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Abstract

There are many different methods used by classification treealgorithms when missing data occur in
the predictors, but few studies have been done comparing their appropriateness and performance.
This paper provides both analytic and Monte Carlo evidence regarding the effectiveness of six
popular missing data methods for classification trees applied to binary response data. We show that
in the context of classification trees, the relationship between the missingness and the dependent
variable, as well as the existence or non-existence of missing values in the testing data, are the most
helpful criteria to distinguish different missing data methods. In particular, separate class is clearly
the best method to use when the testing set has missing valuesand the missingness is related to
the response variable. A real data set related to modeling bankruptcy of a firm is then analyzed.
The paper concludes with discussion of adaptation of these results to logistic regression, and other
potential generalizations.
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1. Classification Trees and the Problem of Missing Data

Classification trees are a supervised learning method appropriate for datawhere the response vari-
able is categorical. The simple methodology behind classification trees is to recursively split data
based upon the predictors that best distinguish the response variable classes. There are, of course,
many subtleties, such as the choice of criterion function used to pick the bestsplit variable, stopping
rules, pruning rules, and so on. In this study, we mostly rely on the built-in features of the tree algo-
rithms C4.5 andRPART to implement tree methods. Details about classification trees can be found
in various references, for example, Breiman, Friedman, Olshen, and Stone (1998) and Quinlan
(1993). Classification trees are computationally efficient, can handle mixed variables (continuous
and discrete) easily and the rules generated by them are relatively easy tointerpret and understand.
Classification trees are highly flexible, and naturally uncover interaction effects among the inde-
pendent variables. Classification trees are also popular because they can easily be incorporated into
learning ensembles or larger learning systems as base learners.

c©2010 Yufeng Ding and Jeffrey S. Simonoff.



DING AND SIMONOFF

Like most statistics or machine learning methods, “base form” classification trees are designed
assuming that data are complete. That is, all of the values in the data matrix, with the rows being the
observations (instances) and the columns being the variables (attributes),are observed. However,
missing data (meaning that some of the values in the data matrix are not observed) is a very common
problem, and for this reason classification trees have to, and do, have ways of dealing with missing
data in the predictors. (In supervised learning, an observation with missingresponse value has no
information about the underlying relationship, and must be omitted. There is, however, research in
the field of semi-supervised learning methods that tries to handle the situation where the response
value is missing, for example, Wang and Shen 2007.)

Although there are many different ways of dealing with missing data in classification trees,
there are relatively few studies in the literature about the appropriatenessand performance of these
missing data methods. Moreover, most of these studies limited their coverage to the simplest miss-
ing data scenario, namely, missing completely at random (MCAR), while our study shows that the
missing data generating process is one of the two crucial criteria in determiningthe best missing
data method. The other crucial criterion is whether or not the testing set is complete. The following
two subsections describe in more detail these two criteria.

1.1 Different Types of Missing Data Generating Process

Data originate according to the data generating process (DGP) under which the data matrix is “gen-
erated” according to the probabilistic relationships between the variables. We can think of the
missingness itself as a random variable, realized as the matrix of the missingness indicatorIm. Im is
generated according to the missingness generating process (MGP), which governs the relationship
betweenIm and the variables in the data matrix.Im has the same dimension as the original data
matrix, with each entry equal to 0 if the corresponding original data value is observed and 1 if the
corresponding original data value is not observed (missing). Note that an Im value not only can be
related to its corresponding original data value, but can also be related to other variables of the same
observation.

Depending on the relationship betweenIm and the original data, Rubin (1976) and Little and Ru-
bin (2002) categorize the missingness into three different types. IfIm is dependent upon the missing
values (the unobserved original data values), then the missingness pattern is called “not missing at
random” (NMAR). Otherwise, the missingness pattern is called “missing at random” (MAR). As a
special case of MAR, when the missingness is also not dependent on the observed values (that is,
is independent of all data values), the missingness pattern is called “missing completely at random”
(MCAR). The definition of MCAR is rather restrictive, which makes MCAR unlikely in reality. For
example, in the bankruptcy data discussed later in the paper, there is evidence that after the Enron
scandal in 2001, when both government and the public became more wary about financial reporting
misconduct, missingness of values in financial statement data was related to thewell-being of the
company, and thus other values in the data. This makes intuitive sense because when scrutinized, a
company is more likely to have trouble reporting their financial data if there were problems. Thus,
focusing on the MCAR case is a major limitation that will be avoided in this paper. Infact, this
paper shows that the categorization of MCAR, MAR and NMAR itself is not appropriate for the
missing data problem in classification trees, as well as in another supervisedlearning context (at
least with respect to prediction), although it has been shown to be helpfulwith likelihood-based or
Bayesian analysis.
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Missingness is related to
Missing Observed Response
values Predictors Variable LR Three-Letter

1 No No No MCAR −−−

2 No Yes No MAR −X−

3 Yes No No NMAR M −−

4 Yes Yes No NMAR M X−

5 No No Yes MAR −−Y
6 No Yes Yes MAR −X Y
7 Yes No Yes NMAR M −Y
8 Yes Yes Yes NMAR M X Y

Table 1: Eight missingness patterns investigated in this study and their correspondence to the cate-
gorization MCAR, MAR and NMAR defined by Rubin (1976) and Little and Rubin (2002)
(the LR column). The column Three-Letter shows the notation that is used in thispaper.

In this paper, we investigate eight different missingness patterns, depending on the relationship
between the missingness and three types of variables, the observed predictors, the unobserved pre-
dictors (the missing values) and the response variable. The relationship is conditional upon other
factors, for example, missingness is not dependent upon the missing values means that the miss-
ingness is conditionally independent of the missing values given the observed predictors and/or
the response variable. Table 1 shows their correspondence with the MCAR/MAR/NMAR catego-
rization as well as the three-letter notation we use in this paper. The three letters indicate if the
missingness is conditionally dependent on the missing values (M), on other predictors (X) and on
the response variable (Y), respectively. As will be shown, the dependence of the missingness on the
response variable (the letter Y) is the one that affects the choice of best missingness data method.
Later in the paper, some derived notations are also used. For example,∗X∗ means the union of
−X−, −XY, MX− and MXY, that is, the missingness is dependent upon the observed predictors,
and it may or may not be related to the missing values and/or the response variable.

1.2 Scenarios Where the Testing Data May or May Not Be Complete

There are essentially two stages of applying classification trees, the trainingphase where the his-
torical data (training set) are used to construct the tree, and the testing phase where the tree is put
into use and applied to testing data. Similar to most other studies, this study deals withthe scenario
where missing data occur in the training set, but the testing set may or may not have missing values.
One basic assumption is, of course, that the DGP (as well as MGP if the testingset also contains
missing values) is the same for both the training set and the testing set.

While it would probably typically be the case that the testing data would also havemissing val-
ues (generated by the same process that generated them in the training set), it should be noted that in
certain circumstances a testing set without missing values could be expected.For example, consider
a problem involving prediction of bankruptcy from various financial ratios. If the training set comes
from a publicly available database, there could be missing values corresponding to information that
was not supplied by various companies. If the goal is to use these publicly available data to try
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to predict bankruptcy from ratios from one’s own company, it would be expected that all of the
necessary information for prediction would be available, and thus the test set would be complete.

This study shows that when the missingness is dependent upon the response variable and the
test set has missing values, separate class is the best missing data method to use. In other situations,
the choice is not as clear, but some insights on effective choices are provided. The rest of paper
provides detailed theoretical and empirical analysis and is organized as follows. Section 2 gives a
brief introduction to the previous research on this topic. This is followed by discussion of the design
of this study and findings in Section 3. The generality of the results are then tested on real data sets
in Section 4. A brief extension of the results to logistic regression is presented in Section 5. We
conclude with discussion of these results and future work in Section 6.

2. Previous Research

There have been several studies of missing data and classification trees inthe literature. Liu, White,
Thompson, and Bramer (1997) gave a general description of the problem, but did not discuss solu-
tions. Saar-Tsechansky and Provost (2007) discussed various missing data methods in classification
trees and proposed a cost-sensitive approach to the missing data problemfor the scenario when miss-
ing data occur only at the testing phase, which is different from the problem studied here (where
missing values occur in the training phase).

Kim and Yates (2003) conducted a simulation study of seven popular missing value methods
but did not find any dominant method. Feelders (1999) compared the performance of surrogate split
and imputation and found the imputation methods to work better. (These methods, and the methods
described below, are described more fully in the next section.) Batista and Monard (2003) compared
four different missing data methods, and found that 10 nearest neighbor imputation outperformed
other methods in most cases. In the context of cost sensitive classificationtrees, Zhang, Qin, Ling,
and Sheng (2005) studied four different missing data methods based on their performances on five
data sets with artificially generated random missing values. They concluded that the internal node
method (the decision rules for the observations with the next split variable missing will be made
at the (internal) node) is better than the other three methods examined. Fujikawa and Ho (2002)
compared several imputation methods based on preliminary clustering algorithmsto probabilistic
split on simulations based on several real data sets and found comparableperformance. A weakness
of all of the above studies is that they focused only on the restrictive MCARsituation.

Other studies examined both MAR and NMAR missingness. Kalousis and Hilario (2000) used
simulations from real data sets to examine the properties of seven algorithms: two rule inducers, a
nearest neighbor method, two decision tree inducers, a naive Bayes inducer, and linear discriminant
analysis. They found that the naive Bayes method was by far most resilient to missing data, in
the sense that its properties changed the least when the missing rate was increased (note that this
resilience is related to, but not the same as, its overall predictive performance). They also found
that the deleterious effects of missing data are more serious if a given amount of missing values are
spread over several variables, rather than concentrated in a few.

Twala (2009) used computer simulations based on real data sets to compare the properties of
different missing value methods, including using complete cases, single imputation of missing val-
ues, likelihood-based multiple imputation (where missing values are imputed several times, and
the results of fitting trees to the different generated data sets are combined),probabilistic split, and
surrogate split. He studied MAR, MCAR, and NMAR missingness generating processes, although
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dependence of missingness on the response variable was not examined.Multiple imputation was
found to be most effective, with probabilistic split also performing reasonably well, although little
difference was found between methods when the proportion of missing values was low. As would
be expected, MCAR missingness caused the least problems for methods, while NMAR missingness
caused the most, and as was also found by Kalousis and Hilario (2000), missingness spread over
several predictors is more serious than if it is concentrated in only one. Twala, Jones, and Hand
(2008) proposed a method closely related to creating a separate class formissing values, and found
that its performance was competitive with that of likelihood-based multiple imputation.

The study described in the next section extends these previous studies in several ways. First,
theoretical analyses are provided for simple situations that help explain observed empirical perfor-
mance. We then extend these analyses to more complex situations and data sets (including large
ones) using Monte Carlo simulations based on generated and real data sets. The importance of
whether missing is dependent on the response variable, which has been ignored in previous studies
on classification trees yet turns out to be of crucial importance, is a fundamental aspect of these
results. The generality of the conclusions is finally tested using real data sets and application to
logistic regression.

3. The Effectiveness of Missing Data Methods

The recursive nature of classification trees makes them almost impossible to analyze analytically in
the general case beyond 2×2 tables (where there is only one binary predictor and a binary response
variable). On the other hand, trees built on 2×2 tables, which can be thought of as “stumps” with
a binary split, can be considered as degenerate classification trees, with aclassification tree being
built (recursively) as a hierarchy of these degenerate trees. Therefore, analyzing 2×2 tables can
result in important insights for more general cases. We then build on the 2×2 analyses using Monte
Carlo simulation, where factors that might have impact on performance are incrementally added,
in order to see the effect of each factor. The factors include variation inboth the data generating
process (DGP) and the missing data generating process (MGP), the number and type of predictors
in the data, the number of predictors that contain missing values, and the number of observations
with missing data.

This study examines six different missing data methods: probabilistic split, complete case
method, grand mode/mean imputation, separate class, surrogate split, and complete variable method.
Probabilistic split is the default method ofC4.5 (Quinlan, 1993). In the training phase, observations
with values observed on the split variable are split first. The ones with missingvalues are then put
into each of the child nodes with a weight given as the proportion of non-missing instances in the
child. In the testing phase, an observation with a missing value on a split variable will be associated
with all of the children using probabilities, which are the weights recorded in the training phase.
The complete case method deletes all observations that contain missing values inany of the predic-
tors in the training phase. If the testing set also contains missing values, the complete case method
is not applicable and thus some other method has to be used. In the simulations, we useC4.5 to
realize the complete case method. In the training phase, we manually delete all ofthe observations
with missing values and then runC4.5 on the pre-processed remaining complete data. In the testing
phase, the default missing data method, probabilistic split, is used. Grand modeimputation imputes
the missing value with the grand mode of that variable if it is categorical. Grand mean is used
if the variable is continuous. The separate class method treats the missing values as a new class
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(category) of the predictor. This is trivial to apply when the original variable is categorical, where
we can create a new category called “missing”. To apply the separate classmethod to a numerical
variable, we give all of the missing values a single extremely large value that isobviously outside of
the original data range. This creates the needed separation between the nonmissing values and the
missing values, implying that any split that involves the variable with missing valueswill put all of
the missing observations into the same branch of the tree. Surrogate split is thedefault method of
CART (realized usingRPART in this study; Breiman et al. 1998 and Therneau and Atkinson 1997).
It finds and uses a surrogate variable (or several surrogates in order) within a node if the variable
for the next split contains missing values. In the testing phase, if a split variable contains missing
values, the surrogate variables in the training phase are used instead. The complete variable method
simply deletes all variables that contain missing values.

Before we start presenting results, we define a performance measure that is appropriate for mea-
suring the impact of missing data. Accuracy, calculated as the percentage of correctly classified
observations, is often used to measure the performance of classification trees. Since it can be af-
fected by both the data structure (some data are intrinsically easier to classifythan others) and by
the missing data, this is not necessarily a good summary of the impact of missing data. In this study,
we define a measure calledrelative accuracy(RelAcc), calculated as

RelAcc=
Accuracy with missing data

Accuracy with original full data
.

This can be thought of as a standardized accuracy, asRelAccmeasures the accuracy achievable with
missing values relative to that achievable with the original full data.

3.1 Analytical Results

In the following consistency theorems, the data are assumed to reflect the DGP exactly, and therefore
the training set and the testing set are exactly the same. Several of the theorems are for 2×2 tables,
and in those cases stopping and pruning rules are not relevant, since theonly question is whether or
not the one possible split is made. The proofs are thus dependent on the underlying parameters of
the DGP and MGP, rather than on data randomly generated from them. It is important to recognize
that these results are only designed to be illustrative of the results found in the much more realistic
simulation analyses to follow. Proofs of all of the results are given in the appendix.

Before presenting the theorems, we define some terms to avoid possible confusion. First, a
partition of the data refers to the grouping of the observations defined by the classification tree’s
splitting rules. Note that it is possible for two different trees on the same data set to define the same
partition. For example, suppose that there are only two binary explanatoryvariables,X1 andX2, and
one tree splits onX1 thenX2 while another tree splits onX2 thenX1. In this case, these two trees
have different structures, but they can lead to the same partition of the data. Secondly, the set of
rules defined by a classification tree consists of the rules defined by the tree leaves on each of the
groups (the partition) of the data.

3.1.1 WHEN THE TEST SET IS FULLY OBSERVEDWITH NO M ISSING VALUES

We start with Theorems 1 to 3 that apply to the complete case method. Theorems 4 and 5 apply to
probabilistic split and mode imputation, respectively. Proofs of the theorems can be found in the
appendix.
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Theorem 1 Complete Case Method: If the MGP is conditionally independent of Y given X,then
the tree built on the data containing missing values using the complete case method gives the same
set of rules as the tree built on the original full data set.

Theorem 2 Complete Case Method: If the partition of the data defined by the tree built on the
incomplete data is not changed from the one defined by the tree built on the original full data, the
loss in accuracy when the testing set is complete is bounded above by PM, where PM is the missing
rate, defined as the percentage of observations that contain missing values.

Theorem 3 Complete Case Method: If the partition of the data defined by the tree built on the
incomplete data is not changed from the one defined by the tree built on the original full data, the
relative accuracy when the testing set is complete is bounded below by

RelAccmin =
1−PM

1+PM
,

where PM is the missing rate. Notice that the tree structure itself could change as long asit gives
the same final partition of the data.

There are similar results in regression analyses as in Theorem 1. In regression analyses, when
the missingness is independent of the response variable, by using only thecomplete observations,
the parameter estimators are all unbiased (Allison, 2001). This implies that in theory, when the
missingness is independent of the response variable, using complete cases only is not a bad approach
on average. However, in practice, as will be seen later, deleting observations with missing values
can cause severe loss in information, and thus has generally poor performance.

Theorem 4 Probabilistic Split: In a 2×2 data table, if the MGP is independent of either Y or X,
given the other variable, then the following results hold for probabilistic split.

1. If X is not informative in terms of classification, that is, the majority classesof Y for different
X values are the same, then probabilistic split will give the same rule as the onethat would
be obtained from the original full data;

2. If probabilistic split shows that X is informative in terms of classification, that is, the majority
classes of Y for different X values are different, then it finds the same ruleas the one that
would be obtained from the original full data;

3. The absolute accuracy when the testing set is complete is bounded belowby 0.5. Since the
original full data accuracy is at most 1, the relative accuracy is also bounded below by 0.5.

Theorem 5 Mode Imputation: If the MGP is independent of Y , given X, then the same results hold
for mode imputation as for probabilistic split under the conditions of Theorem 4.

Theorems 1, 2 and 3 (for the complete case method) are true for general data sets. Theorems
4 and 5 are for 2×2 tables only but they imply that probabilistic split and mode imputation have
advantages over the complete case method, which can have very poor performance (as will be shown
in Figure 1).

137



DING AND SIMONOFF

Moreover, with 2×2 tables, the complete variable method will always have a higher than 0.5
accuracy since by ignoring the only predictor, we will always classify allof the data to the overall
majority class and achieve at least 0.5 accuracy, and thus at least 0.5 relative accuracy. Together
with Theorems 4 and 5, as well as the evidence to be shown in Figure 1, this is an indication that
classification trees tend not to be hurt much by missing values, since trees built on 2×2 tables can
be considered as degenerate classification trees and more complex trees are composites of these
degenerate trees. The performance of a classification tree is the average (weighted by the number
of observations at each leaf) over the degenerate trees at the leaf level, and, as will be seen later in
the simulations, can often be quite good.

Surrogate split is not applicable to 2×2 tables because there are no other predictors. For 2×2
table problems with a complete testing set, separate class is essentially the same as the complete case
method, because as long as the data are split according to the predictor (and it is very likely that this
will be so), the separate class method builds separate rules for the observations with missing values;
when the testing set is complete, the rules that are used in the testing phase areexactly the ones built
on the complete observations. When there is more than one predictor, however, the creation of the
“separate class” will save the observations with missing values from being deleted and affect the
tree building process. It will very likely lead to a change in the tree structure. This, as will be seen,
tends to have a favorable impact on the performance accuracy.

Figure 1 illustrates the lower bound calculated in Theorem 3. The illustration is achieved by
Monte Carlo simulation of 2×2 tables. A 2×2 table with missing values has only eight cells, that is,
eight different value combinations of the binary variablesX, Y andM, whereM is the missingness
indicator such thatM = 0 if X is observed andM = 1 if X is missing. There is one constraint, that
the sum of the eight cell probabilities must equal one. Therefore, this tableis determined by seven
parameters. In the simulation, for each 2×2 table, the following seven parameters (probabilities)
are randomly and independently generated from a uniform distribution between(0,1): (1)P(X = 1),
(2)P(Y = 1|X = 0), (3)P(Y = 1|X = 1), (4)P(M = 1|X = 0,Y = 0), (5)P(M = 1|X = 0,Y = 1),
(6)P(M = 1|X = 1,Y = 0) and (7)P(M = 1|X = 1,Y = 1). Here we assume the data tables reflect
the true underlying DGP and MGP without random variation, and thus the expected performance
of the classification trees can be derived using the parameters. In this simulation, sets of the seven
parameters are generated (but no data sets are generated using these parameters) repeatedly, and the
relative accuracy of each missing data method on each parameter set is determined. One million
sets of parameters are generated for each missingness pattern.

In Figure 1, the plot on the left is a scatter plot of relative accuracy versus missing rate for
each Monte Carlo replication for the complete case method when the MGP depends on the response
variable. The lower bound is clearly shown. We can see that when the missing rate is high, the
lower bound can reduce to almost zero (implying that not only relative accuracy, but accuracy itself,
can approach zero). This perhaps somewhat counterintuitive result can occur in the following way.
Imagine the extreme case where almost all cases are positive and (virtually)all of the positive cases
have missing predictor value at the training phase; in this situation the resultantrule will be to
classify everything as negative. When this rule is applied to a complete testing set with almost all
positive cases, the accuracy will be almost zero. The graph on the rightis the quantile version of the
scatter plot on the left. The lines shown in the quantile plot are the theoretical lower bound, the 10th,
20th, 30th, 40th and 50th percentile lines from the lowest to the highest. Higher percentile lines are
the same as the 50th percentile (median) line, which is already the horizontal lineatRelAcc= 1. The
percentile lines are constructed by connecting the corresponding percentiles in a moving window
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Figure 1: Scatter plot and the corresponding quantile plot of the complete testing setRelAccvs.
missing rate of the complete case method when the MGP is dependent on the response
variable. Recall that “∗∗Y” means the MGP is conditionally dependent on the response
variable but no restriction on the relationship between the MGP and other variables, miss-
ing or observed, is assumed. Each point in the scatter plot represents theresult on one of
the simulated data tables.

of data from the left to the right. Due to space limitations, we do not show quantileplots of other
missing data methods and/or under different scenarios, but in all of the other plots, the quantile lines
are all higher (that is, the quantile plot in Figure 1 shows the worst case scenario). The plots show
that the missing data problem, when the missing rate is not too high, may not be as serious as we
might have thought. For example, when 40% of the observations contain missing data, 80% of the
time the expected relative accuracy is higher than 90%, and 90% of the time the expected relative
accuracy is higher than 80%.

3.1.2 WHEN THE TEST SET HAS M ISSING VALUES

Theorem 6 Separate Class: In 2×2 data tables, if missing values occur in both the training set
and the testing set, then the separate class method achieves the best possible performance.

In the Monte Carlo simulation of the 2× 2 tables, the head-to-head comparison between the
separate class method and other missing data methods confirmed the uniform dominance of the sep-
arate class when the test set also contains missing values, regardless whether the MGP is dependent
on the response variable or not. However, as shown in Figure 2, when the MGP is independent of
the response variable, separate class never performances better thanthe performance on the original
full data, indicated by relative accuracies less than one. This means that separate class is not gaining
from the missingness. On the other hand, when the MGP is dependent on theresponse variable, a
fairly large percentage of the time the relative accuracy of the separate class method is larger than
one (the quantiles shown are from the 10th to the 90th percentile with increment10 percent). This
means that trees based on the separate class method can improve on predictive performance com-
pared to the situation where there are no missing data. Our simulations show thatother methods
can also gain from the missingness when the MGP is dependent on the response variable, but not as
frequently as the separate class method and the gains are in general not as large. We follow up on
this behavior in more detail in the next section, but the simple explanation is that since missingness
depends on the response variable, the tree algorithm can use the presence of missing data in an ob-
servation to improve prediction of the response for that observation. Duda, Hart, and Stork (2001)
and Hand (1997) briefly mentioned this possibility in the classification context, but did not give any

139



DING AND SIMONOFF

Figure 2: Scatter plot of the separate class method with incomplete testing set. Each point in the
scatter plot represents the result on one of the simulated data tables.

supporting evidence. Theorem 6 makes a fairly strong statement in the simple situation, and it will
be seen to be strongly indicative of the results in more general cases.

3.2 Monte Carlo Simulations of General Data Sets

In this section extensions of the simulations in the last section are summarized.

3.2.1 AN OVERVIEW OF THE SIMULATION

The following simulations are carried out.

1. 2×2 tables, missing values occur in the only predictor.

2. Up to seven binary predictors, missing values occur in only one predictor.

3. Eight binary predictors, missing values occur in two of them.

4. Twelve binary predictors, missing values occur in six of them.

5. Eight continuous predictors, missing values occur in two of them.

6. Twelve continuous predictors, missing values occur in six of them.

Two different scenarios of each of the last four simulations listed above were performed. In
the first scenario, the six complete predictors are all independent of the missing ones, while in the
second scenario three of the six complete predictors are related to the missingones. Therefore, ten
simulations were done in total.

In each of the simulations, 5000 sets of DGPs are simulated in order to cover awide range of
different-structured data sets so that a generalizable inference from the simulation is possible. For
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Figure 3: A summary of the tree performance on the simulated original full data.

each DGP, eight different MGPs are simulated to cover different types of missingness patterns. For
each data set, the variables are generated sequentially in the order of the predictors, the response
and the missingness. The probabilities associated with the binary response variable and the binary
missingness variable are generated using conditional logit functions. Thepredictors may or may not
be correlated with each other. Details about the simulations implementation can be found in Ding
and Simonoff (2008). For each set of DGP/MGP, several different sample sizes are simulated to
see any possible learning curve effect, since it was shown by Perlich, Provost, and Simonoff (2003)
that sample size is an important factor in the effectiveness of classification trees. Figure 3 shows
the distribution of the tree performance on the simulated original full data, as measured by accuracy
and area under the ROC curve (AUC). As we can see, there is broad coverage of the entire range of
strength of the underlying relationship. Also, as expected, the out-of-sample performance (on the
test set) is generally worse than the in-sample performance (on the training set). When the in-sample
AUC is close to 0.5, a tree is likely to not split and as a result, any missing data method will not
actually be applied, resulting in equivalent performance over all of them. To make the comparisons
more meaningful, we exclude the cases where the in-sample AUC is below 0.7. Lower thresholds
for exclusion (0.55 and 0.6) yield very similar results.

Of the six missing data methods covered by this study, five of them, namely, complete case
method, probabilistic split, separate class, imputation and complete variable method, are realized
usingC4.5. These methods are always comparable. However, surrogate splitis carried out using
RPART, which makes it less comparable to the other methods because of differences betweenRPART

andC4.5 other than the missing data methods. To remedy this problem, we tuned theRPARTparam-
eters (primarily the parameter “cp”) so that it gives balanced results compared toC4.5 when applied
to the original full data (i.e., each has a similar probability of outperforming the other), and special
attention is given when comparingRPART with other methods. The out-of-sample performances of
each pair of missing data methods were compared based on botht-tests and nonparametric tests;
each difference discussed in the following sections was strongly statisticallysignificant.
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Figure 4: A summary of the order of six missing data methods when tested on a new complete
testing set. The Y axis is the percentage of times each method is the best (including being
tied with other methods; therefore the percentages do not sum up to one).

3.2.2 THE TWO FACTORS THAT DETERMINE THE PERFORMANCE OFDIFFERENTM ISSING

DATA METHODS

The simulations make clear that the dependence relationship between the missingness and the re-
sponse variable is the most informative factor in differentiating different missing data methods, and
thus is most helpful in determining the appropriateness of the methods. This can be clearly seen in
Figures 4 and 5 (these figures refer to the case with twelve continuous predictors, six of which are
subject to missing values, but results for other situations were broadly similar). The left column in
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Figure 5: A summary of the order of six missing data methods when tested on a new incomplete
testing set. The Y axis is the percentage of times each method is the best (including being
tied with other methods).

the pictures shows the results when the missingness is independent of the response variable and the
right column shows the results when the missingness is dependent on the response variable. We can
see that there are clear differences between the two columns, but within each column there is essen-
tially no difference. This also says the categorization of MCAR/MAR/NMAR (which is based upon
the dependence relationship between the missingness and missing values, and does not distinguish
the dependence of the missingness on otherXs and onY) is not helpful in this context.
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Figure 6: Plot of the case-wise missing rateMR2 versus the value-wise missing rateMR1 in the
simulations using the 36 real data sets.

Comparison of the right columns of Figures 4 and 5 shows that whether or not there are missing
values in the testing set is the second important criterion in differentiating between the methods.
The separate class method is strongly dominant when the testing set contains missing values and
the missingness is related to the response variable. The reason for this is that when missing data
exist in both the training phase and the testing phase, they become part of thedata and the MGP
becomes an essential part of the DGP. This, of course, requires the assumption that the MGP (as well
as the DGP) is the same in both the training phase and the testing phase. Under this scenario, if the
missingness is related to the response variable, then there is information about the response variable
in the missingness, which should be helpful when making predictions. Separate class, by taking the
missingness directly as an “observed” variable, uses the information in the missingness about the
response variable most effectively and thus is the best method to use. As amatter of fact, as can
be seen in the bottom rows of Figures 7 and 8 (which give average relative accuracies separated by
missing rate), the average relative accuracy of separate class under this situation is larger than one,
indicating, on average, a better performance than with the original full data.

On the other hand, when the missing data only occur in the training phase and the testing set does
not have missing values, or when the missingness is not related to and carries no information about
the response variable, the existence of missing values is a nuisance. Its only effect is to obscure the
underlying DGP and thus would most likely reduce a tree’s performance. In this case, simulations
show probabilistic split to be the dominantly best method. However, we don’t see this dominance
later in results based on real data sets. More discussion of this point will follow in Section 4.

3.2.3 MISSING RATE EFFECT

There are two ways of defining the missing rate: the percentage of predictor values that are missing
from the data set (the value-wise missing rate, termed hereMR1), and the percentage of observations
that contain missing values (the case-wise missing rate, termed hereMR2). If there is only one
predictor, as is the case with 2×2 tables, then the two definitions are the same. We have seen
earlier in the theoretical analyses that the missing rate has a clear impact on theperformance of the
missing data methods. In the simulations, there is also evidence of a relationship between relative
performance and missing rate, whichever definition is used to define the missing rate.
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Figure 7: A comparison of the low, median and high missing rate situations. The top row shows the
comparison in terms of winning percentage and the bottom row shows the comparison of
the absolute performance of each missing data method.

Figure 6 shows the relationship betweenMR1 andMR2 in the simulations with 12 continuous
predictors and 6 of them with missing values. Notice that in this setting,MR1 is naturally between
0 and 0.5 (since half of the predictors can have missing values).MR2 values are considerably larger
thanMR1 values, as would be expected.

The simulations clearly show that the relative performance of different missing data methods is
very consistent regardless of the missing rate (see the top row of Figure 7). However, the bottom
row of Figure 7 shows that the absolute performance of the complete case method and the mean
imputation method deteriorate as the missing rate gets higher. It also shows that separate class
method performs best when the missing rate is neither too high or too low, although this effect is
relatively small. Interestingly, the relative accuracy of the other missing datamethods is very close
to one regardless of the missing rate, indicating that they can almost achieve the same accuracy as
if the data are complete without missing values.

A final effect connected to missing rate relates to results in earlier papers (Kalousis and Hilario,
2000; Twala, 2009) that suggested that missingness over several predictors is more problematic than
missingness concentrated in a few predictors. This pattern was not evident here (e.g., in comparing
the results for 8 predictors with 2 having missing values to those for 12 predictors with 6 having
missing values), but it should be noted that the comparisons here are based on relative performance
between methods, not absolute performance. That is, even if absolute performance deteriorates in
the presence of missingness over multiple predictors, this is less important to the data analyst than
is relative performance between methods (since a method must be chosen),and with respect to the
latter criterion the observed patterns are reasonably stable.
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Figure 8: A comparison of the low, median and high original full data AUC situations. The top
row shows the comparison in terms of winning percentage and the bottom row shows the
comparison of the absolute performance of each missing data method.

3.2.4 THE IMPACT OF THEORIGINAL FULL DATA AUC

Figure 8 shows that the original full data AUC primarily has an impact on the performance of
separate class method. When the original full data AUC is higher, the loss in information due to
missing values is less likely to be compensated by the information in the missingness,and thus
separate class method deteriorates in performance (see the bottom row of Figure 8). When the
original AUC is very high, although separate class still does a little better on average, it loses the
dominance over the other methods.

Another observation is that the missing data methods other than separate classhave fairly stable
relative accuracy, with complete case and mean imputation consistently being thepoorest perform-
ers (see the graphs in the bottom rows of both Figure 7 and Figure 8). Thisis true regardless of
the AUC or the missing rate, even when the missingness does not depend on the response variable
and there are no missing data in the testing set where, in theory, the complete case method can
eventually recover the DGP.

4. Performance On Real Data Sets

In this section, we show that most of the previously described results hold when using real data
sets. Moreover, we propose a method of determining the best missing data method to use when
analyzing a real data set. Unlike in the previous sections, in these simulations based on real data,
default settings ofC4.5 are used andRPART is tuned (primarily using its parameter “cp”) to get
similar performance on the original full data asC4.5. Therefore, in particular, the effect of pruning
is present. In Section 4.1, we show the results on 36 data sets that were originally complete. In
Section 4.2, we propose a way to determine the best missing data method to use when facing real
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Missingness is related to
Missing Observed Response
values Predictors Variable LR Three-Letter
No No No MCAR −−−

No No Yes MAR −−Y
Yes No No NMAR M −−

Table 2: Three missingness patterns used in simulations based on real data sets. The LR column
shows the categorization according to Rubin (1976) and Little and Rubin (2002). The
Three-Letter column shows the categorization used in this paper.

data sets that contain missing values (since in that case the true missingness generating process is
not known by the data analyst).

4.1 Results on Real Data Sets with Simulated Missing Values

The same 36 data sets as in Perlich, Provost, and Simonoff (2003) are used here (except for Cover-
type and Patent, which are too big forRPART to handle; in those cases a random subset of 100,000
observations for each of them was used as the “true” underlying data set). They are either complete
or were made complete by Perlich et al. (2003). Missing values with different missingness patterns
were generated for the purpose of this study. According to the earlier results, the only important
factor in the missingness generating process is the relationship between the missingness and the
response variable. Therefore, two missingness patterns are included.In one of them, missingness is
independent of all of the variables (including the response variable). In the other one, missingness is
related to the response variable, but independent of all of the predictors. These two missingness pat-
terns can be categorized as missing completely at random (MCAR) and missingat random (MAR),
respectively. To account for this categorization of MGPs, the third type of missingness, not missing
at random (NMAR), is also included. In the NMAR case, missingness is madedependent upon the
missing values but not on the response variable (see Table 2). To maximize the possible effect of
missing values, the first split variable of the original full data is chosen as the variable that contains
missing values. It can be either numeric or categorical (binary or multi-categorical). Ten new data
sets with missing values are generated for each combination of data set, training set size, and miss-
ingness pattern combination, with the missing rate chosen randomly for each. The performance of
the missing data methods is measured out-of-sample, on a hold out test sample.

The same six missing data methods, namely, the complete case method, the complete vari-
able method, probabilistic split, grand mode/mean imputation, surrogate split and the separate class
method are applied. All of them are realized usingC4.5 except for surrogate split, which is realized
usingRPART. C4.5 is run with its default settings. To make surrogate split comparable to the other
missing data methods, theRPARTparameters are tuned for each data set and each sample size so that
RPART andC4.5 have comparable in sample performance on the original full data (by comparable
performance we mean the average in sample original full data accuracies are similar to each other).
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Figure 9: A tally of the relative out-of-sample performance measured in accuracy of all of the miss-
ing data methods on the 36 data sets.

4.1.1 THE TWO FACTORS AND THEBEST M ISSING DATA METHOD

Consistent with the earlier results, the two factors that differentiate the performance of different
missing data methods are whether the testing set is complete and whether the missingness is depen-
dent upon the response variable. Figure 9 summarizes the relative out-of-sample performance in
terms of accuracy of all of the missing data methods under different situations. In the graph, each
bar represents one missing data method. Since the complete case method is consistently the worst
method, it is omitted in the comparisons. Within each bar, the blank block shows thefrequency
that the missing data method has comparable performance with others. The shadowed block on
the bottom shows the frequency that the missing data method has worse performance than others.
The line-shadowed blocks on the top show the frequency that the missing data method has better
performance than others, with the vertically line-shadowed block further indicating that the missing
data method has better performance than with the original full data.

As was seen in the previous section, when missingness is related to the response variable and the
test set contains missing values (the graph at the bottom right corner of Figure 9), the separate class
method is dominant and in almost half of the cases, its performance is even better than the full data
performance. Interestingly, the middle plot on the right shows that the separate class method still
has an edge over the others (sometimes even over the original full data) when the test set contains
missing values and the missingness is dependent upon the predictor but conditionally independent
of the response variable. This is probably due to the indirect relationship between the missingness
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and the response variable because both the missingness and the response variable are related to the
predictor.

However, the dominance of probabilistic split is not observed in these realdata sets. One pos-
sible reason could be the effect of pruning, which is used in these real data sets. The other two
methods realized usingC4.5 (imputation and separate class) both work with “filled-in” data sets,
while probabilistic split takes the missing values as-is. Given this, we speculatethat the branches
with missing values are more likely to be pruned under probabilistic split, which causes it to lose
predictive power. Another possible reason could be the competition from surrogate split, which is
realized usingRPART. Although we tried to tuneRPART for each data set and each sample size,
RPARTandC4.5 are still two different algorithms. Different features ofRPARTandC4.5, other than
the missing data methods, may causeRPART to outperformC4.5. Complete variable method per-
forms a bit worse than the others, presumably because in these simulations theinitial split variable
on the full data was used as the variable with missing values.

In addition to accuracy, AUC was also tested as an alternative performance measure. We also
examined the use of bagging (bootstrap aggregating) to reduce the variability of classification trees
(discussion of bagging can be found in many sources, for example, Hastie et al. 2001). The learning
curve effect (that is, the relationship between effectiveness and sample size) is also examined. We
see patterns consistent with those in the simulated data sets. That is, the relative performance of the
missing data methods is fairly consistent across different sample sizes.

4.1.2 THE EFFECT OFM ISSING RATE

Figure 10 shows the distribution of the generated missing rates in these simulations. Recall that
missing values occur in one variable, so this missing rate is the percentage of observations that have
missing values, that is,MR2 as defined earlier. Figure 11 shows a comparison between the case when
the missing rate is low (MR2 < 0.2) and the case when the missing rate is high (MR2 > 0.8). For
brevity, only the result when the MGP is dependent on the response variable is shown; differences
between the low and high missing rate situations for other MGP’s are similar. Since the missing
rate is chosen at random, some of the original data sets do not have any generated data sets with
simulated missing values with low missing rate, while for others we do not have anywith high
missing rate, which accounts for the “no data” category in the figures. Also, when the missing rate
is high, the complete case method is obviously much worse than other missing data methods, and is
therefore omitted from the comparison in that situation.

By comparing the graphs in Figures 11 with the corresponding ones in Figure 9, we can see
some of the effects of missing rate. First, when the missing rate is lower than 0.2,the complete case
method has comparable performance to other methods other than the complete variable method.
This is unsurprising, as in this situation the complete case method does not lose much information
from omitted observations. Secondly, the complete variable method has the worst performance
when the missing rate is low, presumably (as noted earlier) because the complete variable method
omits the most important explanatory variable in these simulations.

Moreover, in both the low and high missing rate cases, when the missingness depends on the
response and the testing set is incomplete, the dominance of the separate class is not as strong as it
is in Figure 9. This indicates that separate class works best when the missingrate is moderate. If
the missing rate is too low, there might not be enough observations in the category of “missing” for
the separate class method to be as effective. On the other hand, if the missingrate is very high, the
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Distribution of missing rates in the simulation on 36 real data sets
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Figure 10: The distribution of missing rate in the simulation on 36 real data sets.

Figure 11: A comparison of the relative out-of-sample performance with lowand high missing
rates. Shown here, as an example, is the relative performance when the missingness is
dependent upon the response variable. The left column is for the caseswhere the test
set is fully observed and the right column for the cases where the test sethas missing
values. Top row shows the cases with low missing rate (MR2 < 0.2) and bottom row
shows the cases with high missing rate (MR2 > 0.8)

.

information gained by separate class may not be enough to compensate for the lost information in
the missing values, making all of the methods more comparable. This observationis consistent with
Figure 2, where it is very clear that separate class gains the most when themissing rate is around
50%, as well as Figure 7, where the bottom row shows that separate classhas better performance
when the missing rate is neither too high or too low.

150



AN INVESTIGATION OF M ISSING DATA METHODS FORCLASSIFICATION TREES

Figure 12: A tally of the missing data methods performance differentiation by data separability
(measured by AUC).

4.1.3 IMPACT OF THEDATA SEPARABILITY, MEASURED BY ORIGINAL FULL DATA AUC

The experiment with these 36 data sets also shows that data separability (measured by AUC) is in-
formative about the performance differentiation between different missing data methods (see Figure
12). In the graph, each vertical bar represents one of the 36 data sets, which are ordered from left to
right according to their maximum full data AUC (as calculated by Perlich et al. 2003) from small-
est to the greatest. TheX-axis label shows the AUCs of the data sets. The height of each black bar
shows the percentage of time when all of the missing data methods have mostly tied performance on
the data set. The percentage is calculated as follows. There are three simulated missingness patterns
(MCAR, NMAR and missingness depending onY), four different testing sets (complete training set,
complete new test set, incomplete training set and incomplete new test set) and four performance
measures (accuracy, AUC and their bagged versions). This yields 48 measurement blocks for each
data set. The performances of all of the missing data methods are compared within each block. If
within a block, all of the missing data methods have very similar performance, theblock is marked
as mostly tied. Otherwise, the block is marked as having at least one method performing differently.
The percentage is the proportion of the 48 blocks that are marked as mostly tied.

Figure 12 shows that when data separability is very high, as indicated by anAUC very close
to 1 (the right end of the graph), the performances of different missing data methods are more
likely to be tied. This is presumably due to the fact that strong signals in the data are less likely
to be affected by missing data. The last data set (Nurse) is an exception because there is only one
useful predictor. Since we picked the most significant predictor to createmissing values in, when
the complete variable method is used, the only useful predictor was always deleted and thus the
complete variable method always had worse performance than others. As aresult, on this data set,
none of the measurement blocks is marked as mostly tied. This is consistent with the observations
made in Figure 8.
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4.2 A Real Data Set With Missing Values

We now present a real data example with naturally occurred missing values.In this example, we
try to model a company’s bankruptcy status given its key financial statementitems. The data are
annual financial statement data and the predictions are sequential. That is, we build the tree on one
year’s data and then test its performance on the following year’s data. For example, we build a tree
on 1987’s data and test its performance on 1988’s data, then build a tree on 1988’s data and test it
on 1989 data, and so on.

The data are retrieved from Compustat North America (a database of U.S. and Canadian funda-
mental and market information on more than 24,000 active and inactive publiclyheld companies).
Following Altman and Sabato (2005), twelve variables from the data base areused as potential pre-
dictors: Current Assets, Current Liabilities, Assets, Sales, Operating Income Before Depreciation,
Retained Earnings, Net Income, Operating Income After Depreciation, Working Capital, Liabili-
ties, Stockholder’s Equity and year. The response variable, bankruptcy status, is determined using
two footnote variables, the footnote for Sales and the footnote for Assets.Companies with remarks
corresponding to “Reflects the adoption of fresh-start accounting upon emerging from Chapter 11
bankruptcy” or “Company in bankruptcy or liquidation” are marked as bankruptcy. The data in-
clude all active companies, and span 19 years from 1987 to 2005. There are 177560 observations
in the original retrieved data, but 76504 of the observations have no dataexcept for the company
identifications, and are removed from the data set, resulting in 99056 observations. There are 19238
(19.4%) observations containing missing values and there are 56820 (4.8%) missing data values.

According to the results in Sections 3 and 4.1, there are two criteria that differentiate the per-
formance of different missing data methods, that is, whether or not there are missing values in the
testing set and whether or not the missingness depends on the response variable. In the bankruptcy
data, there are missing values in every year’s data, and thus missing valuesin each testing data set.
To assess the dependence of the missingness on the response variable,the following test is carried
out. First, we define twelve new binary missingness indicators corresponding to the original twelve
predictors. Each indicator takes on value 1 if the original value for the associated variable is missing
and 0 if the original value is observed for that observation. We then build atree for each year’s data
using the indicators as the predictors and the original response variable,the bankruptcy status, as
the response variable. From 1987 to 2000, the tree makes no split, indicatingthe tree algorithm is
not able to establish a relationship between the missingness and the responsevariable. From 2001
to 2005, the classification tree consistently splits on the missingness indicators of Sales and Re-
tained Earnings. This indicates that the missingness of these predictors hasinformation about the
response variable in these years, and the MGP across the years is fairlyconsistent in missingness in
sales and retained earnings being related to bankruptcy status. However, the AUC values calculated
from the trees built with the missingness indicators are not very high, all being between 0.5 and 0.6.
Therefore, the relationship is not a very strong one.

Given these observations and the fact that the sample sizes are fairly large, we would make
the following propositions based on our earlier conclusions. First, from 1988 to 2001 (since the
tree tested on 2001 data is built on 2000 data), different missing data methodsshould have simi-
lar performance, with no clear winners. However, from year 2002 to year 2005, the separate class
method should have better performance than the others (but perhaps notmuch better since the rela-
tionship between missingness and the response is not very strong). The actual relative performance
of different missing data methods is shown in Figure 13. Since surrogate split is realized using
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Figure 13: The relative performance of all of the missing data methods on thebankruptcy data.
The left column gives methods usingRPART (and includes all of the methods except
for probabilistic split) and the right column gives methods usingC4.5 (and includes all
of the methods except for surrogate split). The top rows are performance in terms of
accuracy while the bottom rows are in terms of true positive rate.

RPART while probabilistic split is realized usingC4.5, we run all of the other methods using both
RPART andC4.5 so that we can compare both surrogate split and probabilistic split with allof the
other methods. In Figure 13, the plots on the left are the results fromRPART, which include all of
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the missing data methods except for probabilistic split. The plots on the right arethe results from
C4.5, which include all of the missing data methods except for surrogate split.The performances
of methods common to both plots are slightly different because of differences betweenC4.5 and
RPART in splitting and pruning rules. Both the accuracy and the true positive rates are shown. Since
the number of actual bankruptcy cases in the data is small, the accuracy is always very high. The
true positive rate is defined as

TP=
Number of correctly predicted bankruptcy cases

Actual number of bankruptcy cases
.

The graphs in the first and the second rows are for accuracies, with thefirst row for the first time
period from 1988 to 2001 and the second row for the second time period from 2002 to 2005. The
graphs in the third and the fourth rows are for true positive rates, with the third row for the first time
period from 1988 to 2001 and the fourth row for the second time period from 2002 to 2005. It is
apparent that in the first time period, there are no clear winners. However, in the second time period,
separate class is a little better than the others, in line with expectations.

5. Extension To Logistic Regression

One obvious observation from this study is that when missing values occur inboth the model build-
ing and model application stages, it should be considered as part of the data generating process
rather than a separate mechanism. That is, taking the missingness into consideration can improve
predictive performance, sometimes significantly. This should also apply to other supervised learn-
ing methodologies, non-parametric or parametric, when predictive performance is concerned. We
present here the results from a real data analysis study involving logistic regression, similar to the
one presented in Section 4.1. Missing values are generated the same way asin Section 4.1 and
then logistic regression models (without variable selection) with different ways of handling missing
data are applied to those data sets. Finally a tally is made on the relative performances of different
missing data methods. Results measured in accuracy, bagged accuracy, AUC and bagged AUC are
almost identical to each other; results in terms of accuracy are shown in Figure 14.

Included in the study are five ways of handling missing data: using only complete cases (com-
plete case method), including a missingness dummy variable in the explanatory variable (dummy
method, sometimes called the missing-indicator method),1 building separate models for data with
values missing and data without missing values (by-group method),2 imputing missing values with
grand mean/mode (imputation method), and only using predictors without missing values (complete
variable method). Note that the methods using a dummy variable and building separate models for

1. If explanatory variableX1 has missing values, then we create a missingness dummy variableM1 that has value 1 ifX1
is observed and 0 otherwise. ThenM1 andX1 ∗M1 are both used as explanatory variables. The result of this set-up
is that the effect ofX1 is fit on the observations withX1 observed but a single mean value is fit to the observations
with X1 missing. All of the observations, with or withoutX1 values, have the same coefficients for all of the other
explanatory variables. Jones (1996) showed that this method can result in biased coefficient estimates in regression
modeling, but did not address the question of predictive accuracy thatis the focus here.

2. The biggest difference between the by-group method and the dummymethod is whether the explanatory variables,
other than the one containing missing values, have different coefficientsor not. The by-group method fits two separate
models to observations with and without missing values. Therefore, evenif an explanatory variable is fully observed,
its coefficient would most likely be different for fully observed observations and for observations with missing values.
The dummy method, on the other hand, fits a single model to the entire data set so that variables that are fully observed
will have the same coefficients whether an observation has missing valuesor not.
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Figure 14: A tally of the relative out-of-sample performance with logistic regression measured in
accuracy of all of the missing data methods on the 36 data sets.

observations with and without missing values each are analogous to the separate class method for
trees. The most obvious observation is that when missingness is related to theresponse variable and
missingness occurs in the test set, the dummy method and the by-group method dominate the other
methods; in fact, more than a third of the time, they perform better than logistic regression on the
original full data. Comparing Figure 14 with Figure 9, we see a clear similarity,in that the meth-
ods using a separate class model missingness directly, and thus use the information contained in the
missingness about the response variable most efficiently. This suggests that the result that predictive
performance of supervised learning methods is driven by the dependence (or lack of dependence)
on the response variable is not limited to trees, but is rather a general phenomenon.

6. Conclusion And Future Study

The main conclusions from this study are as follows:

1. The two most important criteria that differentiate the performance of different missing data
methods are whether or not the testing set is complete and whether or not the missingness
depends on the response variable. There is strong evidence, both analytically and empirically,
that separate class is the best missing data method to use when the testing data also contains
missing values and the missingness is dependent upon the response variable.

In practice, one way to detect the dependence of missingness on the response variable is to try
building a model, with a classification tree being a natural choice, of the response variable on
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the missingness indicators (which equals to 1 if the corresponding original value is missing
and 0 otherwise). If such a model supports a relationship, then it is an indication that the
missingness is related to the response variable.

2. The performance of classification trees is on average not too negatively affected by missing
values, except for the complete case method and the mean imputation method, which are
sensitive to different missing rates. Separate class tend to perform betterwhen the missing
rate is neither too high nor too low, trading off between information loss due to missing values
and information gain from the informative MGP.

3. The original full data AUC has an impact on the performance of separate class method. The
higher the original AUC, the more severe the information loss due to missing value, and thus
relatively the worse the performance of the separate class method.

The consistency of these results across the theoretical analyses, simulations from the artificial data,
and simulations based on real data provides strong support for their general validity.

The findings here also have implications beyond analysis of the data at hand. For example, since
missingness that is dependent on the response variable can actually improve predictive performance,
it is clear that expending time, effort, and money to recover the missing valuesis potentially a poor
way to allocate resources. Another interesting implication of these results is related to data disclo-
sure limitation. It is clear that any masking of values must be done in a way that isindependent of
the response variables of interest (or any predictors highly related to such variables), since otherwise
data disclosure using regression-type methods (Palley and Simonoff, 1987) could actually increase.

Classification trees are designed for the situation where the response variable is categorical, not
just binary; it would be interesting to see how these results carry over to that situation. Tree-based
methodologies for the situation with a numerical response have also been developed (i.e., regression
trees), and the problems of missing data occur in that context also. Investigating such trees would
be a natural extension of this paper. In this paper, we focused on baseform classification trees
usingC4.5 andRPART, although bagging was included in the study. It would be worthwhile to see
how the performance of different missing data methods is affected by different tree features such as
stopping and pruning or when techniques such as cross-validation, treeensembles, etc. are used.

Moreover, as was shown in Section 5, the relationship between the missingness and the response
variable can be helpful in prediction when missingness occurs in both the training data and the
testing data in situations other than classification trees. This is very likely true for other supervised
learning methods, and thus testing more learning methods would also be a natural extension to this
study.
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P(Y = 0|X = 0,with Missing Data) > T > T
P(Y = 0|X = 1,with Missing Data) > T ≤ T
P(Y=0|X=0) P(Y=0|X=1)

> T > T 1 P(X=0,Y=0)+P(X=1,Y=1)
P(Y=0)

> T ≤ T P(Y=0)
P(X=0,Y=0)+P(X=1,Y=1) 1

≤ T > T P(Y=0)
P(X=0,Y=1)+P(X=1,Y=0)

P(X=0,Y=0)+P(X=1,Y=1)
P(X=0,Y=1)+P(X=1,Y=0)

≤ T ≤ T P(Y=0)
P(Y=1)

P(X=0,Y=0)+P(X=1,Y=1)
P(Y=1)

P(Y = 0|X = 0,with Missing Data) ≤ T ≤ T
P(Y = 0|X = 1,with Missing Data) > T ≤ T
P(Y=0|X=0) P(Y=0|X=1)

> T > T P(X=0,Y=1)+P(X=1,Y=0)
P(Y=0)

P(Y=1)
P(Y=0)

> T ≤ T P(X=0,Y=1)+P(X=1,Y=0)
P(X=0,Y=0)+P(X=1,Y=1)

P(Y=1)
P(X=0,Y=0)+P(X=1,Y=1)

≤ T > T 1 P(Y=1)
P(X=0,Y=1)+P(X=1,Y=0)

≤ T ≤ T P(X=0,Y=1)+P(X=1,Y=0)
P(Y=1) 1

Table 3: RelAccof tree built on data with missing values and tested on the original full data set
when there is no variation from true DGP

Appendix A. Proofs of the Theorems

The relative accuracy (RelAcc) when there are missing values in the training set but not in the testing
set can be summarized into Table 3, whereT is the threshold value (an observation will be classified
as class 0 if the predicted probability for it to be 0 is greater thanT). The value ofT reflects the
misclassification cost. It is taken as 0.5 reflecting an equal misclassification cost. In Table 3, the
columns show different rules given by the classification trees when thereare missing values, and the
rows show actual DGP’s. The entries are theRelAccvalues under different scenarios. For example,
all of the entries on the diagonal are one’s because the rules given by the classification trees when
there are missing values are the same as the true DGP’s and thus the accuracy achieved by the trees
are the same with or without the missing values and thusRelAcc= 1. Cell (1,2), for example,
shows that if the true DGP isP(Y = 0|X = 0) > T andP(Y = 0|X = 1) > T but the classification
tree gives ruleP(Y = 0|X = 0) > T andP(Y = 0|X = 1) ≤ T when there are missing values, that
is, P(Y = 0|X = 0,with missing value) > T andP(Y = 0|X = 1with missing value) ≤ T, then the
relative accuracy is determined to be

P(X = 0,Y = 0)+P(X = 1,Y = 1)

P(Y = 0)
.

Proof of Theorem 1 : The expected performance of the complete case method when the missing-
ness does not depend on the response variable and the testing set is complete.

Proof

First, we defineA as the case-wise missingness indicator which equals 1 if the observation
contains missing values in one or more of the predictors or 0 if the observationdoes not

157



DING AND SIMONOFF

contain missing values in any of the predictors.Y is the response variable andX is the vector
of the predictors.

If only the complete cases are used, ifP(Y|A = 0,X) = P(Y|X), then only the diagonal in
Table 3 can be achieved, and thus there is no loss in accuracy.

This condition will be satisfied if and only if the MGP is conditionally independentof Y given
X, that is,P(A = 0|X,Y) = P(A = 0|X).

1. “P(Y|A = 0,X) = P(Y|X) ⇒ P(A = 0|X,Y) = P(A = 0|X)”

P(A=0|X,Y)= P(A=0,X,Y)
P(X,Y)

=P(Y|A=0,X)P(A=0,X)
P(X,Y)

=P(Y|X)P(A=0,X)
P(Y|X)P(X)

=P(A = 0|X)

2. “P(Y|A = 0,X) = P(Y|X) ⇐ P(A = 0|X,Y) = P(A = 0|X)”

P(Y|A=0,X)= P(A=0,X,Y)
P(A=0,X)

=P(A=0|X,Y)P(X,Y)
P(A=0,X)

=P(A=0|X)P(X,Y)
P(A=0|X)P(X)

=P(X,Y)
P(X)

=P(Y|X)

Proof of Theorems 2 and 3 : The expected performance of the complete case method when the
missingness depends on the response variable and the testing set is complete.

We first observe the following lemmas.

Lemma 7 For the partition defined by the tree built on the original full data (and not changed
by missing values), let the kth section contain Pk proportion of data and within the partition,
the majority class have proportion Pk

m j. Note that∑K
k=1Pk = 1, while the full data set accu-

racy, that is, the accuracy achievable with the full data set, is∑k PkPk
m j.)

The rule for the kth section will be classifying it as the majority class of the section. The
impact of missing data on its rule is to either leave it unchanged or make it classify the data
as the minority class instead of the majority class.

The smallest missing rate needed in kth section to change the rule is P(A = 1|k) = 2Pk
m j−1,

where A is defined as in Theorem 1, that is, it is the case-wise indicator, which takes value
1 if the observation contains missing value or 0 otherwise. If the rule is changed the loss in
accuracy within that section is2Pk

m j−1.
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Proof

We assume the partition of the data is not changed by the missing values. The structure of the
trees need not to be the same because different trees may lead to the same partition of data.

For anyk, to make the rule of thekth section change, we need to observe more minority class
cases than the majority ones within that section. To achieve this in the most efficient way,
we only make the majority ones missing. Originally, there arePk

m j majorities and 1−Pk
m j

minorities. Only when there arePk
m j− (1−Pk

m j) = 2Pk
m j−1 majorities missing will it become

less than the minorities, so this is the smallest missing rate we need to make the rule change.

After the rule is changed, only 1−Pk
m j of the data, that is, the minorities, will be correctly

classified. Therefore, the loss in accuracy isPk
m j− (1−Pk

m j) = 2Pk
m j−1.

Lemma 8 For a given data set and the partition defined by the tree built on the full data set
(which is not changed by the missing values), the largest loss in accuracy is∑k 2Pk

m j−1. The

smallest missing rate needed to achieve this is also∑k 2Pk
m j−1.

Proof

The largest loss is achieved if and only if the rules are changed in every section of data in the
partition. The result then follows from Lemma 7.

Lemma 9 For a certain missing rate, say Pm, the largest effect it can have on the classifica-
tion accuracy of any data that won’t be split is Pm itself.

In this case, the data set has its majority proportion Pm j =
1
2(1+Pm).

Proof

Similar to the proof of Lemma 7, for missing values to have an impact on the classification
rule, it has to switch the order status of the majority and minority. To achieve this,it has to
be thatPm j− (1−Pm j) ≤ Pm. We know that once the rule is changed, the loss in accuracy is
Pm j − (1−Pm j). Therefore, the largest loss isPm when the equality holds. In this case, we
havePm j =

1
2(1+Pm).

We now prove Theorem 2.

Proof

For any data set, once it is partitioned and the partition is not changed by missing values,
the rules in different sections of data are independent of each other, so we can look at them
separately.
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Suppose the data are partitioned intoK segments, in which some contain missing data and
the others do not. LetK0 be the set of sections whose rules are changed by missing data and
K1 be the set of all other sections. Also let thekth segment (k = 1. . .K) contain proportionPk

of the data. We have∑K
k=1Pk = 1.

Assume that thekth segment (k∈ K0) contains proportionPk
m of missing data. Then we have

∑
k∈K0

Pk
mPk ≤ Pm.

For thekth segment (k ∈ K0), by Lemma 9, the largest possible loss in accuracy isPk
m and it

occurs if and only ifPk
m j =

1
2(1+Pk

m). Therefore, the possible loss for the entire data set is

∑
k∈K0

Pk
mPk ≤ Pm,

the largest loss being achieved when the equality holds. In that case, the rules in all of the
categories that contain missing values are changed and the maximum loss isPm.

We now prove Theorem 3.

Proof

Assuming the partitions of data are not changed by the missing values, we have

RelAcc =
∑K

k=1Pk
m jP

k−∑k∈K0
(loss in accuracy inkth segment)

∑K
k=1Pk

m jP
k

= 1−
∑k∈K0

(loss in accuracy inkth segment)

∑K
k=1Pk

m jP
k

= 1−
∑k∈K0

(loss in accuracy inkth segment)

∑k∈K0
Pk

m jP
k +∑k∈K1

Pk
m jP

k

This is an increasing function of∑k∈K1
Pk

m jP
k in the denominator, which is independent of

other factors; setting it to zero minimize therelative accuracy, so

RelAcc ≤ 1−
∑k∈K0

(loss in accuracy inkth segment)

∑k∈K0
Pk

m jP
k

Denote the numerator∑k∈K0
(loss in accuracy inkth segment) asa. Now, from the proof of

Theorem 2, the numeratora≤ Pm and the denominator∑k∈K0
Pk

m jP
k = 1

2(1+a). So,

RelAcc ≤ 1−
a

1
2(1+a)
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This is a decreasing function ofa and subject toa≤ Pm. Therefore, the minimumRelAccis
achieved whena = Pm. This gives

RelAcc ≤ 1−
Pm

1
2(1+Pm)

=
1−Pm

1+Pm

Proof of Theorem 4 : Some properties of probabilistic split when the missingness does not depend
on both the predictor and the response variable.

Proof

1. Part 1

• If the MGP is independent ofY givenX, that is,P(M|X,Y)= P(M|X) thenP(Y|M,X)=
P(Y|X) by the proof of Theorem 1.
The rules given by probabilistic split when there are missing values are as follows:

P(Y = 0|X = 0,Prob split)

= P(Y = 0|M = 0,X = 0)P(M = 0)+P(Y = 0|M = 1)P(M = 1)

= P(Y = 0|X = 0)P(M = 0)+P(Y = 0|M = 1)P(M = 1)

= P(Y = 0|X = 0)P(M = 0)

+[P(Y = 0,X = 0|M = 1)+P(Y = 0,X = 1|M = 1)]P(M = 1)

= P(Y = 0|X = 0)P(M = 0)

+[P(Y = 0|M = 1,X = 0)P(X = 0|M = 1)

+P(Y = 0|M = 1,X = 1)P(X = 1|M = 1)]P(M = 1)

= P(Y = 0|X = 0)P(M = 0)+ [P(Y = 0|X = 0)P(X = 0|M = 1)

+P(Y = 0|X = 1)P(X = 1|M = 1)]P(M = 1)

= P(Y = 0|X = 0)P(M = 0)+P(Y = 0|X = 0)P(M = 1,X = 0)

+P(Y = 0|X = 1)P(M = 1,X = 1)

= P(Y = 0|X = 0)[P(M = 0)+P(M = 1,X = 0)]

+P(Y = 0|X = 1)P(M = 1,X = 1)

and following the similar route, we can get

P(Y = 0|X = 1,Prob split)

= P(Y = 0|X = 1)[P(M = 0)+P(M = 1,X = 1)]

+P(Y = 0|X = 0)P(M = 1,X = 0).

Note that

P(M = 0)+P(M = 1,X = 1)+P(M = 1,X = 0) = 1.
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Therefore, bothP(Y = 0|X = 0,Prob split) andP(Y = 0|X = 1,Prob split) are
weighted averages ofP(Y = 0|X = 0) andP(Y = 0|X = 1).
It follows that if bothP(Y = 0|X = 0) andP(Y = 0|X = 1) are greater (less) than
0.5, then bothP(Y = 0|X = 0,Prob split) andP(Y = 0|X = 1,Prob split) are also
greater (less) than 0.5.

• If the MGP is independent ofX givenY, without loss of generality, we prove the
case whenP(Y = 0|X = 0) > T = 0.5 andP(Y = 0|X = 1) > T = 0.5.

P(Y = 0|X = 0,Prob split)

=
P(M = 0,X = 0,Y = 0)

P(M = 0,X = 0)
P(M = 0)+P(Y = 0|M = 1)P(M = 1)

=
P(M = 0|X = 0,Y = 0)P(X = 0,Y = 0)P(M = 0)

P(M = 0,X = 0)

+P(M = 1,Y = 0)

=
P(M = 0|Y = 0)P(X = 0,Y = 0)P(M = 0)

P(M = 0,X = 0)

+P(M = 1,X = 0,Y = 0)+P(M = 1,X = 1,Y = 0)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0,X = 0)

+P(M = 1,X = 0|Y = 0)P(Y = 0)

+P(M = 1,X = 1|Y = 0)P(Y = 0)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0,X = 0)

+P(M = 1|Y = 0)P(X = 0|Y = 0)P(Y = 0)

+P(M = 1|Y = 0)P(X = 1|Y = 0)P(Y = 0)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0,X = 0)

+P(M = 1|Y = 0)P(Y = 0|X = 0)P(X = 0)

+P(M = 1|Y = 0)P(Y = 0|X = 1)P(X = 1)

> T[
P(M = 0|Y = 0)P(M = 0)

P(M = 0,X = 0)

+P(M = 1|Y = 0)P(X = 0)+P(M = 1|Y = 0)P(X = 1)]

= T[
P(M = 0|Y = 0)P(M = 0)

P(M = 0,X = 0)
+P(M = 1|Y = 0)]

> T(P(M = 0|Y = 0)+P(M = 1|Y = 0))

= T

A similar argument givesP(Y = 0|X = 1,Prob split) > T.

2. Part 2

• If the MGP is independent ofY givenX, then from the proof of part 1,

P(Y = 0|X = 0,Prob split)
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= P(Y = 0|X = 0)(P(M = 0)+P(M = 1,X = 0))

+P(Y = 0|X = 1)P(M = 1,X = 1)

and

P(Y = 0|X = 1,Prob split)

= P(Y = 0|X = 1)(P(M = 0)+P(M = 1,X = 1))

+P(Y = 0|X = 0)P(M = 1,X = 0).

Taking the difference, we get

P(Y = 0|X = 0,Prob split)−P(Y = 0|X = 1,Prob split)

= P(Y = 0|X = 0)(P(M = 0)+P(M = 1,X = 0))

+P(Y = 0|X = 1)P(M = 1,X = 1)

−[P(Y = 0|X = 1)(P(M = 0)+P(M = 1,X = 1))

+P(Y = 0|X = 0)P(M = 1,X = 0)]

= P(Y = 0|X = 0)P(M = 0)−P(Y = 0|X = 1)P(M = 0)

= (P(Y = 0|X = 0)−P(Y = 0|X = 1))P(M = 0).

Without loss of generality, assumeP(Y = 0|X = 0,Prob split) > T and P(Y =
0|X = 1,Prob split) < T. It then follows thatP(Y = 0|X = 0) > P(Y = 0|X = 1).
There are three possibilities:
(a) P(Y = 0|X = 0) > T > P(Y = 0|X = 1)

(b) T > P(Y = 0|X = 0) > P(Y = 0|X = 1)

(c) P(Y = 0|X = 0) > P(Y = 0|X = 1) > T
Conditions (b) and (c) are not possible because in these two cases,X is actually
not informative and by Part 1, probabilistic split will show they are not informative.
Therefore, it holds thatP(Y = 0|X = 0) > T > P(Y = 0|X = 1).

• If the MGP is independent ofX givenY, that is,P(M|X,Y) = P(M|Y), we have
P(Y = 0|X = 0,Prob split)

=
P(M = 0,X = 0,Y = 0)

P(M = 0,X = 0)
P(M = 0)+P(Y = 0|M = 1)P(M = 1)

=
P(M = 0|X = 0,Y = 0)P(X = 0,Y = 0)P(M = 0)

P(M = 0|X = 0,Y = 0)P(X = 0,Y = 0)+P(M = 0|X = 0,Y = 1)P(X = 0,Y = 1)

+P(Y = 0|M = 1)P(M = 1)

=
P(M = 0|Y = 0)P(X = 0,Y = 0)P(M = 0)

P(M = 0|Y = 0)P(X = 0,Y = 0)+P(M = 0|Y = 1)P(X = 0,Y = 1)

+P(Y = 0|M = 1)P(M = 1)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0|Y = 0)P(Y = 0|X = 0)+P(M = 0|Y = 1)P(Y = 1|X = 0)

+P(Y = 0|M = 1)P(M = 1),

and following the same route, we have
P(Y = 0|X = 1,Prob split)

=
P(M = 0|Y = 0)P(Y = 0|X = 1)P(M = 0)

P(M = 0|Y = 0)P(Y = 0|X = 1)+P(M = 0|Y = 1)P(Y = 1|X = 1)

+P(Y = 0|M = 1)P(M = 1).
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Therefore,

P(Y = 0|X = 0,Prob split)−P(Y = 0|X = 1,Prob split)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0|Y = 0)P(Y = 0|X = 0)+P(M = 0|Y = 1)P(Y = 1|X = 0)

−
P(M = 0|Y = 0)P(Y = 0|X = 1)P(M = 0)

P(M = 0|Y = 0)P(Y = 0|X = 1)+P(M = 0|Y = 1)P(Y = 1|X = 1)

= [P(Y = 0|X = 0)P(M = 0|Y = 0)P(Y = 0|X = 1)

+P(Y = 0|X = 0)P(M = 0|Y = 1)P(Y = 1|X = 1)

−P(Y = 0|X = 1)P(M = 0|Y = 0)P(Y = 0|X = 0)

−P(Y = 0|X = 1)P(M = 0|Y = 1)P(Y = 1|X = 0)]
P(M = 0|Y = 0)P(M = 0)

D1D2

= [P(Y = 0|X = 0)−P(Y = 0|X = 1)]
P(M = 0|Y = 1)P(M = 0|Y = 0)P(M = 0)

D1D2

= [P(Y = 0|X = 0)−P(Y = 0|X = 1)]K

where
D1 = P(M = 0|Y = 0)P(Y = 0|X = 0)+P(M = 0|Y = 1)P(Y = 1|X = 0),

D2 = P(M = 0|Y = 0)P(Y = 0|X = 1)+P(M = 0|Y = 1)P(Y = 1|X = 1)

and
K =

P(M = 0|Y = 1)P(M = 0|Y = 0)P(M = 0)

D1D2
.

SinceK is always positive as long as there are differentY values observed, we can
see that the probabilistic split preserves the order of the conditional probability of
Y givenX.
Now, without loss of generality, assumeP(Y = 0|X = 0,Prob split) > T andP(Y =
0|X = 1,Prob split) < T. It follows thatP(Y = 0|X = 0) > P(Y = 0|X = 1) because
probabilistic split preserves the correct order. There are three possibilities:

(a) P(Y = 0|X = 0) > T > P(Y = 0|X = 1)

(b) T > P(Y = 0|X = 0) > P(Y = 0|X = 1)

(c) P(Y = 0|X = 0) > P(Y = 0|X = 1) > T

Conditions (b) and (c) are not possible because in these two cases,X is actually not
informative and by the earlier result in Part 1, probabilistic split will show they are
not informative. Therefore, it holds thatP(Y = 0|X = 0) > T > P(Y = 0|X = 1).

3. Part 3

The results of Part 1 and Part 2 lead to the simplification of Table 3 into Table 4.

Without loss of generality, we provide the proof only for the case whenP(Y = 0|X =
0) > T andP(Y = 0|X = 1) ≤ T butP(Y = 0|X = 0, prob split) > T andP(Y = 0|X =
1, prob split) > T, whereRelAccis

RelAcc=
P(Y = 0)

P(X = 0,Y = 0)+P(X = 1,Y = 1)
.

It suffices to show thatP(Y = 0) > 0.5

• If M is independent ofY givenX,

P(Y = 0)

= P(X = 0,Y = 0)+P(X = 1,Y = 0)
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Simplified > T > T ≤ T ≤ T
possibilities > T ≤ T > T ≤ T

Full data

> T > T 1 — — —

> T ≤ T P(Y=0)
P(X=0,Y=0)+P(X=1,Y=1) 1 — P(Y=1)

P(X=0,Y=0)+P(X=1,Y=1)

≤ T > T P(Y=0)
P(X=0,Y=1)+P(X=1,Y=0) — 1 P(Y=1)

P(X=0,Y=1)+P(X=1,Y=0)

≤ T ≤ T — — — 1

Table 4: RelAccwith a 2×2 table of probabilistic split when the missingness is independent of
eitherX or Y or both

= P(M = 0,X = 0,Y = 0)+P(M = 1,X = 0,Y = 0)

+P(Y = 0|X = 1)P(X = 1)

= P(Y = 0|M = 0,X = 0)P(M = 0,X = 0)

+P(Y = 0|M = 1,X = 0)P(M = 1,X = 0)+P(Y = 0|X = 1)P(X = 1)

=1 P(Y = 0|X = 0)P(M = 0,X = 0)+P(Y = 0|X = 0)P(M = 1,X = 0)

+P(Y = 0|X = 1)P(X = 1)

>2 P(Y = 0|X = 0)P(M = 1,X = 0)+P(Y = 0|X = 1)P(M = 0,X = 0)

+P(Y = 0|X = 1)P(X = 1)

= P(Y = 0|X = 1)(P(M = 0)+P(M = 1,X = 1))

+P(Y = 0|X = 0)P(M = 1,X = 0)

= P(Y = 0|X = 1, prob split)

> 0.5

where 1 follows becauseP(Y|M,X) = P(Y|X) and 2 follows becauseP(Y = 0|X =
0) > T ≥ P(Y = 0|X = 1). Therefore,

P(Y = 0)

P(X = 0,Y = 0)+P(X = 1,Y = 1)
> P(Y = 0) > 0.5

• If M is independent ofX givenY,

P(Y = 0) = P(M = 0,Y = 0)+P(M = 1,Y = 0)

and by assumption,

P(Y = 0|X = 1, prob split)

= P(Y = 0|M = 0,X = 1)P(M = 0)+P(M = 1,Y = 0)

> 0.5

If P(M = 0,Y = 0) > P(Y = 0|M = 0,X = 1)P(M = 0), thenP(Y = 0) > P(Y =
0|X = 1, prob split) > 0.5, it suffices to show

P(M = 0,Y = 0) > P(Y = 0|M = 0,X = 1)P(M = 0).
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By the earlier results in Part 2, probabilistic split preserves the order of conditional
probabilities ofY givenX when the missingness is conditionally independent ofX
givenY, that is, in this case, since

P(Y = 0|X = 0) > T ≥ P(Y = 0|X = 1),

we have

P(Y = 0|X = 0,Prob split)−P(Y = 0|X = 1,Prob split)

= P(Y = 0|M = 0,X = 0)P(M = 0)+P(Y = 0|M = 1)P(M = 1)

−(P(Y = 0|M = 0,X = 1)P(M = 0)+P(Y = 0|M = 1)P(M = 1))

= (P(Y = 0|M = 0,X = 0)−P(Y = 0|M = 0,X = 1))P(M = 0)

> 0.

That is,P(Y = 0|M = 0,X = 0) > P(Y = 0|M = 0,X = 1). We then have

P(Y = 0|M = 0,X = 0) > P(Y = 0|M = 0,X = 1)

⇒ P(Y = 0|M = 0,X = 0)P(M = 0,X = 0)

> P(Y = 0|M = 0,X = 1)P(M = 0,X = 0)

⇒ P(M = 0,X = 0,Y = 0) > P(Y = 0|M = 0,X = 1)P(M = 0,X = 0)

⇒ P(M = 0,X = 0,Y = 0)+P(M = 0,X = 1,Y = 0)

> P(Y = 0|M = 0,X = 1)P(M = 0,X = 0)+P(M = 0,X = 1,Y = 0)

⇒ P(M = 0,Y = 0)

> P(Y = 0|M = 0,X = 1)P(M = 0,X = 0)+P(Y = 0|M = 0,X = 1)P(M = 0,X = 1)

⇒ P(M = 0,Y = 0) > P(Y = 0|M = 0,X = 1)(P(M = 0,X = 0)+P(M = 0,X = 1)

⇒ P(M = 0,Y = 0) > P(Y = 0|M = 0,X = 1)P(M = 0)

Proof of Theorem 5 : Some properties of the mode imputation when the missingness does not
depend on the response variable.

Proof

Without loss of generality, we assume thatP(X = 0|M = 0) > P(X = 1|M = 0), that is, there
are moreX=0 cases observed thanX=1 ones. As a result, all of the missingX values will
be labeled asX=0, the observed mode. Then the decision rules when the mode imputation is
used can be written as

P(Y = 0|X = 0, Imp)

=
P(M = 0,X = 0,Y = 0)+P(M = 1,Y = 0)

P(M = 0,X = 0)+P(M = 1)

=
P(M = 0,X = 0,Y = 0)+P(M = 1,X = 0,Y = 0)+P(M = 1,X = 1,Y = 0)

P(M = 0,X = 0)+P(M = 1)

=
P(X = 0,Y = 0)+P(M = 1,X = 1,Y = 0)

P(X = 0)+P(M = 1,X = 1)

=
P(X = 0,Y = 0)+P(Y = 0|M = 1,X = 1)P(M = 1,X = 1)

P(X = 0)+P(M = 1,X = 1)
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=
P(Y = 0|X = 0)P(X = 0)+P(Y = 0|X = 1)P(M = 1,X = 1)

P(X = 0)+P(M = 1,X = 1)

P(Y = 0|X = 1, Imp)

= P(Y = 0|M = 0,X = 1)

= P(Y = 0|X = 1)

1. Note thatP(Y = 0|X = 0, Imp) is a weighted average ofP(Y = 0|X = 0) andP(Y =
0|X = 1). Therefore, if they are both larger (or smaller) than 0.5,P(Y = 0|X = 0, Imp)
will also be, and thus it gives the same rule asP(Y = 0|X = 0). Moreover,P(Y = 0|X =
1, Imp) = P(Y = 0|X = 1), so it also gives the correct rule.

2. Suppose

P(Y = 0|X = 0, Imp) > 0.5

P(Y = 0|X = 1, Imp) < 0.5,

thenP(Y = 0|X = 1) = P(Y = 0|X = 1, Imp) < 0.5, which is always correct. Moreover,
note thatP(Y = 0|X = 0, Imp) is a weighted average ofP(Y = 0|X = 0) andP(Y =
0|X = 1). SinceP(Y = 0|X = 0, Imp) > 0.5 andP(Y = 0|X = 1) < 0.5, we must have
P(Y = 0|X = 0) > 0.5. Therefore,P(Y = 0|X = 0, Imp) gives the correct rule.

3. Again the possibilities simplify to Table 4. Without loss of generality, we provethe
situation when bothP(Y = 0|X = 0, Imp) andP(Y = 0|X = 1, Imp) are greater than 0.5,
that is

P(Y = 0|X = 0, Imp)

=
P(Y = 0|X = 0)P(X = 0)+P(Y = 0|X = 1)P(M = 1,X = 1)

P(X = 0)+P(M = 1,X = 1)

> 0.5

P(Y = 0|X = 1, Imp)

= P(Y = 0|X = 1)

> 0.5

Under the assumption thatP(X = 0|M = 0) > P(X = 1|M = 0), the missing values have
an effect only ifP(Y = 0|X = 0) < 0.5 andP(Y = 0|X = 1) > 0.5. In this case, the
relative accuracy is P(Y=0)

P(X=0,Y=1)+P(X=1,Y=0) . This is the cell of the 3rd row and the 1st

column in Table 4.
But,

P(Y = 0)

P(X = 0,Y = 1)+P(X = 1,Y = 0)

> P(Y = 0)

= P(X = 0,Y = 0)+P(X = 1,Y = 0)

>1 0.5(P(X = 0)+P(M = 1,X = 1))−P(Y = 0|X = 1)P(M = 1,X = 1)

+P(X = 1,Y = 0)

= 0.5(P(X = 0)+P(M = 1,X = 1))+P(Y = 0|X = 1)(P(X = 1)−P(M = 1,X = 1))

= 0.5(1−P(M = 0,X = 1))+P(Y = 0|X = 1)P(M = 0,X = 1)

= 0.5−0.5P(M = 0,X = 1))+P(Y = 0|X = 1)P(M = 0,X = 1)

>2 0.5−0.5P(M = 0,X = 1))+0.5P(M = 0,X = 1)

> 0.5,
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where 1 follows because

P(Y = 0|X = 0, Imp)

=
P(Y = 0|X = 0)P(X = 0)+P(Y = 0|X = 1)P(M = 1,X = 1)

P(X = 0)+P(M = 1,X = 1)

> 0.5.

By rearranging terms,

P(Y = 0|X = 0)P(X = 0)

= P(X = 0,Y = 0)

> 0.5(P(X = 0)+P(M = 1,X = 1))−P(Y = 0|X = 1)P(M = 1,X = 1),

where 2 follows because P(Y=0|X=1)=P(Y=0|X=1,Imp)>0.5.

Proof of Theorem 6 : The dominance of the separate class method when there are missing val-
ues in both the training set and the testing set and the missingness depends onthe response
variable.

Proof

When there are missing data inX in both the training set and the testing set, the finest partition
of the data will beX = 0, X = 1 andX is missing. The best rule we can derive is to classify
the majority class in each of these three partitions. This is achieved by using theseparate
class method.
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