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Abstract

Estimating the error rates of classifiers or regression tsodea fundamental task in machine
learning which has thus far been studied exclusively usupgesrised learning techniques. We
propose a novel unsupervised framework for estimatingete®r rates using only unlabeled data
and mild assumptions. We prove consistency results for#medwork and demonstrate its practical
applicability on both synthetic and real world data.
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1. Introduction

A common task in machine learning is predicting a response varyabf¥ based on an explanatory
variablex € X. Assuming a joint distributiop(x,y) and a loss functiok(y,y), a predictorf : X —
9 is characterized by an expected loss or risk function

R(f) = Eppxy {L(Y: F(X))}.

For example, in classification we may have=RY, 9 = {1,...,1}, andL(y,y) = | (y # ¥) where
I[(A) =1if Ais true and O otherwise. The resulting risk is known as the 0-1 risk or simply the
classification error rate

R(f) = P(f predicts the wrong clags

In regression we may hav& = 9 = R, andL(y,y) = (y—¥)2. The resulting risk is the mean
squared error

R(f) = E pixy) (y— f(x))2~

We consider the case where we are provided Witinedictorsfi : X — 9/, i=1,...,k(k>1)
whose risks are unknown. The main task we are faced with is estimating te&(ik, . .., R(fk)
without using any labeled data whatsoever. The estimatid®{ §j is rather based on an estimator

iid

R(f;) that uses unlabeled datédl), ... x(™ = p(x).
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A secondary task that we consider is obtaining effective schemes falbinong k predictors
f1,..., fk in a completely unsupervised manner. We refer to these two tasks of risk tstiraad
predictor combination as unsupervised-supervised learning sincesfleeya unsupervised analysis
of supervised prediction models.

It may seem surprising that unsupervised risk estimation is possible at aikr &f in the
absence of labels there is no ground truth that guides us in estimating the Hisk&ver, as we
show in this paper, if the marginally) is known it is possible in some cases to obtain a consistent
estimator for the risks using only unlabeled data, that is,

lim R(fi;xM, ... xM)=R(f;) with probability 1 i=1,... k
In addition to demonstrating consistency, we explore the asymptotic variéttoe risk estimators
and how it is impacted by changesnriamount of unlabeled data,(number of predictors), and
R(f1),...,R(fk) (risks). We also demonstrate that the proposed estimation technique welths w
practice on both synthetic and real world data.

The assumption thap(y) is known seems restrictive, but there are plenty of cases where it
holds. Examples include medical diagnogigy( is the well known marginal disease frequency),
handwriting recognition/OCRp(y) is the easily computable marginal frequencies of different En-
glish letters), regression model for life expectanpgy( is the well known marginal life expectancy
tables). In these and other exampi®y) is obtained from extremely accurate histograms.

There are several reasons that motivate our approach of usingertyuunlabeled data to esti-
mate the risks. Labeled data may be unavailable due to privacy considsnatiene the predictors
are constructed by organizations using training sets with private labetsexBple, in medical
diagnosis prediction, the predictofs ..., fx may be obtained bl different hospitals, each using a
private internal labeled set. Following the training stage, each hospitabeséts predictor to the
public who then proceed to estima®éf;),...,R(f) using a separate unlabeled data set.

Another motivation for using unlabeled data is domain adaptation where pmedibat are
trained on one domain, are used to predict data from a new domain fronm wi&cave only
unlabeled data. For example, predictors are often trained on labeled lesadnawn from the
past but are used at test time to predict data drawn from a new distribiggmtiated with the
present. Here the labeled data used to train the predictors will not pravidecarate estimate due
to differences in the test and train distributions.

Another motivation is companies releasing predictors to clients as black pwitesut their
training data) in order to protect their intellectual property. This is the situatibasiness analytics
and consulting. In any case, it is remarkable that without labels we cancstiltately estimate
supervised risks.

The collaborative nature of this diagnosis is especially useful for multipeiptors as the
predictor ensembléfy, ..., fx} diagnoses itself. However, our framework is not restricted to a large
k and works even for a single predictor wikh= 1. It may further be extended to the case of active
learning where classifiers are queried for specific data and the casmmifsupervised learning
where a small amount of labeled data is augmented by massive unlabeled data.

We proceed in the next section to describe the general framework amaliggportant special
cases. In Section 3 we discuss extensions to the general framewark@extion 4-5 we discuss the
theory underlying our estimation process. In Section 6 we discuss ptagtaaization algorithms.
Section 7 contains an experimental study. We conclude with a discussioatiarse.
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2. Unsupervised Risk Estimation Framework

We adopt the framework presented in Section 1 with the added requirenarthéhpredictors
f1,..., fx are stochastic, that is, their predictign="f;(x) (conditioned orx) is a random variable.
Such stochasticity occurs if the predictors are conditional models predicings according to
their estimated probability, that i§, models a conditional distributioy and predicty’ with prob-
ability qi(y'|x).

As mentioned previously our goal is to estimate the risk associated with clasifica re-
gression modelsy, ..., f based on unlabeled dat&,...,x"™ % p(x). The testing marginal and
conditional distributiong(x), p(y|x) may differ from the distributions used at training time for the
different predictors. In fact, each predictor may have been trainedcompletely different training
distribution, or may have been designed by hand with no training data whkatsd&/e consider
the predictors as black boxes and do not assume any knowledge of thagfimgoassumptions or
training processes.

At the center of our framework is the idea to define a parameter véet@ which characterizes
the risksR(f1),...,R(fx), that is,R(fj) = g;j(8) for some functiorg; : © — R, j=1,...,k. The
parameter vectd is estimated from data by connecting it to the probabilities

pi(Y]y) £ p(f; predictsy | true label isy).

More specifically, we use a plug-in estimeft(afj) = gj(é) where® maximizes the likelihood of

the predictor output;zgi) = fj(x(i)) with respect to the modeds(¥) = [ pe(Y|y) p(Y) dy. The precise
equations are:

R(f: 9, 9) = g;(8™e(gl,...,9™))  where (1
g0 =g, 9
gl = (xD),
gme(gd, ... 9V) = argmax(8; 9V, ..., 9", 2)
n . .
(8;9Y,....5") = 3 logpa(sy’, . 9¢) (3)
1=
n . .
_ |o/ SO IVONSYONTON
i; g ype(yl Y YY) p(y") dpy)

The integral in (3) is over the unobserved lapl associated witx("). It should be a continu-
ous integralf,i_ ., for regression and a finite summatigr; _, for classification. For notational
simplicity we maintain the integral sign for both cases with the understanding ikaivier a con-
tinuous or discrete measupe depending on the topology of. Note that (3) and its maximizer
are computable without any labeled data. All that is required are the clasgdie black boxes),
unlabeled dataV), ... x(", and the marginal label distributiqu(y).

1325



DONMEZ, LEBANON AND BALASUBRAMANIAN

Besides being a diagnostic tool for the predictor accu@&'?,can be used to effectively aggre-
gatefy,..., fj to predict the label of a new exampi&"

' = argmaxpgme(y | f1(x"),..., fi(x")
yey

k
= argmaxp(y) [ pame(f;(X"") | y). (4)
yey 1= !

As a result, our framework may be used to combine existing classifiers i@ssgn models in a
completely unsupervised manner.

There are three important research questions concerning the abowenfork. First, what are
the statistical properties @™ andR (consistency, asymptotic variance). Second, how can we
efficiently solve the maximization problem (2). And third, how does the framlework in practice.

We address these three questions in Sections 4-5, 6, 7 respectivalgvdfe the rest of the current
section to examine some important special cases of (2)-(3) and considegeneralizations in the
next section.

2.1 Non-Collaborative Estimation of the Risks

In the non-collaborative case we estimate the risk of each one of the jorsdic . . ., fx separately.
This reduces the problem to that of estimating the risk of a single predictachvidrepeatedk
times for each one of the predictors. We thus assume in this subsectionntesvivek (1)-(3) with

k = 1 with no loss of generality. For simplicity we denote the single predictof bgther thanf;

and denote = g; andyt!) = 9(1i). The corresponding simplified expressions are

R(f;9Y,. y(”>) g(e’“'e(y< Yo (”)))
gme(yy,....g —argmaleog / po (9 y") p(y")) diy) (5)
whereyt) = f(x(),
We consider below several important special cases.

2.1.1 Q.ASSIFICATION

Assumingl labelsy = {1,...,l}, the classifierf defines a multivariate Bernoulli distribution
pe(Y]y) mapping the true labgito y

Pe(Y1y) = 6yy- (6)

whereB is the stochastic confusion matrix or noise model corresponding to the dagsifn this
case, the relationship between the K ) and the parametdris

R(f)=1- 3 8ynp(y). ()
yey
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Equations (6)-(7) may be simplified by assuming a symmetric error distributiovefGnd Thomas,
2005)

N
) , @)

po(Jly) = 0/~
-1
R(f)=1-6
wherel is the indicator function an@l € [0,1] is a scalar corresponding to the classifier accuracy.

Estimatingd by maximizing (5), with (6) or (8) substitutings completes the risk estimation task.
In the simple binary cade= 2,9 = {1, 2} with the symmetric noise model (8) the loglikelihood

n 2 o) /i o) o/ i
0(8) = leog Z eI(Y‘>:y<’)(1_e)l(y()#)'“)p(y(l))
=1 yiz1

may be shown to have the following closed form maximizer

Amle _ p(y:l)—m/n
o= 2p(y=1)-1" ®)

wherem= |{i € {1,...,n} : y{) = 2}|. The estimator (9) works well in practice and is shown to be
a consistent estimator in the next section (i.e., it converges to the true paramie. In cases
where the symmetric noise model (8) does not hold, using (9) to estimate theic®n risk may

be misleading. For example, in some cases (9) may be negative. In these usiag the more
general model (6) instead of (8) should provide more accurate regvdtsliscuss this further from
theoretical and experimental perspectives in Sections 4-5, and ttiespe

2.1.2 REGRESSION

Assuming a regression equation
y=ax+g,  £~N(0,1%)

and an estimated regression model or predigtera’x we have

/

y=ax=aa l(y—e)=0y—0¢

whered = &a~1. Thus, in the regression case the distributgiy|y) and the relationship between
the risk and the parametB( f) = g(0) are

~ -~ vV —0 2
Po(Yly) = (2r9%t?)~Y 2exp<_w292r?> , (10)
R(fly) = bias®(f) +Var (f) = (1 8)%y* +6%1%,

R(f) = 92T2+ (1_ e)ZE p(y)(yz)
Note that we consider regression as a stochastic estimator in that it preeic&+ € or y|x ~
N(a'x,1?).
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Assumingp(y) = N(uy,0§) (as is often done in regression analysis) we have

4 4 B V— 0 2 _ 2
po(§") = /R po(¥"|y) p(y)dy = (2rn®?t*2mg) /2 /R exp<(yzezé) - (yZO%Y) )dy (11)

zlexp<(y(l))2 ( 0-32/ _1>+U}2/<T2_1>+)7(')My>
0 /21'[('[2 +02) 20212 \ 07 + 12 202 \ 02 +12 9(r2+0§)

where we used the following lemma in the last equation.

Lemma 1 (e.g., Papoulis, 1984)

/ AgBXHOHD gy — A\/g exp(C?/4B -+ D)

where AB,C,D are constants that do not depend on x.

In this case the loglikelihood simplifies to

_ SL@D2) 1 (sl 1 12
o= non(o ) - (B0 ) o+ (BB ) S vap

which can be shown to have the following closed form maximizer

N7 Al 2 s
émle — _ I“lyz{]:ly(l) £ (P-y Zinzly(l)) + Zinzl(y(l))z
2n(?+0§) ~\ a2+ 03>  N(P+03)

where the two roots correspond to the two cases where' /a > 0 and6 = a'/a < 0.

The univariate regression case described above may be extended tdenaxpifanatory vari-
ables, that isy = Ax+ € wherey, x, € are vectors and is a matrix. This is an interesting extension
which falls beyond the scope of the current paper.

2.1.3 Noisy GAUSSIAN CHANNEL

In this case our predictdrcorresponds to a noisy channel mapping a real valued sigadts noisy
versiony. The aim is to estimate the mean squared error or noise Réf¢l= E ||y — J||°. In this
case the distributiomg(y]y) and the relationship between the risk and the parank¥ter = g(0)
are

5 N2
pagty) = (2r) 2exp( 20,

R(fly) = 67,
R(f) = 6%E ) (¥).
The loglikelihood and other details in this case are straightforward variatiorise linear re-

gression case described above. We therefore concentrate in thispdpe classification and linear
regression cases.
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As mentioned above, in both classification and regression, estimating thdatidks 2 pre-
dictors rather than a single one may proceed by repeating the optimizatiasprbescribed above
for each predictor separately. ThatRsf;) = g;(8]"®) whered"®, ... 6" are estimated by max-
imizing k different loglikelihood functions. In some cases the convergence rdteettrue risks
can be accelerated by jointly estimating the rigk$;), ..., R(fx) in a collaborative fashion. Such
collaborative estimation is possible under some assumptions on the statistieatidepy between
the noise processes defining thpredictors. We describe below such an assumption followed by a
description of more general cases.

2.2 Collaborative Estimation of the Risks: Conditionally IndependentPredictors

We have previously seen how to estimate the risksmedictors by separately applying (1) to each
predictor. If the predictors are known to be conditionally independesingthe true label, that is,
Pe(Y1,---,YklY) = [1; Pe; (Yjly) the loglikelihood (3) simplifies to

n k . . . . . .
40)= 3 log /y [ ps, 9 )"y duy™),  where 3 = f;(x) (12)
i= =1

andpe, above is (6) or (8) for classification and (10) for regression. Maxingitire loglikelihood
(12) jointly overy, .. ., B results in estimator&( f1), ..., R(fx) that converge to the true value faster
than the non-collaborative MLE (5) (more on this in Section 7). Equatiopd@@s not have a closed
form maximizer requiring the use of iterative computational techniques.

The conditional independence of the predictors is a much weaker conttiiorthe indepen-
dence of the predictors which is very unlikely to hold. In our case, eagtligior f; has its own
stochastic noise operatdj(r,s) = p(y = r|ly = s) (regression) or matriXTj];s = pj(y =r|ly =9)
(classification) wherdy, ..., Tc may be arbitrarily specified. In particular, some predictors may be
similar, for example;T; =~ T;, and some may be different, for example T;. The conditional
independence assumption that we make in this subsection is that conditiotiesl latent label
the predictions of the predictors proceed stochastically accordifg, to., Tk in an independent
manner.

Figure 1 displays the loglikelihood functiodg®) for three different data set sizas= 100 250
500. As the size of the unlabeled data grows the curves become steeped™hdpproachdi™e,
Figure 2 displays a similar figure fé&r= 1 in the case of regression.
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R - = =n=100 i
g — =250
‘‘‘‘‘ n=500 \

I I I I
0.5 0.6 0.7 08 0.9 1

055 06 065 07 075 08 085 09 095

Figure 1: A plot of the loglikelihood functiong(8) in the case of classification fdr= 1 (left,
g"'® = 0.75) andk = 2 (right, "¢ = (0.8,0.6)"). The loglikelihood was constructed
based on random samples of unlabeled data with sizes00 250,500 (left) andh = 250
(right) andp(y = 1) = 0.75. In the left panel thg values of the curves were scaled so
their maxima would be aligned. Fér= 1 the estimator™e (and their errorgf™e —
0.75]) for n =100 250,500 are 0.6633 (0.0867), 0.8061 (0.0561), 0.765 (0.0153). As
additional unlabeled examples are added the loglikelihood curves becoeperstnd
their maximizers become more accurate and clos8f'®
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Figure 2: A plot of the loglikelihood functiorf(8) in the case of regression fdr= 1 with

p"e=0.3,1=1, b = 0 ando, = 0.2. As additional unlabeled examples are added the
loglikelihood curve become steeper and their maximizers get closer to theatrammgter
g"ue resulting in a more accurate risk estimate.
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In the case of regression (12) involves an integral over a product-df Gaussians, assuming
thaty ~ N(py, 0)2,). In this case the integral in (12) simplifies to

. . 0o k (o) _pg. i) 2 20212 1 i 2 2 .
o) o) :/ 1 . (50w )/ it o 00w’ f208 4 4
pe(yl s Yk ) e (Dlej.[\/ﬁ O'y\/ﬁ y(

) 2 . i)\ 2
1 . [ [y - K [y .
e e .| 2 (yo“y> + (yr‘Té- !
(V2" oy M1 8 y =1 ’

: o . o2
Froon(—3 (4 +8) 00+ (3 2 )y -3 (5 5t ey )
- k+1
™(vam y|_|J 16

2
~1/2 g}

i)™ () core

== P Z > 292 502 (13)
™(v2m*tioy 171 6; 2(—+T2) =14t Oy

2
Oy

A)z

where the last equation was obtained using Lemma 1 concerning Gauss@alteNote that
this equation does not have a closed form maximizer requiring the use divitketamputational
techniques.

2.3 Collaborative Estimation of the Risks: Conditionally Correlated Predictors

In some cases the conditional independence assumption made in the peebsastion does not
hold and the factorization (12) is violated. In this section, we discuss hoelag this assumption
in the classification case. A similar approach may also be used for regre¥gsomit the details
here due to notational clarity.

There are several ways to relax the conditional independence assamighist popular, per-
haps, is the mechanism of hierarchical loglinear models for categorita(Beshop et al., 1975).
For example, generalizing our conditional independence assumptiondodseader interaction
log-linear models we have

[
|Og p(yb cee ayk|y) =0y + leiS/hy + Z yi,j-f’iaf’j Y (14)
i= i<)
where the following ANOVA-type parameter constraints are needed (Bishalp, 1975)
0= Z Bi,)A/i Y \v/ivya (15)
Yi

0= ;ijiyj?F ;Yi,jyi,yj,y Vi, Y.
! j

The 3 parameters in (14) correspond to the order-1 interaction between fhablesy, . . ., Yk,
conditioned ory. They correspond to tH& in the independent formulation (6)-(8). Thparameters
capture two-way interactions which do not appear in the conditionally inmdbgre case. Indeed,
settingy j y, y, y = O retrieves the independent models (6)-(8).

1331



DONMEZ, LEBANON AND BALASUBRAMANIAN

In the case of classification, the number of degrees of freedom ouffic@nstrained parameters
in (14) depends on whether the number of classes is 2 or more and wiitadrzal assumptions exist
onf andy. For example, assuming that the probabilityfoff; making an error depends on the true
classy but not on the predicted classgsyj results in e&k+ k? parameters. Relaxing that assumption
but assuming binary classification results k+24k? parameters. The estimation and aggregation
techniques described in Section 2.1 work as before with a slight modificati@placing (6)-(8)
with variations based on (14) and enforcing the constraints (15).

Equation (14) captures two-way interactions but cannot model higler grteractions. How-
ever, three-way and higher order interaction models are straightfdyemeralizations of (14) cul-
minating in the full loglinear model which does not make any assumption on thdistdtidepen-
dency of the noise operatofs, ..., Tx. However, as we weaken the assumptions underlying the
loglinear models and add higher order interactions the number of paranmeterases adding to
the difficulty in estimating the riskR(f1),...,R(fk).

In our experiments on real world data (see Section 7), it is often the casm#ximizing the
loglikelihood under the conditionally independent assumption (12) progideguate accuracy and
there is no need for the more general (14)-(15). Nevertheless, Wwalanbere the case of loglinear
models as it may be necessary in some situations.

3. Extensions: Missing Values, Active Learning, and Semi-Supe@sed Learning

In this section, we discuss extensions to the current framework. Spdlgifige consider extending
the framework to the cases of missing values, active and semi-supenaseith¢e

Occasionally, some predictors are unable to provide their output oveifisgiata points. That
is assuming a data sef), ..., x(" each predictor may provide output on an arbitrary subset of the
data points{ fj(x) :i € §;}, whereS; c {1,...,n}, j=1,....k.

Commonly referred to as a missing value situation, this scenario may apply mwhsee dif-
ferent parts of the unlabeled data are available to the different preslatttest time due to privacy,
computational complexity, or communication cost. Another example where tmasgc@pplies is
active learning where operatirfginvolves a certain cost; > 0 and it is not advantageous to operate
all predictors with the same frequency for the purpose of estimating theR{sks ..., R(fx). Such
is the case wheff corresponds to judgments obtained from human experts or expensibéergc
that is busy serving multiple clients. Active learning fits into this situation \Bjtdenoting the set
of selected data points for each predictor.

We proceed in this case by defining indicat@s denoting whether predictoy is available
to emit f;(x()). The risk estimation proceeds as before with the observed likelihood motified
account for the missing values.

In the case of collaborative estimation with conditional independence, timea¢sr and log-
likelihood become

oM — argmax((0),
5]
c M oDy gurol)
(©=3log 5 [ ool 9)aus) (16)
i= r:Bi=0 y

n . . . . : .
=3 109 5 [[ poist oo ey gl )
i= r:Bi=0 ?

1332



ESTIMATING CLASSIFICATION AND REGRESSIONERRORS WITHOUTLABELS

wherepg may be further simplified using the non-collaborative approach, or usingditaborative
approach with conditional independence or loglinear model assumptions.

In the case of semi-supervised learning a small set of labeled data is aegrbgra large set
of unlabeled data. In this case our framework remains as before with thiadéd summing over
the observed labeled and unlabeled data. For example, in the case obaiilabestimation with
conditional independence we have

m k

n k . ) . ) . . .
(8) = 3 log /y 1P " Yy duy D)+ Y Joa[] pe "y py™).
i= = i=n+ |=

The different variations concerning missing values, active learningi-sepervised learning,
and non-collaborative or collaborative estimation with conditionally indepetalr correlated noise
processes can all be combined in different ways to provide the apg®fikelihood function. This
provides substantial modeling flexibility.

4. Consistency oB"® and R(f))

In this and the next section we consider the statistical behavior of the estiff¥tadefined in
(2) and the risk estimatdr(f;) = gj(em'e) defined in (1). The analysis is conducted under the

assumption that the vectors of observed predictors ouyplts Q‘/(li), . ,)‘/l((i)) are iid samples from
the distribution

po(§) = Po(S. ... ) = /y Bo(Y1. -, 9kly) P(y) duy).

We start by investigating whether estima@te in (2) converges to the true parameter value.
More formally, strong consistency of the estima@it® = 8(y,...,.y™), yO .. gy X pg is
defined as strong convergence of the estimat@pt@sn — o (Ferguson, 1996)

lim eme(y(® ... yM) = By with probability 1

In other words as the number of sampfegrows, the estimator will surely converge to the true
parameteBy governing the data generation process.

Assuming that the riskB(f;) = g;(0) are defined using continuous functiags strong consis-
tency ofgmle implies strong convergence él(fj) to R(fj). This is due to the fact that continuity
preserves limits. Indeed, as thefunctions are continuous in both the classification and regression
cases, strong consistency of the risk estimdﬁ@r@) reduces to strong consistency of the estimators
émle.

It is well known that the maximum likelihood estimator is often strongly consisteonsi@er,
for example, the following theorem.

~

Proposition 2 (e.g., Ferguson, 1996) et yU ... .y % pg., By € ©. If the following conditions
hold

1. @ is compact (compactness)
2. p(Y) is upper semi-continuous tfor all y (continuity)
3. There exists a function(§) such thatE p, [K(y)[ < o (boundedness)

andlog pg(y) —logpg, (y) <K(y) vy VO

4. For all 8 and sufficiently smafb > 0, supy_g -, P (¥) is  (measurability)
measurable iry

5 p=pe=06=06 (identifiability)
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then the maximum likelihood estimator is strongly consistent, th&t"€,— By as n— oo with
probability 1.

Note thatpg(y) in the proposition above corresponds fip pe(Yly) p(y) di(y) in our framework.
That is the MLE operates on the observed data or predictor oyfput. ”, §" that is sampled iid
from the distributionpg, (Y) = /o Pe, (YY) P(Y) di(y).

Of the five conditions above, the last condition of identifiability is the only oneistteuly prob-
lematic. The first condition of compactness is trivially satisfied in the case sdi@itzation. In the
case of regression it is satisfied assuming that the regression parantetaodel parameter are fi-
nite anda = 0 as the estimatd™e will eventually lie in a compact set. The second condition of con-
tinuity is trivially satisfied in both classification and regression as the fungtjam(y|y) p(y) du(y)
is continuous irB oncey'is fixed. The third condition is trivially satisfied for classification (finite
valuedy). In the case of regression due to conditions 1,2 (compactness and aaimiitty) we
can replace the quantifig® with a particular valué’ € © representing worst case situation in the
bound of the logarithm difference. Then, the boufdnay be realized by the difference of log
terms (with respect to that worst ca®@ whose expectation converges to the KL divergence which
in turn is nevero for Gaussian distributions or its derivatives. The fourth condition of nneduslity
follows aspg is specified in terms of compositions, summations, multiplications, and point-wise
limits of well-known measurable functions.

The fifth condition of identifiability states that s (Y) and pg, (¥) are identical as functions, that
is, they are identical for every value gfthen necessaril§ = 6p. This condition does not hold in
general and needs to be verified in each one of the special cases.

We start with establishing consistency in the case of classification whemyw@ra symmetric
noise model (8). The non-symmetric case (6) is more complicated and is teftpsards. We
conclude the consistency discussion with an examination of the regressien c

4.1 Consistency of Classification Risk Estimation

Proposition 3 Let fi,..., fx be classifiers;f. X — 9, || =1, with conditionally independent noise
processes described §9). If the classifiers are weak learners, that i3] < 1—err(fj) < 1 and
p(y) is not uniform the unsupervised collaborative diagnosis model is identifiable

Corollary 4 Let fi,..., fx be classifiers;f: X — 9 with || = | and noise processes described by
(8). If the classifiers are weak learners, thatig] < 1—err(f;) < 1, and fy) is not uniform the
unsupervised non-collaborative diagnosis model is identifiable.

Proof Proving identifiability in the non-collaborative case proceeds by invokirap&sition 3
(whose proof is given below) witk = 1 separately for each classifier. The conditional indepen-
dence assumption in Proposition 3 becomes redundant in this case of actasgléer, resulting in
identifiability of pe, (y;) for eachj =1,... Kk |

Corollary 5 Under the assumptions of Proposition 3 or Corollary 4 the unsupervisedmum
likelihood estimator is consistent, that is,

P(Iim Bmieg™ . yM) = (gliue . .,etkf“e)) —1

nN—oo
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Consequentially, assuming that®) = g;(0), j = 1,...,k with continuous gwe also have

P(nlim Ry, .y ™) =R(f), Vj= 1,...,k> —1

Proof Proposition 3 or Corollary 4 establishes identifiability, which in conjunction witbpBsi-
tion 2 proves the corollary. [ |

Proof (for Proposition 3) We prove identifiability by induction ok. In the base case &f= 1, we
have a set of equations, correspondingite=1,2...1,

Pe(y1=1) = py=i)6 +< p( =')>
o(Y1 =1 y=1i)8; ; y=]

— ply=i)81+(1-ply=i)

Oi(lply=1)—1)+1—p(y=i)
(1-1)

from which we can see thatiif # 6 andp(y = i) # 1/1 thenpg(J1) # py(¥1). This proves identifi-
ability for the base case &f= 1.

Next, we assume identifiability holds fée and prove that it holds fok+ 1. We do so by
deriving a contradiction from the assumption that identifiability holdskfbut not fork + 1. We
denote the parameters corresponding tcttabelers by the vectoB n € [0, 1] and the parameters
corresponding the additionkH- 1 labeler byBy. 1, Nk 1.

In the case ok classifiers we have

| |
pe(ylv . '>yk) = Zl pe(ylw .- 7yk’y: I)p(y: I) = G(ﬂ,@)

i=
where

—9))
_1>’

G(4,8) = p(y = IR
je4 iEA
def

A ={je{L2.,k}:y=i}.

Note that the4,, ..., 4 form a partition of{1,...,k}, that is, they are disjoint and their union is
{1,...,k}.

In order to have unidentifiability for thie+ 1 classifiers we nee®, 6x.1) # (n,Nk+1) and the
following | equations (corresponding t@;1 = 1,2,...,1) to hold for anyyj,..., Y which corre-
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sponds to any partitiods, ..., 4

1-6 1

Bk+1G(A1,0) + ﬂ ;G 4;,0) = Nk1G(A1,n) nkH ;G a,n),
1-6 1

Bk+1G(A2,0) + ﬂ ;G 4,0) = Nky1G(A2,n) nkH ;G a,n),
(1 9k+1

01 1G(1,8) + ;G 4,8) = N1 G(A,N) + ”k” ;G a.n).

We consider two cases in Whl((ﬁ,9k+1) # (N,Nk+1): (@) 0 #n, and (b)8 =N, Bks1 7 Nit1-
In the case of (a) we add theequations above which marginalizgs 1 out of pg(¥1, ..., Yk, k+1)

and pl"| (917 cee )yk7yk+l) to prOVide
I |
G(4,8) = ) G(4.n)
550072

which together witl® # n contradicts the identifiability for the case lotlassifiers.
In case (b) we have from tHeequations above

% ($an0 ano)

_ |
= Nk+1G(A,N) + L i _mfl (21(3(/‘4«',“) —G(;Zl{,r])>

1 0
8 1G(4,8) + 7

for anyt € {1,...,1} which simplifies to

|
0:(9k+1_r]k+1) (IG(g{ae)_ZG(ﬂhe)> tzlavk
i=
As we assume at this point th@t, 1 # nk.1 the above equality entails
|
G(4,0) = ZG(%,O)- 17)
i=
We show that (17) cannot hold by examining separately the gagest) > 1/l andp(y=t) < 1/I.
Recall that there existstafor which p(y =t) # 1/I since the proposition requires thaty) is not

uniform.
If p(y=t) > 1/I we choose4: = {1,...,k} and obtain

py=0 18 = py=0[] 2= + ply=1 T8,
I_L ’ Z B —1 [19
(I—1)p(y=1)[]8
|‘|1, =07

|
K 1-6;
—t)) £ 1-9
I_Le’ |— b1
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which cannot hold as the term on the left hand side is necessarily largeththaerm on the right
hand side (ifp(y =t) > 1/l and8; > 1/I). In the casep(y =t) < 1/I we chooseds = {1,...,k},
S#t to obtain

1-6;

k
M iZslo(yzl)Jll

(Ip(y=t)—py#s)) 1128 =py=s) . 0,
M7= e

k
Ip(y=t)
=

1-6;
—1 TPY=9[]8;

which cannot hold as the term on the left hand side is necessarily smallghthgrm on the right
hand side (ifp(y =t) < 1/l and®; > 1/1).

Since we derived a contradiction to the fact that we Haidentifiability but notk+ 1 identifia-
bility, the induction step is proven which establishes identifiability for lpy1. |

The conditions asserted above tipgy) # 1/l and /I < 1—err(fj) < 1 are intuitive. If they
are violated a certain symmetry may emerge which renders the model non-atgeat#nd the MLE
estimator not consistent.

In the case of the non-collaborative estimation for binary classification wéthdm-symmetric
noise model, the matri@ in (6) is a 2x 2 matrix with two degrees of freedom as each row sums to
one. In particular we havey; = pg(§ = 1y = 1), 612 = pe(y = 1|y = 2), 821 = pp(y = 2y = 1),
022 = pe(¥= 2]y = 2) with the overall riskR(f) = 1—011p(y = 1) — 022p(y = 2). Unfortunately, the
matrix 0 is not identifiable in this case and neither is the scalar parafgtefy = 1) + 822p(y = 2)
that can be used to characterize the risk.

We can, however, obtain a consistent estimato©f¢and therefore foR(f)) by first showing
that the parametdd;1p(y = 1) — 822p(y = 2) is identifiable and then taking the intersection of two
such estimators.

Lemma 6 In the case of the non-collaborative estimation for binary classification witmtre
symmetric noise model andyp # 0, the parameteB;1p(y = 1) — 622p(y = 2) is identifiable.

Proof For two different parameterizatiofisn we have

Po(y=1) = p(y=1)011+ (1—p(y=1))(1—622), (18)

Pe(¥=2) = p(y=1)(1—611) +(1—p(y=1))622 (19)
and

Ph(y=1) =p(y=1)nua+(1-ply=1))(1-n2), (20)

Pr(¥Y=2)=p(y=1)(1—n11)+(1—py=1))n22 (21)

Equating the two Equations (18) and (20) we have
P(y=1)(011+822) +1—p(y=1) — 622 = p(y =1)(N11+N22) +1—p(y=1) —N22

ply=1)811—(1-p(y=1))822=p(y=1)n11— (1—p(y=1))n22
P(y = 1)B11— p(y =2)622 = p(y = 1)N11— p(y = 2)N22
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Similarly, equating Equation (19) and Equation (21) also resul{s(yn= 1)811 — p(y = 2)022 =
p(y=1)n11— p(y = 2)nz2. As a result, we have

Pe=pPy = Py=21)011—p(y=2)022=p(y=1)N11— py=2)N22
]

The above lemma indicates that we can use the maximum likelihood method to obtasis co
tent estimator for the paramety;p(y = 1) — 622p(y = 2). Unfortunately the parametéip(y =
1) —622p(y = 2) does not have a clear probabilistic interpretation and does not directigatbeze
the risk. As the following proposition shows we can obtain a consistent estifoatihe riskR(f)
if we have two populations of unlabeled data drawn from distributions with fatindt marginals

p1(y) andpz(y).

Proposition 7 Consider the case of the non-collaborative estimation of binary classificas&
with the non-symmetric noise model. If we have access to two unlabelededatdrawn indepen-
dently from two distributions with different marginals, that is,

1) iid

XY, XV & py(x) =3 p(Xly) pa(y),
y

XWX R (%) = 5 p(Xy) pa(y)
y

we can obtain a consistent estimator for the classification risk R

Proof Operating the classifief on both sets of unlabeled data we get two sets of observed clas-
sifier outputsy®), ..., 9™,y ¢ wherey®™) X 5 pa(§ly) p1(y) andy® < 5, pe(9ly) p2(Y)-

In particular, note that the marginal distributiops(y) and p2(y) are different but the parameter
matrix 0 is the same in both cases as we operate the same classifier on samples frametlotass
conditional distributiorp(x|y).

Based on Lemma 6 we construct a consistent estimatopsfogr= 1)611 — p1(y = 2)622 by
maximizing the likelihood of®@, ...,y Similarly, we construct a consistent estimator ety =
1)811 — p2(y = 2)8,2 by maximizing the likelihood of/tV,...,¥(™. Note thatpy(y = 1)811 —
p1(y = 2)822 andpa(y = 1)611 — p2(y = 2)8,, describe two lines in the 2-D spa®1,6,,). Since
the true value 0B11,0,, represent a point in that 2-D space belonging to both lines, it is neces-
sarily the intersection of both lines (the lines cannot be parallel since thedr lowefficients are
distributions which are assumed to be different).

As n andm increase to infinity, the two estimators converge to the true parameter valaes. A
result, the intersection of the two lines described by the two estimators cesverthe true values
of (811,022) thus allowing reconstruction of the matfand the riskR(f). [ |

Clearly, the conditions for consistency in the asymmetric case are more tegbti@n in the
symmetric case. However, situations such as in Proposition 7 are nosagheanrealistic. In
many cases it is possible to identify two unlabeled sets with different distrilsutieor example, if
y denotes a medical condition, it may be possible to obtain two unlabeled setswmdifferent
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hospitals or two different regions with different marginal distribution esponding to the frequency
of the medical condition.

As indicated in the previous section, the risk estimation framework may be eddyeond
non-collaborative estimation and collaborative conditionally independsimation. In these ex-
tensions, the conditions for identifiability need to be determined separatelysimilar way to
Corollary 4. A systematic way to do so may be obtained by noting that the idefitifigguations

O:pe(ylw'wyk)_pn(ylw‘wyk) vylw‘wyk

is a system of polynomial equations {A,n). As a result, demonstrating lack of identifiability
becomes equivalent to obtaining a solution to a system of polynomial equatitsnsg Hilbert's
Nullstellensatz theorem we have that a solution to a polynomial system existspbijx@omial
system defines a proper ideal of the ring of polynomials (Cox et al., 2086)k increases the
chance of identifiability failing decays dramatically as we have a systdfpaflynomials with X
variables. Such an over-determined system with substantially more equatongriables is very
unlikely to have a solution.

These observations serve as both an interesting theoretical connedigelicaic geometry as
well as a practical tool due to the substantial research in computationakailggeometry. See
Sturmfels (2002) for a survey of computational algorithms and softwa@caded with systems of
polynomial equations.

4.2 Consistency of Regression Risk Estimation

In this section, we prove the consistency of the maximum likelihood estirB&®in the regression
case. As in the classification case our proof centers on establishing @laititifi

Proposition 8 Let fi,.. ., fy be regression models(k) = a/x with y~ N(py, 05), y=ax+¢. Assum-
ing that a# O the unsupervised collaborative estimation model assuming conditionallgendent
noise processg4d2)is identifiable.

Corollary 9 Let fi,..., fy be regression modelg(k) = ax with y~ N(p, 032,), y=ax+¢&. Assuming
that a# 0 the unsupervised non-collaborative estimation mdi2) is identifiable.

Proof Proving identifiability in the non-collaborative case proceeds by invokirgp®sition 8
(whose proof is given below) witk = 1 separately for each regression model. The conditional
independence assumption in Proposition 8 becomes redundant in thid easagle predictor, re-
sulting in identifiability ofpg, (y;) for eachj = 1,... k. [ ]

Corollary 10 Under the assumptions of Proposition 8 or Corollary 9 the unsupervissedmum
likelihood estimator is consistent, that is,

P (Jim BTG, ... yi") = (B, ... 6[") ) =1

n—oo

Consequentially, assuming that i) = g;(6), j = 1,...,k with continuous gwe also have

P(Iim R(fjy Y, . y™W) =R(f}), Vj= 1,...,k> —1

n—oo
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Proof Proposition 8 or Corollary 9 establish identifiability, which in conjunction withg@sition 2
completes the proof. |

Proof (of Proposition 8).
We will proceed, as in the case of classification, with induction on the nunilpredictorsk.
In the base case &f= 1 we have derivegg, (Y1) in Equation (11). Substituting in j = 0 we get

N 1 17 2
P (51=0) = o35 (55 1))
' 61,/2m(12 + 02) 20§ \ 0f+ 12

N 1 WG 2
Pn(Y1=0) = exp< (—1)).

The above expression leadsp# Ny = pg, (Y1 = 0) # py, (Y1 = 0) which implies identifiability.

In the induction step we assume identifiability holdskand we prove that it holds also flos- 1
by deriving a contradiction to the assumption that it does not hold. We asthaniglentifiability
fails in the case ok+ 1 due to differing parameter values, that is,

P6.6.1) (Y15 -+, Vi Ykt 1) = Prniea) Y15+ Yo V) W € R j=1,... k+1 (22)

with (8,8¢,1) # (n,Nk+1) whereB,n € RX. There are two cases which we consider separately: (a)
0#4nand (b)8=n.

In case (a) we marginalize both sides of (22) with respegt to Which leads to a contradiction
to our assumption that identifiability holds flr

| Poon e eI @r = | Py G-I Shes1) i
Po(Ye -+ k) = Pn(Ya - i)

In case (b)0 = n and 6y, 1 # Nkr1. Substitutingy; = --- = Yka1 = 0 in (22) (see (13) for a
derivation) we have

Pooc)V1=0,....%k1=0) =Pnne)V1=0,...,Ykt1=0)

or
~1/2
A ) s
(V2105 20,81 [T 0 2(3+41) 2%
Gy
- 2
o1 R Y ()
Tk+1(\ﬁ K20y N4 1521 N 2<é+krzl> 207
Y
which cannot hold iB = n but 8,1 # Nky1. -
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5. Asymptotic Variance of ™€ and R

A standard result from statistics is that the MLE has an asymptotically normabdison with
mean vecto®'™® and variance matrixnJ(6"€))~1, whereJ(8) is ther x r Fisher information
matrix

J(8) = E gy {Dlogpe(y)(Dlogps(¥)) '}

with Ologpg(y) represents the x 1 gradient vector of logg(y) with respect tod. Stated more
formally, we have the following convergence in distributiomas o (Ferguson, 1996)

VN (8" —B0) ~» N(0,3-1(8"™)). (23)

It is instructive to consider the dependency of the Fisher information mathiich corresponds
to the asymptotic estimation accuracy, ok, p(y), 6"!e.

In the case of classification considering (8) with- 1 and9)” = {1,2} it can be shown that

2 2
3(6) = a(2a —1) 2_(20(—1) (a—lg (24)
(6(20—-1)—a+1)? (a—6(2a0—-1))

wherea = P(y = 1). As Figure 3 (right) demonstrates, the asymptotic accuracy of the MLE (as
indicated byJ) tends to increase with the degree of non-uniformitp@f). Recall that since identi-
fiability fails for a uniformp(y) the risk estimate under a uniforpty) is not consistent. The above
derivation (24) is a quantification of that fact reflecting the added diffién estimating the risk as
we move closer to a uniform label distribution— 1/2. The dependency of the asymptotic accu-
racy onB™®is more complex, tending to favéfU® values close to 1 or 0.5. Figure 3 (left) displays
the empirical accuracy of the estimator as a functiop(@j and™® and shows remarkable simi-
larity to the contours of the Fisher information (see Section 7 for more detailseoexperiments).
In particular, whenever the estimation error is high the asymptotic variartbe efstimator is high
(or equivalently, the Fisher information is low). For instance, the top cestouhe left panel have
smaller estimation error on the top right than in the top left. Similarly, the top conimting right
panel have smaller asymptotic variance on the top right than on the top left.u8/edhclude that
the Fisher information provides practical, as well as theoretical insight integtimation accuracy.

Similar calculations of}(6"¢) for collaborative classification case or for the regression case
result in more complicated but straightforward derivations. It is importargatize that consistency
is ensured for any identifiabl@® p(y). The value(J(6"®))~1 is the constant dominating that
consistency convergence.

A similar distributional analysis can be derived for the risk estimator. Appl¢girmer’s theo-
rem (Ferguson, 1996) &(f;) = g;(6™®), j = 1,...,kand (23) we have

\m(lfi(f) —R(f))~ N (o’ Dg(e"ue).](e"ue)Dg(etfue)T>

whereR(f),R(f) are the vectors of true risk and risk estimates for the different prediétors, fy
and[g(6"®) is the Jacobian matrix of the mappigg= (91, ...,0«) evaluated af""®,

For example, in the case of classification witk= 1 we haveR(fj) = 1—8; and the Jacobian
matrix is—1, leading to an identical asymptotic distribution to that of the MLE (23)-(24)

) a(2a — 1) (20-12(@—1)\
ﬁ(R(f)—R(f))WN(O’((e(2a—1)—a+l)2_(0(—9(20‘—1))2> )
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6. Optimization Algorithms

Recall that we obtained closed forms for the likelihood maximizers in the cAses@ollaborative
estimation for binary classifiers and non-collaborative estimation for onendioral regression
models. The lack of closed form maximizers in the other cases necessitadtigateptimization
techniques.

One class of technique for optimizing nonlinear loglikelihoods is the classaafigmt based
methods such as gradient descent, conjugate gradients, and quasnNeethods. These tech-
nigques proceed iteratively following a search direction; they often hawe gerformance and are
easy to derive. The main difficulty with their implementation is the derivation of thkkislihood
and its derivatives. For example, in the case of collaborative estimatidagsification ( > 2) with
symmetric noise model and missing values the loglikelihood gradient is

- - A0 _y (i)
py?) 3 znpﬂhp.((<>=y<'>>—ej><<l—1>ej>'<y Y11 - gy) 1)
YARLIO) =
06; a i= 2yl p(y(i)) 2 r:Bi=0 Zygi) |_||;():1 hpi ’
(i) i
H 9'(y y0) 1— e L (9p 2y D)
pi = 1-1

Similar derivations may be obtained in the other cases in a straightforwarcemann

An alternative iterative optimization technique for finding the MLE is expectatiarimization
(EM). The derivation of the EM update equations is again relatively stifaigtard. For example
in the above case of collaborative estimation of classification Z) with symmetric noise model
and missing values the EM update equations are

n
e(”l):argmalez > ZQ() g, y0 z|09p1 y] 'y
o Ak ob
12 () ONT RO
- Y@y @) =y,
nzi an r

p(y! >r|,- 1pj<9§‘>|y“> <t>>
Sy Tripa—0 X POY! DYy Py (9] [y, 60))

whereq® is the conditional distribution defining the EM bound over the loglikelihood fionc

If all the classifiers are always observed, thais~ 1 Vr,i Equation (16) reverts to (12), and
the loglikelihood and its gradient may be efficiently compute®{mlk?). In the case of missing
classifier outputs a naive computation of the gradient or EM step is expahienthe number of
missing valuefR = max 3, By. This, however, can be improved by careful dynamic programming.
For example, the nested summations over the unobserved values in thexgnaajebe computed
using a variation of the elimination algorithm @(nlk’R) time.

gV gy =

7. Empirical Evaluation

We start with some experiments demonstrating our framework using synth&icTdeese experi-
ments are meant to examine the behavior of the estimators in a controlled settitigerV\describe
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Figure 3: Left: Average value ¢6™€ — 6"¢| as a function oB"™e andp(y = 1) for k = 1 classifier
andn =500 (computed over a uniform spaced grid ofXLE5 points). The plot illustrates
the increased accuracy obtained by a less unife(y). Right: Fisher informatiord(8)
for k = 1 as a function 0B'™® andP(y). The asymptotic variance of the estimator is
J~1(8) which closely matches the experimental result in the left panel.

some experiments using several real world data sets. In these expenmeeexamine the behav-
ior of the estimators in an uncontrolled setting where some of the underlyinghptisns may be

violated. In most of the experiments we consider the mean absolute errgrqntae/; error as a

metric that measures the estimation quality

A 1k "
le gt ¢ |
mag™e, 8"'¢) = R-Z |6j™e—ome|.

In the non-collaborative case (which is equivalent to the collaboratise withk = 1) this translates
into the absolute deviation of the estimated parameter from the true parameter.

In Figure 3 (left) we display ma@™e, 6t for classification withk = 1 as a function of™e
and p(y) for n = 500 simulated data points. The estimation error, while overall relatively small,
decays ag(y) diverges from the uniform distribution. The dependencyt!f indicates that the
error is worst for6™€ around 0.75 and it decays &™®— 0.75| increases with a larger decay
attributed to higheB™®. These observations are remarkably consistent with the developeg theor
as Figure 3 (right) shows by demonstrating the value of the inverse asymgotacel(6) which
agrees nicely with the empirical measurement in the left panel.

Figure 4 (left) contains a scatter plot contrasting valued™t andé™e for k = 1 classifier and
p(y = 1) = 0.8. The estimator was constructed based on 500 simulated data points. \Weobse
a symmetric Gaussian-like distribution of estimated vali®&, conditioned on specific values of
6"“® This is in agreement with the theory predicting an asymptotic Gaussian distrilfatithe
mle, centered around the true vale®'®. A similar observation is made in Figure 5 (left) which
contains a similar scatter plot in the regression clse I, oy = 1, n = 1000). In both figures, the
striped effect is due to selection 8f'© over a discrete grid with a small perturbation for increased
visibility. Similar plots of larger and smaller values (not shown) verify that the variation @le
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Figure 4: Left: Scatter plot contrasting the true and predicted valug@sdhe case of a single clas-
sifierk =1, p(y = 1) = 0.8, andn = 500 unlabeled examples. The displayed points were
perturbed for improved visualization and the striped effect is due to emipgneduation
over a discrete grid oB™® values. Right: ma@™e 6"€) as a function of the number
of unlabeled examples for different number of classifi@f$= p(y = 1) = 0.75) in the
collaborative case. The estimation error decreases as more classédiased due to the
collaborative nature of the estimation process.

arounde"'® decreases asincreases. This agrees with the theory that indicat@$ra?l) rate of
decay for the variance of the asymptotic distribution.

Figures 4 and 5 (right) show the @8 6") for variousk values in classification and re-
gression, respectively. In classificatio™® was obtained by sampling data fropty = 1) =
0.75= 6""® Vi. In regression, the data was sampled from the regression equatio®Wfth- 1
andp(y) = N(0,1). In both cases, the mae error decays withs expected from the consistency
proof and withk as a result of the collaborative estimation effect.

To further illustrate the effect of the collaboration on the estimation accuaxgstimated the
error rates individually (non-collaboratively) for 10 predictors andhpared their mae to that of
the collaborative estimation case in Figure 6. This shows that each of tis#fielashave a similar
mae curve when non-collaborative estimation is used. However, all af theses are higher than
the collaborative mae curve (solid black line in Figure 6) demonstrating the waprent of the
collaborative process.

We compare in Figure 7 the proposed unsupervised estimation frameworkupignvised es-
timation that takes advantage of labeled information to determine the classifieaeyx.cWe con-
ducted this study using equal number of examples for both supervisedregervised cases.
Clearly, this is an unfair comparison if we assume that labeled data is undwaitais difficult to
obtain. The unsupervised estimation does not perform as well as thevisepleversion especially
in general. Nevertheless, the unsupervised estimation accuracy impigngicantly with increas-
ing number of classifiers and finally reaches the performance level (fuppervised case due to
collaborative estimation.

In Figure 8 we report the effect of misspecification of the margm@) on the estimation
accuracy. More specifically, we generated synthetic data using a trugnadadistribution but
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Left: Scatter plot contrasting the true and predicted valu@siothe case of a single
regression modeéd = 1, oy = 1, andn = 1000 unlabeled examples. The displayed points
were perturbed for improved visualization and the striped effect is duepirieal eval-
uation over a discrete grid @™ values. Right: ma@™'e 6"€) as a function of the
number of unlabeled examples for different number of regression m(@¥éfs= o, = 1)
in the collaborative case. The estimation error decreases as more iGgrasslels are
used due to the collaborative nature of the estimation process.

collaborative vs. non-collaborative estimation for k=10
0.2

0.15

0.1

0.05

Mean absolute error of the MLE

50 100 150 200
Number of unlabeled examples

Comparison of collaborative and non-collaborative estimatiork fo 10 classifiers.
magB™e, 8€) as a function of is reported forB"e = 0.75 vk, andP(y = 1) = 0.75.

The colored lines represent the estimation error for each individualifitasand the solid
black line represents the collaborative estimation for all classifiers. Ttheat®n con-
verges to the truth faster in the collaborative case than in the non-coltalearase.
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Figure 7: Comparison of supervised and unsupervised estimation ferafiffvalues of classifiers
with k=1,3,5,10. Supervised estimation uses the true labels to determine the accuracy
of the classifiers whereas in the unsupervised case the estimation eoeedding to
the collaborative estimation framework. Despite the fact that the supervassiuses
labels the unsupervised framework reaches similar levels by increasimguthieer of
classifiers.

estimated the classifier accuracy on this data assuming a misspecified margaredrally, the
estimation framework is robust to small perturbations while over-specifyimdstéo hurt less than
under-specifying (misspecification closer to uniform distribution).

Figure 9 shows the mean prediction accuracy for the unsupervisedtprasbmbination scheme
in (4) for synthetic data. The left panel displays classification accuaadythe right panel displays
the regression accuracy as measured bynl;z{il(y{‘ew—y{‘e‘”)z. The graphs show that in both
cases the accuracy increases witand n in accordance with the theory and the risk estimation
experiments. The paramet#f'® was chosen uniformly in the rang@.5, 1), andP(y = 1) = 0.75
for classification an®"® = 0.3, p(y) = N(0,1) in the case of regression.

We also experimented with the natural language understanding data sdtgsdoin Snow
et al. (2008). This data was created using the Amazon Mechanical AMK)for data annotation.
AMT is an online tool that uses paid employees to complete small labeling andasionaasks.
We selected two binary tasks from this data: the textual entailment recogriid) @nd temporal
event recognition (TEMP) tasks. In the former task, the annotator igpied with two sentences
for each question. He needs to decide whether the second senterue ioéerred from the first.
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Figure 8: The figure compares the estimator accuracy assuming that thieahp(g) is misspec-
ified. The plots draw m&@™¢, 8"¢) as a function oh for k = 1 and8"® = 0.75 when
Py = 1) = 0.8 (left) andP"™®(y = 1) = 0.75 (right). Small perturbations iA"¢(y) do

not affect the results significantly; interestingly over-specifydft(y = 1) leads to more
accurate estimates than under-specifying (misspecification closer tommfstribution)
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Figure 9: Mean prediction accuracy for the unsupervised predictoriination scheme in (4) for synthetic
data. The left panel displays classification accuracy aadigfint panel displays the regression ac-

curacy as measured by-12 ™, (9neW_ynew)2 The graphs show that in both cases the accuracy
increases wittik andn in accordance with the theory and the risk estimation expents.

The original data set contains 800 sentence pairs with a total of 165 &onsotd he latter task
involves recognizing the temporal relation in verb-event pairs. Thetatoras forced to decide
whether the event described by the first verb occurs before orthftesecond. The original data
set contains 462 pairs and 76 annotators. In both data sets, most ohtitatars have completed
only a handful of tasks. Therefore, we selected a subset of thestadors for each task such that
each annotator has completed at least 100 problems and has differimgc@es. The data sets
contain ground truth labels which are used solely to calculate the annotatoaeg and not used
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Figure 10: magd™e 8"®) as a function ofn for different number of annotatork on RTE
(lefty and TEMP (right) data sets. Leftn = 100, P(y = 1) = 0.5 and 6™ =
{0.85,0.92,0.58,0.5,0.51}.  Right: n = 190, P(y = 1) = 0.56 and 6"e —
{0.93,0.92,0.54,0.44,0.92}. The classifiers were added in the order specified.

at all during the estimation process. For efficiency, we selected only ttenges for which all
annotators provide an answer. This resulted #1100, 190 for RTE and TEMP, respectively.

In Figure 10 we display ma8'™e 6™) for these data sets as functionndbr different values of
k. These plots generated from real-world data show similar trend to the sigrekperiments. The
estimation errors decay to 0 asncreases and generally tend to decreadeilasreases. This corre-
spondence is remarkable since two of the labelers have worse thamraedaracy and since it is
not clear whether the conditional independence assumption actually hokkslity for these data
sets. Nevertheless, the collaborative estimation error behaves in ancerdith the synthetic data
experiments and the theory. This shows that the estimation framework ig tolihe breakdown
of the assumption that the classifier accuracy must be higher than ramaice.cAlso, whether the
conditional independence assumption holds or not is not crucial in thés cas

We further experimented with classifiers trained on different represemsaof the same data
set and estimated their error rates. We adopted the Ringnorm data settgdy Breiman (1996).
Ringnorm is a 2-class artificial data set with 20 dimensions where eaclictissvn from a multi-
variate normal distribution. One class has zero mean and a covakiandé wherel is the identity
matrix. The other class has unit covariance and a nuear‘(\%),\/%),...,\/%)). The total size
is 7400. We created 5 different representations of the data by projecting mutually exclusive
sets of principal components obtained by Principal Component AnalySk)(RVe trained an SVM
classifier (with 2-degree polynomial kernel) (Vapnik, 2000; Joachi®39)on samples from each
representation while holding out 1400 examples as the test set resultingahaf thclassifiers. We
tested each of the 5 classifiers on the test set and used their outputs to efteraeesponding
parameters. The true labels of the test set examples were used as gudlina calculate the mae
of the mle estimators.

The mae curves for this data set appear in Figure 11 as a function ofrtitgenn of unlabeled
examples. When all classifiers are highly accurate (upper left panefotlaborative unsupervised
estimator is reliable, see Figure 11(a). With a mixture of weak and strondfidesgupper right
panel), the collaborative unsupervised estimator is also reliable. Thisggeltdse fact that some of
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Figure 11: magot™e M) as a function of the test set size on the Ringnorm datapgt= 1) =
0.47, and@""¢ is indicated in the legend in each plot. The four panels represent mostly
strong classifiers (upper left), a mixture of strong and weak classifignsef right),
mostly weak classifiers (bottom left), and mostly very weak classifiers (baitgint).
The figure shows that the framework is robust to occasional deviations the as-
sumption regarding better than random guess classification accurgey (ight panel).
However, as most of the classifiers become weak or very weak, the @@ltale unsu-
pervised estimation framework results in worse estimation error.

the weak classifiers in Figure 11(b) have worse than random accwtdch violates the assump-
tions in the consistency proposition. This shows again that the estimation faak&arobust to
occasional deviations from the requirement concerning better thaamraddssification accuracies.
On the other hand, as most of the classifiers become worse (bottom rev@ccehracy of the un-
supervised estimator decreases, in accordance with the theory deveidpections 5 (recall the
Fisher information contour plot).

Our experiments thus far assumed the symmetric noise model (8). Despitd#ingtalways
applicable for real world data and classifiers, it did result in good estimationracy in some of the
cases described thus far. However, in some cases this assumptiorsiy grolsted and the more
general noise model is needed (6). For this reason, we conductedpenments using real world
data assuming the more general (6).

The first experiment concerned domain adaptation (Blitzer et al., 200Anfiazon’s product
reviews in four different product domains: books, DVDs, electroaitd kitchen appliances. Each
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book | dvd | kitchen | electronics|| 20newsgroup
training error 0.22 | 0.23| 0.26 0.30 0.028
non-collaborativel 0.04 | 0.04 | 0.08 0.06 0.006
collaborative 0.10 | 0.10| 0.09 0.08 n/a

Figure 12: ma(zé”"e, 8"®) for the domain adaptatiom(= 1000, p(y = 1) = 0.75) and 20 news-
group f = 15,000, p(y = 1) = 0.05 for each one-vs-all data). The unsupervised non-
collaborative estimator outperforms the collaborative estimator due to violatithe o
conditional independence assumption. Both unsupervised estimatassnpatibstan-
tially better than the baseline training error rate estimator. In both cases tiits vesre
averaged over 50 random train test splits.

domain consists of positivg & 1) and negativey(= 2) reviews withp(y = 1) = 0.75. The task was
to estimate the error rates of classifiers (linear SVM, Vapnik, 2000; doacth999) that are trained
on 300 examples from one domain but tested on other domains. The maefuatheslassification

risks are displayed in Figure 12 with the columns indicating the test domain. Ircdkis the

unsupervised non-collaborative estimator outperforms the collaboegtimator due to violation
of the conditional independence assumption. Both unsupervised estirpatémem substantially

better than the baseline estimator that uses the training error on one domaedit f@sting error

on another domain.

In the second experiment using (6) we estimated the risk (non-collakeyatof 20 one vs. all
classifiers (trained to predict one class) on the 20 newsgroup datg,(1885). The train set size
was 1000 and the unlabeled data size was 15000. In this case the wisegpeon-collaborative
estimator returned extremely accurate risk estimators. As a comparisonkthstimates obtained
from the training error are four times larger than the unsupervised Mtilba@®r (See Figure 12).

8. Discussion

We have demonstrated a collaborative framework for the estimation of atasisifi and regression
error rates fok > 1 predictors. In contrast to previous supervised risk estimation methatis su
as cross validation (Duda et al., 2001), bootstrap (Efron and Tibshir®87), and others (Hand,
1986), our approach is fully unsupervised and thus able to use Viéesttmmns of unlabeled data.
Other related work includes Smyth et al. (1995) and Sheng et al. (20@8hwonsider repeated
labeling where each instance is labeled by multiple experts and the final laleeided based on a
majority voting scheme. However, Smyth et al. and Sheng et al. fail to exldstisnating the risks
of the predictors which is the main focus of our work.

We prove statistical consistency in the unsupervised case and derigsyimptotic variance.
Our experiments on synthetic data demonstrate the effectiveness of ianioak and verify the
theoretical results. Experiments on real world data show robustnesdedying assumptions. The
framework may be applied to estimate additional quantities in an unsupervisewmentiuding
noise level in noisy communication channels (Cover and Thomas, 2008)yamdates in structured
prediction problems.
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