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Abstract

Actor-Critic based approaches were among the first to addesaforcement learning in a gen-
eral setting. Recently, these algorithms have gained redéwerest due to their generality, good
convergence properties, and possible biological relevahe this paper, we introduce an online
temporal difference based actor-critic algorithm whiclpisved to converge to a neighborhood
of a local maximum of the average reward. Linear functionragimation is used by the critic
in order estimate the value function, and the temporal diffee signal, which is passed from the
critic to the actor. The main distinguishing feature of tihegent convergence proof is that both the
actor and the critic operate on a similar time scale, whilmost current convergence proofs they
are required to have very different time scales in order tvemye. Moreover, the same temporal
difference signal is used to update the parameters of bethdtor and the critic. A limitation of
the proposed approach, compared to results available totitme scale convergence, is that con-
vergence is guaranteed only to a neighborhood of an optiatatyrather to an optimal value itself.
The single time scale and identical temporal differencealigsed by the actor and the critic, may
provide a step towards constructing more biologicallyistialmodels of reinforcement learning in
the brain.

Keywords: actor critic, single time scale convergence, temporakdiifice

1. Introduction

In Reinforcement Learning (RL) an agent attempts to improve its perforenawver time at a given
task, based on continual interaction with the (usually unknown) environ(Bemntsekas and Tsit-
siklis, 1996; Sutton and Barto, 1998). Formally, it is the problem of mapptogtsons to actions
in order to maximize a given average reward signal. The interaction betWeemgent and the en-
vironment is modeled mathematically as a Markov Decision Process (MDPjoAgipes based on
a direct interaction with the environment, are referred tgiasilation based algorithmsand will
form the major focus of this paper.

A well known subclass of RL approaches consists of the so called adtior{AC) algorithms
(Sutton and Barto, 1998), where the agent is divided into two comporemtactor and a critic.
The critic functions as a value estimator, whereas the actor attempts to sdleos dmsed on
the value estimated by the critic. These two components solve their own proldgarately but
interactively. Many methods for solving the critic's value estimation problemafiixed policy,
have been proposed, but, arguably, the most widely uskariporal differenc€TD) learning. TD
learning was demonstrated to accelerate convergence by trading biasiémrce effectively (Singh
and Dayan, 1998), and is often used as a component of AC algorithms.
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In general, policy selection may be randomized. When facing problems witgeramber of
states or actions (or even continuous state-action problems), effeotieg pelection may suffer
from several problems, such as slow convergence rate or an ineffiefgresentation of the policy.
A possible approach to policy learning is the so-capeticy gradient metho@Baxter and Bartlett,
2001; Cao, 2007; Cao and Chen, 1997; Konda and Tsitsiklis, 200yddh and Tsitsiklis, 1998).
Instead of maintaining a separate estimate for the value for each state (ecitatepair), the agent
maintains a parametrized policy function. The policy function is taken to beexeiiffiable function
of a parameter vector and of the state. Given the performance measpendihg on the agent’s
policy parameters, these parameters are updated using a sampling-fi@satieeof the gradient
of the average reward. While such approaches can be proved tergerunder certain conditions
(Baxter and Bartlett, 2001), they often lead to slow convergence, duerydiigh variance. A more
general approach based on sensitivity analysis, which includes pofdjegt methods as well as
non-parametric average reward functions, has been discussediminlépe recent manuscript by
Cao (2007).

Several AC algorithms with associated convergence proofs have bagwsed recently (a short
review is given in Section 2.2). As far as we are aware, all the conmeegeesults for these algo-
rithms are based on two time scales, specifically, the actor is assumed to uptdegr param-
eters on a much slower time scale than the one used by the critic. The intuitha rea this time
scale separation is clear, since the actor improves its policy based on the estimates. It can be
expected that rapid change of the policy parameters may not allow the criffettiveely evaluate
the value function, which may lead to instability when used by the actor in ordertpdate its
parameters.

The objective of this paper is to propose an online AC algorithm and estatslisbnvergence
under conditions which doot require the separation into two time scales. In this context we note
that recent work by Mokkadem and Pelletier (2006), based on eagkearch by Polyak and col-
leagues, has demonstrated that combing the two-time scale approach witkridgiray method of
Polyak (1990), can lead to the single time scale convergence at the optimalmahese works
the rate of convergence is defined in terms of convergence in distribwilulg the present work
focuses on convergence with probability 1. As far as we are awareates of convergence are
currently known for two time scale approaches in the latter, stronger, seltirfgct, our motiva-
tion for the current direction was based on the possible relevance ofgaitams in a biological
context (Daw et al., 2006), where it would be difficult to justify two veryeliént time scales oper-
ating within the same anatomical structdriéVe refer the reader to DiCastro et al. (2008) for some
preliminary ideas and references related to these issues. Given therweaklitions assumed on
the time scales, our convergence result is, not surprisingly, somevdaktewthan that provided
recently in Bhatnagar et al. (2008, 2009), as we are not ensuredverge to a local optimum, but
only to a neighborhood of such an optimum. Nevertheless, it is shown thattbkeborhood size
can be algorithmically controlled. Further comparative discussion canupel fio Section 2.

This paper is organized as follows. In Section 2 we briefly recapitulareruAC algorithms
for which convergence proofs are available. In Section 3, we formatgdace the problem setup.
We begin Section 4 by relating the TD signal to the gradient of the averagedeand then move
on to motivate and derive the main AC algorithm, concluding the section with aeogence proof.
A comparative discussion of the main features of our approach is peesienSection 5, followed

1. Note that the results in Mokkadem and Pelletier (2006), while providitighapsingle time scale convergence, still
rely on an underlying two time scale algorithm
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by some simulation results in Section 6. Finally, in Section 7, we discuss the rasdlfsoint
out possible future work. In order to facilitate the readability of the paperhave relegated all
technical proofs to appendices.

2. Previous Work

In this section we briefly review some previous work in RL which bears tirglevance to our
work. While many AC algorithms have been introduced over the years, eus fonly on those for
which a convergence proof is available, since the main focus of this waik é@nvergence issues,
rather than on establishing the most practically effective algorithms. Seexdople, Peters and
Schaal (2008), for promising applications of AC algorithms in a robotic setting

2.1 Direct Policy Gradient Algorithms

Direct policy gradient algorithms, employing agents which consist of arr acty, typically esti-
mate a noisy gradient of the average reward, and are relatively closeilirckiaracteristics to AC
algorithms. The main difference from the latter is that the agent does not inargéaparate value
estimator for each state, but rather interacts with the environment direallyn @nsense maintains
its value estimate implicitly through a mapping which signifies which path the ageuldstaixe in
order to maximize its average reward per stage.

Marbach and Tsitsiklis (1998) suggested an algorithm for non-discdweréronments. The
gradient estimate is based on an estimate of the state values which the actor ssiimlgten-
teracting with the environment. If the actor returns to a sequence of pelyivisited states, it
re-estimates the states value, not taking into account its previous visits.ppingaah often results
in large estimation variance.

Baxter and Bartlett (2001) proposed an online algorithm for partially wbbée MDPs. In
this algorithm, the agent estimates the expected average reward for thiisoonnted problems
through an estimate of the value function of a related discounted probleras Iskown that when
the discount factor approaches 1, the related discounted problewxapptes the average reward
per stage. Similar to the algorithms of Marbach and Tsitsiklis (1998), it sufifem relatively large
estimation variance. Greensmith et al. (2004) have proposed a methoopiogavith the large
variance by adding a baseline to the value function estimation.

2.2 Actor Critic Algorithms

As stated in Section 1, the convergence proofs of which we are awafe&falgorithms are based
on two time scale stochastic approximation (Borkar, 1997), where the acesisned to operate
on a time scale which is much slower than that used by the critic.

Konda and Borkar (1999) suggested a set of AC algorithms. In two afdlgorithms (Algo-
rithms 3 and 6), parametrized policy based actors were used while the criticagsad on a lookup
table. Those algorithms and their convergence proofs were specific @ilths policy function in
the actor.

As far as we are aware, Konda and Tsitsiklis (2003) provided the firstezgence proof for
an AC algorithm based on function approximation. The information passed the critic to the
actor is the critic’s action-value function, and the critic’'s basis functiotschvare explicitly used
by the actor. They provided a convergence proof of theirNj2{gorithm where\ approaches 1.
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A drawback of the algorithm is that the actor and the critic must share thematan regarding
the actor’s parameters. This detailed information sharing is a clear handiadpological context,
which was one of the driving forces for the present work.

Finally, Bhatnagar et al. (2008, 2009) recently proposed an AC algosithich closely resem-
bles our proposed algorithm, and which was developed independentiyr®f ¢n this work the
actor uses a parametrized policy function while the critic uses a functioroxdpmation for the
state evaluation. The critic passes to the actor the TD(0) signal and bagetth® actor estimates
the average reward gradient. A detailed comparison will be provided itio8€t. As pointed out
in Bhatnagar et al. (2008, 2009), their work is the first to provide a egance proof for an AC
algorithm incorporating bootstrapping (Sutton and Barto, 1998), whatstyapping refers to a sit-
uation where estimates are updated based on other estimates, rather tlaotonehsurements (as
in Monte Carlo approaches). This feature applies to our work as well.|S@enate that Bhatnagar
et al. (2008, 2009) extend their approach to the so-called naturaégtatimator, which has been
shown to lead to improved convergence in supervised learning as well.aBhie present study
focuses on the standard gradient estimate, leaving the extension to gataliehts to future work.

3. The Problem Setup

In this section we describe the formal problem setup, and present arsegaf assumptions and
lemmas which will be used in order to prove convergence of Algorithm 1 iniGed. These
assumptions and lemmas mainly concern the properties of the controlled Memkav, which
represents the environment, and the properties of the actor’s paramgtizey function.

3.1 The Dynamics of the Environment and of the Actor

We consider an agent, composed of an actor and a critic, interacting withvamorement. We
model the environment asMarkov Decision Proces@MDP) (Puterman, 1994) in discrete time
with a finite state seX and an action setl, which may be uncountable. We denote |i§} the
size of the se’. Each selected actianc U determines a stochastic matfxu) = [P(y|X, U)]xyecx
whereP(y|x, u) is the transition probability from a stakec X to a statey € X given the control.
For each stat& € X the agent receives a corresponding rewdrsd, which may be deterministic
or random. In the present study we assume for simplicity that the rewartkisministic, a benign
assumption which can be easily generalized.

Assumption 1 The rewards{r(X) }xcx, are uniformly bounded by a finite constant B

The actor maintains parametrized policy functiorA parametrized policy function is a conditional
probability function, denoted by(u|x,8), which maps an observatione X into a controlu € U
given a parametd € RK. The agent’s goal is to adjust the paraméar order to attain maximum
average reward over time. For ea@hwe have a Markov Chain (MC) induced IB(y|x,u) and
H(u|x,B). The state transitions of the MC are obtained by first generating an actaaeording
to p(ulx,8), and then generating the next state accordinfiy|x, u) }xyex. Thus, the MC has a
transition matrixP(8) = [P(y|x, 8)]xyex Which is given by

P(yp8) = | P(yhu)du(uix.). @
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_ We denote the space of these transition probabilitie® by {P(8)|6 € R¥}, and its closure by
. The following assumption is needed in the sequel in order to prove the nzailtsré€Bemaud,
1999).

Assumption 2 Each MC, R0) € ?7, is aperiodic, recurrent, and irreducible.

As a result of Assumption 2, we have the following lemma regarding the stajidigribution and
a common recurrent state.

Lemma 1 Under Assumption 2 we have:

1. Each MC,P(0) € P, has a unique stationary distribution, denoted 1{¥)), satisfying
1(6)'P(6) =T11(0)".

2. There exists a state, denotedddywhich is recurrent for alP(8) € .

Proof For the first part see Corollary 4.1 in Gallager (1995). The secoridgimws trivially from
Assumption 2. (]

The next technical assumption states that the first and second desvatithe parametrized policy
function are bounded, and is needed to prove Lemma 3 below.

Assumption 3 The conditional probability function (u|x,0) is twice differentiable. Moreover,

there exist positive constants,Bnd B, such that for all xc X, ue U, 0 ¢ RXandk > 1,k <K

we have

0%(ulx, )
06, 06,

Bu(ulx,6)
< .
‘ 00k - Buz

’S Bulv

A notational comment concerning bounds Throughout the paper we denote upper bounds on dif-
ferent variables by the letter B, with a subscript corresponding to the bbridself. An additional
numerical subscriptl or 2, denotes a bound on the first or second derivative of the variable. For
example, B, By, and B, denote the bounds on the function f and its first and second derivatives
respectively.

3.2 Performance Measures

Next, we define a performance measure for an agent in an environmeaavérage reward per
stageof an agent which traverses a MC starting from an initial stateX is defined by

A 1 T-1
J(x,0) :T||anE T n;r(xn) Xo=X,0],
where E:|6] denotes the expectation under the probability meaB(B& andx, is the state at time
n. The agent’s goal is to find € RX which maximizesl(x,8). The following lemma shows that
under Assumption 2, the average reward per stage does not deptrgdioitial state; see Bertsekas
(2006), vol. Il, Section 4.1.

Lemma 2 Under Assumption 2 and based on Lemma 1, the average reward jger, & 0), is
independent of the starting state, is denoted)t§), and satisfies)(68) = 1(0)'r.
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Based on Lemma 2, the agent’s goal is to find a parameter v@ctanich maximizes the average
reward per stagg(0). In the sequel we show how this maximization can be performed by optimiz-
ingn(0), usinglgn(6). A consequence of Assumption 3 and the definition @) is the following
lemma.

Lemma 3

1. Foreach,ye X, 1<i, j <K, andd € R, the function®P(y|x, 8) /06; andd?P(y|x, 8) /06,06
are uniformly bounded bBp, andBp, respectively.

(@) Foreacke X, 1<i,j<K,andd e RX, the function®m(x|0),/96; ando>1i(x|0),/06;08;
are uniformly bounded byB, andBy, respectively.

(b) Forall 1<i,j <K, and® € RX, the functionsn(6), an(8)/06;, 9°1(x|8)/06;08; are
uniformly bounded by By, By, andBj, respectively.

(c) Forallx € X and® € RX, there exists a constabg > 0 such thati(x|6) > by.

The proof is technical and is given in Appendix A.1. For later use, wanddfie random variable
T, which denotes the first return time to the recurrent stat€ormally,

T £ min{k > 0|xp = X*, Xc = X*}.

It is easy to show that under Assumption 2, the average reward percstadpe expressed by

1 T-1
B)=ImE|=Sr =Xx,0].
n(8) = lim Tﬂ; (%n) | Xo =X,
Next, we define thdifferential value functiorf statex € X which represents the average differen-
tial reward the agent receives upon starting from a staited reaching the recurrent statefor the
first time. Mathematically,

T-1

;(r(xn) —n(e))‘Xo—xﬁ] :

n=

h(x,8) AE[

Abusing notation slightly, we denot&6) = (h(x1,6),...,h(xx|,8)) € R, For eactd € RK and
X € X, h(x,0), r(x), andn(0) satisfy Poisson’s equation, as in Theorem 7.4.1 in Bertsekas (2006),
that is,

h(x.8) =r(x) ~n(6)+ ¥ P(ylx.8)h(y,6). )

yeXx

Based on the differential value we define theporal differencéTD) between the states= X and
y € X (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998),

d(x,y,8) £ r(x) —n(8) +h(y,8) — h(x,6). ®3)

According to common wisdom, the TD is interpreted as a prediction error. Thtderema states
the boundedness bfx,08) and its derivatives. The proof is given in Appendix A.2.
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Lemma 4

1. The differential value functiorh(x, 8), is bounded and has bounded first and second deriva-
tive. Mathematically, for alk € X, 1< i, j < K, and for alld € RX we have

oh(x,
o) < B, | T <,

d2h(x, 6)
96,00,

< Bp,.

(@) There exists a constaBp such that or alB € RX we have|d(x,y,8)| < Bp, where
BD - 2(Br + Bh)

3.3 The Critic’'s Dynamics

The critic maintains an estimate of the environmental state values. It does soittainiag a
parametrized function which approximates, 8), and is denoted bfi(x,w). The functionh(x,w)
is a function of the state € X and a parametav € R-. We note thah(x,8) is a function o8, and
is induced by the actor poligy(u|x, 8), while h(x,w) is a function ofw. Thus, the critic’s objective
is to find the parameter which yields the best approximationiof®) = (h(xy,0),...,h(X x|, 8)), in
a sense to be defined later. We denote this optimal vectaer (§). An illustration of the interplay
between the actor, critic, and the environment is given in Figure 1.

Agent
Actor < Critic
iy |y, 0) dn h(z, w)
Yy A A
un- :Ifﬂ_ 7,74.
4

Environment

p(a:n—l—] |i1:'n,: L‘l._,,_)

Figure 1: A schematic illustration of the dynamics between the actor, the criticth@nenviron-
ment. The actor chooses an actioR, according to the parametrized polipyu|x, 0).
As a result, the environment proceeds to the next state according to tetioraproba-
bility P(Xn+1/Xn,un) and provides a reward. Using the TD signal, the critic improves its
estimation for the environment state values while the actor improves its policy.

4. A Single Time Scale Actor Critic Algorithm with Linear Func tion Approximation

In this section, we present a version of an AC algorithm, along with its cgemee proof. The
core of the algorithm is based on (4) below, where the actor’s estimaigrg®) is based on the
critic’s estimate of the TD signal(x,y,8). The algorithm is composed of three iterates, one for the
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actor and two for the critic. The actor maintains the iterate of the parameter Ysmoresponding

to the policyp(u|x,8), where its objective is to find the optimal value &fdenoted byd*, which
maximizesn(0). The critic maintains the other two iterates. One iterate is used for estimating
the average reward per staggp), where its estimate is denoted Ry The critic’s second iterate
maintains a parameter vector, denotedaby R“, which is used for the differential value estimate
using a function approximator, denotedftiyv). For eact® € R¥, there exists a*(8) which, under

the policy induced by, is the optimal for estimatingij(w). The critic’s objective is to find the
optimalf andw.

4.1 Using the TD Signal to Estimate the Gradient of the Average Rewalr

We begin with a theorem which serves as the foundation for the policy gitaadgorithm described
in Section 4. The theorem relates the gradient of the average rewasthgen (0), to the TD signal.
It was proved in Bhatnagar et al. (2008), and is similar in its structure ta thleerems which
connectn(0) to the Q-value (Konda and Tsitsiklis, 2003), and to the differential value function
(Cao, 2007; Marbach and Tsitsiklis, 1998).

We start with a definition of thékelihood ratio derivative

DG“(U‘Xa 9)
K(ulx,8)

where the gradieriflg is w.r.t.8, andyi(x, u,8) € RK. The following assumption states thjatx, u, 6)
is bounded, and will be used to prove the convergence of algorithm 1.

B(x,u,6) £

Y

Assumption 4 Forallx € X, ue U, andB € RX, there exists a positive constanty,Buch that
Hl'p(x7uve)”2 S BllJ < 0,
where|| - ||2 is the Euclidean k. norm.

Based on this, we present the following theorem which relates the gradie(®) to the TD signal.
For completeness, we supply a (straightforward) proof in Appendix B.

Theorem 5 For any arbitrary function fx), the gradient w.r.t8 of the average reward per stage
can be expressed by

Jen(®)= 3 P(xUy.8)p(x,u.8)d(x.y.6). (4)

X,yex
where Rx,u,y,0) is the probabilityPr(x, = X,un = U,Xn+1 = Yy) Subject to the policy parametér

4.2 The Updates Performed by the Critic and the Actor

We note that the following derivation regarding the critic is similar in some réspeche deriva-
tion in Section 6.3.3 in Bertsekas and Tsitsiklis (1996) and Tsitsiklis and R@7§19Ve define
the following quadratic target function used to evaluate the critic's perfocmén assessing the
differential valueh(0),

I (w,6) 2 % S 1x) (R(xw) — h(x,8))° . (5)

XexX

The probabilities{1(x|0) }xcx are used in order to provide the proportional weight to the state
estimates, according to the relative number of visits of the agent to the diffeedes.
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Limiting ourselves to the class of linear function approximations in the critic, wsider the
following function for the differential value function

h(x,w) = ¢(x)'w, (6)

where@(x) € Rt. We defined € RXI*L to be the matrix

(Pl(>.(\x|) ®(Xx) - Q(>.<|x|)
whereq(-) is a column vector. Therefore, we can express (6) in vector form as
h(w) = dw,
where, abusing notation slightly, we $&t) = (R(x1,w), ..., A(xx, w))".

We wish to express (5), and the approximation process, in an approgiilatet space. Define
the matrixI(0) to be a diagonal matrikl(8) = diag(1(8)). Thus, (5) can be expressed as

1(w8) = 3 [1(8)# (h(e) — o)} 2 3 1h(8) ~ dwi . )

In the sequel, we will need the following technical assumption.

Assumption 5
1. The columns of the matris are independent, that is, they form a basis of dimenkion

(@) The norms of the column vectors of the matéixare bounded above by 1, that is,
loello<1fori<k<L.

The parametew*(8), which optimizes (7), can be directly computed, but involves inverting a ma-
trix. Thus, in order to find the right estimate fbfw), the following gradient descen{Bertsekas
and Tsitsiklis, 1996) algorithm is suggested,

Wnt1 = Wp — YnOwl (Wh, 0), (8)

where{yn}n_4 is a positive series satisfying the following assumption, which will be useadbivimpy
the convergence of Algorithm 1.

Assumption 6 The positive serie§yn};r_; satisfies

Y=o F<e

n=1 n=1
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Writing the termy| (wy,) explicitly yields
Owl (Wn) = ®'T1(0)dwy, — D'TT(0)h(B).
For eactB € RK, the valuew*(8) is given by settindlyl (w,8) = 0, that is,

w(8) = (®'T(8)®) " ®'N(B)h(B).

Note that Bertsekas and Tsitsiklis (1996) prove that the mé®iKi (8)®) L ®'M1(8) is a projection
operator into the space spanneddby, with respect to the northr,(e) . Thus, the explicit gradient
descent procedure (8) is

Wnt1 = Wp — Yn®'T1 (8) (Pwh—h(8)). 9
Using the basi®, in order to approximates(0), yields an approximation error defined by

Eapp(6) = Wigﬂ‘; [h(6) — ®W[[;g) = [N (8) — PW" (8) | ) -

We can bound this error by
Eapp= SUPEapp(D). (10)
BeRK
The agent cannot accels&, 8) directly. Instead, it can interact with the environment in order
to estimateh(x, 0). We denote by, (X) the estimate ofi(x,8) at time step, thus (9) becomes

Wi = Wo + Y ®'T1(8) (n — Pwy) .

This procedure is termestochastic gradient descefertsekas and Tsitsiklis, 1996).

There exist several estimators for One sound method, which performs well in practical prob-
lems (Tesauro, 1995), is the TH(method; see Section 5.3.2 and 6.3.3 in Bertsekas and Tsitsiklis
(1996), or Chapter 6 in Sutton and Barto (1998), where the parahetatisfies 0< A < 1. This
method devises an estimator which is based on previous estimdtéspthat is,w,, and is based
also on the environmental rewardx,). This idea is a type o bootstrappingalgorithm, that is,
using existing estimates and new information in order to build more accurate estisegeSutton
and Barto (1998), Section 6.1.

The TD(A) estimator forh,, 1 is

s () = (1—A>kzoxkﬁékl1<xn>, (12)

where thek-steps predictois defined by

k
ﬁr&?l (%n) = ( zor (Xnrm) + Pn (Xn+k+1)> .

The idea of bootstrapping is apparent in (11): the predictor for therelifteal value of the state
Xn at the(n+1)-Th time step, is based partially on the previous estimates thriopigh «.1), and
partially on new information, that is, the rewardx,.m). In addition, the parameter gives an
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exponential weighting for the differektstep predictors. Thus, choosing the righdan yield better
estimators.

For the discounted setting, it was proved by Bertsekas and Tsitsiklis Y1p9&95) that an
algorithm which implements the T®) estimator (11) online and converges to the right value is the
following one

Wni1 = Wn+ YnOn€n,
& = OaAen_1+0(X), (12)

whered, is the temporal difference between thaéh and the(n+ 1)-th cycle, ande, is the so-
calledeligibility trace; see Sections 5.3.3 and 6.3.3 in Bertsekas and Tsitsiklis (1996) or Chapter 7
in Sutton and Barto (1998), and the parametds the discount factor. The eligibility trace is an
auxiliary variable, which is used in order to implement the idea of (11) as lmecaigorithm. As
the name implies, the eligibility variable measures how eligible is the TD varidhl& (12).

In our setting, the non-discounted case, the analogous equations tuitithyeare

Wnii = Wi+ Ynd (X, Xnt1, Wn) €n
d (Xn, Xn+1,Wn) = F(Xn) = Am~+ N(Xnt-1, Wm) — (X, Win)
€ = Aen1+@(X).

The actor’s iterate is motivated by Theorem 5. Similarly to the critic, the actorutss a
stochastic gradient ascent step in order to find a local maximum of thegavesavard per stage
n(8). Therefore,

Bnt1 = Bn + YnW(Xn, Un, en>d~n(xn,Xn+1,Wn),

wherey is defined in Section 4.1. A summary of the algorithm is presented in Algorithm 1.

4.3 Convergence Proof for the AC Algorithm

In the remainder of this section, we state the main theorems related to the emeegf Algo-
rithm 1. We present a sketch of the proof in this section, where the tethleizals are relegated to
Appendices C and D. The proof is divided into two stages. In the firsesiasgrelate the stochas-
tic approximation to a set of ordinary differential equations (ODE). In #osd stage, we find
conditions under which the ODE system converges to a neighborhood opthmaln (6).

The ODE approach is a widely used method in the theory of stochastic amgaten for in-
vestigating the asymptotic behavior of stochastic iterates, such as (13)3(k& key idea of the
technique is that the iterate can be decomposed into a mean function and genuoissuch as a
martingale difference noise. As the iterates advance, the effect of tbeweakens due to repeated
averaging. Moreover, since the step size of the iterate decreasesy{argy(13)-(15)), one can
show that asymptotically an interpolation of the iterates converges to a comsirsatution of the
ODE. Thus, the first part of the convergence proof is to find the OB#egy which describes the
asymptotic behavior of Algorithm 1. This ODE will be presented in Theorein the second part
we use ideas from the theory of Lyapunov functions in order to chaiaetthe relation between
the constants x|, 'y, Iy, etc., which ensure convergence to some neighborhood of the maximum
point satisfying||Clen(0)||2 = 0. Theorem 8 states conditions on this convergence.
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Algorithm 1 TD AC Algorithm

Given:

e An MDP with a finite setx of states satisfying Assumption 2.

¢ An actor with a parametrized poligyu|x, 8) satisfying Assumptions 3 and 4.

e A critic with a linear basis foh(w), that is,{@}-_,, satisfying Assumption 5.

e A setH, a constanB,,, and an operatd¥,, according to Definition 6.

Step parametefs, andrl .
e Choose a TD parameter<OA < 1.
For stepn=0:
e Initiate the critic and the actor variablegs = 0 wo = 0,69 = 0,60 = 0.

Foreachstep=1,2,...
Critic: Calculate the estimated TD and eligibility trace

Qi1 = ﬁn+Vnrn (r(Xn) —fin)
h(X, Wn) = V\/n(p(x)7

d (Xn, Xnt1,Wn) = 1(Xn) — An+ "(Xnt1, W) — h(Xn, Wh),

€n = Aen1+0(X).
Set,

Wit = W+ Yalwd (Xn,Xni1,Wn) €n
Actor: .
Bn+1 = Bn + YaW(Xn, Un, On) On(Xn, Xn+1, Wn)

Project each component of,. 1 ontoH (see Definition 6)

(13)

(14)

(15)

4.3.1 RELATE THE ALGORITHM TO AN ODE

In order to prove the convergence of this algorithm to the related ODE esd to introduce the
following assumption, which adds constraints to the iteratiomfand will be used in the sequel to
prove Theorem 7. This assumption may seem restrictive at first butdtigeat is not. The reason

is that we usually assume the bounds of the constraints to be large enabghtesates practically

do not reach those bounds. For example, under Assumption 2 and adlditidth assumptions, it

is easy to show that(0) is uniformly bounded for alb € RK. As a result, there exist a constant
boundingw*(8) for all 8 € RK. Choosing constraints larger than this constant will not influence the

algorithm performance.
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Definition 6 Let us denote byw; }-_, the components of w, and choose a positive constant\&
define the set K- R x R* to be

HE{(Bw)|-0<B <o, 1<i<K, —By<wj<By, 1<j<L},
and letW,, be an operator which projects w onto H, that is, for each Crdsiex j <L, Wawj =
maxmin(w;, Bw), —By).
The following theorem identifies the ODE system which corresponds to itgorl. The detailed
proof is given in Appendix C.

Theorem 7 Define the following functions:

G(6) = ®T(6) ixmp(e)m,

m=0
D(x.u,y)(e) = T(X)P(ulx,0)P(yjx,u)y(x,u,B8), xyeX, ue. (16)
AB) = DM(B)(M(8)—I1)d,

M©®) = (1-M) foxmwe)m“,

b(®) = ®T(6) T AP(8)"(r—n(6)).

m=0

Then,
1. Algorithm 1 converges to the invariant set of the following set of ODEs

0=0en(0)+ 5 D™(8)(d(xy.0) ~d(xy,w)),
X,yeX x X
W =Wy [N (A(B)W+Db(8) +G(B)(n(6) — 1)),

A =q(n(8)—A),
with probability 1.

17)

(a) The functions in (16) are continuous with resped.to

4.3.2 INVESTIGATING THE ODE ASYMPTOTIC BEHAVIOR

Next, we quantify the asymptotic behavior of the system of ODESs in terms ofti@us algorithmic
parameters. The proof of the theorem appears in Appendix D.

Theorem 8 Consider the constants, andl"y, as defined in Algorithm 1, and the function approx-
imation bounce,pp as defined ir{10). Setting

B A Batd1 . Batd2
L S

where Byq1, Batd2, Bargs are a finite constants depending on the MDP and agent parameters, Then
the ODE systerfil7) satisfies

+ Batdz€app,

liminf [[0en (8y)[] < Bon-
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Theorem 8 has a simple interpretation. Consider the trajeqtdky for large times, corresponding
to the asymptotic behavior af,. The result implies that the trajectory visits a neighborhood of
a local maximum infinitely often. Although it may leave the local vicinity of the maximum, it is
guaranteed to return to it infinitely often. This occurs, since once it lefreegicinity, the gradient

of n points in a direction which has a positive projection on the gradient direc¢tiergby pushing
the trajectory back to the vicinity of the maximum. It should be noted that in simulaipolted
below) the trajectory usually remains within the vicinity of the local maximum, rarelyitey it.

We also observe that by choosing appropriate value§ fandr,, we can control the size of the
ball to which the algorithm converges.

The key idea required to prove the Theorem is the following argument. tfdiextory does not
satisfy ||0n(8)||2 < By, we haven(8) > € for some positivee. As a result, we have a monotone
function which increases to infinity, thereby contradicting the boundedsfeg&d). Thus,n(6)
must visit the set which satisfi¢i§In(0)||> < Bny, infinitely often.

5. A Comparison to Other Convergence Results

In this section, we point out the main differences between Algorithm 1, thteafigorithm proposed
by Bhatnagar et al. (2009) and the algorithms proposed by Konda aisikiis (2003). The main
dimensions along which we compare the algorithms are the time scale, the typeTdl gignal,
and whether the algorithm is on line or off line.

5.1 The Time Scale and Type of Convergence

As was mentioned previously, the algorithms of Bhatnagar et al. (2009Kanda and Tsitsiklis
(2003) need to operate in two time scales. More precisely, this refers toltbeihg situation.
Denote the time step of the critic’s iteration Yyand the time step of the actor’s iterationygy we

haveys = o(\3), that is,
lim vo =0.

nN—oo

n

The use of two time scales stems from the need of the critic to provide an tecestanate of the
state values, as in the work of Bhathagar et al. (2009), or the state-aatiors, as in the work of
Konda and Tsitsiklis (2003) before the actor uses them.

In the algorithm proposed here, a single time scale is used for the threestefatigorithm 1.
We havey? = y, for the actor iterateyi”! = I'yy, for the critic’sn, iterate, and/i™ = I'wyn for the
critic’s w iterate. Thus,

_ yﬁﬂ
n—oo
yi
lim =Tlw.
nN—oo y% w

with the ave

Due to the single time scale, Algorithm 1 has the potential to converge fastealgpaithms
based on two time scales, since both the actor and the critic may operate ost tiradsscale. The
drawback of Algorithm 1 is the fact that convergence to the optimal valoeatdbe guaranteed, as
was proved by Bhatnagar et al. (2009) and by Konda and Tsitsiklis3j20@stead, convergence to
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a neighborhood ilRK around the optimal value is guaranteed. In order to make the neighborhood
smaller, we need to choo§g andly, appropriately, as is stated in Theorem 8.

5.2 The TD Signal, the Information Passed Between the Actor and #hCritic, and the
Critic's Basis

The algorithm presented by Bhatnagar et al. (2009) is essentially a Bly@)jthm, while the al-
gorithm of Konda and Tsitsiklis (2003) is TD(1), Our algorithm is a(Klpfor 0 < A < 1. A major
difference between the approaches of Bhatnagar et al. (2009) apdavent work, as compared to
(Konda and Tsitsiklis, 2003), is the information passed from the critic to tte.alm the former
cases, the information passed is the TD signal, while in the latter case the Qisvalassed. Ad-
ditionally, in Bhatnagar et al. (2009) and in Algorithm 1 the critic’s basis fiams do not change
through the simulation, while in Konda and Tsitsiklis (2003) the critic’s basistfans are changed
in each iteration according to the actor's parameétefinally, we comment that Bhatnagar et al.
(2009) introduced an additional algorithm, based on the so-called natadient, which led to
improved convergence speed. In this work we limit ourselves to algorithsedban the regular
gradient, and defer the incorporation of the natural gradient to futor&.wAs stated in Section 1,
our motivation in this work was the derivation of a single time scale online AC iftgomwith guar-
anteed convergence, which may be applicable in a biological context. Trecomplex natural
gradient approach seems more restrictive in this setting.

6. Simulations

We report empirical results applying Algorithm 1 to a set of abstract nahdoonstructed MDPs
which are termed Average Reward Non-stationary Environment Testbenin shortGARNET
(Archibald et al., 1995)GARNET problems comprise a class of randomly constructed finite MDPs
serving as a test-bench for control and RL algorithms optimizing the aveeaged per stage. A
GARNET problem is characterized in our case by four parameters and is dengted b
GARNET(X,U,B,0). The parameteK is the number of states in the MDB, is the number of
actions B is the branching factor of the MDP, that is, the number of non-zero emtriggch line of

the MDP’s transition matrices, amis the variance of each transition reward.

We describe how &ARNET problem is generated. When constructing such a problem, we
generate for each state a reward, distributed normally with zero mean @ngtiance. For each
state-action the reward is distributed normally with the state’s reward as méam@ances?. The
transition matrix for each action is composedafion-zero terms in each line which sum to one.

We note that a comparison was carried out by Bhatnagar et al. (200@dretheir algorithm
and the algorithm of Konda and Tsitsiklis (2003). We therefore compareesults directly to the
more closely related former approach (see also Section 5.2).

We consider the sam@ARNET problems as those simulated by Bhatnagar et al. (2009). For
completeness, we provide here the details of the simulation. For the critit’sdesector, we use a
linear function approximatioh(x,w) = @(x)'w, whereg(x) € {0,1}", and definé to be the number
nonzero values igp(x). The nonzero values are chosen uniformly at random, where any ttes sta
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have different feature vectors. The actor’s feature vectors asieelf x ||, and are constructed as

Lx(u-1) Lx(|U|—u)
— —
&(x,u) = (0,...,0,9(x), 0,...,0,
eG’E(XVU)

U(u’X7 e) = Eu/eueela(XM/) :

Bhatnagar et al. (2009) reported simulation results foréwaNET problems:GARNET(30,4, 2,
0.1) andGARNET(100,10,3,0.1). For theGARNET(30,4,2,0.1) problem, Bhatnagar et al. (2009)
used critic stepg"” andyi", and actor stepg, where

100 1000
W N — 0.95/6W N f—
i 1000+ n2/3’ i Yt Y 100000+ n’
and forGARNET(100 10, 3,0.1) the steps were

10° 100
W _ n_ W n_
V= e W =09 W =g

In our simulations we used a single time scaje,which was equal tor" as used by Bhatnagar
et al. (2009). The basis parameters &xRNET(30,4,2,0.1) wereL = 8 and| = 3, where for
GARNET(100,10,3,0.1) they wereL = 20 andl = 5.

In Figures 2 we show results of applying Algorithm 1 (solid line) and algorithfrom Bhat-
nagar et al. (2009) (dashed line) GARNET(30,4,2,0.1) and GARNET(100,10,3,0.1) problems.
Each graph in Figure 2, represents an average of 100 indepeneiatsons. Note that an agent
with a uniform action selection policy will attain an average reward per sthgero in these prob-
lems. Figure 3 presents similar results@&¥RNET(30,15,15,0.1). We see from these results that in
all simulations, during the initial phase, Algorithm 1 converges faster tharitign 1 from Bhat-
nagar et al. (2009). The long term behavior is problem-dependengrabecseen by comparing
Figures 2 and 3; specifically, in Figure 2 the present algorithm consdma higher value than
Bhatnagar et al. (2009), while the situation is reversed in Figure 3. e tfed reader to Mokka-
dem and Pelletier (2006) for careful discussion of convergence i@téwo time scales algorithms;
a corresponding analysis of convergence rates for single time scafétaiyois currently an open
problem.

The results displayed here suggest a possible avenue for combininglgotithms. More
concretely, using the present approach may lead to faster initial cemeglue to the single time
scale setting, which allows both the actor and the critic to evolve rapidly, whiteting smoothly
to a two time scales approach as in Bhatnagar et al. (2009) will lead to asynuaotiergence to a
point rather than to a region. This type of approach is reminiscent of tasi-iewton algorithms
in optimization, and is left for future work. As discussed in Section 5, weal@onsider the natural
gradient based algorithms from Bhatnagar et al. (2009) in this compasdtidy.

7. Discussion and Future Work

We have introduced an algorithm where the information passed from thetorith@ actor is the
temporal difference signal, while the critic applies a(R[Pprocedure. A policy gradient approach
was used in order to update the actor's parameters, based on a critiinsamgunction approxima-
tion. The main contribution of this work is a convergence proof in a situatioeravhoth the actor

382



A CONVERGENTONLINE SINGLE TIME SCALE ACTORCRITIC ALGORITHM

0.7

0.7
< 0.65
0.65

0.6
0.55F

0.6 ]
05

045y
. .
0 0.5 1

15 2 25 3 35 4
iteration number x 10

05 1 15 2 25 3 35 4
iteration number x10°

(a) (b)

0.55
0

Figure 2: Simulation results applying Algorithm 1 (red solid line) and algorithmotfBhatnagar
et al. (2009) (blue dashed line) onGRNET(30,4,2,0.1) problem (a) and orGAR-
NET(100,10,3,0.1) problem (b). Standard errors of the mean (suppressed for visibility)

are of the order of 0.04.
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Figure 3: Simulation results applying Algorithm 1 (red solid line) and algorithmotfBhatnagar
et al. (2009) (blue dashed line) orcaRNET(30,15,15,0.1) problem. Standard errors of

the mean (suppressed for visibility) are of the order of 0.018.

and the critic operate on the same time scale. The drawback of the extra flexibiiitye scales
is that convergence is only guaranteed to a neighborhood of a local maxiadue of the average
reward per stage. However, this neighborhood depends on paramdiieh may be controlled to
improve convergence.

This work sets the stage for much future work. First, as observed ath@ssize of the conver-
gence neighborhood is inversely proportional to the step $igemdl,,. In other words, in order
to reduce this neighborhood we need to select larger valuEg ahdl"y. This on the other hand
increases the variance of the algorithm. Therefore, further investigatiorethods which reduce
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this variance are needed. However, the bounds used throughatlearly rather loose, and can-
not be effectively used in practical applications. Obviously, improvingothends, and conducting
careful numerical simulations in order to obtain a better practical undeéistaof the influence of
the different algorithmic parameters, is called for. In addition, there islgleamm for combining
the advantages of our approach with those of AC algorithms for whichecgewce to a single point
is guaranteed, as discussed in Section 6,

From a biological point of view, our initial motivation to investigate TD basedagbrithms
stemmed from questions related to the implementation of RL in the mammalian brain. Such a
view is based on an interpretation of the transient activity of the neurontodulapamine as a
TD signal (Schultz, 2002). Recent evidence suggested that thel dmdaentral striatum may
implement the actor and the critic, respectively Daw et al. (2006). We betietetheoretical
models such as those of Bhatnagar et al. (2009) and Algorithm 1 may praxdn if partially, a
firm foundation to theories at the neural level. Some initial attempts in a neaitialgs(using direct
policy gradient rather than AC based approaches) have been madaréy &d Meir (2007) and
Florian (2007). Such an approach may lead to functional insights as t@h@C paradigm may
be implemented at the cellular level of the basal ganglia and cortex. An initiabasgtration was
given by DiCastro et al. (2008). From a theoretical perspectiveraeigsues remain open. First,
strengthening Theorem 8 by replacing liminf by lim would clearly be usefeto8d, systematically
combining the advantages of single time scale convergence (fast initiahityg)aand two time scale
approaches (convergence to a point) would clearly be beneficial.
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Appendix A. Proofs of Results from Section 3

We present proofs of the main results from section 3.

A.1 Proof of Lemma 3

1. Looking at (1) we see th&(y|x, 0) is a compound function of an integral and a twice differen-
tiable function,u(y|x,8), with bounded first and second derivatives according to Assumption
3. ThereforeP(y|x, 0) is a twice differentiable function with bounded first and second deriva-
tives for allg € RK.
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2. According to Lemma 1, for eache RX we have a unique solution to the following non-

homogeneous linear equation systerdi|0) !):(‘1

X
_Zi"(ile)P(iliae) =7(j6), j=1...,]X[-1,

X

_zln(ne) =1,

or in matrix formM(8)1(08) = b. By Assumption 2, the equation system (18) is invertible,
therefore, déM(8)] > 0. This holds for allP(6) € P, thus, there exists a positive constant,
bm, which uniformly lower bounds dg¥(0)] for all 6 € RX.Thus, using Cramer’s rule we
have -

(18)

defM(6)]’
whereQ(i, 8) is a finite polynomial of P(j|i,0)}i jex of at most degreeX| and with at most
|X|! terms. WritingoTi(x|0) /06; explicitly gives

om(x(e)| |defM(8)]55Qi,8) — Q(i,8) % defM(8)]
‘ 06, ‘ N defM(0)]2
2 Q(1,8)| |Q(i,8) % defM(6)]
~  |defM(0)] defM(8)]2
|X|~|X|!-Bp1+(IXI-IX\!)Bpl
< b % ;

which gives the desired bound. Following similar steps we can show thelbdaoass of the
second derivatives.

3. The average reward per staggf) is a linear combination ofm(i|0) ,‘i'l with bounded

coefficients by assumption 1. Therefore, using Section(8) is twice differentiable with
bounded first and second derivatives foréadt RX.

4. Sincer(x|0) is the stationary distribution of a recurrent MC, according to Assumption 2 ther
is a positive probability to be in each state X. This applies to the closure @f. Thus, there
exist a positive constai; such thatri(x|6) > by

A.2 Proof of Lemma 4

1. We recall the Poisson Equation (2). We have the following system ofrlegaations in
{N(X/6) }xex, namely,

{ h(x|8) =r(x) —n(B) + z P(y|x,0)h(y|B), Vxe X,x#X",
yex

h(x*|8) = 0.

or in matrix formN(8)h(6) = c. Adding the equatiom(x*|8) = 0 yields a unique solution
for the system; see Bertsekas (2006), Vol. 1, Prop. 7.4.1. Thus, Gsarger’s rule we have
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h(x|8) = R(x,0)/defN(0)], whereR(x, 0) and defiN(8)] are polynomial function of entries in
N(0), which are bounded and have bounded first and second der&/atieerding to Lemma
3. Continuing in the same steps of Lemma 3 proof, we concludehtlki) and its two first
derivatives for alk € X and for all6 € RX.

2. Trivially, by (3) and the previous section the result follows.

Appendix B. Proof of Theorem 5

We begin with a Lemma which was proved by Marbach and Tsitsiklis (1998)ldtes the gradient
of the average reward per stage to the differential value function.

Lemma 9 The gradient of the average reward per stage can be expressed by

Oen(@)= 5  P(x.u,y,0)w(x,u,0)h(y,0).
X,YeX,ueu
For completeness, we present a proof,which will be used in the sequel.
Proof We begin with Poisson’s Equation (2) in vector form
h(6) =r—en(6) +P(8)h(6),

whereeis a column vector of 1's. Taking the derivative with resped tind rearranging yields

elJgn(0) = —0Ogh(6) + DgP(B)h(8) + P(8)Tgh(0).
Multiplying the left hand side of the last equation by the stationary distributi@y yields

Oen(8) = —11(8)'Teh(8) + 11(8)' TgP(8)N(8) + 11(8)' P(8) gh(8)
= —11(8)' Ogh(8) + 11(8)' TgP(8)(8) + 11(8) gh(8)
= 11(8)' JP(8)h(8).

Expressing the result explicitly we obtain

Oen(8) = 5 P()0eP(ylx, 8)N(y, 6)

X,yex

= 5 POo0 (3 (PO Uik ) ) iy

X,yex ]
= 3 P(X)Y (P(ylx,u)Oeu(ulx, 0)) h(y,0)
X,yeX [v]

= Y PUIXuP)Dsu(ulx,8)h(y,6)

X,yeXx,ueu

(19)

_ Dohulx,0)
= XWZUEH P(ylx, u)p(ulx, 8)P(x) L(UX 0)

= Y P(XUY,0)w(xu8)h(y,e).

X,yex,ueu

h(y,6)
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Based on this, we can now prove Theorem 5. We start with the result)n (19

[gn (9) = Z P(Xv uy, G)UJ(Xa u, e)h(y7 9)

X,yex,ueu
= Y PXuy6)w(xu8)(h(y,8) —h(x,6) +r(x) —n(8) + f(x))
X,yeX,ue U
- Z P(X7 uy, B)UJ(Xa u, 9) (—h(X, e) + I'_(X) —n (9) + f(X))
X,yex,ueu
= z P(x,u,y,0)W(x,u,0) (d(x,y,0) + f(x))
X,yeX,ue U
- Z P(X7 uy, e)wo(v U, 9) (—h(X, e) + r_(x) —n (9) + f(X))
X,yex,ueu

In order to complete the proof, we show that the second term equals 0. efives & (x,0) =

—h(x|8) +r(x) —n(8) + f(x) and obtain

P(x,u,y,e)m(x,u,e)F(x,e):zn(x,e)F(x,e) Z OgP(y|X,u,8)
X,yeX,ueu XEX ue ud,yex

=0.

Appendix C. Proof of Theorem 7

As mentioned earlier, we use Theorem 6.1.1 from Kushner and Yin (19%¥ start by describing
the setup of the theorem and the main result. Then, we show that the regssu@tptions hold in
our case.

C.1 Setup, Assumptions and Theorem 6.1.1 of Kushner and Yin (1997)

In this section we describe briefly but accurately the conditions for Emed.1.1 of Kushner and
Yin (1997) and state the main result. We consider the following stochastic iteratio

Ynr1 = Mu[Yn+ YnYnl,

whereY, is a vector of “observations” at time, andlMy is a constraint operator as defined in
Definition 6. Recall thaf{x,} is a Markov chain. Based on this, defifigto be theo-algebra

Fo £ o{yo,Yi1.X i <n}
= G{YOaYifl,Xi,yi || < n},
and B
Fo 2 0{yo,Yi_1,Yili <n}.
The difference between tlealgebras is the sequengs, }. Define the conditioned average iterate
On(Yn, %) = Ea|7%nl,

and the correspondingartingale difference noise

M 2 Yo — ENa | ).

387



DI CASTRO AND MEIR

Thus, we can write the iteration as

Yn+1 = Yn+ Yn (On (Yn, Xn) +OMn +Zn),

whereZ, is a reflection term which forces the iterate to the nearest point in thé sdienever the
iterates leaves it (Kushner and Yin, 1997). Next, set

G(y) 2 E [gn (%,%0) | 7] -

Later, we will see that the sum of the sequefid®,,} converges to 0, and the r.h.s of the iteration
behaves approximately as a the functify), which yields the corresponding ODE, that is,

y=9(y).
The following ODE method will show that the asymptotic behavior of the iteratiogisieto the

asymptotic behavior of the corresponding ODE.
Define the auxiliary variable

n—-1
th= Y W
kZo
and the monotone piecewise constant auxiliary function
m(t) = {n|tn S t < tn+1}.

The following assumption, taken from Section 6.1 of Kushner and Yin (1997equired to estab-
lish the basic Theorem. An interpretation of the assumption follows its statement.

Assumption 7 Assume that
1. The coefficientgyn} satisfyS 1 Yn = and limy_o Yo = 0.

() SURE([Yall] <.
(b) an(yn,X) is continuous iry, for eachx andn.

(c) Foreachu> 0 and for som& > 0O there is a continuous functigy-) such that for each
y

m(jT+t)—1
. ) O > = 0.
lim Pr<?gr?or§a§>; i:n%n Yi (On (Y, %) —9(y)) _u> 0

(d) For eachu> 0 and for som& > 0 we have

m(jT+t)—-1

lim Pr<sup max Vi OM;

n—co j>nO<t<T

-u) o

(e) There are measurable and non-negative funcpeg andpn (X)such that

=0T

19n (Y, X) || < P3(Y) Pra (X)

whereps (y) is bounded on each boundedet , and for each > 0 we have

m(jt+1)—1
lim lim Pr(sup z YiPra (%) > u) =0.

0\ zn o
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(f) There are measurable and non-negative functmry) and pn2 (X)such thatps (y) is
bounded on each boundgget and

19 (Y1,X) = 0n (Y2, X)[| < P1(Y1—Y2)Pn2(X),

where

lim p1(y) =0,
y—0

and

J

m(tj+1)
Pr(limsup Z YiPiz (%) < oo) =1
=]

The conditions of Assumption 7 are quite general but can be interpretedl@ags. Assumptions
7.1-3 are straightforward. Assumption 7.4 is reminiscent of ergodicity,mikiased to replace the
state-dependent functiap (-, -) with the state-independent of state functgnn), whereas Assump-
tion 7.5 states that the martingale difference noise converges to 0 in probafggymptions 7.6
and 7.7 ensure that the functigp(-,-) is not unbounded and satisfies a Lipschitz condition.

The following Theorem, adapted from Kushner and Yin (1997), pr@/itle main convergence
result required. The remainder of this appendix shows that the requdretitions in Assumption 7
hold.

Theorem 10 (Adapted from Theorem 6.1.1 in Kushner and Yin 1997) Assume thaithfgdr, and
Assumption 7 hold. Then gonverges to some invariant set of the projected ODE

y=nH[gy)l.

Thus, the remainder of this section is devoted to showing that Assumptiofs77ate satisfied.
For future purposes, we express Algorithm 1 using the augmented paramaetory,

2 (8, W, A, 8 eRX, w,eRY, A,eR.

The components of, are determined according to (17). The corresponding sub-vectaigof
will be denoted by

Gy = (600 Gwn)  G(fn)] € REIE,
and similarly
Gn (Yn, Xn) = [g” (emxn)/ On (Wnaxn)/ On (ﬁn,xn)/] € RKHLFL

We begin by examining the componentsgafy,, x,) andg(y,). The iterateg, (fn, Xn) is

On(Mins%n) = E[Tn(r (%) —fn)| Fn] (20)
= Tn(r(%)—fn),

and since there is no dependencewe have also
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The iterateg, (Wn, Xn) IS

On(Wn,Xn) = E [rwd(xn,XnJrlyWn) en‘ ,'7'—n]

= E[rwkzo)\kfp(xn K) (r (%) = Ain+ @(X11) Wn — (%) W)

Tn] (21)

= Tw %Ak O (Xn—k ( Xn) — fin+ Z P(Y|Xna9n)(P(Y)/Wn—(P(Xn>/Wn>7
yex

and the iteratg (wy) is
gWn) = E[Gn(Wn,Xn)| 7n]

= E [Fw ihkcp(xn—k) (r (Xn) = Fin+ Y P (YIXn,80) @(y)' Wn — w(xn)’wn> ‘ F ]
yex
= T Z})\k 0y P

zeX

yex

X (r @ —fint+ P(v\z,ﬂn)q)(Z)’Wn—@(y)’wn) ,

which, following Bertsekas and Tsitsiklis (1996) Section 6.3, can be writtemaitnix form

g(wn) = @M (6y) ((1—)\) i AKpRHL |> dwy + D' (8)) i APX(r —fin) .
k=0 k=0

With some further algebra we can express this using (16),

9(Wn) = A(Bn) Wy +b(6n) + G (6n) (N (Bn) —1n) -
Finally, the iterategy (6, X,) IS

On(Bn,%n) = [CT (Xn, Xn+1, Wn w(xnaun,en)‘ fn]
= E[d(Xn,Xn+1,0n) Y (Xn, Un, On) | Fn] (22)
+E [ (d (Xn, Xn+1,Wn) — d (Xn, Xnt-1, en)) W (Xn, Un, en)} .'Tn]
= E[d(Xn,%1+1,0n) W (Xn, Un, Bn)| Fn]
+ 3 P(Z%n) W (X, Un, Bn) (d (%, 2, W) — d (%, 2,6n)) ,

zeX

and

9(8n) = E[d(Xn,Xnt1,Wn) W (Xn, Un,Bn) \fn]
= E [d(xn7Xn+l,9n) (Xn, Un, Bn)| fn]

+E [ (d (Xn, Xn4-1,Wn) — (Xn,Xn+1,en)) P (Xn, Un, en)‘ ?_—n}
= On®n)+ > > 1(x)P(ulx,6n)P(yx u) W (x,u,6n)

X,yexuedu
X (d (X7y7 Wn) —d (XJ Y, en)) .

Next, we show that the required assumptions hold.
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C.2 Satisfying Assumption 7.2

We need to show that spR[||Yal|,] < . Since later we need to show that ﬁE;{HYnH%} < o,

and the proof of the second moment is similar to the proof of the first momentpomséder both
moments here.

Lemma 11 The sequencg; is bounded w.pl, sup, E[||Ya (fn)]|,] < e, and
SURLE [[[¥n (fin) 3] <
Proof We can choos®l such thay,I™, < 1 for alln> M. Using Assumption 3 for the boundedness
of the rewards, we have
Mt = (1= Yaln)Am=+Yalnr(Xn)
< (1Yl n)An+YnlnBr

Mn if An> B,
B, if An < B,
< max{fn, B},

which means that each iterate is bounded above by the previous iterata aohgtant. We denote
this bound byBy5. Using similar arguments we can prove thatis bounded below, and the first part
of the lemma is proved. Sindg,, 1 is bounded the second part follows trivially. |

Lemma 12 We havesup, E {||Yn (Wn)Hg} < oo andsup, E[|[Yn (Wn)||,] < o
Proof For the first part we have

E[||Yn(wn)|y§} = E[Hrwd(xn,xnﬂ,wn)aq{!ﬂ
) ,

r2e

iA%(xn_k) (1 (50) — Fin -+ ©(%n52)/ W — Q%) Wa)
K=

2_

__Oo 12
"WE k;))\k [0(%-k) (r (%) = fin + @ 1) Wn — @(%0) Wn) ||,

A

< TRE | sup][90-1) (1 () = fin+ @0xns2) W = 00) Wn) [, 5 Ak]
k=0

() 4F2

2

< n

< oyt

(I )+ Al + 1 00cr2)113 1Wal 3 + [90x) 13 1wal3)
ar2

< Y BS(BF + B +2BZBS,) .
where we used the triangle inequality (@) and the inequalityfa+ b)? < 2a? 4+ 2b? in (b). The
bound SURE(||Yn (Wn)||,] < o follows directly from the Cauchy-Schwartz inequality. [ |
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Lemma 13 We havesup,E [HYn (en)H%} < oo andsup, E[||Ya (8n)||,] < .The proof proceeds as in
Lemma 12.

Based on Lemmas 11, 12, and 13 we can assert Assumption 7.2

C.3 Satisfying Assumption 7.3

Assumption 7.3 requires the continuity @f (yn,xn) for eachn andx,. Again, we show that this
assumption holds for the three parts of the vegtor

Lemma 14 The function g(fn, X,) is a continuous function af,, for each n and x.

Proof Sincegn (fin,Xn) = Iy (r (Xa) — fn) the claim follows. [ |

Lemma 15 The function g(wx, Xy) is @ continuous function @f,, w,, and8,, for each n and x
Proof The function is
Gn (Wn, %n) = T Z Ao (% k) (r (%) =fin+ > P (¥, 8n) @(y)' Wn — (P(Xn)/Wn> :
yex

The probability transitiory yc x P (y|Xn, 8n) is @ function ofi(un|xn,8n). Thus it is continuous iy,
by Assumption 3, and thug, (wy, Xn) is continuous im, and6, and the lemma follows. [ |

Lemma 16 The function g(8y,X,) is a continuous function af,, w,, and6, for each n and x

Proof By definition, the functiorgy, (6n, Xn) is
On (Bn, %) = E[dN(Xn,XnJrl,Wn)qJ(Xnyun,en)’Tn]

Do (Un|Xn, Bn) - / /
 1(Un|%n,6r) (I’ (%n) = fin +y€zxp(yyxnaen)¢)(Y) Wi — @(Xn) Wn)

Using similar arguments to Lemma 15 the claim holds. |

C.4 Satisfying Assumption 7.4

In this section we prove the following convergence result: for gast0 and for somd& > 0 there
is a continuous functiog(-) such that for eack

m(jT+t)-1
i 3 N A > .
lim Pr(f;&gg i:%n ¥i (Gn (¥, %) —9(Y)) _u> (23)

We start by showing that there exist independent cycles of the algoriiice she underlying
Markov chain is recurrent and aperiodic. Then, we show that the £yidbave as a martingale,
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thus Doob’s inequality can be used. Finally we show that the sum in (28eoges to O w.p. 1. We
start investigating the regenerative nature of the process.

Based on Lemma 2, there exists a recurrent state common kC{B), denoted byx*. We
define the series dfitting timesof the recurrent state’ by tog = 0,11,1o, ..., wherety, it the m-th time
the agent hits the stai&. Mathematically, we can define this series recursively by

tmi1 = Inf{N|X, =X",n>ty}, to=0,
andTy £ tm,.1 — tm. Define them-th cycle of the algorithm to be the set of times
Tn = {Nltm—1 <N <tm},
and the corresponding trajectories
Cm = {Xaln € Ty}
Define a functionp (k), which returns the cycle to which the tirkébelongs to, that is,
p(k) = {mke In}.

We notice that based on Lemma 1, and usingRbgenerative Cycle TheordBrémaud, 1999), the
cycles(Gy, are independent of each other.
Next, we examine (23), and start by defining the following events:

" m(jT+t)—1

b 2 ! wlsupmax (91 (¥, %) — g ZHe,

) { er?OStST iz%n WG =9) _H}

k

b? & {w sup sup ¥ (G (%) —9(y)) ZU}a
jznkem(iT) |/i=miT)

(3 & N

by = {co sup| 3 vi (G (%:%) —g(y)) Zu}-
Iznji=n

It is easy to show that for eactwe haveb,gl) C bﬁz), thus,
Pr<b§,1)> < Pr(b,%z)) . (24)

It is easy to verify that the serie%bﬁz)} is a subsequence ({1:b§13)}. Thus, if we prove that

liMp_o Pr(b,@) =0, then lim_. Pr(b,) = 0, and using (24), Assumption 7.4 holds.

Next, we examine the sum defining the evbﬁf, by splitting it a sum over cycles and a sum
within each cycle. We can write it as following

S v (0 (%)~ §1y) = i( 3 w0 000 -9
i=n m=p(n)icTn

Denotecn £ 5 e, Vi (On (¥, X)) — (y)). Therefore, by thdkegenerative Cycle TheoreiBrémaud,
1999),cny, are independent random variables. Also,

Elcm]=E Zw(gi(y,m)—g_(y))] = E[E[ > ¥i(On(y:x)—9(y))

i€Tm j€Tm
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We argue that, is square integrable. To prove this we need to show that the second morhents o
Tmand(gn (y,%) —g(y)) are finite.

Lemma 17

1. The first two moments of the random timigh, } are bounded above by a constB&at for all
8 c RX and for allm, 1< m< .

(@ E|(on(yx) - 30))°] <By
(b) Defineym < supq Vi, thenym_oVa, < .
(©) E[c] < (BrBy).

Proof [ |

1. According to Assumption 2 and Lemma 1, each Markov chaif? is recurrent. Thus, for
eachd c RK there exists a constaBt (6), 0 < Br(8) < 1, where fork < |.X| we have

P(Tm=KBm) < (Br(0m) "™, 1<m<e, 1<k<o,

where|a] is the largest integer which is not greater tlrai®therwise, if fork > |.X| we have
Bt (6m) = 1 then the chain transitions equal 1 which contradicts the aperiodicity of #iesch
Therefore,
E[Tnl0r] = 3 KP(Tr = KiBr) < S K (Br (6m)) /M) = By, (6) < o0
[Tl 8] = > kP(Tm = k|6m) < (Br(6m)) 7 (Bm) < oo,
K=1 K=1

8

and

(o)

E[T3|6m| = kZlkzp(Tm: K|Bm) < k 1k2(|§T(em))Lk/|XJ — B, (B) < oo.

8

Since the seP is closed, by Assumption 2 the above holds for the closure a$ well. Thus,
there exists a constaBy satisfyingBr = max{sup, Br, (6),supBr,(8)} < .

(&) The proof proceeds along the same lines as the proofs of lemmas ahd1P3.

(b) The result follows trivially since the sequenfg,} is subsequence of the summable
sequencgym}.

(c) By definition, for large enougimwe havey,, < 1. Therefore, we have

r 2
E[3] = E (_;v;-(gn(y,xj)g(y))”
J€Zm

2 2
E ||l (s?pw) (s?p(gn(y,xng(y)))]

B%Bg.

IN

IA
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Next, we conclude by showing that Assumption 7.4 is satisfied. Define thegsd, = 7, Cm.
This process is a martingale since the sequédngg is square integrable (by Lemma 17) and satis-
fies E[dm1|dm] = dm. Using Doob’s martingale inequalftyve have

p(k)
Pr<sup > > w(gn(y,xi)—g_(y))zu>

k=Nm=p(n) j€Tn,

§ [(Z?;:p(n) Y jet Vi (Gn (¥, %)) — g(y))ﬂ

< lim >

n—oo |_,l

S omE | (Ziem Vi (G (%) —Gv)’]
- r!mo p?

<lim % YaBgBr /1P
" mSpn)
=0.

C.5 Satisfying Assumption 7.5

In this section we need to show that for each 0 and for som& > 0 we have

m(jT+t)—1
YiOM;
i=m(]T)

> u> =0. (25)

N—oo j>nO<t<T

lim Pr(sup max

In order to follow the same lines as in Section C.4, we need to show that thedsexonent of the
martingale difference noiséM;, is bounded with zero mean. By definitiad\, (-) has zero mean.

Lemma 18 The martingale difference nois&, (-), is bounded in the second moment.

Proof The claim is immediate from the fact that
E | (8Mn)?] = E | ¥ — 0n (v o) I°] < 2E IVl + llgn (v 0) 1]

and from Lemma 11, Lemma 12, and Lemma 13. [ |

Combining this fact with Lemma 18, and applying the regenerative decompositi®ection C.4,
we conclude that statistical@M, (-) behaves exactly &g, (y,x) —g(y)) of Section C.4 and thus
(25) holds.

C.6 Satisfying Assumption 7.6

In this section we need to prove that there are non-negative measurabl®hsp; (y) andpna (X)
such that

[19n (Yn, X)[| < P3(Yn) Pra (X),

2. If wy is a martingale sequence then(Bupy-o [Wn| > 1) < limp_« E [\wnﬂ ia
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whereps (y) is bounded on each boundgdet, and for eacph > 0 we have

m(jt+1)—1
lim lim Pr(sup z YiPra (%) > p) =0.

onme -\ izn iy

The following lemma states a stronger condition for Assumption 7.6. In factheeseps(y) to be
a positive constant.

Lemma 19 If ||gn(Y,X)|| is uniformly bounded for eaciy x andn, thenAssumption 7.6 is satisfied.

Proof Let us denote the upper bound by the random variBbtgat is,

||gn (y,X)H S Ba Wp 1
Thus

m(jt+1)—-1 m(jt+1)—1
lim lim Pr(sup Z YViPra (%) > p) < lim lim Pr(sup z viB > u)

=0\ izn iy onme \izn i

m(jt+1)—1
= lim lim Pr(supB Z Y > u)

T—0n—o i>n i—m(iT)

lim Pr(Bt > p)

—0

= 0.

IA

Based on Lemma 19, we are left with proving tigaty, x) is uniformly bounded. The following
lemma states so.

Lemma 20 The function g(y,X) is uniformly bounded for all n.
Proof We examine the components@f(yn,X,). In (20) we showed that
On(Nn,Xa) = T (r (%) —Mn)-

Since bothr (x,) andfj, are bounded by Assumption 1 and Lemma 11 respectively, we have a
uniform bound org, (fn, X,). Recalling (21) we have

Gn (Wn,X0) = Fwéohkcp(xn_k) (r (%) = fin+ Yy P(y\xmen)cp(y)’wn—cp(xn)’wn>

yex

Mw By (Br + Bfj -+ 2B¢Bu) -

1
1-A
Finally, recalling (22) we have

On(Bn, %) = E[G(Xnaxmrlawn)UJ(XnaUnaen)‘%}
< (Br + Bjj 4+ 2ByBy) By.
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C.7 Satisfying Assumption 7.7

In this section we show that there are non-negative measurable fungtinsandpn, (x) such that
p1(y) is bounded on each boundgdet and

[[Gn (Y1,X) = n (Y2, X)[| < P1(Y1—Y2) P2 (X) (26)
where
lim p1 (y) =0, (27)
y—0

and for soma > 0

J

m(tj+1)
Pr (Iimsup z Yipi2 (%) < oo) =1
=)

From Section C.6 we infer that we can cho@sg(x) to be a constant sinag (y,X) is uniformly
bounded. Thus, we need to show the approppate) function. The following lemma shows it.

Lemma 21 The following functions satisfy (26) and (27).
1. The functiorpy (y) = [|[i2 — A1/l andpn2 (X) = 'y for gn (1, X).

(8) The functiorps (y) = 125 B2 (T yex BullP (X 81) — P(y[x,0) | + [y — el |) andpra (x) =
Iw for gn (W, X).

(b) The functiorpy (Y) = Syex Bw [P (y|X,81) — P (y|x,02) - By andpnz (x) = 1 for gn (6,x).

Proof [ |

1. Recalling (20) we have fay, (i}, X)

190 (A1, %) —an(A2,X) < Ty llf2—Aall,
thus (26) and (27) are satisfied for 1.

2. Recalling (21) we have fa, (W, X)

Hgn (lex) —On (WZvX)H

Fwi)\k(p(xnk) ((Z P (y[%,01) @(y)' W1 — @(Xn) W1>
yex

- <Z P (y[x,82) @(y)’ w2 — @( )) H
yexX

FwB3
ST <Z HP(YIX,Gl)Wl—P(y|x,62)w2||+|yW1_W2H>
yex

'_\

yex

rWB2
< > Bwl[P(yIx,81) = P(yIx,82)|| + [[w1 — wa||
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(a) Trivially, with respect tav (26) and (27) are satisfied. Regardi®g(26) and (27) are
satisfied if we recall the definition ¢¥(y|x,0) from (1) and the continuity oft(u|x,8)
from Assumption 3.

(b) Recalling (22) we have fa, (8, x)

190 (81,%) — G (82, )| = [[E[d (x,y,wa) W (x,u,81)| 1]
—E [d(X,y,Wz)l.IJ(X, U, 92)‘ ,(Fn] H

< S Bwl[P(yx,01) — P(y[x,82)[| By.
yex

Using similar arguments to 2, (26) and (27) are satisfiedfor

Appendix D. Proof of Theorem 8

In this section we find conditions under which Algorithm 1 converges to ahbeidnood of a local
maximum. More precisely, we show that limdn, ||n(8(t))||, < €app+ Edyn, Where the approx-
imation error,eapp, measures the error inherent in the critic’s representationggnds an error
related to the single time scale algorithm. We note that the approximation erranddepe the
basis functions chosen for the critic, and in general can be redudgtynhoosing a better repre-
sentation basis. The terggy, is the dynamic error, and this error can be reduced by choosing the
critic’s parameter§ ,, andrl', appropriately.

We begin by establishing a variant of Lyapunov’s theorem for asympttatislisy,> where in-
stead of proving asymptotic convergence to a point, we prove convagera compact invariant
set. Based on this result, we continue by establishing a bound on a time dap@mE of the first
order. This result is used to bound the critic’s error in estimating the a@eeagard per stage and
the differential values. Finally, using these results, we establish The®rem

We denote a closed ball of radiysn some normed vector spad®", || - ||2), by B,, and its
surface bydBy. Also, we denote byA\B a set, which contains all the members of Aathich are
not members oB. Finally, we define the complement & by B/ = RN\ B,.

The following lemma is similar to Lyapunov’s classic theorem for asymptotic stabgidg
Khalil (2002), Theorem 4.1. The main difference is that when the valubeotyapunov function
is unknown inside a ball, convergence can be established to the ball, ttahedo a single point.

Lemma 22 Consider a dynamical system= f (x) in a normed vector spacéR",| - |), and a
closed ballB; £ {x|x € R",|x|| <r }. Suppose that there exists a continuously differentiable scalar
function V(x) such that M(x) > 0 andV (x) < 0 for all x € B¢, and V(x) = 0 for x € 0B;. Then,

limsup||x(t) ]| <r.

t—oo
Proof We prove two complementary cases. In the first case, we assume(thatever enters
B;,. On the setBf, V (X) is a strictly decreasing function i and it is bounded below, thus it

converges. We denote this bound ®yand notice thaC > 0 since forx € BF, V (x) > 0. We
prove thatC = 0 by contradiction. Assume th& > 0. Then,x(t) converge to the invariant set

3. We say that the equilibrium poirt= 0 of the systenx=f(x) is stableif for eache > 0 there exists @ > 0 such that
[IX(0)|| < &= ||x(t)|| < & forallt > 0. We say that the point= 0 is asymptotically stablé it is stable and there
exists a > 0 such that|x(0)|| < & implies lim_ x(t) = 0 (Khalil, 2002).
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S 2 {xV(x) =C,x € B°}. For eachx(t) € Sc we haveV (x) < 0. Thus,V (x) continues to
decrease which contradicts the boundedness from below. As a késult)) — O.

In the second case, let us suppose that at some time, denotgdkfty) € B;. We argue that
the trajectory never leaveB,. Let us assume that at some timethe trajectoryx(t) enters the
setdB.e. Then on this set, we hawé(x(tz)) > 0. By the continuity of the trajectory(t), the
trajectory must go through the s@8;. Denote the hitting time of this set lty. By definition we
haveV (x(t1)) = 0. Without loss of generality, we assume that the trajectory in the times <t
is restricted to the se; ¢/ B;. Thus, since/ (x(t)) < 0 for x € B¢/ B, we have

V(x(t2)) =V (x(t) + [ V(x0)dt <V (x(ts)).

t1

which contradicts the fact that(x(t2)) > V(x(t1)). Since this argument holds for a@l> 0, the
trajectoryx(t) never leavess; . [

The following lemma will be applied later to the linear equations (17), and morefiedly, to
the ODEs describing the dynamics @fandw. It bounds the difference between an ODE’s state
variables and some time dependent functions.

Lemma 23 Consider the following ODE in a normed spa@*, || - ||»)

{;x(t) = M (1) (X (t) — Fa(t)) + Fa(t), (28)

X(0) = Xo,
where for sufficiently large t .
1. M(t) € R~ is a continuous matrix which satisfiesax_; X M (t)x < —y < Ofort € R,
2. R (t) € Rt satisfies|dF(t)/dt||2 < Bey,
3. R (t) € Rt satisfies|F(t) |2 < Bro.
Then, the solution of the ODE satisfiemsup_q ||X(t) — F1(t)]|2 < (Br1+ Bg2) /Y.

Proof We express (28) as

LX)~ Fi0) = M0 (X0~ F0) ~ SR04 R(), (29)
and define g
Z(0)£ (X(0) - Fi1), G2~ LR+ R,

Therefore, (29) can be written as
Z(t) = M(1)Z(t) + G(t),
where||G(t)|| < Bg £ Br1+ Br2. In view of Lemma 22, we consider the function

V(@) =5 (103 -82/7).
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Let B be a ball with a radius = Bg/y. Thus we havé/ (Z) > 0 for Z € BF andV(Z) = 0 for
X € 0B;. In order to satisfy the assumptions of Lemma 22 the conditionvfi&} < O needs to be
verified. For||Z(t)||, > Bg/ywe have

V(Z) = (OxV)'Z(t)
=Z(t)MH)Z(t)+2Z(t)'G(t)
7% 2(t)
= 12Oz Vizo T,

< HZ(t)H%HYH;T’TILIY(U’M(UY(U +I2O)1216M)12

= [Z®ll2(=ylIZ(V)[l2 +Be)
<.

+Z(t)'G(t)

As a result, the assumptions of Lemma 22 are valid and the Lemma is proved. [ |

The following lemma shows that the matAX0), defined in (16), satisfies the conditions of Lemma
23. For the following lemmas, we define the weighted ntﬁmnlz-l(e) £ (|W(8)wll,.

Lemma 24 The following inequalities hold:
1. For anyw € R-and for all6 € R¥, [P (8) W g) < [IWl[ry(g)-
2. The matrixV (8) satisfies|M (8) W, < [[Wl|n (g, for all 8 € R andw € R*.

3. The matrix1(8) (M (8) — 1) satisfies<I (8) (M (8) —I)x < 0 for all x € R- and for all§ €
RK,

4. There exists a positive scalgsuch thatVA(8) w < —y for all ww = 1.

Proof The following proof is similar in many aspects to the proof of Lemma 6.6 of Beatsakd
Tsitsiklis (1996). |

1. By using Jensen’s inequality for the functibfa) = a? we have

2
(Z P(ylx,e)W(y)> < 3 PXO)w(y)?, Wxex. (30)

yeX yexX
Ifin Jensen’s inequality we have a strictly convex fiction and non-degémprobability mea-
sures then the inequality is strict. The functibfo) is strictly convex, and by Assumption 2
the matrixP (0) is aperiodic, which implies that the matf%(0) is not a permutation matrix.

As aresult, there existg € X such that the probability measupgy|xo, 0) is not degenerate,
thus, the inequality in (30) is strict, that is,

2
(Z PW’XOvG)W(y)) < S P(yo,0)w(y)*. (31)

yex yex
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Then, we have

IP(®)Wlne = WP(8)TI(B)P(B)wW

2
= 3 m(x6) <Z P(ylx, B)W(y)>
xeX yex
< 3 TXO) Y PyxB)w(y)?

XEX yeXx

= S wy)? Y mxe)P(ylx6)
yeX XeEX

= Y wy)’mn(ye)
yex

= Wlne>

where in the inequality we have used (31).

2. Using the triangle inequality and 1 we have

IM(©)Wre = |[[(1-A) ZAmP(e)m”W
m=0 n(e)

< 1-NF A"||lp(e)™
< @-n 3 an[eEmtwl

< (1=2) 3 ATwllqe
m=0
= [Wlne -
3. By definition
XM OM(B)x = XN (8)Y2MN(8)Y2M (8)x

< Hn(e)l/sz-Hn(e)l/zM(e)xH
= [Xlne) IM(6) Xl )
< IXllrgey 1Xllre) -

XM ()X,

where in the first inequality we have used the Cauchy-Schwartz inequadiyin the second
inequality we have used 1. Thug[1(8) (M (6) —I)x < O for all x € R, which implies that
M(8) (M (8) —1) is a negative definite (ND) matrik.

4. From 3, we know that for alb € RX and allw ¢ RX! satisfyingww = 1, we have
W (8)(M(8)—1)w < 0, and by Assumption (2), this is true also for the closure of
{1 (8) (M (6)—1)|8 € RX}. Thus, there exists a positive scaldrsatisfying

wT(8)(M(8)—1)w< —y <O.

4. Usually, a ND matrix is defined for Hermitian matrices, that i® i an Hermitian matrix and it satisfie&Bx < 0
for all xe CK thenB is a NSD matrix . We use here a different definition which states that asquetrixB is a ND
matrix if it is real and it satisfieg’ Bx < 0 for all x € R¥ (Horn and Johnson, 1985).
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By Assumption 5 the rank of the matrii is full, thus there exists a scalpsuch that for all
w € R-, wherew'w = 1, we havev'A(8)w < —y < 0.

The following Lemma establishes the boundedneds of
Lemma 25 There exists a constanyB= Bn1 + By (Bp + By + By + 2B¢By) such that]|6]|2 < Bex.
Proof Recalling (17)

I8, = [Ten®)+ 3 D*Y(8) (d(xy.6) - d(xy,w))
X,yeXxX,ueU 2
<But+ Y |[pe@) dexy.8)~dxyw),
XYEX XX, ueU
< By1+ By (Bp + By + Bjj -+ 2ByBu)
A
= Bg1.
[ |
Based on Lemma (25), the following Lemma shows the boundednggg@it)) — ).
Lemma 26 We have B
limsupln(8(t) - < =,
t—oo rr]
where By, = By, Bor.
Proof Using the Cauchy-Schwartz inequality we have
N(®)| = |On(6)'8| _
< [IBn(8)]12[/8]]2 (32)
Recalling the equation fay in (17) we have
fi =Tn (N(8) - 7).
We conclude by applying Lemma 23 and using (32) that
~ By, B B
limsup|n(8(t)) — | < —2=r = 1. (33)
[ |

In (33) we see that the bound ¢m(6) —fj| is controlled by, where larger values dfy, ensure
smaller values ofn(8) —f}|. Next, we bound|w*(6) —w||,. We recall the second equation of (17)

W = Wyllw(AB)W+b(8) - G(B)(n(6) — i),
AB) = ®TIO)(M—1)o,

MO = (1-3) 5 AP,

b(®) = @M(6) 3y A"P(6)"(r—n(®)),

m=0

GO) = (o) i)xmp(e)m.
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We can write the equation fov as
W= Wy [Fw (A(B) (W—w"(8)) +G(6)(n(8) —N))],

wherew* = —A(8) b (8). In order to use Lemma 23, we need to demonstrate the boundedness of
|| &w*||. The following lemma does so.

Lemma 27

1. There exists a positive constaBt, 2 1 | X[°LBeB;, such that|b(8)]|, < By.
Y 2

(a) There exists a positive constaBg = 125 1X3LBo, such thaf|G(8)|, < Be.

(b) There exist positive constan= By (Br +By) Bo1 + Bp1 (Br + Byy) Be1 + B1Bg1 and
Bo: 2 125 | X[*BeBB, such that we havgh(8)||, < Bpy.
(c) There exist constants andBpa such that

Ml <

0 <ba < [[A(8)], < Ba.
(d) There exist a constanBa; such that

IA(B)[l2 < Baa.

[a (@)

(f) There exists a positive constaiy, such that

d
dt

(e) We have

< b3Ba1.
2

w|| < Bw.

2
Proof [ |

1. We show that the entries of the veckd®) are uniformly bounded i8, therefore, its norm is
uniformly bounded ir. Let us look at thé-th entry of the vectob (6) (we denote by|; the
j-th row of a matrix or a vector)

bE) = |[®ne foxmme)m(r—n(e))]_‘
< io)\m}[QJ’I'I(G)P(G)m(I’—r](G))]i‘

@ A | x| x| | x| 0 o o
= S5 5 5 (@M ©PE) (1-n ()
< 15 IXPBoB,

thus|[b(8) ||, < 125 | X|*LBeB is uniformly bounded ire.
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2. The proof is accomplished by similar argument to Section 1.

3. Similarly to Section 1, we show that the entries of the velbt®) are uniformly bounded in
0, therefore, its norm is uniformly bounded én First, we show that the following function
of 8(t) is bounded.

';‘t (I‘ij (0) [P(e)m]jl (rn—n (e)))‘

‘De (nkj (©)[P(®)™]; (n—n (9))> é‘

< (e 0) PO (1~ ©)9)
+ ‘nkj (8)[TeP (8)"]; (n —n (e))'e’
+ ‘nkj (8)[P(8)™]; Do (r —n (e))é‘
< B (Br+By)-Bo1+Bp1(B; 4 By)Bes
+BnlBel
= B,

where we used the triangle and Cauchy-Schwartz inequalities in the firseaond inequal-
ities respectively, and Lemmas 3 and 25 in the second inequality. Thus,

Hb(e)]i’ -

N () Y A"P(©)"(r - <e>>] ‘

m=0

< g A™| [P (B)P(8)™ (r —n (8))]]
m=0

o |IX] KX 1X] d -

= zo)\m Izl Zkzl [QJ’]ika (nkj (0)[P(8)"]; (n —r](e)))|
m= =1j=1k=

< rl)\|x|3B¢Br|§

= Bp.

4. SinceA(B) satisfiesy A(B)y < 0 for all nonzeroy, it follows that all its eigenvalues are
nonzero. Therefore, the eigenvaluesAdB)’ A(8) are all positive and real sind&(8)' A(8)
is a symmetric matrix. Since by Assumption 2 this holds forBail RK, there is a global
minimum,ba, and a global maximunB,a, such that

B2 > Amax (A(8)' A(8)) > Amin (A(8)'A(B)) > b3, VBeRK,

where we denote b¥nmin (-) andAmax(-) the minimal and maximal eigenvalues of the matrix
respectively. Using Horn and Johnson (1985) section 5.6.6, we haégg(A(e)’A(e)) =
|A(B)]],, thus, we get an upper bound on the matrix norm. Let us look at the norm of
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thus, we the lower bound oH‘A(G)‘lHZ s /1/Amin (A(8)' A(8)), that is,ba.
. Let us look at thej entry of the matrix%A(e), where using similar arguments to Section 2
we get

d

It (qa’n (0) ((1—A)H;Amp(e)m”—|> q:)‘

_
I
1

i]

d < \Mp (@)™
< qam(n(e))<(1—>\)ngox P(8) 1—|>q> ij
+{|o'n (9)% ((1-)0 i AP (B)™ |> ®
m=0 i

1
BeByu——Bp+B
®Bm 7 o+ ¢(1—A)

>Bp1Bo.

Since the matrix entries are uniformly boundedginso is the matrix%A(e)/%A(e), and
so is the largest eigenvalue #{A(G)’%A(G) which implies the uniform boundedness of

IGA®),:
. For a general invertible square matiit), we have

0 = %I = % (x %) = % (xw™) X(t)+x(t)_1% (X(1))-

Rearranging it we get

S (xY) = xS xoyx

Using this identity yields

a(re)]| = [-aer faenae |
< [a@,-|ga®)| -0,
= bZBa1.
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7. Examining the norm oftw* yields

d
Hdt“f“

2 ’ ‘

*1b(e)) 2
L d

— H;A(e>lb(e)+A(e> pridC)

2

b%BAl |.X|3 BoBr + bAé

= Bw.

1-A

We wish to use Lemma 23 for (17), thus, we show that the assumptions of LeBare 2alid.

Lemma 28
1. We have
IirtnsupHW*(G(t)) w(t)|l2 < r—BAW, (34)
—s00 w
where
Bay, 2 BW1+BGBAn
AW — Y
(a) We have
. ~ Ban1  €app
limsupl|lh(B(t)) —h(w(t))||e < — +
msup|[h(B(1)) —A(w(t)) | < £+ 72,
where
Ban 2 | X|L (Baw)?.
Proof [ |

1. Without loss of generality, we can eliminate the projection operator sinaawehoosd,,
to be large enough such that(8) will be inside the bounded space. We takgt) = A(0),
F1(t) =w*(B(t)), andF,(t) = G(8)(n(6) — ) . By previous lemmas we can see that the
Assumption 23 holds. By Lemma 27 (G\w*(0)||, is bounded byB,,, by Lemma 26 we
have a bound of(n(6) — )|, and by Lemma 24 we have a boundw/ (6) w. Using these
bounds and applying Lemma 23 provides the desired result.

(a) Suppressing the time dependence for simplicity and expre8hiiy — h(w)]|. using
€appand the previous result yields

n(®)~hw) |« < [N®) ~Aw)ll2
= [h(8) —Rtw") + Rtw*) ~ Aw)
< [In(®) ~ Aw") 2+ [iw) -

)l (35)
h(w)]2
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For the first term on the r.h.s. of the final equation in (35) we have

Ih®) — w2 = [|(M©)7) (M(®)2) (@) —ew))|
< |n@2], In®) ~Aw)lln g
€app
(b

where we use the sub-additivity of the matrix norms in the first inequality, @nohha 3
and the (10) in the last inequality. For the second term on the r.h.s. of thedjnation
in (35) we have

2

Ih(w") — h(w)| = || D(w* (8) —w)l[
X /L 2
> ( @ (k) (WF(9>—W|)>

k=1 \I=1

Combining (34)-(36) yields the desired result.

Using Lemma 28 we can provide a bound on second term of (17).

Lemma 29 We have

. ~ B B
limsup DY) (8) (d(x,y,8) — d(x,y, w)) ‘ < “F+ =5 + BudsEapp
t—oo Hlx yeXx XX, ueu w n
where 1 1 B
Batd1 = ™ -2ByBan1, Batd2 = o BanBw, Batdsz = \/Ttin

Proof Simplifying the notation by suppressing the time dependence, we bound thigidis the
limit, that is,

limsup|d(x,y,8) — d(x,y,w)| = limsup|(r (x) —n(8) + h(y,8) — h(x,8))
— (r(9) =i+ h(y,w) — h(x,w))|
< limsup|n(8) —fi| +limsup2||h(6) — h(w)]| ,
t—o0 t—oo

Ban < Bahi 5app>
L Y L .
My Mw  Vbr
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With some more algebra we have

D(x,u,y)(e) (d(x, y,0) — d~(X, Y, W))

XYEX XX UeU

limsup

t—oo

< limsup Z T0(X) P (U[X, Bn) P (y|x, u) [ W (X, u,6n) || - [d(x,y, 8) — d(x,y,W)|

t=0  yyex XX, uel

Ban < Bant 3app> )
<By|—+4+2| —+
(e

_ Batdr  Batd2
Mw I_n

+ Batdz€app

We see that the term in this bound is adjustable by choosing appropyiatedr,. The concluding
lemma proves the conclusion of Theorem 8.

D.1 Proof of Theorem 8

We define
» Batd1  Batd2

Bn, & 24t
L

+ Batdz€app

For an arbitraryd > 0, define the set
B5 2 {0: ||On(8)] < Bry+ 3}
We claim that the trajectomy(0) visits Bs infinitely often. Assume the contrary that
Iimigf 10n(8)|l, > By + 0. (37)

Thus, on the seBs for t large enough we have

(8) = On(8) -6

=Dn(9)'<Dn(9)+ > D(X’y)(e)(d(xay)—~(X,Y))>

X,yeX x X
=||Dn<e>|§+mn<e>-< )3 D<X=y><e>(d<x,y>—”<x,y>)>
X,yeX x X

S DOY(®) (d(xy)—d(xy))

X,ye X x X

= [On(®)l> (In(®)l, — Bon)
> [|On(8)]l (Bon +3—Ban)
By (37), there exists a timig which for allt > to we haven (8) € B. Therefore,
(=) =nfto) + [ A(B)dt>n(to)+ [ (Bo+23)adt =
0 0

which contradicts the boundedness106). Since the claim holds for al > 0, the result follows.

> ||On(8) 15— IOn(8)]l,

2
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