Journal of Machine Learning Research 11 (2010) 2115-2140 Submitted 3/09; Revised 6/10; Published 8/10

Importance Sampling for Continuous Time Bayesian Networks

Yu Fan YFAN @CS.UCR.EDU
Jing Xu JINGXU@CS.UCR.EDU
Christian R. Shelton CSHELTON@CS.UCR.EDU

Department of Computer Science and Engineering
University of California
Riverside, CA, 92521, USA

Editor: Carl Edward Rasmussen

Abstract

A continuous time Bayesian network (CTBN) uses a structured regegiamto describe a dynamic sys-
tem with a finite number of states which evolves in continuous time. Exacteiméerin a CTBN is often
intractable as the state space of the dynamic system grows exponentiallyevithrttber of variables. In this
paper, we first present an approximate inference algorithm basmgpmntance sampling. We then extend it
to continuous-time particle filtering and smoothing algorithms. These threeithlys can estimate the ex-
pectation of any function of a trajectory, conditioned on any evidenceosetraining the values of subsets of
the variables over subsets of the time line. We present experimentlifresiboth synthetic networks and a
network learned from a real data set on people’s life history eventshdie the accuracy as well as the time
efficiency of our algorithms, and compare them to other approximateitiows: expectation propagation and
Gibbs sampling.

Keywords: continuous time Bayesian networks, importance sampling, approximaeene, filtering,
smoothing

1. Introduction

Many real world applications involve highly complex dynansiystems. These systems usually contain a
large number of stochastic variables, which evolve asywauisly in continuous time. Such dynamic sys-

tems include computer networks, sensor networks, socialanks, mobile robots, and cellular metabolisms.

Modeling, learning and reasoning about these complex dimaystems is an important task and a great
challenge.

1.1 Structured Process Representation

A central task of the above applications is to calculate ability distributions of the system over time. For
instance, we may wish to know the distribution over when e will change next or the state of a current
variable, given past (partial) evidence. However, as thmaber of the variables increases, the state space of
the distribution grows exponentially. Such growth makesittierence task very difficult for large systems.
One solution is to use structured representation to fadhe state space according to the dependencies of
the variables. For dynamic systems, Dynamic Bayesian N&sv@BNSs) (Dean and Kanazawa, 1989) are
commonly used. A DBN describes the dynamic system as a tiicedsnodel by measuring the evolution of
the system with a (usually fixed) time intervatl . The transition probabilities from states at titnk® states

at timet + At are represented by a Bayesian network. DBNs can work weflyfstems that are observed at
regular time steps. However, for many applications, disirg time has several limitations. First, we usually
choose a fixed time intervaht. In many real world systems, variables evolve at differanetgranularities.
Some variables may evolve very fast whereas some evolvesi@my. Choosing an appropriate time interval

is a difficult task. Large/At may result in an inaccurate model while smalmmay cause inference in the
model to be inefficient.

(©2010 Yu Fan, Jing Xu and Christian R. Shelton.

FAN, XU AND SHELTON

Second, the dependencies of the transition model are uastéh respect té\t. That is, different choices
of At may result in different network structures betwdeandt + At. The network structure represents
independencies between variables ahdAt. This is a function ofAt, both theoretically and empirically
(Nodelman et al., 2003). it is an inherent parameter of the process, this is not a probtéswever, if it
is chosen for estimation or computational reasons, thisies an issue as its choice is not unique. Finally,
DBNs (and discrete-time Markov processes in general) daaogssarily correspond to processes that are
Markovian outside of the sampled instants of time. Condildat if T is the transition matrix for a process
with time intervalAt, TY/2 is the transition matrix for the same process with time 'mib%‘. However, such
a square root may not exist in the space of real matrices.efdrey, there may not be any simple extension
of a DBN to the times between the sampled instants.

An alternative and more natural approach to model dynanstesys is to use a continuous-time model.
For systems with a finite number of states, one way is to censhe entire system as a continuous-time
discrete-state Markov process. Like discrete-time preegsthis method suffers from the fact that the state
space of the process grows exponentially with the numbeapébles in the system. Recently, Nodelman
et al. (2002) extended this framework tacantinuous time Bayesian netwoi®TBN), which factorizes a
system into local variables using a graphical represemtatnuch as a DBN does for a discrete-time pro-
cess. Parameter estimation in CTBNs with fully observee datd partially observed data were provided
in Nodelman et al. (2003) and Nodelman et al. (2005b) resfyt Because CTBNs explicitly represent
the temporal dynamics in continuous time and explore thewd@gncies among stochastic variables using a
structured representation, they have been applied tougrial world systems, including human-computer
interactions (Nodelman and Horvitz, 2003), server farnufas (Herbrich et al., 2007), robot monitoring
(Ng et al., 2005) and network intrusion detection (Xu andi®he 2008). Kan and Shelton (2008) used the
CTBN representation in their solution of structured comtins-time Markov decision processes.

Queueing theory (Bolch et al., 1998) and Petri nets (P€282] provide an alternative continuous-time
structured process models. However, they make differesutraptions about the structure. They were de-
signed to answer questions about steady-state distrifzutibheir algorithms are not suited to learning from
partial data nor to answering many statistical questionsingular and recent exception is the work of Sutton
and Jordan (2008) which applied Gibbs sampling to queueingdgeis.

1.2 Prior CTBN Inference Methods

In CTBNSs, a trajectory (or sample) consists of the startialgies for the system along with the (real-valued)
times at which the variables change and their corresponumgvalues. Inference for a CTBN is the task
of estimating the distribution over trajectories given atipatrajectory (in which some values or transitions
are missing for some variables during some time intervai$@rence plays a central role as it not only helps
us answer queries about distributions, but it is also irlin parameter estimation when the observation
data is incomplete. Performing exact inference in a CTBNiireg constructing a single rate matrix for the
entire system and computing the exponential of the matrhichvis often intractable: the exponentiation
must be performed separately for each period of constatd¢eee and (more problematic) even a sparse rep-
resentation of the matrix may not fit in memory. Thus, manyiappons of CTBNs require an approximate
inference method. A method based on expectation propag@ika, 2001) was presented in Nodelman
et al. (2005a). Saria et al. (2007) extended it to full behiefpagation and provided a method to adapt the
approximation quality.

Other approximate inference methods are based on sampliy. have the advantage of being anytime
algorithms. (We can stop at any time during the computatimhabtain an answer.) Furthermore, in the limit
of infinite samples (computation time), they converge totthe answer.

As we note below, because time is a continuous variable,\dadgmce containing a record of the change in
avariable has a zero probability under the model. There&eetion sampling and straightforward likelihood
weighting are generally not viable methods.

Ng et al. (2005) developed a continuous-time particle fitggalgorithm. However, it only handles point
evidence on binary and ternary discrete variables usiegtien sampling and focuses primarily on the incor-

2116

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

poration of evidence from a continuous-state part of théesygwhich we do not consider here). Recently,
El-Hay et al. (2008) provided another sampling algorithm@d BNs using Gibbs sampling. The algorithm
starts from an arbitrary trajectory that is consistent wiith evidence. Then, in each iteration, it randomly
picks one variabl&, and samples an entire trajectory for that variable by fitimgtrajectory of all the other
variables. Since onlX is not fixed, the conditioned cumulative distribution tixastays in one state less
thant and the state transition probabilities can be calculatedtéxusing standard forward and backward
propagation within the Markov blanket & The Gibbs sampling algorithm can handle any type of evidenc
and it provides an approach to sample from the exact postdigtibution given the evidence. However, the
posterior distribution can be any arbitrary function. Togée exactly from it, binary search has to be applied
andF (t) is repeatedly evaluated, which may affect the efficiencyefalgorithm.

1.3 Outline of This Work

In this paper we explore a different sampling approach usimprtance sampling. Our algorithm generates
weighted samples to approximate the expectation of a fomaf the trajectory. It differs from previous
approaches in a number of key ways. There is no exact infererathod involved in our approach. Thus,
our algorithm does not depend on complex numeric compuigtidhe transition times for variables are
sampled from regular exponential distributions in our @lfon, which can be done in constant time. Our
algorithm can be adapted to a population-based filter (&pafilter). It can handle both point and continuous
evidence, is simple to implement, and can be easily extettdeantinuous time systems other than CTBNSs.
The formulation of this sampling procedure is not trivialedio the infinite extent of the trajectory space,
both in the transition time continuum and the number of ttaorss. The algorithm was first presented in Fan
and Shelton (2008). This paper extends that work by comgahia algorithm to the newly developed Gibbs
sampling algorithm (El-Hay et al., 2008), evaluating itsfpamance on parameter learning with partially
observed data, and demonstrating its performance on redd-wetworks.

The remainder of the paper is structured as follows. In 8e@i we briefly describe the notation for
CTBNSs. In Section 3, we describe our importance samplingriatym for CTBNs and extend the algorithm
to particle filtering and particle smoothing algorithms.Saction 4, we describe our experiment results.

2. Continuous Time Bayesian Networks

We first briefly describe the definition, likelihood, and stifint statistics of the CTBN model. We then
review the exact inference and parameter estimation &fhgosi for CTBNs.

2.1 The CTBN Model

Continuous time Bayesian networks (Nodelman et al., 20@2based on the framework of continuous time,
finite state, homogeneous Markov processes (Norris, 19%1)X be a continuous time, finite state, homo-
geneous Markov process withstates{xs, ...,xn}. The behavior oX is described by the initial distribution
P¢ and the transition model which is often represented by ttemsity matrix

O O Oxxg
QX - qX.ZXI - (.qxz _ B qx-zxn bl
QXn X1 anX2 e - an

whereqyy; is the intensity with whichX transitions fromx; to xj andgy, = Y ;i Oxx;- The intensity matrix
Qx is time invariant. GiverQy, the transient behavior of can be described as the followin¥: stays in
statex; for an amount of time and transitions to statg. t is exponentially distributed with parameigy.
That is, the probability density function and the corresfing distribution function folX staying in state;

2117

FAN, XU AND SHELTON

Body Weight
@ Calorie Intake

Figure 1: CTBN Example: Weight Control Effect

are

f(quvt) =Qx eXp(—QXit% t>0.
F(ax,t) =1—exp(—axt), t>0.

The expected time of transitioning igdy,. Upon transitioning, the probabilitf transitions from statg to
X;j is exixj = Oxx; /ax - The distribution over the state ¥fat timet can be calculated as

Px(t) = PR exp(Qxt)

WherePQ is the distribution ovekK at time O represented as a row vector, and exp is the matronexjial.

To model a dynamic system containing several variables,ameconsider the whole system as one vari-
able, enumerate the entire state space, calculate thditvarnatensity of each pair of these states and put
them into a single intensity matrix. However, the size ofstate space grows exponentially with the number
of variables in the system, which makes this method inféaéiy large systems.

Nodelman et al. (2002) definedcantinuous time Bayesian netwof&TBN), which uses a graphical
model to provide a compact factored representation of woatis time Markov process. A CTBN models
each local variablX as an inhomogeneous Markov process, whose parametrizipends on some subset
of other variabled). The intensity matrix oK is called a conditional intensity matri{M) Qxuy, which is
defined as a set of intensity matrio®g,,, one for each instantiation of the variable setl. The evolution
of X depends instantaneously on the values of the variablgs in

Let X be a dynamic system containing several varialfleé continuous time Bayesian netwahk over
X consists of two components: amitial distribution PQC specified as a Bayesian netwabkover X, and
acontinuous transition modespecified using a directed (possibly cyclic) graphvhose nodes ar¥ € X.

Let Ux denote the parents &f in G. Each variableX € X is associated with a conditional intensity matrix,

Qx|uy -

Example 1 Assume we want to model the behavior of a person controlliagoidy weight. When the
person is overweight, he may exercise more to lose the emegght. Increasing exercise intensity tends
to increase his appetite, which will increase his daily cadntake. Both exercise intensity and calorie
intake contribute to his body weight. Furthermore, the ebserintensity also depends on the weather. Such
a dynamic system contains four variables: body weight,césercalorie intake, and weather. Each variable
changes in continuous time and its change rate depends authent value of some other variables.

We can use a CTBN to represent such behavior. The dependaridieese four variables are depicted
using a graphical structure, as shown in Figure 1. The quatitie transient dynamics for each variable is
represented using a conditional intensity matrix. Let usuase all the four variables are binary. Le{tB
be the person’s body weight ((&(t)) = {bp = normal, b; = overweight), E(t) be the exercise intensity
(Val(E(t) = {ep = light,e; = heavy}), C(t) be his daily calorie intake (V&C(t) = {co = low, ¢, = high})
and W(t) be the weather (V&W(t) = {wp = rainy,w; = sunny}). The conditional intensity matrices for the
four variables can be specified as

2118

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

05 05
Qw Qw = 05 —05 |°
[—0.1 01] [—0.3 03]
QE|W0,bo = 2 _2 ’ QE\WLbO = 1 -1 ’
Qew,p i i _ -
05 05 1 1
Qemoby = 05 -05 |°@ Qemb = 01 -01 |°
02 02] [-1 1]
Qce Qcley = 1 1 J Qe = 02 -02 |’
(02 02] 01 01]
Qoo = | 08 -08 |° aw = 1 -1 |
QgEC - :))
r 1 1] 02 02]
Qoerer = 01 -01 |° Qea = 06 —06

Notice that unlike Bayesian networks, the CTBN model alloyetes. The transient behavior of each
local variable is controlled by the current value of its pate. If the person is doing light exercise and his
calorie intake is low, the dynamics of his body weight areedetned by the intensity matrige, - If the
time unit is one month, we expect his weight will go back tormabin 1/0.8 = 1.25 months if he is currently
overweight and doing light exercise and controlling hislgaalorie intake.

We can also use a single continuous time Markov process tesept this network, which requires an
intensity matrix of sizd6 x 16. To generate the single intensity matrix, we can follow thelgamation
algorithm in Nodelman et al. (2002). Basically, we enumetat entire state spac®V, E,C,B), and assign
intensity O to transitions that change two variables simuoétously. For any transition involving only one of
the variables, simply use the entry from the appropriatenstty matrix above. The resulting matrix is

WoeoCobp [—1 05 01 O 02 0 0 0 02 0 0 0 0 0 0 0 1
W1€pCobg 05-12 O 03 0 02 0 0 0 02 O 0 0 0 0 0
Woe1Cobo 2 0 -36 05 O 0 1 0 0 0 a o 0 0 0 0
wie1Cobo 0 1 05 -26 O 0 0 1 0 0 0 a o 0 0 0
Wo€pC1bg 1 0 0 0 -26 05 01 O 0 0 0 0 1 0 0 0

w1 €0C1bo 0 1 0 0 05 -28 0 03 0 0 0 0 0 1 0 0
WoesC1bg 0 0 02 0 2 0 -29 05 O 0 0 0 0 0 ® 0
wierC1bo 0 0 0 a2 0 1 05 -19 O 0 0 0 0 0 0 @
Wo€pCob1 08 0 0 0 0 0 0 0 -2 05 05 O 02 0 0 0

W1 €9Cob1 0 08 O 0 0 0 0 0 ® -25 0 1 0 02 O 0
Wo€1Coby 0 0 1 0 0 0 0 0 ® 0 -3 05 0 0 1 0
W1€1Coby 0 0 0 1 0 0 0 0 0 a 05-26 0 0 0 1
Wo€pC1b1 0 0 0 0 01 o 0 0 1 0 0 0 -21 05 05 O

W1 €0C1b1 0 0 0 0 0 oL o 0 0 1 0 0 ® -26 0 1
WoerC1by 0 0 0 0 0 0 6 O 0 0 02 0 05 0 -18 05
wieicihy [O 0 0 0 0 0 0 G O 0 0 02 0 01 05 -14 |

As we include more variables in this system, the size of teasity matrix grows exponentially with the
number of variables.

2.2 Likelihood and Sufficient Statistics

The probability density over trajectories of a set of variablesX described by a CTBN belongs to the
exponential family. Therefore, the distribution of a CTBahde described in terms of the sufficient statistics

2119

FAN, XU AND SHELTON

of o (Nodelman et al., 2003). L&k [x|u] be the amount of tim&X = x while Ux = u, andM|[x,X|u] be the
number of transitions from to X’ while Ux = u. If we let M[xu] = S, M[x,X|u], the probability density of
trajectoryo (omitting the starting distribution) is

ZXL_LLX<T[X|UXLM[X‘UX]) @

where
Lx (T[X|Ux], M[X|Ux]) |'||‘|<q§’|'£“]exp(Ao T [X]u]) ﬂ%”))
u X

is the local likelihood for variableX. The likelihood also decomposes by time. That is, the liadd of a
trajectory on0, T) is equal to the likelihood based only on sufficient statsstiom time O to timeé multiplied
by the likelihood based only on sufficient statistics fromeit to timeT.

2.3 Evidence and Queries

Given a CTBN model, we would like to use it to answer queriesditioned on observations. There are
two common types of observations: point evidence and coatis evidence. Point evidence represents the
observation of the value of some variables at a particufae tinstant. Continuous evidence provides the
behavior of some variables throughout an inteftsaty). For instancex = 1 during the intervaj2,3.5), or
x=1fromt = 2 tot = 3 and therx transitions tax = 0 att = 3 and stays in that state urtti= 5. We define
X[ty : t2) be the behavior of variabl® on the intervalti,tz), X]t1 : t2] be the behavior oK on the interval
[t1,t2] andx(t; : to] be the behavior oX on the intervalts, ta].

Queries can ask about the marginal distribution of someakbes at a particular time, such as the dis-
tribution of x andy att = 2, or questions about the timing of a transition, such as isigilaltion over the
time thaty transitions fromy = 1 toy = 2 for the first time in the intervdll,4). In learning (especially when
employing expectation-maximization), we might query tlpexted sufficient statistics of a CTBN, which
include the total amount of time that a variable spends it sand the total number of times that a variable
transitions from one state to another state under certaidittons. For example, we might want to know the
total amount of time that = 0 throughout the entire interval, or the number of times #tatnsitions from 1
to 2 during the time intervgR, 3) wheny = 0. In this paper, we will concentrate on answering queriesryi
the continuous evidence, but our method can be triviallgroéd to point evidence.

2.4 Exact Inference in CTBNs

A CTBN can be viewed as a homogeneous Markov process witlga jaint intensity matrix amalgamated
from the CIMs of the CTBN. Exact inference in a CTBN can be perfed by generating a single joint
intensity matrix over the entire state space of the CTBN amahing the forward-backward algorithm on the
joint intensity matrix of the homogeneous Markov process.réview this method here, but a more complete
treatment can be found in Nodelman et al. (2002).

Assume that we have a partially observed trajectoigf a CTBN Al from 0 toT. We can divide the
evidenceo into N intervalslt;,ti+1) (i=0,...,N —1) according to the observed transition times. That is, each
interval contains a constant observation of the CTBN, taistthe time that a variable begins to be observed,
stops being observed, or is observed to transition. Wi seO andty =T

To perform exact inference, we first generate the intensayrimnQ for the joint homogeneous Markov
process and incorporate the evidence @tdf each variableX; in the CTBNA hasn; states, the number of
states of the joint Markov processris= [1n; andQ is ann x n matrix. The value of the off-diagonal element
gij in Q for which only one variable value is different between statnd j is the corresponding intensity in
the CIM of that variable. All the other off-diagonal elemgmatre zero since two variables can not transition
at exactly the same time in a CTBN. The diagonal elementsarpuated to make each row sum to zero.

To incorporate the evidence, we reduce the joint intensigrimQ to Q; for each intervaltj,ti;1) by
zeroing out the rows and columns @fwhich represent states that are inconsistent with the ee@eAddi-

2120

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

tionally, letQ; ; be the matrixQ with all elements zeroed out except the off-diagonal elgmthrat represent
the intensities of transitioning from non-zero rowsQ@n to non-zero columns iQ;. If evidence blocks
and | differs only in which variables are observed (no transiimobserved between them), th@g; is the
identity matrix instead.

exp(Qi(ti+1 —ti)) represents the transition matrix for interVialti; 1) andQ; i1 corresponds to the tran-
sition probability density between two consecutive ingds\at timet; 1. We can use the forward-backward
algorithm for Markov process to answer queries.

We define the forward and backward probability vecteyeindg; as

o = p(xtao-[o,t))7
B = plogmlX) -

Let ag be the initial distributiorPQ over the state an@+ be a vector of ones. The forward and backward
distribution vector for each interval can be calculatedirsively:

oy, = o exXPQi(tii —1))Qiji+a,
By = Qi—1iexpQi(tiya—1t))B,, -

The distribution over the state of the CTBN at titne [t;,ti.1) given the evidence)o 1) can be computed
as

P(X =k,0)01)) = o, exp(Qi(t —ti)) Akkexp(Qi(tiv1 — 1)) B, 3)

where A j is ann x n matrix of zeros with a single one in positionj. Other queries can be similarly
computed.

2.5 CTBN Parameter Estimation

Given a set of trajectoridd = {01,032, ...,0,} and a fixed graphical structure, we would like to estimate the
parameters (the conditional intensity matrix) of the CTBNdal.

When the data sdd is complete, where each trajectasyis a complete set of state transitions and the
times at which they occurred, the parameters can be leagnetkimizing the log-likelihood of the data set
(Nodelman et al., 2003). According to Equation 1 and Equafipthe log-likelihood can be written as the
sum of the log-likelihood for each local variable. By maxamnig the log-likelihoods, the parameters can be

derived as MU MBX|u]
X|u A x, X [u
Oy = = Ogwwu=—— . 4
CIx\u T[Xlu] ’ X)(‘U M[X‘U] ()
When the data set is incomplete, the expectation maximizgkd/1) algorithm (Dempster et al., 1977)
can be used to find the maximum likelihood parameters (Nodelet al., 2005b). The EM algorithm begins
with an arbitrary initial parameter assignment, and aliively repeats the expectation step and maximization
step until convergence. In expectation step, for eachdi@jgo; € D, expected sufficient statistids|x|u],
M|x,x |u] andT [x|u] are computed using exact inference. In maximization s&p,parameters are computed
according to Equation 4 as if the expected sufficient stasisame from complete data.

3. Sampling-based Inference

As we described in the previous section, exact inferencedBN can be performed by generating a single
joint intensity matrix over the entire state space. As thealer of states is exponential in the number of the
nodes in the network, this approach is infeasible when the@aork size is large. In this section we describe
an algorithm for approximate CTBN inference based on ingowe sampling.

2121

FAN, XU AND SHELTON

Procedure CTBN-Samplégnq)
1.t 00«0
2. For each variablX € X
Choose statg(0) according tcﬂflp%)
Loop:
3. For each variablX such thaflimg X) is undefined:
ChooseAt for nextX transition from an exponential with parametgft) u, t)-
DefineTimgX) <t + At
4. LetX = argminke x [Timg X)]
5. If TimgX) > tepgreturn o
6. Updatet < Timeg(X)
7. Choose(t), the next value oK, from the multinomial with parameteg)y,) -
Add (X < x(t),t) too.
UndefineTimeX), andTime(Y) for all variablesy for which X € Uy.

Figure 2: Forward sampling semantics for a CTBN

3.1 Forward Sampling

Queries that are not conditioned on evidence can be answgrethdomly sampling many trajectories and
looking at the fraction that match the query. More formaifywe have a CTBNA/ we generate a set of
particles?D = {o[1],...,0[M]} where each particle is a sampled trajectory. Withwe can estimate the
expectation of any functiog by computing

R 1 M
Exld =y Zlg(c[m}) : ®)

For example, if we leg = 1{x(5) = x1 } then we could use the above formula to estinij{€x(5) = x;). Or

the functiong(o) might count the total number of times théttransitions fromx; to x while its parent

has valuay;, allowing us to estimate the expected sufficient stathdtic; ,x>|u1]. The algorithm for sampling

a trajectory is shown in Figure 2. For each varialfle X, it maintainsx(t)—the state oK at timet—and
Timeg X)—the next potential transition time fo¢. The algorithm adds transitions one at a time, advancing
t to the next earliest variable transition. When a variablér one of its parents) undergoes a transition,
Timg X) is resampled from the new exponential waiting time distidou We useux(t) to represent the
instantiation to parents of at timet.

If we want to obtain a conditional probability of a query gimevidence, the situation is more complicated.
We might try to useejection sampling forward sample to generate possible trajectories, and $hraply
reject the ones that are inconsistent with our evidence. r&€hmaining trajectories are sampled from the
posterior distribution given the evidence, and can be usedtimate probabilities as in Equation 5. However,
this approach is entirely impractical in our setting, asng setting involving an observation of a continuous
guantity—in our case, time. In particular, suppose we olestiratX transitions fronx; to x, at timet. The
probability of sampling a trajectory in which that transitioccurs at precisely that time is zero. Thus, if we
have evidence about transitions, with probability 1, noheus sampled trajectories will be relevant.

3.2 Gibbs Sampling

Recently, El-Hay et al. (2008) provided a Markov Chain Mo@&rlo (MCMC) procedure which used a
Gibbs sampler to generate samples from the posteriorhlisitvh given the evidence.

Suppose we want to sample trajectories from a CTBN witariables(X;, Xz, ..., Xn) given the evidence
e. The Gibbs sampler starts with an arbitrary trajectory ihabnsistent with the evidence. In each iteration,
the sampler randomly picks one variableand samples the entire trajectoryXfby fixing the trajectories

2122

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

of the other variable¥ = {Xi,...,X_1,Xi11,...,Xn} a@s evidence. To generate the entire trajectoryof
according to the evidence the states and transitions Xf need to be sampled in those intervals tKais
not observed according to the evidence. The trajectory ¢h eaobserved interval of; can be generated
by alternatively sampling transition tim& and new state from the posterior distribution giveaand the
trajectories of the other variabl¥s

Assume we are sampling the trajectoryXffor the interval[0, T], andX;(0) = Xo, Xi(T) = xr. The
transition timeAt is sampled by inverse transform sampling: first déafsom the [0, 1] uniform distribution
and setAt = F~1(€), whereF~1(§) is the inverse of the conditional cumulative distributiemétionF (t)
thatX; stays in stateg for a time less thatx

F(t) =1—Pr(X(0 :t] = Xo|x0,%7,Y[0:T]) .

F(t) can be calculated by decomposiRg(X; (0 :t] = Xo|X0,X1,Y[0:T]) using the Markov property of
the process:

Pr(X(0 :t] = Xo[%o,xr,Y[0: T]) = a%)BXOa

~—

%(0)
where

G(t) = Pr(X(0:t] = xo,Y[0 :t]|x0, Y0),
Bx(t) = Pr(xr,Y(t: T]X(t) =x,Y(t)).

aft) andf&x(t) can be calculated using a slightly modified version of thedaad forward-backward algorithm
described in Section 2.4. Using the fact thais independent of all the other components given the entire
trajectory of its Markov blanket, the computationddft) and(t) can be limited to and its Markov blanket
(the parents 0K, the children ofX;, and the children’s parents).

Since the conditional cumulative distribution functibit) can be arbitrarily complex, the inverse func-
tion F~1(t) can not be solved analytically. Findidg that satisfies (At) = € is performed using a two-step
searching method: first find the intenjag, Ty, 1] that satisfied (t1x) < & < F(tk4+1), wherety are the tran-
sition points of the Markov blanket of;. ThenAt is found by performing ai step binary search on the
interval [Ty, Tk+1]-

The transition probability thaX; transitions fromx(? to a new state can be calculated similarly:

XilY 5
Pr(xi (t+) = X|X|(O :'[] — x(0)7Y(0 :TD _ Oxg,x x(t)

zx/;éxo qi:)l;/ Bx’ (t)

The Gibbs sampling algorithm can handle any type of evidefihe sampled trajectories are guaranteed
to be consistent with the evidence. However, sampling #esttion timeAt requires using a binary search
algorithm and repeatedly computing the conditional cutizdaistribution functiorf (t), which may require
long running time.

3.3 Importance Sampling

In this section, we introduce another approximate infeeenethod using importance sampling, which does

not require computing the exact posterior distributionisThethod first appeared in Fan and Shelton (2008).
In importance sampling, we generate samples from a propiistabution P’ which guarantees that our

sampled trajectories will conform to our evidereéNe must weight our samples to correct for the fact that

we are drawing them fror’ instead of the target distributid®, defined by the CTBN. In particular, @ is

a sample fronP’ we set its weight to be

w(o) = . (6)

FAN, XU AND SHELTON

In normalized importance sampling, we draw a set of samples{o[1],...,0[M]} i.i.d. from the proposal
distribution, and estimate the conditional expectation @inctiong given evidence as

x[9]€ = Wzg o[mi)

whereW is the sum of the weights.

This estimator is consistent if the support®fis a superset of the support B,. In generalEN is
biased and the bias decrease©@dl—). The variance of the estimator also decrease3(d1). For more
information on this and related sampling estimates, se¢elfmsg (1995).

For our algorithm, we base the proposal distribution on trevérd sampling algorithm. As we are
sampling a trajectory, we occasionally depart from the laagforward sampling algorithm and “force” the
behavior of one or more variables to ensure consistencythélevidence.

3.4 Simple Evidence

The simplest query involves evidence over some subset @blasV C X for the total length of the tra-
jectory. We force only the behavior of the variab®sand there are no choices about how to do that. In
particular, we use the following proposal distributiontviard sample the behavior of variabkés (X \ V)
inserting the known transitions at known times for varialileV' as determined by the evidence. As there
are no choices in our forcing, the likelihood of drawiagrom the proposal distribution is just the likeli-
hood contribution of forward sampling the behavior of theaklesX € (X \ V'), in the context of the total
behavior of the system.

According to Section 2.2x]t; : t2) can be summarized by the sufficient statistics oXeon the inter-
val [t1,t2). Let Lx(x[t; :12)) be a partial likelihood contribution function, computed jiyugging the suf-
ficient statistics of]t; : tp) into Equation 2. The partial contribution function can bédirtkd over a col-
lection of intervalsI as iy (1) = nx[tl : tz)elﬂx(x[tl :t2)). Returning to our simple evidence above, let
T1 < T2...,Tn_1 < Tp be all the transition times iU[QT), To = 0 andt,,1 = T. The likelihood of drawings
from the target distributio, is

= XIE_L IfL I:X (X[Ti : Tit1))

Let [(x]tz : t)) be the corresponding probability density for our sampliracpdure. Since we force the
values and transitions of variables¥according to the evidence, the probability that we sampliainval
X[Ti : Ti4+1) for X € V' from proposal distributiof®’ is always 1. Therefore, the likelihood of drawiogrom

the proposal distributioR’ is
n
= Lo (X[t = Tita))

= XE(';LV) iD) Cx (X[Ti 2 Tiy1)) X xle_lul:!) 1.

To compute the proper weightg) we substitute in Equation 6, and get

(0) = PN(O’e) [Mxex |_|| OI:X(X[Ti : Tit1))
P'(o) Mxex\v) Miko Lx (X[Ti : Ti41))

- J‘L |j Cx (X[Ti : Tix1))

Therefore, the weightv(o) is the likelihood contribution of all the variables W. This algorithm exactly
corresponds tbkelihood weightingn Bayesian networks (Shachter and Peot, 1989; Fung andgChaa9).

2124

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

Intuitively, this makes sense because we can account ftinekkvidence by simply assigning the observed
trajectories to the observed variables.

3.5 General Evidence

Now, consider a general evidence patterim which we have time instants where variables become wbder
or unobserved. How can we force our trajectory to be contistéh €? Suppose there is a set of variables
which has evidence beginning at We can not simply force a transition at tirheto make the variables
consistent with the evidenee if the set contains more than one variable, the sample woalg multiple
simultaneous transitions, an event whose likelihood ie.zer

Instead, we look ahead for each variable we sample. If tireptistate of the variable does not agree with
the upcoming evidence, we force the next sampled tranditios to fall before the time of the conflicting
evidence. To do this, we sample from a truncated exponetitsibution instead of the full exponential
distribution. In particular, if we are currently at tinhend there is conflicting evidence frat timete > t,
we sample from an exponential distribution with the saqelue as the normal sampling procedure, but
where the sample foht (the time to the next transition) is required to be less thant. The probability
density of sampling\t from this truncated exponential ﬁ% whereq is the relevant intensity for
the current state oX (the diagonal element &yy, corresponding to the current state>gt

The subsequent state is still sampled from the same (foraampling) distribution. In Section 3.6 we
explore a more intelligence option. Note that we cannoteimagal, transition directly to the evidence state, as
such a transition may not be possible (have 0 rate). Furitwernif we are still “far away” from the upcoming
evidence, such a transition may lead to a highly unlikeljetiry resulting in an inefficient algorithm.

To calculate the weightv(o), we partitiono into two pieces. Let. be the collection for all variables
X € X of intervalsx[t; : tz) where the behavior of is set by the evidence. Let be the complement afe
containing the collection of intervals of unobserved bédwafor all variables. By applying Equation 6, we
have

w(o) = Pyg/((ccr;)e)
_ ot 10 D 10
B X[t :L_L)EOS L (X[Ti © Tiv1))) X[t 1!i_4|r1)60e Ly (X[Ti : Tig1))
_ Ex (X[Ti : Tit1)) " S
B [T :L_L)GOS L4 (X[Ti : Tig1)) X[Tj :riJrl)eoeLX(X[TI) @

Based on the distribution we sampled for transition timehaf variable in each step, we can further
partitiongg into three pieces:

osn be the collection for all variable$ € X of intervalsx]t; : t2) where the transition time is sampled
from an exponential distribution.

Ogt be the collection for all variables € X of intervalsx[t; : t2) where the transition time is sampled
from a truncated exponential distribution and the variéblavolved in the next transition.

ost be the collection for all variables € X of intervalsx(t; : to) where the transition time is sampled
from a truncated exponential distribution and the variéblgot involved in the next transition.

2125

FAN, XU AND SHELTON

Xg Xo

Yo Yo
Y1 Y1
0 ot 13 T 0 ot 13 T
(@) (b)
VS I R B o g %% o | |
Xli : 3 Xl‘ : Osn O 1 Osn Ogn | O
il A R
yl yl On! Ol Osn (Ol O | O | Gen |
Hh T L [U T 13 L4 Tg Hh b L B U T L3 4 T
(c) (d)

Figure 3: (a) Evidence of a CTBN. (b) A sampled trajectoryeggimg with the evidence. (c). Partitioning of
the trajectory according to the evidence and the transition equalsx(ts : 14) andx[t7 : Tg) (d)
Partitioning of the trajectory based on the different sangpsituations.

Therefore, we can rewrite Equation 7 as
woy=] pbliime), g bxmita)

X[Ti : Tit1)€oen Lx (X[t Tixa)) X[Ti : Tiy1)eo L (4T < Tisa))

g [W X [Cx (X[Ti © Tiva))- 8)

X[Ti @ Ti+1)€0st X[Ti & Tit1)e0e

Example 2 Assume that we are given a CTBN with two binary variables XYanX has two stategand

x1. Y has two statespyand yi. We have such observation: X isix interval [ty,t2) and [t3, T), as shown

in Figure 3(a). To answer queries based on the evidence, wehesmethod above to sample trajectories.
Figure 3(b) shows one of the sampled trajectories. To cateuthe weight of the trajectory, we partition the
trajectory into four categories (as shown in Figure 3(c) dfidure 3(d)), and apply Equation 8.

According to Equation 8, each time we add a new transitiohédajectory, we advance time franto
t+At. For each variablg we must update the weight of trajectory to reflect the likediti ratio forx[t : t + At]
based on the distribution we use to sample the “next time"thadransition variable we select. Each such
variable can be considered separately as their times angedimdependently.

For any variablex whose value is given in the evidence during the inteftjaH- At), as we discussed
above, the contribution to the trajectory weight is jﬁ%(x[t :t+At)). For any variableqt : t +At) € Ops,
whose “next time” was sampled from an exponential distidyt_x (X[T; : Ti+1)) = L (X[Ti : Tiz1)) and the
ratio is 1.

Now, we consider segmentdt : t + At) € as and x|t :t +At) € os;. The behavior of the variables in
these segments are forced due to upcoming evidence.

For variableX thatxt : t + At) € oy, the variable’s “next time” is sampled from a truncated exgxttial
distribution and it is part of the next transition. The wdighust be multiplied by the probability density of
sampling the transition iR, divided by the the probability density in the sampling alfon. The former is

2126

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

an exponential distribution and the latter is the same esptal distribution, truncated to be less thian-t.
The ratio of these two probabilities is-lexp(—q(te —t)), whereq is the relevant intensity.

Otherwise X[t : t + At) € ost, the next time for the variable was sampled from a truncaxpomrential
but was longer thamt. In this case, the ratio of the probabilities of a sample @pajreater thamt is
%. Note that wher\t is small (relative tde —t, the time to the next evidence point for this
variable), the ratio is almost 1. So, while the trajectowy&ght is multiplied by this ratio for every transition
for every variable that does not agree with the evidencepéschot overly reduce the weight of the entire
trajectory.

The algorithm for CTBN importance sampling is shown in Fegdr To more easily describe the evidence,
we define a few helper functions:

g(t) is the value o at timet according to the evidence, or undefineXihas no evidence at
éiMe(t) is the first time aftet whene{?(t) is defined.
eg"dt) is the first time after or equal towhene}?(t) changes value or becomes undefined.

Note thate§"%(t) = t when there is point evidence atwhent is the end of an interval of evidence, and
when there is a transition in the evidence at time

The line numbers follow those given in the forward samplilggethm with new or changed lines marked
with an asteriskTime(X) might be set to the end of an interval of evidence which is rtoamsition time but
simply a time when we need to resample a next potential tiansiThis means that we will not update
with a new transition every time through the loop. The aldyni differs from the forward sampling procedure
as follows. Step 2 now accounts for evidence at the beginairte trajectory (using standard likelihood
weighting for Bayesian networks). In Step 3, we di@afrom the truncated exponential if the current value
disagrees with upcoming evidence. If the current evidenckides this variable)t is set to the duration of
such evidence. Step 5 updates the weights using the pracdgaate-Weight Finally, Step 7 now deals
with variables that are just leaving the evidence set.

3.6 Predictive Lookahead

The algorithm in Figure 4 draws the next state for a variabdenfthe same distribution as the forward
sampling algorithm. This may cause a variable to transgiereral times in a short interval before evidence
as the variable “searches” to find a way to transition intofidence. Thus, we may generate many unlikely
samples, making the algorithm inefficient. We can help ratgghis problem by trying to force the variable
into a state that will lead to the evidence.

When sampling the next state for variallat timet, instead of sampling from the multinomial according
t0 Oy(t)jux (1), We would like to sample from the distribution of the nexttsteonditioned on the upcoming
evidence. Supposeis in statex; at timet, and the next evidence fot is statex, atte. Assuming the parents
of X do not change befortg and ignoring evidence over the childrenXfthe distribution of the state of
att given only the evidence can be calculated using Equation 3:

1
7 1] Qx exp(Qx(te—t)) 1 = pi,j

wherel,; is the vector of zeros, except for a one in positjohVe can therefore select our new state according
to the distribution ofP(X at|X[t :t +At) = X, X, = %) and, assuming statg is selected, multiply the

x,xJ\uX (t)

|S(Xt+At = Xj|[X[t i t+At) =X, X, = X) =

weight by —"— to account for the difference between the target and samglstributions.

3.7 Particle Filtering

The algorithm in Figure 4 allows us to generate a singledtajg and its weight, given the evidence. To apply
this algorithm to the task of online inference in a dynamistegn, we can generate multiple trajectories in
parallel, advancing time forward as evidence is obtained.

2127

FAN, XU AND SHELTON

Procedure CTBN-Importance-Samplgng, €)
1.t 0,0+ 0,w+1
2. For each variabl¥ € X
If e/2(0) defined,
setx(0) + e2!(0),
Setw + w- 933(0)
Else
choose statg(0) according ta9

[pa(0)

B
Xlpag(X)
Loop:
3. For eaclX € X such thafTimgX) is undefined:
If 2(t) is defined, seft + e§"(t) —t
Elseif &(te) is defined wherés = ei™(t), x(t) # 6(te),
chooséAt from an exponential distribution with
parametety)|y,) 9ivenit < (te—t).
Else choosét from an exponential w/ paranty)u, t)
DefineTimgX) « t + At
4. LetX = argmirke x [TimegX)]
5. If TimgX) > teng
w <+ Update-WeightX, w,t, tenq)
return (o,w)
Else
w <+ Update-WeightX, w,t, Timg X))
6. Updatet < Timeg(X)
7. 1Fe9t) #t or e@(t) is defined
If f2(t) is defined, sex(t) < ef2(t)
Else choose(t), the next value oK, from a
multinomial with parametey ¢,)
Add (X < x(t),t) to a.
UndefineTimg X) andTime(Y) for all variablesy
for which X € Uy
Else
UndefineTimg X).

Procedure Update-WeightY, w; t1,t2)
1. For eackX € X such thael@(t) is defined fort € [ty,tp):
W< W- Ly (X[t : t2))
2. For eactX € X such thag/?(te) is defined,
wherete = €lM€(t;), andx(ty) # €2 (te):
If X=Y, W< w- (1—exp(—0yt,)[uy 1) (te —t1)))
1—exp(—Oty Juy (tp) (te—t1))

Elsew + w-
se < lfqu*qx(tl)\ux(tl)(te*tz))

3.return w

Figure 4: Importance sampling for CTBNs. Changes from Fduare noted with asterisks.

The resulting algorithm is an instance of sequential ingroré sampling, and therefore suffers from
its characteristic flaw: As the trajectory length increaghs distribution of the importance weights gets
increasingly skewed, with most importance weights corimgrdo zero exponentially quickly. Thus, the
number of “relevant” samples gets increasingly small, dvel éstimates provided by the set of samples
quickly become meaningless. A family of methods, commomigvin as sequential Monte Carlo or particle
filtering (Doucet et al., 2001), have been proposed in thangatf discrete-time processes to address this flaw.

2128

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

Procedure CTBN-Particle-Filtering {X}, wh }i—1._n. ten, ©)
1.k~ 0OW <+ 1N «<N
2. Fori < 1 toN: Paj < i, W « 1/N
Loop:
3. For eachisuch thqi <tend:

xk+1’tk+1 WIk+1>
Sample- Segme(n(kak t, ,W' tend ©)
If tk+l > tend
Nremain < Nr — 1,
W W —
4. K<+ k+ 1
5. IfN, =
return {Xm tl ,W' Pam et Nm=1.n
wheren; is the number of transitions of th& particle
6. Calculatd\leff of all incomplete particles
7. 1f Nett < Nepr
SampIePa{(according tcw'
W W x 1/N,
Else
W« w, Pdl < Pd,_;

Figure 5: Particle Filtering for CTBNs

At a high level, these methods re-apportion our samplesdosfonore efforts on more relevant samples—
those with higher weights.

The application of this idea to our setting introduces somt#lsties because different samples are not
generally synchronized. We could pick a tirn@nd run the algorithm in Figure 4 witli,qg =1t so that
samples are synchronizedtaiVe would re-apportion the weights and continue each trajgdrom its state
att, first settingTimeX) to be undefined for alK. However, choosing the proper synchronization ttrigea
non-trivial problem which may depend on the evidence angieed the system evolves.

Instead of synchronizing all the particles by the time, we align particles by the number of transitions.
If we lett; be theit" transition time andk; be the value oK fromt_; tot;, the following recursion holds.

P(X[0:tn)) = P(X1n, tin, €o1,))
= P(Xun-1,t1:n-1,€01, 1)) P(XalXn-2)P(Xt, 1 t0)5 €1ty 1.t0) [Kn-1,8_1)-

The weighted approximation of this probability is given by
X[0:ty)) Zw 10 :t0))8(X[0 : tn), X' [0 : t))

whereX'[0 :t) is thei" sample anav(X'[0 :t,)) is the normalized weight of thi€'sample. According to
Equation 8, the weight can be updated after every transitiop. The weight update equation can be shown

as

w(X'[0:tn)) Ow(X[0 Ztn—l))m'

Thus, to sample multiple trajectories in parallel, we appbly CTBN importance sampling algorithm to
each trajectory until a transition occurs. To avoid the degacy of the weights, we resample the particles
when the estimated effective sample dig; = 5, (2 is below a threshold\,,. This procedure is similar

to the regular particle filtering algorithm except that aicles are not synchronized by time but the number

2129

FAN, XU AND SHELTON

Procedure CTBN-Particle-SmoothingXy, , th, , W, } tena €)
i=1..Nm=1...M
l.o+0
2. Choose with probability proportional torvi'\’Ii
3. setY = Xy, S My, t —tK
Loop:
4. O-[ts,l.,s) «—Y
5. If ois complete
return o
6. Forj« 1toN o '
W} « Check-Weighfl,t,X] 1.t 1, wl 1)
7. Choosé with probability proportional ta]
8.Y XS tetlses—1

Procedure Check-WeightX, t, Xs, ts, Ws)

1. Ift <tsoreysy) contains a transition, or
the value ofX andXs do not differ by only one variable
return 0

2.0, 1) < X5, 0(t) <~ X

3. W< Ws- Ly (o[ts,tz])

4. return w

Figure 6: Particle Smoothing for CTBNs

of transitions. To answer queries in the time intef@gll), we propagate the particles until all of their last
transitions are greater thdn

Figure 5 shows the algorithm for generatiNgrajectories from 0 td in a CTBN. It assumes that the
initial values and the weights have already been sampleeé. pftbcedureSample-Segmeltaops from line
3 to 7 in Figure 4 until a transition occurs, returns the titiors time and variables value, and updates the
corresponding weight for that segment. Note that we arecaqapating the distributio®?(Xy:n,t1:n, €0y,)) for
all possiblen. Therefore, we only propagate and re-apportion weightpéoticles that have not yet reached
time T. Particles that have been sampled fasre left untouched.

3.8 Particle Smoothing

Although the resampling step in the particle filtering altfon reduces the skew of the weights, it leads to
another problem: the diversity of the trajectories is aéstuced since particles with higher weights are likely
to be duplicated multiple times in the resampling step. Miajectories share the same ancestor after the
filtering procedure. A Monte Carlo smoothing algorithm gsbackward simulation addresses this problem
(Godsill et al., 2004).

The smoothing algorithm for discrete-time systems gemsréiiajectories using)l weighted particles
{x{,w{} from the particle filtering algorithm. It starts with the fiales at timeT, moves backward one
step each iteration and samples a particle according torduipt of its weight and the probability of it tran-
sitioning to the previously sampled particle. Specificalythe first step, it sampleg from particlesxiT at
time T with probabilityw . In the backward smoothing steps it sampieaccording tom{|t+1 =w (X 1/X),

wheref (%.1|X) is the probability that the particle transitions from stejtéo % 1. The resulting trajectory
set is an approximation &(x;.1|y1.7) whereys 1 is the observation.

This idea can be used in our setting with modification. Givenfiltered particle@(,in ,t,in ,vv"m },.we need
to sample both variable values and transition times at etaghvghen we move backward. There are two

main differences from the algorithm in Godsill et al. (200ZFhere are fewer thaN particles that can be

2130

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

Barometer

S

Concentration

Figure 7: Drug Effect Network

used at the beginning steps of the backward smoothing dircedjectories do not have exactly the same
number of transitions, and not all particles at stegan be considered as candidates to move backward. A
particle{X},t,,w,} is a valid candidate as the predecessof ¥y, 1,th,1} only if (1) t}, < tn.1, (2) the values

of X} and X1 differ in only one variable (thus a single transition is gbks, and (3)e(timt~n+l) contains no
transitions.

Figure 6 shows the smoothing algorithm which generatesjectay from the filtering particles. We
apply the algorithmN times to sampleN trajectories. These equally weighted trajectories candas wo
approximate the smoothing distributi®iXq 1)|e). Generating one trajectory with this smoothing process
requires considering all the particles at each step. Theimgrtime of samplindN trajectories using particle
smoothing isN times of that of particle filtering.

4. Experimental Results

In this section, we report on the performance of our algoritn synthetic networks and a network built
from a real data set of people’s life histories. We testedadgorithm’s accuracy for the task of inference
and parameter estimation. We also compare our algorithtisathier approximate inference algorithms for
CTBNs: the method based on the expectation propagationria 8gaal. (2007) and the method based on
Gibbs sampling in EI-Hay et al. (2008).

All the algorithms we used in the experiments were implement the same code base to make fair
comparisons. We tried our best to optimize all the code. WpEémentations are general so that they can be
applied to any CTBN model. Our implementation of EP is adafrtem that of Saria et al. (2007) who were
kind enough to share their code. The code base is descrit&tukiton et al. (2010) and is available from the
authors’ website.

4.1 Networks

In our experiments, different types of network structuresewsed, including the drug effect network (Nodel-
man et al., 2002), a chain-structured network, and the BHRS8ark (Nodelman et al., 2005b). All the net-
works are at the upper size limit for the exact inference ritlgm so that we can compare our result to the
true value.

Drug Effect Network: The drug effect network is a toy model of the effect of a palief medicine.
It has 8 (5 binary and 3 ternary) variables. The structurédnefrtetwork is shown in Figure 7. At=0 the
person is not hungry, is not eating, has an empty stomachsandtidrowsy. He has joint pain due to the
falling barometric pressure and takes the drug to allevrageain.

2131

FAN, XU AND SHELTON

T]
e T

Figure 8: British Household Panel Survey Network

Chain Structured Network: The chain network contains five nodXg, ..., Xs, whereX; is the parent
of X1 for i < 5. Each node has five states,...,ss. Xo (usually) cycles in two loopssy — S1 — S5 — o
andsy — S — 4 — S. All the other nodes stay at their current state if it matdhes parent and otherwise
transition to their parent’s state with a high probabillBach variable starts in statg

More specifically, the intensity matrix o is

—202 1 1 001 Q01
001 -203 001 2 Q01
Qw=| 001 001 -203 Q0L 2

2 001 001 -203 001
2 001 001 001 -208

For all other nodes, the off-diagonal elements of the iritgmsatrices are given by

o1 ifi#]jandj#k
Os sjlu=sc = 10 ifi#jandj=k

BHPS Network: This network was learned from the British Household Panel/&u(BHPS) (ESRC
Research Centre on Micro-social Change, 2003) data set.ddtiaeset provides information about British
citizens. The data are collected yearly by asking thousahti®useholds questions such as household or-
ganization, employment, income, wealth and health. SmbdldNodelman et al. (2005b), we keep a small
set of variables so that exact inference could be appliedchise four variables: employ (ternary: student,
employed, unemployed), children (ternary: 0, 1, 2+), nearifbinary: not married, married), and smoking
(binary: non-smoker, smoker), and we assumed there is @middriable (binary) for each of those four
variables. We trained the network on 8935 trajectories obfees life histories. We applied the structural
EM algorithm in Nodelman et al. (2005b) and learned the saingcof the network shown in Figure 8. We
then estimated the parameters of the network using the Ebtitligh and exact inference. We consider the
learned model as the true BHPS network model for these erpats.

4.2 Evaluation Method

We evaluated the performance of the approximate inferelymithms in two tasks: the inference task of
answering queries given evidence and the learning taskrafpetric learning with partially observed data.

2132

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

107" ; 10°

= = -non-predict [e. = =-non-predict
—predict ‘~\ —predict

70(M —1/2)

Relative Bias
Relative Standard Deviation
[

o

10° 10° 10* 10 10° 10° 10 10°
Number of Samples Number of Samples

Figure 9: Relative bias and standard deviation of sampliitlg and without predictive lookahead.

In the inference task, each evidence is a partially obseregettory of the CTBN network. The evidence
is generated using two methods. The first method is to setritially. The second is to generate a trajectory
using the forward sampling algorithm and randomly removaesparts of the sampled trajectory. In particu-
lar, we repeated the following procedurémes: for each variable, we randomly removed the inforaradif
the trajectory fromis tots+ yT, whereT is the total length of the trajectort is randomly sampled from the
[0, T —yT] uniform distribution andy < 1. After we run the removing procedungimes, there are at mosy
time units of information missing for each variable. In aheparisons, this procedure was applied once and
the same evidence was given to all algorithms.

In our experiments, we set our query to be one of three typesexpected total amount of time a variable
X stays on some statg, the expected total number of times that a variable tramstirom state to state
Xj, or the distribution of variable at tirrte

For each query, we ran the sampling based algorithms wifbrdift sample size$). For each sample
size, we ran the experimeht times. We calculated our query according to Equation 6 amdpeoed the
result to the true value calculated using exact inference. ugéd two metrics: the relative bié%‘\’,“,{'N;"*‘,
wherevy is the query value of sampling algorithm with sample dizeandv* is the true value; and the
relative standard deviatio%lﬂ whereay, is the standard deviation from the true value when sampteisiz
M. For each sample size, we also recorded the average rurimiegi of each experiment and usag to
evaluate the efficiency of the algorithm.

In the learning task, we used the sampling algorithms toredd the parameters of a CTBN network
given some partially observed data. Monte Carlo EM (Wei aadn€r, 1990) was applied in this task: In
each iteration, we used the sampling based algorithm tmattithe expected sufficient statistics given the
incomplete data and used Equation 4 to compute the paraneter

The training data were generated by sampling trajector@s the true model and randomly removing
some portion of the information as described above. We saanghother set of trajectories from the true
model as the testing data. We calculated the log-likelihobthe testing data under the learned model to
evaluate the learning accuracy.

4.3 Inference Experimental Results

In this section, we evaluate the performance of our impegasampling based algorithms in answering
gueries and compare with the EP algorithm in Saria et al.{p8Ad the Gibbs sampling algorithm in El-Hay
et al. (2008).

4.3.1 GOMPARISON OFIMPORTANCE SAMPLING AND PREDICTIVE LOOKAHEAD

We first tested the importance sampling algorithm and thdigtigee lookahead modification using the drug
effect network. We set the observed evidence:ten|[0,1) the stomach is empty, oh= [0.5,1.2) the

2133

FAN, XU AND SHELTON

- Filtering 01 - -~ Filtering
o1 — Smoothing 10 — Smoothing
10~ —=— Importance Sampling —=— |mportance Sampling
Q Q
2 210
©10?)
[[
2 =
i g 1070.3
< s <
10
10—05
-0.8 .= j X
10 0 2 0 2
10 10 10 10
Runnina Time. seconds Runnina Time. seconds
@T=3 (b)T=3
‘ - Filtering) g
A --=- Filtering
: ISmoz:tthmg Sampli — Smoothing
mportance Sampling) —=— |mportance Sampling

KL-Divergence
KL-Divergence

0
10
Runnina Time. seconds Runnina Time. seconds

©T=6 AT =9

10

Figure 10: Time-efficiency comparison of particle filterjisgnoothing and importance sampling

barometer is falling, and on= [1.5,2.5) he is drowsy. Our query is the expected total amount of tiraé th
he has no joint pain 0f0,2.5). (The true value is 0.1093). We ran the two algorithms witmgle sizes,

M, from 5 to 90000. For each sample size, we ran the algoritimsl000 times. The results are shown in
Figure 9. Both algorithms achieve the correct result whenstimple size is large. The standard deviation
decreases ata rate@(\/—lm) (shown by the thin solid line). The sampling algorithm witlegiction achieves

lower standard deviation than the non-prediction version.

4.3.2 IMPORTANCE SAMPLING, PARTICLE FILTERING AND SMOOTHING

We then used the chain network to evaluate the efficiencyepirtiportance sampling, particle filtering, and
smoothing algorithms. We assumed that oXlywas observed in this experiment. We used four different
evidences. The first one is a simple evidence: only part db#avior ofXs is observed: ofil, 1.7), X4 = s3,
and on[2,2.5), X4 = . For the other three, the behaviorXf is fully observed during the intervéd, T),
whereT = 3,6,9. This is done by forward sampling a trajectory from 0tand keeping only the information
aboutXy. Our query is the marginal distributid?(xz(%)|e[01T)). Note that this is the most difficult case for
the importance sampling algorithm since the chain netweregarly deterministic. We recorded the average
running time and KL-divergence between the estimated ara distributions, for each sample size across
N = 300 trials.

Figure 10 shows the efficiency of the three algorithms. InuFéglO(a), we used the simple evidence.
In Figure 10 (b)-(d), we used the evidence wKhfully observed andl = 3,6,9 respectively. In all four
cases, the particle filtering and smoothing algorithms lmttperform the importance sampling algorithm
when the sample size is small (small running time). For stnedidence (Figure 10(a)), the importance
sampling algorithm achieves comparable performance whersample size is large. When the evidence
is complicated (Figure 10 (b)-(d)), the error of importaseenpling is large, even when we use very large

2134

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

== -Filtering == -Filtering
— Smoothing — Smoothing
10° -=|mportance Sampling] —=—|mportance Sampling
“““ CTBN-EP 10° | CTBN-EP ——]

Relative Bias
Relative Bias

10" 10° 10" 10" 10° 10"
Running Time, seconds Running Time, seconds
(a) Concentration (b) Joint pain

Figure 11: Comparison to expectation propagation: DrugMdek

sample sizes. When the trajectory is short, the particlgifijealgorithm is slightly better than the particle
smoothing algorithm. This is because the filtering algonitten generate more samples than the smoothing
algorithm with the same running time. However, as the ttajgclength increases, the particle smoothing
algorithm outperforms the filtering algorithm due to patidiversity problems.

4.3.3 GOMPARISON OFIMPORTANCE SAMPLING AND EP

We also compared our three sampling algorithms to the appaig inference algorithm based on expectation
propagation in Saria et al. (2007). We did not use their adasplitting method (for reasons we explain
below). Even without the adaptive splitting, their methd&d differs from that of Nodelman et al. (2005a),
in that it allows asynchronous propagation of messagegadiore.

We used the same evidence as in Section 4.3.1 on the drugredteerk and answered two queries: the
total amount of time that the concentration is low and thaltamount of time the person has no joint pain.
For the EP algorithm, we first tried a segmentation that spdittimeline at the evidence. We then gradually
decreased the time interval of the segments to 0.15. Thégedwaccuracy with respect to running time are
shown in Figure 11. The importance sampling algorithm aedotrticle filtering algorithm outperforms the
EP algorithm in answering both queries. Among the samgbaged algorithms, the importance sampling
algorithm performs the best and the smoothing algorithmhésworst. This is not surprising given that
most of the nodes are binary. At each transition time, thepsaantrajectory has no choice as to the next
state. Therefore, smoothing (or filtering) has less effecthare is no need to intelligently select the next
state. However, the extra computation time for resamplimdjlzackward simulation makes the filtering and
smoothing algorithm less efficient.

As mentioned above, we did not employ the adaptive splittieghod of Saria et al. (2007). It would not
have changed our results much. The left-most points in ayurEill correspond to the minimum number
of splits. (They are as fast as possible.) The right-mosttpaf the Figure 11 correspond to many fine
splits, and are about as accurate as possible, and we cdraséeetaccuracy has flattened out. So, while the
horizontal widths of the EP curves would have been short¢bgéllowing for the better accuracy in less
time), the vertical spread would have been approximatadystime. In neither plot of Figure 11 would this
have made a large difference in the comparisons to our sagpiethod.

4.3.4 GOMPARISON OFIMPORTANCE SAMPLING AND GIBBS SAMPLING

We compared our importance sampling algorithm to the Gitara#ing algorithm in El-Hay et al. (2008).
We used three CTBN network models: the drug effect netwtwk BHPS network and the chain structured
network. For each network, we randomly generated evidenitgy the procedure described in Section 4.2.

2135

FAN, XU AND SHELTON

10 - _ : 10° . : :
-=-Gibbs Sampling —=-Gibbs Sampling
—Importance Sampling —Importance Sampling

10°

-1

10

10" 10"

Relative Standard Deviation
Relative Standard Deviation

10° 10

107 10° 10° 107 10° 10°
Running Time, seconds Running Time, seconds
(a) Query of Time (b) Query of Transition

Figure 12: Comparison to Gibbs Sampling: Drug Network. Naen-in time for Gibbs Sampling is not
included (3.94 seconds on average).

We ran the procedure 4 times for each variable and each timegmoved 20% of the content. Thus, there
are at most 80% information missing for each variable.

For the importance sampling algorithm, we chose the sampéeh from 10 to 500000. For Gibbs
sampling algorithm, we chose the sample $izérom 10 to 5000. We ran the experiments for each sample
sizeN = 100 times and recorded the average running time for eachithigo For Gibbs sampling algorithm,
we first ran 100 “burn-in” iterations for each sample sizeobefve sample trajectories from the sampler. The
time spent on the “burn-in” iterations was not included ia fimal running time.

For the drug effect network, the evidence trajectory begtrisnet = 0 and ends at time= 5. We asked
two queries: the expected total amount of time the persaofaach is half full, and the expected number of
times that the person’s stomach changes from empty to Half fu

Using enough running time (sample size), we observed thiit &lgorithms could answer the queries
accurately (with a relative bias below 0.1%). The decrapsfrihe relative standard deviation with respect to
the running time of the two algorithms are shown in FigureTiZe average “burn-in” time for Gibbs sampler
is about 3.94 seconds. From the figure, we can see that inmgertampling outperforms Gibbs sampling in
answering both queries.

For the BHPS network, we set the evidence friomO0 tot = 50 (years). We asked similar queries: the
expected total amount of time a person’s employment statas & student and the expected number of times
that he becomes employed. We chose the same sample sizedhas dmig effect network and ran each
sample sizé\ = 100 times. Figure 13 shows the result of the decreasing ofttrelard deviation of the two
algorithms. The average “burn-in” time for Gibbs samplitgpaithm in this experiment is 30.88 seconds.

We achieved similar result as the experiments with the dffegtenetwork. The importance sampling
algorithm outperformed the Gibbs sampling algorithm invegrsng the query of time. The performances on
the query of transitions are almost the same.

In both networks, importance sampling outperformed Gitdsing in three of the four cases, even
when the running time on “burn-in” iterations was not coes@tl. To achieve the same accuracy and stan-
dard deviation, Gibbs sampling algorithm requires fewan@as. This is because for each variable, Gibbs
sampling samples from the true posterior distribution gitlee evidence and its Markov blanket. However,
sampling from the true posterior distribution is computaél costly, since it requires repeatedly computing
the conditional cumulative distribution function. Usirgetsame amount of time, importance sampling can
sample far more trajectories, which outperforms Gibbs siagp

We last compared these two algorithms using the chain streethetwork. The evidence trajectory begins
at timet = 0 and ends at time= 5. We set the queries to be the expected total amount of Xingtays in

2136

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

100 " - - 10 " - -
-+ Gibbs Sampling —=-Gibbs Sampling
— Importance Sampling — Importance Sampling

107 10°

107 10”

Relative Standard Deviation
Relative Standard Deviation

10 2 ‘O ‘2 4 10 2 ‘0 ‘2

10° 10 10 10 10° 10 10 10
Running Time, seconds Running Time, seconds
(a) Query of Time (b) Query of Transition

Figure 13: Comparison to Gibbs Sampling: BHPS Network. Note-in time for Gibbs Sampling is not
included (30.88 seconds on average).

10 10°
—-=-Gibbs Sampling

—Importance Sampling

—=-Gibbs Sampling i
— Importance Sampling

-1

10

Relative Standard Deviation
Relative Standard Deviation

10"

107 10° 10° 107 10° 10°
Running Time, seconds Running Time, seconds
(a) Query of Time (b) Query of Transition

Figure 14: Comparison to Gibbs Sampling: Chain Network. eNmirn-in time for Gibbs Sampling is not
included (11.42 seconds on average).

states; and the expected number of times tiattransitions fromsy to s;. Figure 14 shows the result over
N = 100 runs. The average “burn-in” time for Gibbs sampling &thm in this experiment is 11.42 seconds.

The Gibbs sampling algorithm achieved better performandhis experiment. The result is not surpris-
ing. As we have mentioned before, the chain structured n&tismearly deterministic, and it is the hardest
case for the importance sampling algorithm. We further éraththe randomly generated evidence. The
only observed state axy is 55, which makes this experiment even harder for the importaacepling algo-
rithm. However, it is a very easy case for the Gibbs sampliggriahm since it is nearly deterministic and is
structurally simple. (There are only at most one parent arelahild for each node.) Although importance
sampling can generate many more samples in the same petioteoinost of these samples are trajectories
with very small weights.

4.4 Parameter Estimation Experimental Results

In this section, we evaluate the performance of importancepting algorithm on parameter estimation and
compare to the Gibbs sampling algorithm and the EP algorithm

2137

FAN, XU AND SHELTON

Log-likelihood

—607] — Importance Sampling
- --Gibbs Sampling
--EP

1 2 3 4 5 6
Number of Training Trajectoies

Figure 15: Learning results for the drug effect network.n8td deviations across training data selection
(and random samples for the sampling methods) are showrejitslightly for clarity.

We used the drug effect network for this experiment. We sathpicreasing We sampled increasing
numbers of trajectories of 5 time lengths. To hide part of tlagectory, we did the following: In each
iteration, for each variable we randomly selected a timedaimnof 0.5 time lengths and removed the content
in that window. We repeated this until we dropped 50% of thetewot of the trajectory. We used these
incomplete trajectories as our training data. We samplethan 50 trajectories with the same length as our
testing data.

To estimate the parameters of the CTBN network, we followed EM algorithm in Nodelman et al.
(2005b). When calculating the expected sufficient stafistimportance sampling, Gibbs sampling, and
expectation propagation were used. Therefore, the ligetitin the E-step was calculated approximately. In
our experiment, we fixed the total number of iterations fa& BEM algorithm at 15. In each iteration, we
compared the calculated likelihood to the likelihood in ginevious iteration. If the likelihood decreased, we
kept the parameters in the previous iteration.

We chose the initial parameters for the EM algorithm by samypthe diagonal elements of the condi-
tional intensity matrices from the Gamma distribution widrameter¢0.5,1) and sampling the transition
probabilities from a Dirichlet distribution. We randomlgrapled 5 models as the initial parameters for the
EM algorithm. For each initial parameter set, we ran the Eypathm 10 times for the sampling methods
(and once for EP which is deterministic). We evaluated tlaeniieg accuracy by calculating the average
log-likelihood of the testing data on the 50 learned networko compare the running efficiency of the two
sampling-based algorithms, we fixed the total amount of fonéhe sampler to generate samples in each EM
iteration to be the same time as the EP algorithm took (apmeabely 23 seconds). For the Gibbs sampling
algorithm, we dropped the first 50 trajectories as “burnitetations. Figure 15 shows the results as we
increased the number of training trajectories from 1 to 6.

All algorithms obtain higher log-likelihood on the testidgta when we increase the number of training
trajectories. The sampling methods do better (and haverlear@tion), especially as the data size grows.

5. Conclusion

We have presented an approximate inference algorithm withvariations based on importance sampling.
We naturally extended the algorithm to sequential Montéddaethods such as particle filtering and smooth-
ing in CTBNs. We applied our sampling algorithm to syntheté&tworks and a network from real data. We

evaluated the efficiency of our algorithms and comparedheraipproximate inference algorithms based on
expectation propagation and Gibbs sampling. Our impoeaampling algorithm outperformed both in most

of the experiments presented in this paper. In the situati@nhighly deterministic system, Gibbs sampling

performed better.

2138

IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

The networks used in this paper are at the upper size liméxact computation. For example, calculating
the expected sufficient statistics of the chain structuresvark given evidence takes more than two days
using exact inference. Thus, approximate inference mesthoalcritical for tracking, predicting, and learning
in continuous time Bayesian networks for real applicatid@sr importance sampling based algorithms are
fast, simple to implement and can be used to calculate thectag value of any function of a trajectory,
including the expected sufficient statistics necessargfpectation-maximization for parameter estimation
with missing data.

Acknowledgments

We would like to thank Suchi Saria for sharing her EP code aldEFHay for sharing his Gibbs sampling
code. This work was funded by AFOSR (FA9550-07-1-0076) aA&PA (HR0011-09-1-0030).

References

Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishdri@edi. Queueing Networks and Markov
Chains John Wiley & Sons, Inc., 1998.

Thomas Dean and Keiji Kanazawa. A model for reasoning abexgigtence and causatioBomputational
Intelligence 5(3):142-150, 1989.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximiikelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society 89:1-38, 1977.

Arnaud Doucet, Nando de Freitas, and Neil Gordon, editS8exjuential Monte Carlo Methods in Practice
Springer-Verlag Telos, 2001.

Tal El-Hay, Nir Friedman, and Raz Kupferman. Gibbs sampimfactorized continuous-time Markov pro-
cesses. IfProceedings of the Twenty-Fourth Conference on UncestamArtificial Intelligence 2008.

ESRC Research Centre on Micro-social Change. British Hmidganel survey. Computer Data File and
Associated Documentation. http://www.iser.essex.dbhps, 2003. Colchester: The Data Archive.

Yu Fan and Christian R. Shelton. Sampling for approximaference in continuous time Bayesian networks.
In Proceedings of Tenth International Symposium on Artificitdlligence and Mathematic2008.

Robert M. Fung and Kuo-Chu Chang. Weighing and integrativigemce for stochastic simulation in
Bayesian networks. IfProceedings of the Fifth Annual Conference on Uncertaintitificial Intelli-
gence pages 209-220, 1989.

Simon Godsill, Arnaud Doucet, and Mike West. Monte Carlo sthing for non-linear time seriegournal
of the American Statistical Associatid#9:156—168, 2004.

Ralf Herbrich, Thore Graepel, and Brendan Murphy. Structfoom failure. InProceedings of the 2nd
USENIX workshop on Tackling computer systems problemamétihine learning techniquepages 1-6,
2007.

Tim Hesterberg. Weighted average importance sampling afehdive mixture distribution§echnometrics
37(2):185-194, 1995.

Kin Fai Kan and Christian R. Shelton. Solving structuredttarous-time Markov decision processes. In
Proceedings of Tenth International Symposium on Artificitélligence and Mathematic2008.

Thomas P. Minka. Expectation propagation for approximaagd3ian inference. I[Rroceedings of the
Seventeenth Conference on Uncertainty in Atrtificial ligelhce pages 362-369, 2001.

2139

FAN, XU AND SHELTON

Brenda Ng, Avi Pfeffer, and Richard Dearden. Continuousetjparticle filtering. InProceedings of the
Nineteenth International Joint Conference on Artificialdiigence pages 1360-1365, 2005.

Uri Nodelman and Eric Horvitz. Continuous time Bayesianameks for inferring users’ presence and ac-
tivities with extensions for modeling and evaluation. Teichl Report MSR-TR-2003-97, Microsoft Re-
search, December 2003.

Uri Nodelman, Christian R. Shelton, and Daphne Koller. Gardus time Bayesian networks. Rioceedings
of the Eighteenth International Conference on Uncertaintirtificial Intelligence pages 378-387, 2002.

Uri Nodelman, Christian R. Shelton, and Daphne Koller. bé&sg continuous time Bayesian networks. In
Proceedings of the Nineteenth International Conferenc&Jopertainty in Artificial Intelligence pages
451-458, 2003.

Uri Nodelman, Daphne Koller, and Christian R. Shelton. Etpton propagation for continuous time
Bayesian networks. IFroceedings of the Twenty-First International ConferenceUncertainty in Ar-
tificial Intelligence pages 431-440, 2005a.

Uri Nodelman, Christian R. Shelton, and Daphne Koller. Exaton maximization and complex duration
distributions for continuous time Bayesian networks. Pimceedings of the Twenty-First International
Conference on Uncertainty in Atrtificial Intelligengeages 421-430, 2005b.

James R. NorrisMarkov Chains Cambridge University Press, 1997.
Carl Adam PetriKommunikation mit Automatef?hD thesis, University of Bonn, 1962.

Suchi Saria, Uri Nodelman, and Daphne Koller. Reasoningatight time granularity. IfProceedings of
the Twenty-third Conference on Uncertainty in pages 421-430, 2007.

Ross D. Shachter and Mark A. Peot. Simulation approachegrerg! probabilistic inference on belief
networks. InProceedings of the Fifth International Conference on Uteiety in Artificial Intelligence
pages 221-234, 1989.

Christian R. Shelton, Yu Fan, William Lam, Joon Lee, and Juy Continuous time Bayesian network
reasoning and learning engingournal of Machine Learning Researctl(Mar):1137-1140, 2010.

Charles A. Sutton and Michael I. Jordan. Probabilisticriafiee in queueing networks. In Armando Fox
and Sumit Basu, editor®roceedings of Third Workshop on Tackling Computer Systnmisiems with
Machine Learning Technique2008.

Greg C. G. Wei and Martin A. Tanner. A Monte Carlo implemeiotaiof the EM algorithm and the poor
man’s data augmentation algorithmiournal of the American Statistical Associatj@b(411):699-704,
1990.

Jing Xu and Christian R. Shelton. Continuous time Bayesiavarks for host level network intrusion
detection. InEuropean Conference on Machine Learnipgges 613-627, 2008.

2140

