000) and Fung and Mangasarian (2002), ttieeMoM-DSVM algorithm
of this section allows seamless integration of both distributed and online gse Nodes with
training sets available at initialization and nodes that are acquiring their trairnsegs online can
be integrated to jointly find the maximum-margin linear classifier. Furtheenehenever needed,
the online MOM-DSVM can return a partially trained model constructed withmgdes available to
the network at any given time. Likewise, elements of the training sets camoeed without hav-
ing to restart the MoM-DSVM algorithm. This feature also allows adapting Ma®M to jointly
operate with algorithms that account for concept drift (Klinkenberg anachims, 2000). In the
classification context, concept drift defines a change in the true clasgiifidaoundaries between
classes. In general, accounting for concept drift requires two mairsstepich can be easily han-
dled by the online MoM-DSVM: (i) acquisition of updated elements in the trais@idghat better
describe the current concept; and (ii) removal of outdated elementstiie training set.

4. Distributed Nonlinear Support Vector Machine

In Section 3, problem (1) was reformulated to allow all nodes to consewt.ddowever, applying
an identical reformulation to the nonlinear classification problem in (2) woedgiire updates in
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(16)-(18) to be carried i{. As the dimensionality of # increases, the local computation and
communication complexities become increasingly prohibitive.

Our approach to mitigate this well-known “curse of dimensionality” is to enfamesensus
of the local discriminantglj on a subspace of reduced rabk< P. To this end, we project the
consensus constraints corresponding to (2) and consider the optimigaitdam (cf. (6))

J
; 2 T
min é Z lwj||<+JC Z iy

{wj,bj.&;}
st Yj(d(X )Wj—{—ljbj)ilj—aj V]:GJ (23)
Ej>'oj vieJ
bj—bi VjE],iG@j

where ®(X;) = [@(Xj1),...,0(Xjn;)]T, and G = [@(Xy),...,@(X.)]" is a fatL x P matrix com-
mon to all nodes with preselected vectt{))(s,;}, specifying its rows. Eacl, € X corresponds to a
®(X|) € #{, which at the optimal solutiofw’, b; }1 E _, 0f (23), satisfie®' (x, )W} =---=@" (X)W} =

@ (x,)W*. The projected constrain{s&sw; = GW.} along with{b; = b; } force all nodes to agree
on the value of the local discriminant functiogix; ) at the vectorg; }k_;, but not necessarily for
all x € X. This is the price paid for reducing the computational complexity of (23) tdfandable
level. Clearly, the choice of vecto{s(l}lL:l, their numberL, and the local training sets; deter-
mine how similar the local discriminant functiog$ are. IfG = Ip, then (23) reduces to (6), and
gi(x) = ... =dj(x) = g"(x), ¥x € X, but the high dimensionality challenge appears. At the end of
this section, we will provide different design choices {(xrl},L:l, and test them via simulations in
Section 5.

Because the cost in (23) is strictly convex ww, it guarantees that the set of optimal vectors
{W’jk} is unique even whe@ is a ‘fat’ matrix (L < P) and/or ill-conditioned (Bertsekas, 1999, Prop.
5.2.1). Asin (2), having[w’j*} known is of limited use, since the mappipgnay be unknown, or if
known, evaluating vectorg(x) may entail an excessive computational cost. Fortunately, the result-
ing discriminant functiorg]-‘(x) admits a reduced-complexity solution because it can be expressed
in terms of kernels, as shown by the following theorem.

Theorem 4 For every positive semi-definite kernel(-k), the discriminant functions jgx) =
o (x )wj -+ bj with {wj,bj} denoting the optimal solution ¢®3), can be written as

N;
zaJnK XXJn +Z 1 XXI)"‘prJej (24)

where{aj, } and{cj } are real-valued scalar coefficients.

Proof See Appendix F. |

The space of functiong; described by (24) is fully determined by the span of the kernel function
K(-,-) centered at training vectolXj,,n = 1,...,N;} per node, and also at the vectdng }|-_;
which are common to all nodes. Thus, similarity of the discriminant functijrecross nodes is
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naturally constrained by the correspondifjg Theorem 1 also reveals the effect{of }-_, on the
{gj}. By introducing vectorg; }k_, common to all nodes, a subset of basis functions common to
all local functional spaces is introduced a fortiori. Coefficiajtsandcj; are found so that all local
discriminantsyj agree on their values at poinfg, }|L:1- Intuitively, at every node these coefficients
summarize the global information available to the network.

Theorem 1 is an existence result whereby each nonlinear discrimimeticing; is expressible
in terms of5; and{x; }|_;. However, finding the coefficients),, c;; andbj in a distributed fashion
remains an issue. Next, it is shown that these coefficients can be obtairsneély by applying
the ADMoM solver to (23).

Similar to (7), introduce auxiliary variablgso;i } ({;i }) to decouple the constrainBw; = Gw;
(b; = by) across nodes, arwjik (Bjik) denote the corresponding Lagrange multipliers (cf. (8)). The
surrogate augmented Lagrangian for problem (23) is then

L{{wit &} {wji b Aaich{Ci b {Bjik }) = Z‘|WJ|’2+JCZ 17, +Z > otjia (Gwj — o)

I=1ieB;

+z ZGJ'Z 00ji — Gwi) +Z Zﬁlll Gji +Z ZBHZ Gji— bi)

j=lieB; =1 |e£BJ 1|e'BJ

rz]i > llow—o +ZZ > floy—Gwif+3 ZZHb, 4>+ géli;}|zji—bi“2.

€PBj j=1lieB; I€B;

Following the steps of Lemma 2, and witl i } and {Bji } initialized at zero, the ADMoM
iterations take the form

{w;j(t+1),bj(t+1),&;(t+1)}=arg  min L({WJ} {bi}. {&;}{aj®)}. {B;O)}, (25

{w, JE}

aj(t+1)= + ZGWJ +1) —wi(t+1)], (26)
|E$J

Bi(t+1)=B;(t) + o 5> 2 bi(t+1) —bi(t+1)] (27)
|e'BJ

where L' is defined similar to (8)a(t) as in Lemma 3, anj(t) := Yic3, Bjir(t). The ADMoM
iterations (25)-(27) will not be explicitly solved since iterategt) lie in the high-dimensional
space#. Nevertheless, our objective is not to fimq, but rather the discriminant functicg’](x).
To this end, lel := [xy,...,X.]T, and define the kernel matrices with entries

[K(Xj,Xj)]anZ: K(Xjn,ij), (28)
[K(Xj,r)]m = K(Xjn,X|), (29)
[K(I’,I’)]H/ = K(XI?XI/)' (30)

From Theorem 1 it follows that each local updg&té(x) = @' (X)wj (t) +bj(t) admits per iteration
a solution expressed in terms of kernels. The latter is specified by thectem#i{a;n (t)}, {c;j (t)}
and{bj(t)} that can be obtained in closed form, as shown in the next proposition.
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Proposition 2 LetA;j := [)\jl,...,)\ij]T denote the Lagrange multiplier corresponding to the con-

str_aintY_j (CD(_XJ- JWj+1jbj) = 1j —&;, andw;(t) := Gwj(t). The local discriminant functionﬁtd(x)
atiteration t is
L

0= 3 an(K G+ 3 ey (OKGX)-+b,() @)

wherea;(t) := [aj1(t),...,an; ()]7, ¢j(t) :=[cj1(t),...,ciL(t)]T, and Q(t) are given by

aj(t) == YjAj(t), (32)
cj(t) := 2n|Bj|U; LK (I, 1)fj(t) — K(F, X))Y A (1)] = (1), (33)
bj(t) == 2m1$ ’ [1TYA(t) —hy(t)] (34)

with A (t) denoting the vector multiplier update available at iteratiortTJq,:: IL+2n|B;|K(T,T),
Fj(t) i= 20 (t) =N Tieg; (W (1) + Wi(t)] and by (t) := 2B;(t) —N Jies [bj (t) +bi(t)].

Proof See Appendix G. |

Proposition 2 asserts that in order to fiadt), cj(t) andb;(t) in (32), (33) and (34), it suffices
to obtainA;(t), wj(t), bj(t), a;(t), andB;(t). Note that finding the x 1 vectorw;(t) from wj(t)
incurs compIeX|ty of orde®(L ) The next proposition shows how to iteratively updaté), wj (t),
bj(t), a;(t), andB;(t) in a distributed fashion.

Proposition 3 The iterates\j(t), wj(t), bj(t), a;j(t) and;j(t) can be obtained as

T

)\j(t+1):argk:0.21xajxm1_—1)\JTYJ-(K(Xj,xj)—ﬁ(xj,xj) 5 |$)Y )\J—I-l )\J
" T
- (0 (kEx)-REX)) (05 Y, (@)
Wy(t+1) = [K (T, X)) = R(E,X)) | YA+ 2) = [K (D) =R (1, 1) | T(0), (36)
bj(t+1)= zmlas,-\ A]Y A (t+2) —hi(t)]. (37)
aj(t+1)= +5 z Wj(t+1) —wi(t+1)], (38)
|6%
Bit+1)=Bi(t)+5 33 [by(t+ 1) ~bi(t+1) (39)
i€Bj

whereK (Z,2') := 2r]|$j]K(Z,F)Uj‘1K(I',Z’). With arbitrary initialization A;(0), w;(0), and
bj(0); and aj(0) = O_«1 and Bj(0) = O, the iterates{ajn(t)}, {cji (t )} and {bj(t)} in (32), (33)
and(34)converge toaj,}, {cj } and{bj}in(24), ast—,vVje 7,n=1,...,Nj,and I=1,... L.

Proof See Appendix H. |
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Algorithm 3 MoM-NDSVM
Require: Randomly initializew;(0) andb;(0); anda(0) = 0.1 andpB;(0) = O for everyj € J.
1. fort=0,1,2,...do
forall je 7do
Computeh(t +1) via (35).
Computew;(t + 1) via (36).
Computebj(t + 1) via (37).
end for
forall j€ Jdo
Broadcastvj(t + 1) andb;(t + 1) to all neighbors € B;.
end for
10. forall je€ 7do
11: Computea;(t + 1) via (38).
12: Computef3j(t + 1) via (39).
13: Computea;(t), cj(t) andbj(t) via (32), (33) and (34), respectively.
14:  end for
15: end for

N

The iterations comprising the ADMoM-based non-linear DSVM (MoM-NDSMdve summa-
rized as Algorithm 3. It is important to stress that Algorithm 3 starts by haingpdes agree on
the common quantitieE, JC, n, andK(-,-). Also, each node computes its local kernel matrices
as in (28)-(30), which remain unchanged throughout. Subsequemgigriam 3 runs in a manner
analogous to Algorithm 1, with the difference that every node communicatés-a1) x 1 vector
(instead of{ p+ 1) x 1) for its neighbors to receive;(t) andb;(t).

4.1 On the Optimality of NDSVM and the Selection of Common Vectors

By construction, Algorithm 3 produces local discriminant functions whurselictions for{x;, }}-:1

are the same for all nodes in the network; thabgigx;) = ... = gj(x;) = 9" (x;) for I =1,...,L,
whereg*(x;) = @' (x,)w* +b*, and {w*,b*} are the optimal solution of the centralized problem
(2). Viewing {X|}|L:1 as a classification query, the proposed MoM-NDSVM algorithm can be im-
plemented as follows. Having this query presented at any fedéailing a set of unlabeled vectors
{Xi }. 1, the novel scheme first percolatgg }-_; throughout the network Problem (23) is subse-
guently solved in a distributed fashion using Algorithm 3. Notice that in thisgatoe no database
information is shared.

Although optimal in the sense of being convergent to its centralized coantetipe algorithm
just described needs to be run for every new classification query. natieely, one can envision
procedures to find discriminant functions in a distributed fashion thatifsiasswy queries without
having to re-run the distributed algorithm. The key is to pre-seldoteal set {x, }l_; for which
g* in (5) is (approximately) equivalent tgj in (24) for all j € 7. From Theorem 1, we know
that all local functiongyj share a common space spanned byyjhimduced kernel§K(-,x;)}. If
the space# whereg* lies is finite dimensional, for example, when adopting linear or polynomial

3. Percolating{)(}lL:1 in a distributed fashion through the network can be carried in a finite nuailiterations at most
equal to the diameter of the network.
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kernels in (5), one can always find a finite-size §gt}-_, such that the space spanned by the
set of kernel{K(-,x,)} contains#, and thusg;(x) = ... = gj(X) = g*(x) ¥x € X (Predd et al.,
2006). Indeed, when using linear kernels, the MoM-NDSVM develdpe@ boils down to the
MoM-DSVM developed in Section 3 for a suitable finite-size §gt - ;.

In general, however, the space spanned Ky-,x;)} may have lower dimensionality thak;
thus, local functiongyj do not coincide at every point. In this case, MoM-NDSVM finds local
approximations to the centralizefl which accommodate information available to all nodes. The
degree of approximation depends on the choic{-.xp},L:l. In what follows, we describe two alter-
natives to constructing such a g }-_;.

e Grid-based designs Consider every entrk of the training vectorsxj,}, and form the
intervals fi := ", X, k = 1,...,p, wherex™™ := minjcy n-1,..N; [Xjn]k and X7 :=
MaXjcy, n=1,..N; [Xjn]k- Take for convenienck = MP, and partition uniformly eac to ob-
tain a set oM equidistant pointsd := {d,...,0m}. The set{x,}_; can be formed by
taking allMP possible vectors with entries drawn from the Cartesian proQuet. .., x Qp.
One possible set we use for generating {Re}}-_, vectors is obtained by selecting tketh

entry of thel-th vector adx|Jk =09, ; , ,Wherel =1,...,MPandk=1,...,p. In
K(MﬁimodM>+1

this case, MOM-NDSVM performs a global consensus step on the engg/1waxima and
minima of the training vectoréx;, }. Global consensus on the entry-wise maxima and min-

ima can be computed exactly in a finite number of iterations equal to at most thetelianhe
the graphg.

e Random designs Once again, we consider every erkmyf the training vector§x;, }. MoM-
NDSVM starts by performing a consensus step on the entry-wise maxima amdaxahthe
local training vectors(xj,}. The set{x, }|_, is formed by drawing elementg randomly
from a uniformp-dimensional distribution with extreme points per entry given by the extreme
pointsx™ andx", k = 1,...,p. To agree on the sdl, }1-_,, all nodes in the network are
assumed to share a common seed used to initialize the random sampling algorithms.

As mentioned earlier, the number of poihtaffects how close local functions are to each other
as well as to the centralized one. The choicé afso depends on the kernel used, prior knowledge
of the discriminant function, and the available local training détalncreasing. guarantees that
local functions will be asymptotically close to each other regardless; ohowever, the commu-
nication cost and computational complexity per node will increase accotdibdgcf. Algorithm
3]. On the other hand, a sméllreduces the communication overhead at the price of increasing the
disagreement among tigg's. This trade-off will be further explored in the ensuing section through
simulated tests.

5. Numerical Simulations

In this section, we analyze the performance of both MoM-DSVM and MoBDEBENM algorithms
using different networks with synthetic and real-world training sets. Alghowe focus on the
binary classification case, it is worth remembering tedry classification problems witl > 2
can be solved via binary classification schemes, for example, by usingeosigs all classifiers, or
all versus all classifiers (Duda et al., 2002, Ch. 5).
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5.1 Linear Classifiers

In this section, we present experiments on synthetic and real data to illustegperformance of
our distributed method for training linear SVMs.

5.1.1 TESTCASE 1: SYNTHETIC TRAINING SET

Consider arandomly generated network with 30 nodes. The network is connected with algebraic
connectivity 0.0448 and average degree per node 3.267. Each cqaeca labeled training exam-
ples from two different classeg, and ¢ with corresponding labelg = 1 andy, = —1. Classes
(1 and; are equiprobable and consist of random vectors drawn from a twoadioreal Gaussian
distribution with common covariance mati= [1, 0; 0, 2], and mean vectomsy = [-1, —1]T
andm, = [1, 1]T, respectively. Each local training sgtconsists olNj = N = 10 labeled examples
and was generated by: (i) randomly choosing clds& = 1,2; and, (ii) randomly generating a la-
beled exampléijn,yjn = (k) with Xjn ~ AL(m, X). Thus, the global training set contaidid = 300
training examples. Likewise, a test $Btsi:= {(Xn,¥n), N=1,...,Nr} with Ny = 600 examples,
drawn as in (i) and (ii), is used to evaluate the generalization performarte afassifiers. The
Bayes optimal classifier for this 2-class problem is linear (Duda et al.,,2002 2), with risk
RBayes= 0.1103. The empirical risk of the centralized SVM in (1) is defined as

Rcentral il 1
emp - Z [V — Ynl

wherey; is the predicted label fax,. The average empirical risk of the MoM-DSVM algorithm as
a function of the number of iterations is defined as

JNTl

Remp Z Z =|¥n— Yin(t (40)

Jlnl

whereyij,(t) is the label prediction at iteratianand nodej for X,, n=1,...,Nt using the SVM
parameters in;(t). The average empirical risk of the local SVMs across ncRJg:%' is defined as
in (40) withyj, found using only locally-trained SVMs.

Figure 3 (left) depicts the risk of the MoM-DSVM algorithm as a function of tluenber of
iterationst for different values ofJC. In this test,n = 10 and a total of 500 Monte Carlo runs
are performed with randomly drawn local training and test sets per rua.céhtralized and local
empirical risks withC = 10 are included for comparison. The average local prediction perfarena
is also evaluated. Clearly, the risk of the MoM-DSVM algorithm reducesasuimber of iterations
increases, quickly outperforming local-based predictions and aggreathat of the centralized
benchmark. To further visualize this test case, Figure 3 (right) showgldbal training set, along
with the linear discriminant functions found by the centralized SVM and the NB¥/M at two
different nodes after 400 iterations widllc = 20 andn = 10. Local SVM results for two different
nodes are also included for comparison.

5.1.2 TESTCASE 2: MNIST TRAINING SET

Here, the MOM-DSVM is tested on the MNIST database of handwritten imagesi( et al., 1998).
The MNIST database contains images of digits O to 9. All images are of sizg 28 pixels. We
consider the binary problem of classifying digit 2 versus digit 9 using atintssifier. For this
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Figure 3: Evolution of the test errdRres;) and prediction errofRpreg) 0f MOM-DSVM for a two-
class problem using synthetic data and a network With30 nodes. Centralized SVM
performance and average local SVMs performance are also plobfoparison (left).
Decision boundary comparison among MoM-DSVM, centralized SVM andl ISB¥M
results for synthetic data generated from two Gaussian classes (right).

experiment each image is vectorized to a 784 by 1 vector. In particular, kee5t@00 training
samples per digit, and a test set of 1,000 samples per digit. Both training asétessed are as
given by the MNIST database, that is, there is no preprocessing ofathe 8or simulations, we
consider two randomly generated networks with 25, algebraic connectivity 3.2425, and average
degree per node 12.80; add= 50 nodes, algebraic connectivity 1.3961, and average degree per
node 15.92. The training set is equally partitioned across nodes, thysrede in the network
with J = 25 hasN; = 472 training vectors, and every node in the network With50 hasN; = 236
samples. The distribution of samples across nodes influences the trairisg ghMoM-DSVM.
For example, if data per node are biased toward one particular clasghthé&maining phase may
require more iterations to percolate appropriate information across therketwehe simulations,
we consider the two extreme cases: (i) training data are evenly distributessawdes, that is,
every node has the same number of examples from digit 2 and from digitd9(ig highly biased
local data, that is, every node has data corresponding to a single digitathacal binary classifier
cannot be constructed.

The figures in this section correspond to one run of the MoM-DSVM foetavark with noise-
less communication links. Figure 4 shows the evolution of the test error fardtveork with 25
nodes and highly biased local data. Likewise, Figure 5 shows the evohftithre test error for
the network with 50 nodes and highly biased local data. Different valuethé penaltiedC and
n were used to illustrate their effect on both the classification performarge¢h@nconvergence
rate of MoM-DSVM. The parametelC controls the final performance of the classifier; but for a
finite number of iterations) also influences the final performance of the classifier. Larger values
of n may be desirable; however,rifis too large, the algorithm first focuses on reaching consensus
across nodes disregarding the classification performance. Althoug¥i:5VM is guaranteed to
converge for allh, a very large choice faq may hinder the convergence rate.
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Figure 4: Evolution of the test errgResy) of MOM-DSVM, with penalty coefficientdC = 1 (left)
andJC = 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data s
unevenly distributed across nodes, and a network With25 nodes.
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Figure 5: Evolution of the test errgRes) of MOM-DSVM, with penalty coefficientdC = 1 (left)
andJC = 5 (right), for a two-class problem using digits 2 and 9 from the MNIST deta s
unevenly distributed across nodes, and a network With50 nodes.

Next, the dispersion of the solutions after 3,000 iterations for differeluiegaofn is tested.
For our experiment, dispersion refers to how similar are the loga) at every node. The mean-
squared error (MSE) of the solution across nodes is definAgtas= 3 Z“j':l ||V (t) —V(t)||2 where
V(t) == 3 37_1vj(t). Table 1 shows\(t) att = 3,000 for different values ofj andJC. Note that
larger values of) lead to smaller dispersion in the solution; however, as illustrated in Figureys, the

do not imply faster convergence rates.
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A(t) att = 3,000
J=25 J=50
n JC=1 JC=5 Jc=1 JC=5
1 3.184%10 7 3.1870x10 7 23749x10 7 2.3227x10°’
5 15591x108 1.4760x10% 2.6613<108 2.6646<10°8
10 2.9280x10°1°0 29112x10°1° 3.6028<10° 3.6207%10°°

Table 1: MSEA(t) with MNIST data set and biased local data for different values ahdJC.

Consider next data that are evenly distributed across nodes. TheTMNifBing set is parti-
tioned across nodes ensuring that every node has an equal nunibemgbles from digit 2 and
digit 9. Figure 6 shows the evolution of the test error for the network Wwith25 nodes and Figure
7 shows the evolution of the test error for the network wits 50 nodes for different values for
the penaltiesIC andn. In this case, local classifiers achieve low test error after one iteration o
the MoM-DSVM. In subsequent iterations MoM-DSVM forces all localssidiers to consent, but
the test error does not decrease monotonically across iterations. Tiagovaeis small, ranging
between 0.015 and 0.02, since all local classifiers already have lowtest Both Figures 6 and
7 show that between iterations 500 an@®@0, the global test reaches a minimum value, then it
increases and converges to a larger value. This non-monotonic bebaribe attributed to the fact
that the MoM-DSVM iterates are not guaranteed to be monotonic. Morgbgtare consensus is
reached across all nodes the test error at any given node and itdratex does not necessarily
need to be greater than the centralized one.

It is also worth noticing the resemblance of the curves in the left and rigiglpaf Figures 4,
5, 6 and 7. Although the test error is nearly identical¥6r= 1 andJC = 5, this does not imply that
thev;(t) are nearly identical across iterations. Furthermore, the insensitivity wimall shanges
in JC reveals that in order to affect the classifier performance, the parad@taust vary in the
order ofJ. Relating the distributed setting with its centralized counterpart, it follows that faith
exampleJ = 25 a change idC from 1 to 5 in the distributed setup of (6), corresponds to a change
in C from 0.04 to Q20 for the centralized setting of (1). Such a small chandge éxplains why the
classification performance of the equivalent centralized scenariosily ngentical as reflected in
the figures.

In both biased and evenly distributed data, after a few iterations, MOMMND$¥Ids an average
performance close to the optimal one. Itis also interesting to note that in tleslldata case, nodes
alone cannot construct an approximate classifier since they do nosammes from both classes.
If an incremental approach were used it would need at least one fiél dyrough the network to
enable construction of local estimators per node.

Finally, the effect of network connectivity on the performance of Molg\MIM is explored. In
this experiment, we consider a network with- 25 nodes, ring topology and biased data distribution
as before. The performance of MOM-DSVM is illustrated by Figure 8. Itlesar that in this
case a largen improves the convergence rate. Also, note that after a few iterations ¢énagav
performance of the classifier across the network is close to the optimahdtiqa, a small reduction
of performance over the centralized classifier may be acceptable in wésehMoM-DSVM can
stop after a small number of iterations. Note that the communication cost of MISVMM can be
easily computed at any iteration in terms of the number of scalars transmittes$ dloeonetwork.
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Figure 6: Evolution of the test err@Resy) of MOM-DSVM, with penalty coefficientdC = 1 (left)

andJC = 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data s
evenly distributed across nodes, and a network Wwith25 nodes.

0.0251

b := =
2 i g
=1 \ =t
=3 H e
£ 002} E

0018l &
¥V \ \': \"\ ."l
0.0158} N
A . . SN .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iterations i

Iterations

Figure 7: Evolution of the test err¢Res) of MOM-DSVM, with penalty coefficientdC = 1 (left)
andJC = 5 (right), for a two-class problem using digits 2 and 9 from the MNIST deta s
evenly distributed across nodes, and a network Wwith50 nodes.

For the MNIST data set, the total communication cost up to iteratier785Jt scalars (cf. Section
3).

5.1.3 TESTCASE 3: SEQUENTIAL OPERATION

Consider a network witd = 10 nodes, algebraic connectivity 0.3267, and average degreegr no
2.80. Data from two classes arrive sequentially at each node in the fofdaghion: at =0
each node has available one labeled training example drawn from the islaidsitions; and &
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Figure 8: Evolution of the test errgResy) of MOM-DSVM, with penalty coefficientdC = 1, for
a two-class problem using digits 2 and 9 from the MNIST data set unevésilybdted
across nodes, and a network with ring topology dae25 nodes.

described in Test Case 1. Frdm: 0 tot = 19, each node acquires a new labeled training example
per iteration from this same distribution. Fram: 20 tot = 99, no new training example is acquired.
After iterationt = 99, the distribution from which training examples in clagswere generated
changes to a two-dimensional Gaussian distribution with covariance naateix[1, O; O, 2], and
mean vectom; = [—1, 5]". Fromt = 100 tot = 119, each node acquires a new labeled training
example per iteration using the new class-conditional distributiaf pivhile the class-conditional
distribution of C, remains unchanged. During these iterations, we remove the training examples
from (; that were generated during the intervat O tot = 19, one per iteration. From= 120
tot = 299 nodes do not acquire new labeled training examples. From itetati @00 tot = 499,
we include 8 new training examples per node and per iteration drawn omydi@ss¢C; with the
same class-conditional distribution as the one used at the beginning of dhigheitt = 0. Finally,
at iterationt = 500 all labeled training samples drawn froms 300 tot = 499 are removed at each
node at once, returning to the global data set available prior to iteratioB00. The algorithm
continues without any further change in the training set until convesgenc

Figure 10 illustrates the tracking capabilities of the online MoM-DSVM schemelifterent
values of]. A total of 100 Monte Carlo runs were performed. The figure of merit in thiseds
V(t) =3 371 ||vj(t) — ve(t)||, wherev(t) contains the coefficients of the centralized SVM using
the training set available at timeThe peaks in Figure 10 correspond to the changes described in our
experiment. MoM-DSVM rapidly adapts the coefficients after the local trgisits are modified.
Clearly, the parametey can be tuned to control the speed with which MoM-DSVM adapts. Notice
that a largen may cause over-damping effects hindering the final performance of tbethig.
Figure 9 shows snapshots, for a single run of MoM-DSVM gnd 30, of the global training set
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and local discriminant functions at different iterations. The solid trainiayrgles correspond to
the current global SVs found by the online MoM-DSVM algorithm.

Figure 9: Snapshots of the global training data set and local linear disarimjﬁ) (x) obtained
with MoM-DSVM at all nodes for a synthetic training set evolving in time.

5.1.4 TESTCASE 4: COMMUNICATION COST COMPARISON

In this section, a comparison with the incremental SVM (ISVM) approach iretLal. (2008) is
presented. The network with= 30 nodes is considered again, where each rjodas available
a local training set witiN; = N = 20 with training vectors generated as in Test Case 1. A global
test set withNy = 1,200 was used, and 100 Monte Carlo runs were performed. The MoMMDSV
algorithm usedlC = 20. The network topology is a ring; thus, ISVM entails no extra overhead d
to inter-node communications. Nevertheless, in more general network gig®lsuch overhead
might dramatically increase the total communication cost incurred by ISVM.cbhemunication
cost is measured in terms of the number of scalars communicated per nodiéoMeDSVM, this
cost is fixed per iteration and equal td 8calars; recall that per iteration every node broadcasts
vj(t) to its neighborhood (cf. Algorithm 1). The ISVM approach locally trainsSaM and passes
its local SVs to the next node in the cycle; the algorithm continues traverséngetfivork until no
SVs are shared among neighboring nodes. Thus, the communicatiorecdtstration depends on
the number of SVs found at each node, that is, {3t of SVs at nodg }. A contingency strategy to
prevent SVs from being transmitted multiple times by the same node as well aseafmrepetition
of training set elements at individual nodes is run in parallel with the ISV Mrétgm.

Figure 11 depicts the cumulative communication cost for MoM-DSVM and |SA8M function
of their classification performance. In this particular case and with the ragstdble network
topology for an incremental approach, we observe that MoM-DSVMeael a comparable risk to
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Figure 10: Average errot’(t) of MoM-DSVM for a synthetic training set evolving in time evalu-
ated for various values of. The peaks correspond to iteration indexes where the local
training sets were modified.

ISVM with a smaller number of transmitted scalars. Specifically, to achieve afrd159, MoM-
DSVM communicates on average 1,260 scalars whereas ISVM communicatagage 8,758
scalars. MoM-DSVM can largely reduce the amount of communications ghut the network,
a gain that translates directly to lower power consumption, and thus, in thextaf WSNs (see
Example 1), longer battery life for individual nodes.

5.2 Nonlinear Classifier

In this section, we present experiments on synthetic and real data to illustegperformance of
our distributed method for training nonlinear SVMs.

5.2.1 TESTCASES5: SYNTHETIC TRAINING SET

Consider the same network as in Test Case 1. Each node acquires labéledy examples
from two different equiprobable classe€s and . Class(i; contains now examples from a two-
dimensional Gaussian distribution with covariance makix= [0.6,0;0,0.4], and mean vector
m = [0, O]T. Class( is a mixture of Gaussian distributions with mixing parameters= 0.3
andry, = 0.7; mean vectoray, = [—1, —1]T andmg = [2,2]T; and, equal covariance matiix The
optimal Bayes classifier here is clearly nonlinear.

We generate a matrix with rows taken from a uniform two-dimensional gridlopoints. The
extreme values of the grid are chosen equal to the extreme points of thé tgéatiag set. Local
training sets are of siz¥; = 10Vj € 7, and are generated from the distributions described in the
previous paragraph. Each node uses its local training sets as wellmsitivel” to build the local
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Figure 11: Communication cost, measured in terms of the number of scalammiitax, of MoM-
DSVM and ISVM for a network with ring topology antl= 30.

classifier, as described in (24). A Gaussian kernel with= 0.9 andn = 10 was employed to
construct a global nonlinear classifier. Figure 12 (left) shows theifitagin performance on the
points {x, }I_,; that is, the classification performance when the testing set is givelipwi)
| =1,...,L}, wherey, indicates the class from whicky was originally drawn. For comparison,
we have also included the Bayes risk, the centralized SVM empirical risktfa local SVM

risk. As expected, the classification performance of the distributed cassifproaches that of the
centralized one.

Figure 12 (right) illustrates the performance of MOM-NDSVM on a randogéyperated test
set of sizeNt = 600 for various choices df andJC. Matrix I' was taken from a uniform two-
dimensional grid oL points as before. A total of 500 Monte Carlo runs were performed. I@Jear
the asymptotic performance of MoM-NDSVM rapidly outperforms the averagrformance of a
locally-trained SVM and closely converges to the centralized SVM for targkies ofL with all
other parameters fixed. However, it is worth observing that the choitleeoparametedC also
influences the performance. Large values J& promote reduced number of prediction errors
on the training set (possibly) leading to over-fitting. Various strategied) as cross validation,
can be implemented to select optimal values for hithand 62 at the expense of training with
MoM-NDSVM multiple times. To visualize the results, Figures 13 and 14 depictfotine of the
discriminant function for several values bfat 6 different nodes in the network. Centralized and
local discriminant functions are also included as benchmarks. Eventitibagodes do not exactly

agree on the final form ajj(x) at all points, their classification performance closely converges to
the one obtained by the centralized SVM benchmark.
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Figure 12: Evolution of prediction errdRpreq), Where matrixX™ is considered a classification query
of sizeL (left); and test errofRresy), Where matrix” is constructed as a random grid
with L points (right), for MOM-NDSVM applied to a two-class problem using sytithe
data and a network with = 30 nodes.
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Figure 13: Comparison of the discriminant functions found by a centraf®Add, local SVMs,
and the MoM-NDSVM algorithm at 6 different nodes of a network with 30 using
synthetic data. A penalty terdC = 20 and a random grid with = 100 were used.

5.2.2 TEST CcASEG: UCI TRAINING SETS

Four data sets from the UCI repository have been chosen to test ourlMa$VM algorithm: Iris,
Wine, Puma Indians Diabetes, and Parkinsons (Asuncion and Newn@i#), 20brief description
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Figure 14: Comparison of the discriminant functions found by a centraBA&d, local SVMs,
and the MoM-NDSVM algorithm at 6 different nodes of a network with 30 using
synthetic data. A penalty terdC = 60 and a random grid with = 100 were used.

Dataset Classes Dim. Features Size Train. Set Test Set

Iris 3 4 150 12 40

Wine 3 13 178 12 40
Diabetes 2 8 768 50 200
Parkinsons 2 23 197 12 40

Table 2: UCI data sets

of each of the data sets is shown in Table 2. Examples from the data sedsdoenty split among
J =5 nodes in a fully-connected network. Focusing on the binary classificatioblem, only

classes 2 and 3 from the Iris data set and classes 1 and 2 from the Viénsetiare used. For
simulation purposes, each local training set as well as the testing set leagartte number of
examples from each class.

Table 3 compares performance of the classifiers constructed via MoBMNDwith the average
performance of the 5 local classifiers trained with local training sets only,véth the one of
a centralized SVM trained with the training set available to the whole network. tah &6 100
Monte Carlo runs were performed per data set, where both training anytests were drawn
randomly per run. The MoM-NDSVM parametel€ andn were chosen via cross-validation for
every training set as in Hastie et al. (2009, Ch. 7). Gaussian kernldtasprevious section were
used. The local and centralized SVMs were trained using the Spider dolb®IATLAB (Weston
et al., 2006). To evaluate the local performance of the classifiers neaehtrains a local SVM and
its performance is compared with the one obtained via MoM-NDSVM. For &aghing set we
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Data set Local Centralized MoM-NDSVM MoM-NDSVM Class. Query

L =150 L =300
Iris 8.39% 4.43% 5.15% 5.26% 4.28%
Wine 15.71% 6.17% 7.37% 7.33% 6.60%
Diabetes 34.52% 24.40% 29.69% 28.92% 23.76%
Parkinsons 1 33.76% 18.45% 30.14% 31.13% 18.56%
Parkinsons 2 34.78% 18.86% 23.60% 24.05% 20.28%

Table 3: UCI data sets centralized versus local versus distributediparice comparison fdr=
1,000. Parkinsons 2 is the normalized Parkinsons training set.

explore two cases: (i) local classifiers at each node; and @3 a classification query. Figure 15
plots the training evolution of MOoM-NDSVM for the Puma Indians Diabetes detta s
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Figure 15: Evolution of test errqiRest) for Puma Indians Diabetes data set taken from the UCI
repository, and a fully connected network with= 5 nodes.

The performance of MoOM-NDSVM for (i) depends heavily on the choité o To illustrate
this point, the size of the local training sets per node has been chosen $malcampared to the
dimensionality of the feature space. lxﬂ” andx"® correspond to the smallest and largest values
that thek-th feature can take. The row-elements of mafrixre chosen randomly and independently
over the interva[x"", x"®) per component. Two different valueslofvere chosen to compare the
performance of MOM-NDSVM. For small values pf I' can be chosen as a grid Bf uniformly
spaced points per dimension; therefoke= MP. The results summarized in Table 3 highlight
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n=10 n=20
L po=49 po=81l pp=49 py=381
400 0.370% 1.246% 0.504% 1.448%
800 0.136% 0.242% 0.234% 0.654%

Table 4: Average MoM-NDSVM risk (Gaussian kernel) at iteratioa 3,000 for compressed
MNIST data set with dimensionalityp.

the fact that the classification performance at each node remains limited bitiing examples
available locally. However, in this extremely challenging case, collaboratimmg nodes improves
the overall classification performance of the network.

Table 3 also illustrates how conditioning of the data together with the choicedéetimel func-
tion can impact the performance of MOM-NDSVM. In particular, its last ttweg@ompare the clas-
sification performance achieved for the Parkinsons training set witrmuatalization (Parkinsons
1) and with its features normalized to have maximum absolute size unity (Parki@$oAlthough
both centralized and local performance remain nearly unchanged, theMNRSVM performance
improves about 7% for both = 150 andL = 300. An intuitive explanation follows from look-
ing closer at the values of the features in the Parkinsons training set. $atneck take values in
the order of 18 while others take values in the order of #0thus, a Gaussian kernel that spans
symmetrically along all directions is not the best kernel choice for this &fter. normalization, a
smaller numbeL of Gaussian kernels can be used to obtain a better representation otitierde
surface. In conclusion, data across nodes must be preprocessedwgr possible to achieve a better
trade off between classification performance and the computational catgméekioM-NDSVM.

Note that the classification performance for case (ii) approaches thaleazd SVM one. After
a few iterations, the classification accuracy returned by the networkssep that of locally trained
SVMs. The speed of convergence might be hinderddig chosen large. Fine tuning of can
achieve a desirable trade-off between speed of convergence dadvsnce in terms of test error.

5.2.3 TESTCASE 7: MNIST TRAINING SET

Consider a network witld = 25, algebraic connectivity.2425, and average degree per node12
Local training sets have been constructed based on the MNIST datrsedigits 2 and 9 only. The
nodes wish to train a nonlinear global classifier using a Gaussian keankloM-NDSVM. Each
nodej has available a training sgf with 472 examples from one class only, thus individual nodes
cannot construct a classifier locally. The large size of the images in MMI&IS to an excessively
large choice fol = Ly > 784, hindering the convergence of MoM-NDSVM. Instead, each image
has been compressed via principal component analysis (PCA) to ve€tdimensionalitypy <
784. It was observed experimentally that after compression, the twaeslé&zome separable.
Indeed, the centralized equivalent SVM yields test error zero. Fibidepicts the performance of
MoM-NDSVM for various choices of] and pg. Note thatn = 20 leads to slower convergence of
the average risk across the network. Table 4 summarizes the classificafiomaace of MoM-
NDSVM after 3,000 iterations. A larger value foimproves the average classification performance
of the network. However, the number of iterations required for MoM-NDBRBo converge increases
with L.
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Figure 16: Average evolution of MOM-NDSVM risk (Gaussian kernel) éompressed MNIST
data set fot. = 400 (left), and. = 800 (right) in a network withld = 25 nodes. MNIST
images have been compressed to dimensiongditsia PCA.

5.3 Noisy Inter-node Communications

This subsection presents robustness tests of the novel distributed cédissifscheme with noisy
inter-node exchanges. Such noise is due to, for example, quantizatioyeeiditive Gaussian noise
at the receiving ends, or, Laplacian noise intentionally added to transmétegdles in order to

guarantee data privacy (Chaudhuri and Monteleoni, 2008; Dwaoak ,e2006). Although focus is

placed on MoM-DSVM, the results also carry over to MOM-NDSVM.

5.3.1 TEsSTCASE 8: MOM-DSVM WITH PERTURBED TRANSMISSIONS

In this setting, per iteratioty each nodg purposely introduces a perturbatieyit) to the variable
vj(t) before transmission. Perturbed transmissions can be used to preataveridacy (Dwork
etal., 2006). Consider an eavesdropper accessing the noisy wo$ig(t). The form and variance
level Z; of the local perturbations;(t) can be adjusted per node to prevent the eavesdropper from
learningSj. For instance, Dwork et al. (2006) suggests introducing zero-meplatian random
variable whose variance depends on the sensitivity; @) as a function ofs;.

The MoM-DSVM iterations, withJC = 5 andn = 10, are modified by introducing local per-
turbationsg;(t) to vj(t). Eachgj(t) is zero-mean Laplacian distributed and white across time and
space, that isE{g;(t1)e] (t2)} = 0 if t1 # to andE{gi(t)e] ()} = 0if i # j Vi, j € 7. The resulting
MoM-DSVM iterations are

1.+ 1T 1 T
)\j(t—i-l) = )\ajl:'%jg)]\?j)(JClj—éAijXjUj Xij)\j+(lj+YijUj fj('[)) )\j,

vit+1) = U7 [X]YjAjt+1)—f(t)],

ajt+1) = Gj(t)+2_%_[(Vj(t+1)+€j(t))—(Vi(t+1)+8i(t))]

whereU;j = (1+2n|Bj|)l pr1 — Mpra andfj(t) == 2a(t) — N Tieg, [Vj(t) +&(t) +Vi(t) +&i(t)] (cf.
Proposition 1). In this case, MoM-DSVM operates in an analogous mamAdgorithm 1, differing
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only in their broadcasting step. In the perturbed transmissions casg,nmadg | broadcasts a per-
turbed vectow;j(t) +€;(t) (instead ofv;(t) alone) to its one-hop neighbors. Note that neighboring
nodes € B; only “see” the aggregate perturbed veatg(t) + €;(t) from node;j.

Figure 17 illustrate the performance of MoM-DSVM after 100 Monte Carfsnwith perturbed
transmissions for a network with= 8 nodes, algebraic connectivityd194, and average degree
per node 5. Nodes collect observations from 2 classgsand (>, where(; is A (M, Z1) with
my = [0, 0]T, andZ; = [0.6, 0; 0, 0.4], and( is A(mp, Z2) with mp = [2, 2T, andZ, = [1, 0; O, 2].
Each node collects an equal number of observations per class foraftsjat N = 50 observations.
The noisegj(t), inserted per transmission per node, has covariance matrix giverflgy The
optimal classifier is determined vy = [-1.29, —0.76, 1.78]T, which is the one obtained by MoM-
DSVM with 0% = 0. Interestingly, the average risk in the presence of perturbed transnsiss
remains close to the perturbation-free risk. Even for a large perturbafienl, the average risk
hovers around .Q075. Furthermore, the risk variance remains small. Indeed, it can berghat
the proposed scheme yields estimatg$) with bounded variance.
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Figure 17: Average risk (left) and risk variance (right) for a netwoith\ = 8, and a finite variance
perturbation added to;(t) before it is broadcasted.

5.3.2 TESTCASE 9: NoISY COMMUNICATION LINKS

The MoM-DSVM is also robust to non-ideal inter-node links corruptedatiglitive noise due to,
for example, quantization or additive Gaussian receiver noise. In thés tfze noise is added at the
receiver side. The MoM-DSVM must be modified to obtain a bounded vegian the estimates
vj(t), and the local Lagrange multipliecs; (t) := a;i1(t) must be exchanged among neighboring
nodes; see Zhu et al. (2009) for similar approaches. Each communitakdetween nodg and
nodei € B; introduces additive noisgjj(t) (&j(t)) to the variablev;(t) (aji). The perturbations
{efi(O} ({€5(t)}) are zero-mean random variables with covariance maifiX>§), white across
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Algorithm 4 MoM-DSVM with noisy links

Require: Randomly initializev;(0), andaji (0) = Opy1)x1 V j € J Vi € B;
1. fort=0,1,2,...do
2. forall je jdo
3 Computeh(t +1) via (41).
4 Computevj(t+1) via (42).
5. end for

6. forall je jdo

7.

8

9

Broadcasv;(t + 1) to all neighbors € 3;.
end for
. forall jeg,ieBjdo
10: Computenj; (t + 1) via (43).

11:  end for

12:  forall je,ic Bjdo

13: Transmitaji(t+1) toi € B;.
14:  end for

15: end for

time and space. The modified MOM-DSVM iterations are

Aj(t+1) = arg max —}ATY-X-UfleY-A-Jr(1-+Y-x-Uf1f-(t))TA- (41)
! A0 =hzacy, 200 IR 2T i MV IE

vit+1) = u;l[ijYjAj(t+1)—f,-(t)}7 (42)
aji(t+1) = a,-i(t)+g[v,-(t+1)—(vi(t+1)+sivj(t))] (43)

wheref;(t) := Sics, {aji(t) — (atj () + €8 (£) — N[Vj () + (vi(t) + & (t))]}. The resulting MoM-
DSVM algorithm with noisy links is summarized as Algorithm 4.

The left panels of Figures 18 and 19 depict the average performércd@0 Monte Carlo runs
of MoM-DSVM for the same network of Test Case 8. As seen, the vagiafithe estimatesg; (t)
yielded by the modified MoM-DSVM algorithm remains bounded.

Incremental approaches are hindered by noisy communication linksdeenaise added to the
SVs perturbs and accumulates in the local training sets. In ISVM, SVsaralio percolate across
the network, and even to come back to the node where they originated. Eheerioise, however,
nodes cannot recognize noisy feature vectors alreagly ifhis is problematic since the size of local
problems being solved per node increases linearly with the size of the traietingpus requiring a
heuristic size-control scheme. The right panels of Figures 18 andd® thle performance of an
ISVM for different levels of noise variance. Noise is added to the S\dsranisy labels are rounded
to 1 or—1. Different from MoM-DSVM, the performance of ISVM quickly deterédes, even for
low noise levels since the average risk approaches 0.5 after a few itstatibich amounts to pure
guessing of the binary classifier.
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Figure 18: Average risk for a network with= 8, and noisy communication links using a synthetic
data set. MoM-DSVM (left) and incremental SVM approach (right).
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Figure 19: Risk variance for a network wilh= 8 and noisy communication links corresponding to
average risk in Figure 18. MoM-DSVM (left) and incremental SVM applo@ight).

6. Conclusions

This work developed distributed SVM algorithms by reformulating the centchl&éM training
problem into per-node separable sub-problems linked via consensssraiots, which can be
solved using decentralized optimization tools. The novel algorithms are widbsior applica-
tions involving data that cannot be shared among collaborating noded) pagsibly operate under
stringent resources, and may thus desire to reduce overhead afdautemessage exchanges.
Based on distributed training sets, the novel MoM-DSVM algorithm contstraagnaximum-
margin linear classifier iteratively. At every iteration, locally updated classifectors are ex-
changed among neighboring nodes. Convergence to the centralized $vi&aiformulation is
guaranteed. The approach lends itself naturally to online and asymetgre@ariants, which allow
adaptation of the proposed DSVM to scenarios when elements of the locathdraets become
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available sequentially, or, when outdated elements need to be removederfatl, the MoM-
DSVM can be generalized to construct distributed nonlinear discriminantifuns. The resulting
iterative MoM-NDSVM algorithm is provably convergent to its centralizedirerpart, and its
complexity is kept at a manageable level by using the kernel trick. Locssiilers are limited by
the span of their local training sets, and a set of basis common to all nodes.

Although not formally treated, the novel distributed classification algorithmsbeareadily
extended to solve distributed support vector regression (DSVR) pnsbl€he main characteristics
of the present approach, such as its convexity, remain unchangesefdie, it is expected that
linear and nonlinear estimators developed for MOM-DSVR, will enjoy caysece claims similar to
those proved here for MoM-DSVM and MoM-NDSVM classifiers. To coenpent the distributed
supervised classifiers introduced here, our current researthwligia consensus-based distributed
versions of the unsupervis&emeans and expectation-maximization clustering algorithms.
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Appendix A. The Alternating Direction Method of Multipliers

The ADMoM is a distributed optimization algorithm solving the following problem

mvin Fi(v) + F(Av) (44)

st. veP,AveP,

whereF; : RPt — R andF : RP2 — R are convex functions is apy x p; matrix, while®?, C RP
and®, C RP2 denote non-empty polyhedral sets.
Upon introducing the auxiliary variabte € RP2, ADMoM solves the separable problem

min F(v) + Fa(o)

st. Av=w (45)
ve P, weP
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which is clearly equivalent to (44). With € RP2 denoting the Lagrange multiplier corresponding
to the constrainfv = w, the augmented Lagrangian corresponding to (45) is

L(v,0,0) = F1(V) + Fa(w) + a7 (AV — ) + % 1AV — o2 (46)

where the parametey > 0 controls the impact of the constraint violation in (45). The ADMoM
minimizes alternately in (46) w.r.t. the primal variablg, then w.r.t. the auxiliary variable, and
after each cycle it uses these iterates to update the multiplier. Specifically, d@tioting iteration
index, the ADMoM iterates dt+ 1 are given by

v(it+1) = argvrgjn L(v,w(t),a(t)), 47)
wt+1l) = argwrgpn L(v(t+1),w,af(t)), (48)
at+1) = at)+n(Av(t+1)—w(t+1)). (49)

Thanks to the auxiliary variabk®, each of the optimization problems (47) and (48) can be run sep-
arately, possibly by different processors. The following propositiates the main claim regarding
convergence of the ADMoM iterates, and its proof can be found in Beatsand Tsitsiklis (1997,
Ch. 3, Proposition 4.2).

Proposition 4 Assume that the optimal solution set af (44) is non-empty, and eithe?; is
bounded, orATA is nonsingular. Then, a sequenfe(t),w(t),a(t)} generated by the iterations
(47)(49)is bounded, and every limit point ¢%(t)} is an optimal solution 0f{44). Furthermore,
{a(t)} converges to an optimal solutiart of the dual problem [cf(45)]

arQI[IeIgz H]_(C() + HZ(G)
where for alla € RP2
Hi(a) := inf [Fi(v)+a'Av],

veP,
Ho(a) == inf [Fo(w)—a' o).
weP
Appendix B. Proof of Lemma 1
First, the equality constrainfsv; = w;} and{b; = b} will be shown equivalent twv; = --- = w;
andb; = --- = by, respectively, for any feasible solution of (6). Consider any two sgg@nd ji

both in 7. Since the network is connected, there exists a padly ... jk—1jk} of length at least
one, which connects nod¢gsand jx. Becauseg,.1 € B, for ¢ =0,1,...,k—1, itis immediate that

Wj, = Wj, = --- = Wj,_, = Wj,. Sincejy, jkx € J are arbitrary, it follows readily that; = --- = wj.
A similar argument leads oy = --- = by.

As any feasible solution of (6) satisfieg = --- =w; =w andb; = ... = by = b, problem (6)
becomes

- 12, AT
min  J| =z |w|*+CY 1;¢&;
min, <2 Iwl*+C 3 J>
st Yj(Xjw+blj) =1—§& VjeJ
& = 0
which is equivalent to (1), since the constdman be dropped from the cost function in (50).

(50)
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Appendix C. Proof of Lemma 2

The objective here is to cast (7) in the form of (45), and thus show thatitbas (9)-(12) correspond
to the ADMoM iterations (47)-(49) in Appendix A. First, it will be shown thagtbet of consensus
constraints in (7), namelyv; = wji, wji =Vv; : Vj € J, Vi € B;}, can be written as the equality
constraintAv = w in (45). With this objective in mind, consider listing the constramis= wj;
across nodes € 7 and neighbors € B; as follows

{vi = wiilies,
: (51)

{vi = wjitics,-

Since for every; there argB;| constraints, the total number of equalities in (5125&1\23]\ =
2|‘E|, where|E| is the number of edges in the network. The factor 2|iB|ds because for every
edgej < i there are two constraints, namely= w;; andv; = w;j.

The set of equalities in (51) can be written in matrix-vector form as

Ipt1
[ v1 ] :
|B1| vectors ; | p1
V1 Ar— %1 {wiities,
= =] (52)
A Ipi1 A {wsities,
|B;| vectors : : hvend Wi=
[ VI Ipi1
-
L A= i

A=

whereA'v replicatesv in accordance with the left-hand-side (l.h.s.) of (51). Maixin (52) is
block-diagonal with block entried := [I ps1,...,lp+1]" containing|B;| identity matrices of size
(p+1) x (p+1). Sincevj andwj are(p+ 1) x 1 vectorsy has sizg p+1)J x 1, andw' has size
2(p+1)|E| x 1.

Equation (52) shows that the constraints of the fefm= w;; can be compactly written as

A'v=w. (53)
Consider now the remaining constraints, which are of the f@§n= v, and can be listed explicitly
as [cf. (51)]
fvi = wji}jes
: (54)
{vi = wjljes,:
Since the l.h.s. of (54) coincides with the I.h.s. of (51), the set of equatigf@gl)rcan be likewise

written as [cf. (53)]
Av = (55)
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where noww” := [{0]; }jes,, .-, {0]; }jes,]T. Notice thatw” is a permuted version @b, since it
can be obtained from by replacing vectow;; in ¥ with vectorw;. Hence, using a|Z| x 2|E|
permutation matriE and letting denote the Kronecker product/ can be related tay as

= (E®lps1)o (56)
whereE = [{ey }ica,, ..., {€i}ics,], andej is a JE| x 1 indicator vector given by

(i)

&
€ji == | :
eSJI)
with sub- blocksel, = [{8(j — j’,i—1")}jes,]", andd(-,-) denoting Kronecker’s delta function.

Intuitively, e;i identifies with a one the position whess; in ' is to be re-allocated in’.
Substituting (56) into (55) yields

Av=(E®Ilp1)w. (57)
Concatenating (53) and (57) one arrives at
Av =E'w (58)
where

A 1o | T2tpry)zl
A.[A,} and E'{E@Ipﬂ . (59)

Using (58), problem (7) can be re-written as

N
min éjzl -Jr(lp+]_—r|p+l)VJ +JCZ 1TEJ

v (&}
st YiXjvj=1j—¢; vVieJd (60)
I IR=Y vies
Ay =E'w.

It is known that the slack variablel;} can be eliminated by introducing the hinge loss func-
tion £(y, [x",1]v) := max{0,1 —y[x", 1]v} (Schvlkopf and Smola, 2002), which reduces (60) to its
equivalent form

1 23
min 55 v (Ips1—Mpr2)vj +3C (Yin: [Xjn, 1))
min 5 J; Zl nzl in (61)
st. Av=FE'df
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Comparing the latter with (45), it follows readily that (61), which is equivater{7), belongs to the
ADMoM-solvable class since (61) is subsumed by (45) with the speciateto

J J N
33 oMy +3C TSl b ),
= Sl
F(w) :=0,
fPl = R(p+l)‘],
Py := {w e RHPHIIZ |y = E'w for somewy € RZ(PHDIZY (62)

wherew := E'«Y is now placed in the constraint S&f.

So far it has been proved that the problem in (7) can be cast as (#8)ADMoM iterations
for (45) are (47)-(49), with corresponding iteratg$), w(t) anda(t). Given the constraint set
P, in (62), for every iterateo(t) there exists a uniquey(t) satisfyingw(t) = E'w/(t), due to the
fact thatE’ in (59) is full column rank. Hencey(t) can be replaced b'« (t) in iterations (47)-
(49). Iteration (9) then follows by re-introducing the slack variaqléjs{t)}. Iteration (10) follows
because nowo is unconstrained. Finally, iterations (11) and (12) follow from (49) Hittepg o (t)
into appropriate sub-groups of vectdisji1(t) } and{ai2(t)}, respectively.

Appendix D. Proof of Lemma 3

The goal of this appendix is to show that iterations (9)-(12) reduce do((13. To start, notice that
the cost in (10) is linear-quadratic w.rdvj. Thus, setting the derivative af w.r.t. w; equal to
zero,wji (t + 1) can be found in closed form as

0t 1) = 5-(ps(t) = agalt)) + 55+ 1) +wlt-+1). (63)
Substituting (63) into (11) and (12), yields

Gint+1) — %(a,-i1<t)+a,-i2(t))+g(vj(tﬂ)_vi(t+1)), (64)

at+1) = (@a0)+ ) + 3t +1) v+ 1) (©5)

Suppose now thatji1(t) andajio(t) are initialized identically to zero at every node that is,
®ji1(0) = ji2(0) = O(p;1)x1 V] € J andvi € B;. From (64) and (65), it follows easily thet;1(1) =
aji2(1). Similarly, if aji1(t —1) = aji2(t — 1), then by inductiorji1 (t) = aji2(t). Thus, only one
set of multipliers, sayaji1}, needs to be stored and updated per node

Upon substitutingo;; (t +1) = (1/2)(v;(t+1) +Vvi(t+ 1)) into the objective function of (9) and
usingaji1(t) = aji2(t), one obtains

J
L'{vi} A& 1AV} {ajin®)}) = > V] (Ipe1— ”p+1)VJ+chlleEj
J:

J
+Y SOV -3y

1=1ieB; 1=1ieB;

2

a5y

Vi— Vi) 0]
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The first double sum in the right hand side (r.h.s.) of (66) can be rewegen

3 3
Z Y afu®vi—vi) =Y Y vi(ajiat) —aija(t)

lieB; j=1i

m
=

=23 V) > ajia(t) (67)

where the first equality follows becaugé 12ie; O JIl( Vi = ZJ 12ieB; ,Jl( )Vj. Intuitively, the
r.h.s. computes the sum by fixing a nogand adding the inner products of with the incoming
Lagrange multipliersx;j1(t); while the left hand side performs the same sum by fixing a node
and adding the inner products of outgoing Lagrange multipbgsgt) and the corresponding
neighbors. The second equality on (67) holds because the all-zero iatiiatizf the multipliers
implies thata i1 (t) = —a;j1(t) Vvt [cf. from (64)-(65)]. Likewise, the second and third double sums
in the r.h.s. of (66) can be simplified to

2
+

2

1
Vi— o[V (t)+vi(t

vim O]+

; O+ ()

[]nz,5 -

Lemma 3 follows after substituting (67) and (68) into (66), and definifg) := ¥, oji1(t).

(68)

Appendix E. Proof of Proposition 1

LettingAj := [Aj1,...,Ajn;]T andy; := [Wj1,..., Wy, )T denote Lagrange multipliers associated with
the constraint¥ jXjvj = 1; — &; andg; = 0j, respectively, the Lagrangian corresponding to (13) is
given by

L&A v {o (1))

1 J J J
:ézv}(lpﬂ—npﬂ)vj+chllezj—zlx}(v,-xjv,-—l,-JrEj)
= 1= 1=

(69)
J J 1 2
X a+2za ViEn Y 3 Vi i@ (o)
= |=1ieB;
The KKT conditions yield per iteration the primal and dual variables in (69ksvs
vit+1) = Ut (XJTYjM(t +1)—2aj(t)+n ) (vj(t)+vi (t))> ) (70)
iE€B;
0j = JCLj—Aj—u (71)

whereAj(t +1) is the optimal Lagrange multiplier after iteratibr- 1, and the inverse df; :=
(14 2n|Bj|)l pt1— Mpy1 always exists.

The KKT conditions also requirgj = 0; andy; = 0j, which allows (71) to be replaced by
0; < Aj = JC1;. To carry out the iteration (70) at every node, the optimal valyé¢s+ 1) of the

1702



CONSENSUSBASED DISTRIBUTED SUPPORTVECTORMACHINES

Lagrange multipliers\; are found by solving the Lagrange dual problem associated with (6@). T
pertinent dual function is given by

J 1 B B T
LAY = 3 =AY XGUPXTY A+ (1= Y XU ) (72)
j=1

wherefj(t) := 2a;j(t) — n Yicg[Vvj(t) +Vvi(t)]. Note that the Lagrange multipliefgy;} are not
present ing,. From (72), the Lagrange dual problem can be decoupled if eachjriuas access to
thev;(t) estimates of its neighboring nodes. Thugt + 1) is given by

1 T
N(t+l)=arg max - MY XUPXTY N+ (1= YUHm) A (73)
The dual variable update in (73) and the primal variable update in (70) goimtim the KKT opti-
mality, are precisely iterations (16) and (17) of Proposition 1, which togetftke (18) correspond
to iterations (13) and (14). Lemma 3 shows that (13) and (14) are depiva (9)-(12). Lemma 2
establishes that (9)-(12) in turn correspond to the ADMoM iterations-(49) of Appendix A. As
stated in Proposition 4 in Appendix A, convergence of the ADMoM iteratidii3-(49) is guaran-
teed so long as: (i, is bounded; or, (iATA is nonsingular. Since for the problem at hand matrix
A in (59) satisfies condition (ii), the iterates for (16)-(18) in Proposition iveoge to the optimal
solution of (7) for anyn > 0.

Appendix F. Proof of Theorem 1

For simplicity, this theorem will be proved for purely linear discriminant functigtx) = w'x.
Consider the reproducing kernel Hilbert space (RKH&S)f functionsg(x) with corresponding
positive semi-definite kerné : X x X — R, defined as

N
H = {g(-) = ZynK(~,xn): NeN, vi,...,\n €ER, X1,...,XN ex}

n=1

with 4 denotes the completion of the s@t

The parameter optimization problem (23) can be written in terms of the Hingeuassidn
£(y,g(x)) := max{0,1—yg(x)}, and the RKHS-induced nonﬂg”ﬁ{ as a regularized optimization
problem to obtain, (see, e.g., Sdtkopf and Smola, 2002)

J N]
HEN ZZ HQJHHHC,ZnZé Yin»0j(Xjn)) (74)

stoj(x)=6x) ViesieB,l=1..,L

Given the optimal Lagrange multipliecy; for the constraint§g;(x;) = gi(x;)}, the solution
{gj} of (74) can be obtained from its Lagrangian as

J
{gj} =arg, min lengHgﬁJCleﬂym,gj Xjn))+ Zc,.l 9i(X) —gi(x))- (75)

J:heﬂl
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Arguing as in (67), the last term in (75) can be written as

J L J L
2,2, 2, S @it ~au) =

(G — Gji)gi (X))
thus rendering the cost in (75) separable acjostence, eaclyj can be obtained per node as

g—arggml}r;V(le, XN Yits - YiNg X 1 05) ngJH}[ (76)

i€

N' k k
whereV (X1, ., Xin;, Yits- - Yings (X131 67) i= ICF Ly £(Yin, G (Xjn)) + Ties; T1=a (Gt — G )i (X))-
Applying the Representer Theorem to (76) as in Wahba (1990) andlkaqi and Smola (2002)

one readily arrives at
NJ

Z ajn K (X, Xjn) + z Cji K(X,X))- (77)

Appendix G. Proof of Proposition 2

Recall thay; := M1, -, uij]T denotes the Lagrange multiplier associated with the cons&aint
0; (cf. Appendix E). The Lagrangian corresponding to (25) is given by

L7({wi} {bi} {& 1 Ak b w0} b (1)}, {a; (O}, {Bj(1)})

12 J J
~2 Z HWJ‘IIZHCZ g - Z AJ(Y5O(Xj)wj —1bj +&))
—ZH,E +sz Gw,+22[3J
+N
Zleﬂij

From the KKT conditions for (25) it follows that

2 2

by — 5oy () + by (1)

J
+nz

1=1ieB;

w3 >+wi<t>>]

Wj(t—l-l):Dj_l{CDT(Xj)Yj)\j(t ) GT

20(t) —n ZGWJ —I—W,())]}, (78)

i€ B;

bj(t+1) =

YA (t+1) = 2Bi(t) +n S (Bj(t) +Bi( ))] (79)

1
2n ’$| i€ B

whereA(t + 1) is the optimal Lagrange multiplier at iteratior- 1, andL~Jj =1lp+2n|B|GTG
Using the Sherman-Morrison-Woodbury formula (Golub and Van Lo@@6}

Uit =1p—2n|3|GT(IL+2n|3;|GGT)'G. (80)

Substituting (80) into (78), left-multiplying bg' (x), and recalling thap' (x)@" (x') = K(x,X’),
yields

¢ (ow; (t+1) = (KT06X;) = 2015 kT (¢, MUFIK (X)) ) Yk (t+ 1)

— (KT, 7) = 20/ KT (x, MUK (1) ) T+ 2) (81)
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where the entries of the kernel vector §eéx, X)]n := K(X,Xjn) and[k(x, )] := K(x, ;).
Note thatggt)(x) in (31) follows from (77) and can be written gg)(x) = @' (X)wj(t) +bj(t).
Grouping terms in (81) that right-multiplk(T(x,Xj) and those that right-multipli™ (x,"), yields
aj(t) asin (32) andatj(t) as in (33), respectively. Finalli, (t) in (34) is given by (79).

Appendix H. Proof of Proposition 3

To obtain iteration (35), consider first the dual problem for (25), that is

17 1T iy
Ai(t+1) = arg max —=AN Y P(X 0} YiAj
J( + ) )\ngOjj)\jjJClj 2 ! J( ( ) ( ) 2 |$J|

) T
+ (1,-—Y,-q>(x,-)0j-1c3‘”ﬂ (t)— hZJn(IZBjI > Aj (82)

whereU; ! is given by (80), andj(t) as in Proposition 2. Using (80), the texr(X;)U; *®T (X )
can be written in terms of inner products, and summarized via kernels as

O(X))U; T (X)) = K (X}, X}) — 20| B; K (X}, )UK (T, X;). (83)
Likewise, the terntb(X j)GFlGT?j (t) can be expressed as
o(x))U; 6T (1) = (K (X;,T) - 2n|B|K (X;,1)T; K (T, 7)) T (1), (84)

Plugging (83) and (84) into (82), yields (35).
To obtain iteration (36), left-multiplyv; (t + 1) in (78) by G to arrive at

Wi(t+1) = GU'®T(X))YjAj—GU;'GT

20(t)—n z Wi (t) +wi(t ] (85)
i€ B

The termsGU;'®" (X ;) andGU; 'GT can be respectively written as
GU; o™ (X)) = K(F,T) —2n|Bj|K (T, MUK (T, X)) (86)

and
GU;'G" =K(I,I") —2n|8;|K(,MNU; *K(,T). (87)

Substituting (86) and (87) into (85), yields (36), and completes the pfdbkgroposition.
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