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Abstract

We consideselective classificatigra term we adopt here to refer to ‘classification with a repget
tion.” The essence in selective classification is to traflelassifier coverage for higher accuracy.
We term this trade-off thesk-coverage (RC) trade-offOur main objective is to characterize this
trade-off and to construct algorithms that can optimallyear optimally achieve the best possible
trade-offs in a controlled manner. For noise-free modelprmesent in this paper a thorough anal-
ysis of selective classification including characterimasi of RC trade-offs in various interesting
settings.

Keywords: classification with a reject option, selective classifizatiperfect learning, high per-
formance classification, risk-coverage trade-off

1. Introduction

In this paper we study the trade-off between coverage and accurelagsifiers with a reject option,
a trade-off we refer to as thisk-coverage (RC) trade-ofOur main goal is to characterize this trade-
off and to construct algorithms that can optimally or near optimally control itoighout the paper
we use the ternselective classificatioto refer to ‘classification with a reject option.” Selective
classification was introduced a number of decades ago and among theteddiies are papers
authored by Chow (1957, 1970), focusing on Bayesian solutions éoctake where the underlying
distributions are fully known. Through the years, selective classificatiatinued to draw attention
and numerous papers have been published. The attraction of effsetedive classification is
rather obvious in applications where one is not concerned with, or ¢ardgfartial coverage of
the domain, and/or in cases where extremely low risk is a must but is not ablden standard
classification frameworks. Classification problems in medical diagnosis dpidimformatics are
often instances of such applications (Meltzer et al., 2001; Hanczar angharty, 2008).

Despite the relatively large number of research publications on seletdssfication, the vast
majority of these works have been concerned with implementing a reject opiibim wpecific
learning schemes, by endowing a learning scheme (e.g., neural net&kis) with a reject
mechanism. Most of the reject mechanisms were based on “ambiguity” orqfat&onfidence”
principles: “when confused or when in doubt, refuse to classify.” Whiége are many convincing
accounts for the potential effectiveness of selective classificatiordunciieg the risk, we are not
familiar with a thorough or conclusive discussions on the relative powtreofiumerous rejection
mechanisms that have been considered so far. The very few theovedita that considered se-
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lective classification (see Section 10) do provide some risk or coveragelb for specific schemes
(e.g., ensemble methods) or learning principles (e.g., ERMSs), but altogg#theacterizations of

achievable (or non-achievable) RC trade-offs are absent in thentuiterature. In particular, the

work done so far has not facilitated formal discussions of RC tradegiifnality.

A thorough understanding and effective use of selective classificegtprires characterization
of the theoretical and practical boundaries of RC trade-offs, whiglessential elements in any dis-
cussion ofoptimalityin selective classification. These missing elements in the current literature are
critical when constructing and exploring selective classification schentesedective classification
algorithms that aim at achieving optimality in controlling the RC trade-off.

One of our longer term goals is to provide such characterizations anduca notion of op-
timality for selective classification in the most general agnostic model. As afagt however, we
focus in this work on noiseless settings whereby a perfect hypothediefproblem at hand exists
(the so called “realizable case”). Moreover, we place special empbiasige extreme case where
zero risk has to be guaranteed. For this extreme case, which we cd#cplkrarning,” we pro-
vide a thorough analysis that includes tight positive and negative resulisef most general types
of realizable settings (distribution independent, infinite hypothesis spadésalso discuss some
specific settings (linear classifiers, specific distribution families) and shaffigient algorithm for
linear classifiers that achieves “perfect learning” with guaranteedrage. Our results on “perfect
learning” are instrumental in exploring entire RC trade-offs. Recallingdmpesults on optimal
standard realizable learning (no rejection is allowed), we show how to pini&ie” bounds and
strategies for these two extreme cases (perfect learning and starataiddg so as to reveal upper
and lower envelopes of optimal RC trade-offs.

2. Selective Classification: Preliminary Definitions

Let X be some feature space, for examplalimensional vectors iiRY. In standard binary classi-
fication, the goal is to learn a binary classifier X — {£1}, using a finite training sample of
labeled examples, = {(x;,yi) }{";, assumed to be sampled i.i.d. from sonmknownunderlying
distributionP(X,Y) over X x {£1}. We assume that the classifier is to be selected from a hypoth-
esis spacg and focus on theealizablesetting where the labels are determined by samaown
target hypothesis*fe F. Thus, itis assumed th&satisfies R#(Y = f*(X)|X) = 1.

In selective classificatiothe learner should output a binasglective classifiedefined to be a
pair (f,g), with f being a standard binary classifier, amdX — [0, 1] a selection functiorwhose
meaning is as follows. When applying the selective classifier to a samipdsoutput is:

» [ reject w.p. 1-9g(x);
(o= { folect wh S &
Thus, in its most general form, the selective classifieaiglomized Whenever the selection func-
tion is a zero-one ruley : X — {0,1}, we say that the selective classifier is deterministic. Note that
“standard learning” (i.e., no rejection is allowed) is the special case daftseelassification where
g(x) selects all points (i.eg(x) = 1).

The two main characteristics of a selective classifier amigrageand itsrisk (or “true error”).

Definition 1 (coverage) Thecoverageof a selective classifidrf, g) is the mean value of the selec-
tion function dX) taken over the underlying distribution P,

®(f,g) = E[g(X)].
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Definition 2 (risk) For a bounded loss functiof: 9 x 9" — [0, 1], we define the risk of a selective
classifier(f,g) as the average loss on the accepted samples,

» E[C(f(X),Y) - 9(X)]
®(f,9) '

This risk definition clearly reduces to the standard definition of rigikX) = 1. Note that (at the
outset) both the coverage and risk ar&known quantitiebecause they are defined in terms of the
unknown underlying distributioP.

We define a learning algorithmLG to be a (random) function that, given a sam@le chooses
a selective classifigff,g). We evaluate learners with respect to their coverage and risk ane deriv
both positive and negative results on achievable risk and coveragan@iel is a slight extension
of the standard minimax model for standard statistical learning as desdidbesample, by Antos
and Lugosi (1998). Thus, we consider the following game between theeleand an adversary.
The parameters of the game are a donréiand an hypothesis clags.

R(f,9)

1. Atolerance leved and a training sample sizaare given.
2. The learner chooses a learning algorithne.

3. With full knowledge of the learner’s choice, the adversary choaggistributionP(X) over
X, and a target hypothesis$ € F (or a distribution oveff according to whichf * is selected).

4. Atraining sample&s, is drawn i.i.d. according t& and f*.
5. ALG is applied oSy, and outputs a selective classifidr, g).

The result of the game is evaluated in terms of the risk and coverage obtgitleridhosen selective
classifier and clearly, these are random quantities that trade-off ¢leh 0A positive resultin
this model is a pair of bound®g = Br(F,0,m) andBg = Be(F,d,m), for risk and coverage,
respectively, that for any andm, hold with high probability, of at least-1 é for anydistributionP;
namely,

Pr{R(f,g) <Br A ®(f,g)>Bo}>1-0.

The probability is taken w.r.t. the random choice of training sam@lgesas well as w.r.t. all other
random choices introduced, such as arandom choitelof the adversary (if applicable), a random
choice of(f,g) by ALG (if applicable), and the randomized selection function (Equation (1)).

A negative results a probabilistic statement on the impossibility of any positive result. Thus,
in its most general form a negative result is a pair of bouBiglandBg that, for anyd, satisfy

Pr{R(f,g) >Br VvV ®(f,g) <Bo} >0,

for someprobability P. Here again, probability is taken w.r.t. the random choice of the training
samplesS,, as well as w.r.t. all other random choices.

For a selective classifidrf,g) with coverage®(f,g) we can specify a Risk-Coverage (RC)
trade-off as a bound on the ri§ f, g), expressed in terms @¥( f,g). Thus, goositive result on the
RC trade-offis a probabilistic statement of the following form

Pr{R(f,g) <B(®(f,g),0,m)} >1-0.
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Similarly, anegative result on the RC trade-a#f a statement of the form,
Pr{R(f,g) > B(®(f,g),5,m)} > &.

Clearly, all results (positive and negative) are qualified by the modainpeters, namely the do-
main X and the hypothesis spa@e and the quality/generality of a result should be assessed w.r.t.
generality of these parameters. An additional major consideration is, cdesaihhe computational
complexity of the learning algorithm.

Finally, in the sequel we rely on the following standard definition of the varsjace (Mitchell,
1977).

Definition 3 (version space)Given an hypothesis clagé and a training sample § the version
space V$ s, is the set of all hypotheses jh that classify  correctly.

3. Contributions

The purpose of this section is to provide a high level technical overviemofontributions. Using
a training sampl&;, the goal in selective classification is to output a selective claséffigp that
has sufficiently low risk with sufficiently high coverage. Obviously, these tiwantities trade-off
each other. We call the trade-off between risk and coveragagkeoverage (RC) trade-offThe
best way to benefit from selective classification ictmtrol the creation of the classifier so as to
meet a prescribed error/coverage specification along the RC trad&affexample, it might be
desirable to devise a learning system that will receive as input an emstraint (say, 2% error)
and, based on a finite (and small) training sample, will be capable of germpeaatiassifier whose
ensured test error (w.h.p.) is not larger than 2%, while having the maximssilgp® coverage of
the domain. If the RC trade-off is revealed, it is possible to know if the 2%r eonstraint can be
met and what would be the corresponding coverage.

In Figure 1 we schematically depict elements of the RC trade-off. XFaeis measures risk
(error in the case of the/Q loss) and the-axis is coverage. The entire region depicted, called
the RC plane consisting of all(r,c) points in the rectangle of interest, wharés a risk (error)
coordinate and is a coverage coordinate. Assume a fixed problem setting (including aownkn
underlying distributiorP, m training examples drawn i.i.d. froif, an hypothesis spacg and a
tolerance paramet@). To fully characterize the RC trade-off we need to determine for eaitt po
(r,c) on the RC plane if it is (efficiently) “achievable.” We say thatc) is (efficiently) achievable
if there is an (efficient) learning algorithm that will output a selective clasdifi, g) such that with
probability of at least 1 9, its coverage is at leastand its risk is at most.

Notice that point* (the coordinatér*,1)) where the coverage is 1 represents “standard learn-
ing.” At this point we require full coverage with certainty and the achitvaisk represents the
lowest possible risk in our fixed setting (which should be achievable withagtitity of at least
1-29). Pointr* represent one extreme of the RC trade-off. The other extreme of theaRE& tiff is
pointc*, where we require zero riskith certainty The coverage at* is the optimal (highest possi-
ble) in our setting when zero error is required. We call poinperfect learningpecause achievable
perfect learning means that we can generate a classifier that nessesitbrcertainty for the problem
at hand. Note that at the outset, it is not at all clear if non-trivial pétésrning (with guaranteed
positive coverage) can be accomplished.

The full RC trade-off is some (unknown) curve connecting poiiitandr*. This curve passes
somewhere in the zone labeled with a question mark and represents optiroVselassification.
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Figure 1: The RC plane and RC trade-off

Points above this curve (e.g., at zoReare not achievable. Points below this curve (e.g., at B)ne
are achievable. One of the main goals of this paper is to study the RC cuhyr@iide as tight as
possible boundaries for it. To this end we characterize upper and lowelopes of the RC curve
as schematically depicted in Figure 1. The upper envelop is a boundafpoihachievable zone”
(zone A) and therefore we consider any upper envelop as a “negasult.” The lower envelop is a
boundary of an “achievable zone” (zone B) and is therefore coresides a “positive result.” Note
that upper and lower envelopes, as depicted in the figure, represediftarent things, which are
formally defined in Section 2 as probabilistic statements on possibility and impossibility

Paointr* on the RC curve (“standard learning”) was extensively studied in thetliteraPerfect
learning (pointc*) was never considered. For the most part, the existing work on seletdise
sification exhibited (either empirically or theoretically) specific but anecduiaits or curves in
the achievable zone (B) but, to the best of our knowledge no systematic titemne ever made
to characterize the RC-curve, which correspondsptimal selective classificatiorin particular,
there are currently no “negative” results attempting to characterize rioevable zones in the RC

plane.

Our technical exposition begins by focusing on perfect learning (i the RC plane).
Given the training sefy, we are required to generate a “perfect” selective classifigy) for which
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it is knownwith certaintythatR(f,g) = 0.1 Obviously, zero risk is trivially achieved by takirg
that rejects the entire input spa&e But is it possible to achieve perfect learning on a guaranteed
fraction of the effective volume ot ?

Our first observation is Theorem 8, stating that for any finite hypoth&ss €, perfect learning
with guaranteed coverage is achievable by a particular selective classifistrategy. For any
toleranced, with probability of at least 1 9, it is guaranteed that the coverage achieved by this
strategy will be at least

1- 10| +In(1/3). @

The learning strategy that achieves this performance is simple and natdreaa be termedon-
sistent selective strategy (CS8ke f to be any hypothesis from the version space (with respect
to Sy), and construct g that deterministically rejects any point that is not classified unanimously
by all version space hypotheses. This CSS strategy is optimal for pé&aéraing. We show in
Theorem 7 that any other strategy that achieves perfect learningtchaave larger coverage than
CSS. ltis interesting to note that the optimal selection function is not obtaintdddsholding soft
classification values, which is the commonly used heuristic.

It is easy to see why the classifief,g) selected by CSS has zero risk with certainty. Since
f* is assumed to be in the version space, and spegects all instances that are not classified
unanimously by all the hypotheses in the version space, any selectiofrarh the version space
will have identical classification té*. Nonetheless, it is surprising at the outset that the selection
functiong doesn'’t reject a lot and in fact, its rejection rate can be very small féicgurftly largem
as it decreases at ratgri.

This distribution-free coverage guarantee (2) is proven to be nearlyftigSS and therefore,
it is the best possible bound for any selective learner. Specificallyyagrsin Theorem 11, there
exist a particular finite hypothesis class and a particular underlying distritior which a matching
negative result (up to multiplicative constants) holds for enysistent selectiiearner. This result
is readily extended to any selective learner by the CSS coverage optimalibeofem 7.

What about infinite hypothesis spaces? We show in Theorem 14 that it isibpeto provide
any coverage guarantees for perfect learning, in the general$pseifically, for linear classifiers,
we show a bad distribution for which any selective learner ensuringrizwill be forced to reject
the entire volume ok, thus failing to guarantee more than zero coverage. Thus, in the geaseal
pointc* is simply the coordinat€0,0) on the RC plane. The implication of this result is that when
aiming at very small risks, the rejection rate might in general be very higly 6mall coverage),
which may be unacceptable in many applications.

So the bad news is that perfect learning with guaranteed coveraget diageneral be achieved
if the hypothesis space is infinite. Fortunately, however, this observaties dot preclude non-
trivial perfect learning in less adverse situations. What can be accdraglese both data-dependent
and distribution-dependent guarantees. For any selective hypotfiegjsthat is consistent with a
sampleS,,, Theorem 21 ensures perfect learning with a high probability covayageantee of the
following form:

1 R m m
o(f,0) > 1- O (yF. AN i), ®

1. The requirement that in perfect learning the risk is zeith certaintyis dual to the requirement that the coverage is
100%with certaintyin standard learning.
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whererTis a new empirical quantity measuring the version space compression sgtesiZ@efini-
tion 15), andy( ¥, K) is a new complexity measure of the set of all possible version spacesgsher
by training samples of size We cally( ¥, k) the “orderk characterizing set complexity” ¢f , and

it is derived using VC-dimension arguments (see Definition 18).

This general data-dependent bound is then applied to linear classRelgng on a classical
result in combinatorial geometry that bounds the number of facets of poljteygederive in Theo-
rem 27 the following upper bound on the ordetcharacterizing set complexity of linear classifiers
in RY,

V(F k) < O(d®(k/d)*/?logk).

Plugging this bound to (3) results in a data-dependent compression bauliefr classifiers in
terms ofn, the size of the compression set of the version space.

We then consider the evaluation of the compression sendimespecific distributions. Using a
classical result in geometric probability theory on the average number dfrrabrandom vectors,
we show in Lemma 32 that if the underlying distribution is any (unknown) finite mixad arbitrary
multi-dimensional Gaussians &Y, then the compression set size of the version space obtained
usingm labeled examples satisfies, with probability of at leastal

A=0 ((Iogm)d/6> .

This bound immediately yields a coverage guarantee for perfect learhilvgear classifiers, as
stated in Corollary 33. This is a powerful result providing strong indicatiothe potential effec-
tiveness of perfect learning with guaranteed coverage in a varieptitations.

In Section 7 we derive upper and lower envelopes for the RC curve. ré&3ults on perfect
learning described above play a major role in the derivation of these @egldVe generalize the
CSS strategy and define a “controllable selective strategy” (Definition T34$ strategy is parame-
terized by a numbex € [0, 1] which controls the rejection rate by interpolating perfect learning and
optimal standard learning. In particular, this strategy, applied with O is perfect learning, and
with a = 1 it is optimal standard learning (full coverage), which in the realizable saknown to
be achieved by any consistent learner. For any finite hypothesis, spadewer envelop we present

in Theorem 36 is J0a(f.0) 5
1-®g/Dy(f,0 1 z
Ra(f,9)§< 1— g > m(ln|f|+|n6>,

where®y is the coverage guarantee of perfect learning in EquatiorR2)t,g) is the risk of the
“controllable selective strategy” with control parameteand®, ( f,g) is the matching coverage.

The upper envelop on the RC curve is then derived in Theorem 37 joselactive classifier
(f,9) by constructing a particular bad distribution for which

1 1 . 16 1
> —.m — — — ——\lN— .
R(f,g) > 2 in (an 1,20 2+4 [VCdm(fI) 3 In1_26D

An exact implementation of the CSS strategy appears as if it should be compalistidiffi-
cult. Given a particular training set, CSS must reject a point iff it is not ifladshe same by all
hypotheses in the current version space. In Section 8 we show dardffitgorithm that implements
CSS of linear classifiers. The main idea leading to this construction is the fojovtiservation.
Given a test poink we examine if the inclusion of with either positive or negative labels in the
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training sets results in linearly separable sets. Clearly, CSS must xéfebbth these augmented
sets are linearly separable. Thus, the construction of the CSS selectaiofucan be reduced to
two tests of linear separability, which can be efficiently accomplished usiogknechniques for
testing linear separability. Note that we do not construct the selection faretgicitly during the
training process, a task that may indeed require intensive computationerRaghbenefit from a
“lazy learning” approach whereby the selection function is construdtesetime per each example
(as in nearest neighbor algorithms).

4. Perfect Learning with Finite Hypothesis Spaces

In this section we consider the simplest case of realizable learning with a fyptaHhesis space
F. We show that perfect selective classification with guaranteed cavésaachievable (from a
learning-theoretic perspective) by a learning strategy teromebistent selective strategy (CSS)
Moreover, CSS is shown to be optimal in its coverage rate, which is fullyacketized by providing
lower and upper bounds that match in their asymptotic behavior in the sample.si¥¢e start

by defining a region inX, which is termed the “maximal agreement set.” Any hypothesis that is
consistent with the sampl&,, is guaranteed to be consistent with the target hypothiesan this
entire region.

Definition 4 (agreement set)Let G C ¥. A subsefX’ C X is anagreement satith respect tag if
all hypotheses ir; agree on every instance i, namely,

Vo,0€ G, xeX', gi(X)=0g2(x).

Definition 5 (maximal agreement set)Let G C F. Themaximal agreement setith respect tog
is the union of all agreement sets with respecgto

Recall that the version spabSy 5, C ¥ is the set of all hypotheses that classHy correctly
(Definition 3).

Definition 6 (consistent selective strategy (CSS)Ypiven $,, a consistent selective strategy (CSS)
is a selective classification strategy that takes f to be any hypothesisqr; V(Be., a consistent
learner), and takes a (deterministic) selection function g that equals ord fovints in the maximal
agreement set with respectto ¥ § , and zero otherwise.

Recall that the (unknown) labeling hypothesisis inV Sy 5,. Thus, CSS simply rejects all points
that might incur an error with respect 6. An immediate consequence is that any CSS selective
hypothesiq f,g) always satisfie®(f,g) = 0. The main concern, however, is whether its coverage
®(f,g) can be bounded from below and whether any other strategy that asluexfect learning
with certainty can achieve better coverage. The following theorem ptbee£SS has the largest
possible coverage among all strategies.

Theorem 7 (CSS coverage optimality)Given &, let (f,g) be a selective classifier chosen by any
strategy that ensures zero risk with certainty &y unknown distribution P andnytarget concept
f* e F. Let(fc,gc) be a selective classifier selected by CSS usingren,®(f,g) < ®(fc,gc).
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Proof For the sake of simplicity we limit the discussion to deterministic strategies. Thes@xten
to stochastic strategies is omitted but is straightforward. Given a hypothstiogleS,, of size
m, let (f;,dc) be the selective classifier chosen by CSS and fiefj) be the selective classifier
chosen by any competing strategy. Assume that there existst (xo ¢ Sy) such thag(xp) =1
anddc(Xp) = 0. According to the CSS construction @f, Sincedc(Xp) = 0, there are at least two
hypotheses,h, € VS; g such thathy(xo) # hz(Xo). Assume, without loss of generality, that
h1(x0) = f(x0). We will now construct a new “imaginary” classification problem and shoat, th
under the above assumption, the competing strategy fails to guaranteéskemithr certainty. Let
the imaginary target concept® beh, and the imaginary underlying distributié* be

(1—¢)/m, if xe Sy
g, if X=Xo;
0, otherwise.

Imagine a random samp®, drawn i.i.d fromP’. There is a positive (perhaps small) probability that
S, will equal Sy, in which casé f/,g') = (f,§). Sinceg'(xo) = §(x0) = 1 andf*(x) # (o), with
positive probabilityR(f’,g’) = € > 0. Contradiction to the assumption that the competing strategy
achieves perfect learning with certainty. It follows that for any sanfhj@nd for anyx € X, if

d(x) = 1 thengi(x) = 1. Consequently, for any unknown distributiBn®(f,§) < ®(f.,6.). ™

The next result establishes the existence of perfect learning with rgeathcoverage in the
finite case.

Theorem 8 (guaranteed coverageAssume a finitef and let(f,g) be a selective classifier se-
lected by CSS. Then{Rg) = 0 and for any0 < & < 1, with probability of at leastL — ,

dJ(f,g)zl;((InZ)min{T,|X|}+ln;>. 4)
Proof For anyg, letGy, Gy, ..., Gy, be all the hypothesis subsets®bifwith corresponding maximal
agreement setds, Az, ..., A, such that each; has volume of at most-1 € with respect tdP. For
any 1< i <k, the probability that a single point will be randomly drawn framis thus at most
1—¢. The probability that all training points will be drawn fromis therefore at mostL —¢)™. If
a training pointx is in X \ A;, then there are at least two hypothe$gd, € G; that do not agree on
X. Hence,

Izr(Gi CVSrg,) <(1—¢)M

We note that
k< gmin{lﬂlx\}v

and by the union bound,
Pr(3G G CVSrs,) <k (1-g"< MM FLIXT . (1 —g)m,
Therefore, with probability of at least-12MMI7LIXI}. (1 —¢)™, the version spac¥ Sy s, differs

from any subse®;, and hence it has a maximal agreement set with volunag leflastl — €. Using
the inequality 1- € < exp(—¢), we have

oMinflF1X1} . (1 g)™ < 2MN{IZLIXT} . exp(—me).
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Equating the right-hand side &and solving fore completes the proof. [ |

A leading term in the coverage guarantee (4)%s. In corresponding results in standard con-
sistent learning (Haussler, 1988) the corresponding term igfibgThis may raise a concern on
the tightness of (4). However, as shown in Corollary 13, this bound is fighto multiplicative
constants). To prove the Corollary we will require the following two definitions

Definition 9 (binomial tail distribution) LetZz,Z,,...Zybe mindependent Bernoullirandom vari-
ables each with a success probability p. Then for @ryk < m we define

s 32.%).

Definition 10 (binomial tail inversion, Langford, 2005) For any0 < d < 1 we define

Bin(m,k,3) £ mgx{p : Bin(m,k, p) > &} .

Theorem 11 (non-achievable coverage, implicit bound).et 0 < & < %, m, and n> 1 be given.
There exist a distribution P, that depends on m and n, and a finite hyp®ttlass ¥ of size n,
such that for any selective classifigf, g), chosen fromF by CSS (so &, g) = 0) using a training
sample § drawn i.i.d. according to P, with probability of at least

1 7]
¢(f,g)§1—2-B|n< > 26)

Proof Let X £ {e1,e,...en;1} be the standard (vector) basis®t, X’ 2 X\ {e .1} andP be
the source distribution ovex satisfying

P Bin(m,5,20) /n, ifi<n;
(@)= 1- Bin(m, 5,25), otherwise;

whereBin(m,k, d) is the binomial tail inversion (Definition 10). Since
S n N : n
_ £ . _ >
Bin (m, 2,26) mr?x{p. Bin (m, % p) > 26},
andSy is drawn i.i.d. according t®, we get that with probability of at leasd2
[{xeSn:xeX'}| < n
-2

Let ¥ be the class of singletons such that

TN

—1, otherwise.
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Taking f* £ f,., for some 1< i* < n, we have,

oo 0 e sixe )1 <)
_ Pr(a* & Sn|[{xeSn:ixeX'}| < g)Pr(HXES’“:XGX/H Sg)

(1—1>32525
n

If g« ¢ Sy then all samples %, are negative, so each sampleXhcan reduce the version space
V'Sr s, by at most one hypothesis. Hence, with probability of at |&ast

v

n n
v > |F|— ===
VSl 2 |51 -5 =2

Since the coverag®(f,g) is the volume of the maximal agreement set with respect to the version
spaceV Sy g, it follows that

Bin(m, 3,26 _
o) = 1-vs| BNER) oy L g (m 7] 2n).

Remark 12 The result of Theorem 11 is based on the use of the class of singletogseAting
this class by the empty set and choosing a uniform distribution &vessults in a tighter bound.
However, the bound will be significantly less general as it will hold only feingle hypothesis in
F and not for any hypothesis ifA.

Corollary 13 (non-achievable coverage, explicit bound)Let0 < & < 2, m, and n> 1 be given.
There exist a distribution P, that depends on m and n, and a finite hyp®ttlass ¥ of size n,
such that for any selective classifigf, g), chosen fromF by CSS (so &, g) = 0) using a training
sample & drawn i.i.d. according to P, with probability of at least

1 16 1
< S — — “In—— %,
q)(f,g)_max{o,l 8 (m 3 In1_26>}

Proof Applying Lemma 43 we get

— | F| . | F| 4 1
m. — >m = In—>.
B|n< — ,20 | > min 1,4 3 In1—26

Applying Theorem 11 completes the proof. |
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5. Consistent Selective Classification Over Infinite Hypotasis Spaces

In this section we consider an infinite hypothesis sgAc&Ve show that in the general case, perfect
selective classification with guaranteed (non-zero) coverage is hmvable even wherf has a
finite VC-dimension. We then derive a meaningful coverage guaranteg pissterior information
on the source distribution (data-dependent bound).

We start this section with a negative result that precludes non-trivisdgdearning whers is
the set of linear classifiers. The result is obtained by constructing aydarticbad distribution.

Theorem 14 (non-achievable coveragelet m and d> 2 be given. There exist a distribution P,
an infinite hypothesis clagg with a finite VC-dimension d, and a target hypothesiginsuch that
®(f,g) = 0 for any selective classifigf,g), chosen fromF by CSS using a training sample, S
drawn i.i.d. according to P.

Proof Let ¥ be the class of all linear classifiersiitf and letP be a uniform distribution over the
arcs,
(x—2)24+y?=2, x<1,

and
(X+2)2+y* =2 x> -1

Figure 2 depicts this construction. The training Sgtconsists of points on these arcs, labeled by
any linear classifier that passes between the arcs. The maximal agresmnéntwith respect to
the version spacé Sy s, is partitioned into two subse#s™ andA~ according to the labels obtained
by hypotheses in the version space. CleaAly,is confined by a polygon whose vertices lie on the
right-hand side arc. Sindeis concentrated on the arc, the probability voluméofis exactly zero

for any finitem. The same analysis holds fér, and therefore the coverage is forced to be zero.
The VC-dimension of the class of all linear classifier®&mis 3. Embedding the distributioRin a
higher dimensional spad® and using the class of all linear classifiergiify completes the proof.

|

A direct corollary of Theorem 14 is that, in the general case, perdettve classification with
distribution-free guaranteed coverage is not achievable for infinitethggis spaces. However, this
is certainly not the end of the story for perfect learning. In the remainfi¢his paper we de-
rive meaningful coverage guarantees using posterior or prior inttman the source distribution
(data- and distribution-dependent bounds).

In order to guarantee meaningful coverage we first need to study tiyglexity of the selection
functiong(x) chosen by CSS. The complexity of the classification funcfipg is determined only
by the hypothesis clagg and it is independent of the sample size itself. However, the complexity of
g(x) (the maximal agreement set) chosen by CSS generally depends on the samplderefore,
increasing the training sample size does not necessarily guaranteeviedrctiverage. Our main
task is to find the complexity class of the family of maximal agreement sets fromhwglig is
chosen. Let us define the family of all maximal agreement set as| J #, such thatty C #5 C
Hz C .... We can now exploit the fact that CSS chooses a maximal agreementtdatltrags to a
specific subclasgt, with a complexity measured in terms of the VC dimensioriaf We term this
approactstructural Coverage Maximization (SCKéjlowing the analogous and famili&tructural
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Figure 2: A worst-case distribution for linear classifiers: points are dramiformly at random
on the two arcs and labeled by a linear classifier that passes betweeratbgese he
probability volume of the maximal agreement set is zero.

Risk Minimization (SRMapproach (Vapnik, 1998). A useful way to parameterizés to use the
size of the “version space compression set” (Definition 15).

Definition 15 (version space compression sel)et S, be a labeled sample of m points and let
VSr s, be the induced version space. Tversion space compression,s§f C Sy, is a smallest
subset of g satisfyingV$ 5, =V Sy s,. Note that for any giverf and S, the size of the version
space compression set, denofed N( ¥, Sy), is unique.

Since a maximal agreement set is a regiotXirrather than an hypothesis, we formally define the
dual hypothesis that matches every maximal agreement set.

Definition 16 (characterizing hypothesis)Let G C ¥ and let A; be the maximal agreement set
with respect tag. Thecharacterizing hypothesi$ G, f5(x) is a binary hypothesis ove¥ obtaining
positive values over Aand zero otherwise.

We are now ready to formally defink,, a class we term “ordarcharacterizing set.”

Definition 17 (order-n characterizing set) For each n, letS, be the set of all possible labeled
samples of size n (all n-subsets, each with all possible labelings). Tee-ocharacterizing seif
¥, denotedH;, is the set of all characterizing hypothesegX), whereG C 7 is a version space
induced by some member${

Definition 18 (characterizing set complexity) Let #, be the order-n characterizing set @f. The
order-ncharacterizing set complexitf 7, denoted/( ¥, n), is the VC-dimension oft,.
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Lemma 19 The characterizing hypothesigd ¢ (x) belongs to the ordeft characterizing set of
F, wherefi = A(F,Sy) is the size of the version space compression set.

Proof According to Definition 15, there exists a subSet Sy, of sizersuch thaV Sy 5, =V Sy g,
The rest of the proof follows immediately from Definition 17. [ |

Before stating the main result of this section, we state a classical resultitha¢ wsed later.

Theorem 20 (Vapnik and Chervonenkis, 1971; Anthony and Bartlet, 1999, p.53)Let ¥ be a
hypothesis space with VC-dimension h. For any probability distribution R en{+-1}, with prob-
ability of at leastl — 6 over the choice of gfrom P", any hypothesis € ¥ consistent with &
satisfies

2em 2] ’ 5)

R(f) <e(h,m,d) = % [hlnh+ln6

where Rf) £ E[I(f(x) # f*(x))] is the risk of f.

We note that inequality (5) actually holds only to m. For anyh > mit s clear that no meaningful
upper bound on the risk can be achieved. It is easy to fix the inequalityhéogeneral case by
replacing In(%™) by In, (%7), whereln, (x) £ max(In(x), 1).

Theorem 21 (data-dependent coverage guarantedjor any m, let a,ay,...,an € R be given,
suchthata>0andy ™, a < 1. Let(f,g) be a selective CSS classifier. Thefif R)) = 0, and for
any0 < & < 1, with probability of at leasf. — 9,

2 2em 2
d(f,g)>1—— AIng | ——— | +In—|,
t9=1- 2 g, (75 +n 5]
wheref is the size of the version space compressionygét, ) is the orderf characterizing set
complexity off.

Proof Given our sample&s, = {(x;, f*(x))}i; (labeled by the unknown target functidri), we
define the “synthetic” sampl§,, = {(x;,1)}";. S, can be assumed to have been sampled i.i.d from
the marginal distribution oX with positive labels ).

Theorem 20 can now be applied on the synthetic problem with the training s&8pptbe
distribution P/, and the hypothesis space taken to#e the order characterizing set ofF. It
follows that for allf € VS;; ¢ , with probability of at least + & over choices o§,, from (P))™,

Pr(t(x) £1) < % [hi In <2Eim) +In ;5] , 6)
whereh; is the VC-dimension off;. Then, applying the union bound yields, with probability of at
least 1- 9, that inequality (6) holds simultaneously for alkli < m.

All hypotheses in the version spa¢&y s, agree on all samples By,. Hence, the characterizing
hypothesisfys, ¢ (X) = 1 for any pointx € Sy. Let1 be the size of the version space compression
set. According to Lemma 19ys, ¢ (X) € Ha. Noting thatfys, ¢ (x) = 1 for anyx € §, we learn
that fvgj,s“ (x) € Vs%&n' Therefore, with probability of at least-1& over choices o0&y,

Prlfus, (00 £1) < = [hﬁln <2henm> +In a:{)] .
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Since®(f,9) = Pp(fvs; ¢ (X) = 1), andhy is the ordemcharacterizing set complexity of, the
proof is complete. |

6. Consistent Selective Classification With Linear Classifis

The data dependent bound in Theorem 21 is stated in terms of a new compiegiyre (the “char-
acterizing set complexity” of Definition 18). Can this measure be explicitly edatlior bounded
for some interesting hypothesis classes? In this section we consider thefdiagar classifiers in
RY. Relying on a classical result from combinatorial geometry, we infer gligiixupper bound on
the characterizing set complexity for linear classifiers. Combining this bawithdl heorem 21, we
immediately obtain a data-dependent compression coverage guaranségtedsn Corollary 28.
We then show that if the unknown underlying distribution is a finite mixture of<Sims, then
CSS will ensure perfect learning with guaranteed coverage. Thisrfidwesult, which is stated in
Corollary 33, indicates that consistent selective classification might bearglan various applica-
tions of interest.
Fix any positive integed, and letF = {fz¢(X)} be the class of all linear binary classifiers in

RY, wherew ared-dimensional real vectorgare scalars, and

T 0> 0
o ={ T3 W ez

Given a binary labeled training sami@g, defineRt £ R (S;,) C R to be the subset of the maximal
agreement set with respect to the version spaBges,,, consisting of all points with positive labels.
R* is called the ‘maximal positive agreement set. The ‘maximal negative agreesat, R~ =
R™(Sn), is defined similarly. Before continuing, we define a new symmetric hypoth@s?
that allows for a simpler analysis. Lt £ {fwe(X)} be the function class

) +1, ifw'x—@>0;
fae®=1{ 0, fWx—=0;
-1, ifw'x—<0,

where we interpret O as a classification that agrees with bdittand—1. Given a sampl&,,
we defineRt C RY to be the region ifRY for which any hypothesis in the version sp%lbéﬁsm
classifies eithe#-1 or O (i.e., this is the maximal positive agreement set). We d&finenalogously
with respect to negative or zero classifications. Whileand f are not identical, the maximal
agreement sets they induce are identical. This is stated in the following telclemtaa whose
proof appears in the appendix.

Lemma 22 (maximal agreement set equivalenceffor any linearly separable sample,SR" =
RtandR =R".

The next technical lemma, whose proof also appears in the appendiidgsaiseful information
on the geometry of the maximal agreement set for the class of linear classifier

2. Any hypothesis inF that classifies every sample 8 correctly or as 0 belongs to the version space.
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Lemma 23 (maximal agreement set geometry ILet S, be a linearly separable labeled sample
that is a spanning set @Y. Then the regions Rand R are each an intersection of a finite number
of half-spaces, with at least d samples on the boundary of each haléspa

Our goal is to bound the characterizing set complexityfof As we show below, this complexity
measure is directly related to the number of facets of the convex hupj@ints inR9. The following
classical combinatorial geometry theorem by Klee (see Preparata and §he986, page 98) is
thus particularly useful. The statement of Klee’s theorem provided heeadkly obtained from the
original by using the Stirling approximation of the binomial coefficient.

Theorem 24 (Klee, 1966)The number of facets of a d-polytope with n vertices is at most

> ( 972 > ” ")

An immediate conclusion is that (7) upper bounds the number of facets abtirex hull of n points
in RY (which is of course a d-polytope).

Lemma 25 (maximal agreement set geometry ll)Let S, be a linearly separable sample consist-
ing of n>d + 1 labeled points. Then the regions f&,) and R (S,) are each an intersection of at
most
zen \_d%lj
2(d+1)- <d>

half-spaces iR¢.

Proof For the sake of clarity, we limit the analysis to a sam@ien general position; that is,
we assume that no more thanpoints lie on a(d — 1)-dimensional plane. Handling a sample
S, in arbitrary position can be straightforwardly treated by including an gp@t infinitesimal
displacement of the points (the technical proof is omitted).

By Lemma 22, we can limit our discussion to the hypothesis sffa(mther thanf). SinceS,
includes more thad samples in general position it is a spanning s&%fAccording to Lemma 23,
R" is an intersection of a finite number of half-spaces, with at ldastmples on the boundary of
each half-space (anekactly din the general position). Les" C S, be the subset of all positive
samples irf,, andS™ C S, the negative ones. Lef\t\;(p be one of the half-spaces definiRg. Then,

W' X—@>0, ifxeS';

VXE S {vaf—cpgo, if Xe S

Also, exactlyd samplesy, satisfywx — @ = 0.
We now embed the samplesi{ ! using the following transformatiox,— X':

Z A (0,x), if xe St
1\ (L-x), ifXxesS.

For each half-spac@v, ) in RY we define a unique half-spagsy, @), in R4+,

W (20W), ¢ =0
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We observe that

w i'—(lf—{ 20-WX—@=—-(Wx—@) >0, ifxeS,

and for exactlyd samples we have
e o _

WX —¢f = { \gcp)ivv(Tpi_—ocb: (WX ) =0, tres.

Let v be any orthogonal vector to tliesamples on the boundary of the half-space. Defining
W AW ol ¢ 2,
with an appropriate choice of we have,
WwWeS WiIX—¢=WXx-—¢g+avV'x >0,
and for exacthyd + 1 samples (including the origindlsamples),
WX — @' =0.

We observe thaﬁﬁ/’qj/ is a facet of the convex hull of the samplesRAtL. Up tod + 1 different
half-spaces ifR? can be transformed into a single half-spac®&fi?! (the number of combinations

of choosingd samples out ofl + 1 samples on the boundary). Using Theorem 24, we bound the
numberF (d) of facets of the convex hull of the pointsRf'** as follows:

|45 452 ]
2 2
F(d) < 2- (&) <2. (3”) .

Since up tod + 1 half-spaces ifRY can be mapped onto a single facet of the convex huRdh?,

we can bound the number of half-space&fhby
2en el
(d+l)-F(d)§2(d+1)-<d> :

Lemma 26 Blumer et al., 1989, Lemma 3.2.3) Let ¥ be a binary hypothesis class of finite VC
dimension > 1. For all k > 1, define the k-fold intersection,

fkmé{mg‘zlfi:fieﬂlﬁiék},

and the k-fold union,
F, 2 {u};lfi fie F1<i< k}.

Then, for all k> 1,
VC(Fkn):VC(Fkn) < 2hklog (3K).
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Lemma 27 (characterizing set complexity)Fix d > 2 and n> d. Let ¥ be the class of all linear
binary classifiers ifRY. Then, the order-n characterizing set complexityfosatisfies

y(F,n) <83 (d+1)3 (2(;en> -7 -logn.

Proof Let G = i« be the class df-fold intersections of half-spaceslitf. Since the VC dimension
of the class of all half-spaces ' is d + 1, we obtain, using Lemma 26, that the VC dimension of
G satisfies

VC(G) < 2klog(3k)(d+1).

Let #, be the orden characterizing set gf . From Lemma 25 we know that any hypothebis #,
is a union of two regions, where each region is an intersection of no mare tha

ey (20)

half-spaces ilRY. Therefore#, C Goy. Using Lemma 26, we get

VC(H,) < VC(Ga) < 4log(6)-VC(G) < 8klog(6)log (3k)(d + 1)
< 16(d+1)* <2den> - -log(6) -log (6(d+1). (f”) L2J>'

Forn>d > 2 we get

d+1

100 <G(d - <2den> L2J> <log(6n) + {d;lJ : |og?

< 3-logn+ r;lJ -logn? < (d+4)-logn<2-(d+1)-logn.

Therefore,

VC(H) < 83.(d+1)3.<2de”>L2 logn

Corollary 28 (data-dependent coverage guarantee)et ¥ be the class of linear binary classi-
fiers in RY and assume that the conditions of Theorem 21 hold. Théh,gR= 0, and for any
0 < & < 1, with probability of at leasf. — 9,
2 2em 2
o(f,g)>1—= 13Aaglng [ = ) +In—=
(1.9)> 1~ 2 [B3d+ pfAngin, (520) +1n 2]
wherefi is the size of the empirical version space compression set, and

d+1

A\ 7]
Aﬁ’d_(2§n> i ~Iogﬁ.
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Proof Define

Wy(F,n) 2 1_2[(fn <2em> }

We note thatV(y(F,n)) is a continues function. For agy#,n) < 2m

Yy(F.n) 2I 2em

2
— == +—=<0,
oy(¥,n) moy(F.n) m
and for anyy(#,n) > 2m
Yiv(F,n) 2
— - =—-—<0.
oy(#,n) m
Thus,W(y(F,n)) is monotonically decreasing. Noting that.Ifx) is monotonically increasing, by
applying Theorem 21 together with Lemma 27 the proof is complete. |

As long as the empirical version space compression sensgsufficiently small compared to
m, Corollary 28 provides a meaningful coverage guarantee. $imeighit depend omn, it is hard
to analyze the effective rate of the bound. To further explore this gteeawe now bound in
terms ofmfor a specific family of source distributions and derive a distribution-ddpat coverage
guarantee.

Theorem 29 (Bentley, Kung, Schkolnick, and Thompson, 1978)f m points in d dimensions have
their components chosen independently from any set of continuous wistnib (possibly different
for each component), then the expected number of convex hull verices

EV]=0 ((Iog m)dfl) .

Definition 30 (sliced multivariate Gaussian distribution) A sliced multivariate Gaussiadistri-
bution, A((Z, 1, W, @), is a multivariate Gaussian distribution restricted by a half spacBn Thus,
if Z is a non-singular covariance matrix, the pdf of the sliced Gaussian is

1

Ee,%(xfu)TZ*l(xfu) . ]I(WTX —-¢>0),

where p= (W, ..., )", Tis the indicator function and C is an appropriate normalization factor.

Lemma 31 Let P be a sliced multivariate Gaussian distribution. If m points are chosespieat
dently from P, then the expected number of convex hull vertice$(ilsg)n)d*1).

Proof LetX ~ A[(Z, W, @) andY ~ A[(Z, ). There is a random vecta@, whose components are
independent standard normal random variables, a vegctand a matrixA such thaty = AZ+ .
Since

wy—@=w (Az+p) —@e=w'Az+w'u—q,
we get thatX = AZy + 1, whereZg ~ A(1,0,w"A @—w'p). Due to the spherical symmetry of
Z, we can choose the half-spage’ A, —w' ) to be axis-aligned by rotating the axes. We note
that thed components o are chosen independently and that the axis-aligned half-space enforc
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restriction only on one of the axes. Therefore, the componerfs afe chosen independently as
well. Applying Theorem 29, we get that i points are chosen independently fratg then the
expected number of convex hull vertice@'ﬁ(logm)dfl). The proof is complete by noting that the
number of convex hull vertices is preserved under affine transforngatio |

Lemma 32 (version space compression set sizept F be the class of all linear binary classifiers
in RY. Assume that the underlying distribution P is a mixture of a fixed numbeao$sians. Then,
for any 0 < 6 < 1, with probability of at leastlL — , the empirical version space compression set

size is 1
~  ~( (logm)“~
n_O<6 .

Proof Let S, be a version space compression set. ConsiglerS,. SinceS, is a compression set
there is a half-spacéw, ), such thatfyo € VSy 5\ (%) and fiyo ¢ VSr s, W.L.o.g. assume that

Xo € S is positive; thusv™xo — @ < 0, and for any other positive poite S,, W' x— @ > 0. For

an appropriatey < @, there exists a half-space, ¢f) such thaw™x, — @ = 0, and for any other
positive pointx € S,, W'Xx— ¢ > 0. Thereforexg is a convex hull vertex. It follows that we can
bound the number of positive samples3nby the number of vertices of the convex hull of all the
positive points. Defining as the number of convex hull vertices and using Markov’s inequality, we

get that for any > 0,

Priv>e) < ELV]

Sincef* is a linear classifier, the underlying distribution of the positive points is a mixtLséced
multivariate Gaussians. Using Lemmas 31 and 44, we get that with probabitityesst 1- o,

v< Eév} :O<(Iogrg)d1)‘

Repeating the same arguments for the negative points completes the proof. |

Corollary 33 (distribution-dependent coverage guarantee)Let F be the class of all linear bi-
nary classifiers ifRY, and let P be a mixture of a fixed number of Gaussians. Theh,gR= 0,
and for any0 < 8 < 1, with probability of at least — 9,

(logm® 1
q’(f’g)zl_O( m 5@z )

Proof
Applying Lemma 32,

(logm)®
Nag =0 (6(‘”3)/2 )

The proof is complete by noting thAk 4 > 1 and using Corollary 28 with; = 27" |
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7. Risk-coverage Trade-off Envelopes

In previous sections we have shown that by compromising the coveragamachieve zero risk.
This is in contrast to the classical setting, where we compromise risk to adblegeverage. Is it
possible to learn a selective classifier with full control over this trade-fhat are the performance
limitations of this trade-off control?

In this section we present some answers to these questions thus denwvergalad upper en-
velopes for the risk-coverage (RC) trade-off. These results heaaliyon the previous results on
perfect learning and on classical results on standard learning witbjgation. The envelopes are
obtained by interpolating bounds on these two extreme types of learningegife this section by
deriving a lower envelop; that is, we introduce a strategy that can dah&®C trade-off.

7.1 Lower Envelop: Controlling the Coverage-risk Trade-off

Our lower RC envelop is facilitated by the following strategy, which is a gdzateon of the
consistent selective classification strategy (CSS) of Definition 6.

Definition 34 (controllable selective strategy)Given amixing parametelO < a < 1, thecontrol-
lable selective strategshooses a selective classifidr,g) such that f is in the version space ¥ §,

(as in CSS), and g is defined as followgx)g= 1 for any x in the maximal agreement set, A, with
respectto Vg s, and gx) = a for any xe X \ A.

Clearly, CSS is a special case of the controllable selective strategy obteittieal = 0. Standard
consistent learning (in the classical setting) is the special case obtained with We now state a
well known (and elementary) upper bound for classical realizableitearn

Theorem 35 (Haussler, 1988)Let # be any finite hypothesis class. LeeV Sy 5, be a classifier
chosen by any consistent learner. Then, for @ryd < 1, with probability of at leasi — 9,

1 1
Rt < o (1 +n ).

where Rf) is standard risk (true error) of the classifier f.

The following result provides a distribution independent upper bourti@risk of the controllable
selective strategy as a function of its coverage.

Theorem 36 (lower envelop)Let F be any finite hypothesis class. Ldtg) be a selective classi-
fier chosen by a controllable selective learner after observing a trainimgpda $,. Then, for any
0 < 8 < 1, with probability of at least. — 9,

Ritg < (o) (o)),

where

aq 1 2
P=1 m((InZ)\ﬂJrlna).
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Proof For any controllable selective learner with a mixing parametee have,

@o(f,g) = E[g(X)]=E[L(g(X)=1)]+aE[I(g(X) # 1)].
By Theorem 8, with probability of at least-12,

EM(gX)=1)]>1— % <(|n2)|f| +1In g) £ oy.

Therefore, sinc®(f,g) <1,
_ ®(f,9) —EI(g(X) =1)] _ @(f,g)—Po

TTIEIe=1] - 1-®
Using the law of total expectation we get
0
E[E(F(X),Y)-a(X)] = E[(f(X),Y)-9(X)[9(x) = 1]-Pr(g(X) = 1)
+ E[(f(X),Y)-9(X) | g(x) = a] - Pr(g(X) = a)
= o-E[((f(X),Y)[g(x) =a]-Pr(g(X) =a
o-E[£(f(X),Y)]

According to Definition 2.2
EA(f(X).Y)-9X)] _ a-E[(f(X).Y)] _a-R(f.g)
®(f,9) @(f,9) ®(f,9)
Applying Theorem 35 together with the union bound completes the proof. [ |

R<fvg) =

7.2 Upper Envelop: Trade-off Control Limitation

We now present a negative result which identifies a region of nonathieecoverage-risk trade-off
on the RC plane. The statement is a probabilistic lower bound on the reskysklective classifier
expressed as a function of the coverage. It negates any high grybaper bound on the risk of
the classifier (where the probability is over choicesgfand the target hypothesis).

Theorem 37 (non-achievable coverage-risk trade-offLet # be any hypothesis class and (et
0< %1 and m be given. There exists a distribution P (that dependg psuch that for any selective
classifier(f,g), chosen using a training samplg, 8rawn i.i.d. according to P, with probability of
at leastd,

. 1 1 1 1 1 . 16 1
(102 mn (5 a2 airg ey VST 5Ny )

Proof If n is the VC-dimension of hypothesis clags there exists a set of data points =
{e1,&,...e,} shattered byF . Let X £ X’ U{e,+1}. The bad distribution is constructed as follows.
DefineBin(m, k, 8), the binomial tail inversion,

%(m,%,Zé) = ms';lx{p: Bin (m,%, p) > 26},
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whereBin(m,k, p) is the binomial tail. Defind to be the source distribution ovét satisfying

1— Bln( ,3,20), otherwise,
Assuming that the training sample is selected i.i.d. Ryt follows that with probability of at least
20,

[{x€Sn:xe X'} Sn

F shattersx’ thus inducing all dichotomies ovef’. Every sample fronX” can reduce the version
space by half, so with probability of at leasi, 2he version spacé Sy s, includes all dichotomies
over at Ieasf% instances. Therefore, over these instances (referredxps. . ., X, 2), with prob-
ability of 1/2 the error is at leas}.®

n+1

N
®(f,9) = _;{P(a)~g(a)}=P(el)‘Zg(a)w(aqﬂ)-g(eqﬂ)

NS
)
NS

T -P(en) +Plens1) = Plen) 3 g0x) +1— 1 -Plen)

A
9
£
<
x
_l’_

n+1

®(1,9 R(f.g) = 3 {P(e) g(@) I(f(e) # f'(e))} > {P-g00- 3}
d(f

9—-1.n
> ¥ T 1.
= 2 -+ 4
Applying Lemma 43 we get

1 1 1 1 1 16 1
R(T, g)>m'”<2 40(f.g)'2 20(f,g) « 16m (f.g) [VCd'”(f) 1—26])

Corollary 38 Let0<d< 1 , m, and > 1 be given. There exist a distribution P, that depends on m
and n, and a finite hypothe3|s clagsof size n, such that for any selective classifigrg), chosen
using a training sampleSdrawn i.i.d. according to P, with probability of at lea8t if

3 1 16 1
qJ(f,g)zma><{4,1 1am [VCd mF) - 1_25]}
then

1—26 )

1 16 1
RG> g [VOdimT) - Fin 2]

3. According to the game theoretic setting the adversary can chooselautiistr over¥ . In this case the expectation in
the risk is averaged over random instances and random labels. difeettéie error over the instancesxz, ..., Xy /2
is exactly %2 and we can replace the ter@ &ith 6.
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Proof Assuming

3 1 . 16 1
®(f,g) > max{4,l—16m- [VCdln(T)—3Inl_26]},

we apply Theorem 37 to complete the proof. |

8. CSS Implementation: Lazy CSS

In previous sections we analyzed the performance of CSS and praaegrtihe realizable case)
it can achieve sharp coverage rates under reasonable assumptibiessonirce distribution while
guaranteeing zero error on the accepted samples. However, it remaleauwhether an efficient
implementation of CSS is at reach. In this section we propose an algorithnE®r@d show that
it can be efficiently implemented for linear classifiers.

The following method, which we terfazy CSSis very similar to the implicit selective sampling
algorithm of Cohn et al. (1994). Instead of explicitly constructing the C&88ction functiong
during training (which indeed can be a very complex task), we adapt g légzning” approach
that can potentially facilitate an efficient CSS implementation during test time. ticylar, we
propose to evaluatg(x) at any given test point during the classification process. For the training
setSy and a test poirk we define the following two sets:

S;;,XéSﬂU{(Xa+l)}7 Sr_n,xéSﬂU{(Xv_l)};

that is, S;, is the (labeled) training sed, augmented by the test poirtlabeled positively, and
Snx is Sy augmented by labeled negatively. The selection valgé) is determined as follows:
g(x) = 0 (i.e.,x is rejected) iff there exist hypothesés, f~ € ¥ that are consistent witg},, and
Snx respectively. '

The following lemma states that the selection functi¢x) constructed by lazy CSS is a precise
implementation of CSS.

Lemma 39 Let ¥ be any hypothesis classy @ labeled training set, and X, a test point. Then x
belongs to the maximal agreement set of \4Siff there is no hypothesis ¢ # that is consistent
with either $,, or Sy, .

Proof If there exist hypothesek', f~ € 7 that are consistent witf;,, andS;,,, then there exist
two hypotheses irfF that correctly classifyGy (therefore they belong t¥ Sy g,) but disagree on
X. Hence,x does not belong to the maximal agreement set 8f 5. Conversely, ifx does not
belong to the maximal agreement seM#y s, then there are two hypothesds,and f», which
correctly classifySy, but disagree on. Let’'s assume, without loss of generality, tHatclassifiesx
positively. Then,f; is consistent witt§},, and f, is consistent witt§,, x. Thus there exist hypothe-
sesf™, f~ € ¥ that are consistent wit1§n+lx and§;,y. |

For the case of linear classifiers it follows that computing the lazy CSS seldatiotion for any
test pointis reduced to two applications of a linear separability test. Yodareral. (2007) recently
presented a fast linear separability test with a worst case time complex@ynof®) and space
complexity ofO(md), wheremis the number of pointg] is the dimension and < min(m,d+ 1).
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Remark 40 For the realizable case we can modé#yyrejection mechanism by restricting rejection
only to the region chosen for rejection by CSS. Since CSS accepts only sarapkee fjuaranteed
to have zero test error, the overall performance of the modified rejeatiechanism is guaranteed
to be at least as good as the original mechanism. Using this technique reeabie to improve
the performance (RC curve) of the most commonly used rejection mischtor linear classifiers,
which rejects samples according to a simple symmetric distance from theodebmundary (a
“margin”).

9. Which Rejection Model?

In classical classification and Bayes decision theory the goal is to minimizetdwtion (or a
loss function), where the cost is specified ¥ a K cost matrix K = 2 for the binary case). Given
the cost matrix, the objective is to select a classifier that minimizes the aveeagjeted cost (over
unobserved instances) as specified by this matrix. When introducindioejéicis necessary to
introduce a suitable optimization criterion (which is referred here also &gegtion model’). Ob-
viously, the desired criterion should take into account both the risk of tlssifier and its coverage.
The question we discuss in this section is: what would be an appropriate agitonizriterion for
selective classification?

A very common rejection model in the literature is ttest modelwhereby a specific costis
associated with rejection (see, e.g., Tortorella, 2001) and the objectivanigitoize the generalized
rejective risk function

le(f,9) = d-E[1-g(X)]+E[I(f(X) #Y)-g(X)]. (8)

Given our definitions of risk and coverage, the function (8) can bigyeagpressed as a function
over the RC plane of Figure 1,

le(R,®) =d(1-®(f,9)) +R(f,g)&(f,9). (9)

For any fixedd, Equation (9) defines level sets (or elevation contour lines) over thel&@ pFor
example, Figure 3(a) depicts elevation contour lines induced by (9) witfeetian costd = 0.3.
The thick line in this figure represent our knowledge of the optimal RC todidéFhus, an optimal
classifier, according to this cost model, has a risk-coverage profilenihanizes the cost (9) with
respect to all choices on the RC trade-off curve. This optimal choicepistael in Figure 3(a) by
the black dot. This popular cost model was refined to accommodate diftgrem between the cost
of false positive and false negative as well as different costs foctiejeof positive and negative
samples (Herbei and Wegkamp, 2006; Pietraszek, 2005; Tortorelld; 2@antos-Pereira and Pires,
2005). Such extensions or refinements are appealing because theyfalladditional control
and more flexibility in modeling the problem at hand. Nevertheless, thesenmmtls are often
criticized for lack of usability in applications where it is impossible or hard taigedy quantify
the cost of rejection. It is interesting to note that for an ideal Bayesiangetitimere the underlying
distribution is completely known, Chow showed (Chow, 1970) that the dagiper bounds the
probability of misclassification. In this case one can control the classification by specifying a
matching rejection cost.

In Pietraszek (2005) two additional optimization models are introduced. Tételfounded-
improvementnodel, is depicted as contour elevation lines over the RC plane in Figurdi3(b)s
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model, given a constraint on the misclassification cost, the classifier slepeitd as few samples as
possible. The constraint is specified by theymbol in the RC plane, which is the cost defined for
the entire rectangle containing all risk-coverage profiles having riskidngn the constraint ®in

this example). In the secondpunded-abstentiomodel (depicted in Figure 3(b)), given a constraint
on the coverage (B in this example), the classifier should have the lowest misclassification tost. |
is argued in Pietraszek (2005) that these models are more suitable thaotheast model in many
applications, for instance, when a classifier with limited classification thrautglepg., a human
expert) should handle the rejected instances, and in a medical and quslitarase applications,
where the goal is to reduce the misclassification cost to a user-defined valu

1 1 1
0.8 08 0.8
< o <
o 06 > 06 o 06
o o o
© e o
[ @ @
2 04 3 04 2 04
(v v] [v]
0.2 0.2 0.2
0.9
0 o2 0 Q
0 0.1 0.2 0.3 0.4 0 0.1 0.2 03 0.4 0 0.1 0.2 03 04
Risk (r) Risk (r) Risk (r)

(a) (b) ©

Figure 3: Rejection models: (a) cost (b) bounded-abstention (c) leaimaprovement

Which cost model among the above three is the right model? This questiorvisusly, ill-
defined and the answer depends on the application. Thus, when debisimds for a specific
generalized rejective risk function the results are limited to only one specitiemimstead, one can
handleanyrejective risk function over the RC plane by identifying the RC trade-qfeHically, by
bounding the coverage and the risk separately (as we do in this papearvir principle optimize
anygeneralized rejective risk function according to any desired rejectiorehiociuding the cost,
the bounded-improvement and bounded-abstention models.

10. Related Work

The idea of classification with a reject option dates back to Chow’s semipafrp&Chow, 1957,
1970). These papers analyzed both the Bayes-optimal reject dedigldheareject-rate vs. error
trade-off. This is done under the 0-1 loss function, assuming that therlyimdy distribution is
completely known. The Bayes-optimal rejection policy is based, as in sthwntissification, on
maximum a posteriori probabilities. Instances should be rejected whenenerof the posteriori
probabilities are sufficiently distinct. This type of rejection can be terarabiguity-basedejec-
tion. Referring to the diagram in Figure 1, one of Chow’s main results (®rctse of complete
probabilistic knowledge), is that the optimal RC trade-off (depicted by thteddine) is monoton-
ically increasing.

While the optimal decision can be identified in the case of complete probabilistid&dge, it
was argued (Fumera et al., 2000) that when the a posteriori probabiliéiesamated with errors,
Chow’s rule (Chow, 1970) does not provide the optimal error-rejadetroff. Tortorella (2001) and
Santos-Pereira and Pires (2005) discussed Bayesian-optimal dedrsitie case of arbitrary cost
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matrices. In these papers the optimal reject rule was chosen based ddGheuR/e evaluated on a
subset of the training data. As in most papers on the subject emerginghfeangineering commu-
nity (see, e.g., Fumera et al., 2000; Fumera and Roli, 2002; Pietrasf#k,B8unsiar et al., 2006;
Landgrebe et al., 2006) no probabilistic or other guarantees are pbfad the misclassification
error.

Very few studies have focused on error bounds for classifiers witjemtroption. Hellman
(1970) proposed and analyzed two rejection rules for the nearedthueiglgorithm. Extending
Cover and Hart's classic result for the 1-nearest neighbor algori@owudr and Hart, 1967), Hell-
man showed that the test error (over non-rejected points) of a newgigibor algorithm with a
reject option can be boundegdymptotically(as the sample size approaches infinity) by some factor
of the Bayes error (with reject). To the best of our knowledge, thissxidek bound is the first that
has been introduced in the context of classification with a reject option.

Herbei and Wegkamp (2006) developed excess risk bounds for thafidation with a reject
option setting where the loss function is the 0-1 loss, extended such thabghefceach reject
point is 0< d < 1/2 (cost model; see Section 9). This result generalizes the excess uiséof
Tsybakov (2004) for standard binary classification without rejecti¢vis equivalent to the case
d = 1/2). The bound applies to any empirical error minimization technique. Thidtiedurther
extended in Bartlett and Wegkamp (2007) and Wegkamp (2007) in variays,wicluding the use
of the hinge loss function for efficient optimization. The main results of Heabhd Wegkamp
(both for plug-in rules and empirical risk minimization) degenerate, in the eddézcase, to a
meaningless bound, where classification with a reject option is not guadait®e any better than
classification without reject. These results are also limited only to the cost r{smetiscussion
on Section 9). Saying that, we must also note that comparing bounds thaitdesved for the
agnostic setting with our results can be misleading or “unfair” since the tgrsetting is much
more difficult. The only purpose of this comparison is to clarify that the rebeits are not special
cases of any of the currently known agnostic bounds.

Freund et al. (2004) studied a simple ensemble method for binary classificdBven an
hypothesis clasg’, the method outputs a weighted average of all the hypotheggssirch that the
weight of each hypothesis exponentially depends on its individual tragmrmy. Their algorithm
abstains from prediction whenever the weighted average of all indiiadictions is inconclusive
(i.e., sufficiently close to zero). Two regret bounds for this algorithmevderived. The first bounds
the probability of error when the classifier decides not to rejeetislthe error of the best hypothesis
in F, the error of the aggregating algorithm is bounded above (W.h.p.)ebya(ﬁ), where
0 < 6 < 1/2 is an hyperparameter. The authors also proved that for a sufficiergly {eaining
sample sizem= Q((,/In(1/3)In(|F|))*?®), the probability that the algorithms will abstain from
prediction is bounded above bg % O( %). To the best of our knowledge, these bounds are the
first to provide some guarantee for both the error of the classifier arcbtteeage. Therefore, these
results are related to the bounded-improvement and bounded-abstentlels ifsge Section 9). As
was rightfully stated by the authors, the final aggregated hypothesiggraficantly outperform the
best base-hypothesis jh in some favorable situations. Unfortunately, the regret bound provided
does not exploit these situations, as it is bounded by twice the generalizstimmof the best
hypothesis. Referring to the diagram in Figure 1, The results of Freuald ean be depicted as a
curve in regiorB (thus characterizing some achievable zone). For the realizable cabeypiings of
Freund et al. achieve much slower rates than those we derive in this paper
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Selective classification is related to selective sampling (Atlas et al., 19983ldative sampling
the learner sequentially processes unlabeled examples, and for eadbtermines whether or not
to request a label. One of the earliest active learning algorithms for thiealgla case (termed
“mellow active learner”) was proposed by Cohn et al. (1994). Theil metivated approach is
to request labels only for samples that belong to the region of disagreétherdgomplement of
our maximal agreement set). As mentioned in Section 8, this is very similar to durti=8neke
studied the rate for which the region of disagreement collapses as thittalyprocesses examples
(Hanneke, 2007, 2009). He introduced the notiordishgreement coefficiemind derived upper
bounds on the label complexity in active learning expressed in terms of tbficdent. While
his results capture the convergence rate of the region of disagreesnaritiaction of the number
of label requestsin selective classification we are interested in convergence rates astaifu
of the size of thetraining set(in selective sampling the number of labels does not necessarily
match the number of samples). Specific disagreement coefficient valuesegently derived for
some interesting hypothesis classes including homogeneous linear classiRérunder uniform
data distribution (Hanneke, 2007) and linear classifiel®4runder smooth data density bounded
away from zero (Friedman, 2009). While coverage bounds and labgblexity bounds cannot be
directly compared, we conjecture that formal connections between thesettings exist because
the disagreement region plays a key role in both. The precise relationdrethese two settings is
yet to be discovered.

11. Concluding Remarks

Selective classification is well recognized as a very attractive technigimproving classification
accuracy. In fact, it is among very few methods that can help in practigdications where suf-
ficiently low error cannot be achieved in the standard model. Neverthelesenough is known
about selective classification in order to harness its power in a controfi¢ichal way, or to avoid
its use in cases where it cannot sufficiently help.

In this work we made a first step toward a rigorous analysis of selectigsifitation by re-
vealing properties of the risk-coverage trade-off, which represmtimal selective classification.
By focusing on the extreme case of perfect learning we were able tedeiiial results for entire
risk-coverage trade-offs.

Many interesting questions are left open. Among the most important opetianseare the
following. What would be an analogous concept to perfect learning irfule agnostic (non-
realizable) setting? What is the precise relation between selective cldgsifiaad selective sam-
pling? Is it possible to implement efficiently the CSS strategy and prove usetulds for other
natural hypothesis classes? Can selective classification be rigoroagfged in transductive, semi-
supervised or active settings? With respect to agnostic extensions, vadtksit't make much sense
to talk about “perfect learning” in a noisy setting, it is meaningful and istiémg to consider the
analogous concept to regret (or excess risk) bounds. Here we employ a selective strategy
aiming at achieving the error rate of the best hypothesis in the class pygeisd perhaps with
certainty).
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Appendix A.
Lemma 41 For u> v/2v> 0,
u—v Y,
- >1-4.-
u+v u
Proof
u—v 2v u—
- = 1-==1-2 >1-2v .
u+v u+v Vu2—v2_ u2 —v2
Sinceu > /2v, we have ,
2_ 2w
u > 5
Applying to the previous inequality completes the proof. |

Lemma 42 (Bernstein’s inequality Hoeffding, 1963)Let X, ..., X, be independent zero-mean ran-
dom variables. Suppose thag| < M almost surely, for all i. Then for all positive t,

n . B '[2/2
Pr(i;X' >t> <exp{ SE [Xﬂ +Mt/3}'

Lemma 43 (binomial tail inversion lower bound) For k > 0andd < %

. . k 4 1
m >m = T n—_).
Bin(m, k, d) in (1, In 1 6)

Proof Let Z1,...Zy be independent Bernoulli random variables each with a successhiitgyba
0< p<1. SettingM £ 7 —p,

m m
1 — - < —1_ .
Bin(m,k, p) zl,“.,zl,:LB(p)m (i;Z. < k) 1 Pr(i;Z. > k)
m
= 1-Pr W >k—mp].
(2 ' )

Clearly,E[W] =0, W| < 1, andE [W?] = p- (1— p)®+ (1—p)- p* = p- (1— p). Using Lemma 42
(Bernstein’s inequality) we thus obtain,

. 2
Bin(mk, p) > 1—exp (‘ mp(l(—kp) rJT:IE())k zzm IO)/3> '
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Since(1—-p) <1

(k—mp?/2 . k-mp® _ (k-mp?
mpl-p)+(k-mp/3 = 2mp+5-(k—mp Fmp+5-k
k? — 2mpk
S e I
amp+5-K

Therefore,
K2—2mpk

Bin(mk,p) >1—e impr3%,

Equating the right-hand side &and solving forp, we have

k k—2t
2m k+2-t’

p<

wheret £ In( 5- Choosing

, 1 8, 1 , k 2t
p_mln{l,Zm (k—?’ln_{))} _m|n{172m. (1_4.k>}7

using the fact thak > 1 > 2‘fl / —ft and applying Lemma 41, we get

k k—2t
2m k+2-t

p<

Therefore Bin(m,k, p) > 8. SinceBin(m,k,8) = max,{ p : Bin(m,k, p) > &}, we conclude that

_ . k 4 1
>p= _
Bin(m,k,8) > p=min <1, o 3mI = 6)

Lemma 44 Let S and S be two sets iiRY. Then,
H(&US) <H(S)+H(S),
where H'S) is the number of convex hull vertices of S.

Proof Assumexe S US is a convex hull vertex 0§ US,. Then, there is a half-spa¢er, @) such
that,w-x—@=0, and any othey € S, U S, satisfieav-y—@> 0. Assume w.l.0.g. thate S;. Then
itis clear that any € S satisfiesv-y— @ > 0. Thereforex is a convex hull vertex of;. |

Proof of Lemma 22Let St C S, be the set of all positive samples$, andS™ C S, be the set
of all negative samples. Le € R". There exists a hypothesig o(X) such that

V xeS", wx—¢>0;
V xeS, Wx—¢<0,
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and
WX — @ > 0.

Let's assume thaty ¢ R". Then, there exists a hypothesﬁ@m(i) such that

V xeSH, wW'x—¢ >0;
V xeS, W'x—¢ <0,

and
Wxo—¢ <0.
Defining
Wo = W+ aw, ® = 0+ 0d,
where o
W' Xo—@
0 ’WTfo—qf ’

we deduce that there exists a hypothdgis,, (X) such that

V XeS', Wx—@>0;
V XeS, WX—-@<0,

and

—p+a[Wiko—¢f] =W Xo—@—a|W'x— ¢
—@—|W'X—¢@ =0.

WoXo— Qo =
<

§_|| §_||
XXl

Thereforexo ¢ Rt. Contradiction. Hence € Rt andR™ C Rt. The proof thaR~ C R~ follows
the same argument.
To prove thaR" C R", we look atvsS g

Viie VS g, . XeR™ WXx—@>0.
We observe that ifyzq € V Sy 5, thenfy g € VS; g, Therefore,
Viug€VSrs,XeR™ W X—@>0.

Hence R C RY.
It remains to prove thaR~ C R~. Assumingx, ¢ R~ implies that there exists a hypothesis
fwe(X) such that

vV xeSt, w

X—¢>0;
V xeS, Wx—¢<0,

and
WX — @ > 0.
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Defining*
Wo =W, (o= @—

)r(r;gx(w X— (p)'

we conclude that there exists a hypothe‘%;@po(@ such that
V XeS" wix—@>0;

V XeS  WHX— o < max(W'X— @)+

XES™ XES™

+ [max(W' x— @) ' =0,

and
WO X0 — @0 > 0.
Thereforex, ¢ R-, soR- CR". u

Proof of Lemma 23 According to Lerpma 22R™ = Rt andR~ = R~. Therefore, we can restrict
our discussion to the hypothesis clgss Due to the symmetry of the hypothesis classve will
concentrate only on the positive regiBri. SetG £ V'S; g, By definition,

= 1 fig

f/. eG

wheref’ o denotes the region i for which the linear classmef’—(p obtains the value one or zero.
Let fw € G be a half-space witk < d points on its boundary. We will prove that there exist two
half-spaces i (fw, ¢, fw,,,) SUCh that each has at le&st 1 samples on its boundary and

va,cpﬂ .o ﬂ .0 = fe ﬂ \%.00-

Therefore,

Rf= [ fae

f1g€G\{ fiig)

Repeating this process recursively with every half-spac®, with less thard points on its bound-
ary, completes the proof.

Before proceeding with the rigorous analysis let's review the main idea dehenproof. If
a half-space iRY has less than points on its boundary, it has at least one degree of freedom.
Rotating the half-space clockwise or counterclockwise around a spaxigi¢defined by the points
on the boundary) by sufficiently small angles will maintain correct classidicaverS,,. We will
rotate the half-space clockwise and counterclockwise until “touchingfitsiegpoint in S, on each
direction. This operation will maintain correct classification but will resultamihg one additional
point on the boundary. Then we only have to show that the intersectioredhthe half-spaces
(original and two rotated ones) is the same as the intersection of the two rotetsd

4. If S~ is an empty set we can arbitrarily defipg= ¢— 1.
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Let fwe € G be a half-space witlk < d points on its boundary. Without loss of generality
assume that these points &2 {X1,X2,...,Xc}. For the sake of simplicity we will firstranslate
the space such that will lie on the origin. Sincex; is on the boundary of the half-space we get

Wxi—9=0 = @=wW'x.

Therefore,
e 0=WX—@=WX—Wx =W (X—X).

Hence, the weight vectaw is orthogonal to all the translated samp{gs— x1),..., (% —X1). We

now havek < d vectors inR¢ (including the weight vector) so we can always find at least one vector
v which is orthogonal to all the rest. We noatate the translated samples around the origin so as
to align the vectow with the first axis, and align the vectamwith the second axis. From now on
all translated and rotated coordinates and vectors will be marked with priefenelhe following
rotation matrix inRY,

cos® sinB 0 O .

—sin@ cosB 0 O .

Rg 2 0 0O 1 0.
0 0O 0 1

We can now define two new half-spaces in the translated and rotated $pace and fR,va,o,
where

o= max {a/ | WeSy (W'X)-(RyW)X >0}, (10)
<a/<T
and
B= Jmax B | WeSh W'X) (RpgwW)"X >0} (11)
<p'<m

According to Claim 45, bottir,wv 0 andfr ,w o correctly classifySn and have at leagt+ 1 samples
on their boundaries.

Now we examine the intersection &, o and fR_BW,O- According to Claim 46, if RyW )X >
0 and(R_gW)"X > 0, thenw' X' > 0. The intersection ofg. o, fr_gw.0 and fw o thus equals the
intersection offr w0 and fR,BW,o, as required. |

Claim 45 Both ;w0 and fp%\,v’o correctly classify g and have at least & 1 samples on their
boundaries.

Proof We note that after translation all half-spaces pass through the origi,=s®. Recall the
definitions ofa and 3 as maximums (Equations (10) and (11), respectively). We show that the
maximums oven’ andp’ are well defined. Lex' = (x,%,,---x})T. Sincew = (1,0,0,---)T we

get thatR,W = (cosa, —sina,0,...)" and

(WTX) - (ReW)TX = %% cosa — X1 - X2 - sina.

SinceSy is a spanning set @9, at least one sample has a vector with compongst 0. As all
components are finite ar)q2 > 0, we can always find a sufficiently smafl such thaix’12 cosa’ —
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xX'1-X-sina’ > 0. Hence, the maximum exists. Furthermore,d6r= Ttwe havex;? cosm— X -
X -sint= —x’l2 < 0. Noticing thatx’l2 cosa — X'1 - X2+ sina is continuous i, and applying the
intermediate value theorem, we know that @ < nandx’12 cosa — X'1-X»-sina = 0. Therefore,
there exists a sample B, that is not on the boundary df; o (sincex; # 0) but on the boundary
of fr,wo. Recall that all points ir§), are orthogonal tev = (1,0,0,---)T andv= (0,1,0,---)T.
Therefore,

v e, (RaW)TX =X, -cosa—X>-sina =w'X-cosa—V'Xsina =0,

and they reside on the boundary @ w 0. Overall, fr v o correctly classifie§y, and has at least
k+ 1 samples on its boundary. The same argument appligsgrsymmetry. |

Claim 46 Using the notation introduced in the proof of Lemma 23,(RwW)™X > 0 and
(R_pW)TX >0, then
w'x > 0.

Proof If (RyW)TX >0 and(R_ W)X > 0, then

X7 oSO — X, - sina > 0,
X, COSB+ X, - sin > 0.

Multiplying the first inequality by sift > 0, the second inequality by sin> 0, and adding the two
we have
sin(a+B)-x; > 0.

According to Claim 47 below, siiat+3) > 0. If sin(a + ) = 0, then(a 4 ) = rtand co$a + B) =
—1. Using the trigonometric identities

coda—fB) = cosucos+ sinasing;
sinla —PB) = sinocosP —cosasinp,

we get that
cosp =cogf+a—a)=coga+P)-cosa+sin(a+P)-sina = —cosa,

and
sinf =sin(B+a —a) = sin(a + P) - cosa — coga + B) - sina = sina.

Therefore, for any; cosa — X, - sina > 0, it holds thak; cosB+x, - sinB < 0 andR" is degenerated.
Contradiction to the fact th&, is a spanning set of tHed. Therefore, sifo+fB) > 0,x; > 0 and
WTX > 0. |

Claim 47 Using the notation introduced in the proof of Lemma 23,

sin(a +B) > 0.
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Proof By definition we get that for all samples &,

X% cos — X, - X, - sina > 0,
¥, 2 cosB+ X, - X, - sinB > 0.

Multiplying the first inequality by sifg > 0 (0 < 3 < ), the second inequality by sin> 0, adding
the two, and using the trigonometric identity

sin(a + B) = sina cos + cosa sing,

we have
sin(a+p) X2 > 0.

Since there is a sample &, with a vector component; # 0, we conclude that sia+3) > 0. W
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