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Abstract
We considerselective classification, a term we adopt here to refer to ‘classification with a rejectop-
tion.’ The essence in selective classification is to trade-off classifier coverage for higher accuracy.
We term this trade-off therisk-coverage (RC) trade-off. Our main objective is to characterize this
trade-off and to construct algorithms that can optimally ornear optimally achieve the best possible
trade-offs in a controlled manner. For noise-free models wepresent in this paper a thorough anal-
ysis of selective classification including characterizations of RC trade-offs in various interesting
settings.

Keywords: classification with a reject option, selective classification, perfect learning, high per-
formance classification, risk-coverage trade-off

1. Introduction

In this paper we study the trade-off between coverage and accuracy of classifiers with a reject option,
a trade-off we refer to as therisk-coverage (RC) trade-off. Our main goal is to characterize this trade-
off and to construct algorithms that can optimally or near optimally control it. Throughout the paper
we use the termselective classificationto refer to ‘classification with a reject option.’ Selective
classification was introduced a number of decades ago and among the earliest studies are papers
authored by Chow (1957, 1970), focusing on Bayesian solutions for the case where the underlying
distributions are fully known. Through the years, selective classificationcontinued to draw attention
and numerous papers have been published. The attraction of effectiveselective classification is
rather obvious in applications where one is not concerned with, or can afford partial coverage of
the domain, and/or in cases where extremely low risk is a must but is not achievable in standard
classification frameworks. Classification problems in medical diagnosis and inbioinformatics are
often instances of such applications (Meltzer et al., 2001; Hanczar and Dougherty, 2008).

Despite the relatively large number of research publications on selective classification, the vast
majority of these works have been concerned with implementing a reject option within specific
learning schemes, by endowing a learning scheme (e.g., neural networks, SVMs) with a reject
mechanism. Most of the reject mechanisms were based on “ambiguity” or (lackof) “confidence”
principles: “when confused or when in doubt, refuse to classify.” Whilethere are many convincing
accounts for the potential effectiveness of selective classification in reducing the risk, we are not
familiar with a thorough or conclusive discussions on the relative power ofthe numerous rejection
mechanisms that have been considered so far. The very few theoreticalworks that considered se-
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lective classification (see Section 10) do provide some risk or coverage bounds for specific schemes
(e.g., ensemble methods) or learning principles (e.g., ERMs), but altogethercharacterizations of
achievable (or non-achievable) RC trade-offs are absent in the current literature. In particular, the
work done so far has not facilitated formal discussions of RC trade-offoptimality.

A thorough understanding and effective use of selective classificationrequires characterization
of the theoretical and practical boundaries of RC trade-offs, which are essential elements in any dis-
cussion ofoptimality in selective classification. These missing elements in the current literature are
critical when constructing and exploring selective classification schemes and selective classification
algorithms that aim at achieving optimality in controlling the RC trade-off.

One of our longer term goals is to provide such characterizations and introduce a notion of op-
timality for selective classification in the most general agnostic model. As a firststep, however, we
focus in this work on noiseless settings whereby a perfect hypothesis for the problem at hand exists
(the so called “realizable case”). Moreover, we place special emphasison the extreme case where
zero risk has to be guaranteed. For this extreme case, which we call “perfect learning,” we pro-
vide a thorough analysis that includes tight positive and negative results for the most general types
of realizable settings (distribution independent, infinite hypothesis spaces). We also discuss some
specific settings (linear classifiers, specific distribution families) and show an efficient algorithm for
linear classifiers that achieves “perfect learning” with guaranteed coverage. Our results on “perfect
learning” are instrumental in exploring entire RC trade-offs. Recalling known results on optimal
standard realizable learning (no rejection is allowed), we show how to “interpolate” bounds and
strategies for these two extreme cases (perfect learning and standard learning) so as to reveal upper
and lower envelopes of optimal RC trade-offs.

2. Selective Classification: Preliminary Definitions

Let X be some feature space, for example,d-dimensional vectors inRd. In standard binary classi-
fication, the goal is to learn a binary classifierf : X → {±1}, using a finite training sample ofm
labeled examples,Sm = {(xi ,yi)}m

i=1, assumed to be sampled i.i.d. from someunknownunderlying
distributionP(X,Y) overX ×{±1}. We assume that the classifier is to be selected from a hypoth-
esis spaceF and focus on therealizablesetting where the labels are determined by someunknown
target hypothesis f∗ ∈ F . Thus, it is assumed thatP satisfies PrP(Y = f ∗(X)|X) = 1.

In selective classificationthe learner should output a binaryselective classifierdefined to be a
pair ( f ,g), with f being a standard binary classifier, andg : X → [0,1] a selection functionwhose
meaning is as follows. When applying the selective classifier to a samplex, its output is:

( f ,g)(x) ,

{
re ject, w.p. 1−g(x);
f (x), w.p. g(x).

(1)

Thus, in its most general form, the selective classifier israndomized. Whenever the selection func-
tion is a zero-one rule,g : X →{0,1}, we say that the selective classifier is deterministic. Note that
“standard learning” (i.e., no rejection is allowed) is the special case of selective classification where
g(x) selects all points (i.e.,g(x) ≡ 1).

The two main characteristics of a selective classifier are itscoverageand itsrisk (or “true error”).

Definition 1 (coverage) Thecoverageof a selective classifier( f ,g) is the mean value of the selec-
tion function g(X) taken over the underlying distribution P,

Φ( f ,g) , E [g(X)] .
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Definition 2 (risk) For a bounded loss functionℓ : Y ×Y → [0,1], we define the risk of a selective
classifier( f ,g) as the average loss on the accepted samples,

R( f ,g) ,
E [ℓ( f (X),Y) ·g(X)]

Φ( f ,g)
.

This risk definition clearly reduces to the standard definition of risk ifg(x) ≡ 1. Note that (at the
outset) both the coverage and risk areunknown quantitiesbecause they are defined in terms of the
unknown underlying distributionP.

We define a learning algorithmALG to be a (random) function that, given a sampleSm, chooses
a selective classifier( f ,g). We evaluate learners with respect to their coverage and risk and derive
both positive and negative results on achievable risk and coverage. Our model is a slight extension
of the standard minimax model for standard statistical learning as described,for example, by Antos
and Lugosi (1998). Thus, we consider the following game between the learner and an adversary.
The parameters of the game are a domainX and an hypothesis classF .

1. A tolerance levelδ and a training sample sizemare given.

2. The learner chooses a learning algorithmALG.

3. With full knowledge of the learner’s choice, the adversary choosesa distributionP(X) over
X , and a target hypothesisf ∗ ∈F (or a distribution overF according to whichf ∗ is selected).

4. A training sampleSm is drawn i.i.d. according toP and f ∗.

5. ALG is applied onSm and outputs a selective classifier( f ,g).

The result of the game is evaluated in terms of the risk and coverage obtained by the chosen selective
classifier and clearly, these are random quantities that trade-off each other. A positive resultin
this model is a pair of bounds,BR = BR(F ,δ,m) andBΦ = BΦ(F ,δ,m), for risk and coverage,
respectively, that for anyδ andm, hold with high probability, of at least 1−δ for anydistributionP;
namely,

Pr{R( f ,g) ≤ BR ∧ Φ( f ,g) ≥ BΦ} ≥ 1−δ.

The probability is taken w.r.t. the random choice of training samplesSm, as well as w.r.t. all other
random choices introduced, such as a random choice off ∗ by the adversary (if applicable), a random
choice of( f ,g) by ALG (if applicable), and the randomized selection function (Equation (1)).

A negative resultis a probabilistic statement on the impossibility of any positive result. Thus,
in its most general form a negative result is a pair of boundsBR andBΦ that, for anyδ, satisfy

Pr{R( f ,g) ≥ BR ∨ Φ( f ,g) ≤ BΦ} ≥ δ,

for someprobability P. Here again, probability is taken w.r.t. the random choice of the training
samplesSm, as well as w.r.t. all other random choices.

For a selective classifier( f ,g) with coverageΦ( f ,g) we can specify a Risk-Coverage (RC)
trade-off as a bound on the riskR( f ,g), expressed in terms ofΦ( f ,g). Thus, apositive result on the
RC trade-offis a probabilistic statement of the following form

Pr{R( f ,g) ≤ B(Φ( f ,g),δ,m)} ≥ 1−δ.
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Similarly, anegative result on the RC trade-offis a statement of the form,

Pr{R( f ,g) ≥ B(Φ( f ,g),δ,m)} ≥ δ.

Clearly, all results (positive and negative) are qualified by the model parameters, namely the do-
mainX and the hypothesis spaceF , and the quality/generality of a result should be assessed w.r.t.
generality of these parameters. An additional major consideration is, of course, the computational
complexity of the learning algorithm.

Finally, in the sequel we rely on the following standard definition of the version space (Mitchell,
1977).

Definition 3 (version space)Given an hypothesis classF and a training sample Sm, the version
space VSF ,Sm is the set of all hypotheses inF that classify Sm correctly.

3. Contributions

The purpose of this section is to provide a high level technical overview ofour contributions. Using
a training sampleSm, the goal in selective classification is to output a selective classifier( f ,g) that
has sufficiently low risk with sufficiently high coverage. Obviously, these two quantities trade-off
each other. We call the trade-off between risk and coverage therisk-coverage (RC) trade-off. The
best way to benefit from selective classification is tocontrol the creation of the classifier so as to
meet a prescribed error/coverage specification along the RC trade-off. For example, it might be
desirable to devise a learning system that will receive as input an error constraint (say, 2% error)
and, based on a finite (and small) training sample, will be capable of generating a classifier whose
ensured test error (w.h.p.) is not larger than 2%, while having the maximum possible coverage of
the domain. If the RC trade-off is revealed, it is possible to know if the 2% error constraint can be
met and what would be the corresponding coverage.

In Figure 1 we schematically depict elements of the RC trade-off. Thex-axis measures risk
(error in the case of the 0/1 loss) and they-axis is coverage. The entire region depicted, called
the RC plane, consisting of all(r,c) points in the rectangle of interest, wherer is a risk (error)
coordinate andc is a coverage coordinate. Assume a fixed problem setting (including an unknown
underlying distributionP, m training examples drawn i.i.d. fromP, an hypothesis spaceF and a
tolerance parameterδ). To fully characterize the RC trade-off we need to determine for each point
(r,c) on the RC plane if it is (efficiently) “achievable.” We say that(r,c) is (efficiently)achievable
if there is an (efficient) learning algorithm that will output a selective classifier ( f ,g) such that with
probability of at least 1−δ, its coverage is at leastc and its risk is at mostr.

Notice that pointr∗ (the coordinate(r∗,1)) where the coverage is 1 represents “standard learn-
ing.” At this point we require full coverage with certainty and the achievable risk represents the
lowest possible risk in our fixed setting (which should be achievable with probability of at least
1−δ). Pointr∗ represent one extreme of the RC trade-off. The other extreme of the RC trade-off is
pointc∗, where we require zero riskwith certainty. The coverage atc∗ is the optimal (highest possi-
ble) in our setting when zero error is required. We call pointc∗ perfect learningbecause achievable
perfect learning means that we can generate a classifier that never errs with certainty for the problem
at hand. Note that at the outset, it is not at all clear if non-trivial perfect learning (with guaranteed
positive coverage) can be accomplished.

The full RC trade-off is some (unknown) curve connecting pointsc∗ andr∗. This curve passes
somewhere in the zone labeled with a question mark and represents optimal selective classification.
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Figure 1: The RC plane and RC trade-off

Points above this curve (e.g., at zoneA) are not achievable. Points below this curve (e.g., at zoneB)
are achievable. One of the main goals of this paper is to study the RC curve and provide as tight as
possible boundaries for it. To this end we characterize upper and lower envelopes of the RC curve
as schematically depicted in Figure 1. The upper envelop is a boundary of a“non-achievable zone”
(zone A) and therefore we consider any upper envelop as a “negative result.” The lower envelop is a
boundary of an “achievable zone” (zone B) and is therefore considered as a “positive result.” Note
that upper and lower envelopes, as depicted in the figure, represent two different things, which are
formally defined in Section 2 as probabilistic statements on possibility and impossibility.

Pointr∗ on the RC curve (“standard learning”) was extensively studied in the literature. Perfect
learning (pointc∗) was never considered. For the most part, the existing work on selectiveclas-
sification exhibited (either empirically or theoretically) specific but anecdotalpoints or curves in
the achievable zone (B) but, to the best of our knowledge no systematic attempts were ever made
to characterize the RC-curve, which corresponds tooptimal selective classification. In particular,
there are currently no “negative” results attempting to characterize non achievable zones in the RC
plane.

Our technical exposition begins by focusing on perfect learning (pointc∗ in the RC plane).
Given the training setSm, we are required to generate a “perfect” selective classifier( f ,g) for which
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it is knownwith certaintythatR( f ,g) = 0.1 Obviously, zero risk is trivially achieved by takingg
that rejects the entire input spaceX . But is it possible to achieve perfect learning on a guaranteed
fraction of the effective volume ofX?

Our first observation is Theorem 8, stating that for any finite hypothesis classF , perfect learning
with guaranteed coverage is achievable by a particular selective classification strategy. For any
toleranceδ, with probability of at least 1− δ, it is guaranteed that the coverage achieved by this
strategy will be at least

1− 1
m

O(|F |+ ln(1/δ)). (2)

The learning strategy that achieves this performance is simple and natural and can be termedcon-
sistent selective strategy (CSS): take f to be any hypothesis from the version space (with respect
to Sm), and construct ag that deterministically rejects any point that is not classified unanimously
by all version space hypotheses. This CSS strategy is optimal for perfect learning. We show in
Theorem 7 that any other strategy that achieves perfect learning cannot have larger coverage than
CSS. It is interesting to note that the optimal selection function is not obtained bythresholding soft
classification values, which is the commonly used heuristic.

It is easy to see why the classifier( f ,g) selected by CSS has zero risk with certainty. Since
f ∗ is assumed to be in the version space, and sinceg rejects all instances that are not classified
unanimously by all the hypotheses in the version space, any selection off from the version space
will have identical classification tof ∗. Nonetheless, it is surprising at the outset that the selection
functiong doesn’t reject a lot and in fact, its rejection rate can be very small for sufficiently largem
as it decreases at rate 1/m.

This distribution-free coverage guarantee (2) is proven to be nearly tightfor CSS and therefore,
it is the best possible bound for any selective learner. Specifically, as shown in Theorem 11, there
exist a particular finite hypothesis class and a particular underlying distribution for which a matching
negative result (up to multiplicative constants) holds for anyconsistent selectivelearner. This result
is readily extended to any selective learner by the CSS coverage optimality ofTheorem 7.

What about infinite hypothesis spaces? We show in Theorem 14 that it is impossible to provide
any coverage guarantees for perfect learning, in the general case. Specifically, for linear classifiers,
we show a bad distribution for which any selective learner ensuring zerorisk will be forced to reject
the entire volume ofX , thus failing to guarantee more than zero coverage. Thus, in the generalcase,
point c∗ is simply the coordinate(0,0) on the RC plane. The implication of this result is that when
aiming at very small risks, the rejection rate might in general be very high (very small coverage),
which may be unacceptable in many applications.

So the bad news is that perfect learning with guaranteed coverage cannot in general be achieved
if the hypothesis space is infinite. Fortunately, however, this observation does not preclude non-
trivial perfect learning in less adverse situations. What can be accomplished are both data-dependent
and distribution-dependent guarantees. For any selective hypothesis( f ,g), that is consistent with a
sampleSm, Theorem 21 ensures perfect learning with a high probability coverageguarantee of the
following form:

Φ( f ,g) ≥ 1− 1
m

O

(

γ(F , n̂) ln
m

γ(F , n̂)
+ ln

m
δ

)

, (3)

1. The requirement that in perfect learning the risk is zerowith certaintyis dual to the requirement that the coverage is
100%with certaintyin standard learning.
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wheren̂ is a new empirical quantity measuring the version space compression set size(see Defini-
tion 15), andγ(F ,k) is a new complexity measure of the set of all possible version spaces generated
by training samples of sizek. We callγ(F ,k) the “order-k characterizing set complexity” ofF , and
it is derived using VC-dimension arguments (see Definition 18).

This general data-dependent bound is then applied to linear classifiers.Relying on a classical
result in combinatorial geometry that bounds the number of facets of polytopes, we derive in Theo-
rem 27 the following upper bound on the order-k characterizing set complexity of linear classifiers
in R

d,
γ(F ,k) ≤ O(d3(k/d)d/2 logk).

Plugging this bound to (3) results in a data-dependent compression bound for linear classifiers in
terms ofn̂, the size of the compression set of the version space.

We then consider the evaluation of the compression set size ˆn for specific distributions. Using a
classical result in geometric probability theory on the average number of maximal random vectors,
we show in Lemma 32 that if the underlying distribution is any (unknown) finite mixture of arbitrary
multi-dimensional Gaussians inRd, then the compression set size of the version space obtained
usingm labeled examples satisfies, with probability of at least 1−δ,

n̂ = O
(

(logm)d/δ
)

.

This bound immediately yields a coverage guarantee for perfect learning of linear classifiers, as
stated in Corollary 33. This is a powerful result providing strong indicationon the potential effec-
tiveness of perfect learning with guaranteed coverage in a variety of applications.

In Section 7 we derive upper and lower envelopes for the RC curve. Our results on perfect
learning described above play a major role in the derivation of these envelopes. We generalize the
CSS strategy and define a “controllable selective strategy” (Definition 34). This strategy is parame-
terized by a numberα ∈ [0,1] which controls the rejection rate by interpolating perfect learning and
optimal standard learning. In particular, this strategy, applied withα = 0 is perfect learning, and
with α = 1 it is optimal standard learning (full coverage), which in the realizable case is known to
be achieved by any consistent learner. For any finite hypothesis space, the lower envelop we present
in Theorem 36 is

Rα( f ,g) ≤
(

1−Φ0/Φα( f ,g)

1−Φ0

)

· 1
m

(

ln |F |+ ln
2
δ

)

,

whereΦ0 is the coverage guarantee of perfect learning in Equation (2),Rα( f ,g) is the risk of the
“controllable selective strategy” with control parameterα, andΦα( f ,g) is the matching coverage.

The upper envelop on the RC curve is then derived in Theorem 37 for any selective classifier
( f ,g) by constructing a particular bad distribution for which

R( f ,g) ≥ 1
4Φ

·min

(

2Φ−1,2Φ−2+
1

4m
·
[

VCdim(F )− 16
3

ln
1

1−2δ

])

.

An exact implementation of the CSS strategy appears as if it should be computationally diffi-
cult. Given a particular training set, CSS must reject a point iff it is not classified the same by all
hypotheses in the current version space. In Section 8 we show an efficient algorithm that implements
CSS of linear classifiers. The main idea leading to this construction is the following observation.
Given a test pointx we examine if the inclusion ofx with either positive or negative labels in the
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training sets results in linearly separable sets. Clearly, CSS must rejectx iff both these augmented
sets are linearly separable. Thus, the construction of the CSS selection function can be reduced to
two tests of linear separability, which can be efficiently accomplished using known techniques for
testing linear separability. Note that we do not construct the selection function explicitly during the
training process, a task that may indeed require intensive computation. Rather, we benefit from a
“lazy learning” approach whereby the selection function is constructed at test time per each example
(as in nearest neighbor algorithms).

4. Perfect Learning with Finite Hypothesis Spaces

In this section we consider the simplest case of realizable learning with a finite hypothesis space
F . We show that perfect selective classification with guaranteed coverage is achievable (from a
learning-theoretic perspective) by a learning strategy termedconsistent selective strategy (CSS).
Moreover, CSS is shown to be optimal in its coverage rate, which is fully characterized by providing
lower and upper bounds that match in their asymptotic behavior in the sample sizem. We start
by defining a region inX , which is termed the “maximal agreement set.” Any hypothesis that is
consistent with the sampleSm is guaranteed to be consistent with the target hypothesisf ∗ on this
entire region.

Definition 4 (agreement set)LetG ⊆ F . A subsetX ′ ⊆ X is anagreement setwith respect toG if
all hypotheses inG agree on every instance inX ′, namely,

∀ g1,g2 ∈ G , x∈ X ′, g1(x) = g2(x).

Definition 5 (maximal agreement set)LetG ⊆ F . Themaximal agreement setwith respect toG
is the union of all agreement sets with respect toG .

Recall that the version spaceVSF ,Sm ⊆ F is the set of all hypotheses that classifySm correctly
(Definition 3).

Definition 6 (consistent selective strategy (CSS))Given Sm, a consistent selective strategy (CSS)
is a selective classification strategy that takes f to be any hypothesis in VSF ,Sm (i.e., a consistent
learner), and takes a (deterministic) selection function g that equals one forall points in the maximal
agreement set with respect to VSF ,Sm, and zero otherwise.

Recall that the (unknown) labeling hypothesisf ∗ is in VSF ,Sm. Thus, CSS simply rejects all points
that might incur an error with respect tof ∗. An immediate consequence is that any CSS selective
hypothesis( f ,g) always satisfiesR( f ,g) = 0. The main concern, however, is whether its coverage
Φ( f ,g) can be bounded from below and whether any other strategy that achieves perfect learning
with certainty can achieve better coverage. The following theorem provesthat CSS has the largest
possible coverage among all strategies.

Theorem 7 (CSS coverage optimality)Given Sm, let ( f ,g) be a selective classifier chosen by any
strategy that ensures zero risk with certainty foranyunknown distribution P andanytarget concept
f ∗ ∈ F . Let( fc,gc) be a selective classifier selected by CSS using Sm. Then,Φ( f ,g) ≤ Φ( fc,gc).
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Proof For the sake of simplicity we limit the discussion to deterministic strategies. The extension
to stochastic strategies is omitted but is straightforward. Given a hypotheticalsampleS̃m of size
m, let ( f̃c, g̃c) be the selective classifier chosen by CSS and let( f̃ , g̃) be the selective classifier
chosen by any competing strategy. Assume that there existsx0 ∈ X (x0 6∈ S̃m) such that ˜g(x0) = 1
and g̃c(x0) = 0. According to the CSS construction of ˜gc, sinceg̃c(x0) = 0, there are at least two
hypothesesh1,h2 ∈ VSF ,S̃m

such thath1(x0) 6= h2(x0). Assume, without loss of generality, that
h1(x0) = f̃ (x0). We will now construct a new “imaginary” classification problem and show that,
under the above assumption, the competing strategy fails to guarantee zero risk with certainty. Let
the imaginary target conceptf ′∗ beh2 and the imaginary underlying distributionP′ be

P′(x) =







(1− ε)/m, if x∈ S̃m;
ε, if x = x0;
0, otherwise.

Imagine a random sampleS′m drawn i.i.d fromP′. There is a positive (perhaps small) probability that
S′m will equal S̃m, in which case( f ′,g′) = ( f̃ , g̃). Sinceg′(x0) = g̃(x0) = 1 and f ∗(x0) 6= f ′(x0), with
positive probabilityR( f ′,g′) = ε > 0. Contradiction to the assumption that the competing strategy
achieves perfect learning with certainty. It follows that for any sampleS̃m and for anyx ∈ X , if
g̃(x) = 1 theng̃c(x) = 1. Consequently, for any unknown distributionP, Φ( f̃ , g̃) ≤ Φ( f̃c, g̃c).

The next result establishes the existence of perfect learning with guaranteed coverage in the
finite case.

Theorem 8 (guaranteed coverage)Assume a finiteF and let ( f ,g) be a selective classifier se-
lected by CSS. Then, R( f ,g) = 0 and for any0≤ δ ≤ 1, with probability of at least1−δ,

Φ( f ,g) ≥ 1− 1
m

(

(ln2)min{|F |, |X |}+ ln
1
δ

)

. (4)

Proof For anyε, let G1,G2, . . . ,Gk, be all the hypothesis subsets ofF with corresponding maximal
agreement sets,λ1,λ2, . . . ,λk, such that eachλi has volume of at most 1− ε with respect toP. For
any 1≤ i ≤ k, the probability that a single point will be randomly drawn fromλi is thus at most
1− ε. The probability that all training points will be drawn fromλi is therefore at most(1− ε)m. If
a training pointx is in X \λi , then there are at least two hypothesesf1, f2 ∈ Gi that do not agree on
x. Hence,

Pr
P

(Gi ⊆VSF ,Sm) ≤ (1− ε)m.

We note that
k≤ 2min{|F |,|X |},

and by the union bound,

Pr
P

(∃Gi Gi ⊆VSF ,Sm) ≤ k · (1− ε)m ≤ 2min{|F |,|X |} · (1− ε)m.

Therefore, with probability of at least 1−2min{|F |,|X |} · (1− ε)m, the version spaceVSF ,Sm differs
from any subsetGi , and hence it has a maximal agreement set with volume ofat least1− ε. Using
the inequality 1− ε ≤ exp(−ε), we have

2min{|F |,|X |} · (1− ε)m ≤ 2min{|F |,|X |} ·exp(−mε).
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Equating the right-hand side toδ and solving forε completes the proof.

A leading term in the coverage guarantee (4) is|F |. In corresponding results in standard con-
sistent learning (Haussler, 1988) the corresponding term is log|F |. This may raise a concern on
the tightness of (4). However, as shown in Corollary 13, this bound is tight(up to multiplicative
constants). To prove the Corollary we will require the following two definitions.

Definition 9 (binomial tail distribution) Let Z1,Z2, . . .Zm be m independent Bernoulli random vari-
ables each with a success probability p. Then for any0≤ k≤ m we define

Bin(m,k, p) , Pr

(
m

∑
i=1

Zi ≤ k

)

.

Definition 10 (binomial tail inversion, Langford, 2005) For any0≤ δ ≤ 1 we define

Bin(m,k,δ) , max
p

{p : Bin(m,k, p) ≥ δ} .

Theorem 11 (non-achievable coverage, implicit bound)Let 0 ≤ δ ≤ 1
2, m, and n> 1 be given.

There exist a distribution P, that depends on m and n, and a finite hypothesis classF of size n,
such that for any selective classifier( f ,g), chosen fromF by CSS (so R( f ,g) = 0) using a training
sample Sm drawn i.i.d. according to P, with probability of at leastδ,

Φ( f ,g) ≤ 1− 1
2
·Bin

(

m,
|F |
2

,2δ
)

.

Proof Let X , {e1,e2, . . .en+1} be the standard (vector) basis ofR
n+1, X ′ , X \{en+1} andP be

the source distribution overX satisfying

P(ei) ,

{
Bin
(
m, n

2,2δ
)
/n, if i ≤ n;

1−Bin
(
m, n

2,2δ
)
, otherwise;

whereBin(m,k,δ) is the binomial tail inversion (Definition 10). Since

Bin
(

m,
n
2
,2δ
)

, max
p

{

p : Bin
(

m,
n
2
, p
)

≥ 2δ
}

,

andSm is drawn i.i.d. according toP, we get that with probability of at least 2δ,

∣
∣
{

x∈ Sm : x∈ X ′}∣∣≤ n
2
.

LetF be the class of singletons such that

fi(ej) ,

{
1, if i = j;
−1, otherwise.
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Taking f ∗ , fi∗ , for some 1≤ i∗ ≤ n, we have,

Pr
(

ei∗ 6∈ Sm,
∣
∣
{

x∈ Sm : x∈ X ′}∣∣≤ n
2

)

= Pr
(

ei∗ 6∈ Sm|
∣
∣
{

x∈ Sm : x∈ X ′}∣∣≤ n
2

)

·Pr
(∣
∣
{

x∈ Sm : x∈ X ′}∣∣≤ n
2

)

≥
(

1− 1
n

) n
2

·2δ ≥ δ.

If ei∗ 6∈ Sm then all samples inSm are negative, so each sample inX ′ can reduce the version space
VSF ,Sm by at most one hypothesis. Hence, with probability of at leastδ,

|VSF ,Sm| ≥ |F |− n
2

=
n
2
.

Since the coverageΦ( f ,g) is the volume of the maximal agreement set with respect to the version
spaceVSF ,Sm, it follows that

Φ( f ,g) = 1−|VSF ,Sm| ·
Bin
(
m, n

2,2δ
)

n
≤ 1− 1

2
·Bin

(

m,
|F |
2

,2δ
)

.

Remark 12 The result of Theorem 11 is based on the use of the class of singletons. Augmenting
this class by the empty set and choosing a uniform distribution overX results in a tighter bound.
However, the bound will be significantly less general as it will hold only for asingle hypothesis in
F and not for any hypothesis inF .

Corollary 13 (non-achievable coverage, explicit bound)Let 0 ≤ δ ≤ 1
4, m, and n> 1 be given.

There exist a distribution P, that depends on m and n, and a finite hypothesis classF of size n,
such that for any selective classifier( f ,g), chosen fromF by CSS (so R( f ,g) = 0) using a training
sample Sm drawn i.i.d. according to P, with probability of at leastδ,

Φ( f ,g) ≤ max

{

0,1− 1
8m

(

|F |− 16
3

ln
1

1−2δ

)}

.

Proof Applying Lemma 43 we get

Bin

(

m,
|F |
2

,2δ
)

≥ min

{

1,
|F |
4m

− 4
3m

ln
1

1−2δ

}

.

Applying Theorem 11 completes the proof.
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5. Consistent Selective Classification Over Infinite Hypothesis Spaces

In this section we consider an infinite hypothesis spaceF . We show that in the general case, perfect
selective classification with guaranteed (non-zero) coverage is not achievable even whenF has a
finite VC-dimension. We then derive a meaningful coverage guarantee using posterior information
on the source distribution (data-dependent bound).

We start this section with a negative result that precludes non-trivial perfect learning whenF is
the set of linear classifiers. The result is obtained by constructing a particularly bad distribution.

Theorem 14 (non-achievable coverage)Let m and d> 2 be given. There exist a distribution P,
an infinite hypothesis classF with a finite VC-dimension d, and a target hypothesis inF , such that
Φ( f ,g) = 0 for any selective classifier( f ,g), chosen fromF by CSS using a training sample Sm

drawn i.i.d. according to P.

Proof Let F be the class of all linear classifiers inR
2 and letP be a uniform distribution over the

arcs,
(x−2)2 +y2 = 2, x < 1,

and
(x+2)2 +y2 = 2, x > −1.

Figure 2 depicts this construction. The training setSm consists of points on these arcs, labeled by
any linear classifier that passes between the arcs. The maximal agreementset,A, with respect to
the version spaceVSF ,Sm is partitioned into two subsetsA+ andA− according to the labels obtained
by hypotheses in the version space. Clearly,A+ is confined by a polygon whose vertices lie on the
right-hand side arc. SinceP is concentrated on the arc, the probability volume ofA+ is exactly zero
for any finitem. The same analysis holds forA−, and therefore the coverage is forced to be zero.
The VC-dimension of the class of all linear classifiers inR

2 is 3. Embedding the distributionP in a
higher dimensional spaceRd and using the class of all linear classifiers inR

d completes the proof.

A direct corollary of Theorem 14 is that, in the general case, perfect selective classification with
distribution-free guaranteed coverage is not achievable for infinite hypothesis spaces. However, this
is certainly not the end of the story for perfect learning. In the remainderof this paper we de-
rive meaningful coverage guarantees using posterior or prior information on the source distribution
(data- and distribution-dependent bounds).

In order to guarantee meaningful coverage we first need to study the complexity of the selection
functiong(x) chosen by CSS. The complexity of the classification functionf (x) is determined only
by the hypothesis classF and it is independent of the sample size itself. However, the complexity of
g(x) (the maximal agreement set) chosen by CSS generally depends on the samplesize. Therefore,
increasing the training sample size does not necessarily guarantee non-trivial coverage. Our main
task is to find the complexity class of the family of maximal agreement sets from which g(x) is
chosen. Let us define the family of all maximal agreement sets asH =

S

Hn such thatH1 ⊂H2 ⊂
H3 ⊂ . . .. We can now exploit the fact that CSS chooses a maximal agreement set that belongs to a
specific subclassHn with a complexity measured in terms of the VC dimension ofHn. We term this
approachStructural Coverage Maximization (SCM)following the analogous and familiarStructural
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Figure 2: A worst-case distribution for linear classifiers: points are drawn uniformly at random
on the two arcs and labeled by a linear classifier that passes between thesearcs. The
probability volume of the maximal agreement set is zero.

Risk Minimization (SRM)approach (Vapnik, 1998). A useful way to parameterizeH is to use the
size of the “version space compression set” (Definition 15).

Definition 15 (version space compression set)Let Sm be a labeled sample of m points and let
VSF ,Sm be the induced version space. Theversion space compression set, Sn̂ ⊆ Sm is a smallest
subset of Sm satisfying VSF ,Sm = VSF ,Sn̂. Note that for any givenF and Sm, the size of the version
space compression set, denotedn̂ = n̂(F ,Sm), is unique.

Since a maximal agreement set is a region inX , rather than an hypothesis, we formally define the
dual hypothesis that matches every maximal agreement set.

Definition 16 (characterizing hypothesis)Let G ⊆ F and let AG be the maximal agreement set
with respect toG . Thecharacterizing hypothesisofG , fG (x) is a binary hypothesis overX obtaining
positive values over AG and zero otherwise.

We are now ready to formally defineHn, a class we term “order-n characterizing set.”

Definition 17 (order-n characterizing set) For each n, letSn be the set of all possible labeled
samples of size n (all n-subsets, each with all possible labelings). The order-ncharacterizing setof
F , denotedHn, is the set of all characterizing hypotheses fG (x), whereG ⊆ F is a version space
induced by some member ofSn.

Definition 18 (characterizing set complexity) LetHn be the order-n characterizing set ofF . The
order-ncharacterizing set complexityofF , denotedγ(F ,n), is the VC-dimension ofHn.
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Lemma 19 The characterizing hypothesis fVSF ,Sm
(x) belongs to the order-̂n characterizing set of

F , wheren̂ = n̂(F ,Sm) is the size of the version space compression set.

Proof According to Definition 15, there exists a subsetSn̂ ⊂Sm of sizen̂ such thatVSF ,Sm =VSF ,Sn̂.
The rest of the proof follows immediately from Definition 17.

Before stating the main result of this section, we state a classical result that will be used later.

Theorem 20 (Vapnik and Chervonenkis, 1971; Anthony and Bartlett, 1999, p.53)Let F be a
hypothesis space with VC-dimension h. For any probability distribution P onX ×{±1}, with prob-
ability of at least1− δ over the choice of Sm from Pm, any hypothesis f∈ F consistent with Sm
satisfies

R( f ) ≤ ε(h,m,δ) =
2
m

[

hln
2em

h
+ ln

2
δ

]

, (5)

where R( f ) , E [I( f (x) 6= f ∗(x))] is the risk of f .

We note that inequality (5) actually holds only forh≤m. For anyh> m it is clear that no meaningful
upper bound on the risk can be achieved. It is easy to fix the inequality forthe general case by
replacing ln

(
2em

h

)
by ln+

(
2em

h

)
, whereln+ (x) , max(ln(x),1).

Theorem 21 (data-dependent coverage guarantee)For any m, let a1,a2, . . . ,am ∈ R be given,
such that ai ≥ 0 and∑m

i=1ai ≤ 1. Let( f ,g) be a selective CSS classifier. Then, R( f ,g) = 0, and for
any0≤ δ ≤ 1, with probability of at least1−δ,

Φ( f ,g) ≥ 1− 2
m

[

γ(F , n̂) ln+

(
2em

γ(F , n̂)

)

+ ln
2

an̂δ

]

,

wheren̂ is the size of the version space compression set,γ(F , n̂) is the order-̂n characterizing set
complexity ofF .

Proof Given our sampleSm = {(xi , f ∗(xi))}m
i=1 (labeled by the unknown target functionf ∗), we

define the “synthetic” sampleS′m = {(xi ,1)}m
i=1. S′m can be assumed to have been sampled i.i.d from

the marginal distribution ofX with positive labels (P′).
Theorem 20 can now be applied on the synthetic problem with the training sampleS′m, the

distribution P′, and the hypothesis space taken to beHi , the order-i characterizing set ofF . It
follows that for all f ∈VSHi ,S′m

, with probability of at least 1−aiδ over choices ofS′m from (P′)m,

Pr
P′

( f (x) 6= 1) ≤ 2
m

[

hi ln

(
2em
hi

)

+ ln
2

aiδ

]

, (6)

wherehi is the VC-dimension ofHi . Then, applying the union bound yields, with probability of at
least 1−δ, that inequality (6) holds simultaneously for all 1≤ i ≤ m.

All hypotheses in the version spaceVSF ,Sm agree on all samples inSm. Hence, the characterizing
hypothesisfVSF ,Sm

(x) = 1 for any pointx∈ Sm. Let n̂ be the size of the version space compression
set. According to Lemma 19,fVSF ,Sm

(x) ∈ Hn̂. Noting that fVSF ,Sm
(x) = 1 for anyx∈ S′m, we learn

that fVSF ,Sm
(x) ∈VSHn̂,S′m

. Therefore, with probability of at least 1−δ over choices ofSm,

Pr
P

( fVSF ,Sm
(x) 6= 1) ≤ 2

m

[

hn̂ ln

(
2em
hn̂

)

+ ln
2

an̂δ

]

.
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SinceΦ( f ,g) = PrP( fVSF ,Sm
(x) = 1), andhn̂ is the order- ˆn characterizing set complexity ofF , the

proof is complete.

6. Consistent Selective Classification With Linear Classifiers

The data dependent bound in Theorem 21 is stated in terms of a new complexitymeasure (the “char-
acterizing set complexity” of Definition 18). Can this measure be explicitly evaluated or bounded
for some interesting hypothesis classes? In this section we consider the class of linear classifiers in
R

d. Relying on a classical result from combinatorial geometry, we infer an explicit upper bound on
the characterizing set complexity for linear classifiers. Combining this boundwith Theorem 21, we
immediately obtain a data-dependent compression coverage guarantee, asstated in Corollary 28.
We then show that if the unknown underlying distribution is a finite mixture of Gaussians, then
CSS will ensure perfect learning with guaranteed coverage. This powerful result, which is stated in
Corollary 33, indicates that consistent selective classification might be relevant in various applica-
tions of interest.

Fix any positive integerd, and letF , { fw̄,φ(x̄)} be the class of all linear binary classifiers in
R

d, wherew̄ ared-dimensional real vectors,φ are scalars, and

fw̄,φ(x̄) =

{
+1, w̄T x̄−φ ≥ 0;
−1, w̄T x̄−φ < 0.

Given a binary labeled training sampleSm, defineR+ , R+(Sm)⊆R
d to be the subset of the maximal

agreement set with respect to the version spaceVSF ,Sm, consisting of all points with positive labels.
R+ is called the ‘maximal positive agreement set.’ The ‘maximal negative agreement set’, R− ,

R−(Sm), is defined similarly. Before continuing, we define a new symmetric hypothesisclassF̃
that allows for a simpler analysis. LetF̃ , { fw̄,φ(x̄)} be the function class

f̃w̄,φ(x̄) =







+1, if w̄T x̄−φ > 0;
0, if w̄T x̄−φ = 0;
−1, if w̄T x̄−φ < 0,

where we interpret 0 as a classification that agrees with both+1 and−1. Given a sampleSm,
we defineR̃+ ⊆ R

d to be the region inRd for which any hypothesis in the version space2 VSF̃ ,Sm

classifies either+1 or 0 (i.e., this is the maximal positive agreement set). We defineR̃− analogously
with respect to negative or zero classifications. WhileF and F̃ are not identical, the maximal
agreement sets they induce are identical. This is stated in the following technical lemma whose
proof appears in the appendix.

Lemma 22 (maximal agreement set equivalence)For any linearly separable sample Sm, R+ =
R̃+ and R− = R̃−.

The next technical lemma, whose proof also appears in the appendix, provides useful information
on the geometry of the maximal agreement set for the class of linear classifiers.

2. Any hypothesis inF̃ that classifies every sample inSm correctly or as 0 belongs to the version space.
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Lemma 23 (maximal agreement set geometry I)Let Sm be a linearly separable labeled sample
that is a spanning set ofRd. Then the regions R+ and R− are each an intersection of a finite number
of half-spaces, with at least d samples on the boundary of each half-space.

Our goal is to bound the characterizing set complexity ofF . As we show below, this complexity
measure is directly related to the number of facets of the convex hull ofnpoints inR

d. The following
classical combinatorial geometry theorem by Klee (see Preparata and Shamos, 1990, page 98) is
thus particularly useful. The statement of Klee’s theorem provided here isreadily obtained from the
original by using the Stirling approximation of the binomial coefficient.

Theorem 24 (Klee, 1966)The number of facets of a d-polytope with n vertices is at most

2·
(

en
⌊d/2⌋

)⌊d/2⌋
. (7)

An immediate conclusion is that (7) upper bounds the number of facets of the convex hull of n points
in R

d (which is of course a d-polytope).

Lemma 25 (maximal agreement set geometry II)Let Sn be a linearly separable sample consist-
ing of n≥ d+1 labeled points. Then the regions R+(Sn) and R−(Sn) are each an intersection of at
most

2(d+1) ·
(

2en
d

)⌊ d+1
2 ⌋

half-spaces inRd.

Proof For the sake of clarity, we limit the analysis to a sampleSn in general position; that is,
we assume that no more thand points lie on a(d− 1)-dimensional plane. Handling a sample
Sn in arbitrary position can be straightforwardly treated by including an appropriate infinitesimal
displacement of the points (the technical proof is omitted).

By Lemma 22, we can limit our discussion to the hypothesis spaceF̃ (rather thanF ). SinceSn

includes more thand samples in general position it is a spanning set ofR
d. According to Lemma 23,

R+ is an intersection of a finite number of half-spaces, with at leastd samples on the boundary of
each half-space (andexactly din the general position). LetS+ ⊆ Sn be the subset of all positive
samples inSn, andS− ⊆ Sn, the negative ones. Let̃fw̄,φ be one of the half-spaces definingR+. Then,

∀x̄∈ Sn

{
w̄T x̄−φ ≥ 0, if x̄∈ S+;
w̄T x̄−φ ≤ 0, if x̄∈ S−.

Also, exactlyd samples, ¯x, satisfyw̄x̄−φ = 0.
We now embed the samples inR

d+1 using the following transformation, ¯x→ x̄′:

x̄′ ,

{
(0, x̄), if x̄∈ S+;
(1,−x̄), if x̄∈ S−.

For each half-space(w̄,φ) in R
d we define a unique half-space,(w̄′,φ′), in R

d+1,

w̄′ , (2φ, w̄), φ′ , φ.
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We observe that

w̄′T x̄′−φ′ =

{
w̄T x̄−φ ≥ 0, if x̄∈ S+;
2φ− w̄T x̄−φ = −(w̄T x̄−φ) ≥ 0, if x̄∈ S−,

and for exactlyd samples we have

w̄′T x̄′−φ′ =

{
w̄T x̄−φ = 0, if x̄∈ S+;
2φ− w̄T x̄−φ = −(w̄T x̄−φ) = 0, if x̄∈ S−.

Let v̄ be any orthogonal vector to thed samples on the boundary of the half-space. Defining

w̄′′ , w̄′ +αv̄, φ′′ , φ′,

with an appropriate choice ofα we have,

∀x̄′ ∈ Sn w̄′′T x̄′−φ′′ = w̄′T x̄′−φ′ +αv̄′T x̄′ ≥ 0,

and for exactlyd+1 samples (including the originald samples),

w̄′′x̄′−φ′′ = 0.

We observe that̃fw̄′′,φ′′ is a facet of the convex hull of the samples inR
d+1. Up to d + 1 different

half-spaces inRd can be transformed into a single half-space inR
d+1 (the number of combinations

of choosingd samples out ofd + 1 samples on the boundary). Using Theorem 24, we bound the
numberF(d) of facets of the convex hull of the points inRd+1 as follows:

F(d) ≤ 2·
(

en
⌊

d+1
2

⌋

)⌊ d+1
2 ⌋

≤ 2·
(

2en
d

)⌊ d+1
2 ⌋

.

Since up tod+1 half-spaces inRd can be mapped onto a single facet of the convex hull inR
d+1,

we can bound the number of half-spaces inR
d by

(d+1) ·F(d) ≤ 2(d+1) ·
(

2en
d

)⌊ d+1
2 ⌋

.

Lemma 26 (Blumer et al., 1989, Lemma 3.2.3) Let F be a binary hypothesis class of finite VC
dimension h≥ 1. For all k ≥ 1, define the k-fold intersection,

Fk∩ ,

{

∩k
i=1 fi : fi ∈ F ,1≤ i ≤ k

}

,

and the k-fold union,

Fk∪ ,

{

∪k
i=1 fi : fi ∈ F ,1≤ i ≤ k

}

.

Then, for all k≥ 1,
VC(Fk∩),VC(Fk∩) ≤ 2hklog(3k).
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Lemma 27 (characterizing set complexity)Fix d ≥ 2 and n> d. LetF be the class of all linear
binary classifiers inRd. Then, the order-n characterizing set complexity ofF satisfies

γ(F ,n) ≤ 83· (d+1)3 ·
(

2en
d

)⌊ d+1
2 ⌋

· logn.

Proof LetG =Fk∩ be the class ofk-fold intersections of half-spaces inRd. Since the VC dimension
of the class of all half-spaces inRd is d+1, we obtain, using Lemma 26, that the VC dimension of
G satisfies

VC(G) ≤ 2k log(3k)(d+1).

LetHn be the order-n characterizing set ofF . From Lemma 25 we know that any hypothesisf ∈Hn

is a union of two regions, where each region is an intersection of no more than

k = 2(d+1) ·
(

2en
d

)⌊ d+1
2 ⌋

half-spaces inRd. Therefore,Hn ⊂ G2∪. Using Lemma 26, we get

VC(Hn) ≤ VC(G2∪) ≤ 4log(6) ·VC(G) ≤ 8k log(6) log(3k)(d+1)

≤ 16(d+1)2 ·
(

2en
d

)⌊ d+1
2 ⌋

· log(6) · log

(

6(d+1) ·
(

2en
d

)⌊ d+1
2 ⌋)

.

Forn > d ≥ 2 we get

log

(

6(d+1) ·
(

2en
d

)⌊ d+1
2 ⌋)

≤ log(6n)+

⌊
d+1

2

⌋

· log
2en
d

≤ 3· logn+

⌊
d+1

2

⌋

· logn2 ≤ (d+4) · logn≤ 2· (d+1) · logn.

Therefore,

VC(Hn) ≤ 83· (d+1)3 ·
(

2en
d

)⌊ d+1
2 ⌋

· logn

Corollary 28 (data-dependent coverage guarantee)Let F be the class of linear binary classi-
fiers in R

d and assume that the conditions of Theorem 21 hold. Then, R( f ,g) = 0, and for any
0≤ δ ≤ 1, with probability of at least1−δ,

Φ( f ,g) ≥ 1− 2
m

[

83(d+1)3Λn̂,d ln+

(
2em
Λn̂,d

)

+ ln
2

an̂δ

]

,

wheren̂ is the size of the empirical version space compression set, and

Λn̂,d =

(
2en̂
d

)⌊ d+1
2 ⌋

· logn̂.
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Proof Define

Ψ(γ(F ,n)) , 1− 2
m

[

γ(F ,n) ln+

(
2em

γ(F ,n)

)

+ ln
2

anδ

]

.

We note thatΨ(γ(F ,n)) is a continues function. For anyγ(F ,n) < 2m

∂Ψ(γ(F ,n))

∂γ(F ,n)
= − 2

m
ln

2em
γ(F ,n)

+
2
m

< 0,

and for anyγ(F ,n) > 2m
∂Ψ(γ(F ,n))

∂γ(F ,n)
= − 2

m
< 0.

Thus,Ψ(γ(F ,n)) is monotonically decreasing. Noting that ln+(x) is monotonically increasing, by
applying Theorem 21 together with Lemma 27 the proof is complete.

As long as the empirical version space compression set size ˆn is sufficiently small compared to
m, Corollary 28 provides a meaningful coverage guarantee. Since ˆn might depend onm, it is hard
to analyze the effective rate of the bound. To further explore this guarantee, we now bound ˆn in
terms ofm for a specific family of source distributions and derive a distribution-dependent coverage
guarantee.

Theorem 29 (Bentley, Kung, Schkolnick, and Thompson, 1978)If m points in d dimensions have
their components chosen independently from any set of continuous distributions (possibly different
for each component), then the expected number of convex hull verticesv is

E[v] = O
(

(logm)d−1
)

.

Definition 30 (sliced multivariate Gaussian distribution) A sliced multivariate Gaussiandistri-
bution,N (Σ,µ,w,φ), is a multivariate Gaussian distribution restricted by a half space inR

d. Thus,
if Σ is a non-singular covariance matrix, the pdf of the sliced Gaussian is

1
C

e−
1
2(x−µ)TΣ−1(x−µ) · I(wTx−φ ≥ 0),

where µ= (µ1, . . . ,µd)
T , I is the indicator function and C is an appropriate normalization factor.

Lemma 31 Let P be a sliced multivariate Gaussian distribution. If m points are chosen indepen-
dently from P, then the expected number of convex hull vertices is O

(
(logm)d−1

)
.

Proof Let X ∼N (Σ,µ,w,φ) andY ∼N (Σ,µ). There is a random vectorZ, whose components are
independent standard normal random variables, a vectorµ, and a matrixA such thatY = AZ+ µ.
Since

wTy−φ = wT(Az+µ)−φ = wTAz+wTµ−φ,

we get thatX = AZ0 + µ, whereZ0 ∼ N (I ,0,wTA,φ−wTµ). Due to the spherical symmetry of
Z, we can choose the half-space(wTA,φ−wTµ) to be axis-aligned by rotating the axes. We note
that thed components ofZ are chosen independently and that the axis-aligned half-space enforces
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restriction only on one of the axes. Therefore, the components ofZ0 are chosen independently as
well. Applying Theorem 29, we get that ifm points are chosen independently fromZ0, then the
expected number of convex hull vertices isO

(
(logm)d−1

)
. The proof is complete by noting that the

number of convex hull vertices is preserved under affine transformations.

Lemma 32 (version space compression set size)LetF be the class of all linear binary classifiers
in R

d. Assume that the underlying distribution P is a mixture of a fixed number of Gaussians. Then,
for any 0 ≤ δ ≤ 1, with probability of at least1− δ, the empirical version space compression set
size is

n̂ = O

(
(logm)d−1

δ

)

.

Proof Let Sn be a version space compression set. Consider ¯x0 ∈ Sn. SinceSn is a compression set
there is a half-space,(w̄,φ), such thatfw̄,φ ∈ VSF ,Sn\{x̄0} and fw̄,φ 6∈ VSF ,Sn. W.l.o.g. assume that
x̄0 ∈ Sn is positive; thus ¯wT x̄0− φ < 0, and for any other positive point ¯x ∈ Sn, w̄T x̄− φ ≥ 0. For
an appropriateφ′ < φ, there exists a half-space(w̄,φ′) such that ¯wT x̄0− φ′ = 0, and for any other
positive point ¯x ∈ Sn, w̄T x̄− φ′ > 0. Therefore, ¯x0 is a convex hull vertex. It follows that we can
bound the number of positive samples inSn by the number of vertices of the convex hull of all the
positive points. Definingv as the number of convex hull vertices and using Markov’s inequality, we
get that for anyε > 0,

Pr(v≥ ε) ≤ E[v]
ε

.

Since f ∗ is a linear classifier, the underlying distribution of the positive points is a mixtureof sliced
multivariate Gaussians. Using Lemmas 31 and 44, we get that with probability ofat least 1−δ,

v≤ E[v]
δ

= O

(
(logm)d−1

δ

)

.

Repeating the same arguments for the negative points completes the proof.

Corollary 33 (distribution-dependent coverage guarantee)Let F be the class of all linear bi-
nary classifiers inRd, and let P be a mixture of a fixed number of Gaussians. Then, R( f ,g) = 0,
and for any0≤ δ ≤ 1, with probability of at least1−δ,

Φ( f ,g) ≥ 1−O

(

(logm)d2

m
· 1

δ(d+3)/2

)

.

Proof

Λn̂,d =

(
2en̂
d

)⌊ d+1
2 ⌋

· logn̂≤
(

2e
d

)⌊ d+1
2 ⌋

· n̂d+3
2 .

Applying Lemma 32,

Λn̂,d = O

(

(logm)d2

δ(d+3)/2

)

.

The proof is complete by noting thatΛn̂,d ≥ 1 and using Corollary 28 withai = 2−i .
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7. Risk-coverage Trade-off Envelopes

In previous sections we have shown that by compromising the coverage wecan achieve zero risk.
This is in contrast to the classical setting, where we compromise risk to achievefull coverage. Is it
possible to learn a selective classifier with full control over this trade-off? What are the performance
limitations of this trade-off control?

In this section we present some answers to these questions thus deriving lower and upper en-
velopes for the risk-coverage (RC) trade-off. These results heavilyrely on the previous results on
perfect learning and on classical results on standard learning without rejection. The envelopes are
obtained by interpolating bounds on these two extreme types of learning. We begin this section by
deriving a lower envelop; that is, we introduce a strategy that can control the RC trade-off.

7.1 Lower Envelop: Controlling the Coverage-risk Trade-off

Our lower RC envelop is facilitated by the following strategy, which is a generalization of the
consistent selective classification strategy (CSS) of Definition 6.

Definition 34 (controllable selective strategy)Given amixing parameter0≤ α ≤ 1, thecontrol-
lable selective strategychooses a selective classifier( f ,g) such that f is in the version space VSF ,Sm

(as in CSS), and g is defined as follows: g(x) = 1 for any x in the maximal agreement set, A, with
respect to VSF ,Sm, and g(x) = α for any x∈ X \A.

Clearly, CSS is a special case of the controllable selective strategy obtainedwith α = 0. Standard
consistent learning (in the classical setting) is the special case obtained withα = 1. We now state a
well known (and elementary) upper bound for classical realizable learning.

Theorem 35 (Haussler, 1988)LetF be any finite hypothesis class. Let f∈VSF ,Sm be a classifier
chosen by any consistent learner. Then, for any0≤ δ ≤ 1, with probability of at least1−δ,

R( f ) ≤ 1
m

(

ln |F |+ ln
1
δ

)

,

where R( f ) is standard risk (true error) of the classifier f .

The following result provides a distribution independent upper bound onthe risk of the controllable
selective strategy as a function of its coverage.

Theorem 36 (lower envelop)LetF be any finite hypothesis class. Let( f ,g) be a selective classi-
fier chosen by a controllable selective learner after observing a training sample Sm. Then, for any
0≤ δ ≤ 1, with probability of at least1−δ,

R( f ,g) ≤
(

1−Φ0/Φ( f ,g)

1−Φ0

)

· 1
m

(

ln |F |+ ln
2
δ

)

,

where

Φ0 , 1− 1
m

(

(ln2)|F |+ ln
2
δ

)

.
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Proof For any controllable selective learner with a mixing parameterα we have,

Φ( f ,g) = E [g(X)] = E [I(g(X) = 1)]+αE [I(g(X) 6= 1)] .

By Theorem 8, with probability of at least 1− δ
2,

E [I(g(X) = 1)] ≥ 1− 1
m

(

(ln2)|F |+ ln
2
δ

)

, Φ0.

Therefore, sinceΦ( f ,g) ≤ 1,

α =
Φ( f ,g)−E [I(g(X) = 1)]

1−E [I(g(X) = 1)]
≤ Φ( f ,g)−Φ0

1−Φ0
.

Using the law of total expectation we get

E [ℓ( f (X),Y) ·g(X)] =

0
︷ ︸︸ ︷

E [ℓ( f (X),Y) ·g(X) | g(x) = 1] ·Pr(g(X) = 1)

+ E [ℓ( f (X),Y) ·g(X) | g(x) = α] ·Pr(g(X) = α)

= α ·E [ℓ( f (X),Y) | g(x) = α] ·Pr(g(X) = α)

= α ·E [ℓ( f (X),Y)] .

According to Definition 2.2

R( f ,g) =
E [ℓ( f (X),Y) ·g(X)]

Φ( f ,g)
=

α ·E [ℓ( f (X),Y)]

Φ( f ,g)
=

α ·R( f ,g)

Φ( f ,g)
.

Applying Theorem 35 together with the union bound completes the proof.

7.2 Upper Envelop: Trade-off Control Limitation

We now present a negative result which identifies a region of non-achievable coverage-risk trade-off
on the RC plane. The statement is a probabilistic lower bound on the risk ofanyselective classifier
expressed as a function of the coverage. It negates any high probability upper bound on the risk of
the classifier (where the probability is over choice ofSm and the target hypothesis).

Theorem 37 (non-achievable coverage-risk trade-off)LetF be any hypothesis class and let0≤
δ ≤ 1

4 and m be given. There exists a distribution P (that depends onF ), such that for any selective
classifier( f ,g), chosen using a training sample Sm drawn i.i.d. according to P, with probability of
at leastδ,

R( f ,g) ≥ min

(
1
2
− 1

4Φ( f ,g)
,
1
2
− 1

2Φ( f ,g)
+

1
16m·Φ( f ,g)

·
[

VCdim(F )− 16
3

ln
1

1−2δ

])

Proof If η is the VC-dimension of hypothesis classF , there exists a set of data pointsX ′ =
{e1,e2, . . .eη} shattered byF . LetX , X ′∪{eη+1}. The bad distribution is constructed as follows.
DefineBin(m,k,δ), the binomial tail inversion,

Bin
(

m,
η
2
,2δ
)

, max
p

{

p : Bin
(

m,
η
2
, p
)

≥ 2δ
}

,
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whereBin(m,k, p) is the binomial tail. DefineP to be the source distribution overX satisfying

P(ei) ,

{
Bin
(
m, η

2 ,2δ
)
/η, if i ≤ η;

1−Bin
(
m, η

2 ,2δ
)
, otherwise,

Assuming that the training sample is selected i.i.d. fromP, it follows that with probability of at least
2δ,

∣
∣
{

x∈ Sm : x∈ X ′}∣∣≤ η
2
.

F shattersX ′ thus inducing all dichotomies overX ′. Every sample fromX ′ can reduce the version
space by half, so with probability of at least 2δ, the version spaceVSF ,Sm includes all dichotomies
over at leastη2 instances. Therefore, over these instances (referred to asx1,x2, . . . ,xη/2), with prob-
ability of 1/2 the error is at least12.3

Φ( f ,g) =
η+1

∑
i=1

{P(ei) ·g(ei)} = P(e1) ·
η

∑
i=1

g(ei)+P(eη+1) ·g(eη+1)

≤ P(e1) ·
η
2

∑
i=1

g(xi)+
η
2
·P(e1)+P(eη+1) = P(e1) ·

η
2

∑
i=1

g(xi)+1− η
2
·P(e1)

=⇒ P(e1) ·
η
2

∑
i=1

g(xi) ≥ Φ( f ,g)+
η
2
·P(e1)−1.

Φ( f ,g) ·R( f ,g) =
η+1

∑
i=1

{P(ei) ·g(ei) · I( f (ei) 6= f ∗(ei))} ≥
η
2

∑
i=1

{

P(xi) ·g(xi) ·
1
2

}

≥ Φ( f ,g)−1
2

+
η
4
·P(e1) =

Φ( f ,g)−1
2

+
1
4
·Bin

(

m,
η
2
,2δ
)

.

Applying Lemma 43 we get

R( f ,g) ≥ min

(
1
2
− 1

4Φ( f ,g)
,
1
2
− 1

2Φ( f ,g)
+

1
16m·Φ( f ,g)

·
[

VCdim(F )− 16
3

ln
1

1−2δ

])

Corollary 38 Let0≤ δ ≤ 1
4, m, and n> 1 be given. There exist a distribution P, that depends on m

and n, and a finite hypothesis classF of size n, such that for any selective classifier( f ,g), chosen
using a training sample Sm drawn i.i.d. according to P, with probability of at leastδ, if

Φ( f ,g) ≥ max

{
3
4
,1− 1

16m
·
[

VCdim(F )− 16
3

ln
1

1−2δ

]}

then

R( f ,g) ≥ 1
16m

·
[

VCdim(F )− 16
3

ln
1

1−2δ

]

.

3. According to the game theoretic setting the adversary can choose a distribution overF . In this case the expectation in
the risk is averaged over random instances and random labels. Therefore, the error over the instancesx1,x2, . . . ,xη/2
is exactly 1/2 and we can replace the term 2δ with δ.
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Proof Assuming

Φ( f ,g) ≥ max

{
3
4
,1− 1

16m
·
[

VCdim(F )− 16
3

ln
1

1−2δ

]}

,

we apply Theorem 37 to complete the proof.

8. CSS Implementation: Lazy CSS

In previous sections we analyzed the performance of CSS and proved that (in the realizable case)
it can achieve sharp coverage rates under reasonable assumptions onthe source distribution while
guaranteeing zero error on the accepted samples. However, it remains unclear whether an efficient
implementation of CSS is at reach. In this section we propose an algorithm for CSS and show that
it can be efficiently implemented for linear classifiers.

The following method, which we termlazy CSS, is very similar to the implicit selective sampling
algorithm of Cohn et al. (1994). Instead of explicitly constructing the CSS selection functiong
during training (which indeed can be a very complex task), we adapt a “lazy learning” approach
that can potentially facilitate an efficient CSS implementation during test time. In particular, we
propose to evaluateg(x) at any given test pointx during the classification process. For the training
setSm and a test pointx we define the following two sets:

S+
m,x , Sm∪{(x,+1)}, S−m,x , Sm∪{(x,−1)};

that is,S+
m,x is the (labeled) training setSm augmented by the test pointx labeled positively, and

S−m,x is Sm augmented byx labeled negatively. The selection valueg(x) is determined as follows:
g(x) = 0 (i.e.,x is rejected) iff there exist hypothesesf +, f− ∈ F that are consistent withS+

m,x and
S−m,x, respectively.

The following lemma states that the selection functiong(x) constructed by lazy CSS is a precise
implementation of CSS.

Lemma 39 Let F be any hypothesis class, Sm a labeled training set, and x, a test point. Then x
belongs to the maximal agreement set of VSF ,Sm iff there is no hypothesis f∈ F that is consistent
with either S+m,x or S−m,x.

Proof If there exist hypothesesf +, f− ∈ F that are consistent withS+
m,x andS−m,x, then there exist

two hypotheses inF that correctly classifySm (therefore they belong toVSF ,Sm) but disagree on
x. Hence,x does not belong to the maximal agreement set ofVSF ,Sm. Conversely, ifx does not
belong to the maximal agreement set ofVSF ,Sm, then there are two hypotheses,f1 and f2, which
correctly classifySm but disagree onx. Let’s assume, without loss of generality, thatf1 classifiesx
positively. Then,f1 is consistent withS+

m,x and f2 is consistent withS−m,x. Thus there exist hypothe-
sesf +, f− ∈ F that are consistent withS+

m,x andS−m,x.

For the case of linear classifiers it follows that computing the lazy CSS selection function for any
test point is reduced to two applications of a linear separability test. Yogananda et al. (2007) recently
presented a fast linear separability test with a worst case time complexity ofO(mr3) and space
complexity ofO(md), wherem is the number of points,d is the dimension andr ≤ min(m,d+1).
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Remark 40 For the realizable case we can modifyanyrejection mechanism by restricting rejection
only to the region chosen for rejection by CSS. Since CSS accepts only samples that are guaranteed
to have zero test error, the overall performance of the modified rejection mechanism is guaranteed
to be at least as good as the original mechanism. Using this technique we were able to improve
the performance (RC curve) of the most commonly used rejection mechanism for linear classifiers,
which rejects samples according to a simple symmetric distance from the decision boundary (a
“margin”).

9. Which Rejection Model?

In classical classification and Bayes decision theory the goal is to minimize a cost function (or a
loss function), where the cost is specified by aK×K cost matrix (K = 2 for the binary case). Given
the cost matrix, the objective is to select a classifier that minimizes the average weighted cost (over
unobserved instances) as specified by this matrix. When introducing rejection it is necessary to
introduce a suitable optimization criterion (which is referred here also as a ’rejection model’). Ob-
viously, the desired criterion should take into account both the risk of the classifier and its coverage.
The question we discuss in this section is: what would be an appropriate optimization criterion for
selective classification?

A very common rejection model in the literature is thecost model, whereby a specific costd is
associated with rejection (see, e.g., Tortorella, 2001) and the objective is tominimize the generalized
rejective risk function,

ℓc( f ,g) , d ·E [1−g(X)]+E [I( f (X) 6= Y) ·g(X)] . (8)

Given our definitions of risk and coverage, the function (8) can be easily expressed as a function
over the RC plane of Figure 1,

ℓc(R,Φ) = d(1−Φ( f ,g))+R( f ,g)Φ( f ,g). (9)

For any fixedd, Equation (9) defines level sets (or elevation contour lines) over the RC plane. For
example, Figure 3(a) depicts elevation contour lines induced by (9) with a rejection costd = 0.3.
The thick line in this figure represent our knowledge of the optimal RC trade-off. Thus, an optimal
classifier, according to this cost model, has a risk-coverage profile thatminimizes the cost (9) with
respect to all choices on the RC trade-off curve. This optimal choice is depicted in Figure 3(a) by
the black dot. This popular cost model was refined to accommodate differentiation between the cost
of false positive and false negative as well as different costs for rejection of positive and negative
samples (Herbei and Wegkamp, 2006; Pietraszek, 2005; Tortorella, 2001; Santos-Pereira and Pires,
2005). Such extensions or refinements are appealing because they allowfor additional control
and more flexibility in modeling the problem at hand. Nevertheless, these costmodels are often
criticized for lack of usability in applications where it is impossible or hard to precisely quantify
the cost of rejection. It is interesting to note that for an ideal Bayesian setting, where the underlying
distribution is completely known, Chow showed (Chow, 1970) that the costd upper bounds the
probability of misclassification. In this case one can control the classificationerror by specifying a
matching rejection cost.

In Pietraszek (2005) two additional optimization models are introduced. The first, bounded-
improvementmodel, is depicted as contour elevation lines over the RC plane in Figure 3(c).In this
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model, given a constraint on the misclassification cost, the classifier should reject as few samples as
possible. The constraint is specified by the∞ symbol in the RC plane, which is the cost defined for
the entire rectangle containing all risk-coverage profiles having risk larger than the constraint (0.3 in
this example). In the second,bounded-abstentionmodel (depicted in Figure 3(b)), given a constraint
on the coverage (0.5 in this example), the classifier should have the lowest misclassification cost. It
is argued in Pietraszek (2005) that these models are more suitable than the above cost model in many
applications, for instance, when a classifier with limited classification throughput (e.g., a human
expert) should handle the rejected instances, and in a medical and quality assurance applications,
where the goal is to reduce the misclassification cost to a user-defined value.

Figure 3: Rejection models: (a) cost (b) bounded-abstention (c) bounded-improvement

Which cost model among the above three is the right model? This question is, obviously, ill-
defined and the answer depends on the application. Thus, when deriving bounds for a specific
generalized rejective risk function the results are limited to only one specific model. Instead, one can
handleanyrejective risk function over the RC plane by identifying the RC trade-off. Specifically, by
bounding the coverage and the risk separately (as we do in this paper) wecan in principle optimize
anygeneralized rejective risk function according to any desired rejection model including the cost,
the bounded-improvement and bounded-abstention models.

10. Related Work

The idea of classification with a reject option dates back to Chow’s seminal papers (Chow, 1957,
1970). These papers analyzed both the Bayes-optimal reject decision and the reject-rate vs. error
trade-off. This is done under the 0-1 loss function, assuming that the underlying distribution is
completely known. The Bayes-optimal rejection policy is based, as in standard classification, on
maximum a posteriori probabilities. Instances should be rejected whenevernone of the posteriori
probabilities are sufficiently distinct. This type of rejection can be termedambiguity-basedrejec-
tion. Referring to the diagram in Figure 1, one of Chow’s main results (for the case of complete
probabilistic knowledge), is that the optimal RC trade-off (depicted by the dotted line) is monoton-
ically increasing.

While the optimal decision can be identified in the case of complete probabilistic knowledge, it
was argued (Fumera et al., 2000) that when the a posteriori probabilities are estimated with errors,
Chow’s rule (Chow, 1970) does not provide the optimal error-reject trade-off. Tortorella (2001) and
Santos-Pereira and Pires (2005) discussed Bayesian-optimal decisions in the case of arbitrary cost
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matrices. In these papers the optimal reject rule was chosen based on the ROC curve evaluated on a
subset of the training data. As in most papers on the subject emerging fromthe engineering commu-
nity (see, e.g., Fumera et al., 2000; Fumera and Roli, 2002; Pietraszek, 2005; Bounsiar et al., 2006;
Landgrebe et al., 2006) no probabilistic or other guarantees are provided for the misclassification
error.

Very few studies have focused on error bounds for classifiers with a reject option. Hellman
(1970) proposed and analyzed two rejection rules for the nearest neighbor algorithm. Extending
Cover and Hart’s classic result for the 1-nearest neighbor algorithm (Cover and Hart, 1967), Hell-
man showed that the test error (over non-rejected points) of a nearestneighbor algorithm with a
reject option can be boundedasymptotically(as the sample size approaches infinity) by some factor
of the Bayes error (with reject). To the best of our knowledge, this excess risk bound is the first that
has been introduced in the context of classification with a reject option.

Herbei and Wegkamp (2006) developed excess risk bounds for the classification with a reject
option setting where the loss function is the 0-1 loss, extended such that the cost of each reject
point is 0≤ d ≤ 1/2 (cost model; see Section 9). This result generalizes the excess risk bounds of
Tsybakov (2004) for standard binary classification without reject (which is equivalent to the case
d = 1/2). The bound applies to any empirical error minimization technique. This result is further
extended in Bartlett and Wegkamp (2007) and Wegkamp (2007) in various ways, including the use
of the hinge loss function for efficient optimization. The main results of Herbei and Wegkamp
(both for plug-in rules and empirical risk minimization) degenerate, in the realizable case, to a
meaningless bound, where classification with a reject option is not guaranteed to be any better than
classification without reject. These results are also limited only to the cost model(see discussion
on Section 9). Saying that, we must also note that comparing bounds that were derived for the
agnostic setting with our results can be misleading or “unfair” since the agnostic setting is much
more difficult. The only purpose of this comparison is to clarify that the resultshere are not special
cases of any of the currently known agnostic bounds.

Freund et al. (2004) studied a simple ensemble method for binary classification. Given an
hypothesis classF , the method outputs a weighted average of all the hypotheses inF such that the
weight of each hypothesis exponentially depends on its individual trainingerror. Their algorithm
abstains from prediction whenever the weighted average of all individual predictions is inconclusive
(i.e., sufficiently close to zero). Two regret bounds for this algorithm were derived. The first bounds
the probability of error when the classifier decides not to reject. Ifε is the error of the best hypothesis
in F , the error of the aggregating algorithm is bounded above (w.h.p.) by 2ε + O( 1

m1/2−θ ), where
0 < θ < 1/2 is an hyperparameter. The authors also proved that for a sufficiently large training
sample size,m= Ω((

√

ln(1/δ)ln(|F |))1/θ), the probability that the algorithms will abstain from

prediction is bounded above by 5ε+O( ln |F |√
m1/2−θ ). To the best of our knowledge, these bounds are the

first to provide some guarantee for both the error of the classifier and thecoverage. Therefore, these
results are related to the bounded-improvement and bounded-abstention models (see Section 9). As
was rightfully stated by the authors, the final aggregated hypothesis can significantly outperform the
best base-hypothesis inF in some favorable situations. Unfortunately, the regret bound provided
does not exploit these situations, as it is bounded by twice the generalizationerror of the best
hypothesis. Referring to the diagram in Figure 1, The results of Freund et al. can be depicted as a
curve in regionB (thus characterizing some achievable zone). For the realizable case, thebounds of
Freund et al. achieve much slower rates than those we derive in this paper.
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Selective classification is related to selective sampling (Atlas et al., 1990). Inselective sampling
the learner sequentially processes unlabeled examples, and for each one determines whether or not
to request a label. One of the earliest active learning algorithms for the realizable case (termed
“mellow active learner”) was proposed by Cohn et al. (1994). Their well motivated approach is
to request labels only for samples that belong to the region of disagreement(the complement of
our maximal agreement set). As mentioned in Section 8, this is very similar to our CSS. Hanneke
studied the rate for which the region of disagreement collapses as the algorithm processes examples
(Hanneke, 2007, 2009). He introduced the notion ofdisagreement coefficientand derived upper
bounds on the label complexity in active learning expressed in terms of this coefficient. While
his results capture the convergence rate of the region of disagreement as a function of the number
of label requests, in selective classification we are interested in convergence rates as a function
of the size of thetraining set (in selective sampling the number of labels does not necessarily
match the number of samples). Specific disagreement coefficient values were recently derived for
some interesting hypothesis classes including homogeneous linear classifiers in R

d under uniform
data distribution (Hanneke, 2007) and linear classifiers inR

d under smooth data density bounded
away from zero (Friedman, 2009). While coverage bounds and label complexity bounds cannot be
directly compared, we conjecture that formal connections between these two settings exist because
the disagreement region plays a key role in both. The precise relation between these two settings is
yet to be discovered.

11. Concluding Remarks

Selective classification is well recognized as a very attractive technique for improving classification
accuracy. In fact, it is among very few methods that can help in practical applications where suf-
ficiently low error cannot be achieved in the standard model. Nevertheless, not enough is known
about selective classification in order to harness its power in a controlled,optimal way, or to avoid
its use in cases where it cannot sufficiently help.

In this work we made a first step toward a rigorous analysis of selective classification by re-
vealing properties of the risk-coverage trade-off, which representsoptimal selective classification.
By focusing on the extreme case of perfect learning we were able to derive initial results for entire
risk-coverage trade-offs.

Many interesting questions are left open. Among the most important open questions are the
following. What would be an analogous concept to perfect learning in thefully agnostic (non-
realizable) setting? What is the precise relation between selective classification and selective sam-
pling? Is it possible to implement efficiently the CSS strategy and prove usefulbounds for other
natural hypothesis classes? Can selective classification be rigorously analyzed in transductive, semi-
supervised or active settings? With respect to agnostic extensions, while itdoesn’t make much sense
to talk about “perfect learning” in a noisy setting, it is meaningful and interesting to consider the
analogous concept to regret (or excess risk) bounds. Here we could employ a selective strategy
aiming at achieving the error rate of the best hypothesis in the class precisely (and perhaps with
certainty).
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Appendix A.

Lemma 41 For u >
√

2v > 0,
u−v
u+v

≥ 1−4· v
u
.

Proof

u−v
u+v

= 1− 2v
u+v

= 1−2v
u−v

u2−v2 ≥ 1−2v
u

u2−v2 .

Sinceu >
√

2v, we have

u2−v2 >
u2

2
.

Applying to the previous inequality completes the proof.

Lemma 42 (Bernstein’s inequality Hoeffding, 1963)Let X1, . . . ,Xn be independent zero-mean ran-
dom variables. Suppose that|Xi | ≤ M almost surely, for all i. Then for all positive t,

Pr

(
n

∑
i=1

Xi > t

)

≤ exp






− t2/2

∑E
[

X2
j

]

+Mt/3






.

Lemma 43 (binomial tail inversion lower bound) For k > 0 andδ ≤ 1
2,

Bin(m,k,δ) ≥ min

(

1,
k

2m
− 4

3m
ln

1
1−δ

)

.

Proof Let Z1, . . .Zm be independent Bernoulli random variables each with a success probability
0≤ p≤ 1. SettingWi , Zi − p,

Bin(m,k, p) = Pr
Z1,...,Zm∼B(p)m

(
m

∑
i=1

Zi ≤ k

)

= 1−Pr

(
m

∑
i=1

Zi > k

)

= 1−Pr

(
m

∑
i=1

Wi > k−mp

)

.

Clearly,E [Wi ] = 0, |Wi | ≤ 1, andE
[
W2

i

]
= p· (1− p)2+(1− p) · p2 = p· (1− p). Using Lemma 42

(Bernstein’s inequality) we thus obtain,

Bin(m,k, p) ≥ 1−exp

(

− (k−mp)2/2
mp(1− p)+(k−mp)/3

)

.

1633



EL-YANIV AND WIENER

Since(1− p) ≤ 1,

(k−mp)2/2
mp(1− p)+(k−mp)/3

≥ (k−mp)2

2mp+ 2
3 · (k−mp)

=
(k−mp)2

4
3mp+ 2

3 ·k

≥ k2−2mpk
4
3mp+ 2

3 ·k
.

Therefore,

Bin(m,k, p) ≥ 1−e
− k2−2mpk

4
3 mp+ 2

3 ·k .

Equating the right-hand side toδ and solving forp, we have

p≤ k
2m

· k− 2
3t

k+ 2
3 · t

,

wheret , ln 1
(1−δ) . Choosing

p = min

{

1,
1

2m

(

k− 8
3

ln
1

1−δ

)}

= min

{

1,
k

2m
·
(

1−4·
2
3t

k

)}

,

using the fact thatk≥ 1 > 2
√

2
3 ln 1

1/2 ≥ 2
√

2
3 t, and applying Lemma 41, we get

p≤ k
2m

· k− 2
3t

k+ 2
3 · t

.

Therefore,Bin(m,k, p) ≥ δ. SinceBin(m,k,δ) = maxp{p : Bin(m,k, p) ≥ δ}, we conclude that

Bin(m,k,δ) ≥ p = min

(

1,
k

2m
− 4

3m
ln

1
1−δ

)

.

Lemma 44 Let S1 and S2 be two sets inRd. Then,

H(S1∪S2) ≤ H(S1)+H(S2),

where H(S) is the number of convex hull vertices of S.

Proof Assumex∈ S1∪S2 is a convex hull vertex ofS1∪S2. Then, there is a half-space(w,φ) such
that,w·x−φ = 0, and any othery∈ S1∪S2 satisfiesw·y−φ > 0. Assume w.l.o.g. thatx∈ S1. Then
it is clear that anyy∈ S1 satisfiesw·y−φ > 0. Therefore,x is a convex hull vertex ofS1.

Proof of Lemma 22Let S+ ⊆ Sm be the set of all positive samples inSm, andS− ⊆ Sm be the set
of all negative samples. Let ¯x0 ∈ R+. There exists a hypothesisfw̄,φ(x̄) such that

∀ x̄∈ S+, w̄T x̄−φ ≥ 0;

∀ x̄∈ S−, w̄T x̄−φ < 0,

1634



ON THE FOUNDATIONS OFNOISE-FREESELECTIVE CLASSIFICATION

and
w̄T x̄0−φ ≥ 0.

Let’s assume that ¯x0 6∈ R̃+. Then, there exists a hypothesisf̃w̄′,φ′(x̄) such that

∀ x̄∈ S+, w̄′T x̄−φ′ ≥ 0;

∀ x̄∈ S−, w̄′T x̄−φ′ ≤ 0,

and
w̄′T x̄0−φ′ < 0.

Defining
w̄0 , w̄+αw̄′, φ0 , φ+αφ′,

where

α >

∣
∣
∣
∣

w̄T x̄0−φ
w̄′T x̄0−φ′

∣
∣
∣
∣
,

we deduce that there exists a hypothesisfw̄0,φ0(x̄) such that

∀ x̄∈ S+, w̄T
0 x̄−φ0 ≥ 0;

∀ x̄∈ S−, w̄T
0 x̄−φ0 < 0,

and

w̄T
0 x̄0−φ0 = w̄T x̄0−φ+α

[
w̄′T x̄0−φ′]= w̄T x̄0−φ−α

∣
∣w̄′T x̄0−φ′∣∣

< w̄T x̄0−φ−
∣
∣w̄T x̄0−φ

∣
∣= 0.

Therefore, ¯x0 6∈ R+. Contradiction. Hence, ¯x0 ∈ R̃+ andR+ ⊆ R̃+. The proof thatR− ⊆ R̃− follows
the same argument.

To prove thatR̃+ ⊆ R+, we look atVSF̃ ,Sm
:

∀ f̃w̄,φ ∈VSF̃ ,Sm
, x̄∈ R̃+ w̄T x̄−φ ≥ 0.

We observe that iffw̄,φ ∈VSF ,Sm, then f̃w̄,φ ∈VSF̃ ,Sm
. Therefore,

∀ fw̄,φ ∈VSF ,Sm, x̄∈ R̃+ w̄T x̄−φ ≥ 0.

Hence,R̃+ ⊆ R+.
It remains to prove that̃R− ⊆ R−. Assuming ¯x0 6∈ R− implies that there exists a hypothesis

fw̄,φ(x̄) such that

∀ x̄∈ S+, w̄T x̄−φ ≥ 0;

∀ x̄∈ S−, w̄T x̄−φ < 0,

and
w̄T x̄0−φ ≥ 0.
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Defining4

w̄0 , w̄, φ0 , φ−
∣
∣
∣
∣
max
x̄∈S−

(
w̄T x̄−φ

)
∣
∣
∣
∣
,

we conclude that there exists a hypothesisf̃w̄0,φ0(x̄) such that

∀ x̄∈ S+ w̄T
0 x̄−φ0 ≥ 0;

∀ x̄∈ S− w̄T
0 x̄−φ0 ≤ max

x̄∈S−

(
w̄T x̄−φ

)
+

∣
∣
∣
∣
max
x̄∈S−

(
w̄T x̄−φ

)
∣
∣
∣
∣
= 0,

and
w̄T

0 x̄0−φ0 > 0.

Therefore, ¯x0 6∈ R̃−, soR̃− ⊆ R−.

Proof of Lemma 23According to Lemma 22,R+ = R̃+ andR− = R̃−. Therefore, we can restrict
our discussion to the hypothesis classF̃ . Due to the symmetry of the hypothesis classF̃ we will
concentrate only on the positive regionR+. SetG , VSF̃ ,Sm

. By definition,

R̃+ =
\

f ′w̄,φ∈G

f ′w̄,φ,

where f ′w̄,φ denotes the region inX for which the linear classifierf ′w̄,φ obtains the value one or zero.
Let fw̄,φ ∈ G be a half-space withk < d points on its boundary. We will prove that there exist two
half-spaces inG ( fw̄1,φ1, fw̄2,φ2) such that each has at leastk+1 samples on its boundary and

fw̄,φ
\

fw̄1,φ1

\

fw̄2,φ2 = fw̄1,φ1

\

fw̄2,φ2.

Therefore,
R̃+ =

\

f ′w̄,φ∈G\{ fw̄,φ}
f ′w̄,φ.

Repeating this process recursively with every half-space inG, with less thand points on its bound-
ary, completes the proof.

Before proceeding with the rigorous analysis let’s review the main idea behind the proof. If
a half-space inRd has less thand points on its boundary, it has at least one degree of freedom.
Rotating the half-space clockwise or counterclockwise around a specificaxis (defined by the points
on the boundary) by sufficiently small angles will maintain correct classification overSm. We will
rotate the half-space clockwise and counterclockwise until “touching” thefirst point inSm on each
direction. This operation will maintain correct classification but will result in having one additional
point on the boundary. Then we only have to show that the intersection of the three half-spaces
(original and two rotated ones) is the same as the intersection of the two rotatedones.

4. If S− is an empty set we can arbitrarily defineφ0 , φ−1.

1636



ON THE FOUNDATIONS OFNOISE-FREESELECTIVE CLASSIFICATION

Let fw̄,φ ∈ G be a half-space withk < d points on its boundary. Without loss of generality
assume that these points areS0

m , {x̄1, x̄2, ..., x̄k}. For the sake of simplicity we will firsttranslate
the space such that ¯x1 will lie on the origin. Since ¯x1 is on the boundary of the half-space we get

w̄T x̄1−φ = 0 =⇒ φ = w̄T x̄1.

Therefore,
∀x̄∈ S0

m 0 = w̄T x̄−φ = w̄T x̄− w̄T x̄1 = w̄T(x̄− x̄1).

Hence, the weight vector ¯w is orthogonal to all the translated samples(x̄1− x̄1), . . . ,(x̄k− x̄1). We
now havek < d vectors inRd (including the weight vector) so we can always find at least one vector
v̄ which is orthogonal to all the rest. We nowrotate the translated samples around the origin so as
to align the vector ¯w with the first axis, and align the vector ¯v with the second axis. From now on
all translated and rotated coordinates and vectors will be marked with prime. Define the following
rotation matrix inR

d,

Rθ ,










cosθ sinθ 0 0 . . .
−sinθ cosθ 0 0 . . .

0 0 1 0 . . .
0 0 0 1
...

...
...

.. .










.

We can now define two new half-spaces in the translated and rotated space, fRαw̄′,0 and fR−βw̄′,0,
where

α = max
0<α′≤π

{α′ | ∀x̄′ ∈ Sm (w̄′T x̄′) · (Rα′w̄′)T x̄′ ≥ 0}, (10)

and
β = max

0<β′≤π
{β′ | ∀x̄′ ∈ Sm (w̄′T x̄′) · (R−β′w̄′)T x̄′ ≥ 0}. (11)

According to Claim 45, bothfRαw̄′,0 and fR−βw̄′,0 correctly classifySm and have at leastk+1 samples
on their boundaries.

Now we examine the intersection offRαw̄′,0 and fR−βw̄′,0. According to Claim 46, if(Rαw̄′)T x̄′ ≥
0 and(R−βw̄′)T x̄′ ≥ 0, thenw̄′T x̄′ ≥ 0. The intersection offRαw̄′,0, fR−βw̄′,0 and fw̄′,0 thus equals the
intersection offRαw̄′,0 and fR−βw̄′,0, as required.

Claim 45 Both fRαw̄′,0 and fR−βw̄′,0 correctly classify Sm and have at least k+ 1 samples on their
boundaries.

Proof We note that after translation all half-spaces pass through the origin, soφ′ = 0. Recall the
definitions ofα and β as maximums (Equations (10) and (11), respectively). We show that the
maximums overα′ andβ′ are well defined. Let ¯x′ = (x′1,x

′
2, · · ·x′d)T . Sincew̄′ = (1,0,0, · · ·)T we

get thatRαw̄′ = (cosα,−sinα,0, . . .)T and

(w̄′T x̄′) · (Rα′w̄′)T x̄′ = x′1
2cosα−x′1 ·x′2 ·sinα.

SinceSm is a spanning set ofRd, at least one sample has a vector with componentx′1 6= 0. As all
components are finite andx′1

2 > 0, we can always find a sufficiently smallα′ such thatx′1
2cosα′−
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x′1 · x′2 · sinα′ > 0. Hence, the maximum exists. Furthermore, forα′ = π we havex′1
2cosπ− x′1 ·

x′2 · sinπ = −x′1
2 < 0. Noticing thatx′1

2cosα− x′1 · x′2 · sinα is continuous inα, and applying the
intermediate value theorem, we know that 0< α < π andx′1

2cosα−x′1 ·x′2 ·sinα = 0. Therefore,
there exists a sample inSm that is not on the boundary offw̄′,0 (sincex′1 6= 0) but on the boundary
of fRαw̄′,0. Recall that all points inS0

m are orthogonal to ¯w′ = (1,0,0, · · ·)T and v̄ = (0,1,0, · · ·)T .
Therefore,

∀x̄′ ∈ S0
m (Rαw̄′)T x̄′ = x′1 ·cosα−x′2 ·sinα = w̄′T x̄ ·cosα− v̄′T x̄ ·sinα = 0,

and they reside on the boundary offRαw̄′,0. Overall, fRαw̄′,0 correctly classifiesSm and has at least
k+1 samples on its boundary. The same argument applies forβ by symmetry.

Claim 46 Using the notation introduced in the proof of Lemma 23, if(Rαw̄′)T x̄′ ≥ 0 and
(R−βw̄′)T x̄′ ≥ 0, then

w̄′T x̄′ ≥ 0.

Proof If (Rαw̄′)T x̄′ ≥ 0 and(R−βw̄′)T x̄′ ≥ 0, then

{
x′1cosα−x′2 ·sinα ≥ 0,
x′1cosβ+x′2 ·sinβ ≥ 0.

Multiplying the first inequality by sinβ > 0, the second inequality by sinα > 0, and adding the two
we have

sin(α+β) ·x′1 ≥ 0.

According to Claim 47 below, sin(α+β)≥ 0. If sin(α+β) = 0, then(α+β) = π and cos(α+β) =
−1. Using the trigonometric identities

cos(α−β) = cosαcosβ+sinαsinβ;

sin(α−β) = sinαcosβ−cosαsinβ,

we get that

cosβ = cos(β+α−α) = cos(α+β) ·cosα+sin(α+β) ·sinα = −cosα,

and
sinβ = sin(β+α−α) = sin(α+β) ·cosα−cos(α+β) ·sinα = sinα.

Therefore, for anyx′1cosα−x′2 ·sinα > 0, it holds thatx′1cosβ+x′2 ·sinβ < 0 andR̃+ is degenerated.
Contradiction to the fact thatSm is a spanning set of theRd. Therefore, sin(α+β) > 0, x′1 ≥ 0 and
w̄′T x̄′ ≥ 0.

Claim 47 Using the notation introduced in the proof of Lemma 23,

sin(α+β) ≥ 0.
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Proof By definition we get that for all samples inSm,

{

x′1
2cosα−x′1 ·x′2 ·sinα ≥ 0,

x′1
2cosβ+x′1 ·x′2 ·sinβ ≥ 0.

Multiplying the first inequality by sinβ > 0 (0< β < π), the second inequality by sinα > 0, adding
the two, and using the trigonometric identity

sin(α+β) = sinαcosβ+cosαsinβ,

we have
sin(α+β) ·x′1

2 ≥ 0.

Since there is a sample inSm with a vector componentx′1 6= 0, we conclude that sin(α+β) ≥ 0.
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