Journal of Machine Learning Research 11 (2010) 2597-2633 bm&ted 3/10; Revised 8/10; Published 10/10

Stochastic Composite Likelihood

Joshua V. Dillon JVDILLON @GATECH.EDU
Guy Lebanon LEBANON@CC.GATECH.EDU
College of Computing

Georgia Institute of Technology

Atlanta, GA, USA

Editor: Fernando Pereira

Abstract

Maximum likelihood estimators are often of limited praaficise due to the intensive computation
they require. We propose a family of alternative estimatioas maximize a stochastic variation of
the composite likelihood function. Each of the estimatesotve the computation-accuracy trade-
off differently, and taken together they span a continugessum of computation-accuracy trade-
off resolutions. We prove the consistency of the estimagmavide formulas for their asymptotic
variance, statistical robustness, and computational ity We discuss experimental results
in the context of Boltzmann machines and conditional randieids. The theoretical and exper-
imental studies demonstrate the effectiveness of the agimmwhen the computational resources
are insufficient. They also demonstrate that in some caskeEed computational complexity is
associated with robustness thereby increasing statiaticaracy.

Keywords: Markov random fields, composite likelihood, maximum likelod estimation

1. Introduction

Maximum likelihood estimation is by far the most popular point estimation technique dhine
learning and statistics. Assuming that the data consistsrmfdimensional vectors

D=X®, ... xM), XxOecrm 1)

and is sampled iid from a parametric distributipg, with 8o € © C R", a maximum likelihood
estimator (MLE)@™ is a maximizer of the log-likelihood function

n .
((8;D) = § log po(X "), ey
i=
6™ = argmax(s(8;D).
6O

The use of the MLE is motivated by its consisteAd¢iat is,énm' — B asn — o with probability
1 (Ferguson, 1996). The consistency property ensures that aartiteern of samples grows, the
estimator will converge to the true paramedigigoverning the data generation process.

An even stronger motivation for the use of the MLE is that it has an asymgtptitarmal
distribution with mean vectoB, and variance matrixnl(6p))~%. More formally, we have the

1. The consistenc@nm' — Bp with probability 1 is sometimes called strong consistency in order to diffeteritirom
the weaker notion of consistency in probabilRg{8T" — 8| < €) — 0.
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following convergence in distribution as— co (Ferguson, 1996)

V(B —8g) ~ N(0,17%(8p)), 3)

wherel (0) is ther x r Fisher information matrix

1(8) = E p, {Olog pe(X)(Clog pe(X)) "}

with Of representing thex 1 gradient vector of () with respect t®. The convergence (3) is espe-
cially striking since according to the Cramer-Rao lower bound, the asymptoianee(nl (6g)) 1

of the MLE is the smallest possible variance for any estimator. Since it achikedowest pos-
sible asymptotic variance, the MLE (and other estimators which share thierpyps said to be
asymptotically efficient.

The consistency and asymptotic efficiency of the MLE motivate its use in marynegtances.
Unfortunately, in some situations the maximization or even evaluation of the Idgbkel (2) and
its derivatives is impossible due to computational considerations. For imsthisds the situation
in many high dimensional exponential family distributions, including Markowlcen fields whose
graphical structure contains cycles. This has lead to the proposal oiaite estimators under
the premise that a loss of asymptotic efficiency is acceptable—in returndoced computational
complexity.

In contrast to asymptotic efficiency, we view consistency as a less nelgqtiaperty and prefer
to avoid inconsistent estimators if at all possible. This common viewpoint in staissosnewhat
at odds with recent advances in the machine learning literature promotinrgomsistent estimators,
for example using variational techniques (Jordan et al., 1999). Nevest) we feel that there is a
consensus regarding the benefits of having consistent estimatorsooweonsistent ones.

In this paper, we propose a family of estimators, for use in situations whethputation of
the MLE is intractable. In contrast to many previously proposed approxieséteators, our estima-
tors are statistically consistent and admit a precise quantification of both tatiopal complexity
and statistical accuracy through their asymptotic variance. Due to the cousimarameteriza-
tion of the estimator family, we obtain an effective framework for achievingeagfined problem-
specific balance between computational tractability and statistical acciMplso demonstrate
that in some cases reduced computational complexity may in fact act aslariaguincreasing
robustness and therefore accomplishing both reduced computation aedsed accuracy. This
“win-win” situation conflicts with the conventional wisdom stating that movingrfrthe MLE to
pseudo likelihood and other related estimators result in a computational wandiatistical loss.
Nevertheless we show that this occurs in some practical situations.

For the sake of concreteness, we focus on the case of estimating theepensaassociated with
Markov random fields. In this case, we provide a detailed discussiorecddburacy-complexity
tradeoff. We include experiments on both simulated and real world dateferal models in-
cluding the Boltzmann machine, conditional random fields, and the Boltzmarar kthain model.
Appendix B outlines a road-map of figures and the corresponding iquos

2. Related Work

There is a large body of work dedicated to tractable learning techniqwes.pd@pular categories
are Markov chain Monte Carlo (MCMC) and variational methods. MCMC is@aegal purpose
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technique for approximating expectations and can be used to approximaterthalization term
and other intractable portions of the log-likelihood and its gradient (CasetlaRmbert, 2004).
Variational methods are techniques for conducting inference and lgdvaged on tractable bounds
(Jordan et al., 1999). A similar approach would be to conduct maximum liladilestimation for a
simpler model that is tractable.

Despite the substantial work on MCMC and variational methods, there are tatéqal results
concerning the convergence and approximation rate of the resultinmegmaestimators. Varia-
tional techniques are sometimes inconsistent and it is hard to analyze thmiptatig statistical
behavior. In the case of MCMC, a number of asymptotic results exist ([@as®l Robert, 2004),
but since MCMC plays a role inside each gradient descent or EM iteratiohdrd to analyze the
asymptotic behavior of the resulting parameter estimates. An advantagefadroework is that we
are able to directly characterize the asymptotic behavior of the estimatorlateditéo the amount
of computational savings.

Our work draws on the composite likelihood method for parameter estimatiorogedpy
Lindsay (1988) which in turn generalized the pseudo likelihood of Bet8g4). A selection of
more recent studies on pseudo and composite likelihood are Arnold and${i91), Liang and
Yu (2003), Varin and Vidoni (2005), Sutton and McCallum (2007) andrHand Varin (2008).
Most of the recent studies in this area examine the behavior of the pseedmposite likelihood
in a particular modeling situation. We believe that the present paper is theofgsgstematically
examine statistical and computational tradeoffs in a general quantitatimevirark. Possible ex-
ceptions include the experimental study of texture generation by Zhu an@Q@2), the work of
Xing et al. (2003) which focused on inference rather than paramdieragion, and the examination
of generalization performance of small- and large- scale learning systeBwstiou and Bousquet
(2008). The work of Liang and Jordan (2008) is also interesting in tleaatithors employ com-
posite likelihood m-estimators and asymptotic arguments to compare the risk afmilistive and
generative models. However, our work differs in theme and technique-explore the tradeoff
between computation and accuracy by way of a fundamentally differgmnitager.

Composite likelihood techniques, and consequently our work, can behhotigs local con-
trastive objectives (i.e., pseudo likelihood, contrastive divergendekrey et al. (2010) present a
non-local alternative in which the objective is not restricted to using theinigaiabel, but rather
any assignment.

3. Stochastic Composite Likelihood

In many cases, the absence of a closed form expression for the natioalizerm prevents the
computation of the log-likelihood (2) and its derivatives thereby severely lighitire use of the
MLE. A popular example is Markov random fields, wherein the computatiche@hormalization
term is often intractable (see Section 6 for more details). In this paper wmscalternative
estimators based on the maximization of a stochastic variation of the composite likeliho

We denote multiple samples using superscripts and individual dimensions sigasgripts.
Thusz(r) refers to thej-dimension of tha sample. Following standard convention we refer to
random variables (RV) using uppercase letters and their corresgpwalines using lowercase let-
ters. We also use the standard notations for extracting a subset of thestineenf a random
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variable
XsE{X:ieS), X jE{X:i#j) 4)

We start by reviewing the pseudo log-likelihood function (Besag, 19&bcated with the data
D (1),

n m . .
Pn(6:D) = 3 3 leg po (X} X)), (5)
i=1j=

The maximum pseudo likelihood estimator (MPLAEY' is consistent, that i€ — 8o with prob-
ability 1, but possesses considerably higher asymptotic variance thanlifits hi(8g)) 2. Its
main advantage is that it does not require the computation of the normalizatwrmaseit cancels
out in the probability ratio defining conditional distributions

Pe(X)
ZX] pe(xlv . '7Xjflan = Xj,Xj+;|_7 ... ,)(rn)

Po(Xj[X-j) = po(Xj{ X« 1 K # j}) =

The MLE and MPLE represent two different ways of resolving the wédeetween asymptotic
variance and computational complexity. The MLE has low asymptotic variantdeigh computa-
tional complexity while the MPLE has higher asymptotic variance but low compuatdtammplex-
ity. It is desirable to obtain additional estimators realizing alternative resolitbthe accuracy
complexity tradeoff. To this end we define the stochastic composite likelihoodewimaximization
provides a family of consistent estimators with statistical accuracy and cotigmatacomplexity
spanning the entire accuracy-complexity spectrum.

Stochastic composite likelihood generalizes the likelihood and pseudo likelfhootions by
constructing an objective function that is a stochastic sum of likelihood tshjé¢é start by defining
the notion ofm-pairs and likelihood objects and then proceed to stochastic composite liketlihoo

Definition 1 An m-pair (A,B) is a pair of sets AB C {1,...,m} satisfying A% 0 =ANB. The
likelihood object associated with an m-pdia, B) and X is $(A, B) £ log pe(Xa|Xg) Where X% is
defined in(4). The composite log-likelihood function (Lindsay, 1988) is a collection of liketih

objects defined by a finite sequence of m-pghsB1),.. ., (A, Bk)

n k . .
cln(8:D) = 5 5 logpa(Xy g, (6)
= J:]_

There is a certain lack of flexibility associated with the composite likelihood fraorieas each
likelihood object is either selected or not for the entire sarle, ..., X(". There is no allowance
for some objects to be selected more frequently than others. For exangilebbvcomputational
resources may allow the computation of the log-likelihood for 20% of the sargidsthe pseudo
likelihood for the remaining 80%. In the case of composite likelihood if we séhedull likelihood
component (or the pseudo likelihood or any other likelihood object) then dhigponent is applied
to all samples indiscriminately.

In SCL, different likelihood object§g(A;j,Bj) may be selected for different samples with the
possibility of some likelihood objects being selected for only a small fractioneofitlia samples.
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The selection may be non-coordinated, in which case each componelgdtedeor not indepen-
dently of the other components. Or it may be coordinated in which case tlticelef one com-
ponent depends on the selection of the other ones. For example, we nhatp &igid selecting a
pseudo likelihood component for a certain samyfe if the full likelihood component was already
selected for it.

Another important advantage of stochastic selection is that the discretagiaraation of (6)
defined by the sequen¢8s,B;),. .., (A, By) is less convenient for theoretical analysis. Each com-
ponent is either selected or not, turning the problem of optimally selecting aeengminto a hard
combinatorial problem. The stochastic composite likelihood, which is defirled/benjoys contin-
uous parameterization leading to more convenient optimization techniquesmaretgence analy-
sis.

Definition 2 Consider a finite sequence of m-paifs,B1), ..., (A, Bk), a data set D= (X, ...
XMy, B RX, and niid, length k, binary random vector§'z ..., z(M '~ P(Z) with A} £ E (Z;) > 0.
The stochastic composite log-likelihood (SCL) is

sn(0;D,2) £ =Y mg(XW,zW),  where

Sk
S

-
me(X,2) = 3 B;Z;log pe(Xa,|Xe). @
=1

where, for brevity, we typically omit,[Z in favor of sé€(0).

In other words, the SCL is a stochastic extension of (6) where for eambleX(,i =1,...,n, the
likelihood objectsS(Ag, Bl)_, .. .7S(Ak, Bk) are either selected or not, depending on the values of the

binary random variablezp, .. ,Zﬁ” and weighted by the constarfis, . ..,Bx. Note thath(i) may

in general depend & but not onz" or onX (.

When we focus on examining different models f8{Z) we sometimes parameterize it, for
example byA, that is,P,(Z). This reuse oh (it is also used in Definition 2) is a notational abuse.
We accept it, however, as in most of the cases that we consjder., A\ from Definition 2 either
form the parameter vector f&(Z) or are part of it. Often we refer to a particubaas a “policy” in
order to emphasize its role as a “knob” in selecting particurigrairs.

Some illustrative examples follow.

Independence. FactorizingPy (Zs,. .., Z) = 1 P (Z;) leads toZJ(') ~ Ber(Aj) with complete in-
dependence among the indicator variables. For each saxipleeach likelihood object
S(Aj, Bj) is selected or not independently with probabihity

Multinomial. A multinomial modelZ ~ Mult(1,)) implies that for each samp) a multivari-
ate Bernoulli experiment is conducted with precisely one likelihood objecgbsdtected
depending on the selection probabilitles. . ., Ak.

Product of Multinomials. A product of multinomials is formed by a partition of the dimensions to
| disjoint subsetg1,...,m} =CyU---C whereZg, ~ Mult(1,(A; : j € G)), that is,

P(2) = _ﬁP, ({Zj:j€C}), whereRisMult(1,(A;:jeq)).
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Loglinear Models. The distributionP(Z) follows a hierarchical loglinear model (Bishop et al.,
1975). This case subsumes the other cases above.

In analogy to the MLE and the MPLE, the maximum SCL estimator (MS(fB;E} estimates
8o by maximizing the SCL function. In contrast to the log-likelihood and pseuddiketihood
functions, the SCL function and its maximizer are random variables thaindepe the indica-
tor variablesz™® ..., Z" in addition to the dat&. As such, its behavior should be summarized
by examining the limitn — c. Doing so eliminates the dependency on particular realizations of
zW, ...,z in favor of the the expected frequenci®s= Ep(z)Z; which are non-random con-
stants.

The statistical accuracy and computational complexity of the SCL estimatoroatauwous
functions of the parameter$,A) (component weights and selection probabilities respectively)
which vary continuously throughout their domdin,3) € A x Rﬁ. Choosing appropriate values
of (A, B) retrieves the special cases of MLE, MPLE, maximum composite likelihood with se-
lection being associated with a distinct statistical accuracy and computat@nplexity. The SCL
framework allows selections of many more value$Xof3) realizing a wide continuous spectrum of
estimators, each resolving the accuracy-complexity tradeoff differently.

We include below a demonstration of the SCL framework in a simple low dimensiasal In
the following sections we discuss in detail the statistical behavior of the MS€@idHts computa-
tional complexity. We conclude the paper with several experimental studies.

3.1 Boltzmann Machine Example

Before proceeding we illustrate the SCL framework using a simple exampliimg@ Boltzmann
machine (Hinton and Sejnowski, 1983). Section 8.1 describes the spetifits model. We con-
sider in detail three SCL policies: full likelihood (FL), pseudo likelihood (Pand a stochastic
combination of first and second order pseudo likelihood with the firstrarol@ponentp(X|X_;)
selected with probabilith and the second order componep(, X;|X;; j;c) selected with proba-
bility 1 —A.

Denoting the number of (binary) graph vertices, or nodesnjgnd the number of examples by
n, the computational complexity of the FL function measured in FE@#unts isO((7) (2™ +n))

(for the log-likelihood) andD((g‘)ZZer n(7)) for the log-likelihood gradient. The exponential
growth inm prevents such computations for large graphs.

Thek-order PL function offers a practical alternative to FL (1-order Piresponds to the tradi-
tional pseudo likelihood and 2-order PL its analpgX; j;|X;i j1c)). The complexity of computing

the corresponding SCL function@((7) (") 2% +-n)) for the objective function an@( ()% (T) 2+
n(3)) for its gradient. The slower complexity growth of tkevrder PL (polynomial irm instead
of exponential) is offset by its reduced statistical accuracy, which wesuneaising the normalized
asymptotic variance

(@) — detAsymp Var(6,))

=< n (®)
e Asymp VarBy!))

2. FLOP is the number of FLoating point OPerations.

3. With memoization the complexity of the gradient can be reduc@({d) 2™+ n()) (at the cost of exponential™
storage). Note that this is only a polynomial improvement to an exponeotiaplexity hence we lose no insight by
making naive assumptions.
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which is bounded from below by 1 (due to Cramer Rao lower bound) anceitgtibn from 1
reflects its inefficiency relative to the MLE.

The MLE thus achieves the best accuracy but it is computationally intractabkefirst order
and second order PL have higher asymptotic variance but are eas@npute. The SCL frame-
work enables adding many more estimators filling in the gaps between ML gt-Btd 2-order PL,
etc.

We illustrate three SCL functions in the context of a simple Boltzmann machinebifiazy
nodes, fourteen sampleg?, ... X4 g"me— (—1,-1,-1,-1,—-1,1,1,1,1,1)) in Figure 1. The
top box refers to the full likelihood policy, that is, maximum likelihood. For eatkhe fourteen
samples, the FL component is computed and their aggregation forms the 8&lofuwhich in
this case equals the log-likelihood. The selection of the FL componentdbrszanple is illustrated
using a diamond box. The values under the boxes reflect the FLOP cmeded to compute the
components and the total complexity associated with computing the entire SCL:likdligood is
listed on the right. As mentioned above, the normalized asymptotic variancel(8) is

The pseudo likelihood function (5) is illustrated in the second box wheteresccorrespond to
one of the five PL components. As each of the five PL component is sefectatch of the samples
we have diamond boxes covering the entire B4 array. The shade of the diamond boxes reflects
the complexity required to compute them enabling an easy comparison to therfplocents in the
top of the figure (note how the FL boxes are much darker than the PL okes numbers at the
bottom of each column reflect the FLOP marginal count for each of theefeini samples and the
numbers to the right of the rows reflect the FLOP marginal count for eftte PL components.
In this case the FLOP count is less than half the FLOP count of the FL in tofttie reduction in
complexity obtained by replacing FL with PL will increase dramatically for geaptih more than
5 nodes) but the asymptotic variance is 83% higher.

The third SCL policy reflects a stochastic combination of first and secatet giseudo likeli-
hood components. Each first order component is selected with probabdlitd each second order
component is selected with probability-1\. The result is a collection of 5 1-order PL components
and 10 2-order components with only some of them selected for each olitiedn samples. Again
diamond boxes correspond to selected components which are shadetiregto their FLOP com-
plexity. The per-component FLOP marginals and per example FLOP margiralssted as the
bottom row and right-most column. The total complexity is somewhere betweand-PL and the
asymptotic variance is reduced from the PL's 183% to 148%.

Additional insight may be gained at this point by considering Figure 3 wHigts geveral SCL
estimators as points in the plane whosandy coordinates correspond to normalized asymptotic
variance and computational complexity respectively. We turn at this poimtrsidering the statis-
tical properties of the SCL estimators.

4. Consistency and Asymptotic Variance ofTs

A nice property of the SCL framework is enabling mathematical charactenzatithe statistical
properties of the estimat@™'. In this section we examine the conditions for consistency of the
MSCLE and its asymptotic distribution and in the next section we considertrasss The propo-
sitions below constitute novel generalizations of some well-known results &sicid statistics.
Proofs may be found in Appendix A. For simplicity, we assume ¥at discrete angbg(x) > O.

4. The asymptotic variance of SCL functions is computed using formalaged! in the next section.
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[ [ [x(l) X2 xB) x@ x® x® x7 x®@ x9) X(lo)X(ll)X<12>X(13)X(14>[Total]

X1yy..2, %5 L R S R R R SR R S TSR SRR 4620
T Complexity {330 330 330 330 330 330 330 330 330 330 330 330 330|38Q0
Rel. Efficiency|1.00
Xq|XZ1 ol ol ol ol ool ool ool o] oo 308
Xa|X 2 ol ol o]l ol ool ol ololol o] of oo 308
» X3|X_3 ol ol ool o] ool ol o|lo] o o] oo 308
O | Xa|X_g ol ol o] o o] o] o] o] o]l o] o] o] of o 308
X5|X_5 ol ol ol ol ool ool ool o o] oo 308
Complexity 110 110 110 110 110 110 110 110 110 110 110 110 110 |1%@0
Rel. Efficiency|1.83
X1|X_1 o[ o o]0 o o o] o] 176
Xo|X 2 o o | o ool o o] o o | o | 220
X3|X_3 o | o o o] o] o o of of o | 220
Xa|X_a [ [ o] o] o] ol o o o | 154
Xs|X_5 [ o] [oJ oo o] o] o[ o] o | 198
ﬁ X{l.Z}‘X{l,Z}C [ <& [ <& ‘ < ‘ <& 164
& XugXage [fo] o] [ =] 205
_C{_) )({174}‘X{1.4}c < l < <& I <& ‘ 164
i X{LS}‘X{LS}C < <& <& [ <& ‘ 164
g X{2_3}‘X{2>3}c ‘ <& [ <& I <& < ‘ 205
Xeo. 41 X2,43¢ [ o] o] o | o o o] o] 287
)({215} ‘X{Z.S}C o [ < l I < [ < 164
X34y Xzaye | © © 82
X{3_5} ‘X{3)5}c l <& ‘ ‘ < l < ‘ <& 164
Xias)Xaspe Lo ofoo] [o] 205
Complexity |[208 107 208 167 230 230 293 271 148 230 274 252 66 |8872
Rel. Efficiency|1.48

Figure 1: Sample runs of three different SCL policies for 14 examyi&s. .., X(14 drawn from a
5 binary node Boltzmann maching"t®= (-1,-1,-1,-1,-1,1,1,1,1,1)). The poli-
cies are full likelihood (FL, top), pseudo likelihood (PL, middle), and alststic combi-
nation of first and second order pseudo likelihood with the first ordepoments selected
with probability 0.7 and the second order components with probability 0.3 (battom)

The sample runs for the policies are illustrated by placing a diamond box in tatitiese
corresponding to selected likelihood objects (rows corresponding to likelilobjects
and columns tX ..., X34, The FLOP counts of each likelihood object determines
the shade of the diamond boxes while the total FLOP counts per example ralikkpe
lihood objects are displayed as table marginals (bottom row and right coluneadi
policy). We also display the total FLOP count and the normalized asymptoigncar

(8).

Even in the simple case of 5 nodes, FL is the most complex policy with PL requiring
third of the FL computation. 0.7PL+0.3PL2 is somewhere in between. The situatio
reversed for the estimation accuracy-FL achieves the lowest possiihaliwed asymp-
totic variance of 1, PL is almost twice that, and 0.7PL+0.3PL2 somewhere in tlthemid
The SCL framework spans the accuracy-complexity spectrum. ChoosimigthA value
obtains an estimator that suits available computational resources and deapGreacy.
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Definition 3 A sequence of m-paif@#\;,Bs), ..., (A, Bk) is m-pair identifiable, or simply identifi-

able, of p if the map{ps(Xa;[Xs;) : j =1,...,k} = pg(X) is injective. In other words, there exists
only a single collection of conditionalgs(Xa;[Xg;) : j =1,...,k} that does not contradict the joint
Pe(X).

Proposition 1 Let © C R" be an open set, gfx) > 0 and continuous and smooth & and
(A1,B1),..., (A, Bk) be a sequence of m-pairs for whi¢fA;,B;) : Vj such that\; > 0} ensures
identifiability. Then the sequence of SCL maximizers is strongly consisians,th

P (Jim 8y =80) = 1.
n—-oc0

The above proposition indicates that to guarantee consistency, thenseaia-pairs needs to
satisfy Definition 3. It can be shown that a selection equivalent to thedpdéelihood function,
that is,

S={(ALB1)....,(An,Bm)} where A ={i},Bi={1,....m}\A 9)

ensures identifiability and consequently the consistency of the MSCLE estinfasothermore,
every selection ofn-pairs that subsumesin (9) similarly guarantees identifiability and consistency.

The proposition below establishes the asymptotic normality of the MSELEhe asymptotic
variance enables the comparison of SCL functions with different paraizagtens(A, 3).

Proposition 2 Making the assumptions of Proposition 1 as well as convexi®/@fR" we have the
following convergence in distribution

V(BT - 80) ~ N(0,YZY)

where

k
Y= Z Bj)\jvareo(DSE)O(Aj)Bj))a
=1

k
T = Varg, (Z Bj)\jDSeg(Aijj)> :
=1

The notatiorvarg,(Y) represents the covariance matrix of the random vectamderpg, while the
notations % |~ in the proof below denote convergences in probability and in distributiory@-e
son, 1996) 01 represents the gradient vector with resped.to

When#8 is a vector the asymptotic variance is a matrix. To facilitate comparison between dif
ferent estimators we follow the convention of using the determinant, and in Gases the trace, to
measure the statistical accuracy. See Chapter 4 of Serfling (198@nfer Iseuristic arguments for
doing so. Figures 1,2,3 provide the asymptotic variance for some SCL estinatbdescribe how
it can be used to gain insight into which estimator to use.

The fact that,/n(6, — Bg) converges in distribution to a Gaussian with zero mean (for the MLE
and similarly for SCL estimators as we show above) implies that the estimatong&syc behav-
ior, up ton~Y/2 order, is determined exclusively by the asymptotic variance. That meanthéha
estimator is essentially unbiased up to that order. Higher order statistidgsian@btained using
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Taylor series with more terms) show that the bias decays in the faster maté (€ox and Snell,
1968). We thus follow the statistical convention of conducting first ordgmgtotic analysis and
concentrate on the estimator’s asymptotic variance.

The statistical accuracy of the SCL estimator depend3@veight parameters) and(selection
parameter). It is thus desirable to use the results in this section in determinstgaihes of3, A to
use. Directly using the asymptatic variance is not possible in practice aseihdsjpn the unknown
guantityBy. However, it is possible to estimate the asymptotic variance using the training/data
describe this in Section 7.

5. Robustness of™s!

We observed in our experiments (see Section 8) that the SCL estimator sonmegifoesied better
on a held-out test set than did the maximum likelihood estimator. This phenorseerars to be
in contradiction to the fact that the asymptotic variance of the MLE is lower thanofithe SCL
maximizer. This is explained by the fact that in some cases the true modehtirgehe data
does not lie within the parametric familypg : 8 € ©} under consideration. For example, many
graphical models (HMM, CRF, LDA, etc.) make conditional independessaraptions that are
often violated in practice. In such cases the SCL estimator acts as a regubarideving better
test set performance than the non-regularized MLE. We provide betbeoaetical account of this
phenomenon using the languageyéstimators and statistical robustness. Our notation follows the
one in van der Vaart (1998).

We assume that the model generating the data is outside the model R{Xily {pe : 6 € O}
and we extend the notation ok (X, Z) in (7) with,

We(X,Z) = Om(X, 2),
Pe(X,Z) & Dzme(X,Z), and

def 1 ZLIJ@

noting thate (X, Z) is a matrix of second order derivatives. A
Proposition 3 below generalizes the consistency result by assertir, thaby whereg is the
point on{pg : 6 € O} that is closest to the true mode| as defined by

8o = argmaxv(8) where M(8 ZB,)\ D(P(Xa; [ Xe; ) || Po(Xa; [X8;)),
6cO

or equivalentlyfg satisfies
Epx)EP(z) Yo, (X,Z) =0.

When the SCL function reverts to the log-likelihood functi@gbecomes the KL projection of the
true modelP onto the parametric familypg : 6 € ©}.

Proposition 3 Assuming the conditions in Proposition 1 as welbagy,g_g,| > M(6) < M(8o) for
all & > 0 we haved™' — 6y as n— oo with probability 1.
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The added condition maintains thtis a well separated maximum pointigf. In other words
it asserts that only values close@g may yield a value oM that is close to the maximuid (6p).
This condition is satisfied in the case of most exponential family models.

Proposition 4 Assuming the conditions of Proposition 2 as welEasx)E p(z) [|We, (X, Z)(|? < e,
Epx)E p(z)We,(X) exists and is non-singulajt¥;; | = |02We(x)/08,8;| < g(x) for alli, jand@in a
neighborhood 06, for some integrable g, we have

VN(8n —80) = —(Epx)Ep(z) Vo)~ lelJeo ,ZV) 4+ 0p(1) (10)
or equivalently
" 1
en = e0 - (EP qJeo zllpeo 7 + Op <\m> . (11)

Above, f, = op(gn) meansf,/gn converges to 0 with probability 1.

Corollary 1 Assuming the conditions specified in Proposition 4 we have
V(8 — 8o) ~ N(O, (Epx)Epz) We,) (Eppx)Ep(z) WeoWs,) (Ep)Epzylso) 1).  (12)

Equation (11) means that asymptoticaﬂ),ﬁ, behaves a§, plus the average of iid RVs. As
mentioned in van der Vaart (1998) this fact may be used to obtain a convemxigression for the
asymptotic influence function, which measures the effect of adding a bsgneation to an existing
large data set. Neglecting the remainder in (10) we have

1(%,2) E8,(XD, ... . x=1 x 7O 70D 2§, (XY, ...,x<”—1>,z<1>,...,z<”—1>)

1n= 1 1 )
~ _(EP qJGo ( lepeo ,Z + UJeo(W Z n 1 leeo s (')))
—(E P(X)EP(Z)qJeo)_lﬁlpeo(Wv 2)+(E P(X)EP(Z)qJeo)_lm i; lIJeo(X(i)»Z(i))

1 . 1
_H(E P Ep(z)Wa,) W, (W, 2) + 0p <n> : (13)

Corollary 1 and Equation (13) measure the statistical behavior of the estimlagor the true
distribution is outside the model family. In these cases it is possible that a cdiopatty effi-
cient SCL maximizer will result in higher statistical accuracy as well. This “win* situation
of improving in both accuracy and complexity over the MLE is confirmed byesgreriments in
Section 8.

We finally note that the above analysis is not limited to misspecified models. Fopéxathe
influence function may be used to detect the robustne@stofoutliers or rare events (itis desirable
to be robust to such occurrences even if the model is not misspecified).
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6. Stochastic Composite Likelihood for Markov Random Fields

Markov random fields (MRF) are some of the more popular statistical modelsofnplex high
dimensional data. Approaches based on pseudo likelihood and compaditeolikl are naturally
well-suited in this case due to the cancellation of the normalization term in thelplibbeatios
defining conditional distributions. More specifically, a MRF with respect twaphG = (V,E),
V ={1,...,m} with a clique se( is given by the following exponential family model

Pe(X) = exp( Z Bc fe(xc) — IogZ(G)) ,

Cec

Z(0) = Zexp <CZ ech(xc)> . (14)
X ec

The primary bottlenecks in obtaining the maximum likelihood are the computatioZg8p@nd
OlogZ(6). Their computational complexity is exponential in the graph’s treewidth andhémy
cyclic graphs, such as the Ising model or the Boltzmann machine, it is expalia [V | = m.

In contrast, the conditional distributions that form the composite likelihood4f ére given by
(note the cancellation &(0))

p3 eXp(ZCec Bc fc((xa, Xa, XzAuB)c)C)>

XauB)C

> >exp <Cgc Oc fc((Xx, XB, X/(AUB)C)C)>

J /!
XauB)c XA

Po(XalXB) = (15)

whose computation is substantially faster. Specifically, The computation od€pgnds on the size

of the setsA and (AU B)® and their intersections with the cliquesdh In general, selecting small
|Aj| andB; = (Aj)° leads to efficient computation of the composite likelihood and its gradient. For
example, in the case o&\j| =1,|Bj| = m—1 with | < mwe have thak < m!/(I!(m—1)!) and the
complexity of computing the/(8) function and its gradient may be shown to require time that is at
most exponential il and polynomial irm.

7. Automatic Selection off3

As Proposition 2 indicates, the weight vecfand selection probabilitiels play an important role
in the statistical accuracy of the estimator through its asymptotic variance ontqgutational com-
plexity, on the other hand, is determinedXdindependently oB. Conceptually, we are interested in
resolving the accuracy-complexity tradeoff jointly for b@h\ before estimating by maximizing
the SCL function. However, since the computational complexity dependsoiyve propose the
following simplified problem: Selecdt based on available computational resources, and then given
A, select thgB (andB) that will achieve optimal statistical accuracy.

SelectingB that minimizes the asymptotic variance is somewhat ambiguo¥ ésn Proposi-
tion 2 is anr x r positive semidefinite matrix. A common solution is to consider the determinant as
a one dimensional measure of the size of the variance nvadrix, minimize

J(B) =logde{YZY) = logdetz + 2log dety- (16)

5. See Chapter 4 of Serfling (1980) for a heuristic discussion motivetiagneasure.
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A major complication with selectinf} based on the optimization of (16) is that it depends on
the true parameter valu® which is not known at training time. This may be resolved, however,
by noting that (16) is composed of covariance matrices ufgevhich may be estimated using
empirical covariances over the training set. To facilitate fast computatioreajgtimalp3 we also
propose to replace the determinant in (16) with the product of the diagde@ents. Such an
approximation is motivated by Hadamard’s inequality (which states that for symocnneatrices
detM) < [7]; M) and by Gesgorin’s circle theorem (see below). This approximation works well in
practice as we observe in the experiments section. We also note that tedymedescribed below
involves only simple statistics that may be computed on the fly and does not coatsignificant
additional computation (nor do they require significant memory).

More specifically, we denoti ) = Cov g, (0Sp, (A, Bi), 0Ss, (A}, Bj)) with entriesk{’, and
approximate the logdet terms in (16) using

r
logdetY = — Iogdetz BiAj K (D) Z BiAj K|| 1

nMx

k k =
logdets = logdetvarg, (JZIBJ-)\]DSBO(AJ-,B])> = Iogdetizlngi)\iBj)\jK(”)

r k k .
z;|ogizljzlsixis,-)\jr<ﬁ'”.

We denote (assuming is anx n matrix) for i € {1,...,n}, R(A) = 3. |Aj| and let
D(Ai,R (A)) (Di where unambiguous) be the closed disc centerdy atith radiusR;(A). Such a
disc is called a G&gorin disc. The result below states that for matrices that are close tandiago
the eigenvalues are close to the diagonal elements making our approximaiioatac

Theorem 1 (Gessgorin’s circle theorem, for example, Horn and Johnson, 1990Every eigen-
value of A lies within at least one of the Ggorin discs DA;, R (A)). Furthermore, if the union of

k discs is disjoint from the union of the remaining k discs, then the former union contains exactly
k and the latter n- k eigenvalues of A

Algorithm 1 solves forf,3 jointly using alternating optimization. The second optimization
problemJ(p;-) is done using the approximation above and may be computed with minimal addi-
tional computation. The components of this objective are typically freely dlailahensc is
minimized with Newton-type methods. In practice we found that such an agipteads to a selec-
tion of B that is close to optimal, despite loose convergence criteria for the minimizatioe séth
objective (see Sec. 8.3 and Figures 14, 20 for results).

8. Experiments

We demonstrate the asymptotic propertieé{f_‘ﬂ1 and explore the complexity-accuracy tradeoff for
three different models-Boltzmann machine, linear Boltzmann MRF and conalitiandom fields.
In terms of data sets, we consider synthetic data as well as data sets friommes: prediction and
text chunking domains.

In Appendix B we list all figures by subject. The basic road-map is to eg@@L for a theoret-
ical Boltzmann machine and then to explore two data sets using both genaradidéscriminative
models. We also demonstrate the effectiveness of theuristic for these experiments.
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Algorithm 1 Calculated™s!

Require: {X }ic; andA, B©
1t+1
2: while t < MAXITS do

3. 8 «— argminscd(8; {X; }ier, A, BTY)
4: if convergedhen

5: return 0

6. endif

7. BY « argmind(B; {KW}i jyes,.0)
8 t+t+1

9: end while

10:; return false

8.1 Toy Example: Boltzmann Machines

We illustrate the improvement in asymptotic variance of the MSCLE associatedddithgahigher
order Boltzmann machine likelihood components with increasingly higher pildgaThe Boltz-
mann machine can be parameterized as,

Pe(X) = exp (Z BijxiXj — Ioqu(e)> , xe{0,1}™

i<]

To be able to accurately compute the asymptotic variance wensds® with 6 being a(g’) dimen-
sional vector with half the componentsl and half—1. Since the asymptotic variance @' is a
matrix we summarize its size using either its trace or determinant.

Figure 2 displays the asymptotic variance, relative to the minimal variance Mfltke for the
cases of full likelihood (FL), pseudo likelihoogij| = 1) PL1, stochastic combination of pseudo
likelihood and 2nd order pseudo likelihood\(| = 2) component3PL2+ (1 —A)PL1, stochastic
combination of 2nd order pseudo likelihood and 3rd order pseudo likelifjdg/d= 3) components
APL3+ (1—A)PL2, and stochastic combination of 3rd order pseudo likelihood and 4¢n ps¢udo
likelihood (|Aj| = 4) componentaPL4+ (1—A)PL3.

The graph demonstrates the computation-accuracy tradeoff as follawssdudo likelihood is
the fastest but also the least accurate, (b) full likelihood is the slowéghbunost accurate, (c)
adding higher order components reduces the asymptotic variance bu¢@ilsges more computa-
tion, (d) the variance reduces with the increase in the selection probabitifythe higher order
component, and (e) adding 4th order components brings the variancelese the lower limit and
with each successive improvement becoming smaller and smaller accordifayofdiminishing
returns.

Figure 3 displays the asymptotic accuracy and complexity for different|&flicies form =9
binary valued vertices of a Boltzmann machine. We explore three policeséh wie denote pseudo
likelihood components of size, or ordde, These policies includeA131PL1+ Ax(1— B1)PL2,
A1B1PL1+A2(1—B1)PL3,A1B1PL2+ A»(1— B1)PL3 (for multiple values oh1, A2, 31). By taking
different linear combinations of various sized pseudo likelihood comp@ener span a continuous
spectrum of accuracy-complexity resolutions. The lower part of theaiags the boundary of the
achievable region (the optimal but unachievable place is the bottom lek#o®CL policies that
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Figure 2: Asymptotic variance matrix, as measured by trace (left) and detertr(inight), as a

function of the selection probabilities for different stochastic versiorth®fSCL func-
tion.

lie to the right and top of that boundary may be improved by selecting a poliowlad to the left
of it.

8.2 Local Sentiment Prediction

Ouir first real world data set experiment involves local sentiment prediaging a conditional MRF
model. The data set consisted of 249 movie review documents having agew#r30.5 sentences
each with an average of 12.3 words from a 12633 word vocabulamgh Esntence was manually
labeled as one of five sentimental designations: very negative, negaijeetive, positive, or very
positive. As described in Mao and Lebanon (2007) (where more infimmanay be found) we
considered the task of predicting the local sentiment flow within these do¢smging regularized
conditional random fields (CRFs) (see Figure 4 for a graphical diagfethe model in the case of
four sentences).

As is common practice, we curtail overfitting througharegularizer, exp—(2no?)~1|6||3},
which is strong whew? is small and weak wheo? is large. We consides? a hyper-parameter and
select it through cross-validation, unless noted otherwise.

Figure 5 shows the contour plots of train and test log-likelihood as a funetithe SCL param-
eters: weigh3 and selection probabilitk. The likelihood components were mixtures of full and
pseudo |A;| = 1) likelihood (rows 1,3) and pseudo and 2nd order ps€ifg = 2) likelihood (rows
2,4). A; identifies a set of labels corresponding to adjacent sentences ovér tivkiprobabilistic
query is evaluated. Results were averaged over 100 cross validatiatmitsrwith 50% train-test
split. We used BFGS quasi-Newton method for maximizing the regularized S@itiéms. The
figure demonstrates how the train log-likelihood increases with increasingaigét and selection
probability of full likelihood in rows 1,3 and of 2nd order pseudo likelihoodranvs 2,4. This
increase in train log-likelihood is also correlated with an increase in compushttomplexity as
higher order likelihood components require more computation. Note howtbegithe test set be-
havior in the third and fourth rows shows an improvement in prediction acguassociated with

2611



DILLON AND LEBANON

O A1B1PL1+Ao(1-B1)PL2
O A1B1PL1I+A(1B1)PL3
FeA1B1PL2+A2(1-B1)PL3

Complexity (FLOP)

0 | |
1.03 1.04 1.05
Normalized Asymptotic Variance

Figure 3: Computation-accuracy diagram for three SCL famNigsPL1 + Ax(1 — B1)PL2,
A1B1PL1+A2(1—B1)PL3, A1B1PL2+ A2(1— B1)PL3 (for multiple values oh1,A2, B1)
for the Boltzmann machine with 9 binary nodes. The pure policies PL1 anchRLih-
dicated by black circles and the computational complexity of the full likelihooitatdd
by a dashed line (corresponding normalized asymptotic variance is 1R03hpure pol-
icy is beyond the scale of the diagram. As the graph size increases, thategional cost
increases dramatically, in particular for the full likelihood policy and to a lessient for
the pseudo likelihood policy.

decreasing the influence of full likelihood in favor of pseudo likelihoote Tact that this happens
for (relatively) weak regularizatiomy? = 10, and indicates that lower order pseudo likelihood has a
regularization effect which improves prediction accuracy when the niedek regularized enough.
We have encountered this phenomenon in other experiments as well anidl disauss it further
in the following subsections.

Figure 6 displays the complexity and negative log-likelihoods (left:train, right):t&f differ-
ent SCL estimators, sweeping througland, as points in a two dimensional space. The shaded
area near the origin is unachievable as no SCL estimator can achieve bigh@cand low com-
putation at the same time. The optimal location in this 2D plane is the curved bguoittre
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Figure 4: Graphical representation of a four token conditional rarfitlch(CRF).A, B are weight
matrices and represent state-to-state transitions and state-to-obseoudpiots. Shad-
ing indicates the variable is conditioned upon while no shading indicates ttadheais
generated by the model.

achievable region with the exact position on that boundary dependingearduired solution of
the computation-accuracy tradeoff.

8.3 Text Chunking

This experiment consists of using sequential MRFs to divide sentenceddértahunks,” that is,
syntactically correlated sub-sequences, such as noun and vegeghfzhunking is a crucial step
towards full parsing. For exampfethe sentence:

He reckons the current account deficit will narrow to only &Hillion in September.

could be divided as:

[NP He][VP ] INP the current account defidifVP ][PPto] [NP only #
1.8 billion] [PPin] [NP Septembe}.

where NP, VP, and PP indicate noun phrase, verb phrase, andjti@pal phrase.

We used the publicly available CoONLL-2000 shared task data set. It ¢@n$labeled partitions
of a subset of the Wall Street Journal (WSJ) corpus. Our trainingesetsisted of sampling 100
sentences without replacement from the the CoNLL-2000 training s&{{21 tokens from WSJ
Sections 15-18). The test set was the same as the CoNLL-2000 testtiipmpdd 7,377 tokens
from WSJ Section 20). Each of the possible 21,589 tokens, that is, waudsers, punctuation,
etc., are tagged by one of 11 chunk types and an O label indicating the itoken part of any
chunk. Chunk labels are prepended with flags indicating that the tokemsb@;y) or is inside (I-)
the phrase. Figure 7 lists all labels and respective frequencies. itioadd labeled tokens, the
data set contains a part-of-speech (POS) column. These tags wematcatly generated by the
Brill tagger and must be incorporated into any model/feature set accéyding

In the following, we explore this task using various SCL selection policies oréhated, but
fundamentally different sequential MRFs: Boltzmann chain MRFs and CRFs

8.3.1 BoLTzMANN CHAIN MRF

Boltzmann chains are a generative MRF that are closely related to hiddéwowtaodels (HMM).
See MacKay (1996) for a discussion on the relationship between Boltzatzain MRFs and

6. Taken from the CoNLL-2000 shared tabkf p: / / ww. cnt s. ua. ac. be/ conl | 2000/ chunki ng/ .
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Train (left column) and test (right column) neg. log-likelihoodtoars for maximum
SCL estimators for the CRF model; regularization, exp—(2na?)~1/|6||3}, parame-
ters areo® = 1 (rows 1,2) and? = 10 (rows 3,4). Rows 1,3 are stochastic mixtures of
full (FL) and pseudo (PL1) log-likelihood components while rows 2,4 dré &éhd 2nd
order pseudo (PL2). Note that weaker regularization resulted in higloerracy at lower
computation.
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Figure 6: Scatter plot representing complexity and negative log-likelihoftctr@én, right:test) of
SCL functions for CRFs with L2 regularization parametée= 1/2. The points represent
different stochastic combinations of full and pseudo likelihood componéihis shaded
region represents impossible accuracy/complexity demands. Since theappui the
obtainable region is empirical, the optimal beta always lies on this boundamarging
A, B we are able to smoothly span complexity (wall seconds) and accuracy.
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Figure 7: Label counts in CoONLL-2000 data set. Phrases such agN&)nverb (VP), and prepo-
sitional (PP) are demarcated by a “begin” tag (B-) and an “inside” tag Nen-phrase
entities are denoted as “other” (O).
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HMMs. We consider SCL components of the fop(Xy, Y2|Y1,Ys), p(Xz2,Xs,Y2,Y3|Y1,Ys) which
we refer to as first and second order pseudo likelihood (with higher @@mponents generalizing
in a straightforward manner).

Figure 8: Graphical representation of a four token Boltzmann chgiB.are weight matrices and
represent preference in particular state-to-state transitions and statdtioe emissions.
Only the start state is conditioned upon while all others are generative.

The nature of the Boltzmann chain constrains our feature set to only etivegarticular token
present at each position, or time index. In doing so we avoid having to naadldiional depen-
dencies across time steps and dramatically reduce computational complexitpugkitisCL is
precisely motivated by high treewidth graphs, we wish to include the full liketifior demonstra-
tive purposes—in practice, this is often not possible. Although POS tagavailable we do not
include them in these features since the dependence they share ononieighibkens and other
POS tags is unclear. For these reasons our time-sliced feature wgdtas only a single-entry one
and cardinality matching the size of the vocabulary (21,589 tokens).

As in Section 8.2, we control overfitting througt.aregularizer, exp—(2na?)-1/6||3}, which
is strong whero? is small and weak wheo? is large. Here again we choosé via cross-validation
unless otherwise noted. More often though, we show results for $egprasentative” to demon-
strate the roles of andp in 6.

Figures 9 and 10 depict train and test negative log-likelihood, that iplepgty, for the SCL
estimatOtéTOS(') with a pseudo/full likelihood selection policy (PL1/FL). As is our conventiwaight
[3 and selection probability correspond to the higher order component, in this case full likelihood.
The lower order pseudo likelihood component is always selected anvadigist 1— 3. As expected
the test set perplexity dominates the train-set perplexity. As was the situat®ectir8.2, we note
that the lower order component serves to regularize the full likelihooelident by the abnormally
largeo?.

We next demonstrate the effect of using a 1st order/2nd order p$ikatilwood selection policy
(PL1/PL2). Recall, our notion of pseudo likelihood never entails conditgoimx, although in
principle it could. Figures 11 and 12 show how the policy responds toingfyoth A and 3.
Figure 13 depicts the empirical tradeoff between accuracy and compleigtyre 14 highlights the
effectiveness of th@ heuristic. See captions for additional comments.

8.3.2 CREB

Conditional random fields are the discriminative counterpart of Boltzmhaims (cf. Figures 4 and
8). Sincex is not jointly modeled withy, we are free to include features with non-independence
across time steps without significantly increasing the computational complexitg. ddir notion of
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Figure 9: Train set (top) and test set (bottom) negative log-likelihootplgety) for the Boltz-
mann chain MRF with pseudo/full likelihood selection policy (PL1/FL). Thexisa3,
corresponds to relative weight placed on FL and and the y-axisprresponds to the
probability of selecting FL. PL1 is selected with probability 1 and weight@. Con-
tours and labels are fixed across columns. Results averaged oveal sewss-validation
folds, that is, resampling both the train set and the PL1/FL policy. Columns lti to
right correspond to weaker regularizatiarf, = {500,25005000,. The best achievable
test set perplexity is about 190.

Unsurprisingly the test set perplexity dominates the train set perplexitychtaga(col-
umn). For a desired level of accuracy (contour) there exists a commaHyidavorable
regularizer. Hencénms' acts as both a regularizer and mechanism for controlling accuracy
and complexity.

pseudo likelihood is more traditional, for exampgY>|Y1,Y, 3, X2) andp(Y2, Y3|Y1,Y, 4, X2, X3) are
valid 1st and 2nd order pseudo likelihood components.

We employ a subset of the features outlined in Sha and Pereira (2003) pvbiced competitive
for the CoNLL-2000 shared task. Our feature vector was basedsen $eature categories, resulting
in a total of 273,571 binary features (i.§,; fi(x) = 7). The feature categories consisted of word
unigrams, POS unigrams, word bigrams (forward and backward), @®ildgrams (forward and
backward) as well as a stopword indicator (and its complement) as defjrieeliis et al. (2004).
The set of possible feature/label pairs is much larger than our set—wenlgéhose features
supported by the CoNLL-2000 data set, that is, those which occur atees. Thus we modeled
297,041 feature/label pairs and 847 transitions for a total of 297,828@ders. As before, we use
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Figure 10: Train set and test set perplexities for the Boltzmann chain MBFRL1/FL selection
policy (see above layout description). The x-axis is ag@aand the y-axis perplexity.
Lighter shading indicates FL is selected with increasing frequency. Noteaghtte
regularizer is weakened the range in perplexity spannedl imgreases and the lower
bound decreases. This indicates that the approximating pomﬁﬁ‘sbmcreases when
unencumbered by the regularizer and highlights its secondary role gslareer.

the L, regularizer, exp—(202)~1/|6||3}, which is strong wherm? is small and weak whea? is
large.

We demonstrate learning on two selection policies: pseudo/full likelihood €$glb and 16)
and 1st/2nd order pseudo likelihood (Figures 17 and 18). In both selqmiices we note a sig-
nificant difference from the Boltzmann chaihas less impact on both train and test perplexity.
Intuitively, this seems reasonable as the component likelihood range aadogare constrained by
the conditional nature of CRFs. Figure 19 demonstrates the empiricabagéeomplexity tradeoff
and Figure 20 depicts the effectiveness offHeeuristic. See captions for further comments.

8.4 Complexity/Regularization Win-Win

It is interesting to contrast the test log-likelihood behavior in the case of mildsétongerL,
regularization. In the case of weaker or no regularization, the test leildod shows different
behavior than the train log-likelihood. Adding a lower order componertt ssgseudo likelihood
acts as a regularizer that prevents overfitting. Thus, in cases thatome o overfitting reducing
higher order likelihood components improves both performance as webnaglexity. This repre-
sents a win-win situation in contrast to the classical view where the MLE haswlest variance
and adding lower order components reduces complexity but increasesritece.
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Figure 11: Train set (top) and test set (bottom) perplexity for the Boltznwmain MRF with
1st/2nd order pseudo likelihood selection policy (PL1/PL2). The x-axigesponds
to PL2 weight and the y-axis the probability of its selection. PL1 is selected with
probability 1 and weight - B. Columns from left to right correspond t0? =
{50001000Q15000. See Figure 9 for more details. The best achievable test set per-
plexity is about 189.5.

In comparing these results to PL1/FL, we note that the test set contouipst éa$s per-
plexity for larger areas. In particular, perplexity is lower at smallealues, meaning a
computational saving over PL1/FL at a given level of accuracy.

In Figure 5 we note this phenomenon when compadfig- 1 to 62 = 10 across the selection
policies PL1/FL and PL1/PL2. That is, the weaker regularization and nesteictive selection
policy, that is, PL1/PL2, is able to achieve comparable test set perplexity.

For the text chunking experiments, we observe a striking win-win wherguki Boltzmann
chain MRF, Figures 9 and 11. Notice that as regularization is decreesagpéring from left to
right), the contours are pulled closer to the x-axis. This means that wechievieng the same
perplexity at reduced levels of computational complexity. The CRF howevdy exhibits the
win-win to a minor extent. We delve deeper into why this is might be the case in loeviiay
section.

8.5 A, 62 Interplay

Throughout these experiments we fixeél and either swept ovefA, ) or used the heuristic to
evaluate(A,B(A)). Motivated by the sometimes weak win-win (cf. Section 8.4) we now consider
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Figure 12: Train (top) and test (bottom) perplexities for the Boltzmann ch&ik Mith PL1/PL2
selection policy (x-axis:PL2 weight, y-axis:perplexity; see above andqus).

PL1/PL2 outperforms PL1/FL (Fig. 10) test perplexity despite PL1/FL iriolyé&L as a
special case (i.e(A, ) = (1,1)). We speculate that the regularizer’s indirect connection
to the training samples precludes it from preventing certain types of ovegfitee
Sec. 8.4 for more discussion.

how the optimalo? changes as a function &f In Figure 21 we used th@ heuristic to evaluate
train and test perplexity over(@,c?) grid. We used CRFs and the text chunking task as outlined in
Section 8.3.2.

For the PL1/FL policy, we observe that for small enougthe optimalo?, that is, thea? with
smallest test perplexity, has considerable range. At some point theemangh samples of the
higher-order component to stabilize the choice of regularizer, notingttisastill weaker than the
optimal full likelihood regularizer. Conversely, the PL1/PL2 regularizes an essentially constant
optimal regularizer which is relatively much weaker.

As a result, we believe that the lack of win-win for the chunking CRF folloseaftwo effects.

In the case of the PL1/FL policy the contour plots are misleading since theresmgleo? that
performs well across all € [0,1]. For the PL1/PL2 there is simply little change in regularization
necessary across

9. Discussion

The proposed estimator family facilitates computationally efficient estimation in cargm@ehical
models. In particular, differer(3,A\) parameterizations of the stochastic composite likelihood en-
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Figure 13: Accuracy and complexity tradeoff for the Boltzmann chain MRR RL1/FL (left) and
PL1/PL2 (right) selection policies. Each point represents the negativikkdidnood
(perplexity) and the number of flops required to evaluate the composite likeliand
its gradient under a particular instantiation of the selection policy. The diaggon
is the convex hull of the points and represents empirically unobtainable catidrig
of computational complexity and accuracy. Particularly interesting is thereiifée
between policies and against the discriminative CRF, cf. Figure 19.

ables the resolution of the complexity-accuracy tradeoff in a domain ardigoncspecific manner.
The framework is generally suited for Markov random fields, includingd@ional graphical mod-
els and is theoretically motivated. When the model is prone to overfit, stochstitxing lower
order components with higher order ones acts as a regularizer atid irsuwin-win situation of
improving test-set accuracy and reducing computational complexity at e thae.

It is interesting to note that the SCL framework may be generalized to ramdestimators
beyond likelihood objects. That is, instead of a fixadunction we may consider a linear combi-
nation of stochastic objects (appearing or not with some probability). Stichatsrs go beyond
traditionalm-estimator but may be analyzed using techniques similar to the ones develdped in
paper. Although not a random-estimator, the work of Dillon et al. (2010) borrows SCL concepts
to facilitate budgeted semi-supervised learning. This too would benefitdrrandomm-estimator
interpretation and indeed many machine learning tasks may fit nicely into suameviork.

The SCL framework may be useful for a wide variety of intractable grapinimdels. Besides
the examples presented here, it may be particularly suited for large scatdsnfimin statistical
physics, exponential random graph models, and models from computdtiolzgy. A particularly
nice feature is that the above computation may be trivially parallelized thus tp&lieffective
computation on large clusters and cloud computing.
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Figure 14: Demonstration of the effectiveness of fhkeeuristic, that is, usin@ms' as a plug-in
estimate forgy to periodically re-estimat@ during gradient descent. Results are for
the Boltzmann chain with PL1/FL (top) and PL1/PL2 (bottom) selection policies. Th
x-axis is the value at the heuristically fouBdand the y-axis the value at the optinfial
The optimal was found by evaluating overfiagrid and choosing that with the smallest
train set perplexity. The first column depicts the best perforriagainst the heuristic
B. The second and third columns depict the training and testing perplexitss)(rat
the best performin@ and heuristically foun. For all three columns, we assess the
effectiveness of the heuristic by its nearness to the diagonal (daskgd lin

For the PL1/PL2 policy the heuristic closely matched the optimal (all bottom ramigpo
are on diagonal). The heuristic out-performed the optimal on the testdasalrslightly
higher perplexity on the training set. It is a positive result, albeit somewlptising,
and is attributable to either coarseness in the grid or improved generalizamadunt-
ing for variability in 6™,
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Figure 15: Train set (top) and test set (bottom) perplexity for the CRF veigtugho/full likelihood
selection policy (PL1/FL). The x-axis corresponds to FL weight and thgriy the prob-
ability of its selection. PL1 is selected with probability 1 and weight[3. Columns
from left to right correspond ta? = {100,100Q5000;. See Figure 9 for more details.
The best achievable test set perplexity is about 5.5.

Although we cannot directly compare CRFs to its generative counterpartbserve
some strikingly different trends. It is immediately clear that the CRF is lesstisens

to the relative weighting of components than is the Boltzmann chain. This is partially
attributable to a smaller range of the objective—the CRF is already conditienakh

the per-component perplexity range is reduced.

Appendix A. Proofs

The proofs below generalize the classical consistency and asymptatierefi of the MLE (Fer-
guson, 1996) and the corresponding resultsnfieestimators (van der Vaart, 1998). They follow
similar lines as the proofs in Ferguson (1996) and van der Vaart (1@@&8)the necessary modifi-
cations due to the stochasticity of the SCL function. We assume belowdtéj > 0 and thai is
a discrete and finite RV.

The following lemma generalizes Shannon’s inequality (Cover and Thor@8s) Zor the KL
divergence. We will use it to prove consistency of the SCL estimator.
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Figure 16: Train (top) and test (bottom) perplexities for a CRF with PL1/Récsen policy (x-
axis:FL weight, y-axis:perplexity; see above and Fig. 10).

Perhaps more evidently here than above, we note that the significangeadtfiaular
B is less than that of the Boltzmann chain. However, for large enadgthe optimal
B # 1. This indicates the dual role of PL1 as a regularizer. Moreover, thpdetl calls
attention to the interplay betwe@nA, ando?. See Sec. 8.5 for more discussion.

Lemma 1 Let(Aq,B1),..., (A, Bk) be a sequence of m-pairs that ensures identifiability,0® g ©
anday,...,ak positive constants. Then

k
Z akD(pS(xAj |XB]) || pe’(XAj |XBJ)) > 0
=1

where equality holds ift = ©'.

Proof The inequality follows from applying Jensen’s inequality for each condali&i. divergence

Po (Xa;|Xs;) P (Xa; [ Xg;)
*D : ; / . : = I RS ! <| E | ]
=logl=0.

For equality to hold we need each term to be 0 which follows onlgsXa; [Xs,) = pe(Xa;[Xs;)
for all j which, assuming identifiability, holds iff = €.
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Figure 17: Train set (top) and test set (bottom) perplexity for a CRF witf2rig order pseudo
likelihood selection policy (PL1/PL2). The x-axif, represents the relative weight
placed on PL2 and the y-axis, the probability of selecting PL2. PL1 is selected with
probability 1. Columns from left to right correspond to weaker reguléidnac? =
{100002000Q40000. See Figure 15 for more details.

Proposition 5 Let © C R" be an open set, gfx) > 0 and continuous and smooth # and
(A1,B1),..., (A, Bk) be a sequence of m-pairs for whi¢bA;,B;) : Vj such that\; > O} ensures
identifiability. Then the sequence of SCL maximizers is strongly consisians,th

P(Jim 8, =80) =1.

n—oo

Proof The SCL function, modified slightly by a linear combination with a term that is cahgta
Bis

1 n k

3. 3 Bi (21109Pox 5)) Ay log e, (X4 15)) )
i=

s/ (0) = =

By the strong law of large numbers, the above expression converges -asto its expectation
k
H(B) = — > BjA; D(Pao (Xa; [ X8;) || Po(Xa;[Xa;))-
=1
If we restrict ourselves to the compact Set {6:c; < |6 —6g|| < ¢y} then

k
supsup\ D ZiBilogpe(Xa; [Xg;) —A;jB;10g Peo (Xa; [Xe;) | < K(x) < 0
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Figure 18: Train (top) and test (bottom) perplexities for a CRF with PL1/Ril@csion policy (x-
axis:PL2 weight, y-axis:perplexity; see above and Fig. 10).

Although increasing\ only brings minor improvement to both the training and testing
perplexities, it is worth noting that the test perplexity meets that of the PL1/HL. S
though, the overall lack of resolution here suggests that smaller valdesaild better
span a range of perplexities and at reduced computational cost.

whereK (x) is a function satisfyin@e K(X) < «. As a result, the conditions for the uniform strong
law of large numbers (Ferguson, 1996) holdleading to

P{ lim sup|scl (8) — u(8)| = 0} =1 17)
=2 gecs

By Proposition 1(0) is non-positive and is zero ifi = 8y. Since the functiom(0) is contin-
uous it attains its negative supremum on the comfastig,_sH(8) < 0. Combining this fact with
(17) we have that there exidissuch that for alh > N the SCL maximizers ofs achieves strictly
negative values ofc?’ (6) with probability 1. However, sinced?’ (8) can be made to achieve values
arbitrarily close to zero undér = 6y, we have thaéﬂ“s' ¢ Sfor n> N. Sincecy,c, were chosen
arbitrarily 8! — 8, with probability 1. [ |

Proposition 6 Making the assumptions of Proposition 1 as well as convexi®y©fR" we have the
following convergence in distribution

VN(OTs'— 6g) ~» N (0, YZY)
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Figure 19: Accuracy and complexity tradeoff for the CRF with PL1/FL (lefty PL1/PL2 (right)
selection policies. Each point represents the negative log-likelihoogléxéy) and
the number of flops required to evaluate the composite likelihood and its gradieeit
a particular instance of the selection policy. The shaded region is thexcbmlieof
the points and represents empirically unobtainable combinations of computatioma
plexity and accuracyo?. Particularly interesting is the difference between policies and
against the generative Boltzmann chain, cf. Figure 13.

where

K
v1_ Zlﬁj)\jVareo(DSeo(Aj,Bj))
=

k
S = Varg, (Z BiA; DSeo(AjaBD) :
=1

The notatiorvarg,(Y) represents the covariance matrix of the random vecumderpg, while
the notations— ,~~ in the proof below denote convergences in probability and in distribution (Fe
guson, 1996).
Proof By the mean value theorem and convexity@fthere exists) € (0,1) for which® = 69+
n(ems'—8y) and
0S0n(8M) = Oscln(Bo) 4 C2scln (8) (B! — 6p)

wherelJf(6) and [02f(8) are ther x 1 gradient vector andx r matrix of second order derivatives
of f(8). SinceB, maximizes the SCLLIsc/(8™) = 0 and

V(O™ — Bg) = —/N(0%s0ln(8')) ~10sen(B0). (18)
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Figure 20: Demonstration of the effectiveness of fhaeuristic. Results are for the CRF with
PL1/FL (top) and PL1/PL2 (bottom) selection policies. The x-axis is the véliieea
heuristically found3 and the y-axis the value at the optinf&lThe first column depicts
the best performin@ against the heuristis. The second and third columns depict the
training and testing perplexities (resp.) at the best perforidiiagd heuristically found
B. For all three columns, we assess the effectiveness of the heuristicripaitsess to
the diagonal (dashed line). See Fig. 14 for more details.

The optimal and heuristig match train and test perplexities for both policies. The actual
B value however does not seem to match as well as the Boltzmann chain. &fpifev
we note the flatness of thgrid (cf. Fig. 16 and 18) this result is unsurprising and can
be disregarded as an indication of the heuristic’'s performance.

By Proposition 1 we hav8™s! - 6, which implies tha®’ - 8, as well. Furthermore, by the law
of large numbers and the fact thawi, > W theng(W,) % g(W) for continuousg,

(0%sc/n(8')) "1 B (025l (B0)) 2 (19)

" 1
- (Z Bj?\jEeoDZSeo(Aj,Bj)>
=1

) -1
- (Zlﬁj}‘jvareo(m%o(p‘j’Bj») :
=
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Figure 21: Optimal regularization parameter as a functior()qﬁ()\)) for PL1/FL (left) and
PL1/PL2 (center) CRF selection policies. In the left figure, PL1/kkepresents the
probability of including FL into the objective. A few FL samples add uncertaiaty
the objective thus a weaker regularizer is preferable. As more FL samgescorpo-
rated, this effect diminishes but still acts to regularize since the full likelinoody)
best regularization ig? = 500 (red triangle). The center figure, PL1/PL2, exhibits only
a minor change aks (the probability of incorporating PL2) is increased. It is however,
best served by a much weaker regularizer than PL2 alone (red triangle)

The right figure depicts the test-set perplexity as a functiok oging the optimab?
(smallA values were clipped as their performance is quite poor). Note that thiexigyp
is lowest when both components are always selecdted 1) and that the PL1/FL policy
outperforms the PL1/PL2 policy as expected.

For the remaining term in (18) we have
k 1 n
Vilisetn(o) = 3 Bivii 3 W

where the random vectoif; = Z;;0log pe(x£j>|x,§‘j>) have expectation 0 and variance matrix
Varg, (W) = AjVarg,(0Sg, (A, Bj)). By the central limit theorem

1 n
Vi 3 W~ N (O Vare, (1 (A).B)).

T_he sgmﬁ O0stln(8g) = Z‘j‘:l B ﬁ% zi”?lV\,{j .is gsyrnptotigally Gaussian as yvell v_vith mean zero
since it converges to a sum of Gaussian distributions with mean zero. Sitice general case
the random variable%% SiLiWj, j =1,... k are correlated, the asymptotic variance matrix of
/nOscy(6p) needs to account for cross covariance terms leading to

k
v/nOscln(6g) ~~ N <O7Var90 <z Bj)\jDSgo(Aj,Bj))> . (20)
=1
We finish the proof by combining (18), (19) and (20) using Slutsky’s it |
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Recall our notation for the case that the true mddigl{pg : 6 € ©}.

def

We(X,Z) =0Omg(X,2)
We(X,Z) £ 0%mg(X,Z) (matrix of second order derivatives)

Wn(8) défi_i%(X“%Z“U.

Proposition 7 Assuming the conditions in Proposition 1 as welbagy. g_g,|>¢ M(6) < M(8o) for
all & > 0 we haved™' — 6y as n— oo with probability 1.

Proof We assert

P{ lim sup|scl (8) —u(0)| = 0} =1 (21)
N—=%ges
on the compact se8= {6 :c; < || —6p|| < c2} as in the proof of Proposition 1. We proceed
similarly along the lines of Proposition 1, with the necessary modification due tiat¢hé¢hat the
true model is outside the parametric family.

Since the functionu(8) is continuous it attains its negative supremum on the compact
S supysH(8) < p(Bp) > 0. Combining this fact with (21) we have that there exNtsuch that
for all n > N the SCL maximizers o8 achieves strictly negative valuessi#’(6) with probability
1.

However, sincesc? (8) can be made to achieve values arbitrarily closp(fly) asé, — 6o, we
have tha®™s! ¢ Sfor n > N. Sincecy, ¢, were chosen arbitrarilg™s' — 8y with probability 1. W

Proposition 8 Assuming the conditions of Proposition 2 as WeIE¢§X)Ep(Z)\|qJGO(X,Z)||2 < 0o,
Epx)E p(z)We,(X) exists and is non-singulat¥;; | = |02We(x)/08,0;| < g(x) for alli, jandBin a
neighborhood 06, for some integrable g, we have

A

. _ 1 n . .
VN(Bh —80) = —(Epx)E p(z)Pe,) 1%'21%0()(“)’2(')) +op(1)
1=
or equivalently

~ . 1n . : 1
B, =60—(E Epz)We, -1z We X(I),Z(I) + 0 <> .
n = 60— (Epx)Ep(z)We,) ”i; o )+op NG

Proof By Taylor’'s theorem there exists a random vedigon the line segment betweép and®,
for which

0= W,(6n) = Wn(B0) + Wn(B0) (B — B0) + %(én —60) " Wn(B,) (6, —8p).

which we re-arrange as

/¥1(80) (80— Bo) + V5 (B — Bo) @i (@) (Bn — B) = V¥ (Bo) 22)
= — V4 (80) + op(1)

2630



STOCHASTIC COMPOSITELIKELIHOOD

where the second equality follows from the fact tﬁﬁ\t& 8o and continuous functions preserves
converges in probability.

SinceW,(8p) converges by the law of large numbersap x)E pz)Ps(X,Z) and ¥, (8n) con-
verges to a matrix of bounded values in the neighborhodd ¢for largen), the lhs of (22) is

~ ~

VA (Ero Erizbo(X,2) + (1) + 580 - 86)0R(1) ) (B 60

~

= VN(Ep(x)Ep(z)¥e(X,Z) +0p(1))(8n — o)

sincef, — 8y = op(1) andop(1)Op(1) = op(1) (the notatiorOp(1) denotes stochastically bounded

and it applies tdV(8,) as described above). Putting it together we have
VN(Epx)Epz)We(X,Z) +0p(1))(8n — B0) = —+/NWn(8o) +0p(1).

Since the matrixe px)E p(z)Us(X,Z) +0p(1) converges to a non-singular matrix, multiplying the
equation above by its inverse finishes the proof. |

Corollary 2 Assuming the conditions specified in Proposition 4 we have
VN(8n —80) ~ N(O, (Epx)Ep(z) We,) H(Epx)Epz) WaoWe,) (Epx) Ep(z) Vo) ).

Proof Equation (12) follows from (10) by noticing that due to the central limit theo¥é,(6o) (as
it is an average of iid RVs with expectation 0)

10 o
V- I _Zweo(x(')»z(')) ~+ N(0,E p(x) E p(z) Wo, Vg, )-
i=

Substituting this in the right hand side of (10) and accounting for the modifieanee due to the
matrix inverse results in (12). |

Appendix B. List of Figures

The following lists figures by subject.

B.1 Case Study

e Boltzmann Machines
Figure 1 Tabular comparison of policies for computation and accuracy

Figure 2 Theoretical analysis of asymptotic variance for trace and detmninin
Figure 3 Computation/accuracy tradeoff

B.2 Experimental Study

e Labeling sentiment with CRFs
Figure 4 CRF graphical model
Figure 5 PL1/FL & PL1/PL2 for different? as a function of8 x A
Figure 6 Computation/accuracy tradeoff with empirical unachievable region
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e Chunking CoNLL-2000
Figure 7 CoNLL-2000 data set label counts

... generatively (Boltzmann Chains)
Figure 8  Boltzmann Chain graphical model
Figure 13 Computation/accuracy tradeoff with empirical unachievablerregio
Figure 9  PL1/FL train & test results as a functionfok A
Figure 10 PL1/FL train & test results as a functiorof
Figure 11 PL1/PL2 train & test results as a functiorBof A
Figure 12 PL1/PL2 train & test results as a functiorof

... discriminatively (CRFs)
Figure 4  CRF graphical model
Figure 19 Computation/accuracy tradeoff with empirical unachievablemegio
Figure 15 PL1/FL train & test results as a functionof A
Figure 16 PL1/FL train & test results as a functiorBof
Figure 17 PL1/PL2 train & test results as a functiorffof A
Figure 18 PL1/PL2 train & test results as a functiorof

e (3 heuristic
Figure 14 for Boltzmann Chains
Figure 20 for CRFs
Figure 21 Optimal regularizing parameter as a functioh of
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