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Abstract

There are many different methods used by classificatioraiggeithms when missing data occur in
the predictors, but few studies have been done comparigappropriateness and performance.
This paper provides both analytic and Monte Carlo eviderganding the effectiveness of six
popular missing data methods for classification trees egpdi binary response data. We show that
in the context of classification trees, the relationshipveein the missingness and the dependent
variable, as well as the existence or non-existence of ngs&ilues in the testing data, are the most
helpful criteria to distinguish different missing data imads. In particular, separate class is clearly
the best method to use when the testing set has missing \ahgethe missingness is related to
the response variable. A real data set related to modelingroptcy of a firm is then analyzed.
The paper concludes with discussion of adaptation of thesdts to logistic regression, and other
potential generalizations.

Keywords: classification tree, missing data, separate class, RPARS, CART

1. Classification Trees and the Problem of Missing Data

Classification trees are a supervised learning method appropriate foxvldata the response vari-
able is categorical. The simple methodology behind classification trees is tsivety split data
based upon the predictors that best distinguish the response variasescldhere are, of course,
many subtleties, such as the choice of criterion function used to pick thefi¢stariable, stopping
rules, pruning rules, and so on. In this study, we mostly rely on the builtaitufes of the tree algo-
rithms c4.5 andrPART to implement tree methods. Details about classification trees can be found
in various references, for example, Breiman, Friedman, Olshen, amé $1998) and Quinlan
(1993). Classification trees are computationally efficient, can handle mawables (continuous
and discrete) easily and the rules generated by them are relatively éassrpoet and understand.
Classification trees are highly flexible, and naturally uncover interacti@ectsfamong the inde-
pendent variables. Classification trees are also popular becausatheggily be incorporated into
learning ensembles or larger learning systems as base learners.
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Like most statistics or machine learning methods, “base form” classificationdreadesigned
assuming that data are complete. That s, all of the values in the data matrix, evittiwtk being the
observations (instances) and the columns being the variables (attritareegfyserved. However,
missing data (meaning that some of the values in the data matrix are not obsee/edry common
problem, and for this reason classification trees have to, and do, hgegeivdealing with missing
data in the predictors. (In supervised learning, an observation with missspgnse value has no
information about the underlying relationship, and must be omitted. Therevi@uer, research in
the field of semi-supervised learning methods that tries to handle the situatioe thkeesponse
value is missing, for example, Wang and Shen 2007.)

Although there are many different ways of dealing with missing data in clesiific trees,
there are relatively few studies in the literature about the appropriatandgserformance of these
missing data methods. Moreover, most of these studies limited their coveragesionthiest miss-
ing data scenario, namely, missing completely at random (MCAR), while ody stuows that the
missing data generating process is one of the two crucial criteria in deterntirérigest missing
data method. The other crucial criterion is whether or not the testing sanislete. The following
two subsections describe in more detail these two criteria.

1.1 Different Types of Missing Data Generating Process

Data originate according to the data generating process (DGP) undér thhidata matrix is “gen-
erated” according to the probabilistic relationships between the variables.caw think of the
missingness itself as a random variable, realized as the matrix of the missnggieatorl . I, is
generated according to the missingness generating process (MGR),gelierns the relationship
betweenl,,, and the variables in the data matrik, has the same dimension as the original data
matrix, with each entry equal to 0 if the corresponding original data valubdssrged and 1 if the
corresponding original data value is not observed (missing). Note Ha{\ealue not only can be
related to its corresponding original data value, but can also be relatdietovariables of the same
observation.

Depending on the relationship betwdgrand the original data, Rubin (1976) and Little and Ru-
bin (2002) categorize the missingness into three different typég.idfdependent upon the missing
values (the unobserved original data values), then the missingnes# jmttaled “not missing at
random” (NMAR). Otherwise, the missingness pattern is called “missing dbrah(MAR). As a
special case of MAR, when the missingness is also not dependent ohgbered values (that is,
is independent of all data values), the missingness pattern is called “missnpdetely at random”
(MCAR). The definition of MCAR is rather restrictive, which makes MCARikely in reality. For
example, in the bankruptcy data discussed later in the paper, there is@vitian after the Enron
scandal in 2001, when both government and the public became more lvaaryfmancial reporting
misconduct, missingness of values in financial statement data was relatednaelltbeing of the
company, and thus other values in the data. This makes intuitive sensesbdedaen scrutinized, a
company is more likely to have trouble reporting their financial data if there weablems. Thus,
focusing on the MCAR case is a major limitation that will be avoided in this papefadt this
paper shows that the categorization of MCAR, MAR and NMAR itself is n@rapriate for the
missing data problem in classification trees, as well as in another supele@&athg context (at
least with respect to prediction), although it has been shown to be heljtfulikelihood-based or
Bayesian analysis.
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Missingness is related to

Missing | Observed| Response

values | Predictors| Variable LR Three-Letter
1 No No No MCAR ———
2 No Yes No MAR —X—
3 Yes No No NMAR M- —
4 Yes Yes No NMAR M X—
5 No No Yes MAR ——-Y
6 No Yes Yes MAR XY
7 Yes No Yes NMAR M—-Y
8 Yes Yes Yes NMAR MXY

Table 1: Eight missingness patterns investigated in this study and theirmomdeEnce to the cate-
gorization MCAR, MAR and NMAR defined by Rubin (1976) and Little and Ru002)
(the LR column). The column Three-Letter shows the notation that is used ipapées.

In this paper, we investigate eight different missingness patterns, diegemn the relationship
between the missingness and three types of variables, the observiatigpsethe unobserved pre-
dictors (the missing values) and the response variable. The relationskipdiional upon other
factors, for example, missingness is not dependent upon the missing vakans that the miss-
ingness is conditionally independent of the missing values given the auseredictors and/or
the response variable. Table 1 shows their correspondence with theREMG¥R/NMAR catego-
rization as well as the three-letter notation we use in this paper. The thres ietlerate if the
missingness is conditionally dependent on the missing values (M), on otiiciars (X) and on
the response variable (), respectively. As will be shown, the degreaedof the missingness on the
response variable (the letter Y) is the one that affects the choice of beshgmiess data method.
Later in the paper, some derived notations are also used. For exaripleneans the union of
—X—, =XY, MX — and MXY, that is, the missingness is dependent upon the observedtpredic
and it may or may not be related to the missing values and/or the respond#evaria

1.2 Scenarios Where the Testing Data May or May Not Be Complete

There are essentially two stages of applying classification trees, the trpinasg where the his-
torical data (training set) are used to construct the tree, and the testiag whare the tree is put
into use and applied to testing data. Similar to most other studies, this study dealsengttenario
where missing data occur in the training set, but the testing set may or mayweanissing values.
One basic assumption is, of course, that the DGP (as well as MGP if the testiatso contains
missing values) is the same for both the training set and the testing set.

While it would probably typically be the case that the testing data would alsorhesging val-
ues (generated by the same process that generated them in the trainimglsetid be noted that in
certain circumstances a testing set without missing values could be exgeatexample, consider
a problem involving prediction of bankruptcy from various financial tibthe training set comes
from a publicly available database, there could be missing values cordisgda information that
was not supplied by various companies. If the goal is to use these publalalzle data to try
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to predict bankruptcy from ratios from one’s own company, it would kgeeted that all of the
necessary information for prediction would be available, and thus thectesbsild be complete.

This study shows that when the missingness is dependent upon thesespoiable and the
test set has missing values, separate class is the best missing data meteodtotier situations,
the choice is not as clear, but some insights on effective choices arelguo The rest of paper
provides detailed theoretical and empirical analysis and is organizedl@ssoSection 2 gives a
brief introduction to the previous research on this topic. This is followeddgudsion of the design
of this study and findings in Section 3. The generality of the results are theuten real data sets
in Section 4. A brief extension of the results to logistic regression is praséntgection 5. We
conclude with discussion of these results and future work in Section 6.

2. Previous Research

There have been several studies of missing data and classification tieediterature. Liu, White,
Thompson, and Bramer (1997) gave a general description of the prpble did not discuss solu-
tions. Saar-Tsechansky and Provost (2007) discussed variousgridssa methods in classification
trees and proposed a cost-sensitive approach to the missing data piotieerscenario when miss-
ing data occur only at the testing phase, which is different from the probtedied here (where
missing values occur in the training phase).

Kim and Yates (2003) conducted a simulation study of seven popular misaing methods
but did not find any dominant method. Feelders (1999) compared thermenfice of surrogate split
and imputation and found the imputation methods to work better. (These methddbgamethods
described below, are described more fully in the next section.) Batista andrll (2003) compared
four different missing data methods, and found that 10 nearest neighpatation outperformed
other methods in most cases. In the context of cost sensitive classifitaigsn Zhang, Qin, Ling,
and Sheng (2005) studied four different missing data methods basediopeéhiformances on five
data sets with artificially generated random missing values. They concludethéhinternal node
method (the decision rules for the observations with the next split variabléngnigdll be made
at the (internal) node) is better than the other three methods examined. FupgkaivHo (2002)
compared several imputation methods based on preliminary clustering algotahprababilistic
split on simulations based on several real data sets and found compagebleance. A weakness
of all of the above studies is that they focused only on the restrictive MEIARLtion.

Other studies examined both MAR and NMAR missingness. Kalousis and Hig0@0}] used
simulations from real data sets to examine the properties of seven algorithmsalénnducers, a
nearest neighbor method, two decision tree inducers, a naive Bayeemend linear discriminant
analysis. They found that the naive Bayes method was by far most résdienissing data, in
the sense that its properties changed the least when the missing rate easeadcfnote that this
resilience is related to, but not the same as, its overall predictive penfioehaThey also found
that the deleterious effects of missing data are more serious if a given anfounissing values are
spread over several variables, rather than concentrated in a few.

Twala (2009) used computer simulations based on real data sets to congparefbrties of
different missing value methods, including using complete cases, single impusatitissing val-
ues, likelihood-based multiple imputation (where missing values are imputedakéwees, and
the results of fitting trees to the different generated data sets are comignaehbilistic split, and
surrogate split. He studied MAR, MCAR, and NMAR missingness generatimgepses, although
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dependence of missingness on the response variable was not exainégle imputation was
found to be most effective, with probabilistic split also performing reashynaell, although little
difference was found between methods when the proportion of missingsvalas low. As would
be expected, MCAR missingness caused the least problems for methddd\AR missingness
caused the most, and as was also found by Kalousis and Hilario (2000)hgnisss spread over
several predictors is more serious than if it is concentrated in only onalaJ\ones, and Hand
(2008) proposed a method closely related to creating a separate clasisgorg values, and found
that its performance was competitive with that of likelihood-based multiple imputation

The study described in the next section extends these previous stud@srialsvays. First,
theoretical analyses are provided for simple situations that help expla@énvelolsempirical perfor-
mance. We then extend these analyses to more complex situations and datecketing large
ones) using Monte Carlo simulations based on generated and real datdketamportance of
whether missing is dependent on the response variable, which has beesdign previous studies
on classification trees yet turns out to be of crucial importance, is a foed@l aspect of these
results. The generality of the conclusions is finally tested using real dstase application to
logistic regression.

3. The Effectiveness of Missing Data Methods

The recursive nature of classification trees makes them almost impossiblalyae@analytically in
the general case beyond 2 tables (where there is only one binary predictor and a binary response
variable). On the other hand, trees built or2tables, which can be thought of as “stumps” with
a binary split, can be considered as degenerate classification trees, chagsiication tree being
built (recursively) as a hierarchy of these degenerate trees. foheranalyzing 22 tables can
result in important insights for more general cases. We then build on<BeaBalyses using Monte
Carlo simulation, where factors that might have impact on performance emenmentally added,
in order to see the effect of each factor. The factors include variatitwotim the data generating
process (DGP) and the missing data generating process (MGP), the mamatype of predictors
in the data, the number of predictors that contain missing values, and the mafrdiEservations
with missing data.

This study examines six different missing data methods: probabilistic split, ctengdese
method, grand mode/mean imputation, separate class, surrogate split, aheteaanable method.
Probabilistic split is the default method ofi.5 (Quinlan, 1993). In the training phase, observations
with values observed on the split variable are split first. The ones with misaings are then put
into each of the child nodes with a weight given as the proportion of nonirgigsstances in the
child. In the testing phase, an observation with a missing value on a split leawidkbe associated
with all of the children using probabilities, which are the weights recordedértriining phase.
The complete case method deletes all observations that contain missing valog®irthe predic-
tors in the training phase. If the testing set also contains missing values niptete case method
is not applicable and thus some other method has to be used. In the simulagonse@4.5 to
realize the complete case method. In the training phase, we manually deletthallofiiservations
with missing values and then ra@#.5 on the pre-processed remaining complete data. In the testing
phase, the default missing data method, probabilistic split, is used. Grandmuatation imputes
the missing value with the grand mode of that variable if it is categorical. Grarsoh nseused
if the variable is continuous. The separate class method treats the missing a&alaenew class

135



DING AND SIMONOFF

(category) of the predictor. This is trivial to apply when the original \algds categorical, where
we can create a new category called “missing”. To apply the separatensddised to a numerical
variable, we give all of the missing values a single extremely large value tblatisusly outside of
the original data range. This creates the needed separation betweemthissing values and the
missing values, implying that any split that involves the variable with missing vafiligsut all of
the missing observations into the same branch of the tree. Surrogate splitisfalodt method of
CART (realized usin@RPART in this study; Breiman et al. 1998 and Therneau and Atkinson 1997).
It finds and uses a surrogate variable (or several surrogatesen) avilhin a node if the variable
for the next split contains missing values. In the testing phase, if a splittl@agantains missing
values, the surrogate variables in the training phase are used insteacbrplete variable method
simply deletes all variables that contain missing values.

Before we start presenting results, we define a performance meaatisedappropriate for mea-
suring the impact of missing data. Accuracy, calculated as the percerftagerectly classified
observations, is often used to measure the performance of classificatisn Bince it can be af-
fected by both the data structure (some data are intrinsically easier to cldssifpthers) and by
the missing data, this is not necessarily a good summary of the impact of mistndrdis study,
we define a measure calleglative accuracyRelAcg, calculated as

Accuracy with missing data

RelAcc= . — )
Accuracy with original full data

This can be thought of as a standardized accuradyed&ccmeasures the accuracy achievable with
missing values relative to that achievable with the original full data.

3.1 Analytical Results

In the following consistency theorems, the data are assumed to reflect theXa@tly, and therefore
the training set and the testing set are exactly the same. Several of thentiseame for 2 2 tables,
and in those cases stopping and pruning rules are not relevant, sirmdytltpiestion is whether or
not the one possible split is made. The proofs are thus dependent ondbsying parameters of
the DGP and MGP, rather than on data randomly generated from them. It ig@nipim recognize
that these results are only designed to be illustrative of the results found imubh more realistic
simulation analyses to follow. Proofs of all of the results are given in theraglig.

Before presenting the theorems, we define some terms to avoid possiblsioonf First, a
partition of the data refers to the grouping of the observations definedebgldissification tree’s
splitting rules. Note that it is possible for two different trees on the same data define the same
partition. For example, suppose that there are only two binary explanatnaplesX; andX,, and
one tree splits oiX; then X, while another tree splits oK, thenX;. In this case, these two trees
have different structures, but they can lead to the same partition of the Satandly, the set of
rules defined by a classification tree consists of the rules defined by éhieénees on each of the
groups (the partition) of the data.

3.1.1 WHEN THETESTSET IS FULLY OBSERVEDWITH NO MISSING VALUES

We start with Theorems 1 to 3 that apply to the complete case method. Theorem$4pply to
probabilistic split and mode imputation, respectively. Proofs of the theoram$e found in the
appendix.
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Theorem 1 Complete Case Method: If the MGP is conditionally independent of Y giveneX,
the tree built on the data containing missing values using the complete casednggths the same
set of rules as the tree built on the original full data set.

Theorem 2 Complete Case Method: If the partition of the data defined by the tree builteon th
incomplete data is not changed from the one defined by the tree built onitfieabfull data, the
loss in accuracy when the testing set is complete is bounded aboyg BhBre k) is the missing
rate, defined as the percentage of observations that contain missingsvalu

Theorem 3 Complete Case Method: If the partition of the data defined by the tree builteon th
incomplete data is not changed from the one defined by the tree built onitfieabfull data, the
relative accuracy when the testing set is complete is bounded below by

1—Pwv
RelAcGyn=——
Enin 1+Py’
where k) is the missing rate. Notice that the tree structure itself could change as loitgaes
the same final partition of the data.

There are similar results in regression analyses as in Theorem 1. éssegr analyses, when
the missingness is independent of the response variable, by using omlyriipdete observations,
the parameter estimators are all unbiased (Allison, 2001). This implies thatdryttvehen the
missingness is independent of the response variable, using complet®nbss not a bad approach
on average. However, in practice, as will be seen later, deleting @tsary with missing values
can cause severe loss in information, and thus has generally poompanice.

Theorem 4 Probabilistic Split: In a 2«2 data table, if the MGP is independent of either Y or X,
given the other variable, then the following results hold for probabilistic split.

1. If X is not informative in terms of classification, that is, the majority clas$&sfor different
X values are the same, then probabilistic split will give the same rule as théthahevould
be obtained from the original full data;

2. If probabilistic split shows that X is informative in terms of classificationt iy@ahe majority
classes of Y for different X values are different, then it finds the samesullee one that
would be obtained from the original full data;

3. The absolute accuracy when the testing set is complete is boundedtem®. Since the
original full data accuracy is at most 1, the relative accuracy is also lamahbelow by 0.5.

Theorem 5 Mode Imputation: If the MGP is independent of Y, given X, then the sasulisdiold
for mode imputation as for probabilistic split under the conditions of Theorem 4.

Theorems 1, 2 and 3 (for the complete case method) are true for gentaaals. Theorems
4 and 5 are for 22 tables only but they imply that probabilistic split and mode imputation have
advantages over the complete case method, which can have very poomaerce (as will be shown
in Figure 1).
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Moreover, with 22 tables, the complete variable method will always have a higher than 0.5
accuracy since by ignoring the only predictor, we will always classifypfthe data to the overall
majority class and achieve at least 0.5 accuracy, and thus at least @eratzuracy. Together
with Theorems 4 and 5, as well as the evidence to be shown in Figure 1, timisndieation that
classification trees tend not to be hurt much by missing values, since tridlemntix 2 tables can
be considered as degenerate classification trees and more complexéreesnposites of these
degenerate trees. The performance of a classification tree is the @¢esgighted by the number
of observations at each leaf) over the degenerate trees at the ldahtaeas will be seen later in
the simulations, can often be quite good.

Surrogate split is not applicable to2 tables because there are no other predictors. k@r 2
table problems with a complete testing set, separate class is essentially the saaweagplbte case
method, because as long as the data are split according to the predidtitigasery likely that this
will be s0), the separate class method builds separate rules for the atimeswvith missing values;
when the testing set is complete, the rules that are used in the testing phasactisethe ones built
on the complete observations. When there is more than one predictor,drptir/creation of the
“separate class” will save the observations with missing values from beileged and affect the
tree building process. It will very likely lead to a change in the tree struciithis, as will be seen,
tends to have a favorable impact on the performance accuracy.

Figure 1 illustrates the lower bound calculated in Theorem 3. The illustratiochis\aed by
Monte Carlo simulation of 22 tables. A %2 table with missing values has only eight cells, that is,
eight different value combinations of the binary variab¥e& andM, whereM is the missingness
indicator such tham = 0 if X is observed an1 = 1 if X is missing. There is one constraint, that
the sum of the eight cell probabilities must equal one. Therefore, thisiabditermined by seven
parameters. In the simulation, for eack 2 table, the following seven parameters (probabilities)
are randomly and independently generated from a uniform distributioreket®, 1): (1)P(X =1),
@QPY =1X=0), BPY=1X=1), @P(M=1X=0,Y =0), B)P(M=1X=0,Y =1),
BP(M=1X=1Y =0)and (7P(M =1 X=1Y = 1). Here we assume the data tables reflect
the true underlying DGP and MGP without random variation, and thus thecesg performance
of the classification trees can be derived using the parameters. In this tsomuets of the seven
parameters are generated (but no data sets are generated usingithesetgrs) repeatedly, and the
relative accuracy of each missing data method on each parameter setigigiete One million
sets of parameters are generated for each missingness pattern.

In Figure 1, the plot on the left is a scatter plot of relative accuracyugensissing rate for
each Monte Carlo replication for the complete case method when the MGPddspethe response
variable. The lower bound is clearly shown. We can see that when the gisdmis high, the
lower bound can reduce to almost zero (implying that not only relativeracgubut accuracy itself,
can approach zero). This perhaps somewhat counterintuitive resuttocur in the following way.
Imagine the extreme case where almost all cases are positive and (viraliadfydhe positive cases
have missing predictor value at the training phase; in this situation the resultantill be to
classify everything as negative. When this rule is applied to a complete testimgts almost all
positive cases, the accuracy will be almost zero. The graph on thegiiet quantile version of the
scatter plot on the left. The lines shown in the quantile plot are the theoretigad bmund, the 10th,
20th, 30th, 40th and 50th percentile lines from the lowest to the highest. Hgheentile lines are
the same as the 50th percentile (median) line, which is already the horizonttiebAcc= 1. The
percentile lines are constructed by connecting the correspondingntiBgsen a moving window
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Figure 1. Scatter plot and the corresponding quantile plot of the compldiegtesgtRelAccvs.
missing rate of the complete case method when the MGP is dependent on teseesp
variable. Recall that«Y” means the MGP is conditionally dependent on the response
variable but no restriction on the relationship between the MGP and othables, miss-
ing or observed, is assumed. Each point in the scatter plot represergsititteon one of
the simulated data tables.

of data from the left to the right. Due to space limitations, we do not show quahdie of other

missing data methods and/or under different scenarios, but in all of teepltits, the quantile lines
are all higher (that is, the quantile plot in Figure 1 shows the worst cas@go). The plots show
that the missing data problem, when the missing rate is not too high, may not beE@s s we
might have thought. For example, when 40% of the observations contain ghdssin, 80% of the
time the expected relative accuracy is higher than 90%, and 90% of the timepbeted relative
accuracy is higher than 80%.

3.1.2 WHEN THE TEST SET HAS MISSING VALUES

Theorem 6 Separate Class: In:22 data tables, if missing values occur in both the training set
and the testing set, then the separate class method achieves the bedepssilsmance.

In the Monte Carlo simulation of the 22 tables, the head-to-head comparison between the
separate class method and other missing data methods confirmed the unifoimardce of the sep-
arate class when the test set also contains missing values, regardiéssnitee MGP is dependent
on the response variable or not. However, as shown in Figure 2, wedi@#P is independent of
the response variable, separate class never performances betteetparformance on the original
full data, indicated by relative accuracies less than one. This meangpaaate class is not gaining
from the missingness. On the other hand, when the MGP is dependent @splomse variable, a
fairly large percentage of the time the relative accuracy of the separaterokthod is larger than
one (the quantiles shown are from the 10th to the 90th percentile with incrdgmtrcent). This
means that trees based on the separate class method can improve orvprpdifbrmance com-
pared to the situation where there are no missing data. Our simulations shavhhiatnethods
can also gain from the missingness when the MGP is dependent on thesespuoiable, but not as
frequently as the separate class method and the gains are in genealargea We follow up on
this behavior in more detail in the next section, but the simple explanation igrlcatraissingness
depends on the response variable, the tree algorithm can use thecpresarissing data in an ob-
servation to improve prediction of the response for that observationa,Makt, and Stork (2001)
and Hand (1997) briefly mentioned this possibility in the classification contektlith not give any
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Figure 2: Scatter plot of the separate class method with incomplete testing sbtpdiat in the
scatter plot represents the result on one of the simulated data tables.

supporting evidence. Theorem 6 makes a fairly strong statement in the sitopkios, and it will
be seen to be strongly indicative of the results in more general cases.

3.2 Monte Carlo Simulations of General Data Sets

In this section extensions of the simulations in the last section are summarized.

3.2.1 AN OVERVIEW OF THE SIMULATION

The following simulations are carried out.

2x 2 tables, missing values occur in the only predictor.

Up to seven binary predictors, missing values occur in only one predicto
Eight binary predictors, missing values occur in two of them.

Twelve binary predictors, missing values occur in six of them.

Eight continuous predictors, missing values occur in two of them.

© g k~ w N oE

Twelve continuous predictors, missing values occur in six of them.

Two different scenarios of each of the last four simulations listed ab@re werformed. In
the first scenario, the six complete predictors are all independent of tesegisnes, while in the
second scenario three of the six complete predictors are related to the noissesgrherefore, ten
simulations were done in total.

In each of the simulations, 5000 sets of DGPs are simulated in order to ceude aange of
different-structured data sets so that a generalizable inference feogintlulation is possible. For
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Figure 3: A summary of the tree performance on the simulated original full data

each DGP, eight different MGPs are simulated to cover different typesssingness patterns. For
each data set, the variables are generated sequentially in the order oéditqrs, the response
and the missingness. The probabilities associated with the binary res@risdgerand the binary
missingness variable are generated using conditional logit functiongrétitors may or may not
be correlated with each other. Details about the simulations implementation caartzkif Ding
and Simonoff (2008). For each set of DGP/MGP, several differamipde sizes are simulated to
see any possible learning curve effect, since it was shown by Pertimip®, and Simonoff (2003)
that sample size is an important factor in the effectiveness of classificagies. tFigure 3 shows
the distribution of the tree performance on the simulated original full data, asured by accuracy
and area under the ROC curve (AUC). As we can see, there is bregachge of the entire range of
strength of the underlying relationship. Also, as expected, the outropisaperformance (on the
test set) is generally worse than the in-sample performance (on the tragtinghen the in-sample
AUC is close to 0.5, a tree is likely to not split and as a result, any missing data dnethamot
actually be applied, resulting in equivalent performance over all of thenmdke the comparisons
more meaningful, we exclude the cases where the in-sample AUC is belowd@wér thresholds
for exclusion (0.55 and 0.6) yield very similar results.

Of the six missing data methods covered by this study, five of them, namely, dencplee
method, probabilistic split, separate class, imputation and complete variable meatbadalized
usingc4.5. These methods are always comparable. However, surrogates salitied out using
RPART, which makes it less comparable to the other methods because of diffefmtogeeRPART
andc4.5 other than the missing data methods. To remedy this problem, we turreektkeparam-
eters (primarily the parameter “cp”) so that it gives balanced results aemhpac4.5 when applied
to the original full data (i.e., each has a similar probability of outperforming theryy and special
attention is given when comparimpPART with other methods. The out-of-sample performances of
each pair of missing data methods were compared based on-texts and nonparametric tests;
each difference discussed in the following sections was strongly statistsogtlificant.
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Figure 4: A summary of the order of six missing data methods when tested omn aaneplete
testing set. The Y axis is the percentage of times each method is the best (igdialig
tied with other methods; therefore the percentages do not sum up to one).

3.2.2 THE TWO FACTORS THAT DETERMINE THE PERFORMANCE OFDIFFERENTMISSING
DATA METHODS

The simulations make clear that the dependence relationship between the n@ssiagd the re-
sponse variable is the most informative factor in differentiating differensimgsdata methods, and
thus is most helpful in determining the appropriateness of the methods. Thieadearly seen in
Figures 4 and 5 (these figures refer to the case with twelve continuodistors, six of which are
subject to missing values, but results for other situations were broadly gindilze left column in
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Figure 5: A summary of the order of six missing data methods when tested om mecmmplete
testing set. The Y axis is the percentage of times each method is the best (igdialig
tied with other methods).

the pictures shows the results when the missingness is independent cfitbese variable and the
right column shows the results when the missingness is dependent ongbesesariable. We can
see that there are clear differences between the two columns, but withic@amn there is essen-
tially no difference. This also says the categorization of MCAR/MAR/NMARi@h is based upon

the dependence relationship between the missingness and missing vatugseamot distinguish

the dependence of the missingness on aXgeand orY) is not helpful in this context.
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Case-wise missing rate, M=,

Walue-wise missing rate, MR

Figure 6: Plot of the case-wise missing radR, versus the value-wise missing ra#R; in the
simulations using the 36 real data sets.

Comparison of the right columns of Figures 4 and 5 shows that whethet trere are missing
values in the testing set is the second important criterion in differentiating betti® methods.
The separate class method is strongly dominant when the testing set contaiimg médues and
the missingness is related to the response variable. The reason for thisvidémamissing data
exist in both the training phase and the testing phase, they become partdzftéhand the MGP
becomes an essential part of the DGP. This, of course, requirestivagtion that the MGP (as well
as the DGP) is the same in both the training phase and the testing phase. limsgestirio, if the
missingness is related to the response variable, then there is informatidritemsponse variable
in the missingness, which should be helpful when making predictions. &epdass, by taking the
missingness directly as an “observed” variable, uses the information in tlsengness about the
response variable most effectively and thus is the best method to usemAgtex of fact, as can
be seen in the bottom rows of Figures 7 and 8 (which give average ectatouracies separated by
missing rate), the average relative accuracy of separate class uisdgtuétion is larger than one,
indicating, on average, a better performance than with the original full data

On the other hand, when the missing data only occur in the training phaseegedting set does
not have missing values, or when the missingness is not related to and cariidormation about
the response variable, the existence of missing values is a nuisancdy keffect is to obscure the
underlying DGP and thus would most likely reduce a tree’s performamctid case, simulations
show probabilistic split to be the dominantly best method. However, we deea’tris dominance
later in results based on real data sets. More discussion of this point haWfim Section 4.

3.2.3 MISSING RATE EFFECT

There are two ways of defining the missing rate: the percentage of pnedidtes that are missing
from the data set (the value-wise missing rate, termedM&s, and the percentage of observations
that contain missing values (the case-wise missing rate, termedviere If there is only one
predictor, as is the case withx2 tables, then the two definitions are the same. We have seen
earlier in the theoretical analyses that the missing rate has a clear impactparfttvenance of the
missing data methods. In the simulations, there is also evidence of a relatiorshgeh relative
performance and missing rate, whichever definition is used to define the gniagin
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Figure 7: A comparison of the low, median and high missing rate situations. pmewcshows the
comparison in terms of winning percentage and the bottom row shows the asampaf
the absolute performance of each missing data method.

Figure 6 shows the relationship betwadiR; andMR; in the simulations with 12 continuous
predictors and 6 of them with missing values. Notice that in this setti®), is naturally between
0 and 0.5 (since half of the predictors can have missing valiéR).values are considerably larger
thanMR; values, as would be expected.

The simulations clearly show that the relative performance of differenimgiskata methods is
very consistent regardless of the missing rate (see the top row of Fijjukéowever, the bottom
row of Figure 7 shows that the absolute performance of the complete cdkedrand the mean
imputation method deteriorate as the missing rate gets higher. It also showgpheats class
method performs best when the missing rate is neither too high or too low, dithbisgeffect is
relatively small. Interestingly, the relative accuracy of the other missingrdathods is very close
to one regardless of the missing rate, indicating that they can almost acheesantie accuracy as
if the data are complete without missing values.

A final effect connected to missing rate relates to results in earlier pafaicusis and Hilario,
2000; Twala, 2009) that suggested that missingness over sevati@tpre is more problematic than
missingness concentrated in a few predictors. This pattern was not eh@ten(e.g., in comparing
the results for 8 predictors with 2 having missing values to those for 12 poesliwith 6 having
missing values), but it should be noted that the comparisons here arbdrasslative performance
between methods, not absolute performance. That is, even if absottdenpence deteriorates in
the presence of missingness over multiple predictors, this is less important tatshandlyst than
is relative performance between methods (since a method must be clawmtm)ith respect to the
latter criterion the observed patterns are reasonably stable.
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Figure 8: A comparison of the low, median and high original full data AUC &sitna. The top
row shows the comparison in terms of winning percentage and the bottonhoove she
comparison of the absolute performance of each missing data method.

3.2.4 THE IMPACT OF THEORIGINAL FuLL DATA AUC

Figure 8 shows that the original full data AUC primarily has an impact on thfoeance of
separate class method. When the original full data AUC is higher, the losfommiation due to
missing values is less likely to be compensated by the information in the missingmelstjus
separate class method deteriorates in performance (see the bottom roguref 8. When the
original AUC is very high, although separate class still does a little better erage, it loses the
dominance over the other methods.

Another observation is that the missing data methods other than separateekassirly stable
relative accuracy, with complete case and mean imputation consistently beimgottest perform-
ers (see the graphs in the bottom rows of both Figure 7 and Figure 8).isTiige regardless of
the AUC or the missing rate, even when the missingness does not deperelresfbnse variable
and there are no missing data in the testing set where, in theory, the com@etenethod can
eventually recover the DGP.

4. Performance On Real Data Sets

In this section, we show that most of the previously described results hodth wsing real data
sets. Moreover, we propose a method of determining the best missing datadnethse when
analyzing a real data set. Unlike in the previous sections, in these simulaised bn real data,
default settings of£4.5 are used andPART is tuned (primarily using its parameter “cp”) to get
similar performance on the original full data@4.5. Therefore, in particular, the effect of pruning
is present. In Section 4.1, we show the results on 36 data sets that wanalrigomplete. In
Section 4.2, we propose a way to determine the best missing data method to uskeuhg real
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Missingness is related to
Missing | Observed| Response
values | Predictors| Variable LR Three-Letter

No No No MCAR ———
No No Yes MAR —-Y
Yes No No NMAR M- —

Table 2: Three missingness patterns used in simulations based on reagtdat@ile LR column
shows the categorization according to Rubin (1976) and Little and RubDB2j20The
Three-Letter column shows the categorization used in this paper.

data sets that contain missing values (since in that case the true missingmersgigg process is
not known by the data analyst).

4.1 Results on Real Data Sets with Simulated Missing Values

The same 36 data sets as in Perlich, Provost, and Simonoff (2003) drbareg(except for Cover-
type and Patent, which are too big ®®PART to handle; in those cases a random subset of 100,000
observations for each of them was used as the “true” underlying dta ey are either complete
or were made complete by Perlich et al. (2003). Missing values with diffenessingness patterns
were generated for the purpose of this study. According to the eartigltsethe only important
factor in the missingness generating process is the relationship between siggnmess and the
response variable. Therefore, two missingness patterns are incladetk of them, missingness is
independent of all of the variables (including the response variabi¢helother one, missingness is
related to the response variable, but independent of all of the preslidioese two missingness pat-
terns can be categorized as missing completely at random (MCAR) and massargdom (MAR),
respectively. To account for this categorization of MGPs, the third typeigssingness, not missing
at random (NMAR), is also included. In the NMAR case, missingness is mependent upon the
missing values but not on the response variable (see Table 2). To maximipeghible effect of
missing values, the first split variable of the original full data is choseneagahable that contains
missing values. It can be either numeric or categorical (binary or multi-catad). Ten new data
sets with missing values are generated for each combination of data setgtsehsize, and miss-
ingness pattern combination, with the missing rate chosen randomly for eelpefformance of
the missing data methods is measured out-of-sample, on a hold out test sample.

The same six missing data methods, namely, the complete case method, the complete va
able method, probabilistic split, grand mode/mean imputation, surrogate splitexadgarate class
method are applied. All of them are realized usi?g5 except for surrogate split, which is realized
usingRPART. C4.5 is run with its default settings. To make surrogate split comparable to tee oth
missing data methods, tiReART parameters are tuned for each data set and each sample size so that
RPART andc4.5 have comparable in sample performance on the original full data (bpa@ble
performance we mean the average in sample original full data accureeisisnédar to each other).
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Figure 9: Atally of the relative out-of-sample performance measured imracy of all of the miss-
ing data methods on the 36 data sets.

4.1.1 THE TWO FACTORS AND THEBESTMISSING DATA METHOD

Consistent with the earlier results, the two factors that differentiate therpshce of different
missing data methods are whether the testing set is complete and whether themaissiaglepen-
dent upon the response variable. Figure 9 summarizes the relative-saitrpie performance in
terms of accuracy of all of the missing data methods under different sitgatinrthe graph, each
bar represents one missing data method. Since the complete case methodisrhnthe worst
method, it is omitted in the comparisons. Within each bar, the blank block showeetheency
that the missing data method has comparable performance with others. Tuwsvedablock on
the bottom shows the frequency that the missing data method has worsenaare than others.
The line-shadowed blocks on the top show the frequency that the misdimgnéghod has better
performance than others, with the vertically line-shadowed block furtliérating that the missing
data method has better performance than with the original full data.

As was seen in the previous section, when missingness is related to thesespdable and the
test set contains missing values (the graph at the bottom right cornenwé&fy the separate class
method is dominant and in almost half of the cases, its performance is everthati¢he full data
performance. Interestingly, the middle plot on the right shows that theaepeass method still
has an edge over the others (sometimes even over the original full data)tiwn test set contains
missing values and the missingness is dependent upon the predictor ditiocatly independent
of the response variable. This is probably due to the indirect relationsitwgeln the missingness
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and the response variable because both the missingness and thegespiaide are related to the
predictor.

However, the dominance of probabilistic split is not observed in thesalatalsets. One pos-
sible reason could be the effect of pruning, which is used in these a¢alsgts. The other two
methods realized using4.5 (imputation and separate class) both work with “filled-in” data sets,
while probabilistic split takes the missing values as-is. Given this, we spedhdtéhe branches
with missing values are more likely to be pruned under probabilistic split, whigkesait to lose
predictive power. Another possible reason could be the competition fuoragate split, which is
realized usingRPART. Although we tried to tun&kPART for each data set and each sample size,
RPARTandc4.5 are still two different algorithms. Different featuresrRifART andc4.5, other than
the missing data methods, may cags&RT to outperformc4.5. Complete variable method per-
forms a bit worse than the others, presumably because in these simulatiémitidhsplit variable
on the full data was used as the variable with missing values.

In addition to accuracy, AUC was also tested as an alternative perfoenmaeasure. We also
examined the use of bagging (bootstrap aggregating) to reduce theiligridlrlassification trees
(discussion of bagging can be found in many sources, for exampléetéaal. 2001). The learning
curve effect (that is, the relationship between effectiveness andaaimp) is also examined. We
see patterns consistent with those in the simulated data sets. That is, the pafidrmance of the
missing data methods is fairly consistent across different sample sizes.

4.1.2 THE EFFECT OFMISSING RATE

Figure 10 shows the distribution of the generated missing rates in these simaila®enall that
missing values occur in one variable, so this missing rate is the percentagseovations that have
missing values, that i8R, as defined earlier. Figure 11 shows a comparison between the case when
the missing rate is lowM R, < 0.2) and the case when the missing rate is higiiRf > 0.8). For
brevity, only the result when the MGP is dependent on the responsdiesiseshown; differences
between the low and high missing rate situations for other MGP’s are similare Siecmissing
rate is chosen at random, some of the original data sets do not haversamatgel data sets with
simulated missing values with low missing rate, while for others we do not havevinyhigh
missing rate, which accounts for the “no data” category in the figures., disen the missing rate
is high, the complete case method is obviously much worse than other missing dadaspand is
therefore omitted from the comparison in that situation.

By comparing the graphs in Figures 11 with the corresponding ones inéc§juve can see
some of the effects of missing rate. First, when the missing rate is lower thah@@mplete case
method has comparable performance to other methods other than the compégite viaethod.
This is unsurprising, as in this situation the complete case method does not losenftumation
from omitted observations. Secondly, the complete variable method has tke peoformance
when the missing rate is low, presumably (as noted earlier) because the mugslable method
omits the most important explanatory variable in these simulations.

Moreover, in both the low and high missing rate cases, when the missingsgssds on the
response and the testing set is incomplete, the dominance of the sepasaie otdsas strong as it
is in Figure 9. This indicates that separate class works best when the nmang moderate. If
the missing rate is too low, there might not be enough observations in the gatégmissing” for
the separate class method to be as effective. On the other hand, if the madsirgvery high, the
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Distribution of missing rates in the simulation on 36 real data sets
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Figure 10: The distribution of missing rate in the simulation on 36 real data sets.
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Figure 11: A comparison of the relative out-of-sample performance withdod high missing
rates. Shown here, as an example, is the relative performance when Hiegméss is
dependent upon the response variable. The left column is for the wases the test
set is fully observed and the right column for the cases where the tdsasahissing
values. Top row shows the cases with low missing rd&{ < 0.2) and bottom row
shows the cases with high missing ratéR, > 0.8)

information gained by separate class may not be enough to compensate lasttinformation in
the missing values, making all of the methods more comparable. This obsefgaimrsistent with
Figure 2, where it is very clear that separate class gains the most whamsiag rate is around
50%, as well as Figure 7, where the bottom row shows that separatehamsetter performance
when the missing rate is neither too high or too low.
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Pct of time all of the missing data methods are mostly tied on each of the 36 real data sets
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Figure 12: A tally of the missing data methods performance differentiation tay skgparability
(measured by AUC).

4.1.3 IMPACT OF THEDATA SEPARABILITY, MEASURED BY ORIGINAL FuLL DATA AUC

The experiment with these 36 data sets also shows that data separabilityr@ddags AUC) is in-
formative about the performance differentiation between different ngjgkta methods (see Figure
12). In the graph, each vertical bar represents one of the 36 databéths are ordered from left to
right according to their maximum full data AUC (as calculated by Perlich etC@l3Rfrom small-
est to the greatest. The-axis label shows the AUCs of the data sets. The height of each black bar
shows the percentage of time when all of the missing data methods have mosthri@diance on
the data set. The percentage is calculated as follows. There are thregethmuilssingness patterns
(MCAR, NMAR and missingness depending¥) four different testing sets (complete training set,
complete new test set, incomplete training set and incomplete new test setjuameffarmance
measures (accuracy, AUC and their bagged versions). This yields @8uneenent blocks for each
data set. The performances of all of the missing data methods are comptmedeach block. If
within a block, all of the missing data methods have very similar performance|dbk is marked
as mostly tied. Otherwise, the block is marked as having at least one methodmed differently.
The percentage is the proportion of the 48 blocks that are marked as magtly tie

Figure 12 shows that when data separability is very high, as indicated BY@&nvery close
to 1 (the right end of the graph), the performances of different missatg thethods are more
likely to be tied. This is presumably due to the fact that strong signals in the datass likely
to be affected by missing data. The last data set (Nurse) is an exceptianseethere is only one
useful predictor. Since we picked the most significant predictor to crestging values in, when
the complete variable method is used, the only useful predictor was alvedsted and thus the
complete variable method always had worse performance than othergeéslia on this data set,
none of the measurement blocks is marked as mostly tied. This is consistentevithgdbrvations
made in Figure 8.
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4.2 A Real Data Set With Missing Values

We now present a real data example with naturally occurred missing vdluéisis example, we
try to model a company’s bankruptcy status given its key financial stateibeemt. The data are
annual financial statement data and the predictions are sequential. ,Matdsgild the tree on one
year’s data and then test its performance on the following year’s data&xBmple, we build a tree
on 1987’'s data and test its performance on 1988'’s data, then build antrE#88’s data and test it
on 1989 data, and so on.

The data are retrieved from Compustat North America (a database ofrdl €amadian funda-
mental and market information on more than 24,000 active and inactive pubéldycompanies).
Following Altman and Sabato (2005), twelve variables from the data basseadeas potential pre-
dictors: Current Assets, Current Liabilities, Assets, Sales, Operatoagrie Before Depreciation,
Retained Earnings, Net Income, Operating Income After Depreciationkid¢pCapital, Liabili-
ties, Stockholder’s Equity and year. The response variable, batskratatus, is determined using
two footnote variables, the footnote for Sales and the footnote for ASSetapanies with remarks
corresponding to “Reflects the adoption of fresh-start accounting epeerging from Chapter 11
bankruptcy” or “Company in bankruptcy or liquidation” are marked askbaptcy. The data in-
clude all active companies, and span 19 years from 1987 to 2005e @herl 77560 observations
in the original retrieved data, but 76504 of the observations have ncedatgt for the company
identifications, and are removed from the data set, resulting in 99056vatises. There are 19238
(19.4%) observations containing missing values and there are 56820) (#i8%tng data values.

According to the results in Sections 3 and 4.1, there are two criteria thatetiffate the per-
formance of different missing data methods, that is, whether or not themiasing values in the
testing set and whether or not the missingness depends on the respnabkeyIn the bankruptcy
data, there are missing values in every year’s data, and thus missing vedaeh testing data set.
To assess the dependence of the missingness on the response \idugaloldowing test is carried
out. First, we define twelve new binary missingness indicators correspgptaithe original twelve
predictors. Each indicator takes on value 1 if the original value for thecégted variable is missing
and O if the original value is observed for that observation. We then buiilsegor each year’s data
using the indicators as the predictors and the original response vatiableankruptcy status, as
the response variable. From 1987 to 2000, the tree makes no split, inditaitge algorithm is
not able to establish a relationship between the missingness and the resmisisie. From 2001
to 2005, the classification tree consistently splits on the missingness indicht®ates and Re-
tained Earnings. This indicates that the missingness of these predictargdrasation about the
response variable in these years, and the MGP across the years isdaslgtent in missingness in
sales and retained earnings being related to bankruptcy status. Hpthev&UC values calculated
from the trees built with the missingness indicators are not very high, alytbeitween 0.5 and 0.6.
Therefore, the relationship is not a very strong one.

Given these observations and the fact that the sample sizes are faidy vaegwould make
the following propositions based on our earlier conclusions. First, fre881o 2001 (since the
tree tested on 2001 data is built on 2000 data), different missing data meshaoglsl have simi-
lar performance, with no clear winners. However, from year 2002 & 2605, the separate class
method should have better performance than the others (but perhapsiclobetter since the rela-
tionship between missingness and the response is not very strong)ctliberalative performance
of different missing data methods is shown in Figure 13. Since surroghttéessiealized using
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The relative performance of all of the missing data methods obathieruptcy data.
The left column gives methods usimPART (and includes all of the methods except
for probabilistic split) and the right column gives methods usidg5 (and includes all
of the methods except for surrogate split). The top rows are perfognanerms of
accuracy while the bottom rows are in terms of true positive rate.

RPART while probabilistic split is realized using4.5, we run all of the other methods using both
RPART andc4.5 so that we can compare both surrogate split and probabilistic split witt thié
other methods. In Figure 13, the plots on the left are the results kxR, which include all of
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the missing data methods except for probabilistic split. The plots on the rigtheresults from
c4.5, which include all of the missing data methods except for surrogate $phtperformances
of methods common to both plots are slightly different because of diffesenesveerc4.5 and

RPART N splitting and pruning rules. Both the accuracy and the true positive naehawn. Since
the number of actual bankruptcy cases in the data is small, the accuramaisalery high. The
true positive rate is defined as

_Number of correctly predicted bankruptcy cases

TP
Actual number of bankruptcy cases

The graphs in the first and the second rows are for accuracies, witligheow for the first time
period from 1988 to 2001 and the second row for the second time pedodZ002 to 2005. The
graphs in the third and the fourth rows are for true positive rates, with iftertiw for the first time
period from 1988 to 2001 and the fourth row for the second time period #002 to 2005. Itis
apparent that in the first time period, there are no clear winners. Hoyetike second time period,
separate class is a little better than the others, in line with expectations.

5. Extension To Logistic Regression

One obvious observation from this study is that when missing values ocbatfirthe model build-
ing and model application stages, it should be considered as part of theel@erating process
rather than a separate mechanism. That is, taking the missingness into @imidean improve
predictive performance, sometimes significantly. This should also apply ¢o stipervised learn-
ing methodologies, non-parametric or parametric, when predictive peafare is concerned. We
present here the results from a real data analysis study involving loggtiession, similar to the
one presented in Section 4.1. Missing values are generated the same inageation 4.1 and
then logistic regression models (without variable selection) with differegswéhandling missing
data are applied to those data sets. Finally a tally is made on the relative pertesra different
missing data methods. Results measured in accuracy, bagged acclw@cgnd bagged AUC are
almost identical to each other; results in terms of accuracy are shown ireRigu

Included in the study are five ways of handling missing data: using only coengdees (com-
plete case method), including a missingness dummy variable in the explanatatyesgdummy
method, sometimes called the missing-indicator methdmlilding separate models for data with
values missing and data without missing values (by-group methioaputing missing values with
grand mean/mode (imputation method), and only using predictors without misdires\{complete
variable method). Note that the methods using a dummy variable and buildingsepedels for

1. If explanatory variabl&; has missing values, then we create a missingness dummy vavialtthat has value 1 K;

is observed and 0 otherwise. Thieh andX; «M; are both used as explanatory variables. The result of this set-up
is that the effect oK; is fit on the observations witK; observed but a single mean value is fit to the observations
with X; missing. All of the observations, with or withody values, have the same coefficients for all of the other
explanatory variables. Jones (1996) showed that this method cdnindsiased coefficient estimates in regression
modeling, but did not address the question of predictive accuracysttiat focus here.

. The biggest difference between the by-group method and the dumethod is whether the explanatory variables,
other than the one containing missing values, have different coefficientd. The by-group method fits two separate
models to observations with and without missing values. Therefore ieamm®explanatory variable is fully observed,
its coefficient would most likely be different for fully observed obsgions and for observations with missing values.
The dummy method, on the other hand, fits a single model to the entire tlatetkat variables that are fully observed
will have the same coefficients whether an observation has missing \alues
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Figure 14: A tally of the relative out-of-sample performance with logisticesgiion measured in
accuracy of all of the missing data methods on the 36 data sets.

observations with and without missing values each are analogous to thatseglass method for
trees. The most obvious observation is that when missingness is relateddspbase variable and
missingness occurs in the test set, the dummy method and the by-group methiodtédhe other
methods; in fact, more than a third of the time, they perform better than logistiesssgn on the
original full data. Comparing Figure 14 with Figure 9, we see a clear similanitthat the meth-
ods using a separate class model missingness directly, and thus usetimaiigio contained in the
missingness about the response variable most efficiently. This suggdstsethesult that predictive
performance of supervised learning methods is driven by the depemdenlack of dependence)
on the response variable is not limited to trees, but is rather a generaimbann.

6. Conclusion And Future Study

The main conclusions from this study are as follows:

1. The two most important criteria that differentiate the performance ofrdiftemissing data
methods are whether or not the testing set is complete and whether or not Hiegmess
depends on the response variable. There is strong evidence, blytiicafig and empirically,
that separate class is the best missing data method to use when the testingpdaiatalas
missing values and the missingness is dependent upon the responskevariab

In practice, one way to detect the dependence of missingness on thagesfariable is to try
building a model, with a classification tree being a natural choice, of themesp@riable on
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the missingness indicators (which equals to 1 if the corresponding origahag Vs missing
and 0 otherwise). If such a model supports a relationship, then it is aratiadicthat the
missingness is related to the response variable.

2. The performance of classification trees is on average not too nelgadifected by missing
values, except for the complete case method and the mean imputation methdu,avehic
sensitive to different missing rates. Separate class tend to perform Wwatarthe missing
rate is neither too high nor too low, trading off between information loss due &imgisalues
and information gain from the informative MGP.

3. The original full data AUC has an impact on the performance of stepalass method. The
higher the original AUC, the more severe the information loss due to missing,\aid thus
relatively the worse the performance of the separate class method.

The consistency of these results across the theoretical analyses, sinsuladio the artificial data,
and simulations based on real data provides strong support for theirag@alidity.

The findings here also have implications beyond analysis of the data atFamekample, since
missingness that is dependent on the response variable can actuallyempedictive performance,
it is clear that expending time, effort, and money to recover the missing vialpesentially a poor
way to allocate resources. Another interesting implication of these resuliatsd¢o data disclo-
sure limitation. It is clear that any masking of values must be done in a way timatependent of
the response variables of interest (or any predictors highly relatedhovaniables), since otherwise
data disclosure using regression-type methods (Palley and Simonoff, d@dd actually increase.

Classification trees are designed for the situation where the resporederés categorical, not
just binary; it would be interesting to see how these results carry overttgithation. Tree-based
methodologies for the situation with a numerical response have also besdoy(i.e., regression
trees), and the problems of missing data occur in that context also. lratesgiguch trees would
be a natural extension of this paper. In this paper, we focused onfdraseclassification trees
usingc4.5 andrPART, although bagging was included in the study. It would be worthwhile to see
how the performance of different missing data methods is affected byatdifferee features such as
stopping and pruning or when techniques such as cross-validatioeniseebles, etc. are used.

Moreover, as was shown in Section 5, the relationship between the missérgmethe response
variable can be helpful in prediction when missingness occurs in both tinngradata and the
testing data in situations other than classification trees. This is very likely trim¢Her supervised
learning methods, and thus testing more learning methods would also be d extemaion to this
study.
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P(Y = 0|X = 0,with Missing Dat3 >T >T
P(Y = 0|X = 1, with Missing Data >T <T
P(Y=0X=0) P(Y=0X=1)
T T 1 P(X:O,Y:PO()YJr_Pé)X:LYzl)
P(Y=0
>T <T P(X_O,Y—O()+P(;X_1,Y_1) . )1 : :
P(Y=0 X=0Y=0)+P(X=LY=1
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<7 T P(X:O,Y:Pl()Y+:P1()>(:1,Y:0) 1

Table 3: RelAccof tree built on data with missing values and tested on the original full data set
when there is no variation from true DGP

Appendix A. Proofs of the Theorems

The relative accuracyRelAcg when there are missing values in the training set but not in the testing
set can be summarized into Table 3, whEris the threshold value (an observation will be classified
as class 0 if the predicted probability for it to be 0 is greater thanThe value ofT reflects the
misclassification cost. It is taken as 0.5 reflecting an equal misclassificatbnlooTable 3, the
columns show different rules given by the classification trees when éhemissing values, and the
rows show actual DGP’s. The entries are RedAccvalues under different scenarios. For example,
all of the entries on the diagonal are one’s because the rules giver lnjagsification trees when
there are missing values are the same as the true DGP’s and thus theyaachraeed by the trees
are the same with or without the missing values and ReBAcc= 1. Cell (1,2), for example,
shows that if the true DGP B(Y = 0|X =0) > T andP(Y = 0|X = 1) > T but the classification
tree gives ruldP(Y = 0|X = 0) > T andP(Y = 0|X = 1) < T when there are missing values, that
is, P(Y = 0|X = 0, with missing valug¢ > T andP(Y = 0|X = 1with missing valu¢ < T, then the
relative accuracy is determined to be

PX=0Y=0+P(X=1Y=1)
P(Y =0)

Proof of Theorem 1 : The expected performance of the complete case method when the missing-
ness does not depend on the response variable and the testing setlesteomp

Proof

First, we defineA as the case-wise missingness indicator which equals 1 if the observation
contains missing values in one or more of the predictors or O if the obsendies not
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contain missing values in any of the predictorss the response variable aiXds the vector
of the predictors.

If only the complete cases are usedPifY|A = 0,X) = P(Y|X), then only the diagonal in
Table 3 can be achieved, and thus there is no loss in accuracy.

This condition will be satisfied if and only if the MGP is conditionally independdéi given
X, thatis,P(A=0|X,Y) = P(A=0|X).

1. “P(Y|A=0,X) =P(Y|X) = P(A=0|X,Y) = P(A=0|X)"

P(A=0,X.Y
P(A=0X,Y)= HE25Y)
_P(Y]A=0,X)P(A=0,X)
B P(X.Y)
—P(Y|X)P(A=0X)
~ PYIX)P(X

—P(A~ O}x)
2. “P(Y|A=0,X) =P(Y|X) «P(A=0|X,Y) = P(A=0|X)"

P(Y|A=0,X)= %

—P(A=0X Y)P(X Y)
©_ P(A=0X)
—P(A=01X)P(X.Y)
~ P(A=0[X)P(X)
P(X,Y)

P(X)

=P(Y[X)

Proof of Theorems 2 and 3: The expected performance of the complete case method when the
missingness depends on the response variable and the testing set is complete

We first observe the following lemmas.

Lemma 7 For the partition defined by the tree built on the original full data (and notrajed
by missing values), let thé'ksection contain Pproportion of data and within the partition,
the majority class have proportionk Note thaty , PX = 1, while the full data set accu-

racy, that is, the accuracy achievable with the full data se,i®*PX, i)

The rule for the ¥ section will be classifying it as the majority class of the section. The
impact of missing data on its rule is to either leave it unchanged or make gifjjahe data
as the minority class instead of the majority class.

The smallest missing rate needed i section to change the rule i R= 1/k) = 2P%; - 1,
where A is defined as in Theorem 1, that is, it is the case-wise indicatmh wikes value
1 if the observation contains missing value or 0 otherwise. If the rule isgagtathe loss in
accuracy within that section &P i—1
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Proof
We assume the partition of the data is not changed by the missing values. tdtarstof the
trees need not to be the same because different trees may lead to the géioe pbdata.

For anyk, to make the rule of the" section change, we need to observe more minority class
cases than the majority ones within that section. To achieve this in the mostrefficg,
we only make the majority ones missing. Originally, there Iamge majorities and 1- P,';j

minorities. Only when there af, — (1— Pk ) = 2Pk — 1 majorities missing will it become
less than the minorities, so this is the smallest missing rate we need to make the ngle.cha

After the rule is changed, only-1 P,';j of the data, that is, the minorities, will be correctly
classified. Therefore, the loss in accurac@is— (1—Pl) = 2Pk, — 1.

Lemma 8 For a given data set and the partition defined by the tree built on the full data se
(which is not changed by the missing values), the largest loss in accisgdg 2Pr'§”- —1. The

smallest missing rate needed to achieve this is gI@P,';j -1

Proof

The largest loss is achieved if and only if the rules are changed in esetigis of data in the
partition. The result then follows from Lemma 7.

Lemma 9 For a certain missing rate, say,Pthe largest effect it can have on the classifica-
tion accuracy of any data that won't be split ig, Rself.

In this case, the data set has its majority proportig P- %(1+ Pm).

Proof

Similar to the proof of Lemma 7, for missing values to have an impact on the clasisific
rule, it has to switch the order status of the majority and minority. To achieveitthias to

be thatPnj— (1 — Pmj) < Pm. We know that once the rule is changed, the loss in accuracy is
Pmj— (1—Pnj). Therefore, the largest loss s, when the equality holds. In this case, we
havePnj = 3(1+ Pn).

We now prove Theorem 2.
Proof

For any data set, once it is partitioned and the partition is not changed by gnisdires,
the rules in different sections of data are independent of each othese san look at them
separately.
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Suppose the data are partitioned iktasegments, in which some contain missing data and
the others do not. Le{g be the set of sections whose rules are changed by missing data and
K1 be the set of all other sections. Also let #igsegmentk = 1...K) contain proportiorP

of the data. We havg}_; PX= 1.

Assume that th&" segmentK € Ko) contains proportiofPk of missing data. Then we have

> PPN < P
keKg

For thek" segmentK € Ko), by Lemma 9, the largest possible loss in accuradyXiand it
occurs if and only iiPrﬁ,j = %(1+ PK). Therefore, the possible loss for the entire data set is

PPk < Py,
keKo

the largest loss being achieved when the equality holds. In that caseldkarr all of the
categories that contain missing values are changed and the maximumRgss is

We now prove Theorem 3.
Proof
Assuming the partitions of data are not changed by the missing values, we hav

S k1Pl P¥ = Tek, (loss in accuracy ik segment)

RelAcc =
K
3 k1 P P*
_ Y kek, (I0Ss in accuracy it" segment)
- K
3 k1 P P¥
_ S kek, (0ss in accuracy ikt segment)

3 keko PP+ Tkek, ProP*

This is an increasing function of .k, P,';JP" in the denominator, which is independent of
other factors; setting it to zero minimize tredative accuracyso

S kek, (0ss in accuracy ikt segment)

RelAcc < 1-— ok
2 keko PP

Denote the numeratdy ., (loss in accuracy iki" segment) ag. Now, from the proof of
Theorem 2, the numeratar< Pp, and the denominatdf ., P,';JP" = 2(1+a). So,

a

RelAcc < 1-— T
5(1+a)
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This is a decreasing function afand subject t@ < Py. Therefore, the minimurRelAccis
achieved whem = Py, This gives

P
1- g
5(1+4Pm)
1- Py,
1+ Py

RelAcc <

Proof of Theorem 4 : Some properties of probabilistic split when the missingness does notalepen
on both the predictor and the response variable.

Proof

1. Partl

¢ Ifthe MGP is independent &f givenX, thatis,P(M|X,Y) = P(M|X) thenP(Y|M, X) =
P(Y|X) by the proof of Theorem 1.
The rules given by probabilistic split when there are missing values amlas$:

Note that

P(Y = 0|X = 0, Prob_split)

P(Y =0/M =0,X = 0)P(M = 0) +P(Y = 0]M = 1)P(M = 1)
P(Y =0X =0)P(M=0)+P(Y =0|M = 1)P(M = 1)

P(Y = 0|X = 0)P(M = 0)
+[P(Y=0,X=0M=1)+P(Y =0,X = 1M = 1)]P(M = 1)
P(Y =0/X=0)P(M =0)
+[P(Y=0M=1,X =0)P(X =0|M = 1)
+P(Y=0M=1X=1)P(X=1M =1)|P(M =1)
P(Y=0X=0PM=0)+[P(Y =0X=0P(X=0M=1)
+P(Y =0X=1)P(X=1M =1)]P(M =1)
P(Y=0X=0PM=0)+P(Y =0X=0PM=1,X=0)
+P(Y =0[X =1)PM =1,X =1)

P(Y =0X =0)[P(M =0)+P(M = 1,X = 0)]

+P(Y =0X=1)P(M=1,X=1)

and following the similar route, we can get

P(Y = 0|X = 1, Prob_split)
PYY=0X=1)[P(M=0)+P(M=1,X=1)]

+P(Y =0X=0P(M=1,X=0).

PM=0)+PM=1X=1)+PM=1X=0)=1.
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Therefore, bothP(Y = 0|X = 0,Prob_split) and®(Y = 0|X = 1,Prob_split) are
weighted averages &f(Y = 0|]X = 0) andP(Y =0|X =1).
It follows that if bothP(Y = 0|X = 0) andP(Y = 0|X = 1) are greater (less) than
0.5, then bottP(Y = 0|X = 0, Prob_split) andP(Y = 0| X = 1, Prob_split) are also
greater (less) than 0.5.

o If the MGP is independent of givenY, without loss of generality, we prove the
case wheP(Y =0|X =0) >T =05andP(Y =0/X=1) >T =0.5.

P(Y = 0|X = 0, Prob_split)
_ H%WiiQEQOEW:“”PWZWMIDWMZD
P(M =0|X =0,Y = 0)P(X = 0,Y = 0)P(M = 0)
P(M=0,X =0)
+P(M=1Y =0)
P(M =0]Y = 0)P(X =0,Y = 0)P(M = 0)

P(M=0,X = 0)
+PM=1,X=0Y=0)+P(M=1,X=1Y =0)
P(M = 0]Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M=0,X = 0)
+P(M=1,X=0]Y =0)P(Y = 0)
+P(M=1,X=1]Y =0)P(Y = 0)

P(M = 0]Y = 0)P(Y = 0]X = 0)P(M = 0)

P(M=0,X = 0)
+P(M = 1]Y = 0)P(X = 0Y = 0)P(Y = 0)
+P(M = 1]Y = 0)P(X = 1|Y = 0)P(Y = 0)

P(M = 0]Y = 0)P(Y = 0]X = 0)P(M = 0)

P(M=0,X = 0)
+P(M = 1]Y = 0)P(Y = 0]X = 0)P(X = 0)
+P(M = 1Y = 0)P(Y = 0]X = 1)P(X = 1)

P(M = 0]Y = 0)P(M = 0)
—PM=0x=0)
+P(M = 1Y = 0)P(X = 0) + P(M = 1]Y = 0)P(X = 1)]
B ”HM:mY:WHM:W
P(M=0,X = 0)
> T(P(M=0]Y =0)+P(M=1]Y =0))
=T

vV
—

+P(M = 1]y = 0)]

A similar argument give®(Y = 0|X = 1,Prob_split) > T.
2. Part2
e If the MGP is independent of given X, then from the proof of part 1,

P(Y = 0|X = 0, Prob_split)
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= P(Y=0X=0)(P(M=0)+P(M=1X=0))
+P(Y =0X =1)P(M =1,X =1)

and
P(Y = 0|X = 1, Prob_split)
= PY=0X=1)(P(M=0)+P(M=1,X=1))
+P(Y =0X =0P(M=1,X =0).
Taking the difference, we get
P(Y = 0|X = 0, Prob_split) — P(Y = 0| X = 1, Prob_split)
= PY=0X=0)(PM=0)+P(M=1,X=0))
+PY=0X=1)P(M=1X=1)
—[PY=0X=1)(PM=0)+PM=1,X=1))
+P(Y =0[X = 0)P(M = 1,X = 0)]
= PY=0X=0)P(M=0)-P(Y=0/X=1)P(M=0)
= (PY=0X=0)—P(Y=0X=1))P(M=0).
Without loss of generality, assuni&Y = 0|X = 0,Prob_split) > T andP(Y =
0|X = 1,Prob_split) < T. It then follows thatP(Y = 0|X = 0) > P(Y =0|X =1).
There are three possibilities:
(@ P(Y=0X=0)>T>PY=0X=1)
(b) T>P(Y=0X=0)>P(Y=0X=1)
() PY=0X=0)>P(Y=0X=1)>T
Conditions (b) and (c) are not possible because in these two casssactually
not informative and by Part 1, probabilistic split will show they are notrimfative.
Therefore, it holds tha®(Y =0/ X =0) > T > P(Y =0|X =1).
e If the MGP is independent of givenY, that is,P(M|X,Y) = P(M|Y), we have

P(Y = 0]X = 0,Prob_split)
_ P<“’I'D(*M°’:XOTX°’:YO)* 9 p(M = 0)+ P(Y = 0M = 1)P(M = 1)

P(M = 0|X = 0,Y = 0)P(X = 0,Y = 0)P(M = 0)
P(M=0X=0,Y = 0)P(X=0,Y =0) + P(M =0X =0,Y = 1)P(X = 0,Y = 1)
+P(Y =0M = 1)P(M = 1)

P(M = 0]Y = 0)P(X = 0,Y = 0)P(M = 0)
P(M=0]Y = 0)P(X =0,Y = 0) + P(M=0]Y = 1)P(X = 0,Y = 1)
+P(Y = 0M = 1)P(M = 1)

P(M = 0]Y = 0)P(Y = 0]X = 0)P(M = 0)
P(M = 0]Y = 0)P(Y = 0]X = 0) + P(M = 0 = 1)P(Y = 1]X = 0)
+P(Y =0M = 1)P(M = 1),

and following the same route, we have
P(Y =0]X = 1,Prob_split)
P(M =0]Y = 0)P(Y = 0]X = 1)P(M = 0)
P(M=0]Y =0)P(Y =0]X =1) +P(M =0]Y = )P(Y = 1|X = 1)
+P(Y =0|M = 1)P(M = 1).
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Therefore,

P(Y = 0]X = 0,Prob_split) — P(Y = 0|X = 1, Prob_split)
P(M =0]Y =0)P(Y =0|X = 0)P(M =0)
P(M =0|Y = 0)P(Y = 0]X = 0) + P(M = 0]Y = 1)P(Y = 1]X = 0)
P(M = 0]Y = 0)P(Y = 0]X = 1)P(M = 0)
P(M=0]Y =0)P(Y =0X=1)+P(M=0]Y = 1)P(Y = 1|X = 1)
= [P(Y=0X=0P(M=0]Y =0)P(Y =0]X=1)
+P(Y =0)X =0)P(M =0]Y = 1)P(Y = 1]X = 1)
—P(Y = 0|X = 1)P(M = 0]Y = 0)P(Y = 0]X = 0)

P(M =0JY = 0)P(M = 0)
D1D2

(M = 0]Y = 1)P(M = 0Y = 0)P(M = 0)

D1D2

—P(Y =0)X = 1)P(M =0JY = 1)P(Y = 1|X = 0)]

= [P(Y=0[X=0)—P(Y=0]X= 1)}'3
= [P(Y=0|X=0)—P(Y =0X =1))K
where
Dy =P(M =0]Y = 0)P(Y = 0]X = 0) + P(M = 0]Y = 1)P(Y = 1|]X = 0),
D2 =P(M =0JY = 0)P(Y = 0|X = 1) + P(M = 0Y = 1)P(Y = 1|X = 1)
and
_ P(M=0]Y = 1)P(M = 0)Y =0)P(M =0)

K .
D1D2

SinceK is always positive as long as there are differénalues observed, we can
see that the probabilistic split preserves the order of the conditionaabpiltip of
Y givenX.
Now, without loss of generality, assurR€Y = 0| X = 0, Prob_split) > T andP(Y =
0/X =1,Prob_split) < T. Itfollows thatP(Y = 0|X =0) > P(Y =0|X = 1) because
probabilistic split preserves the correct order. There are thredyiies:
@ PY=0X=0)>T>P(Y=0X=1)
(b) T>PY=0X=0)>P(Y=0X=1)
(€ PY=0X=0)>P(Y=0X=1)>T
Conditions (b) and (c) are not possible because in these two ¢aseactually not
informative and by the earlier result in Part 1, probabilistic split will shovy tue
not informative. Therefore, it holds thBfY =0 X =0) > T > P(Y =0|X =1).
3. Part3
The results of Part 1 and Part 2 lead to the simplification of Table 3 into Table 4.
Without loss of generality, we provide the proof only for the case whgh= 0|X =
0) > T andP(Y =0|]X =1) < T butP(Y = 0|X = 0, prob_split) > T andP(Y = 0|X =
1, prob_split) > T, whereRelAccis

P(Y =0)

RelAcc— .
A BX=0,Y=0) +PX=1Y=1)

It suffices to show tha®(Y =0) > 0.5
e If M is independent of givenX,

P(Y = 0)
= P(X=0,Y=0)+P(X=1Y=0)
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Simplified >T >T | <T <T
possibilities >T <T ([>T <T
Full data
>T >T 1 — | — —
P(Y=0) PIY=1)
>T =T P(X:O,Y:CEHP()X:l,Y:l) 1 — P(X:O,Y:O)+P()X:1,Y:1)
P(Y=0 P(Y=1
=T >T P(X=0Y=1)+P(X=1Y=0) | —_ 1 P(X=0,Y=1)1P(X=1Y=0)
<T <T — — | — 1

Table 4: RelAccwith a 2x2 table of probabilistic split when the missingness is independent of
eitherX orY or both

= P(M=0,X=0,Y=0)+P(M=1,X=0,Y =0)
+P(Y =0[X = 1)P(X = 1)
= P(Y=0M=0X=0PM=0,X=0)
+P(Y =0M =1,X =0)P(M =1,X =0)+P(Y = 0]X = 1)P(X = 1)
=1 P(Y=0X=0)P(M=0,X=0)+P(Y =0X =0)P(M=1,X =0)
+P(Y =0[X = 1)P(X = 1)
>2 P(Y =0X=0P(M=1,X=0)+P(Y=0X=1)P(M=0,X=0)
+P(Y =0[X = 1)P(X = 1)
= P(Y=0X=1)(P(M=0)+P(M=1X=1))
+P(Y =0[X = 0)P(M = 1,X = 0)
= P(Y =0|X = 1, prob_split)
> 05

where 1 follows becaug®(Y |M, X) = P(Y|X) and 2 follows because(Y = 0|X =
0) > T > P(Y =0|X =1). Therefore,

P(Y =0)
P(X=0,Y=0)+P(X=1,Y = 1)

>P(Y=0)>05

e If M is independent oX giveny,
PY=0)=PM=0,Y=0)+P(M=1Y=0)
and by assumption,

P(Y = 0|X = 1, prob_split)
= P(Y=0M=0,X=1)P(M=0)+P(M=1Y=0)
> 05

If P(IM =0,Y =0) > P(Y =0/M = 0,X = 1)P(M = 0), thenP(Y = 0) > P(Y =
0|X = 1, prob_split) > 0.5, it suffices to show

P(M=0,Y =0) >P(Y =0|M = 0,X = 1)P(M = 0).
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By the earlier results in Part 2, probabilistic split preserves the ordesrafitonal
probabilities ofy given X when the missingness is conditionally independerX of
givenY, that is, in this case, since

P(Y=0X=0)>T>P(Y=0X=1)

we have

P(Y = 0|X = 0,Prob_split) — P(Y = 0|X = 1, Prob_split)

= P(Y=0M=0,X=0)P(M=0)+P(Y=0M=1PM=1)
—(P(Y=0|M =0,X =1)P(M =0)+P(Y = 0|M = 1)P(M = 1))

= (P(Y=0M=0,X=0)—P(Y=0M=0,X=1))P(M=0)

> 0.

Thatis,P(Y =0[M =0,X =0) > P(Y =0|M = 0,X = 1). We then have

P(Y=0M=0,X=0)>P(Y=0M=0,X=1)

= P(Y=0M=0X=0)P(M=0,X=0)
>P(Y=0M=0,X=1)P(M=0,X=0)

= P(M=0X=0Y=0)>P(Y=0M=0X=1)PM=0,X=0)

= PM=0X=0Y=0)+PM=0X=1Y=0)
>P(Y=0M=0,X=1)P(M=0X=0)+P(M=0X=1Y=0)

= PM=0Y=0)
>P(Y=0M=0,X=1)P(M=0,X=0)+P(Y=0M=0,X=1PM=0,X=1)

= PM=0Y=0)>P(Y=0M=0,X=1)(P(M=0,X=0)+P(M=0X=1)

= P(M=0Y=0)>P(Y=0M=0X=1)PM=0)

Proof of Theorem 5 . Some properties of the mode imputation when the missingness does not
depend on the response variable.

Proof

Without loss of generality, we assume tigX = O|M = 0) > P(X = 1|M = 0), that is, there

are moreX=0 cases observed thafr1 ones. As a result, all of the missingvalues will

be labeled aX=0, the observed mode. Then the decision rules when the mode imputation is
used can be written as

P(Y =0|X =0,Imp)
PM=0,X=0,Y=0)+PM=1Y =0)
P(M=0,X=0)+P(M=1)
PM=0,X=0Y=0+PM=1X=0,Y=0)+P(M=1,X=1Y =0)
P(M=0,X=0)+P(M=1)

_ P(X=0Y=0)+P(M=1X=1Y=0)
N PX=0)+PM=1X=1)
PX=0Y=0+PY=0M=1X=1)P(M=1X=1)

P(X=0)+P(M=1X=1)
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P(Y =0]X =0)P(X = 0)+P(Y =0|X = 1)P(M = 1,X = 1)
PX=0)+PM=1X=1)
P(Y =0X = 1,Imp)
= P(Y=0M=0X=1)
= P(Y=0X=1)

1. Note thatP(Y = 0|X = 0,Imp) is a weighted average &f(Y = 0|X = 0) andP(Y =
0|X =1). Therefore, if they are both larger (or smaller) than ®@&; = 0|X = 0,Imp)
will also be, and thus it gives the same ruleéPd¥ = 0|X = 0). Moreover,P(Y =0|X =
1,Imp) = P(Y =0|X = 1), so it also gives the correct rule.

2. Suppose
P(Y=0/X=0,Imp) > 05
P(Y=0/X=1,Imp) < 0.5,
thenP(Y =0|X =1) =P(Y =0|X = 1,Imp) < 0.5, which is always correct. Moreover,
note thatP(Y = 0|X = 0,Imp) is a weighted average ¢#(Y = 0|X = 0) andP(Y =
0/X =1). SinceP(Y = 0|X =0,Imp) > 0.5 andP(Y = 0|X = 1) < 0.5, we must have
P(Y =0|X =0) > 0.5. ThereforeP(Y = 0|X = 0,Imp) gives the correct rule.
3. Again the possibilities simplify to Table 4. Without loss of generality, we prine
situation when botlP(Y = 0|X = 0,Imp) andP(Y = 0|X = 1,Imp) are greater than 0.5,
that is

P(Y =0/X =0,Imp)
P(Y=0X=0P(X=0)+P(Y =0[X =1)P(M =1,X =1)
PX=0)+PM=1X=1)

> 05

P(Y =0/X=1,Imp)
= P(Y=0X=1)
> 05

Under the assumption thBt{X = 0|M = 0) > P(X = 1|M = 0), the missing values have
an effect only ifP(Y = 0]X = 0) < 0.5 andP(Y = 0|X = 1) > 0.5. In this case, the
relative accuracy isp( P(Y=0) . This is the cell of the 8 row and the ¥

. X=0,Y=1)+P(X=1,Y=0)
column in Table 4.
But,

P(Y =0)
PX=0Y=1)+P(X=1Y=0)
P(Y =0)
= P(X=0Y=0)+P(X=1Y=0)
>l 05(P(X=0)+PM=1X=1))-P(Y=0X=1)PM=1X=1)
+P(X=1Y=0)
= 05(P(X=0)+PM=1X=1)+PY=0X=1)(PX=1)-PM=1X=1))
= 05(1-P(M=0,X=1))+P(Y=0X=1)P(M=0,X=1)
= 05-05P(M=0,X=1))+P(Y=0X=1P(M=0,X=1)
>2 05-05P(M=0,X=1))+05P(M =0,X=1)
> 0.5
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where 1 follows because
P(Y =0[X = 0,Imp)
P(Y=0X=0P(X=0)+PY=0X=1)PM=1X=1)
PX=0+PM=1X=1)

> 0.5.
By rearranging terms,

P(Y = 0)X = 0)P(X = 0)
= P(X=0,Y=0)
> 05(P(X=0)+P(M=1X=1))—P(Y=0X=1)P(M=1X = 1),

where 2 follows because P£0|X=1)=P{/=0/X=1,Imp)>0.5.

Proof of Theorem 6 . The dominance of the separate class method when there are missing val-
ues in both the training set and the testing set and the missingness depe¢hdgesponse
variable.

Proof

When there are missing dataXnin both the training set and the testing set, the finest partition
of the data will beX =0, X = 1 andX is missing. The best rule we can derive is to classify
the majority class in each of these three partitions. This is achieved by usimgpheate
class method.
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