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Abstract
Actor-Critic based approaches were among the first to address reinforcement learning in a gen-
eral setting. Recently, these algorithms have gained renewed interest due to their generality, good
convergence properties, and possible biological relevance. In this paper, we introduce an online
temporal difference based actor-critic algorithm which isproved to converge to a neighborhood
of a local maximum of the average reward. Linear function approximation is used by the critic
in order estimate the value function, and the temporal difference signal, which is passed from the
critic to the actor. The main distinguishing feature of the present convergence proof is that both the
actor and the critic operate on a similar time scale, while inmost current convergence proofs they
are required to have very different time scales in order to converge. Moreover, the same temporal
difference signal is used to update the parameters of both the actor and the critic. A limitation of
the proposed approach, compared to results available for two time scale convergence, is that con-
vergence is guaranteed only to a neighborhood of an optimal value, rather to an optimal value itself.
The single time scale and identical temporal difference signal used by the actor and the critic, may
provide a step towards constructing more biologically realistic models of reinforcement learning in
the brain.

Keywords: actor critic, single time scale convergence, temporal difference

1. Introduction

In Reinforcement Learning (RL) an agent attempts to improve its performance over time at a given
task, based on continual interaction with the (usually unknown) environment (Bertsekas and Tsit-
siklis, 1996; Sutton and Barto, 1998). Formally, it is the problem of mapping situations to actions
in order to maximize a given average reward signal. The interaction betweenthe agent and the en-
vironment is modeled mathematically as a Markov Decision Process (MDP). Approaches based on
a direct interaction with the environment, are referred to assimulation based algorithms, and will
form the major focus of this paper.

A well known subclass of RL approaches consists of the so called actor-critic (AC) algorithms
(Sutton and Barto, 1998), where the agent is divided into two components,an actor and a critic.
The critic functions as a value estimator, whereas the actor attempts to select actions based on
the value estimated by the critic. These two components solve their own problems separately but
interactively. Many methods for solving the critic’s value estimation problem, for a fixedpolicy,
have been proposed, but, arguably, the most widely used istemporal difference(TD) learning. TD
learning was demonstrated to accelerate convergence by trading bias forvariance effectively (Singh
and Dayan, 1998), and is often used as a component of AC algorithms.
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In general, policy selection may be randomized. When facing problems with a large number of
states or actions (or even continuous state-action problems), effective policy selection may suffer
from several problems, such as slow convergence rate or an inefficient representation of the policy.
A possible approach to policy learning is the so-calledpolicy gradient method(Baxter and Bartlett,
2001; Cao, 2007; Cao and Chen, 1997; Konda and Tsitsiklis, 2003; Marbach and Tsitsiklis, 1998).
Instead of maintaining a separate estimate for the value for each state (or state-action pair), the agent
maintains a parametrized policy function. The policy function is taken to be a differentiable function
of a parameter vector and of the state. Given the performance measure, depending on the agent’s
policy parameters, these parameters are updated using a sampling-based estimate of the gradient
of the average reward. While such approaches can be proved to converge under certain conditions
(Baxter and Bartlett, 2001), they often lead to slow convergence, due to very high variance. A more
general approach based on sensitivity analysis, which includes policy gradient methods as well as
non-parametric average reward functions, has been discussed in depth in the recent manuscript by
Cao (2007).

Several AC algorithms with associated convergence proofs have been proposed recently (a short
review is given in Section 2.2). As far as we are aware, all the convergence results for these algo-
rithms are based on two time scales, specifically, the actor is assumed to update itsinternal param-
eters on a much slower time scale than the one used by the critic. The intuitive reason for this time
scale separation is clear, since the actor improves its policy based on the critic’s estimates. It can be
expected that rapid change of the policy parameters may not allow the critic to effectively evaluate
the value function, which may lead to instability when used by the actor in order tore-update its
parameters.

The objective of this paper is to propose an online AC algorithm and establishits convergence
under conditions which donot require the separation into two time scales. In this context we note
that recent work by Mokkadem and Pelletier (2006), based on earlier research by Polyak and col-
leagues, has demonstrated that combing the two-time scale approach with the averaging method of
Polyak (1990), can lead to the single time scale convergence at the optimal rate. In these works
the rate of convergence is defined in terms of convergence in distribution,while the present work
focuses on convergence with probability 1. As far as we are aware, norates of convergence are
currently known for two time scale approaches in the latter, stronger, setting. In fact, our motiva-
tion for the current direction was based on the possible relevance of AC algorithms in a biological
context (Daw et al., 2006), where it would be difficult to justify two very different time scales oper-
ating within the same anatomical structure.1 We refer the reader to DiCastro et al. (2008) for some
preliminary ideas and references related to these issues. Given the weaker conditions assumed on
the time scales, our convergence result is, not surprisingly, somewhat weaker than that provided
recently in Bhatnagar et al. (2008, 2009), as we are not ensured to converge to a local optimum, but
only to a neighborhood of such an optimum. Nevertheless, it is shown that theneighborhood size
can be algorithmically controlled. Further comparative discussion can be found in Section 2.

This paper is organized as follows. In Section 2 we briefly recapitulate current AC algorithms
for which convergence proofs are available. In Section 3, we formally introduce the problem setup.
We begin Section 4 by relating the TD signal to the gradient of the average reward, and then move
on to motivate and derive the main AC algorithm, concluding the section with a convergence proof.
A comparative discussion of the main features of our approach is presented in Section 5, followed

1. Note that the results in Mokkadem and Pelletier (2006), while providing optimal single time scale convergence, still
rely on an underlying two time scale algorithm
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by some simulation results in Section 6. Finally, in Section 7, we discuss the resultsand point
out possible future work. In order to facilitate the readability of the paper,we have relegated all
technical proofs to appendices.

2. Previous Work

In this section we briefly review some previous work in RL which bears direct relevance to our
work. While many AC algorithms have been introduced over the years, we focus only on those for
which a convergence proof is available, since the main focus of this work ison convergence issues,
rather than on establishing the most practically effective algorithms. See, for example, Peters and
Schaal (2008), for promising applications of AC algorithms in a robotic setting.

2.1 Direct Policy Gradient Algorithms

Direct policy gradient algorithms, employing agents which consist of an actor only, typically esti-
mate a noisy gradient of the average reward, and are relatively close in their characteristics to AC
algorithms. The main difference from the latter is that the agent does not maintain a separate value
estimator for each state, but rather interacts with the environment directly, and in a sense maintains
its value estimate implicitly through a mapping which signifies which path the agent should take in
order to maximize its average reward per stage.

Marbach and Tsitsiklis (1998) suggested an algorithm for non-discounted environments. The
gradient estimate is based on an estimate of the state values which the actor estimates while in-
teracting with the environment. If the actor returns to a sequence of previously visited states, it
re-estimates the states value, not taking into account its previous visits. This approach often results
in large estimation variance.

Baxter and Bartlett (2001) proposed an online algorithm for partially observable MDPs. In
this algorithm, the agent estimates the expected average reward for the non-discounted problems
through an estimate of the value function of a related discounted problem. It was shown that when
the discount factor approaches 1, the related discounted problem approximates the average reward
per stage. Similar to the algorithms of Marbach and Tsitsiklis (1998), it suffers from relatively large
estimation variance. Greensmith et al. (2004) have proposed a method for coping with the large
variance by adding a baseline to the value function estimation.

2.2 Actor Critic Algorithms

As stated in Section 1, the convergence proofs of which we are aware for AC algorithms are based
on two time scale stochastic approximation (Borkar, 1997), where the actor isassumed to operate
on a time scale which is much slower than that used by the critic.

Konda and Borkar (1999) suggested a set of AC algorithms. In two of their algorithms (Algo-
rithms 3 and 6), parametrized policy based actors were used while the critic was based on a lookup
table. Those algorithms and their convergence proofs were specific to theGibbs policy function in
the actor.

As far as we are aware, Konda and Tsitsiklis (2003) provided the first convergence proof for
an AC algorithm based on function approximation. The information passed from the critic to the
actor is the critic’s action-value function, and the critic’s basis functions, which are explicitly used
by the actor. They provided a convergence proof of their TD(λ) algorithm whereλ approaches 1.
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A drawback of the algorithm is that the actor and the critic must share the information regarding
the actor’s parameters. This detailed information sharing is a clear handicapin a biological context,
which was one of the driving forces for the present work.

Finally, Bhatnagar et al. (2008, 2009) recently proposed an AC algorithm which closely resem-
bles our proposed algorithm, and which was developed independently of ours. In this work the
actor uses a parametrized policy function while the critic uses a function approximation for the
state evaluation. The critic passes to the actor the TD(0) signal and based on it the actor estimates
the average reward gradient. A detailed comparison will be provided in Section 5. As pointed out
in Bhatnagar et al. (2008, 2009), their work is the first to provide a convergence proof for an AC
algorithm incorporating bootstrapping (Sutton and Barto, 1998), where bootstrapping refers to a sit-
uation where estimates are updated based on other estimates, rather than on direct measurements (as
in Monte Carlo approaches). This feature applies to our work as well. We also note that Bhatnagar
et al. (2008, 2009) extend their approach to the so-called natural gradient estimator, which has been
shown to lead to improved convergence in supervised learning as well as RL. The present study
focuses on the standard gradient estimate, leaving the extension to naturalgradients to future work.

3. The Problem Setup

In this section we describe the formal problem setup, and present a sequence of assumptions and
lemmas which will be used in order to prove convergence of Algorithm 1 in Section 4. These
assumptions and lemmas mainly concern the properties of the controlled Markovchain, which
represents the environment, and the properties of the actor’s parametrized policy function.

3.1 The Dynamics of the Environment and of the Actor

We consider an agent, composed of an actor and a critic, interacting with an environment. We
model the environment as aMarkov Decision Process(MDP) (Puterman, 1994) in discrete time
with a finite state setX and an action setU, which may be uncountable. We denote by|X | the
size of the setX . Each selected actionu∈U determines a stochastic matrixP(u) = [P(y|x,u)]x,y∈X
whereP(y|x,u) is the transition probability from a statex∈ X to a statey∈ X given the controlu.
For each statex ∈ X the agent receives a corresponding rewardr(x), which may be deterministic
or random. In the present study we assume for simplicity that the reward is deterministic, a benign
assumption which can be easily generalized.

Assumption 1 The rewards,{r(x)}x∈X , are uniformly bounded by a finite constant Br .

The actor maintains aparametrized policy function. A parametrized policy function is a conditional
probability function, denoted byµ(u|x,θ), which maps an observationx ∈ X into a controlu∈U

given a parameterθ ∈ R
K . The agent’s goal is to adjust the parameterθ in order to attain maximum

average reward over time. For eachθ, we have a Markov Chain (MC) induced byP(y|x,u) and
µ(u|x,θ). The state transitions of the MC are obtained by first generating an actionu according
to µ(u|x,θ), and then generating the next state according to{P(y|x,u)}x,y∈X . Thus, the MC has a
transition matrixP(θ) = [P(y|x,θ)]x,y∈X which is given by

P(y|x,θ) =
Z

U
P(y|x,u)dµ(u|x,θ). (1)
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We denote the space of these transition probabilities byP = {P(θ)|θ ∈ R
K}, and its closure by

P̄ . The following assumption is needed in the sequel in order to prove the main results (Bŕemaud,
1999).

Assumption 2 Each MC, P(θ) ∈ P̄ , is aperiodic, recurrent, and irreducible.

As a result of Assumption 2, we have the following lemma regarding the stationary distribution and
a common recurrent state.

Lemma 1 Under Assumption 2 we have:

1. Each MC,P(θ) ∈ P̄ , has a unique stationary distribution, denoted byπ(θ), satisfying
π(θ)′P(θ) = π(θ)′.

2. There exists a state, denoted byx∗, which is recurrent for allP(θ) ∈ P̄ .

Proof For the first part see Corollary 4.1 in Gallager (1995). The second part follows trivially from
Assumption 2.

The next technical assumption states that the first and second derivatives of the parametrized policy
function are bounded, and is needed to prove Lemma 3 below.

Assumption 3 The conditional probability function µ(u|x,θ) is twice differentiable. Moreover,
there exist positive constants, Bµ1 and Bµ2, such that for all x∈ X , u∈U, θ ∈R

K and k1 ≥ 1, k2 ≤K
we have ∣

∣
∣
∣

∂µ(u|x,θ)

∂θk

∣
∣
∣
∣
≤ Bµ1,

∣
∣
∣
∣

∂2µ(u|x,θ)

∂θk1∂θk2

∣
∣
∣
∣
≤ Bµ2.

A notational comment concerning bounds Throughout the paper we denote upper bounds on dif-
ferent variables by the letter B, with a subscript corresponding to the variable itself. An additional
numerical subscript,1 or 2, denotes a bound on the first or second derivative of the variable. For
example, Bf , Bf1, and Bf2 denote the bounds on the function f and its first and second derivatives
respectively.

3.2 Performance Measures

Next, we define a performance measure for an agent in an environment. The average reward per
stageof an agent which traverses a MC starting from an initial statex∈ X is defined by

J(x,θ) , lim
T→∞

E

[

1
T

T−1

∑
n=0

r(xn)

∣
∣
∣
∣
∣
x0 = x,θ

]

,

where E[·|θ] denotes the expectation under the probability measureP(θ), andxn is the state at time
n. The agent’s goal is to findθ ∈ R

K which maximizesJ(x,θ). The following lemma shows that
under Assumption 2, the average reward per stage does not depend onthe initial state; see Bertsekas
(2006), vol. II, Section 4.1.

Lemma 2 Under Assumption 2 and based on Lemma 1, the average reward per stage, J(x,θ), is
independent of the starting state, is denoted byη(θ), and satisfiesη(θ) = π(θ)′r.
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Based on Lemma 2, the agent’s goal is to find a parameter vectorθ, which maximizes the average
reward per stageη(θ). In the sequel we show how this maximization can be performed by optimiz-
ing η(θ), using∇θη(θ). A consequence of Assumption 3 and the definition ofη(θ) is the following
lemma.

Lemma 3

1. For eachx,y∈X , 1≤ i, j ≤K, andθ∈R
K , the functions∂P(y|x,θ)/∂θi and∂2P(y|x,θ)/∂θi∂θ j

are uniformly bounded byBP1 andBP2 respectively.

(a) For eachx∈X , 1≤ i, j ≤K, andθ∈R
K , the functions∂π(x|θ)/∂θi and∂2π(x|θ)/∂θi∂θ j

are uniformly bounded by ,Bπ1andBπ2 respectively.

(b) For all 1≤ i, j ≤ K, andθ ∈ R
K , the functionsη(θ), ∂η(θ)/∂θi , ∂2π(x|θ)/∂θi∂θ j are

uniformly bounded by ,Bη, Bη1 andBη2 respectively.

(c) For allx∈ X andθ ∈ R
K , there exists a constantbπ > 0 such thatπ(x|θ) ≥ bπ.

The proof is technical and is given in Appendix A.1. For later use, we define the random variable
T, which denotes the first return time to the recurrent statex∗. Formally,

T , min{k > 0|x0 = x∗, xk = x∗}.

It is easy to show that under Assumption 2, the average reward per stagecan be expressed by

η(θ) = lim
T→∞

E

[

1
T

T−1

∑
n=0

r(xn)

∣
∣
∣
∣
∣
x0 = x∗,θ

]

.

Next, we define thedifferential value functionof statex∈ X which represents the average differen-
tial reward the agent receives upon starting from a statex and reaching the recurrent statex∗ for the
first time. Mathematically,

h(x,θ) , E

[
T−1

∑
n=0

(r(xn)−η(θ))

∣
∣
∣
∣
∣
x0 = x,θ

]

.

Abusing notation slightly, we denoteh(θ) , (h(x1,θ), . . . ,h(x|X |,θ)) ∈ R
|X |. For eachθ ∈ R

K and
x∈ X , h(x,θ), r(x), andη(θ) satisfy Poisson’s equation, as in Theorem 7.4.1 in Bertsekas (2006),
that is,

h(x,θ) = r(x)−η(θ)+ ∑
y∈X

P(y|x,θ)h(y,θ). (2)

Based on the differential value we define thetemporal difference(TD) between the statesx∈ X and
y∈ X (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998),

d(x,y,θ) , r(x)−η(θ)+h(y,θ)−h(x,θ). (3)

According to common wisdom, the TD is interpreted as a prediction error. The next lemma states
the boundedness ofh(x,θ) and its derivatives. The proof is given in Appendix A.2.
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Lemma 4

1. The differential value function,h(x,θ), is bounded and has bounded first and second deriva-
tive. Mathematically, for allx∈ X , 1≤ i, j ≤ K, and for allθ ∈ R

K we have

|h(x,θ)| ≤ Bh,

∣
∣
∣
∣

∂h(x,θ)

∂θi

∣
∣
∣
∣
≤ Bh1,

∣
∣
∣
∣

∂2h(x,θ)

∂θi∂θ j

∣
∣
∣
∣
≤ Bh2.

(a) There exists a constantBD such that or allθ ∈ R
K we have|d(x,y,θ)| ≤ BD, where

BD = 2(Br +Bh).

3.3 The Critic’s Dynamics

The critic maintains an estimate of the environmental state values. It does so by maintaining a
parametrized function which approximatesh(x,θ), and is denoted bỹh(x,w). The functionh̃(x,w)
is a function of the statex∈ X and a parameterw∈ R

L. We note thath(x,θ) is a function ofθ, and
is induced by the actor policyµ(u|x,θ), while h̃(x,w) is a function ofw. Thus, the critic’s objective
is to find the parameterw which yields the best approximation ofh(θ) = (h(x1,θ), . . . ,h(x|X |,θ)), in
a sense to be defined later. We denote this optimal vector byw∗(θ). An illustration of the interplay
between the actor, critic, and the environment is given in Figure 1.

Figure 1: A schematic illustration of the dynamics between the actor, the critic, and the environ-
ment. The actor chooses an action,un, according to the parametrized policyµ(u|x,θ).
As a result, the environment proceeds to the next state according to the transition proba-
bility P(xn+1|xn,un) and provides a reward. Using the TD signal, the critic improves its
estimation for the environment state values while the actor improves its policy.

4. A Single Time Scale Actor Critic Algorithm with Linear Func tion Approximation

In this section, we present a version of an AC algorithm, along with its convergence proof. The
core of the algorithm is based on (4) below, where the actor’s estimate of∇θη(θ) is based on the
critic’s estimate of the TD signald(x,y,θ). The algorithm is composed of three iterates, one for the
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actor and two for the critic. The actor maintains the iterate of the parameter vector θ corresponding
to the policyµ(u|x,θ), where its objective is to find the optimal value ofθ, denoted byθ∗, which
maximizesη(θ). The critic maintains the other two iterates. One iterate is used for estimating
the average reward per stage,η(θ), where its estimate is denoted byη̃. The critic’s second iterate
maintains a parameter vector, denoted byw∈ R

L, which is used for the differential value estimate
using a function approximator, denoted byh̃(w). For eachθ ∈R

K , there exists aw∗(θ) which, under
the policy induced byθ, is the optimalw for estimatingη̃(w). The critic’s objective is to find the
optimalη̃ andw.

4.1 Using the TD Signal to Estimate the Gradient of the Average Reward

We begin with a theorem which serves as the foundation for the policy gradient algorithm described
in Section 4. The theorem relates the gradient of the average reward perstage,η(θ), to the TD signal.
It was proved in Bhatnagar et al. (2008), and is similar in its structure to other theorems which
connectη(θ) to the Q-value (Konda and Tsitsiklis, 2003), and to the differential value function
(Cao, 2007; Marbach and Tsitsiklis, 1998).

We start with a definition of thelikelihood ratio derivative

ψ(x,u,θ) ,
∇θµ(u|x,θ)

µ(u|x,θ)
,

where the gradient∇θ is w.r.t.θ, andψ(x,u,θ)∈R
K . The following assumption states thatψ(x,u,θ)

is bounded, and will be used to prove the convergence of algorithm 1.

Assumption 4 For all x ∈ X , u∈U, andθ ∈ R
K , there exists a positive constant, Bψ, such that

‖ψ(x,u,θ)‖2 ≤ Bψ < ∞,

where‖ · ‖2 is the Euclidean L2 norm.

Based on this, we present the following theorem which relates the gradientof η(θ) to the TD signal.
For completeness, we supply a (straightforward) proof in Appendix B.

Theorem 5 For any arbitrary function f(x), the gradient w.r.t.θ of the average reward per stage
can be expressed by

∇θη(θ) = ∑
x,y∈X

P(x,u,y,θ)ψ(x,u,θ)d(x,y,θ), (4)

where P(x,u,y,θ) is the probabilityPr(xn = x,un = u,xn+1 = y) subject to the policy parameterθ.

4.2 The Updates Performed by the Critic and the Actor

We note that the following derivation regarding the critic is similar in some respects to the deriva-
tion in Section 6.3.3 in Bertsekas and Tsitsiklis (1996) and Tsitsiklis and Roy (1997). We define
the following quadratic target function used to evaluate the critic’s performance in assessing the
differential valueh(θ),

I(w,θ) ,
1
2 ∑

x∈X
π(x|θ)

(
h̃(x,w)−h(x,θ)

)2
. (5)

The probabilities{π(x|θ)}x∈X are used in order to provide the proportional weight to the state
estimates, according to the relative number of visits of the agent to the different states.
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Limiting ourselves to the class of linear function approximations in the critic, we consider the
following function for the differential value function

h̃(x,w) = φ(x)′w, (6)

whereφ(x) ∈ R
L. We defineΦ ∈ R

|X |×L to be the matrix

Φ ,








φ1(x1) φ2(x1) . . . φL(x1)
φ1(x2) φ2(x2) . . . φL(x2)

...
...

...
φ1(x|X |) φ2(x|X |) . . . φL(x|X |)








,

whereφ(·) is a column vector. Therefore, we can express (6) in vector form as

h̃(w) = Φw,

where, abusing notation slightly, we seth̃(w) =
(
h̃(x1,w), . . . , h̃(x|X |,w)

)′
.

We wish to express (5), and the approximation process, in an appropriateHilbert space. Define
the matrixΠ(θ) to be a diagonal matrixΠ(θ) , diag(π(θ)). Thus, (5) can be expressed as

I(w,θ) =
1
2

∥
∥
∥Π(θ)

1
2 (h(θ)−Φw)

∥
∥
∥

2

2
,

1
2
‖h(θ)−Φw‖2

Π(θ) . (7)

In the sequel, we will need the following technical assumption.

Assumption 5

1. The columns of the matrixΦ are independent, that is, they form a basis of dimensionL.

(a) The norms of the column vectors of the matrixΦ are bounded above by 1, that is,
‖φk‖2 ≤ 1 for 1≤ k≤ L.

The parameterw∗(θ), which optimizes (7), can be directly computed, but involves inverting a ma-
trix. Thus, in order to find the right estimate forh̃(w), the followinggradient descent(Bertsekas
and Tsitsiklis, 1996) algorithm is suggested,

wn+1 = wn− γn∇wI(wn,θ), (8)

where{γn}∞
n=1 is a positive series satisfying the following assumption, which will be used in proving

the convergence of Algorithm 1.

Assumption 6 The positive series{γn}∞
n=1 satisfies

∞

∑
n=1

γn = ∞,
∞

∑
n=1

γ2
n < ∞.
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Writing the term∇wI(wn) explicitly yields

∇wI(wn) = Φ′Π(θ)Φwn−Φ′Π(θ)h(θ).

For eachθ ∈ R
K , the valuew∗(θ) is given by setting∇wI(w,θ) = 0, that is,

w∗(θ) =
(
Φ′Π(θ)Φ

)−1 Φ′Π(θ)h(θ).

Note that Bertsekas and Tsitsiklis (1996) prove that the matrix(Φ′Π(θ)Φ)−1 Φ′Π(θ) is a projection
operator into the space spanned byΦw, with respect to the norm‖·‖Π(θ) . Thus, the explicit gradient
descent procedure (8) is

wn+1 = wn− γnΦ′Π(θ)(Φwn−h(θ)) . (9)

Using the basisΦ, in order to approximatesh(θ), yields an approximation error defined by

εapp(θ) , inf
w∈RL

‖h(θ)−Φw‖π(θ) = ‖h(θ)−Φw∗ (θ)‖π(θ) .

We can bound this error by
εapp, sup

θ∈RK
εapp(θ) . (10)

The agent cannot accessh(x,θ) directly. Instead, it can interact with the environment in order
to estimateh(x,θ). We denote bŷhn(x) the estimate ofh(x,θ) at time stepn, thus (9) becomes

wn+1 = wn + γnΦ′Π(θ)
(
ĥn−Φwn

)
.

This procedure is termedstochastic gradient descent(Bertsekas and Tsitsiklis, 1996).
There exist several estimators forĥn. One sound method, which performs well in practical prob-

lems (Tesauro, 1995), is the TD(λ) method; see Section 5.3.2 and 6.3.3 in Bertsekas and Tsitsiklis
(1996), or Chapter 6 in Sutton and Barto (1998), where the parameterλ satisfies 0≤ λ ≤ 1. This
method devises an estimator which is based on previous estimates ofh(w), that is,wn, and is based
also on the environmental rewardr (xn). This idea is a type ofa bootstrappingalgorithm, that is,
using existing estimates and new information in order to build more accurate estimates; see Sutton
and Barto (1998), Section 6.1.

The TD(λ) estimator for̂hn+1 is

ĥn+1(xn) = (1−λ)
∞

∑
k=0

λkĥ(k)
n+1(xn) , (11)

where thek-steps predictoris defined by

ĥ(k)
n+1(xn) =

(
k

∑
m=0

r (xn+m)+ ĥn(xn+k+1)

)

.

The idea of bootstrapping is apparent in (11): the predictor for the differential value of the state
xn at the(n+1)-Th time step, is based partially on the previous estimates throughĥn(xn+k+1), and
partially on new information, that is, the rewardr (xn+m). In addition, the parameterλ gives an
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exponential weighting for the differentk-step predictors. Thus, choosing the rightλ can yield better
estimators.

For the discounted setting, it was proved by Bertsekas and Tsitsiklis (1996) (p. 295) that an
algorithm which implements the TD(λ) estimator (11) online and converges to the right value is the
following one

wn+1 = wn + γndnen,

en = αλen−1 +φ(xn) , (12)

wheredn is the temporal difference between then-th and the(n+1)-th cycle, anden is the so-
calledeligibility trace; see Sections 5.3.3 and 6.3.3 in Bertsekas and Tsitsiklis (1996) or Chapter 7
in Sutton and Barto (1998), and the parameterα is the discount factor. The eligibility trace is an
auxiliary variable, which is used in order to implement the idea of (11) as an online algorithm. As
the name implies, the eligibility variable measures how eligible is the TD variable,dn, in (12).

In our setting, the non-discounted case, the analogous equations for thecritic, are

wn+1 = wn + γnd̃(xn,xn+1,wn)en

d̃(xn,xn+1,wn) = r(xn)− η̃m+ h̃(xn+1,wm)− h̃(xn,wm)

en = λen−1 +φ(xn) .

The actor’s iterate is motivated by Theorem 5. Similarly to the critic, the actor executes a
stochastic gradient ascent step in order to find a local maximum of the average reward per stage
η(θ). Therefore,

θn+1 = θn + γnψ(xn,un,θn)d̃n(xn,xn+1,wn),

whereψ is defined in Section 4.1. A summary of the algorithm is presented in Algorithm 1.

4.3 Convergence Proof for the AC Algorithm

In the remainder of this section, we state the main theorems related to the convergence of Algo-
rithm 1. We present a sketch of the proof in this section, where the technical details are relegated to
Appendices C and D. The proof is divided into two stages. In the first stage we relate the stochas-
tic approximation to a set of ordinary differential equations (ODE). In the second stage, we find
conditions under which the ODE system converges to a neighborhood of the optimalη(θ).

The ODE approach is a widely used method in the theory of stochastic approximation for in-
vestigating the asymptotic behavior of stochastic iterates, such as (13)-(15). The key idea of the
technique is that the iterate can be decomposed into a mean function and a noiseterm, such as a
martingale difference noise. As the iterates advance, the effect of the noise weakens due to repeated
averaging. Moreover, since the step size of the iterate decreases (e.g.,γn in (13)-(15)), one can
show that asymptotically an interpolation of the iterates converges to a continuous solution of the
ODE. Thus, the first part of the convergence proof is to find the ODE system which describes the
asymptotic behavior of Algorithm 1. This ODE will be presented in Theorem 7.In the second part
we use ideas from the theory of Lyapunov functions in order to characterize the relation between
the constants,|X |, Γη, Γw, etc., which ensure convergence to some neighborhood of the maximum
point satisfying‖∇θη(θ)‖2 = 0. Theorem 8 states conditions on this convergence.
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Algorithm 1 TD AC Algorithm
Given:

• An MDP with a finite setX of states satisfying Assumption 2.

• An actor with a parametrized policyµ(u|x,θ) satisfying Assumptions 3 and 4.

• A critic with a linear basis for̃h(w), that is,{φ}L
i=1, satisfying Assumption 5.

• A setH, a constantBw, and an operatorΨw according to Definition 6.

• Step parametersΓη andΓw.

• Choose a TD parameter 0≤ λ < 1.

For stepn = 0 :

• Initiate the critic and the actor variables:η̃0 = 0 ,w0 = 0, e0 = 0, θ0 = 0.

For each stepn = 1,2, . . .
Critic: Calculate the estimated TD and eligibility trace

η̃n+1 = η̃n + γnΓη (r(xn)− η̃n) (13)

h̃(x,wn) = w′
nφ(x),

d̃(xn,xn+1,wn) = r(xn)− η̃n + h̃(xn+1,wn)− h̃(xn,wn),

en = λen−1 +φ(xn) .

Set,

wn+1 = wn + γnΓwd̃(xn,xn+1,wn)en (14)

Actor:
θn+1 = θn + γnψ(xn,un,θn)d̃n(xn,xn+1,wn) (15)

Project each component ofwm+1 ontoH (see Definition 6)

4.3.1 RELATE THE ALGORITHM TO AN ODE

In order to prove the convergence of this algorithm to the related ODE, we need to introduce the
following assumption, which adds constraints to the iteration forw, and will be used in the sequel to
prove Theorem 7. This assumption may seem restrictive at first but in practice it is not. The reason
is that we usually assume the bounds of the constraints to be large enough sothe iterates practically
do not reach those bounds. For example, under Assumption 2 and additional mild assumptions, it
is easy to show thath(θ) is uniformly bounded for allθ ∈ R

K . As a result, there exist a constant
boundingw∗(θ) for all θ ∈ R

K . Choosing constraints larger than this constant will not influence the
algorithm performance.
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Definition 6 Let us denote by{wi}L
i=1 the components of w, and choose a positive constant Bw. We

define the set H⊂ R
K ×R

L to be

H ,
{
(θ,w)

∣
∣−∞ < θi < ∞, 1≤ i ≤ K, −Bw ≤ w j ≤ Bw, 1≤ j ≤ L

}
,

and letΨw be an operator which projects w onto H, that is, for each Cramer′s1≤ j ≤ L, Ψww j =
max(min(w j ,Bw),−Bw).

The following theorem identifies the ODE system which corresponds to Algorithm 1. The detailed
proof is given in Appendix C.

Theorem 7 Define the following functions:

G(θ) = Φ′Π(θ)
∞

∑
m=0

λmP(θ)m,

D(x,u,y)(θ) = π(x)P(u|x,θ)P(y|x,u)ψ(x,u,θ) , x,y∈ X , u∈U. (16)

A(θ) = Φ′Π(θ)(M (θ)− I)Φ,

M (θ) = (1−λ)
∞

∑
m=0

λmP(θ)m+1 ,

b(θ) = Φ′Π(θ)
∞

∑
m=0

λmP(θ)m(r −η(θ)) .

Then,

1. Algorithm 1 converges to the invariant set of the following set of ODEs






θ̇ =∇θη(θ)+ ∑
x,y∈X×X

D(x,u,y)(θ)
(
d(x,y,θ)− d̃(x,y,w)

)
,

ẇ =Ψw [Γw(A(θ)w+b(θ)+G(θ)(η(θ)− η̃))] ,

˙̃η =Γη (η(θ)− η̃) ,

(17)

with probability 1.

(a) The functions in (16) are continuous with respect toθ.

4.3.2 INVESTIGATING THE ODE ASYMPTOTIC BEHAVIOR

Next, we quantify the asymptotic behavior of the system of ODEs in terms of the various algorithmic
parameters. The proof of the theorem appears in Appendix D.

Theorem 8 Consider the constantsΓη andΓw as defined in Algorithm 1, and the function approx-
imation boundεapp as defined in(10). Setting

B∇η ,
B∆td1

Γw
+

B∆td2

Γη
+B∆td3εapp,

where B∆td1, B∆td2, B∆td3 are a finite constants depending on the MDP and agent parameters. Then,
the ODE system(17)satisfies

liminf
t→∞

‖∇θη(θt)‖ ≤ B∇η.
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Theorem 8 has a simple interpretation. Consider the trajectoryη(θt) for large times, corresponding
to the asymptotic behavior ofηn. The result implies that the trajectory visits a neighborhood of
a local maximum infinitely often. Although it may leave the local vicinity of the maximum, it is
guaranteed to return to it infinitely often. This occurs, since once it leavesthe vicinity, the gradient
of η points in a direction which has a positive projection on the gradient direction,thereby pushing
the trajectory back to the vicinity of the maximum. It should be noted that in simulation (reported
below) the trajectory usually remains within the vicinity of the local maximum, rarely leaving it.
We also observe that by choosing appropriate values forΓη andΓw we can control the size of the
ball to which the algorithm converges.

The key idea required to prove the Theorem is the following argument. If thetrajectory does not
satisfy‖∇η(θ)‖2 ≤ B∇η, we haveη̇(θ) > ε for some positiveε. As a result, we have a monotone
function which increases to infinity, thereby contradicting the boundednessof η(θ). Thus,η(θ)
must visit the set which satisfies‖∇η(θ)‖2 ≤ B∇η infinitely often.

5. A Comparison to Other Convergence Results

In this section, we point out the main differences between Algorithm 1, the first algorithm proposed
by Bhatnagar et al. (2009) and the algorithms proposed by Konda and Tsitsiklis (2003). The main
dimensions along which we compare the algorithms are the time scale, the type of theTD signal,
and whether the algorithm is on line or off line.

5.1 The Time Scale and Type of Convergence

As was mentioned previously, the algorithms of Bhatnagar et al. (2009) andKonda and Tsitsiklis
(2003) need to operate in two time scales. More precisely, this refers to the following situation.
Denote the time step of the critic’s iteration byγc

n and the time step of the actor’s iteration byγa
n, we

haveγc
n = o(γa

n), that is,

lim
n→∞

γc
n

γa
n

= 0.

The use of two time scales stems from the need of the critic to provide an accurate estimate of the
state values, as in the work of Bhatnagar et al. (2009), or the state-actionvalues, as in the work of
Konda and Tsitsiklis (2003) before the actor uses them.

In the algorithm proposed here, a single time scale is used for the three iterates of Algorithm 1.
We haveγa

n = γn for the actor iterate,γc,η
n = Γηγn for the critic’sηn iterate, andγc,w

n = Γwγn for the
critic’s w iterate. Thus,

lim
n→∞

γc,η
n

γa
n

= Γη,

lim
n→∞

γc,w
n

γa
n

= Γw.

with the ave
Due to the single time scale, Algorithm 1 has the potential to converge faster thanalgorithms

based on two time scales, since both the actor and the critic may operate on the fast time scale. The
drawback of Algorithm 1 is the fact that convergence to the optimal value cannot be guaranteed, as
was proved by Bhatnagar et al. (2009) and by Konda and Tsitsiklis (2003). Instead, convergence to
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a neighborhood inRK around the optimal value is guaranteed. In order to make the neighborhood
smaller, we need to chooseΓη andΓw appropriately, as is stated in Theorem 8.

5.2 The TD Signal, the Information Passed Between the Actor and the Critic, and the
Critic’s Basis

The algorithm presented by Bhatnagar et al. (2009) is essentially a TD(0)algorithm, while the al-
gorithm of Konda and Tsitsiklis (2003) is TD(1), Our algorithm is a TD(λ) for 0≤ λ < 1. A major
difference between the approaches of Bhatnagar et al. (2009) and the present work, as compared to
(Konda and Tsitsiklis, 2003), is the information passed from the critic to the actor. In the former
cases, the information passed is the TD signal, while in the latter case the Q-value is passed. Ad-
ditionally, in Bhatnagar et al. (2009) and in Algorithm 1 the critic’s basis functions do not change
through the simulation, while in Konda and Tsitsiklis (2003) the critic’s basis functions are changed
in each iteration according to the actor’s parameterθ. Finally, we comment that Bhatnagar et al.
(2009) introduced an additional algorithm, based on the so-called naturalgradient, which led to
improved convergence speed. In this work we limit ourselves to algorithms based on the regular
gradient, and defer the incorporation of the natural gradient to future work. As stated in Section 1,
our motivation in this work was the derivation of a single time scale online AC algorithm with guar-
anteed convergence, which may be applicable in a biological context. The more complex natural
gradient approach seems more restrictive in this setting.

6. Simulations

We report empirical results applying Algorithm 1 to a set of abstract randomly constructed MDPs
which are termed Average Reward Non-stationary Environment Test-bench or in shortGARNET

(Archibald et al., 1995).GARNET problems comprise a class of randomly constructed finite MDPs
serving as a test-bench for control and RL algorithms optimizing the averagereward per stage. A
GARNET problem is characterized in our case by four parameters and is denoted by
GARNET(X,U,B,σ). The parameterX is the number of states in the MDP,U is the number of
actions,B is the branching factor of the MDP, that is, the number of non-zero entriesin each line of
the MDP’s transition matrices, andσ is the variance of each transition reward.

We describe how aGARNET problem is generated. When constructing such a problem, we
generate for each state a reward, distributed normally with zero mean and unit variance. For each
state-action the reward is distributed normally with the state’s reward as mean and varianceσ2. The
transition matrix for each action is composed ofB non-zero terms in each line which sum to one.

We note that a comparison was carried out by Bhatnagar et al. (2009) between their algorithm
and the algorithm of Konda and Tsitsiklis (2003). We therefore compare our results directly to the
more closely related former approach (see also Section 5.2).

We consider the sameGARNET problems as those simulated by Bhatnagar et al. (2009). For
completeness, we provide here the details of the simulation. For the critic’s feature vector, we use a
linear function approximatioñh(x,w) = φ(x)′w, whereφ(x)∈ {0,1}L, and definel to be the number
nonzero values inφ(x). The nonzero values are chosen uniformly at random, where any two states
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have different feature vectors. The actor’s feature vectors are ofsizeL×|U|, and are constructed as

ξ(x,u) , (

L×(u−1)
︷ ︸︸ ︷

0, . . . ,0,φ(x),

L×(|U|−u)
︷ ︸︸ ︷

0, . . . ,0 ,

µ(u|x,θ) =
eθ′ξ(x,u)

∑u′∈U eθ′ξ(x,u′)
.

Bhatnagar et al. (2009) reported simulation results for twoGARNET problems:GARNET(30,4,2,
0.1) andGARNET(100,10,3,0.1). For theGARNET(30,4,2,0.1) problem, Bhatnagar et al. (2009)
used critic stepsγc,w

n andγc,η
n , and actor stepsγa

n, where

γc,w
n =

100

1000+n2/3
, γc,η

n = 0.95γc,w
n , γa,η

n =
1000

100000+n
,

and forGARNET(100,10,3,0.1) the steps were

γc,w
n =

105

106 +n2/3
, γc,η

n = 0.95γc,w
n , γa,η

n =
106

108 +n
.

In our simulations we used a single time scale,γn, which was equal toγc,w
n as used by Bhatnagar

et al. (2009). The basis parameters forGARNET(30,4,2,0.1) were L = 8 and l = 3, where for
GARNET(100,10,3,0.1) they wereL = 20 andl = 5.

In Figures 2 we show results of applying Algorithm 1 (solid line) and algorithm1 from Bhat-
nagar et al. (2009) (dashed line) onGARNET(30,4,2,0.1) andGARNET(100,10,3,0.1) problems.
Each graph in Figure 2, represents an average of 100 independent simulations. Note that an agent
with a uniform action selection policy will attain an average reward per stage of zero in these prob-
lems. Figure 3 presents similar results forGARNET(30,15,15,0.1). We see from these results that in
all simulations, during the initial phase, Algorithm 1 converges faster than algorithm 1 from Bhat-
nagar et al. (2009). The long term behavior is problem-dependent, as can be seen by comparing
Figures 2 and 3; specifically, in Figure 2 the present algorithm converges to a higher value than
Bhatnagar et al. (2009), while the situation is reversed in Figure 3. We refer the reader to Mokka-
dem and Pelletier (2006) for careful discussion of convergence rates for two time scales algorithms;
a corresponding analysis of convergence rates for single time scale algorithms is currently an open
problem.

The results displayed here suggest a possible avenue for combining bothalgorithms. More
concretely, using the present approach may lead to faster initial convergence due to the single time
scale setting, which allows both the actor and the critic to evolve rapidly, while switching smoothly
to a two time scales approach as in Bhatnagar et al. (2009) will lead to asymptoticconvergence to a
point rather than to a region. This type of approach is reminiscent of the quasi-Newton algorithms
in optimization, and is left for future work. As discussed in Section 5, we do not consider the natural
gradient based algorithms from Bhatnagar et al. (2009) in this comparative study.

7. Discussion and Future Work

We have introduced an algorithm where the information passed from the criticto the actor is the
temporal difference signal, while the critic applies a TD(λ) procedure. A policy gradient approach
was used in order to update the actor’s parameters, based on a critic usinglinear function approxima-
tion. The main contribution of this work is a convergence proof in a situation where both the actor
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Figure 2: Simulation results applying Algorithm 1 (red solid line) and algorithm 1 from Bhatnagar
et al. (2009) (blue dashed line) on aGARNET(30,4,2,0.1) problem (a) and onGAR-
NET(100,10,3,0.1) problem (b). Standard errors of the mean (suppressed for visibility)
are of the order of 0.04.
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Figure 3: Simulation results applying Algorithm 1 (red solid line) and algorithm 1 from Bhatnagar
et al. (2009) (blue dashed line) on aGARNET(30,15,15,0.1) problem. Standard errors of
the mean (suppressed for visibility) are of the order of 0.018.

and the critic operate on the same time scale. The drawback of the extra flexibilityin time scales
is that convergence is only guaranteed to a neighborhood of a local maximum value of the average
reward per stage. However, this neighborhood depends on parameters which may be controlled to
improve convergence.

This work sets the stage for much future work. First, as observed above, the size of the conver-
gence neighborhood is inversely proportional to the step sizesΓw andΓη. In other words, in order
to reduce this neighborhood we need to select larger values ofΓw andΓη. This on the other hand
increases the variance of the algorithm. Therefore, further investigationof methods which reduce
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this variance are needed. However, the bounds used throughout areclearly rather loose, and can-
not be effectively used in practical applications. Obviously, improving thebounds, and conducting
careful numerical simulations in order to obtain a better practical understanding of the influence of
the different algorithmic parameters, is called for. In addition, there is clearly room for combining
the advantages of our approach with those of AC algorithms for which convergence to a single point
is guaranteed, as discussed in Section 6,

From a biological point of view, our initial motivation to investigate TD based ACalgorithms
stemmed from questions related to the implementation of RL in the mammalian brain. Such a
view is based on an interpretation of the transient activity of the neuromodulator dopamine as a
TD signal (Schultz, 2002). Recent evidence suggested that the dorsal and ventral striatum may
implement the actor and the critic, respectively Daw et al. (2006). We believethat theoretical
models such as those of Bhatnagar et al. (2009) and Algorithm 1 may provide, even if partially, a
firm foundation to theories at the neural level. Some initial attempts in a neural setting (using direct
policy gradient rather than AC based approaches) have been made by Baras and Meir (2007) and
Florian (2007). Such an approach may lead to functional insights as to howan AC paradigm may
be implemented at the cellular level of the basal ganglia and cortex. An initial demonstration was
given by DiCastro et al. (2008). From a theoretical perspective several issues remain open. First,
strengthening Theorem 8 by replacing liminf by lim would clearly be useful. Second, systematically
combining the advantages of single time scale convergence (fast initial dynamics) and two time scale
approaches (convergence to a point) would clearly be beneficial.
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Appendix A. Proofs of Results from Section 3

We present proofs of the main results from section 3.

A.1 Proof of Lemma 3

1. Looking at (1) we see thatP(y|x,θ) is a compound function of an integral and a twice differen-
tiable function,µ(y|x,θ), with bounded first and second derivatives according to Assumption
3. Therefore,P(y|x,θ) is a twice differentiable function with bounded first and second deriva-
tives for allθ ∈ R

K .
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2. According to Lemma 1, for eachθ ∈ R
K we have a unique solution to the following non-

homogeneous linear equation system in{π(i|θ)}|X |
i=1,







|X |

∑
i=1

π(i|θ)P( j|i,θ) = π( j|θ), j = 1, . . . , |X |−1,

|X |

∑
i=1

π(i|θ) = 1,

(18)

or in matrix formM(θ)π(θ) = b. By Assumption 2, the equation system (18) is invertible,
therefore, det[M(θ)] > 0. This holds for allP(θ) ∈ P̄, thus, there exists a positive constant,
bM, which uniformly lower bounds det[M(θ)] for all θ ∈ R

K .Thus, using Cramer’s rule we
have

π(i|θ) =
Q(i,θ)

det[M(θ)]
,

whereQ(i,θ) is a finite polynomial of{P( j|i,θ)}i, j∈X of at most degree|X | and with at most
|X |! terms. Writing∂π(x|θ)/∂θi explicitly gives

∣
∣
∣
∣

∂π(x|θ)

∂θi

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

det[M(θ)] ∂
∂θi

Q(i,θ)−Q(i,θ) ∂
∂θi

det[M(θ)]

det[M(θ)]2

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∂
∂θi

Q(i,θ)

det[M(θ)]

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

Q(i,θ) ∂
∂θi

det[M(θ)]

det[M(θ)]2

∣
∣
∣
∣
∣

≤ |X | · |X |! ·BP1

bM
+

(|X | · |X |!) ·BP1

b2
M

,

which gives the desired bound. Following similar steps we can show the boundedness of the
second derivatives.

3. The average reward per stage,η(θ) is a linear combination of{π(i|θ)}|X |
i=1, with bounded

coefficients by assumption 1. Therefore, using Section 2,η(θ) is twice differentiable with
bounded first and second derivatives for allθ ∈ R

K .

4. Sinceπ(x|θ) is the stationary distribution of a recurrent MC, according to Assumption 2 there
is a positive probability to be in each statex∈ X . This applies to the closure ofP . Thus, there
exist a positive constantbπ such thatπ(x|θ) ≥ bπ.

A.2 Proof of Lemma 4

1. We recall the Poisson Equation (2). We have the following system of linear equations in
{h(x|θ)}x∈X , namely,







h(x|θ) = r(x)−η(θ)+ ∑
y∈X

P(y|x,θ)h(y|θ), ∀x∈ X ,x 6= x∗,

h(x∗|θ) = 0.

or in matrix formN(θ)h(θ) = c. Adding the equationh(x∗|θ) = 0 yields a unique solution
for the system; see Bertsekas (2006), Vol. 1, Prop. 7.4.1. Thus, usingCramer’s rule we have
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h(x|θ) = R(x,θ)/det[N(θ)], whereR(x,θ) and det[N(θ)] are polynomial function of entries in
N(θ), which are bounded and have bounded first and second derivatives according to Lemma
3. Continuing in the same steps of Lemma 3 proof, we conclude thath(x|θ) and its two first
derivatives for allx∈ X and for allθ ∈ R

K .

2. Trivially, by (3) and the previous section the result follows.

Appendix B. Proof of Theorem 5

We begin with a Lemma which was proved by Marbach and Tsitsiklis (1998). Itrelates the gradient
of the average reward per stage to the differential value function.

Lemma 9 The gradient of the average reward per stage can be expressed by

∇θη(θ) = ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)h(y,θ).

For completeness, we present a proof,which will be used in the sequel.
Proof We begin with Poisson’s Equation (2) in vector form

h(θ) = r̄ −eη(θ)+P(θ)h(θ),

wheree is a column vector of 1’s. Taking the derivative with respect toθ and rearranging yields

e∇θη(θ) = −∇θh(θ)+∇θP(θ)h(θ)+P(θ)∇θh(θ).

Multiplying the left hand side of the last equation by the stationary distributionπ(θ)′ yields

∇θη(θ) = −π(θ)′∇θh(θ)+π(θ)′ ∇θP(θ)h(θ)+π(θ)′P(θ)∇θh(θ)

= −π(θ)′ ∇θh(θ)+π(θ)′ ∇θP(θ)h(θ)+π(θ)′ ∇θh(θ)

= π(θ)′ ∇θP(θ)h(θ).

Expressing the result explicitly we obtain

∇θη(θ) = ∑
x,y∈X

P(x)∇θP(y|x,θ)h(y,θ)

= ∑
x,y∈X

P(x)∇θ

(

∑
u

(P(y|x,u)µ(u|x,θ))

)

h(y,θ)

= ∑
x,y∈X

P(x)∑
u

(P(y|x,u)∇θµ(u|x,θ))h(y,θ)

= ∑
x,y∈X ,u∈U

P(y|x,u)P(x)∇θµ(u|x,θ)h(y,θ)

= ∑
x,y∈X ,u∈U

P(y|x,u)µ(u|x,θ)P(x)
∇θµ(u|x,θ)

µ(u|x,θ)
h(y,θ)

= ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)h(y,θ).

(19)
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Based on this, we can now prove Theorem 5. We start with the result in (19).

∇θη(θ) = ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)h(y,θ).

= ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)(h(y,θ)−h(x,θ)+ r̄(x)−η(θ)+ f (x))

− ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)(−h(x,θ)+ r̄(x)−η(θ)+ f (x))

= ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)(d(x,y,θ)+ f (x))

− ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)(−h(x,θ)+ r̄(x)−η(θ)+ f (x))

In order to complete the proof, we show that the second term equals 0. We define F(x,θ) ,

−h(x|θ)+ r̄(x)−η(θ)+ f (x) and obtain

∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)F(x,θ) = ∑
x∈X

π(x,θ)F(x,θ) ∑
u∈U,y∈X

∇θP(y|x,u,θ)

=0.

Appendix C. Proof of Theorem 7

As mentioned earlier, we use Theorem 6.1.1 from Kushner and Yin (1997). We start by describing
the setup of the theorem and the main result. Then, we show that the requiredassumptions hold in
our case.

C.1 Setup, Assumptions and Theorem 6.1.1 of Kushner and Yin (1997)

In this section we describe briefly but accurately the conditions for Theorem 6.1.1 of Kushner and
Yin (1997) and state the main result. We consider the following stochastic iteration

yn+1 = ΠH [yn + γnYn],

whereYn is a vector of “observations” at timen, andΠH is a constraint operator as defined in
Definition 6. Recall that{xn} is a Markov chain. Based on this, defineFn to be theσ-algebra

Fn , σ{y0,Yi−1,xi |i ≤ n}
= σ{y0,Yi−1,xi ,yi |i ≤ n},

and
F̄n , σ{y0,Yi−1,yi |i ≤ n}.

The difference between theσ-algebras is the sequence{xn}. Define the conditioned average iterate

gn(yn,xn) , E[Yn |Fn ] ,

and the correspondingmartingale difference noise

δMn , Yn−E[Yn |Fn ] .
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Thus, we can write the iteration as

yn+1 = yn + γn(gn(yn,xn)+δMn +Zn) ,

whereZn is a reflection term which forces the iterate to the nearest point in the setH whenever the
iterates leaves it (Kushner and Yin, 1997). Next, set

ḡ(y) , E
[
gn(y,xn)

∣
∣F̄n
]
.

Later, we will see that the sum of the sequence{δMn} converges to 0, and the r.h.s of the iteration
behaves approximately as a the function ¯g(y), which yields the corresponding ODE, that is,

ẏ = ḡ(y) .

The following ODE method will show that the asymptotic behavior of the iteration is equal to the
asymptotic behavior of the corresponding ODE.

Define the auxiliary variable

tn ,
n−1

∑
k=0

γk,

and the monotone piecewise constant auxiliary function

m(t) = {n|tn ≤ t < tn+1} .

The following assumption, taken from Section 6.1 of Kushner and Yin (1997), is required to estab-
lish the basic Theorem. An interpretation of the assumption follows its statement.

Assumption 7 Assume that

1. The coefficients{γn} satisfy∑∞
n=1 γn = ∞ and limn→∞ γn = 0.

(a) supnE[‖Yn‖] < ∞.

(b) gn(yn,x) is continuous inyn for eachx andn.

(c) For eachµ> 0 and for someT > 0 there is a continuous function ¯g(·) such that for each
y

lim
n→∞

Pr

(

sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γi (gn(y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

)

= 0.

(d) For eachµ> 0 and for someT > 0 we have

lim
n→∞

Pr

(

sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γiδMi

∥
∥
∥
∥
∥
≥ µ

)

= 0.

(e) There are measurable and non-negative functionsρ3(y) andρn4(x)such that

‖gn(yn,x)‖ ≤ ρ3(y)ρn4(x)

whereρ3(y) is bounded on each boundedy-set , and for eachµ> 0 we have

lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

m( jτ+τ)−1

∑
i=m( jτ)

γiρn4(xi) ≥ µ

)

= 0.
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(f) There are measurable and non-negative functionsρ1(y) andρn2(x)such thatρ1(y) is
bounded on each boundedy-set and

‖gn(y1,x)−gn(y2,x)‖ ≤ ρ1(y1−y2)ρn2(x) ,

where
lim
y→0

ρ1(y) = 0,

and

Pr



limsup
j

m(t j+τ)

∑
i= j

γiρi2 (xi) < ∞



= 1.

The conditions of Assumption 7 are quite general but can be interpreted asfollows. Assumptions
7.1-3 are straightforward. Assumption 7.4 is reminiscent of ergodicity, which is used to replace the
state-dependent functiongn(·, ·) with the state-independent of state function ¯g(·), whereas Assump-
tion 7.5 states that the martingale difference noise converges to 0 in probability. Assumptions 7.6
and 7.7 ensure that the functiongn(·, ·) is not unbounded and satisfies a Lipschitz condition.

The following Theorem, adapted from Kushner and Yin (1997), provides the main convergence
result required. The remainder of this appendix shows that the requiredconditions in Assumption 7
hold.

Theorem 10 (Adapted from Theorem 6.1.1 in Kushner and Yin 1997) Assume that algorithm 1, and
Assumption 7 hold. Then yn converges to some invariant set of the projected ODE

ẏ = ΠH [ḡ(y)].

Thus, the remainder of this section is devoted to showing that Assumptions 7.1-7.7 are satisfied.
For future purposes, we express Algorithm 1 using the augmented parameter vectoryn

yn ,
(
θ′

n w′
n η̃′

n

)′
, θn ∈ R

K , wn ∈ R
L, η̃n ∈ R.

The components ofYn are determined according to (17). The corresponding sub-vectors of ¯g(yn)
will be denoted by

ḡ(yn) =
[
ḡ(θn)

′ ḡ(wn)
′ ḡ(η̃n)

′]′ ∈ R
K+L+1,

and similarly

gn(yn,xn) =
[
gn(θn,xn)

′ gn(wn,xn)
′ gn(η̃n,xn)

′]′ ∈ R
K+L+1.

We begin by examining the components ofgn(yn,xn) andḡ(yn). The iterategn(η̃n,xn) is

gn(η̃n,xn) = E[Γη (r (xn)− η̃n)|Fn] (20)

= Γη (r (xn)− η̃n) ,

and since there is no dependence onxn we have also

ḡ(η̃n) = Γη (η(θ)− η̃n) .
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The iterategn(wn,xn) is

gn(wn,xn) = E
[

Γwd̃(xn,xn+1,wn)en
∣
∣Fn
]

= E

[

Γw

∞

∑
k=0

λkφ(xn−k)
(
r (xn)− η̃n +φ(xn+1)

′wn−φ(xn)
′wn
)

∣
∣
∣
∣
∣
Fn

]

(21)

= Γw

∞

∑
k=0

λkφ(xn−k)

(

r (xn)− η̃n + ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)
′wn

)

,

and the iterate ¯g(wn) is

ḡ(wn) = E
[
gn(wn,xn)| F̄n

]

= E

[

Γw

∞

∑
k=0

λkφ(xn−k)

(

r (xn)− η̃n + ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)
′wn

)∣
∣
∣
∣
∣
F̄

]

= Γw

∞

∑
k=0

λk ∑
x∈X

π(x)φ(x) ∑
z∈X

[

Pk
]

xz

×
(

r (z)− η̃n + ∑
y∈X

P(y|z,θn)φ(z)′wn−φ(y)′wn

)

,

which, following Bertsekas and Tsitsiklis (1996) Section 6.3, can be written inmatrix form

ḡ(wn) = Φ′Π(θn)

(

(1−λ)
∞

∑
k=0

λkPk+1− I

)

Φwn +Φ′Π(θn)
∞

∑
k=0

λkPk (r − η̃n) .

With some further algebra we can express this using (16),

ḡ(wn) = A(θn)wn +b(θn)+G(θn)(η(θn)− η̃n) .

Finally, the iterategn(θn,xn) is

gn(θn,xn) = E
[
d̃(xn,xn+1,wn)ψ(xn,un,θn)

∣
∣Fn
]

= E[d(xn,xn+1,θn)ψ(xn,un,θn)|Fn] (22)

+E
[(

d̃(xn,xn+1,wn)−d(xn,xn+1,θn)
)

ψ(xn,un,θn)
∣
∣Fn
]

= E[d(xn,xn+1,θn)ψ(xn,un,θn)|Fn]

+ ∑
z∈X

P(z|xn)ψ(xn,un,θn)
(
d̃(xn,z,wn)−d(xn,z,θn)

)
,

and

ḡ(θn) = E
[
d̃(xn,xn+1,wn)ψ(xn,un,θn)

∣
∣ F̄n
]

= E
[
d(xn,xn+1,θn)ψ(xn,un,θn)| F̄n

]

+E
[(

d̃(xn,xn+1,wn)−d(xn,xn+1,θn)
)

ψ(xn,un,θn)
∣
∣ F̄n
]

= ∇η(θn)+ ∑
x,y∈X

∑
u∈U

π(x)P(u|x,θn)P(y|x,u)ψ(x,u,θn)

×
(
d̃(x,y,wn)−d(x,y,θn)

)
.

Next, we show that the required assumptions hold.
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C.2 Satisfying Assumption 7.2

We need to show that supnE[‖Yn‖2] < ∞. Since later we need to show that supnE
[

‖Yn‖2
2

]

< ∞,

and the proof of the second moment is similar to the proof of the first moment, we consider both
moments here.

Lemma 11 The sequencẽηn is bounded w.p.1, supnE[‖Yn(η̃n)‖2] < ∞, and

supnE
[

‖Yn(η̃n)‖2
2

]

< ∞

Proof We can chooseM such thatγnΓη < 1 for all n> M. Using Assumption 3 for the boundedness
of the rewards, we have

η̃n+1 = (1− γnΓη)η̃m+ γnΓηr(xn)

≤ (1− γnΓη)η̃n + γnΓηBr

≤
{

η̃n if η̃n > Br ,
Br if η̃n ≤ Br ,

≤ max{η̃n,Br},
which means that each iterate is bounded above by the previous iterate or bya constant. We denote
this bound byBη̃. Using similar arguments we can prove thatη̃n is bounded below, and the first part
of the lemma is proved. Sincẽηn+1 is bounded the second part follows trivially.

Lemma 12 We havesupnE
[

‖Yn (wn)‖2
2

]

< ∞ andsupnE[‖Yn(wn)‖2] < ∞

Proof For the first part we have

E
[

‖Yn(wn)‖2
2

]

= E
[∥
∥Γwd̃(xn,xn+1,wn)en

∥
∥

2
2

]

= Γ2
wE





∥
∥
∥
∥
∥

∞

∑
k=0

λkφ(xn−k)
(
r (xn)− η̃n +φ(xn+1)

′wn−φ(xn)
′wn
)

∥
∥
∥
∥
∥

2

2





(a)

≤ Γ2
wE

[
∞

∑
k=0

λk
∥
∥φ(xn−k)

(
r (xn)− η̃n +φ(xn+1)

′wn−φ(xn)
′wn
)∥
∥

2

]2

≤ Γ2
wE

[

sup
k

∥
∥φ(xn−k)

(
r (xn)− η̃n +φ(xn+1)

′wn−φ(xn)
′wn
)∥
∥

2

∞

∑
k=0

λk

]2

(b)

≤ 4Γ2
w

(1−λ)2 ‖φ(xn−k)‖2
2

×
(

|r (xn)|2 + |η̃n|2 +‖φ(xn+1)‖2
2‖wn‖2

2 +‖φ(xn)‖2
2‖wn‖2

2

)

≤ 4Γ2
w

(1−λ)2B2
φ
(
B2

r +B2
η̃ +2B2

φB2
w

)
,

where we used the triangle inequality in(a) and the inequality(a+ b)2 ≤ 2a2 + 2b2 in (b). The
bound supnE[‖Yn(wn)‖2] < ∞ follows directly from the Cauchy-Schwartz inequality.
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Lemma 13 We havesupnE
[

‖Yn (θn)‖2
2

]

< ∞ andsupnE[‖Yn(θn)‖2] < ∞.The proof proceeds as in

Lemma 12.

Based on Lemmas 11, 12, and 13 we can assert Assumption 7.2

C.3 Satisfying Assumption 7.3

Assumption 7.3 requires the continuity ofgn(yn,xn) for eachn andxn. Again, we show that this
assumption holds for the three parts of the vectoryn.

Lemma 14 The function gn(η̃n,xn) is a continuous function of̃ηn for each n and xn.

Proof Sincegn(η̃n,xn) = Γη (r (xn)− η̃n) the claim follows.

Lemma 15 The function gn(wn,xn) is a continuous function of̃ηn, wn, andθn for each n and xn.

Proof The function is

gn(wn,xn) = Γw

∞

∑
k

λkφ(xn−k)

(

r (xn)− η̃n + ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)
′wn

)

.

The probability transition∑y∈X P(y|xn,θn) is a function ofµ(un|xn,θn). Thus it is continuous inθn

by Assumption 3, and thusgn(wn,xn) is continuous iñηn andθn and the lemma follows.

Lemma 16 The function gn(θn,xn) is a continuous function of̃ηn, wn, andθn for each n and xn.

Proof By definition, the functiongn(θn,xn) is

gn(θn,xn) = E
[
d̃(xn,xn+1,wn)ψ(xn,un,θn)

∣
∣Fn
]

=
∇θµ(un|xn,θn)

µ(un|xn,θn)

(

r (xn)− η̃n + ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)
′wn

)

Using similar arguments to Lemma 15 the claim holds.

C.4 Satisfying Assumption 7.4

In this section we prove the following convergence result: for eachµ> 0 and for someT > 0 there
is a continuous function ¯g(·) such that for eachy

lim
n→∞

Pr

(

sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γi (gn(y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

)

. (23)

We start by showing that there exist independent cycles of the algorithm since the underlying
Markov chain is recurrent and aperiodic. Then, we show that the cycles behave as a martingale,
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thus Doob’s inequality can be used. Finally we show that the sum in (23) converges to 0 w.p. 1. We
start investigating the regenerative nature of the process.

Based on Lemma 2, there exists a recurrent state common to allMC(θ), denoted byx∗. We
define the series ofhitting timesof the recurrent statex∗ by t0 = 0, t1, t2, ..., wheretm it them-th time
the agent hits the statex∗. Mathematically, we can define this series recursively by

tm+1 = inf{n|xn = x∗,n > tm}, t0 = 0,

andTm , tm+1− tm. Define them-th cycle of the algorithm to be the set of times

Tm , {n|tm−1 ≤ n < tm},

and the corresponding trajectories
Cm , {xn|n∈ Tm}.

Define a function,ρ(k), which returns the cycle to which the timek belongs to, that is,

ρ(k) , {m|k∈ Tm} .

We notice that based on Lemma 1, and using theRegenerative Cycle Theorem(Brémaud, 1999), the
cyclesCm are independent of each other.

Next, we examine (23), and start by defining the following events:

b(1)
n ,

{

ω

∣
∣
∣
∣
∣
sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γi (gi (y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

}

,

b(2)
n ,

{

ω

∣
∣
∣
∣
∣
sup
j≥n

sup
k≥m( jT )

∥
∥
∥
∥
∥

k

∑
i=m( jT )

γi (gi (y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

}

,

b(3)
n ,

{

ω

∣
∣
∣
∣
∣
sup
j≥n

∥
∥
∥
∥
∥

∞

∑
i=n

γi (gi (y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

}

.

It is easy to show that for eachn we haveb(1)
n ⊂ b(2)

n , thus,

Pr
(

b(1)
n

)

≤ Pr
(

b(2)
n

)

. (24)

It is easy to verify that the series
{

b(2)
n

}

is a subsequence of
{

b(3)
n

}

. Thus, if we prove that

limn→∞ Pr
(

b(3)
n

)

= 0, then limn→∞ Pr(bn) = 0, and using (24), Assumption 7.4 holds.

Next, we examine the sum defining the eventb(3)
n , by splitting it a sum over cycles and a sum

within each cycle. We can write it as following

∞

∑
i=n

γi (gi (y,xi)− ḡ(y)) =
∞

∑
m=ρ(n)

∑
i∈Tm

γi (gi (y,xi)− ḡ(y)) .

Denotecm , ∑ j∈Tm
γi (gn(y,xi)− ḡ(y)). Therefore, by theRegenerative Cycle Theorem(Brémaud,

1999),cm are independent random variables. Also,

E[cm] = E

[

∑
i∈Tm

γi (gi (y,xi)− ḡ(y))

]

= E

[

E

[

∑
j∈Tm

γi (gn(y,xi)− ḡ(y))

∣
∣
∣
∣
∣
Tm

]]

= 0.
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We argue thatcm is square integrable. To prove this we need to show that the second moments of
Tm and(gn(y,xi)− ḡ(y)) are finite.

Lemma 17

1. The first two moments of the random times{Tm} are bounded above by a constantBT , for all
θ ∈ R

K and for allm, 1≤ m< ∞.

(a) E
[

(gn(y,xi)− ḡ(y))2
]

≤ Bg

(b) Defineγ̄m , supi∈Tm
γi , then∑∞

m=0 γ̄2
m < ∞.

(c) E
[
c2

m

]
≤ (BTBg)

2.

Proof

1. According to Assumption 2 and Lemma 1, each Markov chain inP̄ is recurrent. Thus, for
eachθ ∈ R

K there exists a constantB̃T(θ), 0< B̃T(θ) < 1, where fork≤ |X | we have

P(Tm = k|θm) ≤
(
B̃T(θm)

)⌊k/|X |⌋
, 1≤ m< ∞, 1≤ k < ∞,

where⌊a⌋ is the largest integer which is not greater thana. Otherwise, if fork > |X | we have
B̃T(θm) = 1 then the chain transitions equal 1 which contradicts the aperiodicity of the chains.
Therefore,

E[Tm|θm] =
∞

∑
k=1

kP(Tm = k|θm) ≤
∞

∑
k=1

k
(
B̃T(θm)

)⌊k/|X |⌋
= BT1(θm) < ∞,

and

E
[
T2

m

∣
∣θm
]
=

∞

∑
k=1

k2P(Tm = k|θm) ≤
∞

∑
k=1

k2(B̃T(θm)
)⌊k/|X |⌋

= BT2(θm) < ∞.

Since the set̄P is closed, by Assumption 2 the above holds for the closure ofP̄ as well. Thus,
there exists a constantBT satisfyingBT = max{supθ BT1(θ),supθ BT2(θ)} < ∞.

(a) The proof proceeds along the same lines as the proofs of lemmas 11, 12, and 13.

(b) The result follows trivially since the sequence{γ̄m} is subsequence of the summable
sequence{γm}.

(c) By definition, for large enoughmwe haveγm ≤ 1. Therefore, we have

E
[
c2

m

]
= E





(

∑
j∈Tm

γ j (gn(y,x j)− ḡ(y))

)2




≤ E



|Tm|2
(

sup
j

γ j

)2(

sup
j

(gn(y,x j)− ḡ(y))

)2




≤ B2
TB2

g.
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Next, we conclude by showing that Assumption 7.4 is satisfied. Define the processdn , ∑n
m=0cm.

This process is a martingale since the sequence{cm} is square integrable (by Lemma 17) and satis-
fies E[dm+1|dm] = dm. Using Doob’s martingale inequality2 we have

Pr

(

sup
k≥n

ρ(k)

∑
m=ρ(n)

∑
j∈Tm

γi (gn(y,xi)− ḡ(y)) ≥ µ

)

≤ lim
n→∞

E

[(

∑∞
m=ρ(n) ∑ j∈Tm

γ j (gn(y,x j)− ḡ(y))
)2
]

µ2

= lim
n→∞

∑∞
m=ρ(n) E

[(

∑ j∈Tm
γ j (gn(y,x j)− ḡ(y))

)2
]

µ2

≤ lim
n→∞

∞

∑
m=ρ(n)

γ̄2
mBgBT/µ2

= 0.

C.5 Satisfying Assumption 7.5

In this section we need to show that for eachµ> 0 and for someT > 0 we have

lim
n→∞

Pr

(

sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γiδMi

∥
∥
∥
∥
∥
≥ µ

)

= 0. (25)

In order to follow the same lines as in Section C.4, we need to show that the second moment of the
martingale difference noise,δMi , is bounded with zero mean. By definition,δMn(·) has zero mean.

Lemma 18 The martingale difference noise,δMn(·), is bounded in the second moment.

Proof The claim is immediate from the fact that

E
[

(δMn)
2
]

= E
[

‖Yn−gn(yn,xn)‖2
]

≤ 2E
[

‖Yn‖2 +‖gn(yn,xn)‖2
]

,

and from Lemma 11, Lemma 12, and Lemma 13.

Combining this fact with Lemma 18, and applying the regenerative decompositionof Section C.4,
we conclude that statisticallyδMn(·) behaves exactly as(gn(y,xi)− ḡ(y)) of Section C.4 and thus
(25) holds.

C.6 Satisfying Assumption 7.6

In this section we need to prove that there are non-negative measurable functionsρ3(y) andρn4(x)
such that

‖gn(yn,x)‖ ≤ ρ3 (yn)ρn4(x) ,

2. If wn is a martingale sequence then Pr
(
supm≥0 |wn| ≥ µ

)
≤ limn→∞ E

[

|wn|2
]

/µ2.
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whereρ3(y) is bounded on each boundedy-set, and for eachµ> 0 we have

lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

m( jτ+τ)−1

∑
i=m( jτ)

γiρn4(xi) ≥ µ

)

= 0.

The following lemma states a stronger condition for Assumption 7.6. In fact, we chooseρ3(y) to be
a positive constant.

Lemma 19 If ‖gn(y,x)‖ is uniformly bounded for eachy, x andn, thenAssumption 7.6 is satisfied.

Proof Let us denote the upper bound by the random variableB, that is,

‖gn(y,x)‖ ≤ B, w.p. 1.

Thus

lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

m( jτ+τ)−1

∑
i=m( jτ)

γiρn4(xi) ≥ µ

)

≤ lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

m( jτ+τ)−1

∑
i=m( jτ)

γiB≥ µ

)

= lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

B
m( jτ+τ)−1

∑
i=m( jτ)

γi ≥ µ

)

≤ lim
τ→0

Pr(Bτ ≥ µ)

= 0.

Based on Lemma 19, we are left with proving thatgn(y,x) is uniformly bounded. The following
lemma states so.

Lemma 20 The function gn(y,x) is uniformly bounded for all n.

Proof We examine the components ofgn(yn,xn). In (20) we showed that

gn(η̃n,xn) = Γη (r (xn)− η̃n) .

Since bothr (xn) and η̃n are bounded by Assumption 1 and Lemma 11 respectively, we have a
uniform bound ongn(η̃n,xn). Recalling (21) we have

gn(wn,xn) = Γw

∞

∑
k=0

λkφ(xn−k)

(

r (xn)− η̃n + ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)
′wn

)

≤ Γw
1

1−λ
Bφ
(
Br +Bη̃ +2BφBw

)
.

Finally, recalling (22) we have

gn(θn,xn) = E
[
d̃(xn,xn+1,wn)ψ(xn,un,θn)

∣
∣Fn
]

≤
(
Br +Bη̃ +2BφBw

)
Bψ.
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C.7 Satisfying Assumption 7.7

In this section we show that there are non-negative measurable functionsρ1(y) andρn2(x) such that
ρ1(y) is bounded on each boundedy-set and

‖gn(y1,x)−gn(y2,x)‖ ≤ ρ1(y1−y2)ρn2(x) (26)

where
lim
y→0

ρ1 (y) = 0, (27)

and for someτ > 0

Pr



limsup
j

m(t j+τ)

∑
i= j

γiρi2(xi) < ∞



= 1.

From Section C.6 we infer that we can chooseρn2(x) to be a constant sincegn(y,x) is uniformly
bounded. Thus, we need to show the appropriateρ1(·) function. The following lemma shows it.

Lemma 21 The following functions satisfy (26) and (27).

1. The functionρ1(y) = ‖η̃2− η̃1‖ andρn2(x) = Γη for gn(η̃,x).

(a) The functionρ1 (y)= 1
1−λB2

φ
(

∑y∈X Bw‖P(y|x,θ1)−P(y|x,θ2)‖+‖w1−w2‖
)

andρn2(x)=
Γw for gn(w,x).

(b) The functionρ1(y) = ∑y∈X Bw‖P(y|x,θ1)−P(y|x,θ2)‖·Bψ andρn2(x) = 1 forgn(θ,x).

Proof

1. Recalling (20) we have forgn(η̃,x)

‖gn(η̃1,x)−gn(η̃2,x)‖ ≤ Γη ‖η̃2− η̃1‖ ,

thus (26) and (27) are satisfied for 1.

2. Recalling (21) we have forgn(w,x)

‖gn(w1,x)−gn(w2,x)‖

≤
∥
∥
∥
∥
∥

Γw

∞

∑
k

λkφ(xn−k)

((

∑
y∈X

P(y|x,θ1)φ(y)′w1−φ(xn)
′w1

)

−
(

∑
y∈X

P(y|x,θ2)φ(y)′w2−φ(xn)
′w2

))∥
∥
∥
∥
∥

≤
ΓwB2

φ

1−λ

(

∑
y∈X

‖P(y|x,θ1)w1−P(y|x,θ2)w2‖+‖w1−w2‖
)

≤
ΓwB2

φ

1−λ

(

∑
y∈X

Bw‖P(y|x,θ1)−P(y|x,θ2)‖+‖w1−w2‖
)
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(a) Trivially, with respect tow (26) and (27) are satisfied. Regardingθ, (26) and (27) are
satisfied if we recall the definition ofP(y|x,θ) from (1) and the continuity ofµ(u|x,θ)
from Assumption 3.

(b) Recalling (22) we have forgn(θ,x)

‖gn(θ1,x)−gn(θ2,x)‖ =
∥
∥E
[
d̃(x,y,w1)ψ(x,u,θ1)

∣
∣Fn
]

−E
[
d̃(x,y,w2)ψ(x,u,θ2)

∣
∣Fn
]∥
∥

≤ ∑
y∈X

Bw‖P(y|x,θ1)−P(y|x,θ2)‖Bψ.

Using similar arguments to 2, (26) and (27) are satisfied forθ.

Appendix D. Proof of Theorem 8

In this section we find conditions under which Algorithm 1 converges to a neighborhood of a local
maximum. More precisely, we show that liminft→∞ ‖∇η(θ(t))‖2 ≤ εapp+ εdyn, where the approx-
imation error,εapp, measures the error inherent in the critic’s representation, andεdyn is an error
related to the single time scale algorithm. We note that the approximation error depends on the
basis functions chosen for the critic, and in general can be reduced only by choosing a better repre-
sentation basis. The termεdyn is the dynamic error, and this error can be reduced by choosing the
critic’s parametersΓη andΓw appropriately.

We begin by establishing a variant of Lyapunov’s theorem for asymptotic stability,3 where in-
stead of proving asymptotic convergence to a point, we prove convergence to a compact invariant
set. Based on this result, we continue by establishing a bound on a time dependent ODE of the first
order. This result is used to bound the critic’s error in estimating the average reward per stage and
the differential values. Finally, using these results, we establish Theorem8.

We denote a closed ball of radiusy in some normed vector space,(RL,‖ · ‖2), by By, and its
surface by∂By. Also, we denote byA\B a set, which contains all the members of setA which are
not members ofB. Finally, we define the complement ofBy byBc

y = R
L\By.

The following lemma is similar to Lyapunov’s classic theorem for asymptotic stability;see
Khalil (2002), Theorem 4.1. The main difference is that when the value ofthe Lyapunov function
is unknown inside a ball, convergence can be established to the ball, ratherthan to a single point.

Lemma 22 Consider a dynamical system,ẋ = f (x) in a normed vector space,(RL,‖ · ‖), and a
closed ballBr ,

{
x
∣
∣x∈ R

L,‖x‖ ≤ r
}

. Suppose that there exists a continuously differentiable scalar
function V(x) such that V(x) > 0 andV̇ (x) < 0 for all x ∈ Bc

r , and V(x) = 0 for x∈ ∂Br . Then,

limsup
t→∞

‖x(t)‖ ≤ r.

Proof We prove two complementary cases. In the first case, we assume thatx(t) never enters
Br . On the setBc

r , V (x) is a strictly decreasing function int, and it is bounded below, thus it
converges. We denote this bound byC, and notice thatC ≥ 0 since forx ∈ Bc

r , V (x) > 0. We
prove thatC = 0 by contradiction. Assume thatC > 0. Then,x(t) converge to the invariant set

3. We say that the equilibrium pointx = 0 of the system ˙x=f(x) is stableif for eachε > 0 there exists aδ > 0 such that
‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε for all t ≥ 0. We say that the pointx = 0 is asymptotically stableif it is stable and there
exists aδ > 0 such that‖x(0)‖ < δ implies limt→∞ x(t) = 0 (Khalil, 2002).
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SC , {x|V (x) = C,x ∈ Bc
r }. For eachx(t) ∈ SC we haveV̇ (x) < 0. Thus,V (x) continues to

decrease which contradicts the boundedness from below. As a result,V(x(t)) → 0.
In the second case, let us suppose that at some time, denoted byt0, x(t0) ∈ Br . We argue that

the trajectory never leavesBr . Let us assume that at some timet2, the trajectoryx(t) enters the
set∂Br+ε. Then on this set, we haveV(x(t2)) > 0. By the continuity of the trajectoryx(t), the
trajectory must go through the set∂Br . Denote the hitting time of this set byt1. By definition we
haveV(x(t1)) = 0. Without loss of generality, we assume that the trajectory in the timest1 < t ≤ t2
is restricted to the setBr+ε/Br . Thus, sincėV(x(t)) ≤ 0 for x∈ Br+ε/Br we have

V(x(t2)) = V(x(t1))+
Z t2

t1
V̇(x(t))dt < V(x(t1)),

which contradicts the fact thatV(x(t2)) ≥ V(x(t1)). Since this argument holds for allε > 0, the
trajectoryx(t) never leavesBr .

The following lemma will be applied later to the linear equations (17), and more specifically, to
the ODEs describing the dynamics ofη̃ andw. It bounds the difference between an ODE’s state
variables and some time dependent functions.

Lemma 23 Consider the following ODE in a normed space(RL,‖ · ‖2)







d
dt

X (t) =M (t)(X (t)−F1(t))+F2(t),

X(0) = X0,
(28)

where for sufficiently large t .

1. M (t) ∈ R
L×L is a continuous matrix which satisfiesmax‖x‖=1x′M (t)x≤−γ < 0 for t ∈ R,

2. F1(t) ∈ R
L satisfies‖dF1(t)/dt‖2 ≤ BF1,

3. F2(t) ∈ R
L satisfies‖F2(t)‖2 ≤ BF2.

Then, the solution of the ODE satisfieslimsupt→0‖X(t)−F1(t)‖2 ≤ (BF1 +BF2)/γ.

Proof We express (28) as

d
dt

(X(t)−F1(t)) =M (t)(X(t)−F1(t))− d
dt

F1(t)+F2(t), (29)

and define

Z(t) , (X(t)−F1(t)) , G(t) , − d
dt

F1(t)+F2(t).

Therefore, (29) can be written as

Ż(t) =M (t)Z(t)+G(t),

where‖G(t)‖ ≤ BG , BF1 +BF2. In view of Lemma 22, we consider the function

V (Z) =
1
2

(

‖Z(t)‖2
2−B2

G/γ2
)

.
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Let Br be a ball with a radiusr = BG/γ. Thus we haveV (Z) > 0 for Z ∈ Bc
r andV(Z) = 0 for

X ∈ ∂Br . In order to satisfy the assumptions of Lemma 22 the condition thatV̇(Z) < 0 needs to be
verified. For‖Z(t)‖2 > BG/γ we have

V̇(Z) = (∇XV)′ Ż(t)

= Z(t)′M (t)Z(t)+Z(t)′G(t)

= ‖Z(t)‖2
2

Z(t)′

‖Z(t)‖2
M (t)

Z(t)
‖Z(t)‖2

+Z(t)′G(t)

≤ ‖Z(t)‖2
2 max
‖Y(t)‖2=1

Y(t)′M (t)Y(t)+‖Z(t)‖2‖G(t)‖2

= ‖Z(t)‖2(−γ‖Z(t)‖2 +BG)

< 0.

As a result, the assumptions of Lemma 22 are valid and the Lemma is proved.

The following lemma shows that the matrixA(θ), defined in (16), satisfies the conditions of Lemma
23. For the following lemmas, we define the weighted norm‖w‖2

Π(θ) , ‖w′Π(θ)w‖2.

Lemma 24 The following inequalities hold:

1. For anyw∈ R
Land for allθ ∈ R

K , ‖P(θ)w‖Π(θ) < ‖w‖Π(θ)..

2. The matrixM (θ) satisfies‖M (θ)w‖Π(θ) < ‖w‖Π(θ) for all θ ∈ R
K andw∈ R

L.

3. The matrixΠ(θ)(M (θ)− I) satisfiesx′Π(θ)(M (θ)− I)x < 0 for all x∈ R
L and for allθ ∈

R
K .

4. There exists a positive scalarγ such thatw′A(θ)w < −γ for all w′w = 1.

Proof The following proof is similar in many aspects to the proof of Lemma 6.6 of Bertsekas and
Tsitsiklis (1996).

1. By using Jensen’s inequality for the functionf (α) = α2 we have

(

∑
y∈X

P(y|x,θ)w(y)

)2

≤ ∑
y∈X

P(y|x,θ)w(y)2 , ∀x∈ X . (30)

If in Jensen’s inequality we have a strictly convex fiction and non-degenerate probability mea-
sures then the inequality is strict. The functionf (α) is strictly convex, and by Assumption 2
the matrixP(θ) is aperiodic, which implies that the matrixP(θ) is not a permutation matrix.
As a result, there existsx0 ∈ X such that the probability measureP(y|x0,θ) is not degenerate,
thus, the inequality in (30) is strict, that is,

(

∑
y∈X

P(y|x0,θ)w(y)

)2

< ∑
y∈X

P(y|x0,θ)w(y)2 . (31)
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Then, we have

‖P(θ)w‖Π(θ) = w′P(θ)′ Π(θ)P(θ)w

= ∑
x∈X

π(x|θ)

(

∑
y∈X

P(y|x,θ)w(y)

)2

< ∑
x∈X

π(x|θ) ∑
y∈X

P(y|x,θ)w(y)2

= ∑
y∈X

w(y)2 ∑
x∈X

π(x|θ)P(y|x,θ)

= ∑
y∈X

w(y)2 π(y|θ)

= ‖w‖Π(θ) ,

where in the inequality we have used (31).

2. Using the triangle inequality and 1 we have

‖M (θ)w‖Π(θ) =

∥
∥
∥
∥
∥
(1−λ)

∞

∑
m=0

λmP(θ)m+1w

∥
∥
∥
∥
∥

Π(θ)

≤ (1−λ)
∞

∑
m=0

λm
∥
∥
∥P(θ)m+1w

∥
∥
∥

Π(θ)

< (1−λ)
∞

∑
m=0

λm‖w‖Π(θ)

= ‖w‖Π(θ) .

3. By definition

x′Π(θ)M (θ)x = x′Π(θ)1/2 Π(θ)1/2M (θ)x

≤
∥
∥
∥Π(θ)1/2x

∥
∥
∥ ·
∥
∥
∥Π(θ)1/2M (θ)x

∥
∥
∥

= ‖x‖Π(θ) ‖M (θ)x‖Π(θ)

< ‖x‖Π(θ) ‖x‖Π(θ) ·
= x′Π(θ)x,

where in the first inequality we have used the Cauchy-Schwartz inequality,and in the second
inequality we have used 1. Thus,x′Π(θ)(M (θ)− I)x < 0 for all x ∈ R, which implies that
Π(θ)(M (θ)− I) is a negative definite (ND) matrix.4

4. From 3, we know that for allθ ∈ R
K and all w ∈ R

|X | satisfying w′w = 1, we have
w′Π(θ)(M (θ)− I)w < 0, and by Assumption (2), this is true also for the closure of
{

Π(θ)(M (θ)− I) |θ ∈ R
K
}

. Thus, there exists a positive scalar,γ′, satisfying

w′Π(θ)(M (θ)− I)w≤−γ′ < 0.

4. Usually, a ND matrix is defined for Hermitian matrices, that is, ifB is an Hermitian matrix and it satisfiesx′Bx< 0
for all x∈ C

K thenB is a NSD matrix . We use here a different definition which states that a square matrixB is a ND
matrix if it is real and it satisfiesx′Bx< 0 for all x∈ R

k (Horn and Johnson, 1985).
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By Assumption 5 the rank of the matrixΦ is full, thus there exists a scalarγ such that for all
w∈ R

L, wherew′w = 1, we havew′A(θ)w≤−γ < 0.

The following Lemma establishes the boundedness ofθ̇.

Lemma 25 There exists a constant Bθ1 , Bη1+Bψ
(
BD +Br +Bη̃ +2BφBw

)
such that‖θ̇‖2 ≤ Bθ1.

Proof Recalling (17)

∥
∥θ̇
∥
∥

2 =

∥
∥
∥
∥
∥

∇θη(θ)+ ∑
x,y∈X×X ,u∈U

D(x,u,y)(θ)
(
d(x,y,θ)− d̃(x,y,w)

)

∥
∥
∥
∥
∥

2

≤ Bη1 + ∑
x,y∈X×X ,u∈U

∥
∥
∥D(x,u,y)(θ)

∥
∥
∥

2

∥
∥d(x,y,θ)− d̃(x,y,w)

∥
∥

2

≤ Bη1 +Bψ
(
BD +Br +Bη̃ +2BφBw

)

, Bθ1.

Based on Lemma (25), the following Lemma shows the boundedness of(η(θ(t))− η̃).

Lemma 26 We have

limsup
t→∞

|η(θ(t))− η̃| ≤ B∆η

Γη
,

where B∆η , Bη1Bθ1.

Proof Using the Cauchy-Schwartz inequality we have

|η̇(θ)| = |∇η(θ)′θ̇|
≤ ‖∇η(θ)‖2‖θ̇‖2

≤ Bη1Bθ1.

(32)

Recalling the equation for̃η in (17) we have

˙̃η = Γη (η(θ)− η̃) .

We conclude by applying Lemma 23 and using (32) that

limsup
t→∞

|η(θ(t))− η̃| ≤ Bη1Bθ1

Γη
=

B∆η

Γη
. (33)

In (33) we see that the bound on|η(θ)− η̃| is controlled byΓη, where larger values ofΓη ensure
smaller values of|η(θ)− η̃|. Next, we bound‖w∗(θ)−w‖2. We recall the second equation of (17)

ẇ = Ψw [Γw(A(θ)w+b(θ)+G(θ)(η(θ)− η̃))] ,

A(θ) = Φ′Π(θ)(M− I)Φ,

M (θ) = (1−λ)
∞

∑
m=0

λmP(θ)m+1 ,

b(θ) = Φ′Π(θ)
∞

∑
m=0

λmP(θ)m(r −η(θ)) ,

G(θ) = Φ′Π(θ)
∞

∑
m=0

λmP(θ)m.
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We can write the equation for ˙w as

ẇ = Ψw [Γw(A(θ)(w−w∗ (θ))+G(θ)(η(θ)− η̃))] ,

wherew∗ = −A(θ)−1b(θ). In order to use Lemma 23, we need to demonstrate the boundedness of
∥
∥ d

dtw
∗∥∥. The following lemma does so.

Lemma 27

1. There exists a positive constant,Bb , 1
1−λ |X |3LBΦBr , such that‖b(θ)‖2 ≤ Bb.

(a) There exists a positive constant,BG , 1
1−λ |X |3LBΦ, such that‖G(θ)‖2 ≤ BG.

(b) There exist positive constants,B̃ = Bπ1(Br +Bη)Bθ1 +BP1(Br +Bη)Bθ1 +Bη1Bθ1 and
Bb1 , 1

1−λ |X |3BΦBr B̃, such that we have
∥
∥ḃ(θ)

∥
∥

2 ≤ Bb1.

(c) There exist constantsbA andBA such that

0 < bA ≤ ‖A(θ)‖2 ≤ BA.

(d) There exist a constantsBA1 such that

‖A(θ)‖2 ≤ BA1.

(e) We have ∥
∥
∥
∥

d
dt

(

A(θ)−1
)
∥
∥
∥
∥

2
≤ b2

ABA1.

(f) There exists a positive constant,Bw1, such that
∥
∥
∥
∥

d
dt

w∗
∥
∥
∥
∥

2
≤ Bw1.

Proof

1. We show that the entries of the vectorb(θ) are uniformly bounded inθ, therefore, its norm is
uniformly bounded inθ. Let us look at thei-th entry of the vectorb(θ) (we denote by[·] j the
j-th row of a matrix or a vector)

|[b(θ)]i | =

∣
∣
∣
∣
∣

[

Φ′Π(θ)
∞

∑
m=0

λmP(θ)m(r −η(θ))

]

i

∣
∣
∣
∣
∣

≤
∞

∑
m=0

λm
∣
∣
[
Φ′Π(θ)P(θ)m(r −η(θ))

]

i

∣
∣

=
∞

∑
m=0

λm

∣
∣
∣
∣
∣

|X |

∑
l=1

|X |

∑
j=1

|X |

∑
k=1

[
Φ′]

ik Πk j (θ) [P(θ)m] jl (r l −η(θ))

∣
∣
∣
∣
∣

≤ 1
1−λ

|X |3BΦBr ,

thus‖b(θ)‖2 ≤ 1
1−λ |X |3LBΦBr is uniformly bounded inθ.
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2. The proof is accomplished by similar argument to Section 1.

3. Similarly to Section 1, we show that the entries of the vectorḃ(θ) are uniformly bounded in
θ, therefore, its norm is uniformly bounded inθ. First, we show that the following function
of θ(t) is bounded.

∣
∣
∣
∣

d
dt

(

Πk j (θ) [P(θ)m] jl (r l −η(θ))
)
∣
∣
∣
∣

=
∣
∣
∣∇θ

(

Πk j (θ) [P(θ)m] jl (r l −η(θ))
)

θ̇
∣
∣
∣

≤
∣
∣
∣

(
∇θΠk j (θ)

)
[P(θ)m] jl (r l −η(θ)) θ̇

∣
∣
∣

+
∣
∣
∣Πk j (θ) [∇θP(θ)m] jl (r l −η(θ)) θ̇

∣
∣
∣

+
∣
∣
∣Πk j (θ) [P(θ)m] jl ∇θ (r l −η(θ)) θ̇

∣
∣
∣

≤ Bπ1(Br +Bη) ·Bθ1 +BP1(Br +Bη)Bθ1

+Bη1Bθ1

= B̃,

where we used the triangle and Cauchy-Schwartz inequalities in the first and second inequal-
ities respectively, and Lemmas 3 and 25 in the second inequality. Thus,

∣
∣
[
ḃ(θ)

]

i

∣
∣ =

∣
∣
∣
∣
∣

[

Φ′Π(θ)
∞

∑
m=0

λmP(θ)m(r −η(θ))

]

i

∣
∣
∣
∣
∣

≤
∞

∑
m=0

λm
∣
∣
[
Φ′Π(θ)P(θ)m(r −η(θ))

]

i

∣
∣

=
∞

∑
m=0

λm

∣
∣
∣
∣
∣

|X |

∑
l=1

|X |

∑
j=1

|X |

∑
k=1

[
Φ′]

ik

d
dt

(

Πk j (θ) [P(θ)m] jl (r l −η(θ))
)
∣
∣
∣
∣
∣

≤ 1
1−λ

|X |3BΦBr B̃

= Bb1.

4. SinceA(θ) satisfiesy′A(θ)y < 0 for all nonzeroy, it follows that all its eigenvalues are
nonzero. Therefore, the eigenvalues ofA(θ)′A(θ) are all positive and real sinceA(θ)′A(θ)
is a symmetric matrix. Since by Assumption 2 this holds for allθ ∈ R

K , there is a global
minimum,bA, and a global maximum,BA, such that

B2
A ≥ λmax

(
A(θ)′A(θ)

)
≥ λmin

(
A(θ)′A(θ)

)
≥ b2

A, ∀θ ∈ R
K ,

where we denote byλmin (·) andλmax(·) the minimal and maximal eigenvalues of the matrix
respectively. Using Horn and Johnson (1985) section 5.6.6, we haveλmax

(
A(θ)′A(θ)

)
=

‖A(θ)‖2, thus, we get an upper bound on the matrix norm. Let us look at the norm of
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∥
∥
∥A(θ)−1

∥
∥
∥

2
,

∥
∥
∥A(θ)−1

∥
∥
∥

2

2
= λmax

((

A(θ)−1
)′

A(θ)−1
)

= λmax

((
A(θ)′

)−1
A(θ)−1

)

= λmax

((
A(θ)A(θ)′

)−1
)

= 1/λmin
(
A(θ)A(θ)′

)

= 1/λmin

((
A(θ)′A(θ)

)′)

= 1/λmin
(
A(θ)′A(θ)

)
,

thus, we the lower bound on
∥
∥
∥A(θ)−1

∥
∥
∥

2
is
√

1/λmin
(
A(θ)′A(θ)

)
, that is,bA.

5. Let us look at thei j entry of the matrixd
dtA(θ), where using similar arguments to Section 2

we get
[∣
∣
∣
∣

d
dt

A(θ)

∣
∣
∣
∣

]

i j
=

[∣
∣
∣
∣
∣

d
dt

(

Φ′Π(θ)

(

(1−λ)
∞

∑
m=0

λmP(θ)m+1− I

)

Φ

)∣
∣
∣
∣
∣

]

i j

≤
[∣
∣
∣
∣
∣
Φ′ d

dt
(Π(θ))

(

(1−λ)
∞

∑
m=0

λmP(θ)m+1− I

)

Φ

∣
∣
∣
∣
∣

]

i j

+

[∣
∣
∣
∣
∣
Φ′Π(θ)

d
dt

(

(1−λ)
∞

∑
m=0

λmP(θ)m+1− I

)

Φ

∣
∣
∣
∣
∣

]

i j

≤ BΦBπ1
1

1−λ
BΦ +BΦ

1

(1−λ)2BP1BΦ.

Since the matrix entries are uniformly bounded inθ, so is the matrixd
dtA(θ)′ d

dtA(θ), and
so is the largest eigenvalue ofd

dtA(θ)′ d
dtA(θ) which implies the uniform boundedness of

∥
∥ d

dtA(θ)
∥
∥

2.

6. For a general invertible square matrix,X (t), we have

0 =
d
dt

I =
d
dt

(

X (t)−1X (t)
)

=
d
dt

(

X (t)−1
)

X (t)+X (t)−1 d
dt

(X (t)) .

Rearranging it we get

d
dt

(

X (t)−1
)

= −X (t)−1 d
dt

(X (t))X (t)−1 .

Using this identity yields
∥
∥
∥
∥

d
dt

(

A(θ)−1
)
∥
∥
∥
∥

2
=

∥
∥
∥
∥
−A(θ)−1 d

dt
(A(θ))A(θ)−1

∥
∥
∥
∥

2

≤
∥
∥
∥A(θ)−1

∥
∥
∥

2
·
∥
∥
∥
∥

d
dt

(A(θ))

∥
∥
∥
∥

2
·
∥
∥
∥−A(θ)−1

∥
∥
∥

2

= b2
ABA1.
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7. Examining the norm ofddtw
∗ yields

∥
∥
∥
∥

d
dt

w∗
∥
∥
∥
∥

2
=

∥
∥
∥
∥

d
dt

(

A(θ)−1b(θ)
)
∥
∥
∥
∥

2

=

∥
∥
∥
∥

d
dt

A(θ)−1b(θ)+A(θ)−1 d
dt

b(θ)

∥
∥
∥
∥

2

≤ b2
ABA1

1
1−λ

|X |3BΦBr +bAB̃

= Bw1.

We wish to use Lemma 23 for (17), thus, we show that the assumptions of Lemma 23 are valid.

Lemma 28

1. We have

limsup
t→∞

‖w∗(θ(t))−w(t)‖2 ≤
1

Γw
B∆w, (34)

where

B∆w ,
Bw1 +BG

B∆η
Γη

γ
.

(a) We have

limsup
t→∞

‖h(θ(t))− h̃(w(t))‖∞ ≤ B∆h1

Γw
+

εapp√
bπ

,

where
B∆h , |X |L(B∆w)2 .

Proof

1. Without loss of generality, we can eliminate the projection operator since wecan chooseBw

to be large enough such thatw∗(θ) will be inside the bounded space. We takeM (t) = A(θ),
F1(t) = w∗(θ(t)), andF2(t) = G(θ)(η(θ)− η̃) . By previous lemmas we can see that the
Assumption 23 holds. By Lemma 27 (6),‖ẇ∗(θ)‖2 is bounded byBw1, by Lemma 26 we
have a bound on|(η(θ)− η̃)|, and by Lemma 24 we have a bound onw′A(θ)w. Using these
bounds and applying Lemma 23 provides the desired result.

(a) Suppressing the time dependence for simplicity and expressing‖h(θ)− h̃(w)‖∞ using
εapp and the previous result yields

‖h(θ)− h̃(w)‖∞ ≤ ‖h(θ)− h̃(w)‖2

= ‖h(θ)− h̃(w∗)+ h̃(w∗)− h̃(w)‖2

≤ ‖h(θ)− h̃(w∗)‖2 +‖h̃(w∗)− h̃(w)‖2

(35)
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For the first term on the r.h.s. of the final equation in (35) we have

‖h(θ)− h̃(w∗)‖2 =
∥
∥
∥

(

Π(θ)−
1
2

)(

Π(θ)
1
2

)(
h(θ)− h̃(w∗)

)
∥
∥
∥

2

≤
∥
∥
∥Π(θ)−

1
2

∥
∥
∥

2

∥
∥h(θ)− h̃(w∗)

∥
∥

Π(θ)

≤ εapp

(bπ)
1
2

where we use the sub-additivity of the matrix norms in the first inequality, and Lemma 3
and the (10) in the last inequality. For the second term on the r.h.s. of the final equation
in (35) we have

‖h̃(w∗)− h̃(w)‖2
2 = ‖Φ(w∗(θ)−w)‖2

2

=
|X |

∑
k=1

(
L

∑
l=1

φl (k)(w∗
l (θ)−wl )

)2

≤
|X |

∑
k=1





(
L

∑
l=1

φ2
l (k)

) 1
2
(

L

∑
l=1

(w∗
l (θ)−wl )

2

) 1
2





2

≤
|X |

∑
k=1

(
L

∑
l=1

φ2
l (k)

)(
L

∑
l=1

(w∗
l (θ)−wl )

2

)

≤ |X |L‖w∗(θ)−w‖2
2

= |X |L(B∆w)2 .

(36)

Combining (34)-(36) yields the desired result.

Using Lemma 28 we can provide a bound on second term of (17).

Lemma 29 We have

limsup
t→∞

∥
∥
∥
∥
∥

∑
x,y∈X×X ,u∈U

D(x,u,y)(θ)
(
d(x,y,θ)− d̃(x,y,w)

)

∥
∥
∥
∥
∥

2

≤ B∆td1

Γw
+

B∆td2

Γη
+B∆td3εapp

where

B∆td1 =
1

Γw
·2BΨB∆h1, B∆td2 =

1
Γη

·B∆ηBΨ, B∆td3 =
2BΨ√

bπ
.

Proof Simplifying the notation by suppressing the time dependence, we bound the TD signal in the
limit, that is,

limsup
t→∞

|d(x,y,θ)− d̃(x,y,w)| = limsup
t→∞

|(r(x)−η(θ)+h(y,θ)−h(x,θ))

−
(
r(x)− η̃+ h̃(y,w)− h̃(x,w)

)∣
∣

≤ limsup
t→∞

|η(θ)− η̃|+ limsup
t→∞

2
∥
∥h(θ)− h̃(w)

∥
∥

∞

=
B∆η

Γη
+2

(
B∆h1

Γw
+

εapp√
bπ

)

.
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With some more algebra we have

limsup
t→∞

∥
∥
∥
∥
∥

∑
x,y∈X×X ,u∈U

D(x,u,y)(θ)
(
d(x,y,θ)− d̃(x,y,w)

)

∥
∥
∥
∥
∥

≤ limsup
t→∞

∑
x,y∈X×X ,u∈U

π(x)P(u|x,θn)P(y|x,u)‖ψ(x,u,θn)‖ ·
∣
∣d(x,y,θ)− d̃(x,y,w)

∣
∣

≤ BΨ

(
B∆η

Γη
+2

(
B∆h1

Γw
+

εapp√
bπ

))

=
B∆td1

Γw
+

B∆td2

Γη
+B∆td3εapp.

We see that the term in this bound is adjustable by choosing appropriateΓη andΓw. The concluding
lemma proves the conclusion of Theorem 8.

D.1 Proof of Theorem 8

We define

B∇η ,
B∆td1

Γw
+

B∆td2

Γη
+B∆td3εapp.

For an arbitraryδ > 0, define the set

Bδ , {θ : ‖∇η(θ)‖ ≤ B∇η +δ}.
We claim that the trajectoryη(θ) visitsBδ infinitely often. Assume the contrary that

liminf
t→∞

‖∇η(θ)‖2 > B∇η +δ. (37)

Thus, on the setBc
δ for t large enough we have

η̇(θ) = ∇η(θ) · θ̇

= ∇η(θ) ·
(

∇η(θ)+ ∑
x,y∈X×X

D(x,y)(θ)
(
d(x,y)− d̃(x,y)

)

)

= ‖∇η(θ)‖2
2 +∇η(θ) ·

(

∑
x,y∈X×X

D(x,y)(θ)
(
d(x,y)− d̃(x,y)

)

)

≥ ‖∇η(θ)‖2
2−‖∇η(θ)‖2

∥
∥
∥
∥
∥

∑
x,y∈X×X

D(x,y)(θ)
(
d(x,y)− d̃(x,y)

)

∥
∥
∥
∥
∥

2

= ‖∇η(θ)‖2

(
‖∇η(θ)‖2−B∇η

)

≥ ‖∇η(θ)‖2

(
B∇η +δ−B∇η

)

> (B∇η +δ)δ.

By (37), there exists a timet0 which for all t > t0 we haveη(θ) ∈ Bc
δ . Therefore,

η(∞) = η(t0)+
Z ∞

t0
η̇(θ)dt > η(t0)+

Z ∞

t0
(BD +δ)δdt = ∞,

which contradicts the boundedness ofη(θ). Since the claim holds for allδ > 0, the result follows.
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