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Abstract
Maximum likelihood estimators are often of limited practical use due to the intensive computation
they require. We propose a family of alternative estimatorsthat maximize a stochastic variation of
the composite likelihood function. Each of the estimators resolve the computation-accuracy trade-
off differently, and taken together they span a continuous spectrum of computation-accuracy trade-
off resolutions. We prove the consistency of the estimators, provide formulas for their asymptotic
variance, statistical robustness, and computational complexity. We discuss experimental results
in the context of Boltzmann machines and conditional randomfields. The theoretical and exper-
imental studies demonstrate the effectiveness of the estimators when the computational resources
are insufficient. They also demonstrate that in some cases reduced computational complexity is
associated with robustness thereby increasing statistical accuracy.
Keywords: Markov random fields, composite likelihood, maximum likelihood estimation

1. Introduction

Maximum likelihood estimation is by far the most popular point estimation technique in machine
learning and statistics. Assuming that the data consists ofn, m-dimensional vectors

D = (X(1), . . . ,X(n)), X(i) ∈ R
m, (1)

and is sampled iid from a parametric distributionpθ0 with θ0 ∈ Θ ⊂ R
r , a maximum likelihood

estimator (MLE)θ̂ml
n is a maximizer of the log-likelihood function

ℓn(θ ;D) =
n

∑
i=1

logpθ(X
(i)), (2)

θ̂ml
n = argmax

θ∈Θ
ℓn(θ ;D).

The use of the MLE is motivated by its consistency,1 that is,θ̂ml
n → θ0 asn→∞ with probability

1 (Ferguson, 1996). The consistency property ensures that as the numbern of samples grows, the
estimator will converge to the true parameterθ0 governing the data generation process.

An even stronger motivation for the use of the MLE is that it has an asymptotically normal
distribution with mean vectorθ0 and variance matrix(nI(θ0))

−1. More formally, we have the

1. The consistencŷθml
n → θ0 with probability 1 is sometimes called strong consistency in order to differentiate it from

the weaker notion of consistency in probabilityP(|θ̂ml
n −θ0|< ε)→ 0.
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following convergence in distribution asn→ ∞ (Ferguson, 1996)

√
n(θ̂ml

n −θ0) N(0, I−1(θ0)), (3)

whereI(θ) is ther× r Fisher information matrix

I(θ) = E pθ{∇ logpθ(X)(∇ logpθ(X))⊤}

with ∇ f representing ther×1 gradient vector off (θ)with respect toθ. The convergence (3) is espe-
cially striking since according to the Cramer-Rao lower bound, the asymptotic variance(nI(θ0))

−1

of the MLE is the smallest possible variance for any estimator. Since it achieves the lowest pos-
sible asymptotic variance, the MLE (and other estimators which share this property) is said to be
asymptotically efficient.

The consistency and asymptotic efficiency of the MLE motivate its use in many circumstances.
Unfortunately, in some situations the maximization or even evaluation of the log-likelihood (2) and
its derivatives is impossible due to computational considerations. For instance this is the situation
in many high dimensional exponential family distributions, including Markov random fields whose
graphical structure contains cycles. This has lead to the proposal of alternative estimators under
the premise that a loss of asymptotic efficiency is acceptable—in return for reduced computational
complexity.

In contrast to asymptotic efficiency, we view consistency as a less negotiable property and prefer
to avoid inconsistent estimators if at all possible. This common viewpoint in statisticsis somewhat
at odds with recent advances in the machine learning literature promoting non-consistent estimators,
for example using variational techniques (Jordan et al., 1999). Nevertheless, we feel that there is a
consensus regarding the benefits of having consistent estimators over non-consistent ones.

In this paper, we propose a family of estimators, for use in situations where the computation of
the MLE is intractable. In contrast to many previously proposed approximateestimators, our estima-
tors are statistically consistent and admit a precise quantification of both computational complexity
and statistical accuracy through their asymptotic variance. Due to the continuous parameteriza-
tion of the estimator family, we obtain an effective framework for achieving a predefined problem-
specific balance between computational tractability and statistical accuracy.We also demonstrate
that in some cases reduced computational complexity may in fact act as a regularizer, increasing
robustness and therefore accomplishing both reduced computation and increased accuracy. This
“win-win” situation conflicts with the conventional wisdom stating that moving from the MLE to
pseudo likelihood and other related estimators result in a computational win buta statistical loss.
Nevertheless we show that this occurs in some practical situations.

For the sake of concreteness, we focus on the case of estimating the parameters associated with
Markov random fields. In this case, we provide a detailed discussion of the accuracy-complexity
tradeoff. We include experiments on both simulated and real world data for several models in-
cluding the Boltzmann machine, conditional random fields, and the Boltzmann linear chain model.
Appendix B outlines a road-map of figures and the corresponding exposition.

2. Related Work

There is a large body of work dedicated to tractable learning techniques. Two popular categories
are Markov chain Monte Carlo (MCMC) and variational methods. MCMC is a general purpose
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technique for approximating expectations and can be used to approximate thenormalization term
and other intractable portions of the log-likelihood and its gradient (Casella and Robert, 2004).
Variational methods are techniques for conducting inference and learning based on tractable bounds
(Jordan et al., 1999). A similar approach would be to conduct maximum likelihood estimation for a
simpler model that is tractable.

Despite the substantial work on MCMC and variational methods, there are little practical results
concerning the convergence and approximation rate of the resulting parameter estimators. Varia-
tional techniques are sometimes inconsistent and it is hard to analyze their asymptotic statistical
behavior. In the case of MCMC, a number of asymptotic results exist (Casella and Robert, 2004),
but since MCMC plays a role inside each gradient descent or EM iteration itis hard to analyze the
asymptotic behavior of the resulting parameter estimates. An advantage of ourframework is that we
are able to directly characterize the asymptotic behavior of the estimator and relate it to the amount
of computational savings.

Our work draws on the composite likelihood method for parameter estimation proposed by
Lindsay (1988) which in turn generalized the pseudo likelihood of Besag (1974). A selection of
more recent studies on pseudo and composite likelihood are Arnold and Strauss (1991), Liang and
Yu (2003), Varin and Vidoni (2005), Sutton and McCallum (2007) and Hjort and Varin (2008).
Most of the recent studies in this area examine the behavior of the pseudo or composite likelihood
in a particular modeling situation. We believe that the present paper is the firstto systematically
examine statistical and computational tradeoffs in a general quantitative framework. Possible ex-
ceptions include the experimental study of texture generation by Zhu and Liu(2002), the work of
Xing et al. (2003) which focused on inference rather than parameter estimation, and the examination
of generalization performance of small- and large- scale learning systems by Bottou and Bousquet
(2008). The work of Liang and Jordan (2008) is also interesting in that the authors employ com-
posite likelihood m-estimators and asymptotic arguments to compare the risk of discriminative and
generative models. However, our work differs in theme and technique—we explore the tradeoff
between computation and accuracy by way of a fundamentally different estimator.

Composite likelihood techniques, and consequently our work, can be thought of as local con-
trastive objectives (i.e., pseudo likelihood, contrastive divergence).Vickrey et al. (2010) present a
non-local alternative in which the objective is not restricted to using the training label, but rather
any assignment.

3. Stochastic Composite Likelihood

In many cases, the absence of a closed form expression for the normalization term prevents the
computation of the log-likelihood (2) and its derivatives thereby severely limiting the use of the
MLE. A popular example is Markov random fields, wherein the computation ofthe normalization
term is often intractable (see Section 6 for more details). In this paper we propose alternative
estimators based on the maximization of a stochastic variation of the composite likelihood.

We denote multiple samples using superscripts and individual dimensions usingsubscripts.
ThusX(r)

j refers to thej-dimension of ther sample. Following standard convention we refer to
random variables (RV) using uppercase letters and their corresponding values using lowercase let-
ters. We also use the standard notations for extracting a subset of the dimensions of a random

2599



DILLON AND LEBANON

variable

XS
def
= {Xi : i ∈ S}, X− j

def
= {Xi : i 6= j}. (4)

We start by reviewing the pseudo log-likelihood function (Besag, 1974) associated with the data
D (1),

pℓn(θ ;D)
def
=

n

∑
i=1

m

∑
j=1

logpθ(X
(i)
j |X

(i)
− j). (5)

The maximum pseudo likelihood estimator (MPLE)θ̂mpl
n is consistent, that is,̂θmpl

n → θ0 with prob-
ability 1, but possesses considerably higher asymptotic variance than the MLE’s (nI(θ0))

−1. Its
main advantage is that it does not require the computation of the normalization term as it cancels
out in the probability ratio defining conditional distributions

pθ(Xj |X− j) = pθ(Xj |{Xk : k 6= j}) = pθ(X)

∑x j
pθ(X1, . . . ,Xj−1,Xj = x j ,Xj+1, . . . ,Xm)

.

The MLE and MPLE represent two different ways of resolving the tradeoff between asymptotic
variance and computational complexity. The MLE has low asymptotic variance but high computa-
tional complexity while the MPLE has higher asymptotic variance but low computational complex-
ity. It is desirable to obtain additional estimators realizing alternative resolutions of the accuracy
complexity tradeoff. To this end we define the stochastic composite likelihood whose maximization
provides a family of consistent estimators with statistical accuracy and computational complexity
spanning the entire accuracy-complexity spectrum.

Stochastic composite likelihood generalizes the likelihood and pseudo likelihoodfunctions by
constructing an objective function that is a stochastic sum of likelihood objects. We start by defining
the notion ofm-pairs and likelihood objects and then proceed to stochastic composite likelihood.

Definition 1 An m-pair (A,B) is a pair of sets A,B⊂ {1, . . . ,m} satisfying A6= /0 = A∩B. The

likelihood object associated with an m-pair(A,B) and X is Sθ(A,B)
def
= logpθ(XA|XB) where XS is

defined in(4). The composite log-likelihood function (Lindsay, 1988) is a collection of likelihood
objects defined by a finite sequence of m-pairs(A1,B1), . . . ,(Ak,Bk)

cℓn(θ ;D)
def
=

n

∑
i=1

k

∑
j=1

logpθ(X
(i)
A j
|X(i)

B j
). (6)

There is a certain lack of flexibility associated with the composite likelihood framework as each
likelihood object is either selected or not for the entire sampleX(1), . . . ,X(n). There is no allowance
for some objects to be selected more frequently than others. For example, available computational
resources may allow the computation of the log-likelihood for 20% of the samples, and the pseudo
likelihood for the remaining 80%. In the case of composite likelihood if we selectthe full likelihood
component (or the pseudo likelihood or any other likelihood object) then this component is applied
to all samples indiscriminately.

In SCL, different likelihood objectsSθ(A j ,B j) may be selected for different samples with the
possibility of some likelihood objects being selected for only a small fraction of the data samples.
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The selection may be non-coordinated, in which case each component is selected or not indepen-
dently of the other components. Or it may be coordinated in which case the selection of one com-
ponent depends on the selection of the other ones. For example, we may wish to avoid selecting a
pseudo likelihood component for a certain sampleX(i) if the full likelihood component was already
selected for it.

Another important advantage of stochastic selection is that the discrete parameterization of (6)
defined by the sequence(A1,B1), . . . ,(Ak,Bk) is less convenient for theoretical analysis. Each com-
ponent is either selected or not, turning the problem of optimally selecting components into a hard
combinatorial problem. The stochastic composite likelihood, which is defined below, enjoys contin-
uous parameterization leading to more convenient optimization techniques and convergence analy-
sis.

Definition 2 Consider a finite sequence of m-pairs(A1,B1), . . . ,(Ak,Bk), a data set D= (X(1), . . . ,

X(n)), β∈Rk
+, and n iid, length k, binary random vectors Z(1), . . . ,Z(n) i.i.d.∼ P(Z)with λ j

def
= E(Z j)> 0.

The stochastic composite log-likelihood (SCL) is

scℓn(θ ;D,Z)
def
=

1
n

n

∑
i=1

mθ(X
(i),Z(i)), where

mθ(X,Z)
def
=

k

∑
j=1

β jZ j logpθ(XA j |XB j ), (7)

where, for brevity, we typically omit D,Z in favor of scℓn(θ).

In other words, the SCL is a stochastic extension of (6) where for each sampleX(i), i = 1, . . . ,n, the
likelihood objectsS(A1,B1), . . . ,S(Ak,Bk) are either selected or not, depending on the values of the

binary random variablesZ(i)
1 , . . . ,Z(i)

k and weighted by the constantsβ1, . . . ,βk. Note thatZ(i)
j may

in general depend onZ(i)
r but not onZ(l)

r or onX(i).
When we focus on examining different models forP(Z) we sometimes parameterize it, for

example byλ, that is,Pλ(Z). This reuse ofλ (it is also used in Definition 2) is a notational abuse.
We accept it, however, as in most of the cases that we considerλ1, . . . ,λk from Definition 2 either
form the parameter vector forP(Z) or are part of it. Often we refer to a particularλ as a “policy” in
order to emphasize its role as a “knob” in selecting particularm-pairs.

Some illustrative examples follow.

Independence.FactorizingPλ(Z1, . . . ,Zk) = ∏ j Pλ j
(Z j) leads toZ(i)

j ∼ Ber(λ j) with complete in-

dependence among the indicator variables. For each sampleX(i), each likelihood object
S(A j ,B j) is selected or not independently with probabilityλ j .

Multinomial. A multinomial modelZ ∼Mult(1,λ) implies that for each sampleZ(i) a multivari-
ate Bernoulli experiment is conducted with precisely one likelihood object being selected
depending on the selection probabilitiesλ1, . . . ,λk.

Product of Multinomials. A product of multinomials is formed by a partition of the dimensions to
l disjoint subsets{1, . . . ,m}=C1∪· · ·Cl whereZCi ∼Mult(1,(λ j : j ∈Ci)), that is,

P(Z) =
c

∏
i=1

Pi ({Z j : j ∈Ci}) , wherePi is Mult(1,(λ j : j ∈Cl )).
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Loglinear Models. The distributionP(Z) follows a hierarchical loglinear model (Bishop et al.,
1975). This case subsumes the other cases above.

In analogy to the MLE and the MPLE, the maximum SCL estimator (MSCLE)θ̂msl
n estimates

θ0 by maximizing the SCL function. In contrast to the log-likelihood and pseudo log-likelihood
functions, the SCL function and its maximizer are random variables that depend on the indica-
tor variablesZ(1), . . . ,Z(n) in addition to the dataD. As such, its behavior should be summarized
by examining the limitn→ ∞. Doing so eliminates the dependency on particular realizations of
Z(1), . . . ,Z(n) in favor of the the expected frequenciesλ j = EP(Z)Z j which are non-random con-
stants.

The statistical accuracy and computational complexity of the SCL estimator are continuous
functions of the parameters(β,λ) (component weights and selection probabilities respectively)
which vary continuously throughout their domain(λ,β) ∈ Λ×R

k
+. Choosing appropriate values

of (λ,β) retrieves the special cases of MLE, MPLE, maximum composite likelihood with each se-
lection being associated with a distinct statistical accuracy and computational complexity. The SCL
framework allows selections of many more values of(λ,β) realizing a wide continuous spectrum of
estimators, each resolving the accuracy-complexity tradeoff differently.

We include below a demonstration of the SCL framework in a simple low dimensionalcase. In
the following sections we discuss in detail the statistical behavior of the MSCLEand its computa-
tional complexity. We conclude the paper with several experimental studies.

3.1 Boltzmann Machine Example

Before proceeding we illustrate the SCL framework using a simple example involving a Boltzmann
machine (Hinton and Sejnowski, 1983). Section 8.1 describes the specificsof this model. We con-
sider in detail three SCL policies: full likelihood (FL), pseudo likelihood (PL), and a stochastic
combination of first and second order pseudo likelihood with the first order componentsp(Xi |X−i)
selected with probabilityλ and the second order componentsp(Xi ,Xj |X{i, j}c) selected with proba-
bility 1−λ.

Denoting the number of (binary) graph vertices, or nodes, bym, and the number of examples by
n, the computational complexity of the FL function measured in FLOP2 counts isO

((m
2

)

(2m+n)
)

(for the log-likelihood) andO
((m

2

)2
2m+ n

(m
2

))

for the log-likelihood gradient.3 The exponential
growth inmprevents such computations for large graphs.

Thek-order PL function offers a practical alternative to FL (1-order PL corresponds to the tradi-
tional pseudo likelihood and 2-order PL its analog,p(X{i, j}|X{i, j}c)). The complexity of computing

the corresponding SCL function isO
((m

2

)

(
(m

k

)

2k+n)
)

for the objective function andO
((m

2

)2(m
k

)

2k+
n
(m

2

))

for its gradient. The slower complexity growth of thek-order PL (polynomial inm instead
of exponential) is offset by its reduced statistical accuracy, which we measure using the normalized
asymptotic variance

eff(θ̂n) =
det(Asymp Var(θ̂n))

det(Asymp Var(θ̂ml
n ))

(8)

2. FLOP is the number of FLoating point OPerations.
3. With memoization the complexity of the gradient can be reduced toO

((m
2

)

2m+n
(m

2

))

(at the cost of exponential 2m

storage). Note that this is only a polynomial improvement to an exponentialcomplexity hence we lose no insight by
making naive assumptions.
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which is bounded from below by 1 (due to Cramer Rao lower bound) and its deviation from 1
reflects its inefficiency relative to the MLE.

The MLE thus achieves the best accuracy but it is computationally intractable. The first order
and second order PL have higher asymptotic variance but are easier to compute. The SCL frame-
work enables adding many more estimators filling in the gaps between ML, 1-order PL, 2-order PL,
etc.

We illustrate three SCL functions in the context of a simple Boltzmann machine (fivebinary
nodes, fourteen samplesX(1), . . . ,X(14), θtrue= (−1,−1,−1,−1,−1,1,1,1,1,1)) in Figure 1. The
top box refers to the full likelihood policy, that is, maximum likelihood. For eachof the fourteen
samples, the FL component is computed and their aggregation forms the SCL function which in
this case equals the log-likelihood. The selection of the FL component for each sample is illustrated
using a diamond box. The values under the boxes reflect the FLOP countsneeded to compute the
components and the total complexity associated with computing the entire SCL or log-likelihood is
listed on the right. As mentioned above, the normalized asymptotic variance (8) is1.

The pseudo likelihood function (5) is illustrated in the second box where each row correspond to
one of the five PL components. As each of the five PL component is selectedfor each of the samples
we have diamond boxes covering the entire 5×14 array. The shade of the diamond boxes reflects
the complexity required to compute them enabling an easy comparison to the FL components in the
top of the figure (note how the FL boxes are much darker than the PL boxes). The numbers at the
bottom of each column reflect the FLOP marginal count for each of the fourteen samples and the
numbers to the right of the rows reflect the FLOP marginal count for eachof the PL components.
In this case the FLOP count is less than half the FLOP count of the FL in top box (this reduction in
complexity obtained by replacing FL with PL will increase dramatically for graphs with more than
5 nodes) but the asymptotic variance is 83% higher.4

The third SCL policy reflects a stochastic combination of first and second order pseudo likeli-
hood components. Each first order component is selected with probabilityλ and each second order
component is selected with probability 1−λ. The result is a collection of 5 1-order PL components
and 10 2-order components with only some of them selected for each of the fourteen samples. Again
diamond boxes correspond to selected components which are shaded according to their FLOP com-
plexity. The per-component FLOP marginals and per example FLOP marginalsare listed as the
bottom row and right-most column. The total complexity is somewhere between FLand PL and the
asymptotic variance is reduced from the PL’s 183% to 148%.

Additional insight may be gained at this point by considering Figure 3 which plots several SCL
estimators as points in the plane whosex andy coordinates correspond to normalized asymptotic
variance and computational complexity respectively. We turn at this point to considering the statis-
tical properties of the SCL estimators.

4. Consistency and Asymptotic Variance of̂θmsl
n

A nice property of the SCL framework is enabling mathematical characterization of the statistical
properties of the estimator̂θmsl

n . In this section we examine the conditions for consistency of the
MSCLE and its asymptotic distribution and in the next section we consider robustness. The propo-
sitions below constitute novel generalizations of some well-known results in classical statistics.
Proofs may be found in Appendix A. For simplicity, we assume thatX is discrete andpθ(x)> 0.

4. The asymptotic variance of SCL functions is computed using formulas derived in the next section.
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X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10)X(11)X(12)X(13)X(14) Total

F
L

X1, , . . . ,X5 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 4620
Complexity 330 330 330 330 330 330 330 330 330 330 330 330 330 3304620
Rel. Efficiency 1.00

P
L

X1|X−1 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 308
X2|X−2 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 308
X3|X−3 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 308
X4|X−4 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 308
X5|X−5 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 308
Complexity 110 110 110 110 110 110 110 110 110 110 110 110 110 1101540
Rel. Efficiency 1.83

0.
7P

L+
0.

3P
L2

X1|X−1 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 176
X2|X−2 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 220
X3|X−3 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 220
X4|X−4 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 154
X5|X−5 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 198
X{1,2}|X{1,2}c ⋄ ⋄ ⋄ ⋄ 164
X{1,3}|X{1,3}c ⋄ ⋄ ⋄ ⋄ ⋄ 205
X{1,4}|X{1,4}c ⋄ ⋄ ⋄ ⋄ 164
X{1,5}|X{1,5}c ⋄ ⋄ ⋄ ⋄ 164
X{2,3}|X{2,3}c ⋄ ⋄ ⋄ ⋄ ⋄ 205
X{2,4}|X{2,4}c ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ 287
X{2,5}|X{2,5}c ⋄ ⋄ ⋄ ⋄ 164
X{3,4}|X{3,4}c ⋄ ⋄ 82
X{3,5}|X{3,5}c ⋄ ⋄ ⋄ ⋄ 164
X{4,5}|X{4,5}c ⋄ ⋄ ⋄ ⋄ ⋄ 205
Complexity 208 107 208 167 230 230 293 271 148 230 274 252 66 882772
Rel. Efficiency 1.48

Figure 1: Sample runs of three different SCL policies for 14 examplesX(1), . . . ,X(14) drawn from a
5 binary node Boltzmann machine (θtrue= (−1,−1,−1,−1,−1,1,1,1,1,1)). The poli-
cies are full likelihood (FL, top), pseudo likelihood (PL, middle), and a stochastic combi-
nation of first and second order pseudo likelihood with the first order components selected
with probability 0.7 and the second order components with probability 0.3 (bottom).

The sample runs for the policies are illustrated by placing a diamond box in table entries
corresponding to selected likelihood objects (rows corresponding to likelihood objects
and columns toX(1), . . . ,X(14)). The FLOP counts of each likelihood object determines
the shade of the diamond boxes while the total FLOP counts per example and per like-
lihood objects are displayed as table marginals (bottom row and right column for each
policy). We also display the total FLOP count and the normalized asymptotic variance
(8).

Even in the simple case of 5 nodes, FL is the most complex policy with PL requiringa
third of the FL computation. 0.7PL+0.3PL2 is somewhere in between. The situation is
reversed for the estimation accuracy-FL achieves the lowest possible normalized asymp-
totic variance of 1, PL is almost twice that, and 0.7PL+0.3PL2 somewhere in the middle.
The SCL framework spans the accuracy-complexity spectrum. Choosing the rightλ value
obtains an estimator that suits available computational resources and required accuracy.
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Definition 3 A sequence of m-pairs(A1,B1), . . . ,(Ak,Bk) is m-pair identifiable, or simply identifi-
able, of pθ if the map{pθ(XA j |XB j ) : j = 1, . . . ,k} 7→ pθ(X) is injective. In other words, there exists
only a single collection of conditionals{pθ(XA j |XB j ) : j = 1, . . . ,k} that does not contradict the joint
pθ(X).

Proposition 1 Let Θ ⊂ R
r be an open set, pθ(x) > 0 and continuous and smooth inθ, and

(A1,B1), . . . ,(Ak,Bk) be a sequence of m-pairs for which{(A j ,B j) : ∀ j such thatλ j > 0} ensures
identifiability. Then the sequence of SCL maximizers is strongly consistent, that is,

P
(

lim
n→∞

θ̂n = θ0

)

= 1.

The above proposition indicates that to guarantee consistency, the sequence ofm-pairs needs to
satisfy Definition 3. It can be shown that a selection equivalent to the pseudo likelihood function,
that is,

S = {(A1,B1), . . . ,(Am,Bm)} where Ai = {i},Bi = {1, . . . ,m}\Ai (9)

ensures identifiability and consequently the consistency of the MSCLE estimator. Furthermore,
every selection ofm-pairs that subsumesS in (9) similarly guarantees identifiability and consistency.

The proposition below establishes the asymptotic normality of the MSCLEθ̂n. The asymptotic
variance enables the comparison of SCL functions with different parameterizations(λ,β).

Proposition 2 Making the assumptions of Proposition 1 as well as convexity ofΘ⊂R
r we have the

following convergence in distribution

√
n(θ̂msl

n −θ0) N(0,ϒΣϒ)

where

ϒ−1 =
k

∑
j=1

β jλ jVar θ0(∇Sθ0(A j ,B j)),

Σ = Var θ0

(

k

∑
j=1

β jλ j∇Sθ0(A j ,B j)

)

.

The notationVar θ0(Y) represents the covariance matrix of the random vectorY underpθ0 while the
notations

p→ , in the proof below denote convergences in probability and in distribution (Fergu-
son, 1996).∇ represents the gradient vector with respect toθ.

Whenθ is a vector the asymptotic variance is a matrix. To facilitate comparison between dif-
ferent estimators we follow the convention of using the determinant, and in somecases the trace, to
measure the statistical accuracy. See Chapter 4 of Serfling (1980) for some heuristic arguments for
doing so. Figures 1,2,3 provide the asymptotic variance for some SCL estimators and describe how
it can be used to gain insight into which estimator to use.

The fact that
√

n(θ̂n−θ0) converges in distribution to a Gaussian with zero mean (for the MLE
and similarly for SCL estimators as we show above) implies that the estimator’s asymptotic behav-
ior, up ton−1/2 order, is determined exclusively by the asymptotic variance. That means that the
estimator is essentially unbiased up to that order. Higher order statistical analysis (obtained using
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Taylor series with more terms) show that the bias decays in the faster rate ofn−1 (Cox and Snell,
1968). We thus follow the statistical convention of conducting first order asymptotic analysis and
concentrate on the estimator’s asymptotic variance.

The statistical accuracy of the SCL estimator depends onβ (weight parameters) andλ (selection
parameter). It is thus desirable to use the results in this section in determining what values ofβ,λ to
use. Directly using the asymptotic variance is not possible in practice as it depends on the unknown
quantityθ0. However, it is possible to estimate the asymptotic variance using the training data. We
describe this in Section 7.

5. Robustness of̂θmsl
n

We observed in our experiments (see Section 8) that the SCL estimator sometimesperformed better
on a held-out test set than did the maximum likelihood estimator. This phenomenonseems to be
in contradiction to the fact that the asymptotic variance of the MLE is lower than that of the SCL
maximizer. This is explained by the fact that in some cases the true model generating the data
does not lie within the parametric family{pθ : θ ∈ Θ} under consideration. For example, many
graphical models (HMM, CRF, LDA, etc.) make conditional independence assumptions that are
often violated in practice. In such cases the SCL estimator acts as a regularizer achieving better
test set performance than the non-regularized MLE. We provide below atheoretical account of this
phenomenon using the language ofm-estimators and statistical robustness. Our notation follows the
one in van der Vaart (1998).

We assume that the model generating the data is outside the model familyP(X) 6∈ {pθ : θ ∈ Θ}
and we extend the notation ofmθ(X,Z) in (7) with,

ψθ(X,Z)
def
= ∇mθ(X,Z),

ψ̇θ(X,Z)
def
= ∇2mθ(X,Z), and

Ψn(θ)
def
=

1
n

n

∑
i=1

ψθ(X
(i),Z(i)),

noting thatψ̇θ(X,Z) is a matrix of second order derivatives.
Proposition 3 below generalizes the consistency result by asserting thatθ̂n→ θ0 whereθ0 is the

point on{pθ : θ ∈Θ} that is closest to the true modelP, as defined by

θ0 = argmax
θ∈Θ

M(θ) where M(θ) def
= −

k

∑
j=1

β jλ jD(P(XA j |XB j )||pθ(XA j |XB j )),

or equivalently,θ0 satisfies

EP(X)EP(Z)ψθ0(X,Z) = 0.

When the SCL function reverts to the log-likelihood function,θ0 becomes the KL projection of the
true modelP onto the parametric family{pθ : θ ∈ Θ}.

Proposition 3 Assuming the conditions in Proposition 1 as well assupθ:‖θ−θ0‖≥ε M(θ)< M(θ0) for

all ε > 0 we havêθmsl
n → θ0 as n→ ∞ with probability 1.
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The added condition maintains thatθ0 is a well separated maximum point ofM. In other words
it asserts that only values close toθ0 may yield a value ofM that is close to the maximumM(θ0).
This condition is satisfied in the case of most exponential family models.

Proposition 4 Assuming the conditions of Proposition 2 as well asEP(X)EP(Z)‖ψθ0(X,Z)‖2 < ∞,
EP(X)EP(Z)ψ̇θ0(X) exists and is non-singular,|Ψ̈i j | = |∂2ψθ(x)/∂θiθ j | < g(x) for all i , j and θ in a
neighborhood ofθ0 for some integrable g, we have

√
n(θ̂n−θ0) =−(EP(X)EP(Z)ψ̇θ0)

−1 1√
n

n

∑
i=1

ψθ0(X
(i),Z(i))+oP(1) (10)

or equivalently

θ̂n = θ0− (EP(X)EP(Z)ψ̇θ0)
−11

n

n

∑
i=1

ψθ0(X
(i),Z(i))+oP

(

1√
n

)

. (11)

Above, fn = oP(gn) meansfn/gn converges to 0 with probability 1.

Corollary 1 Assuming the conditions specified in Proposition 4 we have

√
n(θ̂n−θ0) N(0,(EP(X)EP(Z)ψ̇θ0)

−1(EP(X)EP(Z)ψθ0ψ⊤θ0
)(EP(X)EP(Z)ψ̇θ0)

−1). (12)

Equation (11) means that asymptotically,θ̂n behaves asθ0 plus the average of iid RVs. As
mentioned in van der Vaart (1998) this fact may be used to obtain a convenient expression for the
asymptotic influence function, which measures the effect of adding a new observation to an existing
large data set. Neglecting the remainder in (10) we have

I (x,z)
def
= θ̂n(X

(1), . . . ,X(n−1),x,Z(1), . . . ,Z(n−1),z)− θ̂n−1(X
(1), . . . ,X(n−1),Z(1), . . . ,Z(n−1))

≈−(EP(X)EP(Z)ψ̇θ0)
−1

(

1
n

n−1

∑
i=1

ψθ0(X
(i),Z(i))+

1
n

ψθ0(w,z)−
1

n−1

n−1

∑
i=1

ψθ0(X
(i),Z(i))

)

=−(EP(X)EP(Z)ψ̇θ0)
−11

n
ψθ0(w,z)+(EP(X)EP(Z)ψ̇θ0)

−1 1
n(n−1)

n−1

∑
i=1

ψθ0(X
(i),Z(i))

=−1
n
(EP(X)EP(Z)ψ̇θ0)

−1ψθ0(w,z)+oP

(

1
n

)

. (13)

Corollary 1 and Equation (13) measure the statistical behavior of the estimatorwhen the true
distribution is outside the model family. In these cases it is possible that a computationally effi-
cient SCL maximizer will result in higher statistical accuracy as well. This “win-win” situation
of improving in both accuracy and complexity over the MLE is confirmed by ourexperiments in
Section 8.

We finally note that the above analysis is not limited to misspecified models. For example, the
influence function may be used to detect the robustness ofθ̂n to outliers or rare events (it is desirable
to be robust to such occurrences even if the model is not misspecified).
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6. Stochastic Composite Likelihood for Markov Random Fields

Markov random fields (MRF) are some of the more popular statistical models for complex high
dimensional data. Approaches based on pseudo likelihood and composite likelihood are naturally
well-suited in this case due to the cancellation of the normalization term in the probability ratios
defining conditional distributions. More specifically, a MRF with respect to agraphG = (V,E),
V = {1, . . . ,m} with a clique setC is given by the following exponential family model

pθ(x) = exp

(

∑
C∈C

θC fC(xC)− logZ(θ)

)

,

Z(θ) = ∑
x

exp

(

∑
C∈C

θc fC(xC)

)

. (14)

The primary bottlenecks in obtaining the maximum likelihood are the computations logZ(θ) and
∇ logZ(θ). Their computational complexity is exponential in the graph’s treewidth and for many
cyclic graphs, such as the Ising model or the Boltzmann machine, it is exponential in |V|= m.

In contrast, the conditional distributions that form the composite likelihood of (14) are given by
(note the cancellation ofZ(θ))

pθ(xA|xB) =

∑
x′(A∪B)c

exp
(

∑C∈C θC fC((xA,xB,x′(A∪B)c)C)
)

∑
x′(A∪B)c

∑
x′′A

exp

(

∑
C∈C

θC fC((x′′A,xB,x′(A∪B)c)C)

) . (15)

whose computation is substantially faster. Specifically, The computation of (15) depends on the size
of the setsA and(A∪B)c and their intersections with the cliques inC . In general, selecting small
|A j | andB j = (A j)

c leads to efficient computation of the composite likelihood and its gradient. For
example, in the case of|A j | = l , |B j | = m− l with l ≪m we have thatk≤m!/(l !(m− l)!) and the
complexity of computing thecℓ(θ) function and its gradient may be shown to require time that is at
most exponential inl and polynomial inm.

7. Automatic Selection ofβ

As Proposition 2 indicates, the weight vectorβ and selection probabilitiesλ play an important role
in the statistical accuracy of the estimator through its asymptotic variance. The computational com-
plexity, on the other hand, is determined byλ independently ofβ. Conceptually, we are interested in
resolving the accuracy-complexity tradeoff jointly for bothβ,λ before estimatingθ by maximizing
the SCL function. However, since the computational complexity depends onlyon λ we propose the
following simplified problem: Selectλ based on available computational resources, and then given
λ, select theβ (andθ) that will achieve optimal statistical accuracy.

Selectingβ that minimizes the asymptotic variance is somewhat ambiguous asϒΣϒ in Proposi-
tion 2 is anr× r positive semidefinite matrix. A common solution is to consider the determinant as
a one dimensional measure of the size of the variance matrix,5 and minimize

J(β) = logdet(ϒΣϒ) = logdetΣ+2logdetϒ. (16)

5. See Chapter 4 of Serfling (1980) for a heuristic discussion motivatingthis measure.
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A major complication with selectingβ based on the optimization of (16) is that it depends on
the true parameter valueθ0 which is not known at training time. This may be resolved, however,
by noting that (16) is composed of covariance matrices underθ0 which may be estimated using
empirical covariances over the training set. To facilitate fast computation of the optimalβ we also
propose to replace the determinant in (16) with the product of the diagonalelements. Such an
approximation is motivated by Hadamard’s inequality (which states that for symmetric matrices
det(M)≤∏i Mii ) and by Geřsgorin’s circle theorem (see below). This approximation works well in
practice as we observe in the experiments section. We also note that the procedure described below
involves only simple statistics that may be computed on the fly and does not contribute significant
additional computation (nor do they require significant memory).

More specifically, we denoteK(i j ) = Cov θ0(∇Sθ0(Ai ,Bi),∇Sθ0(A j ,B j)) with entriesK(i j )
st , and

approximate the logdet terms in (16) using

logdetϒ =− logdet
k

∑
j=1

β jλ jK
( j j ) ≈−

r

∑
l=1

log
k

∑
j=1

β jλ jK
( j j )
ll

logdetΣ = logdetVar θ0

(

k

∑
j=1

β jλ j∇Sθ0(A j ,B j)

)

= logdet
k

∑
i=1

k

∑
j=1

βiλiβ jλ jK
(i j )

≈
r

∑
l=1

log
k

∑
i=1

k

∑
j=1

βiλiβ jλ jK
(i j )
ll .

We denote (assumingA is a n× n matrix) for i ∈ {1, . . . ,n}, Ri(A) = ∑ j 6=i

∣

∣Ai j
∣

∣ and let
D(Aii ,Ri(A)) (Di where unambiguous) be the closed disc centered atAii with radiusRi(A). Such a
disc is called a Geršgorin disc. The result below states that for matrices that are close to diagonal,
the eigenvalues are close to the diagonal elements making our approximation accurate.

Theorem 1 (Geřsgorin’s circle theorem, for example, Horn and Johnson, 1990)Every eigen-
value of A lies within at least one of the Geršgorin discs D(Aii ,Ri(A)). Furthermore, if the union of
k discs is disjoint from the union of the remaining n−k discs, then the former union contains exactly
k and the latter n−k eigenvalues of A.

Algorithm 1 solves forθ,β jointly using alternating optimization. The second optimization
problemJ(β; ·) is done using the approximation above and may be computed with minimal addi-
tional computation. The components of this objective are typically freely available whenscℓ is
minimized with Newton-type methods. In practice we found that such an approach leads to a selec-
tion of β that is close to optimal, despite loose convergence criteria for the minimization of the scℓ
objective (see Sec. 8.3 and Figures 14, 20 for results).

8. Experiments

We demonstrate the asymptotic properties ofθ̂msl
n and explore the complexity-accuracy tradeoff for

three different models-Boltzmann machine, linear Boltzmann MRF and conditional random fields.
In terms of data sets, we consider synthetic data as well as data sets from sentiment prediction and
text chunking domains.

In Appendix B we list all figures by subject. The basic road-map is to explore SCL for a theoret-
ical Boltzmann machine and then to explore two data sets using both generativeand discriminative
models. We also demonstrate the effectiveness of theβ heuristic for these experiments.
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Algorithm 1 Calculateθ̂msl

Require: {Xi}i∈I andλ, β(0)

1: t← 1
2: while t < MAXITS do
3: θ(t)← argminscℓ(θ;{Xi}i∈I ,λ,β(t−1))
4: if convergedthen
5: return θ
6: end if
7: β(t)← argminJ(β;{K(i j )}(i, j)∈J,λ,θ)
8: t← t +1
9: end while

10: return false

8.1 Toy Example: Boltzmann Machines

We illustrate the improvement in asymptotic variance of the MSCLE associated with adding higher
order Boltzmann machine likelihood components with increasingly higher probability. The Boltz-
mann machine can be parameterized as,

pθ(x) = exp

(

∑
i< j

θi j xix j − logψ(θ)

)

, x∈ {0,1}m.

To be able to accurately compute the asymptotic variance we usem= 5 with θ being a
(5

2

)

dimen-
sional vector with half the components+1 and half−1. Since the asymptotic variance ofθ̂msl

n is a
matrix we summarize its size using either its trace or determinant.

Figure 2 displays the asymptotic variance, relative to the minimal variance of theMLE, for the
cases of full likelihood (FL), pseudo likelihood (|A j | = 1) PL1, stochastic combination of pseudo
likelihood and 2nd order pseudo likelihood (|A j | = 2) componentsλPL2+(1−λ)PL1, stochastic
combination of 2nd order pseudo likelihood and 3rd order pseudo likelihood(|A j |= 3) components
λPL3+(1−λ)PL2, and stochastic combination of 3rd order pseudo likelihood and 4th order pseudo
likelihood (|A j |= 4) componentsλPL4+(1−λ)PL3.

The graph demonstrates the computation-accuracy tradeoff as follows: (a) pseudo likelihood is
the fastest but also the least accurate, (b) full likelihood is the slowest but the most accurate, (c)
adding higher order components reduces the asymptotic variance but alsorequires more computa-
tion, (d) the variance reduces with the increase in the selection probabilityλ of the higher order
component, and (e) adding 4th order components brings the variance very close the lower limit and
with each successive improvement becoming smaller and smaller according to alaw of diminishing
returns.

Figure 3 displays the asymptotic accuracy and complexity for different SCLpolicies form= 9
binary valued vertices of a Boltzmann machine. We explore three polices in which we denote pseudo
likelihood components of size, or order,k. These policies include:λ1β1PL1+ λ2(1− β1)PL2,
λ1β1PL1+λ2(1−β1)PL3,λ1β1PL2+λ2(1−β1)PL3 (for multiple values ofλ1,λ2,β1). By taking
different linear combinations of various sized pseudo likelihood components, we span a continuous
spectrum of accuracy-complexity resolutions. The lower part of the diagram is the boundary of the
achievable region (the optimal but unachievable place is the bottom left corner). SCL policies that
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Figure 2: Asymptotic variance matrix, as measured by trace (left) and determinant (right), as a
function of the selection probabilities for different stochastic versions ofthe SCL func-
tion.

lie to the right and top of that boundary may be improved by selecting a policy below and to the left
of it.

8.2 Local Sentiment Prediction

Our first real world data set experiment involves local sentiment prediction using a conditional MRF
model. The data set consisted of 249 movie review documents having an average of 30.5 sentences
each with an average of 12.3 words from a 12633 word vocabulary. Each sentence was manually
labeled as one of five sentimental designations: very negative, negative, objective, positive, or very
positive. As described in Mao and Lebanon (2007) (where more information may be found) we
considered the task of predicting the local sentiment flow within these documents using regularized
conditional random fields (CRFs) (see Figure 4 for a graphical diagram of the model in the case of
four sentences).

As is common practice, we curtail overfitting through aL2 regularizer, exp{−(2nσ2)−1||θ||22},
which is strong whenσ2 is small and weak whenσ2 is large. We considerσ2 a hyper-parameter and
select it through cross-validation, unless noted otherwise.

Figure 5 shows the contour plots of train and test log-likelihood as a functionof the SCL param-
eters: weightβ and selection probabilityλ. The likelihood components were mixtures of full and
pseudo (|A j |= 1) likelihood (rows 1,3) and pseudo and 2nd order pseudo(|A j |= 2) likelihood (rows
2,4). A j identifies a set of labels corresponding to adjacent sentences over which the probabilistic
query is evaluated. Results were averaged over 100 cross validation iterations with 50% train-test
split. We used BFGS quasi-Newton method for maximizing the regularized SCL functions. The
figure demonstrates how the train log-likelihood increases with increasing theweight and selection
probability of full likelihood in rows 1,3 and of 2nd order pseudo likelihood inrows 2,4. This
increase in train log-likelihood is also correlated with an increase in computational complexity as
higher order likelihood components require more computation. Note however, that the test set be-
havior in the third and fourth rows shows an improvement in prediction accuracy associated with
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Figure 3: Computation-accuracy diagram for three SCL families:λ1β1PL1+ λ2(1− β1)PL2,
λ1β1PL1+λ2(1−β1)PL3, λ1β1PL2+λ2(1−β1)PL3 (for multiple values ofλ1,λ2,β1)
for the Boltzmann machine with 9 binary nodes. The pure policies PL1 and PL2are in-
dicated by black circles and the computational complexity of the full likelihood indicated
by a dashed line (corresponding normalized asymptotic variance is 1). ThePL3 pure pol-
icy is beyond the scale of the diagram. As the graph size increases, the computational cost
increases dramatically, in particular for the full likelihood policy and to a lesser extent for
the pseudo likelihood policy.

decreasing the influence of full likelihood in favor of pseudo likelihood. The fact that this happens
for (relatively) weak regularization,σ2 = 10, and indicates that lower order pseudo likelihood has a
regularization effect which improves prediction accuracy when the modelis not regularized enough.
We have encountered this phenomenon in other experiments as well and we will discuss it further
in the following subsections.

Figure 6 displays the complexity and negative log-likelihoods (left:train, right:test) of differ-
ent SCL estimators, sweeping throughλ andβ, as points in a two dimensional space. The shaded
area near the origin is unachievable as no SCL estimator can achieve high accuracy and low com-
putation at the same time. The optimal location in this 2D plane is the curved boundary of the
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B jk

y4

x4

Figure 4: Graphical representation of a four token conditional randomfield (CRF).A, B are weight
matrices and represent state-to-state transitions and state-to-observationoutputs. Shad-
ing indicates the variable is conditioned upon while no shading indicates the variable is
generated by the model.

achievable region with the exact position on that boundary depending on the required solution of
the computation-accuracy tradeoff.

8.3 Text Chunking

This experiment consists of using sequential MRFs to divide sentences into“text chunks,” that is,
syntactically correlated sub-sequences, such as noun and verb phrases. Chunking is a crucial step
towards full parsing. For example,6 the sentence:

He reckons the current account deficit will narrow to only # 1.8 billion in September.

could be divided as:

[NP He ] [VP reckons] [NP the current account deficit] [VP will narrow ] [PP to ] [NP only #
1.8 billion ] [PP in ] [NP September].

where NP, VP, and PP indicate noun phrase, verb phrase, and prepositional phrase.
We used the publicly available CoNLL-2000 shared task data set. It consists of labeled partitions

of a subset of the Wall Street Journal (WSJ) corpus. Our training setsconsisted of sampling 100
sentences without replacement from the the CoNLL-2000 training set (211,727 tokens from WSJ
Sections 15-18). The test set was the same as the CoNLL-2000 testing partition (47,377 tokens
from WSJ Section 20). Each of the possible 21,589 tokens, that is, words, numbers, punctuation,
etc., are tagged by one of 11 chunk types and an O label indicating the tokenis not part of any
chunk. Chunk labels are prepended with flags indicating that the token begins (B-) or is inside (I-)
the phrase. Figure 7 lists all labels and respective frequencies. In addition to labeled tokens, the
data set contains a part-of-speech (POS) column. These tags were automatically generated by the
Brill tagger and must be incorporated into any model/feature set accordingly.

In the following, we explore this task using various SCL selection policies on two related, but
fundamentally different sequential MRFs: Boltzmann chain MRFs and CRFs.

8.3.1 BOLTZMANN CHAIN MRF

Boltzmann chains are a generative MRF that are closely related to hidden Markov models (HMM).
See MacKay (1996) for a discussion on the relationship between Boltzmannchain MRFs and

6. Taken from the CoNLL-2000 shared task,http://www.cnts.ua.ac.be/conll2000/chunking/.
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Figure 5: Train (left column) and test (right column) neg. log-likelihood contours for maximum
SCL estimators for the CRF model.L2 regularization, exp{−(2nσ2)−1||θ||22}, parame-
ters areσ2 = 1 (rows 1,2) andσ2 = 10 (rows 3,4). Rows 1,3 are stochastic mixtures of
full (FL) and pseudo (PL1) log-likelihood components while rows 2,4 are PL1 and 2nd
order pseudo (PL2). Note that weaker regularization resulted in higheraccuracy at lower
computation.
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Figure 6: Scatter plot representing complexity and negative log-likelihood (left:train, right:test) of
SCL functions for CRFs with L2 regularization parameterσ2 = 1/2. The points represent
different stochastic combinations of full and pseudo likelihood components. The shaded
region represents impossible accuracy/complexity demands. Since the boundary of the
obtainable region is empirical, the optimal beta always lies on this boundary. Byvarying
λ,β we are able to smoothly span complexity (wall seconds) and accuracy.
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HMMs. We consider SCL components of the formp(X2,Y2|Y1,Y3), p(X2,X3,Y2,Y3|Y1,Y4) which
we refer to as first and second order pseudo likelihood (with higher order components generalizing
in a straightforward manner).

y0 y1

x1

y2

x2

y3
Ai j

x3

B jk

y4

x4

Figure 8: Graphical representation of a four token Boltzmann chain.A, B are weight matrices and
represent preference in particular state-to-state transitions and state-to-feature emissions.
Only the start state is conditioned upon while all others are generative.

The nature of the Boltzmann chain constrains our feature set to only encode the particular token
present at each position, or time index. In doing so we avoid having to modeladditional depen-
dencies across time steps and dramatically reduce computational complexity. Although SCL is
precisely motivated by high treewidth graphs, we wish to include the full likelihood for demonstra-
tive purposes—in practice, this is often not possible. Although POS tags are available we do not
include them in these features since the dependence they share on neighboring tokens and other
POS tags is unclear. For these reasons our time-sliced feature vector,xi , has only a single-entry one
and cardinality matching the size of the vocabulary (21,589 tokens).

As in Section 8.2, we control overfitting through aL2 regularizer, exp{−(2nσ2)−1||θ||22}, which
is strong whenσ2 is small and weak whenσ2 is large. Here again we chooseσ2 via cross-validation
unless otherwise noted. More often though, we show results for several representativeσ2 to demon-
strate the roles ofλ andβ in θ̂msl

n .
Figures 9 and 10 depict train and test negative log-likelihood, that is, perplexity, for the SCL

estimator̂θmsl
100 with a pseudo/full likelihood selection policy (PL1/FL). As is our convention,weight

β and selection probabilityλ correspond to the higher order component, in this case full likelihood.
The lower order pseudo likelihood component is always selected and hasweight 1−β. As expected
the test set perplexity dominates the train-set perplexity. As was the situation inSec. 8.2, we note
that the lower order component serves to regularize the full likelihood, asevident by the abnormally
largeσ2.

We next demonstrate the effect of using a 1st order/2nd order pseudolikelihood selection policy
(PL1/PL2). Recall, our notion of pseudo likelihood never entails conditioning on x, although in
principle it could. Figures 11 and 12 show how the policy responds to varying both λ and β.
Figure 13 depicts the empirical tradeoff between accuracy and complexity.Figure 14 highlights the
effectiveness of theβ heuristic. See captions for additional comments.

8.3.2 CRFS

Conditional random fields are the discriminative counterpart of Boltzmann chains (cf. Figures 4 and
8). Sincex is not jointly modeled withy, we are free to include features with non-independence
across time steps without significantly increasing the computational complexity. Here our notion of
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Figure 9: Train set (top) and test set (bottom) negative log-likelihood (perplexity) for the Boltz-
mann chain MRF with pseudo/full likelihood selection policy (PL1/FL). The x-axis, β,
corresponds to relative weight placed on FL and and the y-axis,λ, corresponds to the
probability of selecting FL. PL1 is selected with probability 1 and weight 1− β. Con-
tours and labels are fixed across columns. Results averaged over several cross-validation
folds, that is, resampling both the train set and the PL1/FL policy. Columns from left to
right correspond to weaker regularization,σ2 = {500,2500,5000}. The best achievable
test set perplexity is about 190.

Unsurprisingly the test set perplexity dominates the train set perplexity at each σ2 (col-
umn). For a desired level of accuracy (contour) there exists a computationally favorable
regularizer. Hencêθmsl

n acts as both a regularizer and mechanism for controlling accuracy
and complexity.

pseudo likelihood is more traditional, for example,p(Y2|Y1,Y,3,X2) andp(Y2,Y3|Y1,Y,4,X2,X3) are
valid 1st and 2nd order pseudo likelihood components.

We employ a subset of the features outlined in Sha and Pereira (2003) which proved competitive
for the CoNLL-2000 shared task. Our feature vector was based on seven feature categories, resulting
in a total of 273,571 binary features (i.e.,∑i fi(xt) = 7). The feature categories consisted of word
unigrams, POS unigrams, word bigrams (forward and backward), and POS bigrams (forward and
backward) as well as a stopword indicator (and its complement) as defined by Lewis et al. (2004).
The set of possible feature/label pairs is much larger than our set—we useonly those features
supported by the CoNLL-2000 data set, that is, those which occur at least once. Thus we modeled
297,041 feature/label pairs and 847 transitions for a total of 297,888 parameters. As before, we use
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Figure 10: Train set and test set perplexities for the Boltzmann chain MRF with PL1/FL selection
policy (see above layout description). The x-axis is againβ and the y-axis perplexity.
Lighter shading indicates FL is selected with increasing frequency. Note thatas the
regularizer is weakened the range in perplexity spanned byλ increases and the lower
bound decreases. This indicates that the approximating power ofθ̂msl

n increases when
unencumbered by the regularizer and highlights its secondary role as a regularizer.

the L2 regularizer, exp{−(2σ2)−1||θ||22}, which is strong whenσ2 is small and weak whenσ2 is
large.

We demonstrate learning on two selection policies: pseudo/full likelihood (Figures 15 and 16)
and 1st/2nd order pseudo likelihood (Figures 17 and 18). In both selection polices we note a sig-
nificant difference from the Boltzmann chain,β has less impact on both train and test perplexity.
Intuitively, this seems reasonable as the component likelihood range and variance are constrained by
the conditional nature of CRFs. Figure 19 demonstrates the empirical accuracy/complexity tradeoff
and Figure 20 depicts the effectiveness of theβ heuristic. See captions for further comments.

8.4 Complexity/Regularization Win-Win

It is interesting to contrast the test log-likelihood behavior in the case of mild and strongerL2

regularization. In the case of weaker or no regularization, the test log-likelihood shows different
behavior than the train log-likelihood. Adding a lower order component such as pseudo likelihood
acts as a regularizer that prevents overfitting. Thus, in cases that are prone to overfitting reducing
higher order likelihood components improves both performance as well as complexity. This repre-
sents a win-win situation in contrast to the classical view where the MLE has thelowest variance
and adding lower order components reduces complexity but increases thevariance.
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Figure 11: Train set (top) and test set (bottom) perplexity for the Boltzmannchain MRF with
1st/2nd order pseudo likelihood selection policy (PL1/PL2). The x-axis corresponds
to PL2 weight and the y-axis the probability of its selection. PL1 is selected with
probability 1 and weight 1− β. Columns from left to right correspond toσ2 =
{5000,10000,15000}. See Figure 9 for more details. The best achievable test set per-
plexity is about 189.5.

In comparing these results to PL1/FL, we note that the test set contours exhibit less per-
plexity for larger areas. In particular, perplexity is lower at smallerλ values, meaning a
computational saving over PL1/FL at a given level of accuracy.

In Figure 5 we note this phenomenon when comparingσ2 = 1 to σ2 = 10 across the selection
policies PL1/FL and PL1/PL2. That is, the weaker regularization and more restrictive selection
policy, that is, PL1/PL2, is able to achieve comparable test set perplexity.

For the text chunking experiments, we observe a striking win-win when using the Boltzmann
chain MRF, Figures 9 and 11. Notice that as regularization is decreased (comparing from left to
right), the contours are pulled closer to the x-axis. This means that we are achieving the same
perplexity at reduced levels of computational complexity. The CRF however, only exhibits the
win-win to a minor extent. We delve deeper into why this is might be the case in the following
section.

8.5 λ, σ2 Interplay

Throughout these experiments we fixedσ2 and either swept over(λ,β) or used the heuristic to
evaluate(λ,β(λ)). Motivated by the sometimes weak win-win (cf. Section 8.4) we now consider
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Figure 12: Train (top) and test (bottom) perplexities for the Boltzmann chain MRF with PL1/PL2
selection policy (x-axis:PL2 weight, y-axis:perplexity; see above and previous).

PL1/PL2 outperforms PL1/FL (Fig. 10) test perplexity despite PL1/FL including FL as a
special case (i.e.,(λ,β) = (1,1)). We speculate that the regularizer’s indirect connection
to the training samples precludes it from preventing certain types of overfitting. See
Sec. 8.4 for more discussion.

how the optimalσ2 changes as a function ofλ. In Figure 21 we used theβ heuristic to evaluate
train and test perplexity over a(λ,σ2) grid. We used CRFs and the text chunking task as outlined in
Section 8.3.2.

For the PL1/FL policy, we observe that for small enoughλ the optimalσ2, that is, theσ2 with
smallest test perplexity, has considerable range. At some point there areenough samples of the
higher-order component to stabilize the choice of regularizer, noting thatit is still weaker than the
optimal full likelihood regularizer. Conversely, the PL1/PL2 regularizer has an essentially constant
optimal regularizer which is relatively much weaker.

As a result, we believe that the lack of win-win for the chunking CRF follows from two effects.
In the case of the PL1/FL policy the contour plots are misleading since there is no singleσ2 that
performs well across allλ ∈ [0,1]. For the PL1/PL2 there is simply little change in regularization
necessary acrossλ.

9. Discussion

The proposed estimator family facilitates computationally efficient estimation in complex graphical
models. In particular, different(β,λ) parameterizations of the stochastic composite likelihood en-
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Figure 13: Accuracy and complexity tradeoff for the Boltzmann chain MRF with PL1/FL (left) and
PL1/PL2 (right) selection policies. Each point represents the negative log-likelihood
(perplexity) and the number of flops required to evaluate the composite likelihood and
its gradient under a particular instantiation of the selection policy. The shaded region
is the convex hull of the points and represents empirically unobtainable combinations
of computational complexity and accuracy. Particularly interesting is the difference
between policies and against the discriminative CRF, cf. Figure 19.

ables the resolution of the complexity-accuracy tradeoff in a domain and problem specific manner.
The framework is generally suited for Markov random fields, including conditional graphical mod-
els and is theoretically motivated. When the model is prone to overfit, stochastically mixing lower
order components with higher order ones acts as a regularizer and results in a win-win situation of
improving test-set accuracy and reducing computational complexity at the same time.

It is interesting to note that the SCL framework may be generalized to randomm-estimators
beyond likelihood objects. That is, instead of a fixedm-function we may consider a linear combi-
nation of stochastic objects (appearing or not with some probability). Such estimators go beyond
traditionalm-estimator but may be analyzed using techniques similar to the ones developed inthis
paper. Although not a randomm-estimator, the work of Dillon et al. (2010) borrows SCL concepts
to facilitate budgeted semi-supervised learning. This too would benefit froma randomm-estimator
interpretation and indeed many machine learning tasks may fit nicely into such a framework.

The SCL framework may be useful for a wide variety of intractable graphical models. Besides
the examples presented here, it may be particularly suited for large scale models from statistical
physics, exponential random graph models, and models from computational biology. A particularly
nice feature is that the above computation may be trivially parallelized thus leading to effective
computation on large clusters and cloud computing.
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Figure 14: Demonstration of the effectiveness of theβ heuristic, that is, usinĝθmsl as a plug-in
estimate forθ0 to periodically re-estimateβ during gradient descent. Results are for
the Boltzmann chain with PL1/FL (top) and PL1/PL2 (bottom) selection policies. The
x-axis is the value at the heuristically foundβ and the y-axis the value at the optimalβ.
The optimalβ was found by evaluating over aβ grid and choosing that with the smallest
train set perplexity. The first column depicts the best performingβ against the heuristic
β. The second and third columns depict the training and testing perplexities (resp.) at
the best performingβ and heuristically foundβ. For all three columns, we assess the
effectiveness of the heuristic by its nearness to the diagonal (dashed line).

For the PL1/PL2 policy the heuristic closely matched the optimal (all bottom row points
are on diagonal). The heuristic out-performed the optimal on the test set and had slightly
higher perplexity on the training set. It is a positive result, albeit somewhat surprising,
and is attributable to either coarseness in the grid or improved generalization by account-
ing for variability in θ̂msl.
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Figure 15: Train set (top) and test set (bottom) perplexity for the CRF with pseudo/full likelihood
selection policy (PL1/FL). The x-axis corresponds to FL weight and the y-axis the prob-
ability of its selection. PL1 is selected with probability 1 and weight 1−β. Columns
from left to right correspond toσ2 = {100,1000,5000}. See Figure 9 for more details.
The best achievable test set perplexity is about 5.5.

Although we cannot directly compare CRFs to its generative counterpart, we observe
some strikingly different trends. It is immediately clear that the CRF is less sensitive
to the relative weighting of components than is the Boltzmann chain. This is partially
attributable to a smaller range of the objective—the CRF is already conditional hence
the per-component perplexity range is reduced.

Appendix A. Proofs

The proofs below generalize the classical consistency and asymptotic efficiency of the MLE (Fer-
guson, 1996) and the corresponding results form-estimators (van der Vaart, 1998). They follow
similar lines as the proofs in Ferguson (1996) and van der Vaart (1998), with the necessary modifi-
cations due to the stochasticity of the SCL function. We assume below thatpθ(X)> 0 and thatX is
a discrete and finite RV.

The following lemma generalizes Shannon’s inequality (Cover and Thomas, 2005) for the KL
divergence. We will use it to prove consistency of the SCL estimator.
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Figure 16: Train (top) and test (bottom) perplexities for a CRF with PL1/FL selection policy (x-
axis:FL weight, y-axis:perplexity; see above and Fig. 10).

Perhaps more evidently here than above, we note that the significance of aparticular
β is less than that of the Boltzmann chain. However, for large enoughσ2, the optimal
β 6= 1. This indicates the dual role of PL1 as a regularizer. Moreover, the left panel calls
attention to the interplay betweenβ, λ, andσ2. See Sec. 8.5 for more discussion.

Lemma 1 Let(A1,B1), . . . ,(Ak,Bk) be a sequence of m-pairs that ensures identifiability of pθ,θ∈Θ
andα1, . . . ,αk positive constants. Then

k

∑
j=1

αk D(pθ(XA j |XB j ) || pθ′(XA j |XB j ))≥ 0

where equality holds iffθ = θ′.

Proof The inequality follows from applying Jensen’s inequality for each conditional KL divergence

−D(pθ(XA j |XB j ) || pθ′(XA j |XB j )) = E pθ log
pθ′(XA j |XB j )

pθ(XA j |XB j )
≤ logEpθ

pθ′(XA j |XB j )

pθ(XA j |XB j )

= log1= 0.

For equality to hold we need each term to be 0 which follows only ifpθ(XA j |XB j ) ≡ pθ′(XA j |XB j )
for all j which, assuming identifiability, holds iffθ = θ′.
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Figure 17: Train set (top) and test set (bottom) perplexity for a CRF with 1st/2nd order pseudo
likelihood selection policy (PL1/PL2). The x-axis,β, represents the relative weight
placed on PL2 and the y-axis,λ, the probability of selecting PL2. PL1 is selected with
probability 1. Columns from left to right correspond to weaker regularization, σ2 =
{10000,20000,40000}. See Figure 15 for more details.

Proposition 5 Let Θ ⊂ R
r be an open set, pθ(x) > 0 and continuous and smooth inθ, and

(A1,B1), . . . ,(Ak,Bk) be a sequence of m-pairs for which{(A j ,B j) : ∀ j such thatλ j > 0} ensures
identifiability. Then the sequence of SCL maximizers is strongly consistent, that is,

P
(

lim
n→∞

θ̂n = θ0

)

= 1.

Proof The SCL function, modified slightly by a linear combination with a term that is constant in
θ is

scℓ′(θ) =
1
n

n

∑
i=1

k

∑
j=1

β j

(

Zi j logpθ(X
(i)
A j
|X(i)

B j
)−λ j logpθ0(X

(i)
A j
|X(i)

B j
)
)

.

By the strong law of large numbers, the above expression converges asn→ ∞ to its expectation

µ(θ) =−
k

∑
j=1

β jλ j D(pθ0(XA j |XB j ) || pθ(XA j |XB j )).

If we restrict ourselves to the compact setS= {θ : c1≤ ‖θ−θ0‖ ≤ c2} then

sup
θ∈S

sup
Z

∣

∣

∣

k

∑
j=1

Z jβ j logpθ(XA j |XB j )−λ jβ j logpθ0(XA j |XB j )
∣

∣

∣
< K(x)< ∞
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Figure 18: Train (top) and test (bottom) perplexities for a CRF with PL1/PL2 selection policy (x-
axis:PL2 weight, y-axis:perplexity; see above and Fig. 10).

Although increasingλ only brings minor improvement to both the training and testing
perplexities, it is worth noting that the test perplexity meets that of the PL1/FL. Still
though, the overall lack of resolution here suggests that smaller values ofλ would better
span a range of perplexities and at reduced computational cost.

whereK(x) is a function satisfyingEK(X) < ∞. As a result, the conditions for the uniform strong
law of large numbers (Ferguson, 1996) hold onS leading to

P

{

lim
n→∞

sup
θ∈S
|scl′(θ)−µ(θ)|= 0

}

= 1. (17)

By Proposition 1,µ(θ) is non-positive and is zero iffθ = θ0. Since the functionµ(θ) is contin-
uous it attains its negative supremum on the compactS: supθ∈Sµ(θ)< 0. Combining this fact with
(17) we have that there existsN such that for alln> N the SCL maximizers onSachieves strictly
negative values ofscℓ′(θ) with probability 1. However, sincescℓ′(θ) can be made to achieve values
arbitrarily close to zero underθ = θ0, we have that̂θmsl

n 6∈ S for n > N. Sincec1,c2 were chosen
arbitrarily θ̂msl

n → θ0 with probability 1.

Proposition 6 Making the assumptions of Proposition 1 as well as convexity ofΘ⊂R
r we have the

following convergence in distribution
√

n(θ̂msl
n −θ0) N(0,ϒΣϒ)
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Figure 19: Accuracy and complexity tradeoff for the CRF with PL1/FL (left)and PL1/PL2 (right)
selection policies. Each point represents the negative log-likelihood (perplexity) and
the number of flops required to evaluate the composite likelihood and its gradientunder
a particular instance of the selection policy. The shaded region is the convex hull of
the points and represents empirically unobtainable combinations of computational com-
plexity and accuracy.σ2. Particularly interesting is the difference between policies and
against the generative Boltzmann chain, cf. Figure 13.

where

ϒ−1 =
k

∑
j=1

β jλ jVar θ0(∇Sθ0(A j ,B j))

Σ = Var θ0

(

k

∑
j=1

β jλ j∇Sθ0(A j ,B j)

)

.

The notationVar θ0(Y) represents the covariance matrix of the random vectorY underpθ0 while
the notations

p→ , in the proof below denote convergences in probability and in distribution (Fer-
guson, 1996).
Proof By the mean value theorem and convexity ofΘ there existsη ∈ (0,1) for which θ′ = θ0+
η(θ̂msl

n −θ0) and
∇scℓn(θ̂msl

n ) = ∇scℓn(θ0)+∇2scℓn(θ′)(θ̂msl
n −θ0)

where∇ f (θ) and∇2 f (θ) are ther×1 gradient vector andr× r matrix of second order derivatives
of f (θ). Sinceθ̂n maximizes the SCL,∇scℓn(θ̂msl

n ) = 0 and

√
n(θ̂msl

n −θ0) =−
√

n(∇2scℓn(θ′))−1∇scℓn(θ0). (18)
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Figure 20: Demonstration of the effectiveness of theβ heuristic. Results are for the CRF with
PL1/FL (top) and PL1/PL2 (bottom) selection policies. The x-axis is the value at the
heuristically foundβ and the y-axis the value at the optimalβ. The first column depicts
the best performingβ against the heuristicβ. The second and third columns depict the
training and testing perplexities (resp.) at the best performingβ and heuristically found
β. For all three columns, we assess the effectiveness of the heuristic by itsnearness to
the diagonal (dashed line). See Fig. 14 for more details.

The optimal and heuristicβ match train and test perplexities for both policies. The actual
β value however does not seem to match as well as the Boltzmann chain. However, if
we note the flatness of theβ grid (cf. Fig. 16 and 18) this result is unsurprising and can
be disregarded as an indication of the heuristic’s performance.

By Proposition 1 we havêθmsl
n

p→ θ0 which implies thatθ′ p→ θ0 as well. Furthermore, by the law
of large numbers and the fact that ifWn

p→W theng(Wn)
p→ g(W) for continuousg,

(∇2scℓn(θ′))−1 p→ (∇2scℓn(θ0))
−1 (19)

p→
(

k

∑
j=1

β jλ jE θ0∇2Sθ0(A j ,B j)

)−1

=−
(

k

∑
j=1

β jλ jVar θ0(∇Sθ0(A j ,B j))

)−1

.
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Figure 21: Optimal regularization parameter as a function of(λ, β̂(λ)) for PL1/FL (left) and
PL1/PL2 (center) CRF selection policies. In the left figure, PL1/FL,λ represents the
probability of including FL into the objective. A few FL samples add uncertaintyto
the objective thus a weaker regularizer is preferable. As more FL samplesare incorpo-
rated, this effect diminishes but still acts to regularize since the full likelihood(only)
best regularization isσ2 = 500 (red triangle). The center figure, PL1/PL2, exhibits only
a minor change asλ (the probability of incorporating PL2) is increased. It is however,
best served by a much weaker regularizer than PL2 alone (red triangle).

The right figure depicts the test-set perplexity as a function ofλ using the optimalσ2

(smallλ values were clipped as their performance is quite poor). Note that the perplexity
is lowest when both components are always selected (λ = 1) and that the PL1/FL policy
outperforms the PL1/PL2 policy as expected.

For the remaining term in (18) we have

√
n∇scℓn(θ0) =

k

∑
j=1

β j
√

n
1
n

n

∑
i=1

Wi j

where the random vectorsWi j = Zi j ∇ logpθ(X
(i)
A j
|X(i)

B j
) have expectation 0 and variance matrix

Var θ0(Wi j ) = λ jVar θ0(∇Sθ0(A j ,B j)). By the central limit theorem

√
n

1
n

n

∑
i=1

Wi j  N(0,λ jVar θ0(∇Sθ0(A j ,B j))) .

The sum
√

n∇scℓn(θ0) = ∑k
j=1 β j

√
n 1

n ∑n
i=1Wi j is asymptotically Gaussian as well with mean zero

since it converges to a sum of Gaussian distributions with mean zero. Since inthe general case
the random variables

√
n 1

n ∑n
i=1Wi j , j = 1, . . . ,k are correlated, the asymptotic variance matrix of√

n∇scℓn(θ0) needs to account for cross covariance terms leading to

√
n∇scℓn(θ0) N

(

0,Var θ0

(

k

∑
j=1

β jλ j∇Sθ0(A j ,B j)

))

. (20)

We finish the proof by combining (18), (19) and (20) using Slutsky’s theorem.

2629



DILLON AND LEBANON

Recall our notation for the case that the true modelP 6∈ {pθ : θ ∈ Θ}.

ψθ(X,Z)
def
= ∇mθ(X,Z)

ψ̇θ(X,Z)
def
= ∇2mθ(X,Z) (matrix of second order derivatives)

Ψn(θ)
def
=

1
n

n

∑
i=1

ψθ(X
(i),Z(i)).

Proposition 7 Assuming the conditions in Proposition 1 as well assupθ:‖θ−θ0‖≥ε M(θ)< M(θ0) for

all ε > 0 we havêθmsl
n → θ0 as n→ ∞ with probability 1.

Proof We assert

P

{

lim
n→∞

sup
θ∈S
|scl′(θ)−µ(θ)|= 0

}

= 1. (21)

on the compact setS= {θ : c1 ≤ ‖θ− θ0‖ ≤ c2} as in the proof of Proposition 1. We proceed
similarly along the lines of Proposition 1, with the necessary modification due to thefact that the
true model is outside the parametric family.

Since the functionµ(θ) is continuous it attains its negative supremum on the compact
S: supθ∈Sµ(θ) < µ(θ0) ≥ 0. Combining this fact with (21) we have that there existsN such that
for all n> N the SCL maximizers onSachieves strictly negative values ofscℓ′(θ) with probability
1.

However, sincescℓ′(θ) can be made to achieve values arbitrarily close toµ(θ0) asθ̂n→ θ0, we
have that̂θmsl

n 6∈ S for n> N. Sincec1,c2 were chosen arbitrarilŷθmsl
n → θ0 with probability 1.

Proposition 8 Assuming the conditions of Proposition 2 as well asEP(X)EP(Z)‖ψθ0(X,Z)‖2 < ∞,
EP(X)EP(Z)ψ̇θ0(X) exists and is non-singular,|Ψ̈i j | = |∂2ψθ(x)/∂θiθ j | < g(x) for all i , j and θ in a
neighborhood ofθ0 for some integrable g, we have

√
n(θ̂n−θ0) =−(EP(X)EP(Z)ψ̇θ0)

−1 1√
n

n

∑
i=1

ψθ0(X
(i),Z(i))+oP(1)

or equivalently

θ̂n = θ0− (EP(X)EP(Z)ψ̇θ0)
−11

n

n

∑
i=1

ψθ0(X
(i),Z(i))+oP

(

1√
n

)

.

Proof By Taylor’s theorem there exists a random vectorθ̃n on the line segment betweenθ0 andθ̂n

for which

0= Ψn(θ̂n) = Ψn(θ0)+ Ψ̇n(θ0)(θ̂n−θ0)+
1
2
(θ̂n−θ0)

⊤Ψ̈n(θ̃n)(θ̂n−θ0).

which we re-arrange as

√
nΨ̇n(θ0)(θ̂n−θ0)+

√
n

1
2
(θ̂n−θ0)

⊤Ψ̈n(θ̃n)(θ̂n−θ0) =−
√

nΨn(θ̂n) (22)

=−
√

nΨn(θ0)+oP(1)
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where the second equality follows from the fact thatθ̂n
p→ θ0 and continuous functions preserves

converges in probability.
SinceΨ̇n(θ0) converges by the law of large numbers toEP(X)EP(Z)ψ̇θ(X,Z) andΨ̈n(θ̃n) con-

verges to a matrix of bounded values in the neighborhood ofθ0 (for largen), the lhs of (22) is

√
n

(

EP(X)EP(Z)ψ̇θ(X,Z)+oP(1)+
1
2
(θ̂n−θ0)OP(1)

)

(θ̂n−θ0)

=
√

n(EP(X)EP(Z)ψ̇θ(X,Z)+oP(1))(θ̂n−θ0)

sinceθ̂n−θ0 = oP(1) andoP(1)Op(1) = oP(1) (the notationOP(1) denotes stochastically bounded
and it applies toΨ̈n(θ̃n) as described above). Putting it together we have

√
n(EP(X)EP(Z)ψ̇θ(X,Z)+oP(1))(θ̂n−θ0) =−

√
nΨn(θ0)+oP(1).

Since the matrixEP(X)EP(Z)ψ̇θ(X,Z)+oP(1) converges to a non-singular matrix, multiplying the
equation above by its inverse finishes the proof.

Corollary 2 Assuming the conditions specified in Proposition 4 we have
√

n(θ̂n−θ0) N(0,(EP(X)EP(Z)ψ̇θ0)
−1(EP(X)EP(Z)ψθ0ψ⊤θ0

)(EP(X)EP(Z)ψ̇θ0)
−1).

Proof Equation (12) follows from (10) by noticing that due to the central limit theorem Ψn(θ0) (as
it is an average ofn iid RVs with expectation 0)

√
n · 1

n

n

∑
i=1

ψθ0(X
(i),Z(i)) N(0,EP(X)EP(Z)ψθ0ψ⊤θ0

).

Substituting this in the right hand side of (10) and accounting for the modified variance due to the
matrix inverse results in (12).

Appendix B. List of Figures

The following lists figures by subject.

B.1 Case Study

• Boltzmann Machines
Figure 1 Tabular comparison of policies for computation and accuracy
Figure 2 Theoretical analysis of asymptotic variance for trace and determinant
Figure 3 Computation/accuracy tradeoff

B.2 Experimental Study

• Labeling sentiment with CRFs
Figure 4 CRF graphical model
Figure 5 PL1/FL & PL1/PL2 for differentσ2 as a function ofβ×λ
Figure 6 Computation/accuracy tradeoff with empirical unachievable region
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• Chunking CoNLL-2000
Figure 7 CoNLL-2000 data set label counts

. . . generatively (Boltzmann Chains)
Figure 8 Boltzmann Chain graphical model
Figure 13 Computation/accuracy tradeoff with empirical unachievable region
Figure 9 PL1/FL train & test results as a function ofβ×λ
Figure 10 PL1/FL train & test results as a function ofβ
Figure 11 PL1/PL2 train & test results as a function ofβ×λ
Figure 12 PL1/PL2 train & test results as a function ofβ

. . . discriminatively (CRFs)
Figure 4 CRF graphical model
Figure 19 Computation/accuracy tradeoff with empirical unachievable region
Figure 15 PL1/FL train & test results as a function ofβ×λ
Figure 16 PL1/FL train & test results as a function ofβ
Figure 17 PL1/PL2 train & test results as a function ofβ×λ
Figure 18 PL1/PL2 train & test results as a function ofβ

• β heuristic
Figure 14 for Boltzmann Chains
Figure 20 for CRFs
Figure 21 Optimal regularizing parameter as a function ofλ
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