Journal of Machine Learning Research 11 (2010) 3053-3096 bm&ted 5/10; Revised 9/10; Published 11/10

Inducing Tree-Substitution Grammars

Trevor Cohn TCOHN@DCS.SHERAC.UK
Department of Computer Science

University of Sheffield

Sheffield S1 4DP, UK

Phil Blunsom PBLUNSOM@COMLAB.OX.AC.UK
Computing Laboratory

University of Oxford

Oxford OX1 3QD, UK

Sharon Goldwater SGWATER@INF.ED.AC.UK
School of Informatics

University of Edinburgh

Edinburgh EH8 9AB, UK

Editor: Dorota Glowacka

Abstract

Inducing a grammar from text has proven to be a notoriousbllehging learning task despite
decades of research. The primary reason for its difficultiias in order to induce plausible gram-
mars, the underlying model must be capable of represertimmtricacies of language while also
ensuring that it can be readily learned from data. The ntgjofiexisting work on grammar induc-
tion has favoured model simplicity (and thus learnabilitlypr representational capacity by using
context free grammars and first order dependency grammhbrshare not sufficiently expressive
to model many common linguistic constructions. We proposegel compromise by inferring a
probabilistictree substitution grammarma formalism which allows for arbitrarily large tree frag-
ments and thereby better represent complex linguistictstres. To limit the model's complexity
we employ a Bayesian non-parametric prior which biases thaefrtowards a sparse grammar with
shallow productions. We demonstrate the model’s efficacyupervised phrase-structure parsing,
where we induce a latent segmentation of the training trdekand on unsupervised dependency
grammar induction. In both cases the model uncovers irttegelstent linguistic structures while
producing competitive results.

Keywords: grammar induction, tree substitution grammar, Bayesiamparametrics, Pitman-Yor
process, Chinese restaurant process

1. Introduction

Inducing a grammar from a corpus of strings is one of the central chakeafjcomputational
linguistics, as well as one of its most difficult. Statistical approaches circnirtiie theoretical
problems with learnability that arise with non-statistical grammar learning (G8&I7)1 and per-
formance has improved considerably since the early statistical work o&lMer(1994) and Carroll
and Charniak (1992), but the problem remains largely unsolved. pPedue to the difficulty of this
unsupervised grammar induction problem, a more recent line of work kasdd on a somewhat
easier problem, where the input consists of a treebank corpus, usuallyase-structure format,

(©2010 Trevor Cohn, Phil Blunsom and Sharon Goldwater.

COHN, BLUNSOM AND GOLDWATER

and the task is to induce a grammar from the treebank that yields better ppesiognance than
the basic maximume-likelihood probabilistic context free grammar (PCFG). Exanopleork on
this kind of grammar induction, which we will refer to gammar refinemertecause the learned
grammars can be viewed as refinements of the treebank PCFG, includenthel-splitting ap-
proach of Petrov and Klein (2007) and the tree-substitution grammars taf@dented Parsing
(Bod et al., 2003; Bod, 2003). Although the grammars induced by thestersyg are latent, the
resulting parsers are supervised in the sense that the input to the lesyrsiem consists of strings
and parses, and the goal is to learn how to parse new strings. Con#ggtiese systems do not
remove the necessity of hand-annotating a large corpus, but they tamially reduce the amount
of engineering effort required to develop a successful statisticakp&or a new language or do-
main, by obviating the need for complex hand-engineering of featurespémdlence assumptions,
and backoff schemes.

The desire for automatic grammar refinement methods highlights one possiste nehy un-
supervised grammar induction is so difficult. Simple models of syntactic strustiateas hidden
Markov models (HMMs) or PCFGs make strong independence assumptanfaihto capture
the true complexity of language, so these models tend to learn something othénhéhdesired
structure when used in an unsupervised way. On the other hand, nmomexomodels with, for
example, head-lexicalized rules have too many free parameters to bedlearcmessfully from
unannotated data without the use of sophisticated backoff schemes.fidugy the right balance
between learnability and complexity is critical to developing a successfullmbdeammar induc-
tion. We posit that this balance can be achieved by using a rich grammaticalfem coupled
with a nonparametric Bayesian prior to limit the model’s complexity. In this way theeingah
learn sufficiently complex structure to model the data, but will only do so wthere is enough
evidence to support such complexity; otherwise it will generalise to simpleststas. The model
can therefore learn plausible structures from either small or large trasaimgles.

We present here a model for automatically learniry@babilistic Tree Substitution Grammar
(PTSG) from either a treebank or strings. A PTSG is an extension to th&RC®which nonter-
minals can rewrite as entire tree fragmergehentary tregs not just immediate children (Joshi,
2003; Bod et al., 2003). These large fragments can be used to emmodecal context, such as ar-
gument frames, gender agreement and idioms. A fundamental problemV8Bdis that they are
difficult to estimate, even in the supervised (grammar refinement) scenagi@ wieebanked data
is available. This is because treebanks are typically not annotated with 8@id&rivations—how
to decompose a tree into elementary tree fragments—instead the derivatisrnto®e inferred.

Probably the best-known previous work on inducing PTSGs is within thedwaork of Data-
Oriented Parsing (DOP; Bod et al., 2003), which, like our model, has &ppined in both super-
vised and unsupervised settings (Bod, 2003; Prescher et al., 200diarin and Sima’an, 2005;
Zuidema, 2007; Bod, 2006)DOP seeks to use as TSG productions all subtrees of the training cor-
pus, an approach which makes parameter estimation difficult and led tospralilems with early
estimation methods (Johnson, 2002), namely inconsistency for DOP1 2B6d) and overfitting
of the maximum likelihood estimate (Prescher et al., 2004). More recent @oiROP estima-
tion has tackled these problems, drawing from estimation theory to solve teesimnty problem
(Prescher et al., 2004; Zollmann and Sima’an, 2005), or using a granmatytheuristic to avoid
the degeneracy of the MLE (Zuidema, 2007). Our work differs fromPD® that we use an ex-

1. Tree adjoining grammar induction (Chiang and Bikel, 2002; Xia, 2@8&jles a similar learning problem in the
supervised case.

3054

INDUCING TREE SUBSTITUTION GRAMMARS

plicit generative model of TSG and a Bayesian prior for regularisatibe. prior is nonparametric,
which allows the model to learn a grammar of the appropriate complexity for theihe train-
ing data. A further difference is that instead of seeking to use all sibfrem the training data
in the induced TSG, our prior explicitly biases against such behaviocin, that the model learns
a relatively compact grammarA final minor difference is that, because our model is generative,
it assigns non-zero probability to all possible subtrees, even those #matnet observed in the
training data. In practice, unobserved subtrees will have very smdiapiiities.

We apply our model to the two grammar induction problems discussed above:

e Inducing a TSG from atreebank. This regime is analogous to the case of supervised DOP,
where we induce a PTSG from a corpus of parsed sentences, atkisi&8SG to parse
new sentences. We present results using two different inference asethnaining on either
a subset of WSJ or on the full treebank. We report performance.@#84vhen training on
the full treebank, far better than the 64.2% for a PCFG parser. Thésigaaccuracy are
obtained with a grammar that is somewhat larger than the PCFG grammar, but still mu
smaller than the DOP all-subtrees grammar.

e Inducing a TSG from strings. As in other recent unsupervised parsing work, we adopt
a dependency grammar (Malk, 1988) framework for the unsupervised regime. We use
the split-head construction (Eisner, 2000; Johnson, 2007) to map betkegendency and
phrase-structure grammars, and apply our model to strings of POS tagsepaft perfor-
mance of 65.9% on the standard Wgyldata set, which is statistically tied with the best re-
ported result on the task and considerably better than the EM baseline edtaihs 46.1%.
When evaluated on test data with no restriction on sentence length—a mi@gasatting—
our approach significantly improves the state-of-the-art.

Our work displays some similarities to previous work on both the grammar refimteams
unsupervised grammar induction problems, but also differs in a numbemys. vAside from DOP,
which we have already discussed, most approaches to grammar refirramée viewed as symbol-
splitting. That is, they allow each nonterminal to be split into a number of supmdés. The
most notable examples of the symbol-splitting approach include Petrov eDab)(2who use a
likelihood-based splitting and merging algorithm, and Liang et al. (2007) amncFet al. (2007),
who develop nonparametric Bayesian models. In theory, any PTSG cacdst as a PCFG with a
sufficiently large number of subcategories (one for each unigque s}ps® the grammar space of
our model is a subspace of the symbol-splitting grammars. However, the nofbenterminals
required to recreate our PTSG grammars in a PCFG would be exorbitarge@antly, our model
should be better able to learn specific lexical patterns, such as full fo@ses and verbs with
their subcategorisation frames, while theirs are better suited to learningtegbdes with larger
membership, such as the days of the week or count versus mass nberepproaches are largely
orthogonal, and therefore we expect that a PTSG with nonterminal medimecould capture both
types of concept in a single model, thereby improving performance over @iffproach alone.

For the unsupervised grammar induction problem we adopt the Depgniiae| with Va-
lency (DMYV; Klein and Manning, 2004) framework that is currently domirfan grammar induc-
tion (Cohen et al., 2009; Cohen and Smith, 2009; Headden Il et al.,; 2D608en et al., 2010;

2. The prior favours compact grammars by assigning the majorityofifgtaility mass to few productions, and very little

(but non-zero) mass to other productions. In practice we use Ma&tkamn Monte Carlo sampling for inference
which results in sparse counts with structural zeros, thus permitting effigipresentation.

3055

COHN, BLUNSOM AND GOLDWATER

Spitkovsky et al., 2010). The first grammar induction models to surpaséal biaseline concen-
trated on the task of inducing unlabelled bracketings for strings and wateated against tree-
bank bracketing gold standard (Clark, 2001; Klein and Manning, 208Rpsequently the DMV
model has proved more attractive to researchers, partly becausaédiafiell founded generative
stochastic grammar, and partly due to the popularity of dependency treesymaiaral language
processing (NLP) tasks. Recent work on improving the original DMV rhbdse focused on three
avenues: smoothing the head-child distributions (Cohen et al., 2009n@okleSmith, 2009; Head-
den lll et al., 2009), initialisation (Headden lll et al., 2009; Spitkovskgle 2010), and extending
the conditioning distributions (Headden 1l et al., 2009). Our work falls thiofinal category: by
extending the DMV CFG model to a TSG we increase the conditioning contédaaf-child deci-
sions within the model, allowing the grammar to directly represent groups oflid&pendencies.

Adaptor Grammars (Johnson et al., 2007b) are another recent aomgtaic Bayesian model
for learning hierarchical structure from strings. They instantiate a nesticted class of tree-
substitution grammar in which each subtree expands completely, with only tersyimdols as
leaves. Since our model permits nonterminals as subtree leaves, it is meralghan Adaptor
Grammars. Adaptor Grammars have been applied successfully to indutezlabacketings from
strings in the domains of morphology and word segmentation (Johnsorg,2008hnson and Gold-
water, 2009) and very recently for dependency grammar inductionegfCehal., 2010). The latter
work also introduced a variational inference algorithm for Adaptor Gramniarence; we use a
sampling method here.

The most similar work to that presented here is our own previous work(€odl., 2009; Cohn
and Blunsom, 2010), in which we introduced a version of the model desthiere, along with two
other papers that independently introduced similar models (Post and G@l%,0’'Donnell et al.,
2009). Cohn et al. (2009) and Post and Gildea (2009) both preserdlsniogised on a Dirichlet
process prior and provide results only for the problem of grammar reéng whereas in this
article we develop a newer version of our model using a Pitman-Yor mqurés, and also show
how it can be used for unsupervised learning. These extensiondsareeported in our recent
work on dependency grammar induction (Blunsom and Cohn, 2010),uglthim this paper we
present a more thorough exposition of the model and experimental evalugi®onnell et al.
(2009) also use a Pitman-Yor process prior (although their model is sligf#yaht from ours) and
present unsupervised results, but their focus is on cognitive modelihgrrthan natural language
processing, so their results are mostly qualitative and include no evaluatansing performance
on standard corpora.

To sum up, although previous work has included some aspects of whatesent here, this
article contains several novel contributions. Firstly we present a siraglergtive model capable
of both supervised and unsupervised learning, to induce tree substigrdommars from either
trees or strings. We demonstrate that in both settings the model outperforrmurmalikelihood
baselines while also achieving results competitive with the best currentrsy/sfene second main
contribution is to provide a thorough empirical evaluation in both settings, exagniinéeffect of
various conditions including data size, sampling method and parsing algoritithpraviding an
analysis of the structures that were induced.

In the remainder of this article, we briefly review PTSGs in Section 2 befarsepting our
model, including versions for both constituency and dependency pansiSgction 3. In Section 4
we introduce two different Markov Chain Monte Carlo (MCMC) methods fderience: a local
Gibbs sampler and a blocked Metropolis-Hastings sampler. The local samplech simpler but

3056

INDUCING TREE SUBSTITUTION GRAMMARS

is only applicable in the supervised setting, where the trees are obsefvexas the Metropolis-
Hastings sampler can be used in both supervised and unsupervisedssatithfpr parsing. We
discuss how to use the trained model for parsing in Section 5, presentagydifierent parsing al-
gorithms. Experimental results for supervised parsing are providectiio8&, where we compare
the different training and parsing methods. Unsupervised dependeacymar induction experi-
ments are described in Section 7, and we conclude in Section 8.

2. Tree-substitution grammars

A Tree Substitution Gramma(TSG) is a 4-tupleG = (T,N,S R), whereT is a set ofterminal
symbolsN is a set ofnonterminal symbolsS € N is the distinguishedoot nonterminalandR is a

set of productions (rules). The productions take the forralementary trees-tree fragmentsof
height> 1—where each internal node is labelled with a nonterminal and each leakitethkvith
either a terminal or a nonterminal. Nonterminal leaves are céitedier nonterminalsand form

the substitution (recursion) sites in the generative process of creategvtith the grammar. For
example, in Figure 1b the S NP (VP (V hates) NP) production rewrites the S nonterminal as the
fragment (S NP (VP (V hates) NP))This production has the two NPs as its frontier nonterminals.

A derivationcreates a tree by starting with the root symbol and rewriting (substituting) it with
an elementary tree, then continuing to rewrite frontier nonterminals with elergeérgas until there
are no remaining frontier nonterminals. We can represent derivatiossoagnces of elementary
treese, where each elementary tree is substituted for the left-most frontier nontdrafithe tree
being generated. Unlike Context Free Grammars (CFGSs) a syntax treeomayiquely specify the
derivation, as illustrated in Figure 1 which shows two derivations usingréifit elementary trees
to produce the same tree.

A Probabilistic Tree Substitution GramméPTSG), like a PCFG, assigns a probability to each
rule in the grammar, denotd{e|c) where the elementary tregewrites nonterminat. The proba-
bility of a derivatione is the product of the probabilities of its component rules. Thus if we assume
that each rewrite is conditionally independent of all others given its rootamminalc (as in stan-
dard TSG models) then we have

P(e) = |_| P(€elc). 1)
c—ece

The probability of a tred, and string of wordswy, are given by

P(t) = z P(e) and

etrege)=t

P(w) = P(t),
(W) t:yieg(t):w ()

3. ATSG is aTree Adjoining Gramma(TAG; Joshi, 2003) without the adjunction operator, which allows insestain
internal nodes in the tree. This operation allows TAGs to describe the saitdly context sensitive languages. A
TSG in contrast can only describe the set of context free languages.

4. Elementary trees of height 1 correspond to productions in a comgexgfammar.

5. We use bracketed notation to represent tree structures as lineas.stfihg parenthesis indicate the hierarchical
structure, with the first argument denoting the node label and the folloaiggments denoting child trees. The
nonterminals used in our examples denote nouns, verbs, etc., andegpEctive phrasal types, using a simplified
version of the Penn treebank tag set (Marcus et al., 1993).

6. Note that this conditional independence does not hold for our medalise (as we will see in Section 3) we integrate
out the model parameters.

3057

COHN, BLUNSOM AND GOLDWATER

(a) (b)

S S NP NP
NP VP NP VP George broccoli
NPV NP Y NP
\ | t
George hates NP hates
\
broccoli
(c) (d)
S S V
/\ ‘
NP/\VP NP VP hates
‘ \ N
George V NP George V N‘P
t \ .
V broccoli broccoli
\
hates

Figure 1. Example derivations for the same tree, where arrows indich#gitstion sites. The
left figures (a) and (c) show two different derivations and the rigtrés (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree) returns the tree for the derivatiamand yield{) returns the string of
terminal symbols at the leavestof

Estimating a PTSG requires learning the sufficient statisticBfelc) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways¢dorme using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 20@Dheldout estimation
(Prescher et al., 2004). Parsing involves finding the most probabléotreegiven string, that is,
argmaxP(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms fosipg have been
reported, most notably a Monte-Carlo approach for finding the maximutpapility tree (Bod,
1995) and a technique for maximising labelled recall using inside-outsideeide in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grarhener become a pop-
ular formalism for building supervised parsers, and we will follow this traditiy using phrase
structure trees from the Wall Street Journal corpus (Marcus et &3)18s the basis for our su-
pervised grammar induction experiments (grammar refinement). Howevehdiee of formalism
for unsupervised induction is a more nuanced one. The induction o$gistaucture grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: thstitoent structure
and the constituent labels. In particular, constituent labels are highly amisigdirstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (6Sgat@gory

3058

INDUCING TREE SUBSTITUTION GRAMMARS

£ _
George hates broccoli ROOT

Figure 2: An unlabelled dependency analysis for the example senB=uarge hates broccoliThe
artificial RooT node denotes the head of the sentence.

for a clause) rely on the correct inference of all the latent labels aaogidelow them. Much of
the recent work on unsupervised grammar induction has therefore saftierent approach, fo-
cusing on inducing dependency grammars (leék, 1988). In applying our model to unsupervised
grammar induction we follow this trend by inducing a dependency grammareridepcy gram-
mars represent the structure of language through directed links betveeds, which relate words
(heads) with their syntactic dependents (arguments). An example deypgridee is shown in Fig-
ure 2, where directed arcs denote each word’s arguments (e.g., hategcharguments, ‘George’
and ‘broccoli’). Dependency grammars are less ambiguous than ptrasture grammars since
the set of possible constituent labels (heads) is directly observed f@mdtds in the sentence,
leaving only the induction challenge of determining the tree structure. Mpstdkency grammar
formalisms also include labels on the links between words, denoting, for éxasubject, object,
adjunct etc. In this work we focus on inducing unlabelled directed degraydinks and assume that
these links form a projective tree (there are no crossing links, whiategond to discontinuous
constituents). We leave the problem of inducing labeled dependency granoiarther work.

Although we will be inducing dependency parses in our unsuperviseeriexents, we define
our model in the following section using the formalism of a phrase-structammar. As detailed
in Section 7, the model can be used for dependency grammar inductioimbyaispecially designed
phrase-structure grammar to represent dependency links.

3. Mod€

In defining our model, we focus on the unsupervised case, whereagévan a corpus of text strings
w and wish to learn a tree-substitution gramr@ahat we can use to infer the parses for our strings
and to parse new data. (We will handle the supervised scenario, weeasvgiven observed trees
t, in Section 4; we treat it as a special case of the unsupervised modgladkiitional constraints
during inference.) Rather than inferring a grammar directly, we go thranghtermediate step of
inferring a distribution over the derivations used to prodwcéhat is, a distribution over sequences
of elementary treee that compose to formv as their yield. We will then essentially read the
grammar off the elementary trees, as described in Section 5. Our problefoteebecomes one of
identifying the posterior distribution @& givenw, which we can do using Bayes' Rule,

P(elw) O P(w|e)P(e).

Note that any sequence of elementary trees uniquely specifies a codesp sequence of words:
those words that can be read off the leaves of the elementary trees enseqI'herefore, given a
sequence of elementary treed(w|e) either equals 1 (ifv is consistent witke) or 0 (otherwise).
Thus, in our model, all the work is done by the prior distribution over elemgttees,

P(elw) O P(e)d(w(e),w),

3059

COHN, BLUNSOM AND GOLDWATER

00000F

+

‘U‘I
‘I—‘
‘I\)
‘I—‘

[@af))
[@af)
Tl
Tl

+ + + +

Figure 3: An example of the Pitman-Yor Chinese restaurant process witlhhy =
(1,2,1,1,3,1,1,4,3). Black dots indicate the number of customers sitting at each table, and the
value listed below tablk is P(zo = k|z_10).

whered is the Kronecker delta and(e) = yield(trege)) returns the string yield of the tree defined
by the derivatiore.

Because we have no way to know ahead of time how many elementary treeshmigbeded
to account for the data, we use a nonparametric Bayesian prior, spkgificc Pitman-Yor process
(PYP) (Pitman, 1995; Pitman and Yor, 1997; Ishwaran and James,,2@0i8) is a generalization
of the more widely known Dirichlet process (Ferguson, 1973). Drawirgample from a PYP
(or DP) vyields a probability distributio® with countably infinite support. The PYP has three
parameters: discount parameter,a strength parameter,kand abase distribution P Informally,
the base distribution determines which items will be in the suppo@ (fiere, we will defineP-
as a distribution over elementary trees, so thas also a distribution over elementary trees), and
the discount and strength parametai@ndb determine the shape @&. The discount parameter
ranges from 0 to 1; whea= 0, the PYP reduces to a Dirichlet process, in which case the strength
parameteb is known as theoncentration parameteand is usually denoted with. We discuss the
roles ofa andb further below.

Assuming an appropriate definition f8¢ (we give a formal definition below), we can use the
PYP to define a distribution over sequences of elementary ¢rees . .. e, as follows:

G| a, b, PE ~ PYP(a., b7 PE)
elG ~G. ®)

In this formulation,G is an infinite distribution over elementary trees drawn from the PYP
prior, and theg are drawniid from G. However, since it is impossible to explicitly represent an
infinite distribution, we integrate over possible valuesfwhich induces dependencies between
theg. Perhaps the easiest way to understand the resulting distributiore @&vénrough a variant
of the Chinese restaurant process (CRP; Aldous, 1985; Pitman, #885% often used to explain
the Dirichlet process. Imagine a restaurant with an infinite number of taddes, with an infinite
number of seats. Customers enter the restaurant one at a time and seahtbeatsa table. I is
the index of the table chosen by thik customer, then the Pitman-Yor Chinese Restaurant Process
(PYCRP) defines the distribution

n;fa

- 1<k<K~
ke - | P78 1Sk
i1 K=K +1

3060

INDUCING TREE SUBSTITUTION GRAMMARS

wherez_j is the seating arrangement of the 1 previous customers, is the number of customers

in z_; who are seated at table K= = K(z_;) is the total number of tables in_;, andz; = 1 by

definition. Figure 3 illustrates. Whem= 0, this process reduces to the standard Chinese restaurant

process. Like the CRP, the PYCRP is exchangeable and producesalpondistribution on the

number of customers at each table (Pitman, 2006). The hyperparametedsd together control

the manner of the clustering, although the difference between the two is sathiée. A high value

of b will bias towards more clusters irrespective of their individual sizes, anbpunting for their

aggregate size. In contrast a laayer 1 will bias the clustering towards smaller individual clusters.
The PYCRP produces a sequence of integavhose joint probability is

n
Pz) = []P@lz.i-1)
[Pz
n
= 1.T1P(z|z1.i-1)
[Pz
n-1 1 K(z)-1 K(z) nk —1
= |_| — |_| (ka+b
1 i+b)\ k=1 j:
M(14b) (Kt K T(n —a)
= ka+b 3
(n+b) (l[ll() r1-—)
whereK is the total number of tables inandl is the gamma function. In order to produce a
sequence of elementary treeg/e need to introduce a second step in the process. We can do so by
imagining that each table in the restaurant is labelled with an elementary treé(myith /1 ... ¢k
being the trees labelling each table. Whenever a customer sits at a previoosigupied table,
a label is chosen for that table according to the base distrib&tipand this label is used by all

following customers at that table, as illustrated in Figure 4. We defite be/,, the label of the
table chosen by thieh customer. This yields the following conditional distributionen

K(z n&) _
Ple =iz 1,0(z1) = z S Ktk
ong —Ke(Dat (K(z_i)a+b)P.(e)
B i—1+b ’ @)

whereK; is the number of tables labelled wighin z_;, andd is the Kronecker delta. The probability
of an entire sequence of elementary trees is

= % P(e7 Z’ Z) Y
Z,

whereP(e, z, /) = 0 except whert; = g for all i, in which case

Plezl) = P(zl) = P(z)P({|z)
r(1+b) (¥
r(n+b) (lﬂ) (H r(PE M) ’

whereK is the total number of tables in

3061

COHN, BLUNSOM AND GOLDWATER

Figure 4. The Pitman-Yor process, illustrated as a labelled Chinese @#tguocess. In this
examplez_10=1(1,2,1,1,3,1,1,4,3) and each tablkis labelled with an elementary trég Black
dots indicate the number of occurrences of each tree=in({1,¢,,¢1,¢1,¢3,¢1,01,04,¢3). In this
illustration, which corresponds to the model given in (2), a single Pitmarpiaeess is used to
generate all elementary trees, so the trees do not necessarily fit togetperly. Our complete
model, defined in (5), would have a separate Pitman-Yor restaurardadhrreot category.

Equation 4 shows that, like other PYP and DP models, this model can be viensechahe
mode| whereg can be generated in one of two ways: by drawing from the base distribotion
by drawing from a cache of previously generated elementary treesevithe probability of any
particular elementary tree is proportional to the discounted frequencwatrée. This view makes
it clear that the model embodies a “rich-get-richer” dynamic in which a femergary trees will
occur with high probability, but many will occur only once or twice, as is tyfp¢aatural language.

In the model just defined, a single PYP generates all of the elementaryirireesNotice,
however, that these elementary trees might not tile together properly te fulayntax trees. For
example, in Figure 4g; = (S NP VP) andz, = (PP (IN in) NP), where the first substitution site in
e is an NP, but the root of, is a PP, sa& cannot be used to expamg. To solve this problem,
we modify the model so that there is a separate PYP for each non-termiegbogc, with a base
distribution conditioned on. The distribution over elementary trees with root categois/defined
as

GC| aCa b07 I:>E ~ PYP(aCa bCa PE(| C))
ec,Gc ~Gc, 5)

whereP:(-| c) is a distribution over the infinite space of elementary trees rootedayahda. and
b are the PYP hyper-parameters for non-termmale elect not to tie together the values of these
hyper-parameters as these control the tendency to infer larger or sseteof elementary trees
from the observed data; we expect the distribution over productionsfér difbstantially between
non-terminals. To generag we now drawe; from Gs, giving us an elementary tree with frontier
nodesc; ...cm. We then dravey ... ey in turn fromGg, ... G¢,,. We continue in this fashion until a
full tree is generated, at which point we can start again with a draw @gm

Integrating ovetG, we obtain the following distribution oves, now conditioned on its root
category as well as the previously generated table labels and assignments:

Ne — Kg ac+ (K¢ ac+ be)Pe(€elc)

Ple =e€|c,z.i,{(z-i)) = nc +b
C

: (6)

whereKg = Y eroote)—cKe is the total number of tables for nontermir@lng is the number of
timese has been used to rewriteandn; = 3 eroote)—c Ne 1S the total count of rules rewriting As

3062

INDUCING TREE SUBSTITUTION GRAMMARS

before, the superscript denotes that the counts are calculated over the previmengdey trees,
e_j, and their seating arrangemerzs;.

Finally, we turn to the definition of the base distribution over elementary tReefecall that
in an elementary tree, each internal node is labelled with a non-terminal cassgobol and each
frontier (leaf) node is labelled with either a non-terminal or a terminal symbigkrGa probabilistic
context-free grammalR, we assume that elementary trees are generated (conditioned on the root
non-terminalc) using the following generative process. First, choose a PCFG pioduc— o
for expandingc according to the distribution given By, Next, for each non-terminal ia decide
whether to stop expanding (creating a non-terminal frontier node, atserkas a substitution site)
or to continue expanding. If the choice is to continue expanding, a nevBREéduction is chosen
to expand the child, and the process continues recursively. Theag@egrrocess completes when
the frontier is composed entirely of substitution sites and terminal symbols.

Assuming a fixed distributioR. over the rules ifR, this generative process leads to the follow-
ing distribution over elementary trees:

Rel)= [T @) [] S [] Pelale). @)

icl(e) feF(e) Cc—ace

wherel (e) are the set of internal nodes @&excluding the rootF (e) are the set of frontier non-
terminal nodesg; is the non-terminal symbol for nodeands; is the probability of stopping ex-
panding a node labelled We treats. as a parameter which is estimated during training, as de-
scribed in Section 4.3. In the supervised case it is reasonable to assureifhiaxed; we simply

use the maximum-likelihood PCFG distribution estimated from the training corpudicel¢’) is
simply the relative frequency of the rut¢ — a). In the unsupervised case, we will inféy; this
requires extending the model to assume Bas itself drawn from a PYP prior with a uniform base
distribution. We describe this extension below, along with its associated ehémgquation 14.

The net effect of our base distribution is to bias the model towards simple wite a small
number of internal nodes. The geometric increase in cost associated wishofiping decisions
discourages the model from using larger rules; for these rules to be @utthdy must occur very
frequently in the corpus. Similarly, rules which use high-probability (fesdqu CFG productions
are favoured. It is unclear if these biases are ideal: we anticipate treat atbre sophisticated
distributions would improve the model’'s performance.

In the unsupervised setting we no longer have a training set of annotegésdaind therefore do
not have a PCFG readily available to use as the base distribution in Equatton this reason we
extend the previous model to a two level hierarchy of PYPs. As befaedptimost level is defined
over the elementary tree fragmen@;) with the base distributiont) assigning probability to the
infinite space of possible fragments. The model differs from the sugehose by definind
in (7) using a PYP prior over CFG rules. Accordingly the model can noeriatwo level hierarchy
consisting of a PCFG embedded within a TSG, compared to the supervisaagparodel which
only learnt the TSG level with a fixed PCFG. Formally, each CFG productidraisn fron?

H|ag, by ~ PYP(a, b, Uniform(-[c))
ajc,He ~ He, (8)

7. As we are using a finite base distribution over CFG productions, we tseld Dirichlet instead of the PYP presented
in (8). However we elect to use a PYP because it is more general, haditijonal expressive power from its
discounting behaviour.

3063

COHN, BLUNSOM AND GOLDWATER

wherea; and bl are the PYP hyper-parameters and Unifotn) is a uniform distribution over
the space of rewrites for non-terminaf As before, we integrate out the model parametes,
Consequently draws froR. are no longeiid but instead are tied in the prior, and the probability
of the sequence of component CFG productiftis— a € e} now follows a Pitman-Yor Chinese
Restaurant Process.

The CFG level and TSG level PYCRPs are connected as follows: evenatirakementary tree
is assigned to a new table in the TSG level, each of its component CFG ruldsaane from the
CFG level prior. Note that, just as elementary trees are divided into $epastaurants at the TSG
level based on their root categories, CFG rules are divided into sepestaurants at the CFG level
based on their left-hand sides. Formally, the probabilityjothejth CFG rule in the sequence, is
given by

M — KU g+ (Ko g +0p) gy

9
K¢ + bl ’ ©

Pe(rj=rlcj=c,Z 0" ;) =

wherec; is the left-hand side ofj; z_ ; and¢_; are the table assignments and table labels in the
CFG-level restaurants (we use prime symbols to indicate variables pertainthg CFG level);

n;~ is the number of times ruleis used in any table label in a TSG restaurant (equivalently, the
number of customers at tables labelleth the CFG restaurantsi;~ andK¢™ = 3 ro01r)=c Ki ™

are the CFG-level table counts forand all rules rewritingc, respectively; andr; is the set of
CFG productions which can rewrite This formulation reflects that we now have multiple tied
restaurants, and each time an elementary tree opens a new table in a tapdevetant all its
rules are considered to have entered their own respdetivestaurants (according to their rapt
Accordingly the CFG-level customer counf; , is the number of occurrencesroh the elementary
trees that label the tables in the TSG restaurants (exclugin@hus, in the unsupervised case, the
product of rule probabilities (the final factor) in Equation (7) is computednbltiplying together

the conditional probability of each rule (9) given the previous ones.

4. Training

We present two alternative algorithms for training our model, both basedavkdv chain Monte
Carlo techniques, which produce samples from the posterior distributithre ofiodel by iteratively
resampling the values of the hidden variables (tree nodes). The firsitlalgas alocal sampler,
which operates by making a local update to a single tree node in each samepng ke second
algorithm is ablockedsampler, which makes much larger moves by sampling analyses for full sen-
tences, which should improve the mixing over the local sampler. Importantlydbkdnl sampler is
more general, being directly applicable to both supervised and unsugbsagtings (and for pars-

ing test sentences, which is equivalent to an unsupervised setting) wilecéd sampler is only
applicable for supervised learning, where the trees are observedowpresent the two sampling
methods in further detail.

8. In our experiments on unsupervised dependency parsing the speawrites varied depending @anand can be as
large as the set of part-of-speech tags. See Section 7 for details.

3064

INDUCING TREE SUBSTITUTION GRAMMARS

(a) (b)

S S
NP VP NP,1 VP,0
NP \% NP George V.0 NP,1
| | t | \
George hates NP hates broccoli

broccoli

Figure 5: Gibbs sampler state (b) corresponding to the example derivadigreproduced from
Figure 1a). Each node is labelled with its substitution variable.

4.1 Local Sampler

Thelocal sampler is designed specifically for the supervised scenario, and sani@€s derivation
for each tree by sampling local updates at each tree node. It uses @ibpéirgy (Geman and
Geman, 1984), where random variables are repeatedly sampled coedlitiothe current values of
all other random variables in the model. The actual algorithm is analogous&ilths sampler used
for inference in the Bayesian model of word segmentation presented loyv&ter et al. (2006);
indeed, the problem of inferring the derivatiomfomt can be viewed as a segmentation problem,
where each full tree must be segmented into one or more elementary trefesmidate the local
sampler, we associate a binary variakjec {0,1} with each non-root internal nodd, of each
tree in the training set, indicating whether that node is a substitution pgiget {) or not &g = 0).
Each substitution point forms the root of some elementary tree, as well ast&efrnonterminal

of an ancestor node’s elementary tree. Conversely, each non-stibstitoint forms an internal
node inside an elementary tree. Collectively the training trees and substitatiables specify the
sequence of elementary treethat is the current state of the sampler. Figure 5 shows an example
tree with its substitution variables and its corresponding TSG derivation.

Our Gibbs sampler works by sampling the value of thevariables, one at a time, in random
order. Ifd is the node associated wity, the substitution variable under consideration, then the
two possible values ofy define two options foe: one in whichd is internal to some elementary
treeey, and one in whichd is the substitution site connecting two smaller tregsandeg. In the
example in Figure 5, when sampling the VP noglg= (S NP (VP (V hates) NP)ga = (S NP VP),
andeg = (VP (V hates) NP). To sample a value fey, we compute the probabilities &, and
(ea,es), conditioned ore: all other elementary trees in the training set that share at most a root or
frontier nonterminal withey, ea, or eg. These probabilities are easy to compute because the PYP is
exchangeablemeaning that the probability of a set of outcomes does not depend onritheiing.
Therefore we can treat the elementary trees under consideration asttbeda to be sampled, and
apply Equation (6). We then sample one of the two outcomes (merging or splétingjding to the
relative probabilities of these two events. More specifically, the probabitifiése two outcomes,

3065

COHN, BLUNSOM AND GOLDWATER

conditioned on the current analyses of the remainder of the corpus, are
Ng, — Key ey + (Kg, acy + bey)P=(em[Cm)
nEM + bCM
P(ea, €[Ca,C8) =) P(€a,ZexCa)P(€|€r, Ze,,Ca, Ca)
Zep

and

P(em|om) =

Ne, — Kerc, y Ng, + e — Kg,acs + (Kg;acs + b) Pe(€8[CB)
nEA + bCA nEB + 6c+ ch
+ (K&aCA+bCA)PE(eA|CA)
Nea + Dcy
. Nes + 8 — (Ko, + Be)ags + ((Ke, + 8c)acy + bea) Pe(eslCa)
Neg + Oc + e

, (10

wherecy is the root label ofgy, the countsn™ and K~ are derived fromz_y and ¢(z_y) (this
dependency is omitted from the conditioning context for brevily)= d(ea, eg) is the Kronecker
delta function which has value one whexnandeg are identical and zero otherwise, and similarly for
dc = (ca,cg) which compares their root nonterminals andcg. Thed terms reflect the changes
to n~ that would occur after observingy, which forms part of the conditioning context feg.
The two additive terms in (10) correspond to different valuezgfthe seating assignment fex.
Specifically, the first term accounts for the case wiggris assigned to an existing tab®g, < Kg,,
and the second term accounts for the case wbgig seated at a new tabig, = K¢, . The seating
affects the conditional probability @ by potentially increasing the number of tableg or K,
(relevant only wheres = eg Or ca = Cg).

4.2 Blocked Sampler

The local sampler has the benefit of being extremely simple, however it nigy flom slow
convergence (poor mixing) due to its very local updates. That is, it etstgck because many
locally improbable decisions are required to escape from a locally optimdisuliMoreover it is
only applicable to the supervised setting: it cannot be used for unssperyrammar induction or
for parsing test strings. For these reasons we developltiogedsampler, which updates blocks of
variables at once, where each block consists of all the the nodesasdowith a single sentence.
This sampler can make larger moves than the local sampler and is more flexiblat ih ¢an
perform inference with both string (unsupervised) or tree (supetyisput?®

The blocked sampler updates the analysis for each sentence givenatiiseanfor all other
sentences in the training set. We base our approach on the algorithmpkl/élp Johnson et al.
(2007a) for sampling parse trees using a finite Bayesian PCFG model withIBirpriors over the
multinomial rule probabilities. As in our model, they integrate out the parametetbdincase,
the PCFG rule probabilities), leading to a similar caching effect due to interdigmces between
the latent variables (PCFG rules in the parse). Thus, standard dynamgi@prming algorithms
cannot be used to sample directly from the desired postguibiwv,t™), that is, the distribution
of parse trees for the current sentence given the words in the carulghe trees for all other
sentences. To solve this problem, Johnson et al. (2007a) developetrepblis-Hastings (MH)

9. A recently-proposed alternative approach is to perftype-levelupdates, which samples updates to many similar
tree fragments at once (Liang et al., 2010). This was shown to agewWaster than the local Gibbs sampler.

3066

INDUCING TREE SUBSTITUTION GRAMMARS

sampler. The MH algorithm is an MCMC technique which allows for samples tad@srdfrom
a probability distribution7t(s), by first drawing samples from@roposal distributionQ(s'|s), and
then correcting these to the true distribution using an acceptance/rejeciionGiten a states,
we sample a next stag ~ Q(-|s) from the proposal distribution; this new state is accepted with

probability
_ [TUS)Q(s]S)
Alss) = mm{ (s)Q(s|s) ’1}

and is rejected otherwise, in which casie retained as the current state. The Markov chain defined
by this process is guaranteed to converge on the desired distribatien, Critically, the MH
algorithm enables sampling from distributions from which we cannot samg@ettjirand moreover,

we need not know the normalisation constantrfpy, since it cancels id\(s,s).

In Johnson et al.’s (2007a) algorithm for sampling from a Bayesian R@te3roposal distri-
bution is simplyQ(t’[t) = P(t'|6MAP), the posterior distribution over trees given fixed parameters
BMAP 'where@MAP is the MAP estimate based on the conditioning dtta,Note that the proposal
distribution is a close fit to the true posterior, differing only in that under tePNhe production
probabilities in a derivation ariéd, while for the true model the probabilities are tied by the prior
(giving rise to the caching effect). The benefit of using the MAP is that #dspendences mean that
inference can be solved using dynamic programming, namely the inside ahy@kidni and Young,
1990). Given the inside chart, which stores the aggregate probability «aftdarees for each word
span and rooted with a given nonterminal label, samples can be drawnausingple top-down
recursion (Johnson et al., 2007a).

Our model is similar to Johnson et al.’s, as we also use a Bayesian prior ined aigglammar
induction and consequently face similar problems with directly sampling due t@atnéng effects
of the prior. For this reason, we use the MH algorithm in a similar mannerpext®ur case we
draw samples of derivations of elementary trees and their seating assignpieni|\w,z_;,¢_),
and use a MAP estimate ovér ;, /) as our proposal distributiot?. However, we have an added
complication: the MAP cannot be estimated directly. This is a consequence loé&#e distribution
having infinite support, which means the MAP has an infinite rule set. For fifi@ models, such
as those used in DOP, constructing a CFG equivalent grammar is straiggnifiofif unwieldy).
This can be done by creating a rule for each elementary tree which revsitesot nontermi-
nal as its frontier. For example under this technig@ue NP (VP (V hates) NPwould be mapped
to S— NP hates NB* However, since our model has infinite support over productions, iatan
be mapped in the same way. For example, if our base distribution licences Gg©@Buction
NP — NP PPthen our TSG grammar will contain the infinite set of elementary tkfes: NP PR
NP — (NP NP PP) PPNP — (NP (NP NP PP) PP) RP.., each with decreasing but non-zero proba-
bility. These would all need to be mapped to CFG rules in order to performeimée under the
grammar, which is clearly impossible.

Thankfully it is possible to transform the infinite MAP-TSG into a finite CFG, usingethod
inspired by Goodman (2003), who developed a grammar transform ffoieaf parsing with an

10. Calculating the proposal and acceptance probabilities requiredisgmpt just the elementary trees, but also their
table assignments (for both levels in the hierarchical model). We electedpbifg the implementation by separately
sampling the elementary trees and their table assignments.

11. Alternatively, interspersing a special nonterminal, for example; £5-NP{VP-{V-hateg-NP} — NP hates NP,
encodes the full structure of the elementary tree, thereby allowing theinta be reversed. We use a similar
technique to encode non-zero count rules in our grammar transformdescribed below.

3067

COHN, BLUNSOM AND GOLDWATER

all-subtrees DOP grammar. In the transformed grammar inside inferenceté&bten allowing us to
draw proposal samples efficiently and thus construct a Metropolis-tgastsampler. The resultant
grammar allows for efficient inference, both in unsupervised and giggertraining and in parsing
(see Section 5).

We represent the MAP using the grammar transformation in Table 1, whielagep the count
and base distribution terms in Equation 6 into two separate CFGs, denotedB\ ®Welreproduce
Equation 6 below along with its decomposition:

Ple =€lc,z 1.0(z 1)) _Ne —Ke ac+ (K ac+be)Pe(€fc)

ne + be
Ne —Kgac Kgac+be
= + P:(elc) . 11
ne + be ne -+ be =(€lc) (11)
count base

Grammar A has productions for every elementary #eath n; > 1, which are assigned as their
probability the count term in Equation 1. The function sige) returns a string signature for el-
ementary trees, for which we use a form of bracketed notation. To sitrefdifference between
these nonterminal symbols and trees, we use curly braces and hyplpéareiof round parentheses
and spaces, respectively, for example, the elementary tree (S NP (W&€¥) NP)) is denoted by
the nonterminal symbdlS-NP{VP-{V-hateg-NP}}. Grammar B has productions for every CFG
production licensed undé¥; its productions are denoted using primed (') nonterminals. The rule
c — c bridges from A to B, weighted by the base term in Equation 11 excludingfex) factor.
The contribution of the base distribution is computed recursively via childymtions. The remain-
ing rules in grammar B correspond to every CFG production in the undeilB@ts base distribu-
tion, coupled with the binary decision of whether or not nonterminal childnenls be substitution
sites (frontier nonterminals). This choice affects the rule probability by dietuans or 1— s fac-
tor, and child substitution sites also function as a bridge back from grammah Bliioere are often
two equivalent paths to reach the same chart cell using the same elemesgarywia grammar A
using observed TSG productions and via grammar B uBirgackoff—which are summed to yield
the desired net probability. The transform is illustrated in the example in Hguaad 7.

Using the transformed grammar we can represent the MAP grammar efficakigraw sam-
ples of TSG derivations using the inside algorithm. In an unsupervisedgsetiiiat is, given a
yield string as input, the grammar transform above can be used directly withsikde algorithm
for PCFGs (followed by the reverse transform to map the sampled denvatm TSG elementary
trees). This has an asymptotic time complexity cubic in the length of the input.

For supervised training the trees are observed and thus we must émestuifee TSG analysis
matches the given tree structure. This necessitates constraining the Igeiit&ian to only consider
spans that are present in the given tree and with the given nonterminatefNonals are said to
match their primed and signed counterparts, for exampléaué{VP-{V-hateg-NP} both match
VP. A sample from the constrained inside chart will specify the substitutidablas for each node
in the tree: For each nodeif it has a non-primed category in the sample then it is a substitution

12. The transform assumes inside inference, where alternate anfdysbe same span of words with the same non-
terminal are summed together. In Viterbi inference the summation iscexpllay maximisation, and therefore we
need different expansion probabilities. This requires changing thehivieigc — sig(e) to P(e = €|c,z_j, 4(z—i)) in
Table 1.

3068

INDUCING TREE SUBSTITUTION GRAMMARS

jfd For every ETg, rewriting c with non-zero count:
E c — sig(e) %
@ For every internal node in e with childrene 1,...,&
o sig(e) —sig(e1)...sig(en) 1
@ pFor every nonterminak;:
J: c—c Kﬁ%:bfc
For every pre-terminal CFG productian— t:
c —t P.(c—t)
0 For every unary CFG production,— a:
= d—a P(c— a)s
S ¢ —d P.(c—a)(l-s)
% For every binary CFG production,— ab:
o d —ab R(c— ab)sysp
c —ab P.(c— ab)sy(1—)
¢ —ab P.(c— ab)(1—s))s
d—ab P.(c—ab)(l-s)(1—)

Table 1: Grammar transformation rules to map an infinite MAP TSG into an equivaleG,
separated into three groups for grammar A (top), the bridge betweerBAmiddle) and grammar
B (bottom). Production probabilities are shown to the right of each rule site) function creates
a unique string signature for an Ellwhere the signature of a frontier node is itself) a&ads the
probability ofc being a substitution variable, thus stopping aeecursion.

S— {NP-{VP-{V-hateg-NP}} ”;%E;:S
S
{NP-{VP-{V-hate§-NP}} — NP {VP-{V-hateg-NP} 1
{VP-{V-hateg-NP} — {V-hateg NP 1
{V-hateg — hates 1
e e Ksastbs

S—S ﬁngbs

S’ — NP VP’ Po(S— NP VP)syp(1—Syp)
VP — V' NP P-(VP = V NP)(1—s/)snp
V' — hates P-(V — hates

Figure 6: Example showing the transformed grammar rules for the single dbnydreee =
(S NP (VP (V hates) NP)) and the scores for each rule. Only the rulehwbrrespond te and its
substitution sites are displayed. Taking the product of the rule scores #® dashed line yields
thecountterm in (11), and the product of the scores below the line yieldb#seterm. When the
two analyses are combined and their probabilities summed together, Wéegete|c,z_;,{(z_)).

3069

COHN, BLUNSOM AND GOLDWATER

S S
| |
{S-NP{VP-{V-hate§-NP}} S
NP {VP-{V-hate§-NP} NP VP’

George (V-hates NP George V NP

\ \
| | .
hates broccoli hates broccoli

Figure 7. Example trees under the grammar transform, which both encodartteeTSG deriva-
tion from Figure 1a. The left tree encodes that ghe NP (VP (V hates) NRelementary tree was
drawn from the cache, while for the right tree this same elementary treeraas érom the base
distribution (the count and base terms in (11), respectively).

site,Xg = 1, otherwise it is an internal node; = 0. For example, both trees in Figure 7 encode that
both NP nodes are substitution sites and that the VP and V nodes are siitigion sites (the same
configuration as Figure 5).

The time complexity of the constrained inside algorithm is linear in the size of thamcéhe
length of the sentence. The local sampler also has the same time complexityehdvienot im-
mediately clear which technique will be faster in practise. It is likely that thekeldsampler will
have a slower runtime due to its more complicated implementation, particularly indrarisf
the grammar and inside inference. Although the two samplers have eqtiigslgnptotic com-
plexity, the constant factors may differ greatly. In Section 6 we comparembéraining methods
empirically to determine which converges more quickly.

4.3 Sampling Hyperparameters

In the previous discussion we assumed that we are given the modephypereterga, b, s). While
it might be possible to specify their values manually or fit them using a develupses, both
approaches are made difficult by the high dimensional parameter spatead we treat the hyper-
parameters as random variables in our model, by placing vague priarsheve and infer their
values during training. This is an elegant way to specify their values, gthdwoes limit our
ability to tune the model to optimise a performance metric on held-out data.

For the PYP discount parametexswe employ independent Beta prioes,~ Betg1,1). The
prior is uniform, encoding that we have no strong prior knowledge oftwhe value of eacla.
should be. The conditional probability e given the current derivatiors is

P(ac|z,¢) OP(z,¢|ac) x Beta(ac|1,1).

We cannot calculate the normaliser for this probability, how&(er¢|a;) can be calculated using
Equation 3 and thuB(ac|z,¢) can be calculated up to a constant. We use the range doubling slice
sampling technique of Neal (2003) to draw a new sampk& @fom its conditional distributiort®

We treat the concentration parametdss,as being generated by independent gamma priors,
bc ~ Gammal,1). We use the same slice-sampling methodgpto sample from the conditional

13. We used the slice sampler included in Mark Johnson’s Adaptor Gaammplementation, available at
http://web.science.mq.edu.au/ ~mjohnson/Software.htm

3070

INDUCING TREE SUBSTITUTION GRAMMARS

overbg,
P(bc|z,¢) OP(z,¢|be) x Gammahbc|1,1).

This prior is not vague, that is, the probability density function decaysmptially for higher
values ofb, which serves to limits the influence of tRe prior. In our experimentation we found
that this bias had little effect on the generalisation accuracy of the supéraisd unsupervised
models, compared to a much vaguer Gamma prior with the same mean.

We use a vague Beta prior for the stopping probabilitieB:ins; ~ Betg1,1). The Beta dis-
tribution is conjugate to the binomial, and therefore the posterior is also a Bétbutisn from
which we can sample directly,

sCNBeta<1+ZKe(z) z 6(n,c),1+ZKe(z) z 6(n,c)>,
) e nel(e)

e nek(e

wheree ranges over all non-zero count elementary trédg) are the nonterminal frontier nodes
in e, I(e) are the non-root internal nodes and théerms count the number of nodes érwith
nonterminal. In other words, the first Beta argument is the number of tables in whicke with
nonterminalc is a stopping node in thB- expansion and the second argument is the number of
tables in whichc has been expanded (a non-stopping node).

All the hyper-parameters are resampled after every full sampling iterat@rttee training trees,
except in the experiments in Section 7 where they are sampled every 10tioiitera

5. Parsing

We now turn to the problem of using the model to parse novel sentencistefinires finding the
maximiser of

p(t\w,w):////p(ﬂw,z,é,a,b,s) p(z,¢,a,b,sjw) dz d¢ dadb ds, (12)

wherew is the sequence of words being pardeid,the resulting treay are the training sentences,
z and/ represent their parses, elementary tree representation and tableresgiganda, b, s) are
the model's hyper-parameters. For the supervised case we use thegtieseist, in place ofw in
Equation 12.

Unfortunately solving for the maximising parse tree in Equation 12 is intract&lweever, it
can be approximated using Monte Carlo techniques. Given a samfite/cd, b, s) we can reason
over the space of possible TSG derivatiogsfor sentencev using the same Metropolis-Hastings
sampler presented in Section 4.2 for blocked inference in the unsupkséateg!* This gives us
a set of samples from the posterjgfe|w, z, ¢,a,b,s). We then use a Monte Carlo integral to obtain
a marginal distribution over trees (Bod, 2003),

ﬁMPT(t) = % 6(t,tree(em)), (13)
m=1

14. Using many samples in a Monte Carlo integral is a straight-forwarah&igte to our parsing algorithm. We did not
observe a significant improvement in parsing accuracy when usingtgpla samples compared to a single sample,
and therefore just present results for a single sample. Howeveg nsiitiple models has been shown to improve
the performance of other parsing models (Petrov, 2010).

3071

COHN, BLUNSOM AND GOLDWATER

where{en}M_, are our sample of derivations far. It is then straightforward to find the best parse,
t* = argmaxp(t), which is simply the most frequent tree in the sample.

In addition to solving from the maximum probability tree (MPT) using Equationvle3 also
present results for a number of alternative objectives. To test whigilelerivational ambiguity is
important, we also compute the maximum probability derivation (MPD),

M
776 = 3 Bleen).

using a Monte-Carlo integral, from which we recover the ttee; treg(arg max pMPP(e)). We also
compare using the Viterbi algorithm directly with the MAP gramniias: treg(arg max Puap(e/w)),
which constitutes an approximation to the true model in which we can searctiyeXdis contrasts
with the MPD which performs approximate search under the true model. Weateniye different
methods empirically in Section 6.

The MPD and MPT parsing algorithms require the computation of Monte-Cadgrials over
the large space of possible derivations or trees. Consequently, timedistribution is extremely
peaked the chance of sampling many identical structures is small, vanishirfglyigog sentences
(the space of trees grows exponentially with the sentence length). Inwtrds, the sampling
variance can be high which could negatively affect parsing perfocedror this reason we present
an alternative parsing method which compiles more local statistics for whiclamvelitain reliable
estimates. The technique is based on Goodman'’s (2003) algorithm for maxjitailseiled recall in
DOP parsing and subsequent work on parsing in state-splitting CFGs\(lRett Klein, 2007). The
first step is to acquire marginal distributions over the CFG productions witith sampled tree.
Specifically, we collect counts for events of the fofor a.,i, j, k), wherec — a is a CFG produc-
tion spanning word§, j) andk is the split point between child constituents for binary productions,
i < k< j (k=0 forunary productions). These counts are then marginalised by theemuhtrees
sampled. Finally the Viterbi algorithm is used to find the tree with the maximum cumeijatoba-
bility under these marginals, which we call the maximum expected rule (MERg phiote that this
is a type of minimum Bayes risk decoding and was first presented in Petd<leim (2007) as the
MAX-RULE-SUM method (using exact marginals, not Monte-Carlo estimagas done here).

6. Supervised Parsing Experiments

In this section we present an empirical evaluation of the model on the taskpefsdsed parsing.
In this setting the model learns a segmentation of a training treebank, whicteslefiTSG. We
present parsing results using the learned grammar, comparing the efféfiessampling strategy,
initialisation conditions, parsing algorithm and the size of the training set. Tsigpenvised model
is described in the following section, Section 7.

We trained the model on the WSJ part of Penn. treebank (Marcus et@8), d€ing the standard
data splits, as shown in Table 2. As our model is parameter freea(the parameters are learnt
in training), we do not use the development set for parameter tuning. Yécethat fitting the
hyperparameters to maximise performance on the development set would eathall increase
in generalisation performance, but at a significant cost in runtime. Wet &kdrov et al.’s (2006)
method for data preprocessing: right-binarizing the trees to limit the brag&udtor and replacing
tokens with count 1 in the training sample with one of roughly 50 generic unknown word markers
which convey the token’s lexical features and position. The predictes tee evaluated using

3072

INDUCING TREE SUBSTITUTION GRAMMARS

Partition sections sentences tokens types types (unk)

training 2-21 33180 790237 40174 21387
development 22 1700 40117 6840 5473
testing 23 2416 56684 8421 6659

~small training 2 1989 48134 8503 3728

Table 2: Corpus statistics for supervised parsing experiments usingrihgréebank, reporting for
each patrtition its WSJ section/s, the number of sentences, word tokengrignd word types. The
final column shows the number of word types after unknown word psirgsising the full training
set, which replaces rare words with placeholder tokens. The numbegrex &fter preprocessing in
the development and testing sets is roughly halved when using the the smaiitiseh

EVALB!° and we report the F1 score over labelled constituents and exact matsacover all
sentences in the testing sets.

In our experiments, we initialised the sampler by setting all substitution variablesttus
treating every full tree in the training set as an elementary tree. Unlessvigbhespecified, the
blocked sampler was used for training. We later evaluated the effecfefatif starting conditions
on the quality of the configurations found by the sampler and on parsingaagc The sampler was
trained for 5000 iterations and we use the final sample, &fa, b, s for parsing. We ran all four
different parsing algorithms and compare their results on the testing setseHmarsing methods
that require a Monte Carlo integral (MPD, MPT and MER), we sampled ti@éd®ations from the
MAP approximation grammar which were then input to the Metropolis-Hastingspaance step
before compiling the relevant statistics. The Metropolis-Hastings acceptateewas around 99%
for both training and parsing. Each experiment was replicated five timethamdsults averaged.

6.1 Small Data Sample

For our first treebank experiments we train on a small data sample by udingemtion 2 of the
treebank (see Table 2 for corpus statistics.) Bayesian methods tend tolldeitvesmall data
samples, while for larger samples the benefits diminish relative to point estinfraiethis reason
we present a series of exploratory experiments on the small data se¢ Imeéwing to the full
treebank.

In our experiments we aim to answer the following questions: Firstly, in ternpsusing ac-
curacy, does the Bayesian TSG model outperform a PCFG baselinboandoes it compare to
existing high-quality parsers? We will also measure the effect of the gaadgorithm: Viterbi,
MPD, MPT and MER. Secondly, which of the local and blocked samplingiigcles is more effi-
cient at mixing, and which is faster per iteration? Finally, what kind of strestdoes the model
learn and do they match our expectations? The hyper-parameter vaduss@of interest, partic-
ularly to evaluate whether the increased generality of the PYP is justifiedtowdP. Our initial
experiments aim to answer these questions on the small data set, after whatteilee best model
and apply it to the full set.

Table 3 presents the prediction results on the development set. The bésalmaximum like-
lihood PCFG. The TSG models significantly outperform the baseline. Thigwmour hypothesis
that CFGs are not sufficiently powerful to model syntax, and that the&sed context afforded to

15. Seehttp:/inlp.cs.nyu.edu/evalb/

3073

COHN, BLUNSOM AND GOLDWATER

M odel Viterbi MPD MPP MER #rules
PCFG 60.20 60.20 60.20 - 3500
TSG PYP 7490 76.68 77.17 78.59 25746
TSG DP 74.70 75.86 76.24 77.91 25339
Berkeley parserq(=2) 71.93 71.93 - 74.32 16168
Berkeley parsert(=5) 75.33 75.33 - 77.93 39758

Table 3: Development results for models trained on section 2 of the Pebaleeshowing labelled
constituent F1 and the grammar size. For the TSG models the grammar sizedeptine number
of CFG productions in the transformed MAP PCFG approximation. Unknoerdwnodels are
applied to words occurring less than two times (TSG models and Berkete®) or less than five
times (Berkeley = 5).

the TSG can make a large difference. Surprisingly, the MPP techniquéyislaghtly better than
the MPD approach, suggesting that derivational ambiguity is not as muacproblem as previously
thought (Bod, 2003). Also surprising is the fact that exact Viterbsioar under the MAP approx-
imation is much worse than the MPD method which uses an approximate seancigtechnder
the true model. The MER technique is a clear winner, however, with coailydbetter F1 scores
than either MPD or MPP, with a margin of 1-2 points. This method is less affégtadmpling
variance than the other MC algorithms due to its use of smaller tree fragmer@spi©Huctions at
each span).

We also consider the difference between using a Dirichlet process(Pfjrand a Pitman-Yor
process prior (PYP). This amounts to whetheralgper-parameters are setto 0 (DP) or are allowed
to take on non-zero values (PYP), in which case we sample their valueseribed in Section 4.3.
There is a small but consistent gain of around 0.5 F1 points across theediffparsing methods
from using the PYP, confirming our expectation that the increased flexibflitlgeoPYP is useful
for modelling linguistic data. Figure 8a shows the learned values of the P& pgrameters after
training for each nonterminal category. Itis interesting to see that thatmgrameter values mostly
separate the open-class categories, which denote constituents caegiagtic content, from the
closed-class categories, which are largely structural. The open<lgsse-, verb-, adjective- and
adverb-phrases: NP, VP, ADJP and ADVP, respectively) tend te hishera andb values (towards
the top right corner of the graph) and therefore can describe higitysdi sets of productions. In
contrast, most of the closed classes (the root category, quantity phvasguestion noun phrases
and sentential phrases: TOP, QP, WHNP and S, respectively) hawedodb (towards the bottom
left corner of the graph), reflecting that encoding their largely formutaigites does not necessitate
diverse distributions.

The s hyper-parameter values are shown in Figure 8b, and are mostly in the ngd-(@.3—
0.7). Prepositions (IN), adverbs (RB), determiners (DT) and someseafs/erbs (VBD and VBP)
have very lows values, and therefore tend to be lexicalized into elementary trees. Thisastedp
behaviour, as these categories select strongly for the words they naodifyome (DT, verbs) must
agree with their arguments in number and tense. Conversely particlesniB&#| verbs (MD) and
possessive particles (PRP$) have higialues, and are therefore rarely lexicalized. This is rea-
sonable for MD and PRP$, which tend to be exchangeable for one anatheut rendering the
sentence ungrammatical (e.g., ‘his’ can be substituted for ‘their’ anditdhfor ‘can’). However,

3074

INDUCING TREE SUBSTITUTION GRAMMARS

(a) PYP hyper-parameteras,b (b) Substitution hyper-parametess,

o ADJP S+
B - o ADVP
A NP
+ PP

X QP

— >
=

0.8

ﬁ : ol
ee IR

=T .] k

20

0.6
1

%

—
L
L

T@
] il

T

: zZ3 4 -
0.2 0.3 0.4 0.5 0.6 0.7 0.8 CORTTEEZCEREEEET2E288 2820 557253433
o1l

a

Figure 8: Inferred hyper-parameter values. Points (left) or barbtfrghow the mean value with
error bars indicating one standard deviation, computed over the finalesofgive sampling runs.
For legibility, a) has been limited to common phrasal nonterminals, while b) alsesgireterminals
and binarized nonterminals (those with the -BAR suffix). Note that imia)plotted on a log-scale.

particles are highly selective for the verbs they modify, and therefaraldtbe lexicalized by the
model (e.qg., for ‘tied in’, we cannot substitute ‘out’ for ‘in’). We postul#tat the model does not
learn to lexicalise verb-particle constructions because they are relatvebmmon, they often oc-
cur with different tenses of verb and often the particle is not adjacenéteetb, therefore requiring
large elementary trees to cover both words. The phrasal types all ima&r s values except for
VP, which is much more likely to be lexicalized. This allows for elementary treggeung a verb
with its subject noun-phrase, which is typically not part of the VP, but atste descendent of its
parent S node. Finally, threvalues for the binarized nodes (denoted with the -BAR suffix) on the
far right of Figure 8b are all quite low, encoding a preference for thdehitm reconstitute binarized
productions into their original form. Some of the values have very high ivegigfor example, $,
which is due to their rewriting as a single string with probability 1 urfélgfor a small set of strings
and a low entropy distribution), thus making the hyper-parameter value imntateria

For comparison, we trained the Berkeley split-merge parser (Petrov 2086) on the same
data and decoded using the Viterbi algorithm (MPD) and expected rufe @d&R, also known as
MAX-RULE-SUM). We ran two iterations of split-merge training, after whicke thevelopment F1
dropped substantially (in contrast, our model is not fit to the developméait dene result (denoted
T = 2) is an accuracy slightly below that of our model. To be fairer to their modeladjusted
the unknown word threshold to their default setting, that is, to apply to warektpccurring fewer
than five times (denoted= 5).1® Note that our model's performance degraded using the higher

16. The Berkeley parser has a number of further enhancementgafe¢cted not to use, most notably, a more sophisti-
cated means of handling unknown words. These enhancementseridliher improvements in parse accuracy, but
could also be implemented in our model to similar effect.

3075

COHN, BLUNSOM AND GOLDWATER

<40 all
Par ser F1 EX Fl1 EX
MLE PCFG 642 7.2 631 6.7
TSG PYP Viterbi 83.6 24.6 827 229
TSG PYP MPD 84.2 272 833 254
TSG PYP MPT 84.7 28.0 838 26.2
TSG PYP MER 85.4 27.2 84.7 258
DOP (Zuidema, 2007) 83.8 26.9
Berkeley parser (Petrov and Klein, 2007) 90.6 90.0
Berkeley parser (restricted) 87.3 31.0 86.6 29.0
Reranking parser (Charniak and Johnson, 2005) 92.0 91.4

Table 4: Full treebank testing results showing labelled F1 and exact matataag for sentences
of up to 40 words, and for all sentences. The results of severakinkgiarsers are also shown (as
reported in the literature, hence the missing values), representing a bdB&€liRG), systems similar
to our own (DOP, Berkeley) and state-of-the-art (Berkeley, Rengnparser). Berkeley (restricted)
uses simplified data preprocessing as compared to Berkeley; the simpléeogessing is the
same as used in our system, so provides a more fair comparison.

threshold, which impedes the model’s ability to learn highly lexicalized fragmdits.grammar
sizes are not strictly comparable, because we are comparing diffepgs ¢f grammar. For our
TSG models we report the number of CFG productions in the transformed RS, in which
non-zero count TSG rules typically rewrite as many CFG filemd CFG rules from the base
distribution are replicated up to four times. Nevertheless the trend is cleamadel produces
similar results to a state-of-the-art parser, and does so using a similagsanachar. With additional
rounds of split-merge training the Berkeley grammar grows exponentiallgrd2§OK rules after
six iterations). Our TSG grammar is also far smaller than the full DOP grammaceddtom this
data set, which extracts every possible TSG rule from the training set wilieadimit, and has
approximately 700K rules.

6.2 Full Treebank

We now train the model on the full training partition of the Penn treebank, s&atpns 2—-21 (see
Table 2 for corpus statistics). We initialise the sampler using a converged fnogkethe end of
a sampling run on the small data set and run the blocked Metropolis Hastimgéesdor 20,000
iterations. The MAP PCFG approximation had 156k productions and trainwig @ million

seconds in total or 61 seconds per iterafidiVe repeated this three times and present the averaged
results in Table 4.

17. The encoding of TSG rules could be made more compact by skipipinmternal rewrite steps, instead directly
rewriting the transformed root node as the rule’s frontier. This wouldmibat each input TSG rule would produce
only two rules in the transformed CFG. It would also affect the choiceaddipg algorithm because the transformed
grammar would no longer be binary.

18. Measured using a single core of an AMD Opteron 2.6GHz machine.

3076

INDUCING TREE SUBSTITUTION GRAMMARS

The TSG models far surpass the MAP PCFG baseline, while the relativergslef the dif-
ferent parsing algorithms corroborate our earlier evaluation on the sramlinty set. The model
outperforms the most comparable DOP result, although the numbers atdatiyt somparable as
Zuidema (2007) used an enriched nonterminal set for testing. Howawergsults are still well
below state-of-the art parsers, and even underperform the Benbaieer when it is restricted to
the same preprocessing steps for rare tokens and binarization asdveasssts labelledestricted
in Table 4). But we must bear in mind that these parsers have benefitady&ars of tuning to
the Penn-treebank, where our model is much simpler and is largely untWdednticipate that
careful data preparation, model tuning and improved inference algoritloukl greatly improve
our model’s performance, bringing it closer to the state-of-the-art.

6.3 Sampling Strategy

Next we investigate which of the two sampling methods is more effective foiinigathe model.
Recall that in Section 4 we described a blocked sampler and a local sathpkes;samplers differ
in the number of variables that they update in every sampling step. We rettira $onall training
sample for these experiments. Figure 9 shows how the log posterior oveitlirg set varies with
the sampling iteration and with time for the two different sampling algorithms. It i thed the
blocked MH sampler exhibits faster convergence in general than the®ilchs sampler, despite
being somewhat slower per iteration. The speed difference is fairly manoounting to roughly
a 50% increase in time over the local sampfealthough on the full data set the time differential
reduces to 19%. This difference is largely due to the cost of performengrimmar transformation,
which could potentially be further optimised to reduce the gap.

Figure 9 shows the results for a number of different initialisations, usiimgmal elementary
trees where every node is a substitution point (the CFG analysis), initialisengutbstitution vari-
ables uniformly at randomeger), and usingmaximalelementary trees where no nodes are sub-
stitution points. The blocked sampler is more robust to starting point than thiesimcgler and
converges faster in terms of iterations and total time in general. Interestihgliglocked sampler
converges faster with the maximal initialisation, which is due to the initialisation cond#ggulting
in much smaller initial table counts, and therefore it is quite easy for the modelve aveay from
that solution. However, with the minimal initialisation the counts begin with very habes, and
therefore deviating from the initial solution will be much less likely. In contrimt,local sampler
behaves in the opposite way with respect to initialisation, such that with the miniitiaisation it
performs at or above the level of the blocked sampler. This is a surpfisatigg which contradicts
our intuition about the mixing properties of the sampler and warrants furtisearch.

In the above we have been comparing the log training posterior as a meashieequality of
the sampler, however it is not a given that a probable model is one with gasihg accuracy.
Figure 10 shows that the posterior is highly correlated with generalisatipnviil a Pearson’s
correlation efficient of 0.95 on this data, and therefore improving the saitqheergence will have
immediate positive effects on performance. This is corroborated in Tabidish shows the F1
scores using the final sample for each initialisation condition. The blockeplsaout-performs the
local sampler for all initialisation conditions and has lower lower varianceredeer, the blocked
sampler is less dependent on its initialisation, performing well independenttiafisation. In

19. To account for the speed differential, the local samplers werordrbk iterations and the blocked samplers for 10k
iterations to produce Figure 9 and Table 5.

3077

COHN, BLUNSOM AND GOLDWATER

training log posterior
training log posterior

-- blocked sampler (minimal)

=1 I —— blocked sampler (even)

: blocked sampler (maximal)
-- local sampler (minimal)

' —— local sampler (even)

g4 local sampler (maximal)

I T T T T T T T

0 5000 10000 15000 0 10000 20000 30000 40000

-- blocked sampler (minimal)

= 7 —— blocked sampler (even)

i blocked sampler (maximal)
-- local sampler (minimal)

{ —— local sampler (even)

- local sampler (maximal)

-310000 -308000 -306000 -—304000 -302000
|

-310000 -308000 -306000 -—304000 -302000
|

iteration time (secs)

Figure 9: Training likelihood vs. iteration (left) or elapsed timegfit). Both sampling methods were ini-
tialised in three different waysninimal (all substitution variables set to 2 = 1), even(xy ~ Uniform(0, 1))
andmaximal(x = 0).

Sampling method Initialisation F1 o Trainingtime(s)

Local minimal 78.2 0.50 44674
Local even 78.3 0.31 43543
Local maximal 78,5 0.51 44453
Block minimal 78.5 0.18 46483
Block even 78.6 0.35 46535
Block maximal 78.6 0.38 39789

Table 5: Parsing performance and training time for the local versus ldazmplers with different
initialisations. Results are shown on the development set using the MER ghamsporting the
mean F1 and standard deviatian,(from five independent runs. The blocked samplers were run
for 10k iterations and the local sampler for 15k iterations iterations in ordalidw all methods
approximately the same running time.

contrast, the local sampler performs well only with the maximal initialisation, with vitimughly
equals the blocked sampler in terms of F1 and log posterior (see Figure 9).

6.4 Discussion

The previous sections show that our model performs far better than dasthRCFG trained on
the same corpus; it is natural to ask what kinds of rules it is learning that &l do so well.

Figure 11 shows the grammar statistics for a TSG model trained on the fulhtreétaining set.
This model has a total of 72955 rules with an aggregate count of 7337bthese, only 46% are

3078

INDUCING TREE SUBSTITUTION GRAMMARS

F1 score
70 72 74
| | |
T
—320000 —300000

68
Il
training log posterior

T
—-340000

66
|

64
|
o

—-360000

T T T T T
1 10 100 1000 10000

iteration

Figure 10: Likelihood and generalisation F1 are highly correlated. Thekldacles show the
development F1 score (left axis) and the red line shows the training ldgibkel (right axis) dur-
ing a Gibbs sampling run. The parsing results were obtained using Viterdingawith the MAP
approximation grammar.

B height
9 E nodes
Q@ _
2 B O lexemes
3 O vars
2 3
5 &
<
3 8
o &
o
O
+— n
o
QS _|
: IZ|:| l
s | L_El J_LJ__I__._
8
0 1 2 3 4 5 6 7 8 9 10

value

Figure 11: Grammar statistics for a TSG model trained on the full Penn treétaamng set, show-

ing the aggregate count for elementary trees of given height, numbedetnterminals (lexemes)
and frontier nonterminals (vars). An insignificant fraction of the ruled &dneight or number of
nodes> 10; these have been truncated for display purposes.

3079

COHN, BLUNSOM AND GOLDWATER

TOP
|
S
NP S
/\
DT NN
\ {
The N‘N VP _
- 4 |
dividend VP
VBD VP
\
had
VBN NP
4 t
VBN NP
\
been NP NP
f s
NP DT NN

N \ \
CD NNS a share

4 \
CD cents

five

Figure 12: Inferred TSG structure for one of the training trees. Nomitels shown with an over-
bar (e.g.S) denote a binarized sub-span of the given phrase type.

CFG rules. The TSG rules vary in height from one to nineteen with the majattyden one and
four. Most rules combine a small amount of lexicalisation and a variable orThis confirms that
the model is learning local structures to encode, for example, multi-word, sniteategorisation
frames and lexical agreement. The few very large rules specify fudbgdor sentences which were
repeated in the training corpus. These complete trees are also evidenibinghail of node counts
(up to 30; not shown in the figure) and counts for highly lexicalized rulesd 11).

It is also instructive to inspect the inferred segmentations for individaaktim the training set.
Figure 12 shows an example taken from the training set showing the ledenedtion. Notice that
the model has learned to use a large rule from the TOP node to capture itted tyB VP . sen-
tence structure while lexicalizing the initial determiner, which is necessaryofweply describe its
capitalisation. It has also learnt a subcategorisation framigatbwhich specifies a VBN argument
and an NP, and learnt tk@um> cents andNP a share fragments, which are both common in the
training corpus (Wall Street Journal articles).

3080

INDUCING TREE SUBSTITUTION GRAMMARS

To provide a better picture of the types of rules being learnt, Table 6 st@aep fifteen rules
for three phrasal categories for the model trained on the full Penrein&eliVe can see that many of
these rules are larger than CFG rules, confirming that the CFG rules abimeadequate to model
the treebank. Two of the NP rules encode the prevalence of prepokjiorzses headed by ‘of’
within a noun phrase, as opposed to other prepositions. Highly speciiod@e also incorporated
into lexicalized rules.

The model also learns to use large rules to describe the majority of rooempéasions (we add
a distinguished TOP node to all trees). These rules mostly describe daseshe S category is used
for a full sentence and includes punctuation such as the full stop andtmuomarks. In contrast,
the majority of expansions for the S category do not include any punctudi@model has learnt
to distinguish between the two different classes of S—full sentencesvarsrnal clause—due to
their different expansions.

Many of the verb phrase expansions have been lexicalized, encoelingwbcategorisation, as
shown in Table 7. Notice that each verb here accepts only one or a sinallaagument frames,
indicating that by lexicalizing the verb in the VP expansion the model can firssalabiguous and
more parsimonious grammar. The lexicalized noun phrase expansionderVdbo show some in-
teresting patterns, such as reconstituting binarized productions andil@rigarepositional phrase
arguments. Of particular interest are the ril®s— CD (NN %) andNP — (NNP Mr.) NNP, in which
the lexicalized item has a common tag but a very specific function. Theseandensiderably
more expressive than their CFG counterparts. Overall these resultsigate that the model
uses deep elementary trees to describe regular patterns in the datay therpbrforming a simple
PCFG. Despite having an infinite space of grammar productions, the induaeunars are com-
pact, with the majority of probability mass on a small number of individually smallywtons.

7. Unsupervised Dependency Induction Experiments

Having considered the application of our non-parametric TSG model to\s8see parsing, in this
section we present an empirical evaluation for our model on the task opansgsed parsing. Our
approach to the unsupervised task differs from the supervised opedrasways. Two differences
result from the fact that parse trees are not observed during traifiisy we cannot use the local
Gibbs sampler presented above, leaving the blocked sampler as our tiaty. & cond, we cannot
directly estimateP. from the training data, so we must extend the model with an extra level
hierarchy (as described in Section 3) in order to indBgeA final difference in our unsupervised
experiments is that we now focus on dependency grammar induction ra#imeplinase-structure
induction; as outlined in Section 2.1, dependency grammars are a morelddasibalism for
unsupervised grammar learning. Before presenting our experimesigtisreve first describe how
to represent dependency grammars using our Bayesian TSG model.

To date, the most successful framework for unsupervised dependetuction is the Depen-
dency Model with Valence (DMV, Klein and Manning, 2004). This apptoesduces a dependency
grammar using a simple generative model in which the strings are said to bratgehsy a top-down
process which recursively generates child dependents from esstt p@ad word. This model has
been adapted and extended by a number of authors (e.g., Cohen and ZB@g&hHeadden Il
et al., 2009); these approaches currently represent the state-aifttloe dependency induction. In
this section, we present a method for dependency grammar induction tbgtanates the basic
intuitions of the DMV, but is also capable of modelling larger units than just sipgtent-child

3081

of

COHN, BLUNSOM AND GOLDWATER

NP — VP —

(DT the)NP VBD VP

NNS VBZ NP

NP (NP (CC and) NP) VBD NP

JJNNS VBZ VP

NP (PP (IN of) NP) VBP NP

NP PP VBP VP

(DT the) NN MD (VP VB NP)

DT (NP JJ NN) (VBD said) (SBAR (S NP VP))
NN NNS MD (VP VB VP)

(DT the) NNS VP (VP (CC and) VP)

JINP (VBZ is) ADJP

(NP DT NN) (PP (IN of) NP) | | (VBD said) (SBAR (S (NP (PRP it)) VP)

PP— ADJP — ADVP —

(IN'in) NP JJ (RB also)

(IN for) NP (JJ able) S (RB now)

(IN on) NP RB JJ RB

(IN with) NP RB ADJP (RB still)

TO NP (RB very) JJ (NP (DT a) (NN year)) (RBR earlier

(IN at) NP JJ @DJP CC JJ) (RB already)

(IN from) NP ADJP (ADJP CC ADJP) (RB UNK-LC-ly)

(IN by) NP (RBR more) JJ (RB again)

(TO to) NP JJI PP (RB just)

(IN of) NP (NP CD (NNS years)) (JJ old) | (RB then)

IN (S (VP VBG NP)) | | (JJ UNK-LC) (RB never)

IN NP (RB too) JJ (RB currently)
TOP— S—
(SNPSVP(..) NP VP
SINV (VP TO (VP VB NP))
(S (NP (DT The)NP) (S VP (. .))) (NP PRP) VP
(5S$6.9) (VP TO (VP VBVP))
(S (CC But)S) (VP TO (VP VB (VP NP PP)))
(S(PP (ININ)NP)S (,,)S)) (VP TO (VP VB))

(S (NP (DT The) NN) B VP (. .))) (VP TO (VP VB PP))
(S (SSE(,)9) (VP VBG NP)
(S(NPNP WP, NP NP) 8 VP (. .))) E\N/i \(/IESPVVI?/) "
(SPPE(,,)SNPEVP(..)) e

(S (NP (PRP He))3 VP .)) (NP (PRP i) VP

(S (CC And)§) (NP (PRP |)) VP

Table 6: Most frequent expansions for a selection of nonterminalsnitSaere taken from the final
sample of a model trained on the full Penn treebank.

3082

INDUCING TREE SUBSTITUTION GRAMMARS

NP — VP —

(DT the)NP (VBD said) (SBAR (S NP VP))

NP (NP (CC and) NP) VP (VP (CC and) VP)

NP (PP (IN of) NP) (VBD said) (SBAR (S (NP (PRP it)) VP))
(DT the) NN VBD (VP (NP CD (NN %))VP)

(DT the) NNS VP (VP, (VP (CC and) VP))

(NP DT NN) (PP (IN of) NP) VP (VP (,,) (VP (CC but) VP))

(DT a)NP (VBD said) (SBAR (S (NP (PRP he)) VP))
(PRP$ its)NP (MD will) (VP VB VP)

NP (NP (, ,) (SBAR WHNP (S VP))) (VBD said) (SBAR (S (NP (DT the) NN) VP)
NP (NP, NP (SBAR WHNP (S VP)) (, ,)))| | (VBD agreed) S

CD (NN %) (VBZ is) (VP (VBN expected) S)

NP (NP (, ,) NP) (VBP say) (SBAR (S NP VP))

(NP NNP (POS 's)NP MD (VP (RB n't) (VP VB VP))

(NNP Mr.) NNP (VBZ says) (SBAR (S NP VP))

(PRP it) (VBP do) (VP (RB n't) (VP VB NP))

(NP DT (NP JJ NN)) (PP (IN of) NP) (MD will) (VP VB NP)

(DT a) (NP JJ NN) (VBZ plans) S

NP (SBAR (WHNP (WDT that)) (S VP)) (VBD was) (VP VBN (PP (IN by) NP))
NP (NP (,,) NP NP (, ,))) (VBD did) (VP (RB n't) (VP VB NP))
(NP (DT the) NN) (PP (IN of) NP) VP (VP (CC but) VP)

Table 7: Most frequent lexicalized expansions for noun and veragglst Forms db be andto
have dominate the VP expansions and consequently have been excluded.

dependency relations. We approach the problem by representingddemy structures using the
formalism of a CFG, and then applying our model (Section 3) to learn a TS&dkan that CFG.

A dependency grammar can be represented in a CFG by labelling constiitmtseir head
word, and encoding each dependency edge between a head andweoctild the grammar produc-
tions. This grammar has productions of the fdm> H (word H heads the sentencéj,— CH (C
is a left child ofH) andH — HC (C is a right child ofH), whereSis the start nonterminal and tie
andC denote head and child nonterminals, respectively, which are both dramrtlie same alpha-
bet as the terminals (in our case part-of-speech tags). Unfortunatsipgavith this representation
is inefficient, having an asymptotic time complexity@f|w|°).2° The complexity can be improved
to O(|w|®) by replicating (splitting) each terminal and processing all left and righedeents of
each head word separately (Eisner, 2000). This is illustrated in Figunen& the leaves are all

replicated with thd andr subscripts, while the spans defined by the tree structure denote the left

and right dependents of each head word. Here we emploipltteinfoldrepresentation (Johnson,
2007) that generalises Eisner’s (2000) split-head parsing algorithdefirying an equivalent CFG
under which standard inference methods can be used. Table 8 sho@§@grammar for the
DMV model (CFG-DMV), while Figure 13 shows the derivation in this gramnuarthe example
sentence in Figure 2. The key insight to understanding the nonterminals grdinisnar is that the
subscripts encode the terminals at the boundaries of the span dominated bgriterminal. For
example the nonterminald_encodes that the right most terminal spanned by this constituéht is

20. This is a result of the usual CYK complexity 6fG?|w|?), and the grammar consta@tbeing equal to the number
of terminals|w| in the sentence.

3083

COHN, BLUNSOM AND GOLDWATER

(and the reverse frR), while AM encodes thah andB are the left and right terminals of the span.
The superscripts and® denote the valency of the head: both indicate that the head has at least one
attached dependent in the specified direction, witidicating that the head will continue to attach
more children. The time complexity of inference in this grammar is ar{lyv|®) because each span
in the parse chart bounded by terminals A and B can only contain nonterialo®d from the set
{Lg, Lg, Lé, AR, AR*, AR, AMp:, a-Mg, S}. Consequently the grammar constant is fixed rather
than quadratic in the sentence length.

We apply our TSG model to unsupervised dependency grammar inducingtine CFG-DMV
as the underlying grammar representation. Our model is capable of leaménfyagments which
combine multiple adjacent CFG productions, affording considerable adalittoadelling power
above that of a PCFG. Thereby the model can learn to condition depsnlilgs on the valence.
For example by combiningny — L,{,N and L,{,N — Lpt pTMnne rules into an elementary tree the
model can describe that the leftmost child of a noun (NN) is a determiner. (Addeover, the
model can learn groups of dependencies that occur together by dagjomultiple LY, or 4yR?
nonterminals. This can represent, for example, the complete prefeg@aiant frame of a verb.

7.1 Experiments

We perform inference for the TSG-DMV model by drawing 1000 sampkiaguthe blocked
Metropolis-Hastings sampler described in Section 4.2 and evaluate the nsiuglive final sam-
ple. Given that we do not observe parse trees in training, we canadhedocal Gibbs sampler as
it only allows the sampling of the segmentation of a fixed tree, not the tree itasadfder to parse
sentences in the test set we use the Viterbi algorithm to find the maximum pitylj@drse under
the MAP grammar (see Section 5). All hyperparamei@iis.ands, are sampled after every ten full
samples over the training set.

A final and important consideration is the initialisation of the sampler. Klein andnihg
(2004) emphasised the importance of the initialiser for achieving goodrpaafee with their
model. We employ Klein and Manningisarmonicinitialiser which defines a PCFG in which
all words have the same valency distribution and probability of being thersmnteead, while the
probability of a head word attaching to a child word is inversely proportitiidde average distance
between these words in the training corpus. To obtain the initial derivatiotisdsampler we take
the Viterbi derivations under this PCFG.

We follow the standard evaluation regime for DMV style models by performirnmgeements
on the text of the WSJ section of the Penn. Treebank (Marcus et al.).1988 corpus statistics
are reported in Table 9. Like previous work we pre-process the traamidgest data to remove the
words and punctuation, training our models on the gold-standard papesafeh tags.

It is difficult for an unsupervised model to learn from long training secesras their structure
is highly ambiguous, and therefore the majority of DMV based approades leen trained on
sentences restricted in length4ol10 tokens. This has the added benefit of decreasing the runtime
for experiments. We present experiments with this training scenario, plagditional experiment
where we increase the length cutoff4ol5. For the< 15 experiment we start by sampling only
sentences up to length 10, then gradually relax this length cutoff until weaanpling all sentences
up to length 15 after 900 sampl&sThe training data is taken from sections 2-21, while section 23 is
used for evaluation (see Table 9). An advantage of our sampling bppesbah over previous work

21. This training method is similar in spirit to the Baby Steps algorithm (Spitkoeskl., 2010).

3084

INDUCING TREE SUBSTITUTION GRAMMARS

CFG Rule DMV Distribution Description

S— Ly uR p(root = H) The head of the sentencehis
Ly — H p(STORdir = L,head=H,val=0) H has no left children.

Ly — L} p(CONT|dir = L,head=H,val=0) H has at least one left child.
Li — H p(STORdir = L,head=H,val=1) H has no more left children.
Ly, — LA p(CONT|dir = L,head=H,val=1) H has another left child.

R — H; p(STORdir = R head=H,val=0) H has no right children.

HR — {R? p(CONT|dir = R head=H,val=0) H has at least one right child.
nR* — H; p(STORdir = R head=H,val=1) H has no more right children.
HR* = yRY p(CONT|dir = R head=H,val=1) H has another right child.

LY — Lc cMpy- p(C|dir = L,head=H) Cis a left child ofH.

HR! = 4«Mc cR p(C|dir =R head=H) C is a right child ofH.

Structural rule.
Structural rule.

CMH* —)CR L’ﬁ p=
H'Mc = HR"Lc p

Table 8: The CFG-DMV grammar schema. Note that the actual CFG is creptiedtantiating
these templates with part-of-speech tags observed in the data for thdesitiband C. Valency
(val) can take the value 0 (no attachment in directian) and 1 (one or more attachment). L and R
indicates child dependents left or right of the parent; superscriptderibe stopping and valency
distributions, X indicates that the head will continue to attach more children an¢hit it has
already attached a child.

S
I—hates hatesR
Lr]iates hatedR"
LGeorge GeorgeM hates hates Mbroccoli broccoliR

| P T

* .
George GeorgdR Lhates hatefR* Lbroccoli Proccol

| | | |
George hates hates broccoli

Figure 13: The CFG-DMYV derivation for the example sente@eerge hates broccoliThe depen-
dency parse for this sentence is given in Figure 2.

3085

COHN, BLUNSOM AND GOLDWATER

Partition Sections Words Sentences
training<1o 2-21 42505 6007
trainingx 15 2-21 132599 12880
development;p 22 1805 258
testio 23 2649 398
test1s 23 16591 1286
testw 23 49368 2416

Table 9: Corpus statistics for the training and testing data for the TSG-DM\émad models are
trained on the gold standard part-of-speech tags after removing ptiontua

is that we infer all the hyperparameters; consequently there is no neetktonuhe development
set (section 22).

The models are evaluated in terms of head attachment accuracy (thetagecehcorrectly
predicted head dependency links for each token in the test data), erstiysets of the testing data.
Although unsupervised models are better learnt from a corpus of dthér than long sentences,
they must still be able to parse long sentences. The most commonly employseittesirors the
training data by only including sentencesl0, however we also include results for sentenceé®
and the whole test set with no length restriction. As we are using MCMC santpimgsult of any
single run is non-deterministic and will exhibit a degree of variance. Quorted results are the
mean and standard deviatiam) from 40 sampling runs.

7.2 Discussion

Table 10 shows the head attachment accuracy results for our TSG-&dMg with those of several
other competitive models. Our model performs very well in comparison to tkeextim particular it
achieves the highest reported accuracy on the full test set by a ecaitsiel margin. On thgv| < 10
test set the TSG-DMV is second only to the L-EVG model of Headden [#l.e2009). The L-
EVG model extends DMV by adding additional lexicalisation, valency conditgninterpolated
back-off smoothing and a random initialiser. In particular Headden kl.eshow that the random
initialiser is crucial for good performance, but their approach requiasing 1000 models to
select a single best model for evaluation and leads to considerablecenatiest set performance.
Our model exhibits considerably less variance than those induced usingatitism initialiser,
suggesting that the combination of the harmonic initialiser and blocked MH samplygbe a
more practical training regime. The recently-proposed Adaptor Grammar Biddel of Cohen
et al. (2010) is similar in many ways to our TSG model, incorporating a Pitman Nor pver
units larger than CFG rules. As such it is surprising that our model pesf@ignificantly better
than this model. We can identify a number of possible explanations for theskstethe Adaptor
Grammar model is trained using variational inference with the space of agménts truncated,
while we employ a sampler which can nominally explore the full space of trgenfeats; and the
tree fragments in the Adaptor Grammar model must be complete subtrees (i.alpitieyontain
variables), whereas our model can make use of arbitrary tree fragnfenisteresting avenue for
further research would be to extend the variational algorithm of Cohah €2010) to our TSG

3086

INDUCING TREE SUBSTITUTION GRAMMARS

Directed Attachment Accuracy
% on Section 23

M odel Initialiser |w| <10 |w|<20 [|w|<o
Attach-Right - 38.4 33.4 31.7
EM (Klein and Manning, 2004) Harmonic 46.1 39.9 35.9
Dirichlet (cohen etar., 2009) Harmonic 46.1 40.6 36.9
LN (cohen etat., 2009) Harmonic 59.4 459 40.5
SLN, TIE V&N (cohen and smith, 2009) Harmonic 61.3 47.4 41.4
DMV (Headden 111 etal., 2009) Random 55.7;-g0 - -
DMV smoothedteadden i etat., 2009) Random 61.25-12 - -
EVG smootheeadden i etal., 2009) Random 65.Q;_57 - -
L-EVG smoothedheadden i et al., 2009) Random 68.85_45 - -
Less is More WSJ1Bpitkovsky etal., 20000 Harmonic 56.2 48.2 441
Leap Frog WSJ4Gypitovsky etal., 2010) Harmonic 57.1 48.7 450
Adaptor Grammagconen etal., 2010) Harmonic 50.2 - -
TSG-DMV Harmonic 65.%-24 58.3_23 53.15-24
TSG-DMV WSJ15 Harmonic 66.4,_17 5855-17 5345_18
Supervised MLEcohen and smith, 2009) - 84.5 74.9 68.8

Table 10: Head attachment accuracy for our two TSG-DMV models (higklijhand many other
high performing models.

3087

COHN, BLUNSOM AND GOLDWATER

Tag Frequency Accuracy Tag Frequency Accuracy

NN 564 0.70 CcC 62 0.77
NNP 366 0.67 VBG 48 0.71
NNS 302 0.74 POS 26 0.92
DT 292 0.81 MD 22 0.82
IN 292 0.59 JIR 20 0.60
JJ 266 0.67 PRP$ 18 1.00
VBD 266 0.79 EX 12 1.00
CD 224 0.21 WP 12 0.17
RB 212 0.40 JJS 10 0.40
PRP 132 0.94 WDT 6 1.00
VBZ 118 0.88 RP 6 0.33
VBN 84 0.71 RBS 4 1.00
VBP 78 0.67 UH 4 0.50
TO 70 0.43

Table 11: Head attachment accuracy stratified by child tag, as measutedhmid-out development
set (WSJ 22|w| < 10). The tags are sorted by frequency.

model, possibly improving inference time while also allowing for the implementation todre
easily parallelised.

To illustrate the kinds of structures the model induces and the types o$ érroekes, Figure
14 presents a representative example tree for a sentence from Sectibth@ WSJ. Though many
of the elementary trees in this example resist an obvious linguistic explanatichgaight side
of the derivation (highlighted in green) we see that the model has learmictmle that the verb
takes a single noun phrase as its object, while on the left (highlighted in blaeuis specifying
the DT JJ subject dependent of the VBZ. This derivation is typical of ttedyaes produced by
the model as it contains a number of dependency links which are inconisigterthe treebank.
However we can see that the model has learnt to analyse the nounndgokeposition phrases in a
manner which is quite plausible, despite not matching the reference trearticufar there would
seem to be little obvious reason to prefer the treebank’s analysis of thenctan phrase (‘either
apathy or civility’) over that produced by the unsupervised model. Tigislights the difficulty in
evaluating the output of unsupervised grammar induction algorithms agdaimstteank reference;
in this instance it is clear that the analysis found by the model, despite its lowaagceould be
very useful for a downstream NLP application reliant on a dependanalysis.

For further analysis Tables 11 and 12 show the accuracy of the modegditting the head
for each tag type and the accuracy for dependencies spanningrargiwgber of tokens. Clearly
the model is far more accurate when predicting short dependenciesylattet is also reflected
in the per-tag results. We also note that the model accurately predicts ttieohds sentence
84% of the time, indicating an ability to capture the high level sentence strucisrenentioned
above, conjunctions pose a particular difficulty with unsupervised modédtseacorrect modelling
of these remains a contentious linguistic issue. Nevertheless on conjuribéansdel does achieve
a reasonable level of agreement with the treebank.

3088

INDUCING TREE SUBSTITUTION GRAMMARS

(a) TSG-DMV representation. Large bold nodes indicate substitution points

S

NNR!
NN*Min INR
l 1
DTMpN N* NNRY Lin INR
DT RooL TN
1 pT NN NN.. IN; IN«Mnyw

~NNR

| |
PN |
DT. NN; INR* Lyn NN,
L
IN, Lyn
Lnn NNMpy N
|
Ly NNR O Lyy
| |
LDT/ENN* ~~R! NN,
| N /\
DT; bprR Lixy n~nN+Mce coR

I | N |
DT, NN; yyR* Lece CC,

(b) Dependency tree representation. The red links below the sentemeendiere the treebank reference analysis differs
from the predicted tree.

ROOT

AN\ V"

The above represents a triumph of either apathy or civility

Figure 14: An example induced tree, shown as an elementary tree (a3 ardkaendency tree (b).
The sentence was taken from the development'skd:,; above j, represents g, apr triumph
of either ,; apathy ., or ¢ Civility "

3089

COHN, BLUNSOM AND GOLDWATER

Link Distance Precision Recall F1-Score
ROOT 0.84 0.84 0.84
1 0.68 0.72 0.70
2 0.61 0.53 0.57
3 0.56 0.46 0.51
4 0.47 0.52 0.49
5 0.27 0.35 0.30
6 0.44 0.57 0.50
7 0.33 0.38 0.35
8 0.25 0.12 0.17

Table 12: Performance on dependency links of varying distanceisRmeaecall and f-score on the
WSJ Section 22| < 10) held-out set.

TSG-DMV Rules Frequency
Lnn = (Lan (Lin Lot (orMane oTR L)) 906
NR = (NR (NRY In-Mnn NNR)) 839
S — (S (I—VBD L\1/BD) VBDR) 707
JIMnns = (GaMne 23R (L NND)) 600
nNMan = (veeMin NnR® (L NNp)) 589
Lin — (Lin Lot (oTMane TR L) 587
Lane = (Lnne (Linp (Lnnpe NNP) nnpMine)) 540
IO S (SNINE (SIS RRR L INYD)) 500
ToMve — (to-Mvs (ToR* TOy) Lyg) 437
nNR = (WWR (nRY nve M (nwR NNY))) 412
pTMans = (oTMnns (oTR DTy) Ling 397
NR = (NR (NRY in-Muns (vnsR NNS))) 328
Lnns = (Lans(Lynslor oTMans)) 326
INMcp — ((INMcps (NR INf) (Lép CDy)) 302
nndMver = (\wMvep (\wsSR NNS) Ligp) 296

Table 13: The fifteen most frequent TSG-DMV rules in the training data.

3090

INDUCING TREE SUBSTITUTION GRAMMARS

Table 13 lists the most frequent TSG rules learnt by the model. The mosefreque at the top
of the table models noun phrases, encoding the fact that determinemsdekigdren and attach as
a left child to a phrase headed by a noun. It is interesting to see that ol hexlused a TSG rule
to analyse noun phrases in a way consistent with the treebank, wheeeasginal DMV model
preferred the opposite analysis of having DTs as the heads of noaagshfKlein and Manning,
2004). Both results could be supported from a linguistic standpoint (3r887), but nevertheless
it is a notable outcome that our more powerful model prefers to head noases with nouns.
Further down the table we see another interesting rgeMyvs — (to-Mvs (1oR* TO;) Lyg). This
rule specifies that a verb phrase headed by an infinitive attaches asttohifid of the particlgo
on its left. Here the model has used the tree fragment to encode that thewstbe the first right
child of the patrticle, an analysis both consistent with the treebank andssipgea bias against any
form of split infinitive construction.

8. Conclusion

In this work we have presented a non-parametric Bayesian model focimgltree substitution
grammars in both supervised and unsupervised settings. By incorpoaasitngctured prior over
elementary rules our model is able to reason over the infinite space of hllrslés, producing
compact and simple grammars. In doing so, our model learns local strsituratent linguistic
phenomena, such as verb subcategorisation and lexical agreement.

Our experimental results indicate that our model holds significant poteatialrfinge of gram-
mar induction tasks. In experiments using a treebank for training, we shihaethe induced TSG
grammars strongly out-perform standard PCFGs, and are comparaldeate-®f-the-art parser on
small data samples. While our results when training on the full treebank direhyeof the best
available parsers, we have proposed a number of improvements to the mddeégarsing algo-
rithm that could lead to state-of-the-art performance in the future. Quanskset of experiments
removed the reliance on a treebank and showed that our TSG modelescp@vormance similar
to the best recent models on sentences up to length 10, and outperfoatiealnodels on longer
sentences. This result is particularly promising, since it demonstratesshibitity of successfully
learning complex hierarchical models, beyond just CFGs, without sigi@my We hope that our
work will open the door to further research into inducing linguistically ricargmars, such as tree
adjoining and categorial grammars, that have so far been considerdiffimdt to learn from raw
strings.

References
Steven Paul AbneyThe English Noun Phrase in its Sentential Asp&tD thesis, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1987.

David Aldous. Exchangeability and related topics.élmle dété de probabilies de Saint-Flour,
X111—1983 pages 1-198. Springer, Berlin, 1985.

Phil Blunsom and Trevor Cohn. Unsupervised induction of tree substitgfiammars for de-
pendency parsing. IRroceedings of the 2010 Conference on Empirical Methods in Natural
Language Processin@ages 1204-1213, Boston, Massachusetts, October 2010.

3091

COHN, BLUNSOM AND GOLDWATER

Rens Bod. Using an annotated language corpus as a virtual stochastimgr. In11th National
Conference on Atrtificial Intelligen¢c@ages 778-783, Washington D.C., USA, July 1993.

Rens Bod. The problem of computing the most probable tree in data-orjgatsidg and stochastic
tree grammars. IRroceedings of the 7th conference on European chapter of the Aisadiar
Computational Linguisticgpages 104-111, Dublin, Ireland, 1995.

Rens Bod. Combining semantic and syntactic structure for language modétirigroceedings
of the 6th International Conference on Spoken Language Procegsaugs 106—-109, Beijing,
China, 2000.

Rens Bod. An efficientimplementation of a new DOP modePRidoceedings of the 10th Conference
of the European Chapter of the Association for Computational Lingujsiiadapest, Hungary,
April 2003.

Rens Bod. An all-subtrees approach to unsupervised parsingroteedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th Annual MeetitigeoAssociation for
Computational Linguisticgpages 865—-872, Sydney, Australia, July 2006.

Rens Bod, Remko Scha, and Khalil Sima’an, edit@ata-oriented parsing Center for the Study
of Language and Information — Studies in Computational Linguistics. Usityeof Chicago
Press, 2003.

Glenn Carroll and Eugene Charniak. Two experiments on learning Ipititia dependency gram-
mars from corpora. IfProceedings of the AAAI Workshop on Statistically-Based Natural Lan-
guage Processing Techniqué&an Jose, California, 1992.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best gaasith maxent discriminative
reranking. InProceedings of the 43rd Annual Meeting of the Association for Compuéhtion
Linguistics pages 173-180, Ann Arbor, Michigan, June 2005.

David Chiang and Daniel M. Bikel. Recovering latent information in treebamkProceedings of
the 19th International Conference on Computational Linguisfiegies 183—189, Taipei, Taiwan,
2002.

Alexander Clark. Unsupervised induction of stochastic context-framgrars using distributional
clustering. InProceedings of the 2001 workshop on Computational Natural Languagrning
pages 1-8, Toulouse, France, 2001.

Shay B. Cohen and Noah A. Smith. Shared logistic normal distributions fopammeter tying
in unsupervised grammar induction. Rroceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the AssatimticComputational
Linguistics pages 74-82, 2009.

Shay B. Cohen, Kevin Gimpel, and Noah A. Smith. Logistic normal priors f@upervised prob-
abilistic grammar induction. In Daphne Koller, Dale Schuurmans, Yoshug@iBeand Lon
Bottou, editorsAdvances in Neural Information Processing Systempages 321-328. 2009.

3092

INDUCING TREE SUBSTITUTION GRAMMARS

Shay B. Cohen, David M. Blei, and Noah A. Smith. Variational inferencadaptor grammars. In
Human Language Technologies: The 11th Annual Conference of title Almerican Chapter of
the Association for Computational Linguistjggges 564-572, 2010.

Trevor Cohn and Phil Blunsom. Blocked inference in Bayesian treetifutitsn grammars. In
Proceedings of the ACL 2010 Conference Short Papmges 225-230, Uppsala, Sweden, July
2010.

Trevor Cohn, Sharon Goldwater, and Phil Blunsom. Inducing compaetdzurate tree-substitution
grammars. IrProceedings of Human Language Technologies: The 2009 Annudéf@oce of
the North American Chapter of the Association for Computational Lingujgpiages 548—-556,
Boulder, Colorado, June 2009.

Jason Eisner. Bilexical grammars and their cubic-time parsing algorithmsarhy Bunt and Anton
Nijholt, editors,Advances in Probabilistic and Other Parsing Technologpesyes 29-62. Kluwer
Academic Publishers, October 2000.

Thomas S. Ferguson. A bayesian analysis of some nonparametric protflamels of Statistigs
1(2):209-230, 1973.

Jenny Rose Finkel, Trond Grenager, and Christopher D. Mannirgyirifinite tree. InProceedings
of the 45th Annual Meeting of the Association of Computational Lingujgpages 272-279,
Prague, Czech Republic, June 2007.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributidnbeamayesian
restoration of imagedEEE Transactions on Pattern Analysis and Machine Intelligecé21—
741, 1984.

E. Mark Gold. Language identification in the limihformation and Contrql10(5):447—-474, 1967.

Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. Conteg@ndencies in unsuper-
vised word segmentation. Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computationalulistigs pages
673-680, Sydney, Australia, July 2006.

Joshua GoodmarRarsing Inside-OutPhD thesis, Harvard University, 1998.
Joshua Goodman. Efficient parsing of DOP with PCFG-reductions. ¢heBal. (2003), chapter 8.

William P. Headden Ill, Mark Johnson, and David McClosky. Improvimgupervised dependency
parsing with richer contexts and smoothing.Aroceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of theciasiem for Computa-
tional Linguistics pages 101-109, Boulder, Colorado, June 2009.

Hemant Ishwaran and Lancelot F. James. Generalized weighted Chéstgarant processes for
species sampling mixture modeBStatistica Sinical3:1211-1235, 2003.

Mark Johnson. The DOP estimation method is biased and inconsi€amiputational Lingusitics
28(1):71-76, March 2002.

3093

COHN, BLUNSOM AND GOLDWATER

Mark Johnson. Transforming projective bilexical dependency gramin&r efficiently-parsable
cfgs with unfold-fold. InProceedings of the 45th Annual Meeting of the Association of Compu-
tational Linguistics pages 168-175, Prague, Czech Republic, June 2007.

Mark Johnson. Using adaptor grammars to identify synergies in the unssgek acquisition of
linguistic structure. InProceedings of ACL-08: HLTpages 398—-406, Columbus, Ohio, June
2008a.

Mark Johnson. Unsupervised word segmentation for Sesotho usipgoadgammars. IrPro-
ceedings of the Tenth Meeting of ACL Special Interest Group on CotigngbMorphology and
Phonology pages 20-27, Columbus, Ohio, June 2008b.

Mark Johnson and Sharon Goldwater. Improving nonparameteric ibayiegerence: experiments
on unsupervised word segmentation with adaptor grammaRrobeedings of Human Language
Technologies: The 2009 Annual Conference of the North Americapt€haf the Association
for Computational Linguisticpages 317-325, Boulder, Colorado, June 2009.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater. Bayesiareirde for PCFGs via Markov
chain Monte Carlo. IfProceedings of Human Language Technologies 2007: The Conéaénc
the North American Chapter of the Association for Computational Lingujgpages 139-146,
Rochester, NY, April 2007a.

Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater. Adaptamgrars: A framework
for specifying compositional nonparametric Bayesian models. In Bol&opf, J. Platt, and
T. Hoffman, editors Advances in Neural Information Processing Systemspages 641—-648.
2007b.

Aravind Joshi. Tree adjoining grammars. In Ruslan Mikkov, edifdre Oxford Handbook of
Computational Linguisticpages 483-501. Oxford University Press, Oxford, England3200

Dan Klein and Christopher D. Manning. A generative constituent-contexteinior improved
grammar induction. IfProceedings of 40th Annual Meeting of the Association for Computational
Linguistics pages 128-135, Philadelphia, Pennsylvania, USA, July 2002.

Dan Klein and Christopher D. Manning. Corpus-based induction of syatstructure: models of
dependency and constituency. Pnoceedings of the 42nd Annual Meeting on Association for
Computational Linguisticgpages 478-485, 2004.

Karim Lari and Steve J. Young. The estimation of stochastic context-fr@@rgars using the
inside-outside algorithmComputer Speech and Language35-56, 1990.

Percy Liang, Slav Petrov, Michael Jordan, and Dan Klein. The infinitt@®Q@Qsing hierarchi-
cal Dirichlet processes. IRroceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Languagening pages 688—-697,
Prague, Czech Republic, June 2007.

Percy Liang, Michael I. Jordan, and Dan Klein. Type-based mcmadduman Language Tech-
nologies: The 2010 Annual Conference of the North American ChaptiérecAssociation for
Computational Linguisticpages 573-581, Los Angeles, California, June 2010.

3094

INDUCING TREE SUBSTITUTION GRAMMARS

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Binidga large annotated
corpus of English: the Penn treebarfomputational Linguistics19(2):313—-330, 1993.

Igor A. Mel’€uk. Dependency Syntax: Theory and PractiGate University of New York Press,
Albany, 1988.

Bernard Merialdo. Tagging English text with a probabilistic mod&mputational Linguistic20
(2):155-172, 1994.

Radford Neal. Slice samplingAnnals of Statistics31:705-767, 2003.

Timothy J. O’'Donnell, Noah D. Goodman, and Joshua B. Tenenbaum.miérgggrammar: Ex-
ploring reuse in hierarchical generative processes. TechnicalrRepT-CSAIL-TR-2009-013,
MIT, 2009.

Slav Petrov. Products of random latent variable grammarslulman Language Technologies: The
2010 Annual Conference of the North American Chapter of the AssatimtidcComputational
Linguistics pages 19-27, Los Angeles, California, June 2010.

Slav Petrov and Dan Klein. Improved inference for unlexicalized parsmigroceedings of Human
Language Technologies 2007: The Conference of the North Ameritapt€ of the Association
for Computational Linguisticpages 404—-411, Rochester, NY, April 2007.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learningrateucompact, and inter-
pretable tree annotation. FProceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computationaluistigs pages
433-440, Sydney, Australia, July 2006.

Jim Pitman. Exchangeable and partially exchangeable random partiBooisability Theory and
Related Fields102:145-158, 1995.

Jim Pitman.Combinatorial Stochastic Processe3pringer-Verlag, New York, 2006.

Jim Pitman and Marc Yor. The two-parameter Poisson-Dirichlet distributiometefrom a stable
subordinatorAnnals of Probability 25:855-900, 1997.

Matt Post and Daniel Gildea. Bayesian learning of a tree substitution granimiaroceedings of
the ACL-IJCNLP 2009 Conference Short Pap@ages 45—-48, Suntec, Singapore, August 2009.

Detlef Prescher, Remko Scha, Khalil Sima’an, and Andreas Zollmann.eXtdtistical consistency
of DOP estimators. IProceedings of the 14th Meeting of Computational Linguistics in the
NetherlandsAntwerp, Belgium, 2004.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. From B&igps to Leapfrog: How
“Less is More” in unsupervised dependency parsing.Himan Language Technologies: The
11th Annual Conference of the North American Chapter of the Associfitio@omputational
Linguistics pages 751-759, 2010.

Fei Xia. Automatic grammar generation from two different perspecti® thesis, University of
Pennsylvania, 2002.

3095

COHN, BLUNSOM AND GOLDWATER

Andreas Zollmann and Khalil Sima’an. A consistent and efficient estimatatdta-oriented pars-
ing. Journal of Automata, Languages and Combinatqrid¥(2):367—-388, 2005.

Willem Zuidema. Parsimonious data-oriented parsing?roceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and ComputdtiNatural Language
Learning pages 551-560, Prague, Czech Republic, June 2007.

3096

