
Journal of Machine Learning Research 11 (2010) 3053-3096 Submitted 5/10; Revised 9/10; Published 11/10

Inducing Tree-Substitution Grammars

Trevor Cohn TCOHN@DCS.SHEF.AC.UK

Department of Computer Science
University of Sheffield
Sheffield S1 4DP, UK

Phil Blunsom PBLUNSOM@COMLAB .OX.AC.UK

Computing Laboratory
University of Oxford
Oxford OX1 3QD, UK

Sharon Goldwater SGWATER@INF.ED.AC.UK

School of Informatics
University of Edinburgh
Edinburgh EH8 9AB, UK

Editor: Dorota Glowacka

Abstract

Inducing a grammar from text has proven to be a notoriously challenging learning task despite
decades of research. The primary reason for its difficulty isthat in order to induce plausible gram-
mars, the underlying model must be capable of representing the intricacies of language while also
ensuring that it can be readily learned from data. The majority of existing work on grammar induc-
tion has favoured model simplicity (and thus learnability)over representational capacity by using
context free grammars and first order dependency grammars, which are not sufficiently expressive
to model many common linguistic constructions. We propose anovel compromise by inferring a
probabilistictree substitution grammar, a formalism which allows for arbitrarily large tree frag-
ments and thereby better represent complex linguistic structures. To limit the model’s complexity
we employ a Bayesian non-parametric prior which biases the model towards a sparse grammar with
shallow productions. We demonstrate the model’s efficacy onsupervised phrase-structure parsing,
where we induce a latent segmentation of the training treebank, and on unsupervised dependency
grammar induction. In both cases the model uncovers interesting latent linguistic structures while
producing competitive results.

Keywords: grammar induction, tree substitution grammar, Bayesian non-parametrics, Pitman-Yor
process, Chinese restaurant process

1. Introduction

Inducing a grammar from a corpus of strings is one of the central challenges of computational
linguistics, as well as one of its most difficult. Statistical approaches circumvent the theoretical
problems with learnability that arise with non-statistical grammar learning (Gold, 1967), and per-
formance has improved considerably since the early statistical work of Merialdo (1994) and Carroll
and Charniak (1992), but the problem remains largely unsolved. Perhaps due to the difficulty of this
unsupervised grammar induction problem, a more recent line of work has focused on a somewhat
easier problem, where the input consists of a treebank corpus, usually inphrase-structure format,

c©2010 Trevor Cohn, Phil Blunsom and Sharon Goldwater.

COHN, BLUNSOM AND GOLDWATER

and the task is to induce a grammar from the treebank that yields better parsingperformance than
the basic maximum-likelihood probabilistic context free grammar (PCFG). Examples of work on
this kind of grammar induction, which we will refer to asgrammar refinementbecause the learned
grammars can be viewed as refinements of the treebank PCFG, include the symbol-splitting ap-
proach of Petrov and Klein (2007) and the tree-substitution grammars of Data-Oriented Parsing
(Bod et al., 2003; Bod, 2003). Although the grammars induced by these systems are latent, the
resulting parsers are supervised in the sense that the input to the learningsystem consists of strings
and parses, and the goal is to learn how to parse new strings. Consequently, these systems do not
remove the necessity of hand-annotating a large corpus, but they can potentially reduce the amount
of engineering effort required to develop a successful statistical parser for a new language or do-
main, by obviating the need for complex hand-engineering of features, independence assumptions,
and backoff schemes.

The desire for automatic grammar refinement methods highlights one possible reason why un-
supervised grammar induction is so difficult. Simple models of syntactic structuresuch as hidden
Markov models (HMMs) or PCFGs make strong independence assumptions that fail to capture
the true complexity of language, so these models tend to learn something other than the desired
structure when used in an unsupervised way. On the other hand, more complex models with, for
example, head-lexicalized rules have too many free parameters to be learned successfully from
unannotated data without the use of sophisticated backoff schemes. Thus, finding the right balance
between learnability and complexity is critical to developing a successful model of grammar induc-
tion. We posit that this balance can be achieved by using a rich grammatical formalism coupled
with a nonparametric Bayesian prior to limit the model’s complexity. In this way the model can
learn sufficiently complex structure to model the data, but will only do so whenthere is enough
evidence to support such complexity; otherwise it will generalise to simpler structures. The model
can therefore learn plausible structures from either small or large trainingsamples.

We present here a model for automatically learning aProbabilistic Tree Substitution Grammar
(PTSG) from either a treebank or strings. A PTSG is an extension to the PCFG in which nonter-
minals can rewrite as entire tree fragments (elementary trees), not just immediate children (Joshi,
2003; Bod et al., 2003). These large fragments can be used to encode non-local context, such as ar-
gument frames, gender agreement and idioms. A fundamental problem with PTSGs is that they are
difficult to estimate, even in the supervised (grammar refinement) scenario where treebanked data
is available. This is because treebanks are typically not annotated with their TSG derivations—how
to decompose a tree into elementary tree fragments—instead the derivation needs to be inferred.

Probably the best-known previous work on inducing PTSGs is within the framework of Data-
Oriented Parsing (DOP; Bod et al., 2003), which, like our model, has beenapplied in both super-
vised and unsupervised settings (Bod, 2003; Prescher et al., 2004; Zollmann and Sima’an, 2005;
Zuidema, 2007; Bod, 2006).1 DOP seeks to use as TSG productions all subtrees of the training cor-
pus, an approach which makes parameter estimation difficult and led to serious problems with early
estimation methods (Johnson, 2002), namely inconsistency for DOP1 (Bod,2003) and overfitting
of the maximum likelihood estimate (Prescher et al., 2004). More recent workon DOP estima-
tion has tackled these problems, drawing from estimation theory to solve the consistency problem
(Prescher et al., 2004; Zollmann and Sima’an, 2005), or using a grammar brevity heuristic to avoid
the degeneracy of the MLE (Zuidema, 2007). Our work differs from DOP in that we use an ex-

1. Tree adjoining grammar induction (Chiang and Bikel, 2002; Xia, 2002)tackles a similar learning problem in the
supervised case.

3054

INDUCING TREE SUBSTITUTION GRAMMARS

plicit generative model of TSG and a Bayesian prior for regularisation. The prior is nonparametric,
which allows the model to learn a grammar of the appropriate complexity for the size of the train-
ing data. A further difference is that instead of seeking to use all subtrees from the training data
in the induced TSG, our prior explicitly biases against such behaviour, such that the model learns
a relatively compact grammar.2 A final minor difference is that, because our model is generative,
it assigns non-zero probability to all possible subtrees, even those that were not observed in the
training data. In practice, unobserved subtrees will have very small probabilities.

We apply our model to the two grammar induction problems discussed above:

• Inducing a TSG from a treebank. This regime is analogous to the case of supervised DOP,
where we induce a PTSG from a corpus of parsed sentences, and usethis PTSG to parse
new sentences. We present results using two different inference methods, training on either
a subset of WSJ or on the full treebank. We report performance of 84.7% when training on
the full treebank, far better than the 64.2% for a PCFG parser. These gains in accuracy are
obtained with a grammar that is somewhat larger than the PCFG grammar, but still much
smaller than the DOP all-subtrees grammar.

• Inducing a TSG from strings. As in other recent unsupervised parsing work, we adopt
a dependency grammar (Mel′čuk, 1988) framework for the unsupervised regime. We use
the split-head construction (Eisner, 2000; Johnson, 2007) to map between dependency and
phrase-structure grammars, and apply our model to strings of POS tags. We report perfor-
mance of 65.9% on the standard WSJ≤10 data set, which is statistically tied with the best re-
ported result on the task and considerably better than the EM baseline whichobtains 46.1%.
When evaluated on test data with no restriction on sentence length—a more realistic setting—
our approach significantly improves the state-of-the-art.

Our work displays some similarities to previous work on both the grammar refinement and
unsupervised grammar induction problems, but also differs in a number of ways. Aside from DOP,
which we have already discussed, most approaches to grammar refinement can be viewed as symbol-
splitting. That is, they allow each nonterminal to be split into a number of subcategories. The
most notable examples of the symbol-splitting approach include Petrov et al. (2006), who use a
likelihood-based splitting and merging algorithm, and Liang et al. (2007) and Finkel et al. (2007),
who develop nonparametric Bayesian models. In theory, any PTSG can berecast as a PCFG with a
sufficiently large number of subcategories (one for each unique subtree), so the grammar space of
our model is a subspace of the symbol-splitting grammars. However, the number of nonterminals
required to recreate our PTSG grammars in a PCFG would be exorbitant. Consequently, our model
should be better able to learn specific lexical patterns, such as full noun phrases and verbs with
their subcategorisation frames, while theirs are better suited to learning subcategories with larger
membership, such as the days of the week or count versus mass nouns. The approaches are largely
orthogonal, and therefore we expect that a PTSG with nonterminal refinement could capture both
types of concept in a single model, thereby improving performance over either approach alone.

For the unsupervised grammar induction problem we adopt the Dependency Model with Va-
lency (DMV; Klein and Manning, 2004) framework that is currently dominant for grammar induc-
tion (Cohen et al., 2009; Cohen and Smith, 2009; Headden III et al., 2009; Cohen et al., 2010;

2. The prior favours compact grammars by assigning the majority of probability mass to few productions, and very little
(but non-zero) mass to other productions. In practice we use MarkovChain Monte Carlo sampling for inference
which results in sparse counts with structural zeros, thus permitting efficient representation.

3055

COHN, BLUNSOM AND GOLDWATER

Spitkovsky et al., 2010). The first grammar induction models to surpass a trivial baseline concen-
trated on the task of inducing unlabelled bracketings for strings and were evaluated against tree-
bank bracketing gold standard (Clark, 2001; Klein and Manning, 2002). Subsequently the DMV
model has proved more attractive to researchers, partly because it defined a well founded generative
stochastic grammar, and partly due to the popularity of dependency trees in many natural language
processing (NLP) tasks. Recent work on improving the original DMV model has focused on three
avenues: smoothing the head-child distributions (Cohen et al., 2009; Cohen and Smith, 2009; Head-
den III et al., 2009), initialisation (Headden III et al., 2009; Spitkovsky et al., 2010), and extending
the conditioning distributions (Headden III et al., 2009). Our work falls intothe final category: by
extending the DMV CFG model to a TSG we increase the conditioning context ofhead-child deci-
sions within the model, allowing the grammar to directly represent groups of linked dependencies.

Adaptor Grammars (Johnson et al., 2007b) are another recent nonparametric Bayesian model
for learning hierarchical structure from strings. They instantiate a more restricted class of tree-
substitution grammar in which each subtree expands completely, with only terminalsymbols as
leaves. Since our model permits nonterminals as subtree leaves, it is more general than Adaptor
Grammars. Adaptor Grammars have been applied successfully to induce labeled bracketings from
strings in the domains of morphology and word segmentation (Johnson, 2008a,b; Johnson and Gold-
water, 2009) and very recently for dependency grammar induction (Cohen et al., 2010). The latter
work also introduced a variational inference algorithm for Adaptor Grammar inference; we use a
sampling method here.

The most similar work to that presented here is our own previous work (Cohn et al., 2009; Cohn
and Blunsom, 2010), in which we introduced a version of the model described here, along with two
other papers that independently introduced similar models (Post and Gildea,2009; O’Donnell et al.,
2009). Cohn et al. (2009) and Post and Gildea (2009) both present models based on a Dirichlet
process prior and provide results only for the problem of grammar refinement, whereas in this
article we develop a newer version of our model using a Pitman-Yor process prior, and also show
how it can be used for unsupervised learning. These extensions are also reported in our recent
work on dependency grammar induction (Blunsom and Cohn, 2010), although in this paper we
present a more thorough exposition of the model and experimental evaluation. O’Donnell et al.
(2009) also use a Pitman-Yor process prior (although their model is slightly different from ours) and
present unsupervised results, but their focus is on cognitive modeling rather than natural language
processing, so their results are mostly qualitative and include no evaluation ofparsing performance
on standard corpora.

To sum up, although previous work has included some aspects of what wepresent here, this
article contains several novel contributions. Firstly we present a single generative model capable
of both supervised and unsupervised learning, to induce tree substitutiongrammars from either
trees or strings. We demonstrate that in both settings the model outperforms maximum likelihood
baselines while also achieving results competitive with the best current systems. The second main
contribution is to provide a thorough empirical evaluation in both settings, examining the effect of
various conditions including data size, sampling method and parsing algorithm, and providing an
analysis of the structures that were induced.

In the remainder of this article, we briefly review PTSGs in Section 2 before presenting our
model, including versions for both constituency and dependency parsing, in Section 3. In Section 4
we introduce two different Markov Chain Monte Carlo (MCMC) methods for inference: a local
Gibbs sampler and a blocked Metropolis-Hastings sampler. The local sampleris much simpler but

3056

INDUCING TREE SUBSTITUTION GRAMMARS

is only applicable in the supervised setting, where the trees are observed,whereas the Metropolis-
Hastings sampler can be used in both supervised and unsupervised settings and for parsing. We
discuss how to use the trained model for parsing in Section 5, presenting three different parsing al-
gorithms. Experimental results for supervised parsing are provided in Section 6, where we compare
the different training and parsing methods. Unsupervised dependencygrammar induction experi-
ments are described in Section 7, and we conclude in Section 8.

2. Tree-substitution grammars

A Tree Substitution Grammar3 (TSG) is a 4-tuple,G = (T,N,S,R), whereT is a set ofterminal
symbols, N is a set ofnonterminal symbols, S∈ N is the distinguishedroot nonterminalandR is a
set of productions (rules). The productions take the form ofelementary trees—tree fragments4 of
height≥ 1—where each internal node is labelled with a nonterminal and each leaf is labelled with
either a terminal or a nonterminal. Nonterminal leaves are calledfrontier nonterminalsand form
the substitution (recursion) sites in the generative process of creating trees with the grammar. For
example, in Figure 1b the S→ NP (VP (V hates) NP) production rewrites the S nonterminal as the
fragment (S NP (VP (V hates) NP)).5 This production has the two NPs as its frontier nonterminals.

A derivationcreates a tree by starting with the root symbol and rewriting (substituting) it with
an elementary tree, then continuing to rewrite frontier nonterminals with elementary trees until there
are no remaining frontier nonterminals. We can represent derivations assequences of elementary
treese, where each elementary tree is substituted for the left-most frontier nonterminal of the tree
being generated. Unlike Context Free Grammars (CFGs) a syntax tree may not uniquely specify the
derivation, as illustrated in Figure 1 which shows two derivations using different elementary trees
to produce the same tree.

A Probabilistic Tree Substitution Grammar(PTSG), like a PCFG, assigns a probability to each
rule in the grammar, denotedP(e|c) where the elementary treee rewrites nonterminalc. The proba-
bility of a derivatione is the product of the probabilities of its component rules. Thus if we assume
that each rewrite is conditionally independent of all others given its root nonterminalc (as in stan-
dard TSG models),6 then we have

P(e) = ∏
c→e∈e

P(e|c) . (1)

The probability of a tree,t, and string of words,w, are given by

P(t) = ∑
e:tree(e)=t

P(e) and

P(w) = ∑
t:yield(t)=w

P(t) ,

3. A TSG is aTree Adjoining Grammar(TAG; Joshi, 2003) without the adjunction operator, which allows insertions at
internal nodes in the tree. This operation allows TAGs to describe the set ofmildly context sensitive languages. A
TSG in contrast can only describe the set of context free languages.

4. Elementary trees of height 1 correspond to productions in a context free grammar.
5. We use bracketed notation to represent tree structures as linear strings. The parenthesis indicate the hierarchical

structure, with the first argument denoting the node label and the followingarguments denoting child trees. The
nonterminals used in our examples denote nouns, verbs, etc., and theirrespective phrasal types, using a simplified
version of the Penn treebank tag set (Marcus et al., 1993).

6. Note that this conditional independence does not hold for our model because (as we will see in Section 3) we integrate
out the model parameters.

3057

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivatione and yield(t) returns the string of
terminal symbols at the leaves oft.

Estimating a PTSG requires learning the sufficient statistics forP(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable treefor a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, thechoice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
knowa priori how many there are, and secondly labels that appear high in a tree (e.g., anScategory

3058

INDUCING TREE SUBSTITUTION GRAMMARS

George hates broccoli ROOT

Figure 2: An unlabelled dependency analysis for the example sentenceGeorge hates broccoli. The
artificial ROOT node denotes the head of the sentence.

for a clause) rely on the correct inference of all the latent labels aboveand below them. Much of
the recent work on unsupervised grammar induction has therefore takena different approach, fo-
cusing on inducing dependency grammars (Mel′čuk, 1988). In applying our model to unsupervised
grammar induction we follow this trend by inducing a dependency grammar. Dependency gram-
mars represent the structure of language through directed links betweenwords, which relate words
(heads) with their syntactic dependents (arguments). An example dependency tree is shown in Fig-
ure 2, where directed arcs denote each word’s arguments (e.g., hates has two arguments, ‘George’
and ‘broccoli’). Dependency grammars are less ambiguous than phrase-structure grammars since
the set of possible constituent labels (heads) is directly observed from the words in the sentence,
leaving only the induction challenge of determining the tree structure. Most dependency grammar
formalisms also include labels on the links between words, denoting, for example, subject, object,
adjunct etc. In this work we focus on inducing unlabelled directed dependency links and assume that
these links form a projective tree (there are no crossing links, which correspond to discontinuous
constituents). We leave the problem of inducing labeled dependency grammars to further work.

Although we will be inducing dependency parses in our unsupervised experiments, we define
our model in the following section using the formalism of a phrase-structure grammar. As detailed
in Section 7, the model can be used for dependency grammar induction by using a specially designed
phrase-structure grammar to represent dependency links.

3. Model

In defining our model, we focus on the unsupervised case, where we are given a corpus of text strings
w and wish to learn a tree-substitution grammarG that we can use to infer the parses for our strings
and to parse new data. (We will handle the supervised scenario, where we are given observed trees
t, in Section 4; we treat it as a special case of the unsupervised model using additional constraints
during inference.) Rather than inferring a grammar directly, we go throughan intermediate step of
inferring a distribution over the derivations used to producew, that is, a distribution over sequences
of elementary treese that compose to formw as their yield. We will then essentially read the
grammar off the elementary trees, as described in Section 5. Our problem therefore becomes one of
identifying the posterior distribution ofe givenw, which we can do using Bayes’ Rule,

P(e|w) ∝ P(w|e)P(e) .

Note that any sequence of elementary trees uniquely specifies a corresponding sequence of words:
those words that can be read off the leaves of the elementary trees in sequence. Therefore, given a
sequence of elementary treese, P(w|e) either equals 1 (ifw is consistent withe) or 0 (otherwise).
Thus, in our model, all the work is done by the prior distribution over elementary trees,

P(e|w) ∝ P(e)δ(w(e),w) ,

3059

COHN, BLUNSOM AND GOLDWATER

5

5−a
9+b

1−a
9+b

2−a
9+b

1−a
9+b

4a
9+b

. . .1 2 3 4

Figure 3: An example of the Pitman-Yor Chinese restaurant process withz−10 =
(1,2,1,1,3,1,1,4,3). Black dots indicate the number of customers sitting at each table, and the
value listed below tablek is P(z10 = k|z−10).

whereδ is the Kronecker delta andw(e) = yield(tree(e)) returns the string yield of the tree defined
by the derivatione.

Because we have no way to know ahead of time how many elementary trees mightbe needed
to account for the data, we use a nonparametric Bayesian prior, specifically the Pitman-Yor process
(PYP) (Pitman, 1995; Pitman and Yor, 1997; Ishwaran and James, 2003), which is a generalization
of the more widely known Dirichlet process (Ferguson, 1973). Drawinga sample from a PYP
(or DP) yields a probability distributionG with countably infinite support. The PYP has three
parameters: adiscount parameter a, astrength parameter b, and abase distribution PE. Informally,
the base distribution determines which items will be in the support ofG (here, we will definePE

as a distribution over elementary trees, so thatG is also a distribution over elementary trees), and
the discount and strength parametersa andb determine the shape ofG. The discount parametera
ranges from 0 to 1; whena= 0, the PYP reduces to a Dirichlet process, in which case the strength
parameterb is known as theconcentration parameterand is usually denoted withα. We discuss the
roles ofa andb further below.

Assuming an appropriate definition forPE (we give a formal definition below), we can use the
PYP to define a distribution over sequences of elementary treese = e1 . . .en as follows:

G|a,b,PE ∼ PYP(a,b,PE)

ei |G ∼ G. (2)

In this formulation,G is an infinite distribution over elementary trees drawn from the PYP
prior, and theei are drawniid from G. However, since it is impossible to explicitly represent an
infinite distribution, we integrate over possible values ofG, which induces dependencies between
theei . Perhaps the easiest way to understand the resulting distribution overe is through a variant
of the Chinese restaurant process (CRP; Aldous, 1985; Pitman, 1995)that is often used to explain
the Dirichlet process. Imagine a restaurant with an infinite number of tables,each with an infinite
number of seats. Customers enter the restaurant one at a time and seat themselves at a table. Ifzi is
the index of the table chosen by theith customer, then the Pitman-Yor Chinese Restaurant Process
(PYCRP) defines the distribution

P(zi = k|z−i) =







n−k −a
i−1+b 1≤ k≤ K−

K−a+b
i−1+b k= K−+1

,

3060

INDUCING TREE SUBSTITUTION GRAMMARS

wherez−i is the seating arrangement of thei−1 previous customers,n−k is the number of customers
in z−i who are seated at tablek, K− = K(z−i) is the total number of tables inz−i , andz1 = 1 by
definition. Figure 3 illustrates. Whena= 0, this process reduces to the standard Chinese restaurant
process. Like the CRP, the PYCRP is exchangeable and produces a power-law distribution on the
number of customers at each table (Pitman, 2006). The hyperparametersa andb together control
the manner of the clustering, although the difference between the two is rather subtle. A high value
of b will bias towards more clusters irrespective of their individual sizes, onlyaccounting for their
aggregate size. In contrast a largea→ 1 will bias the clustering towards smaller individual clusters.

The PYCRP produces a sequence of integersz whose joint probability is

P(z) =
n

∏
i=1

P(zi |z1...i−1)

= 1·
n

∏
i=2

P(zi |z1...i−1)

=

(
n−1

∏
j=1

1
j +b

)(
K(z)−1

∏
k=1

(ka+b)

)



K(z)

∏
k=1

n−k −1

∏
j=1

(j −a)





=
Γ(1+b)
Γ(n+b)

(
K−1

∏
k=1

(ka+b)

)(
K

∏
k=1

Γ(n−k −a)

Γ(1−a)

)

, (3)

whereK is the total number of tables inz and Γ is the gamma function. In order to produce a
sequence of elementary treese we need to introduce a second step in the process. We can do so by
imagining that each table in the restaurant is labelled with an elementary tree, withℓ(z) = ℓ1 . . . ℓK

being the trees labelling each table. Whenever a customer sits at a previouslyunoccupied table,
a label is chosen for that table according to the base distributionPE, and this label is used by all
following customers at that table, as illustrated in Figure 4. We defineei to beℓzi , the label of the
table chosen by theith customer. This yields the following conditional distribution onei :

P(ei = e|z−i , ℓ(z−i)) =
K(z−i)

∑
k=1

δ(ℓk,e)
n(z−i)

k −a

i−1+b
+

K(z−i)a+b
i−1+b

PE(e)

=
n−e −Ke(z−i)a+(K(z−i)a+b)PE(e)

i−1+b
, (4)

whereK−
e is the number of tables labelled withe in z−i , andδ is the Kronecker delta. The probability

of an entire sequence of elementary trees is

P(e) = ∑
z,ℓ

P(e,z, ℓ) ,

whereP(e,z, ℓ) = 0 except whenℓzi = ei for all i, in which case

P(e,z, ℓ) = P(z, ℓ) = P(z)P(ℓ|z)

=
Γ(1+b)
Γ(n+b)

(
K−1

∏
k=1

(ka+b)

)(
K

∏
k=1

Γ(n−k −a)

Γ(1−a)
PE(ℓk)

)

,

whereK is the total number of tables inz.

3061

COHN, BLUNSOM AND GOLDWATER

S

NP VP . . .
S

NP VP

VP

V NP

broccoli

PP

IN

in

NP

Figure 4: The Pitman-Yor process, illustrated as a labelled Chinese restaurant process. In this
example,z−10= (1,2,1,1,3,1,1,4,3) and each tablek is labelled with an elementary treeℓk. Black
dots indicate the number of occurrences of each tree ine = (ℓ1, ℓ2, ℓ1, ℓ1, ℓ3, ℓ1, ℓ1, ℓ4, ℓ3). In this
illustration, which corresponds to the model given in (2), a single Pitman-Yorprocess is used to
generate all elementary trees, so the trees do not necessarily fit togetherproperly. Our complete
model, defined in (5), would have a separate Pitman-Yor restaurant for each root category.

Equation 4 shows that, like other PYP and DP models, this model can be viewed as acache
model, whereei can be generated in one of two ways: by drawing from the base distributionor
by drawing from a cache of previously generated elementary trees, where the probability of any
particular elementary tree is proportional to the discounted frequency of that tree. This view makes
it clear that the model embodies a “rich-get-richer” dynamic in which a few elementary trees will
occur with high probability, but many will occur only once or twice, as is typical of natural language.

In the model just defined, a single PYP generates all of the elementary treesin e. Notice,
however, that these elementary trees might not tile together properly to create full syntax trees. For
example, in Figure 4,e1 = (S NP VP) ande2 = (PP (IN in) NP), where the first substitution site in
e1 is an NP, but the root ofe2 is a PP, soe2 cannot be used to expande1. To solve this problem,
we modify the model so that there is a separate PYP for each non-terminal categoryc, with a base
distribution conditioned onc. The distribution over elementary trees with root categoryc is defined
as

Gc|ac,bc,PE ∼ PYP(ac,bc,PE(·|c))

e|c,Gc ∼ Gc , (5)

wherePE(·|c) is a distribution over the infinite space of elementary trees rooted withc, andac and
bc are the PYP hyper-parameters for non-terminalc. We elect not to tie together the values of these
hyper-parameters as these control the tendency to infer larger or smallersets of elementary trees
from the observed data; we expect the distribution over productions to differ substantially between
non-terminals. To generatee, we now drawe1 from GS, giving us an elementary tree with frontier
nodesc1 . . .cm. We then drawe2 . . .em in turn fromGc1 . . .Gcm. We continue in this fashion until a
full tree is generated, at which point we can start again with a draw fromGS.

Integrating overGc, we obtain the following distribution overei , now conditioned on its root
category as well as the previously generated table labels and assignments:

P(ei = e|c,z−i , ℓ(z−i)) =
n−e −K−

e ac+(K−
c ac+bc)PE(e|c)

n−c +bc
, (6)

whereK−
c = ∑e:root(e)=cK−

e is the total number of tables for nonterminalc, n−e is the number of
timesehas been used to rewritec andn−c = ∑e:root(e)=cn−e is the total count of rules rewritingc. As

3062

INDUCING TREE SUBSTITUTION GRAMMARS

before, the− superscript denotes that the counts are calculated over the previous elementary trees,
e−i , and their seating arrangements,z−i .

Finally, we turn to the definition of the base distribution over elementary trees,PE. Recall that
in an elementary tree, each internal node is labelled with a non-terminal category symbol and each
frontier (leaf) node is labelled with either a non-terminal or a terminal symbol. Given a probabilistic
context-free grammarR, we assume that elementary trees are generated (conditioned on the root
non-terminalc) using the following generative process. First, choose a PCFG production c → α
for expandingc according to the distribution given byR. Next, for each non-terminal inα decide
whether to stop expanding (creating a non-terminal frontier node, also known as a substitution site)
or to continue expanding. If the choice is to continue expanding, a new PCFG production is chosen
to expand the child, and the process continues recursively. The generative process completes when
the frontier is composed entirely of substitution sites and terminal symbols.

Assuming a fixed distributionPC over the rules inR, this generative process leads to the follow-
ing distribution over elementary trees:

PE(e|c) = ∏
i∈I(e)

(1−sci) ∏
f∈F(e)

scf ∏
c′→α∈e

PC(α|c′) , (7)

whereI(e) are the set of internal nodes ine excluding the root,F(e) are the set of frontier non-
terminal nodes,ci is the non-terminal symbol for nodei andsc is the probability of stopping ex-
panding a node labelledc. We treatsc as a parameter which is estimated during training, as de-
scribed in Section 4.3. In the supervised case it is reasonable to assume that PC is fixed; we simply
use the maximum-likelihood PCFG distribution estimated from the training corpus (i.e.,PC(α|c′) is
simply the relative frequency of the rulec′ → α). In the unsupervised case, we will inferPC; this
requires extending the model to assume thatPC is itself drawn from a PYP prior with a uniform base
distribution. We describe this extension below, along with its associated changes to equation 14.

The net effect of our base distribution is to bias the model towards simple rules with a small
number of internal nodes. The geometric increase in cost associated with the stopping decisions
discourages the model from using larger rules; for these rules to be included they must occur very
frequently in the corpus. Similarly, rules which use high-probability (frequent) CFG productions
are favoured. It is unclear if these biases are ideal: we anticipate that other, more sophisticated
distributions would improve the model’s performance.

In the unsupervised setting we no longer have a training set of annotated trees and therefore do
not have a PCFG readily available to use as the base distribution in Equation 7.For this reason we
extend the previous model to a two level hierarchy of PYPs. As before, the topmost level is defined
over the elementary tree fragments (Gc) with the base distribution (PE) assigning probability to the
infinite space of possible fragments. The model differs from the supervised one by definingPC

in (7) using a PYP prior over CFG rules. Accordingly the model can now infer a two level hierarchy
consisting of a PCFG embedded within a TSG, compared to the supervised parsing model which
only learnt the TSG level with a fixed PCFG. Formally, each CFG production isdrawn from7

Hc|a
′
c,b

′
c ∼ PYP(a′c,b

′
c,Uniform(·|c))

α|c,Hc ∼ Hc , (8)

7. As we are using a finite base distribution over CFG productions, we coulduse a Dirichlet instead of the PYP presented
in (8). However we elect to use a PYP because it is more general, havingadditional expressive power from its
discounting behaviour.

3063

COHN, BLUNSOM AND GOLDWATER

wherea′c and b′c are the PYP hyper-parameters and Uniform(·|c) is a uniform distribution over
the space of rewrites for non-terminalc.8 As before, we integrate out the model parameters,Hc.
Consequently draws fromPC are no longeriid but instead are tied in the prior, and the probability
of the sequence of component CFG productions{c′ → α ∈ e} now follows a Pitman-Yor Chinese
Restaurant Process.

The CFG level and TSG level PYCRPs are connected as follows: every timean elementary tree
is assigned to a new table in the TSG level, each of its component CFG rules aredrawn from the
CFG level prior. Note that, just as elementary trees are divided into separate restaurants at the TSG
level based on their root categories, CFG rules are divided into separate restaurants at the CFG level
based on their left-hand sides. Formally, the probability ofr j , the j th CFG rule in the sequence, is
given by

PC(r j = r|c j = c,z′− j , ℓ
′
− j) =

n′−r −K′−
r a′c+(K′−

c a′c+b′c)
1

|Rc|

K′−
c +b′c

, (9)

wherec j is the left-hand side ofr j ; z′− j andℓ′− j are the table assignments and table labels in the
CFG-level restaurants (we use prime symbols to indicate variables pertainingto the CFG level);
n′−r is the number of times ruler is used in any table label in a TSG restaurant (equivalently, the
number of customers at tables labelledr in the CFG restaurants);K′−

r andK′−
c = ∑r:root(r)=cK′−

r
are the CFG-level table counts forr and all rules rewritingc, respectively; andRc is the set of
CFG productions which can rewritec. This formulation reflects that we now have multiple tied
restaurants, and each time an elementary tree opens a new table in a top-levelrestaurant all its
rules are considered to have entered their own respectivePC restaurants (according to their rootc).
Accordingly the CFG-level customer count,n′−r , is the number of occurrences ofr in the elementary
trees that label the tables in the TSG restaurants (excludingr j). Thus, in the unsupervised case, the
product of rule probabilities (the final factor) in Equation (7) is computed by multiplying together
the conditional probability of each rule (9) given the previous ones.

4. Training

We present two alternative algorithms for training our model, both based on Markov chain Monte
Carlo techniques, which produce samples from the posterior distribution ofthe model by iteratively
resampling the values of the hidden variables (tree nodes). The first algorithm is a local sampler,
which operates by making a local update to a single tree node in each sampling step. The second
algorithm is ablockedsampler, which makes much larger moves by sampling analyses for full sen-
tences, which should improve the mixing over the local sampler. Importantly the blocked sampler is
more general, being directly applicable to both supervised and unsupervised settings (and for pars-
ing test sentences, which is equivalent to an unsupervised setting) while the local sampler is only
applicable for supervised learning, where the trees are observed. Wenow present the two sampling
methods in further detail.

8. In our experiments on unsupervised dependency parsing the space of rewrites varied depending onc, and can be as
large as the set of part-of-speech tags. See Section 7 for details.

3064

INDUCING TREE SUBSTITUTION GRAMMARS

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP,1

George

VP,0

V,0

hates

NP,1

broccoli

Figure 5: Gibbs sampler state (b) corresponding to the example derivation (a) (reproduced from
Figure 1a). Each node is labelled with its substitution variable.

4.1 Local Sampler

Thelocal sampler is designed specifically for the supervised scenario, and samplesa TSG derivation
for each tree by sampling local updates at each tree node. It uses Gibbs sampling (Geman and
Geman, 1984), where random variables are repeatedly sampled conditioned on the current values of
all other random variables in the model. The actual algorithm is analogous to the Gibbs sampler used
for inference in the Bayesian model of word segmentation presented by Goldwater et al. (2006);
indeed, the problem of inferring the derivationse from t can be viewed as a segmentation problem,
where each full tree must be segmented into one or more elementary trees. Toformulate the local
sampler, we associate a binary variablexd ∈ {0,1} with each non-root internal node,d, of each
tree in the training set, indicating whether that node is a substitution point (xd = 1) or not (xd = 0).
Each substitution point forms the root of some elementary tree, as well as a frontier nonterminal
of an ancestor node’s elementary tree. Conversely, each non-substitution point forms an internal
node inside an elementary tree. Collectively the training trees and substitution variables specify the
sequence of elementary treese that is the current state of the sampler. Figure 5 shows an example
tree with its substitution variables and its corresponding TSG derivation.

Our Gibbs sampler works by sampling the value of thexd variables, one at a time, in random
order. If d is the node associated withxd, the substitution variable under consideration, then the
two possible values ofxd define two options fore: one in whichd is internal to some elementary
treeeM, and one in whichd is the substitution site connecting two smaller trees,eA andeB. In the
example in Figure 5, when sampling the VP node,eM = (S NP (VP (V hates) NP)),eA = (S NP VP),
andeB = (VP (V hates) NP). To sample a value forxd, we compute the probabilities ofeM and
(eA,eB), conditioned one−: all other elementary trees in the training set that share at most a root or
frontier nonterminal witheM,eA, or eB. These probabilities are easy to compute because the PYP is
exchangeable, meaning that the probability of a set of outcomes does not depend on their ordering.
Therefore we can treat the elementary trees under consideration as the last ones to be sampled, and
apply Equation (6). We then sample one of the two outcomes (merging or splitting)according to the
relative probabilities of these two events. More specifically, the probabilitiesof the two outcomes,

3065

COHN, BLUNSOM AND GOLDWATER

conditioned on the current analyses of the remainder of the corpus, are

P(eM|cM) =
n−eM

−K−
eM

acM +(K−
cM

acM +bcM)PE(eM|cM)

n−cM +bcM

and

P(eA,eB|cA,cB) = ∑
zeA

P(eA,zeA|cA)P(eB|eA,zeA,cA,cB)

=
n−eA

−K−
eA

acA

n−cA +bcA

×
n−eB

+δe−K−
eB

acB +(K−
cB

acB +bcB)PE(eB|cB)

n−cB +δc+bcB

+
(K−

cA
acA +bcA)PE(eA|cA)

n−cA +bcA

×
n−eB

+δe− (K−
eB
+δe)acB +

(
(K−

cB
+δc)acB +bcB

)
PE(eB|cB)

n−cB +δc+bcB

, (10)

wherecy is the root label ofey, the countsn− and K− are derived fromz−M and ℓ(z−M) (this
dependency is omitted from the conditioning context for brevity),δe = δ(eA,eB) is the Kronecker
delta function which has value one wheneA andeB are identical and zero otherwise, and similarly for
δc = δ(cA,cB) which compares their root nonterminalscA andcB. Theδ terms reflect the changes
to n− that would occur after observingeA, which forms part of the conditioning context foreB.
The two additive terms in (10) correspond to different values ofzeA, the seating assignment foreA.
Specifically, the first term accounts for the case whereeA is assigned to an existing table,zeA < K−

eA
,

and the second term accounts for the case whereeA is seated at a new table,zeA = K−
eA

. The seating
affects the conditional probability ofeB by potentially increasing the number of tablesK−

eA
or K−

cA

(relevant only wheneA = eB or cA = cB).

4.2 Blocked Sampler

The local sampler has the benefit of being extremely simple, however it may suffer from slow
convergence (poor mixing) due to its very local updates. That is, it can get stuck because many
locally improbable decisions are required to escape from a locally optimal solution. Moreover it is
only applicable to the supervised setting: it cannot be used for unsupervised grammar induction or
for parsing test strings. For these reasons we develop theblockedsampler, which updates blocks of
variables at once, where each block consists of all the the nodes associated with a single sentence.
This sampler can make larger moves than the local sampler and is more flexible, in that it can
perform inference with both string (unsupervised) or tree (supervised) input.9

The blocked sampler updates the analysis for each sentence given the analyses for all other
sentences in the training set. We base our approach on the algorithm developed by Johnson et al.
(2007a) for sampling parse trees using a finite Bayesian PCFG model with Dirichlet priors over the
multinomial rule probabilities. As in our model, they integrate out the parameters (intheir case,
the PCFG rule probabilities), leading to a similar caching effect due to interdependences between
the latent variables (PCFG rules in the parse). Thus, standard dynamic programming algorithms
cannot be used to sample directly from the desired posterior,p(t|w, t−), that is, the distribution
of parse trees for the current sentence given the words in the corpusand the trees for all other
sentences. To solve this problem, Johnson et al. (2007a) developed a Metropolis-Hastings (MH)

9. A recently-proposed alternative approach is to performtype-levelupdates, which samples updates to many similar
tree fragments at once (Liang et al., 2010). This was shown to converge faster than the local Gibbs sampler.

3066

INDUCING TREE SUBSTITUTION GRAMMARS

sampler. The MH algorithm is an MCMC technique which allows for samples to be drawn from
a probability distribution,π(s), by first drawing samples from aproposal distribution, Q(s′|s), and
then correcting these to the true distribution using an acceptance/rejection step. Given a states,
we sample a next states′ ∼ Q(·|s) from the proposal distribution; this new state is accepted with
probability

A(s,s′) = min

{
π(s′)Q(s|s′)
π(s)Q(s′|s)

,1

}

and is rejected otherwise, in which cases is retained as the current state. The Markov chain defined
by this process is guaranteed to converge on the desired distribution,π(s). Critically, the MH
algorithm enables sampling from distributions from which we cannot sample directly, and moreover,
we need not know the normalisation constant forπ(·), since it cancels inA(s,s′).

In Johnson et al.’s (2007a) algorithm for sampling from a Bayesian PCFG, the proposal distri-
bution is simplyQ(t ′|t) = P(t ′|θMAP), the posterior distribution over trees given fixed parameters
θMAP, whereθMAP is the MAP estimate based on the conditioning data,t−. Note that the proposal
distribution is a close fit to the true posterior, differing only in that under the MAP the production
probabilities in a derivation areiid, while for the true model the probabilities are tied by the prior
(giving rise to the caching effect). The benefit of using the MAP is that its independences mean that
inference can be solved using dynamic programming, namely the inside algorithm (Lari and Young,
1990). Given the inside chart, which stores the aggregate probability of all subtrees for each word
span and rooted with a given nonterminal label, samples can be drawn usinga simple top-down
recursion (Johnson et al., 2007a).

Our model is similar to Johnson et al.’s, as we also use a Bayesian prior in a model of grammar
induction and consequently face similar problems with directly sampling due to the caching effects
of the prior. For this reason, we use the MH algorithm in a similar manner, except in our case we
draw samples of derivations of elementary trees and their seating assignments, p(zi , ℓi |w,z−i , ℓ−i),
and use a MAP estimate over(z−i , ℓi−) as our proposal distribution.10 However, we have an added
complication: the MAP cannot be estimated directly. This is a consequence of the base distribution
having infinite support, which means the MAP has an infinite rule set. For finite TSG models, such
as those used in DOP, constructing a CFG equivalent grammar is straightforward (if unwieldy).
This can be done by creating a rule for each elementary tree which rewritesits root nontermi-
nal as its frontier. For example under this techniqueS→ NP (VP (V hates) NPwould be mapped
to S→ NP hates NP.11 However, since our model has infinite support over productions, it cannot
be mapped in the same way. For example, if our base distribution licences the CFG production
NP→ NP PPthen our TSG grammar will contain the infinite set of elementary treesNP→ NP PP,
NP→ (NP NP PP) PP, NP→ (NP (NP NP PP) PP) PP, . . . , each with decreasing but non-zero proba-
bility. These would all need to be mapped to CFG rules in order to perform inference under the
grammar, which is clearly impossible.

Thankfully it is possible to transform the infinite MAP-TSG into a finite CFG, usinga method
inspired by Goodman (2003), who developed a grammar transform for efficient parsing with an

10. Calculating the proposal and acceptance probabilities requires sampling not just the elementary trees, but also their
table assignments (for both levels in the hierarchical model). We elected to simplify the implementation by separately
sampling the elementary trees and their table assignments.

11. Alternatively, interspersing a special nonterminal, for example, S→ {S-NP-{VP-{V-hates}-NP} → NP hates NP,
encodes the full structure of the elementary tree, thereby allowing the mapping to be reversed. We use a similar
technique to encode non-zero count rules in our grammar transformation, described below.

3067

COHN, BLUNSOM AND GOLDWATER

all-subtrees DOP grammar. In the transformed grammar inside inference is tractable, allowing us to
draw proposal samples efficiently and thus construct a Metropolis-Hastings sampler. The resultant
grammar allows for efficient inference, both in unsupervised and supervised training and in parsing
(see Section 5).

We represent the MAP using the grammar transformation in Table 1, which separates the count
and base distribution terms in Equation 6 into two separate CFGs, denoted A andB. We reproduce
Equation 6 below along with its decomposition:

P(ei = e|c,z−i , ℓ(z−i)) =
n−e −K−

e ac+(K−
c ac+bc)PE(e|c)

n−c +bc

=
n−e −K−

e ac

n−c +bc
︸ ︷︷ ︸

count

+
K−

c ac+bc

n−c +bc
PE(e|c)

︸ ︷︷ ︸

base

. (11)

Grammar A has productions for every elementary treee with n−e ≥ 1, which are assigned as their
probability the count term in Equation 11.12 The function sig(e) returns a string signature for el-
ementary trees, for which we use a form of bracketed notation. To signifythe difference between
these nonterminal symbols and trees, we use curly braces and hyphens inplace of round parentheses
and spaces, respectively, for example, the elementary tree (S NP (VP (Vhates) NP)) is denoted by
the nonterminal symbol{S-NP-{VP-{V-hates}-NP}}. Grammar B has productions for every CFG
production licensed underPE; its productions are denoted using primed (’) nonterminals. The rule
c→ c′ bridges from A to B, weighted by the base term in Equation 11 excluding thePE(e|c) factor.
The contribution of the base distribution is computed recursively via child productions. The remain-
ing rules in grammar B correspond to every CFG production in the underlyingPCFG base distribu-
tion, coupled with the binary decision of whether or not nonterminal children should be substitution
sites (frontier nonterminals). This choice affects the rule probability by including ans or 1−s fac-
tor, and child substitution sites also function as a bridge back from grammar B toA. There are often
two equivalent paths to reach the same chart cell using the same elementary tree—via grammar A
using observed TSG productions and via grammar B usingPE backoff—which are summed to yield
the desired net probability. The transform is illustrated in the example in Figures 6 and 7.

Using the transformed grammar we can represent the MAP grammar efficientlyand draw sam-
ples of TSG derivations using the inside algorithm. In an unsupervised setting, that is, given a
yield string as input, the grammar transform above can be used directly with theinside algorithm
for PCFGs (followed by the reverse transform to map the sampled derivation into TSG elementary
trees). This has an asymptotic time complexity cubic in the length of the input.

For supervised training the trees are observed and thus we must ensurethat the TSG analysis
matches the given tree structure. This necessitates constraining the inside algorithm to only consider
spans that are present in the given tree and with the given nonterminal. Nonterminals are said to
match their primed and signed counterparts, for example, VP′ and{VP-{V-hates}-NP} both match
VP. A sample from the constrained inside chart will specify the substitution variables for each node
in the tree: For each noded if it has a non-primed category in the sample then it is a substitution

12. The transform assumes inside inference, where alternate analyses for the same span of words with the same non-
terminal are summed together. In Viterbi inference the summation is replaced by maximisation, and therefore we
need different expansion probabilities. This requires changing the weight for c→ sig(e) to P(ei = e|c,z−i , ℓ(z−i)) in
Table 1.

3068

INDUCING TREE SUBSTITUTION GRAMMARS

G
ra

m
m

ar
A For every ET,e, rewritingc with non-zero count:

c→ sig(e) n−e −K−
e ac

n−c +bc

For every internal nodeei in ewith childrenei,1, . . . ,ei,n

sig(ei)→ sig(ei,1) . . .sig(ei,n) 1
A
→

B For every nonterminal,c:

c→ c′ K−
c ac+bc

n−c +bc

G
ra

m
m

ar
B

For every pre-terminal CFG production,c→ t:
c′ → t PC(c→ t)

For every unary CFG production,c→ a:
c′ → a PC(c→ a)sa

c′ → a′ PC(c→ a)(1−sa)

For every binary CFG production,c→ ab:
c′ → ab PC(c→ ab)sasb

c′ → ab′ PC(c→ ab)sa(1−sb)

c′ → a′b PC(c→ ab)(1−sa)sb

c′ → a′b′ PC(c→ ab)(1−sa)(1−sb)

Table 1: Grammar transformation rules to map an infinite MAP TSG into an equivalent CFG,
separated into three groups for grammar A (top), the bridge between A→ B (middle) and grammar
B (bottom). Production probabilities are shown to the right of each rule. Thesig(e) function creates
a unique string signature for an ETe (where the signature of a frontier node is itself) andsc is the
probability ofc being a substitution variable, thus stopping thePE recursion.

S→ {NP-{VP-{V-hates}-NP}} n−e −K−
e aS

n−S+bS

{NP-{VP-{V-hates}-NP}} → NP{VP-{V-hates}-NP} 1
{VP-{V-hates}-NP} → {V-hates} NP 1
{V-hates} → hates 1

S→ S’
K−

S aS+bS

n−S+bS

S’ → NP VP’ PC(S→ NP VP)sNP(1−sVP)
VP’ → V’ NP PC(VP→ V NP)(1−sV)sNP

V’ → hates PC(V → hates)

Figure 6: Example showing the transformed grammar rules for the single elementary treee =
(S NP (VP (V hates) NP)) and the scores for each rule. Only the rules which correspond toeand its
substitution sites are displayed. Taking the product of the rule scores above the dashed line yields
thecountterm in (11), and the product of the scores below the line yields thebaseterm. When the
two analyses are combined and their probabilities summed together, we getP(ei = e|c,z−i , ℓ(z−i)).

3069

COHN, BLUNSOM AND GOLDWATER

S

{S-NP-{VP-{V-hates}-NP}}

NP

George

{VP-{V-hates}-NP}

{V-hates}

hates

NP

broccoli

S

S’

NP

George

VP’

V’

hates

NP

broccoli

Figure 7: Example trees under the grammar transform, which both encode thesame TSG deriva-
tion from Figure 1a. The left tree encodes that theS→ NP (VP (V hates) NPelementary tree was
drawn from the cache, while for the right tree this same elementary tree was drawn from the base
distribution (the count and base terms in (11), respectively).

site,xd = 1, otherwise it is an internal node,xd = 0. For example, both trees in Figure 7 encode that
both NP nodes are substitution sites and that the VP and V nodes are not substitution sites (the same
configuration as Figure 5).

The time complexity of the constrained inside algorithm is linear in the size of the treeand the
length of the sentence. The local sampler also has the same time complexity, however it is not im-
mediately clear which technique will be faster in practise. It is likely that the blocked sampler will
have a slower runtime due to its more complicated implementation, particularly in transforming
the grammar and inside inference. Although the two samplers have equivalent asymptotic com-
plexity, the constant factors may differ greatly. In Section 6 we compare thetwo training methods
empirically to determine which converges more quickly.

4.3 Sampling Hyperparameters

In the previous discussion we assumed that we are given the model hyperparameters,(a,b,s). While
it might be possible to specify their values manually or fit them using a development set, both
approaches are made difficult by the high dimensional parameter space. Instead we treat the hyper-
parameters as random variables in our model, by placing vague priors over them and infer their
values during training. This is an elegant way to specify their values, although it does limit our
ability to tune the model to optimise a performance metric on held-out data.

For the PYP discount parametersa, we employ independent Beta priors,ac ∼ Beta(1,1). The
prior is uniform, encoding that we have no strong prior knowledge of what the value of eachac

should be. The conditional probability ofac given the current derivationsz, ℓ is

P(ac|z, ℓ) ∝P(z, ℓ|ac)×Beta(ac|1,1) .

We cannot calculate the normaliser for this probability, howeverP(z, ℓ|ac) can be calculated using
Equation 3 and thusP(ac|z, ℓ) can be calculated up to a constant. We use the range doubling slice
sampling technique of Neal (2003) to draw a new sample ofa′c from its conditional distribution.13

We treat the concentration parameters,b, as being generated by independent gamma priors,
bc ∼ Gamma(1,1). We use the same slice-sampling method forac to sample from the conditional

13. We used the slice sampler included in Mark Johnson’s Adaptor Grammar implementation, available at
http://web.science.mq.edu.au/ ˜ mjohnson/Software.htm .

3070

INDUCING TREE SUBSTITUTION GRAMMARS

overbc,

P(bc|z, ℓ) ∝P(z, ℓ|bc)×Gamma(bc|1,1) .

This prior is not vague, that is, the probability density function decays exponentially for higher
values ofbc, which serves to limits the influence of thePC prior. In our experimentation we found
that this bias had little effect on the generalisation accuracy of the supervised and unsupervised
models, compared to a much vaguer Gamma prior with the same mean.

We use a vague Beta prior for the stopping probabilities inPE, sc ∼ Beta(1,1). The Beta dis-
tribution is conjugate to the binomial, and therefore the posterior is also a Beta distribution from
which we can sample directly,

sc ∼ Beta

(

1+∑
e

Ke(z) ∑
n∈F(e)

δ(n,c), 1+∑
e

Ke(z) ∑
n∈I(e)

δ(n,c)

)

,

wheree ranges over all non-zero count elementary trees,F(e) are the nonterminal frontier nodes
in e, I(e) are the non-root internal nodes and theδ terms count the number of nodes ine with
nonterminalc. In other words, the first Beta argument is the number of tables in which a node with
nonterminalc is a stopping node in thePE expansion and the second argument is the number of
tables in whichc has been expanded (a non-stopping node).

All the hyper-parameters are resampled after every full sampling iteration over the training trees,
except in the experiments in Section 7 where they are sampled every 10th iteration.

5. Parsing

We now turn to the problem of using the model to parse novel sentences. This requires finding the
maximiser of

p(t|ω,w) =
∫ ∫ ∫ ∫

p(t|ω,z, ℓ,a,b,s) p(z, ℓ,a,b,s|w) dz dℓ da db ds , (12)

whereω is the sequence of words being parsed,t is the resulting tree,w are the training sentences,
z andℓ represent their parses, elementary tree representation and table assignments and(a,b,s) are
the model’s hyper-parameters. For the supervised case we use the training trees,t, in place ofw in
Equation 12.

Unfortunately solving for the maximising parse tree in Equation 12 is intractable.However, it
can be approximated using Monte Carlo techniques. Given a sample of(z, ℓ,a,b,s) we can reason
over the space of possible TSG derivations,e, for sentencew using the same Metropolis-Hastings
sampler presented in Section 4.2 for blocked inference in the unsupervised setting.14 This gives us
a set of samples from the posteriorp(e|w,z, ℓ,a,b,s). We then use a Monte Carlo integral to obtain
a marginal distribution over trees (Bod, 2003),

p̂MPT(t) =
M

∑
m=1

δ(t, tree(em)) , (13)

14. Using many samples in a Monte Carlo integral is a straight-forward extension to our parsing algorithm. We did not
observe a significant improvement in parsing accuracy when using a multiple samples compared to a single sample,
and therefore just present results for a single sample. However, using multiple models has been shown to improve
the performance of other parsing models (Petrov, 2010).

3071

COHN, BLUNSOM AND GOLDWATER

where{em}
M
m=1 are our sample of derivations forw. It is then straightforward to find the best parse,

t∗ = argmax ˆp(t), which is simply the most frequent tree in the sample.
In addition to solving from the maximum probability tree (MPT) using Equation 13,we also

present results for a number of alternative objectives. To test whetherthe derivational ambiguity is
important, we also compute the maximum probability derivation (MPD),

p̂MPD(e) =
M

∑
m=1

δ(e,em) ,

using a Monte-Carlo integral, from which we recover the tree,t∗ = tree(argmaxe p̂MPD(e)). We also
compare using the Viterbi algorithm directly with the MAP grammar,t∗ = tree(argmaxe PMAP(e|w)),
which constitutes an approximation to the true model in which we can search exactly. This contrasts
with the MPD which performs approximate search under the true model. We compare the different
methods empirically in Section 6.

The MPD and MPT parsing algorithms require the computation of Monte-Carlo integrals over
the large space of possible derivations or trees. Consequently, unlessthe distribution is extremely
peaked the chance of sampling many identical structures is small, vanishingly sofor long sentences
(the space of trees grows exponentially with the sentence length). In otherwords, the sampling
variance can be high which could negatively affect parsing performance. For this reason we present
an alternative parsing method which compiles more local statistics for which we can obtain reliable
estimates. The technique is based on Goodman’s (2003) algorithm for maximising labelled recall in
DOP parsing and subsequent work on parsing in state-splitting CFGs (Petrov and Klein, 2007). The
first step is to acquire marginal distributions over the CFG productions within each sampled tree.
Specifically, we collect counts for events of the form(c→ α, i, j,k), wherec→ α is a CFG produc-
tion spanning words[i, j) andk is the split point between child constituents for binary productions,
i < k< j (k= 0 for unary productions). These counts are then marginalised by the number of trees
sampled. Finally the Viterbi algorithm is used to find the tree with the maximum cumulative proba-
bility under these marginals, which we call the maximum expected rule (MER) parse. Note that this
is a type of minimum Bayes risk decoding and was first presented in Petrov and Klein (2007) as the
MAX-RULE-SUM method (using exact marginals, not Monte-Carlo estimates as is done here).

6. Supervised Parsing Experiments

In this section we present an empirical evaluation of the model on the task of supervised parsing.
In this setting the model learns a segmentation of a training treebank, which defines a TSG. We
present parsing results using the learned grammar, comparing the effectsof the sampling strategy,
initialisation conditions, parsing algorithm and the size of the training set. The unsupervised model
is described in the following section, Section 7.

We trained the model on the WSJ part of Penn. treebank (Marcus et al., 1993) using the standard
data splits, as shown in Table 2. As our model is parameter free (thea,b,s parameters are learnt
in training), we do not use the development set for parameter tuning. We expect that fitting the
hyperparameters to maximise performance on the development set would leadto a small increase
in generalisation performance, but at a significant cost in runtime. We adopt Petrov et al.’s (2006)
method for data preprocessing: right-binarizing the trees to limit the branching factor and replacing
tokens with count≤ 1 in the training sample with one of roughly 50 generic unknown word markers
which convey the token’s lexical features and position. The predicted trees are evaluated using

3072

INDUCING TREE SUBSTITUTION GRAMMARS

Partition sections sentences tokens types types (unk)
training 2–21 33180 790237 40174 21387

development 22 1700 40117 6840 5473
testing 23 2416 56684 8421 6659

small training 2 1989 48134 8503 3728

Table 2: Corpus statistics for supervised parsing experiments using the Penn treebank, reporting for
each partition its WSJ section/s, the number of sentences, word tokens and unique word types. The
final column shows the number of word types after unknown word processing using the full training
set, which replaces rare words with placeholder tokens. The number of types after preprocessing in
the development and testing sets is roughly halved when using the the small training set.

EVALB15 and we report the F1 score over labelled constituents and exact match accuracy over all
sentences in the testing sets.

In our experiments, we initialised the sampler by setting all substitution variables to0, thus
treating every full tree in the training set as an elementary tree. Unless otherwise specified, the
blocked sampler was used for training. We later evaluated the effect of different starting conditions
on the quality of the configurations found by the sampler and on parsing accuracy. The sampler was
trained for 5000 iterations and we use the final sample ofz, ℓ,a,b,s for parsing. We ran all four
different parsing algorithms and compare their results on the testing sets. For the parsing methods
that require a Monte Carlo integral (MPD, MPT and MER), we sampled 1000derivations from the
MAP approximation grammar which were then input to the Metropolis-Hastings acceptance step
before compiling the relevant statistics. The Metropolis-Hastings acceptance rate was around 99%
for both training and parsing. Each experiment was replicated five times andthe results averaged.

6.1 Small Data Sample

For our first treebank experiments we train on a small data sample by using only section 2 of the
treebank (see Table 2 for corpus statistics.) Bayesian methods tend to do well with small data
samples, while for larger samples the benefits diminish relative to point estimates.For this reason
we present a series of exploratory experiments on the small data set before moving to the full
treebank.

In our experiments we aim to answer the following questions: Firstly, in terms ofparsing ac-
curacy, does the Bayesian TSG model outperform a PCFG baseline, andhow does it compare to
existing high-quality parsers? We will also measure the effect of the parsing algorithm: Viterbi,
MPD, MPT and MER. Secondly, which of the local and blocked sampling techniques is more effi-
cient at mixing, and which is faster per iteration? Finally, what kind of structures does the model
learn and do they match our expectations? The hyper-parameter values are also of interest, partic-
ularly to evaluate whether the increased generality of the PYP is justified overthe DP. Our initial
experiments aim to answer these questions on the small data set, after which wetake the best model
and apply it to the full set.

Table 3 presents the prediction results on the development set. The baselineis a maximum like-
lihood PCFG. The TSG models significantly outperform the baseline. This confirms our hypothesis
that CFGs are not sufficiently powerful to model syntax, and that the increased context afforded to

15. Seehttp://nlp.cs.nyu.edu/evalb/ .

3073

COHN, BLUNSOM AND GOLDWATER

Model Viterbi MPD MPP MER # rules

PCFG 60.20 60.20 60.20 - 3500
TSG PYP 74.90 76.68 77.17 78.59 25746
TSG DP 74.70 75.86 76.24 77.91 25339
Berkeley parser (τ = 2) 71.93 71.93 - 74.32 16168
Berkeley parser (τ = 5) 75.33 75.33 - 77.93 39758

Table 3: Development results for models trained on section 2 of the Penn treebank, showing labelled
constituent F1 and the grammar size. For the TSG models the grammar size reported is the number
of CFG productions in the transformed MAP PCFG approximation. Unknown word models are
applied to words occurring less than two times (TSG models and Berkeleyτ = 2) or less than five
times (Berkeleyτ = 5).

the TSG can make a large difference. Surprisingly, the MPP technique is only slightly better than
the MPD approach, suggesting that derivational ambiguity is not as much ofa problem as previously
thought (Bod, 2003). Also surprising is the fact that exact Viterbi parsing under the MAP approx-
imation is much worse than the MPD method which uses an approximate search technique under
the true model. The MER technique is a clear winner, however, with considerably better F1 scores
than either MPD or MPP, with a margin of 1–2 points. This method is less affectedby sampling
variance than the other MC algorithms due to its use of smaller tree fragments (CFG productions at
each span).

We also consider the difference between using a Dirichlet process prior(DP) and a Pitman-Yor
process prior (PYP). This amounts to whether thea hyper-parameters are set to 0 (DP) or are allowed
to take on non-zero values (PYP), in which case we sample their values as described in Section 4.3.
There is a small but consistent gain of around 0.5 F1 points across the different parsing methods
from using the PYP, confirming our expectation that the increased flexibility of the PYP is useful
for modelling linguistic data. Figure 8a shows the learned values of the PYP hyperparameters after
training for each nonterminal category. It is interesting to see that the hyper-parameter values mostly
separate the open-class categories, which denote constituents carryingsemantic content, from the
closed-class categories, which are largely structural. The open classes (noun-, verb-, adjective- and
adverb-phrases: NP, VP, ADJP and ADVP, respectively) tend to have highera andb values (towards
the top right corner of the graph) and therefore can describe highly diverse sets of productions. In
contrast, most of the closed classes (the root category, quantity phrases, wh-question noun phrases
and sentential phrases: TOP, QP, WHNP and S, respectively) have lowa andb (towards the bottom
left corner of the graph), reflecting that encoding their largely formulaicrewrites does not necessitate
diverse distributions.

The s hyper-parameter values are shown in Figure 8b, and are mostly in the mid-range (0.3–
0.7). Prepositions (IN), adverbs (RB), determiners (DT) and some tenses of verbs (VBD and VBP)
have very lows values, and therefore tend to be lexicalized into elementary trees. This is expected
behaviour, as these categories select strongly for the words they modifyand some (DT, verbs) must
agree with their arguments in number and tense. Conversely particles (RP),modal verbs (MD) and
possessive particles (PRP$) have highs values, and are therefore rarely lexicalized. This is rea-
sonable for MD and PRP$, which tend to be exchangeable for one another without rendering the
sentence ungrammatical (e.g., ‘his’ can be substituted for ‘their’ and ‘should’ for ‘can’). However,

3074

INDUCING TREE SUBSTITUTION GRAMMARS

(a) PYP hyper-parameters,a,b

0.2 0.3 0.4 0.5 0.6 0.7 0.8

2
5

10
20

50

a

b

ADJP
ADVP
NP
PP
QP
S
SBAR
SINV
TOP
VP
WHNP

(b) Substitution hyper-parameters,s

s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

$ ’’ , .

C
C

C
D

D
T IN JJ M
D

N
N

N
N

P
N

N
P

S
N

N
S

P
O

S
P

R
P

P
R

P
$

R
B

R
P

TO V
B

V
B

D
V

B
G

V
B

N
V

B
P

V
B

Z ‘‘
A

D
JP

A
D

V
P

N
P

P
P

Q
P S

S
B

A
R

S
IN

V
V

P
W

H
N

P
N

P
−

B
A

R
S

−
B

A
R

S
IN

V
−

B
A

R
V

P
−

B
A

R

Figure 8: Inferred hyper-parameter values. Points (left) or bars (right) show the mean value with
error bars indicating one standard deviation, computed over the final samples of five sampling runs.
For legibility, a) has been limited to common phrasal nonterminals, while b) also shows preterminals
and binarized nonterminals (those with the -BAR suffix). Note that in a)b is plotted on a log-scale.

particles are highly selective for the verbs they modify, and therefore should be lexicalized by the
model (e.g., for ‘tied in’, we cannot substitute ‘out’ for ‘in’). We postulatethat the model does not
learn to lexicalise verb-particle constructions because they are relativelyuncommon, they often oc-
cur with different tenses of verb and often the particle is not adjacent to the verb, therefore requiring
large elementary trees to cover both words. The phrasal types all have similar s values except for
VP, which is much more likely to be lexicalized. This allows for elementary trees combining a verb
with its subject noun-phrase, which is typically not part of the VP, but instead a descendent of its
parent S node. Finally, thes values for the binarized nodes (denoted with the -BAR suffix) on the
far right of Figure 8b are all quite low, encoding a preference for the model to reconstitute binarized
productions into their original form. Some of the values have very high variance, for example, $,
which is due to their rewriting as a single string with probability 1 underPC (or a small set of strings
and a low entropy distribution), thus making the hyper-parameter value immaterial.

For comparison, we trained the Berkeley split-merge parser (Petrov et al.,2006) on the same
data and decoded using the Viterbi algorithm (MPD) and expected rule count (MER, also known as
MAX-RULE-SUM). We ran two iterations of split-merge training, after which the development F1
dropped substantially (in contrast, our model is not fit to the development data). The result (denoted
τ = 2) is an accuracy slightly below that of our model. To be fairer to their model, we adjusted
the unknown word threshold to their default setting, that is, to apply to word types occurring fewer
than five times (denotedτ = 5).16 Note that our model’s performance degraded using the higher

16. The Berkeley parser has a number of further enhancements thatwe elected not to use, most notably, a more sophisti-
cated means of handling unknown words. These enhancements produce further improvements in parse accuracy, but
could also be implemented in our model to similar effect.

3075

COHN, BLUNSOM AND GOLDWATER

≤ 40 all

Parser F1 EX F1 EX

MLE PCFG 64.2 7.2 63.1 6.7

TSG PYP Viterbi 83.6 24.6 82.7 22.9
TSG PYP MPD 84.2 27.2 83.3 25.4
TSG PYP MPT 84.7 28.0 83.8 26.2
TSG PYP MER 85.4 27.2 84.7 25.8

DOP (Zuidema, 2007) 83.8 26.9
Berkeley parser (Petrov and Klein, 2007) 90.6 90.0
Berkeley parser (restricted) 87.3 31.0 86.6 29.0
Reranking parser (Charniak and Johnson, 2005) 92.0 91.4

Table 4: Full treebank testing results showing labelled F1 and exact match accuracy for sentences
of up to 40 words, and for all sentences. The results of several treebank parsers are also shown (as
reported in the literature, hence the missing values), representing a baseline (PCFG), systems similar
to our own (DOP, Berkeley) and state-of-the-art (Berkeley, Reranking parser). Berkeley (restricted)
uses simplified data preprocessing as compared to Berkeley; the simplified preprocessing is the
same as used in our system, so provides a more fair comparison.

threshold, which impedes the model’s ability to learn highly lexicalized fragments.The grammar
sizes are not strictly comparable, because we are comparing different types of grammar. For our
TSG models we report the number of CFG productions in the transformed MAPPCFG, in which
non-zero count TSG rules typically rewrite as many CFG rules17 and CFG rules from the base
distribution are replicated up to four times. Nevertheless the trend is clear: our model produces
similar results to a state-of-the-art parser, and does so using a similar sizedgrammar. With additional
rounds of split-merge training the Berkeley grammar grows exponentially larger (200K rules after
six iterations). Our TSG grammar is also far smaller than the full DOP grammar induced from this
data set, which extracts every possible TSG rule from the training set with nosize limit, and has
approximately 700K rules.

6.2 Full Treebank

We now train the model on the full training partition of the Penn treebank, usingsections 2–21 (see
Table 2 for corpus statistics). We initialise the sampler using a converged model from the end of
a sampling run on the small data set and run the blocked Metropolis Hastings sampler for 20,000
iterations. The MAP PCFG approximation had 156k productions and training took 1.2 million
seconds in total or 61 seconds per iteration.18 We repeated this three times and present the averaged
results in Table 4.

17. The encoding of TSG rules could be made more compact by skippingthe internal rewrite steps, instead directly
rewriting the transformed root node as the rule’s frontier. This would mean that each input TSG rule would produce
only two rules in the transformed CFG. It would also affect the choice of parsing algorithm because the transformed
grammar would no longer be binary.

18. Measured using a single core of an AMD Opteron 2.6GHz machine.

3076

INDUCING TREE SUBSTITUTION GRAMMARS

The TSG models far surpass the MAP PCFG baseline, while the relative orderings of the dif-
ferent parsing algorithms corroborate our earlier evaluation on the small training set. The model
outperforms the most comparable DOP result, although the numbers are not strictly comparable as
Zuidema (2007) used an enriched nonterminal set for testing. However,our results are still well
below state-of-the art parsers, and even underperform the Berkeley parser when it is restricted to
the same preprocessing steps for rare tokens and binarization as we used (results labelledrestricted
in Table 4). But we must bear in mind that these parsers have benefited from years of tuning to
the Penn-treebank, where our model is much simpler and is largely untuned.We anticipate that
careful data preparation, model tuning and improved inference algorithmswould greatly improve
our model’s performance, bringing it closer to the state-of-the-art.

6.3 Sampling Strategy

Next we investigate which of the two sampling methods is more effective for training the model.
Recall that in Section 4 we described a blocked sampler and a local sampler;these samplers differ
in the number of variables that they update in every sampling step. We return tothe small training
sample for these experiments. Figure 9 shows how the log posterior over thetraining set varies with
the sampling iteration and with time for the two different sampling algorithms. It is clear that the
blocked MH sampler exhibits faster convergence in general than the localGibbs sampler, despite
being somewhat slower per iteration. The speed difference is fairly minor,amounting to roughly
a 50% increase in time over the local sampler,19 although on the full data set the time differential
reduces to 19%. This difference is largely due to the cost of performing the grammar transformation,
which could potentially be further optimised to reduce the gap.

Figure 9 shows the results for a number of different initialisations, usingminimal elementary
trees where every node is a substitution point (the CFG analysis), initialising the substitution vari-
ables uniformly at random (even), and usingmaximalelementary trees where no nodes are sub-
stitution points. The blocked sampler is more robust to starting point than the local sampler and
converges faster in terms of iterations and total time in general. Interestingly,the blocked sampler
converges faster with the maximal initialisation, which is due to the initialisation condition resulting
in much smaller initial table counts, and therefore it is quite easy for the model to move away from
that solution. However, with the minimal initialisation the counts begin with very high values, and
therefore deviating from the initial solution will be much less likely. In contrast,the local sampler
behaves in the opposite way with respect to initialisation, such that with the minimal initialisation it
performs at or above the level of the blocked sampler. This is a surprisingfinding which contradicts
our intuition about the mixing properties of the sampler and warrants further research.

In the above we have been comparing the log training posterior as a measureof the quality of
the sampler, however it is not a given that a probable model is one with goodparsing accuracy.
Figure 10 shows that the posterior is highly correlated with generalisation F1, with a Pearson’s
correlation efficient of 0.95 on this data, and therefore improving the sampler convergence will have
immediate positive effects on performance. This is corroborated in Table 5,which shows the F1
scores using the final sample for each initialisation condition. The blocked sampler out-performs the
local sampler for all initialisation conditions and has lower lower variance. Moreover, the blocked
sampler is less dependent on its initialisation, performing well independent ofinitialisation. In

19. To account for the speed differential, the local samplers were runfor 15k iterations and the blocked samplers for 10k
iterations to produce Figure 9 and Table 5.

3077

COHN, BLUNSOM AND GOLDWATER

0 5000 10000 15000

−
31

00
00

−
30

80
00

−
30

60
00

−
30

40
00

−
30

20
00

iteration

tr
ai

ni
ng

 lo
g

po
st

er
io

r

blocked sampler (minimal)
blocked sampler (even)
blocked sampler (maximal)
local sampler (minimal)
local sampler (even)
local sampler (maximal)

0 10000 20000 30000 40000

−
31

00
00

−
30

80
00

−
30

60
00

−
30

40
00

−
30

20
00

time (secs)
tr

ai
ni

ng
 lo

g
po

st
er

io
r

blocked sampler (minimal)
blocked sampler (even)
blocked sampler (maximal)
local sampler (minimal)
local sampler (even)
local sampler (maximal)

Figure 9: Training likelihood vs. iteration (left) or elapsed time (right). Both sampling methods were ini-
tialised in three different ways,minimal(all substitution variables set to 1,x = 1), even(xd ∼ Uniform(0,1))
andmaximal(x = 0).

Sampling method Initialisation F1 σF1 Training time (s)

Local minimal 78.2 0.50 44674
Local even 78.3 0.31 43543
Local maximal 78.5 0.51 44453

Block minimal 78.5 0.18 46483
Block even 78.6 0.35 46535
Block maximal 78.6 0.38 39789

Table 5: Parsing performance and training time for the local versus blocked samplers with different
initialisations. Results are shown on the development set using the MER parsing, reporting the
mean F1 and standard deviation (σF1) from five independent runs. The blocked samplers were run
for 10k iterations and the local sampler for 15k iterations iterations in order toallow all methods
approximately the same running time.

contrast, the local sampler performs well only with the maximal initialisation, with which it roughly
equals the blocked sampler in terms of F1 and log posterior (see Figure 9).

6.4 Discussion

The previous sections show that our model performs far better than a standard PCFG trained on
the same corpus; it is natural to ask what kinds of rules it is learning that allow it to do so well.
Figure 11 shows the grammar statistics for a TSG model trained on the full treebank training set.
This model has a total of 72955 rules with an aggregate count of 733755.Of these, only 46% are

3078

INDUCING TREE SUBSTITUTION GRAMMARS

iteration

F
1

sc
or

e

64
66

68
70

72
74

tr
ai

ni
ng

 lo
g

po
st

er
io

r

−
36

00
00

−
34

00
00

−
32

00
00

−
30

00
00

1 10 100 1000 10000

Figure 10: Likelihood and generalisation F1 are highly correlated. The black circles show the
development F1 score (left axis) and the red line shows the training log-likelihood (right axis) dur-
ing a Gibbs sampling run. The parsing results were obtained using Viterbi parsing with the MAP
approximation grammar.

0 1 2 3 4 5 6 7 8 9 10

value

to
ta

l c
ou

nt
 o

f r
ul

es

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

height
nodes
lexemes
vars

Figure 11: Grammar statistics for a TSG model trained on the full Penn treebank training set, show-
ing the aggregate count for elementary trees of given height, number of nodes, terminals (lexemes)
and frontier nonterminals (vars). An insignificant fraction of the rules had a height or number of
nodes> 10; these have been truncated for display purposes.

3079

COHN, BLUNSOM AND GOLDWATER

TOP

S

NP

DT

The

NN

NN

dividend

S

VP

VP

VBD

had

VP

VBN

VBN

been

NP

NP

NP

NP

CD

CD

five

NNS

cents

NP

DT

a

NN

share

.

.

Figure 12: Inferred TSG structure for one of the training trees. Nonterminals shown with an over-
bar (e.g.,S) denote a binarized sub-span of the given phrase type.

CFG rules. The TSG rules vary in height from one to nineteen with the majority between one and
four. Most rules combine a small amount of lexicalisation and a variable or two. This confirms that
the model is learning local structures to encode, for example, multi-word units, subcategorisation
frames and lexical agreement. The few very large rules specify full parses for sentences which were
repeated in the training corpus. These complete trees are also evident in thelong tail of node counts
(up to 30; not shown in the figure) and counts for highly lexicalized rules (up to 11).

It is also instructive to inspect the inferred segmentations for individual trees in the training set.
Figure 12 shows an example taken from the training set showing the learnedderivation. Notice that
the model has learned to use a large rule from the TOP node to capture the typical NP VP . sen-
tence structure while lexicalizing the initial determiner, which is necessary to properly describe its
capitalisation. It has also learnt a subcategorisation frame forhad which specifies a VBN argument
and an NP, and learnt the<num> cents andNP a share fragments, which are both common in the
training corpus (Wall Street Journal articles).

3080

INDUCING TREE SUBSTITUTION GRAMMARS

To provide a better picture of the types of rules being learnt, Table 6 showsthe top fifteen rules
for three phrasal categories for the model trained on the full Penn treebank. We can see that many of
these rules are larger than CFG rules, confirming that the CFG rules alone are inadequate to model
the treebank. Two of the NP rules encode the prevalence of prepositional phrases headed by ‘of’
within a noun phrase, as opposed to other prepositions. Highly specific tokens are also incorporated
into lexicalized rules.

The model also learns to use large rules to describe the majority of root nodeexpansions (we add
a distinguished TOP node to all trees). These rules mostly describe cases when the S category is used
for a full sentence and includes punctuation such as the full stop and quotation marks. In contrast,
the majority of expansions for the S category do not include any punctuation. The model has learnt
to distinguish between the two different classes of S—full sentence versus internal clause—due to
their different expansions.

Many of the verb phrase expansions have been lexicalized, encoding verb subcategorisation, as
shown in Table 7. Notice that each verb here accepts only one or a small set of argument frames,
indicating that by lexicalizing the verb in the VP expansion the model can find a less ambiguous and
more parsimonious grammar. The lexicalized noun phrase expansions in Table 7 also show some in-
teresting patterns, such as reconstituting binarized productions and lexicalizing prepositional phrase
arguments. Of particular interest are the rulesNP→ CD (NN %)andNP→ (NNP Mr.) NNP, in which
the lexicalized item has a common tag but a very specific function. These rulesare considerably
more expressive than their CFG counterparts. Overall these results demonstrate that the model
uses deep elementary trees to describe regular patterns in the data, thereby out-performing a simple
PCFG. Despite having an infinite space of grammar productions, the inducedgrammars are com-
pact, with the majority of probability mass on a small number of individually small productions.

7. Unsupervised Dependency Induction Experiments

Having considered the application of our non-parametric TSG model to supervised parsing, in this
section we present an empirical evaluation for our model on the task of unsupervised parsing. Our
approach to the unsupervised task differs from the supervised one in several ways. Two differences
result from the fact that parse trees are not observed during training: first, we cannot use the local
Gibbs sampler presented above, leaving the blocked sampler as our only option. Second, we cannot
directly estimatePC from the training data, so we must extend the model with an extra level of
hierarchy (as described in Section 3) in order to inducePC. A final difference in our unsupervised
experiments is that we now focus on dependency grammar induction rather than phrase-structure
induction; as outlined in Section 2.1, dependency grammars are a more feasible formalism for
unsupervised grammar learning. Before presenting our experimental results, we first describe how
to represent dependency grammars using our Bayesian TSG model.

To date, the most successful framework for unsupervised dependency induction is the Depen-
dency Model with Valence (DMV, Klein and Manning, 2004). This approach induces a dependency
grammar using a simple generative model in which the strings are said to be generated by a top-down
process which recursively generates child dependents from each parent head word. This model has
been adapted and extended by a number of authors (e.g., Cohen and Smith,2009; Headden III
et al., 2009); these approaches currently represent the state-of-the-art for dependency induction. In
this section, we present a method for dependency grammar induction that incorporates the basic
intuitions of the DMV, but is also capable of modelling larger units than just singleparent-child

3081

COHN, BLUNSOM AND GOLDWATER

NP→

(DT the)NP
NNS
NP (NP (CC and) NP)
JJ NNS
NP (PP (IN of) NP)
NP PP
(DT the) NN
DT (NP JJ NN)
NN NNS
(DT the) NNS
JJNP
(NP DT NN) (PP (IN of) NP)

VP→

VBD VP
VBZ NP
VBD NP
VBZ VP
VBP NP
VBP VP
MD (VP VB NP)
(VBD said) (SBAR (S NP VP))
MD (VP VB VP)
VP (VP (CC and) VP)
(VBZ is) ADJP
(VBD said) (SBAR (S (NP (PRP it)) VP))

PP→
(IN in) NP
(IN for) NP
(IN on) NP
(IN with) NP
TO NP
(IN at) NP
(IN from) NP
(IN by) NP
(TO to) NP
(IN of) NP
IN (S (VP VBG NP))
IN NP

ADJP→
JJ
(JJ able) S
RB JJ
RB ADJP
(RB very) JJ
JJ (ADJP CC JJ)
ADJP (ADJP CC ADJP)
(RBR more) JJ
JJ PP
(NP CD (NNS years)) (JJ old)
(JJ UNK-LC)
(RB too) JJ

ADVP →
(RB also)
(RB now)
RB
(RB still)
(NP (DT a) (NN year)) (RBR earlier)
(RB already)
(RB UNK-LC-ly)
(RB again)
(RB just)
(RB then)
(RB never)
(RB currently)

TOP→

(S NP (S VP (. .)))
SINV
(S (NP (DT The)NP) (S VP (. .)))
(S S (S ,S))
(S (CC But)S)
(S (PP (IN In) NP) (S (, ,)S))
(S (NP (DT The) NN) (S VP (. .)))
(S (“ “) (S S (S (, ,)S)))
(S (NP NP (NP , (NP NP ,))) (S VP (. .)))
(S PP (S (, ,) (S NP (S VP (. .)))))
(S (NP (PRP He)) (S VP .))
(S (CC And)S)

S→
NP VP
(VP TO (VP VB NP))
(NP PRP) VP
(VP TO (VP VBVP))
(VP TO (VP VB (VP NP PP)))
(VP TO (VP VB))
(VP TO (VP VB PP))
(VP VBG NP)
(VP VBG VP)
(NP (PRP We)) VP
(NP (PRP it)) VP
(NP (PRP I)) VP

Table 6: Most frequent expansions for a selection of nonterminals. Counts were taken from the final
sample of a model trained on the full Penn treebank.

3082

INDUCING TREE SUBSTITUTION GRAMMARS

NP→

(DT the)NP
NP (NP (CC and) NP)
NP (PP (IN of) NP)
(DT the) NN
(DT the) NNS
(NP DT NN) (PP (IN of) NP)
(DT a)NP
(PRP$ its)NP
NP (NP (, ,) (SBAR WHNP (S VP)))
NP (NP , (NP (SBAR WHNP (S VP)) (, ,)))
CD (NN %)
NP (NP (, ,) NP)
(NP NNP (POS ’s))NP
(NNP Mr.) NNP
(PRP it)
(NP DT (NP JJ NN)) (PP (IN of) NP)
(DT a) (NP JJ NN)
NP (SBAR (WHNP (WDT that)) (S VP))
NP (NP (, ,) (NP NP (, ,)))
(NP (DT the) NN) (PP (IN of) NP)

VP →
(VBD said) (SBAR (S NP VP))
VP (VP (CC and) VP)
(VBD said) (SBAR (S (NP (PRP it)) VP))
VBD (VP (NP CD (NN %))VP)
VP (VP , (VP (CC and) VP))
VP (VP (, ,) (VP (CC but) VP))
(VBD said) (SBAR (S (NP (PRP he)) VP))
(MD will) (VP VB VP)
(VBD said) (SBAR (S (NP (DT the) NN) VP))
(VBD agreed) S
(VBZ is) (VP (VBN expected) S)
(VBP say) (SBAR (S NP VP))
MD (VP (RB n’t) (VP VB VP))
(VBZ says) (SBAR (S NP VP))
(VBP do) (VP (RB n’t) (VP VB NP))
(MD will) (VP VB NP)
(VBZ plans) S
(VBD was) (VP VBN (PP (IN by) NP))
(VBD did) (VP (RB n’t) (VP VB NP))
VP (VP (CC but) VP)

Table 7: Most frequent lexicalized expansions for noun and verb phrases. Forms ofto be andto
have dominate the VP expansions and consequently have been excluded.

dependency relations. We approach the problem by representing dependency structures using the
formalism of a CFG, and then applying our model (Section 3) to learn a TSG based on that CFG.

A dependency grammar can be represented in a CFG by labelling constituentswith their head
word, and encoding each dependency edge between a head and a childword in the grammar produc-
tions. This grammar has productions of the formS→ H (wordH heads the sentence),H →CH (C
is a left child ofH) andH →HC (C is a right child ofH), whereSis the start nonterminal and theH
andC denote head and child nonterminals, respectively, which are both drawn from the same alpha-
bet as the terminals (in our case part-of-speech tags). Unfortunately parsing with this representation
is inefficient, having an asymptotic time complexity ofO(|w|5).20 The complexity can be improved
to O(|w|3) by replicating (splitting) each terminal and processing all left and right dependents of
each head word separately (Eisner, 2000). This is illustrated in Figure 13where the leaves are all
replicated with thel andr subscripts, while the spans defined by the tree structure denote the left
and right dependents of each head word. Here we employ thefold-unfoldrepresentation (Johnson,
2007) that generalises Eisner’s (2000) split-head parsing algorithm bydefining an equivalent CFG
under which standard inference methods can be used. Table 8 shows theCFG grammar for the
DMV model (CFG-DMV), while Figure 13 shows the derivation in this grammar for the example
sentence in Figure 2. The key insight to understanding the nonterminals in thisgrammar is that the
subscripts encode the terminals at the boundaries of the span dominated by that nonterminal. For
example the nonterminal LH encodes that the right most terminal spanned by this constituent isH

20. This is a result of the usual CYK complexity ofO(G2|w|3), and the grammar constantG being equal to the number
of terminals|w| in the sentence.

3083

COHN, BLUNSOM AND GOLDWATER

(and the reverse forHR), whileAMB encodes thatA andB are the left and right terminals of the span.
The superscripts∗ and1 denote the valency of the head: both indicate that the head has at least one
attached dependent in the specified direction, with1 indicating that the head will continue to attach
more children. The time complexity of inference in this grammar is onlyO(|w|3) because each span
in the parse chart bounded by terminals A and B can only contain nonterminallabels from the set
{LB, L∗

B, L1
B, AR, AR∗, AR1, AMB∗ , A∗MB, S}. Consequently the grammar constant is fixed rather

than quadratic in the sentence length.
We apply our TSG model to unsupervised dependency grammar induction using the CFG-DMV

as the underlying grammar representation. Our model is capable of learningtree fragments which
combine multiple adjacent CFG productions, affording considerable additional modelling power
above that of a PCFG. Thereby the model can learn to condition dependency links on the valence.
For example by combining LNN → L1

NN and L1
NN → LDT DTMNN∗ rules into an elementary tree the

model can describe that the leftmost child of a noun (NN) is a determiner (DT). Moreover, the
model can learn groups of dependencies that occur together by conjoining multiple L1

H or HR1

nonterminals. This can represent, for example, the complete preferred argument frame of a verb.

7.1 Experiments

We perform inference for the TSG-DMV model by drawing 1000 samples using the blocked
Metropolis-Hastings sampler described in Section 4.2 and evaluate the model using the final sam-
ple. Given that we do not observe parse trees in training, we cannot use the local Gibbs sampler as
it only allows the sampling of the segmentation of a fixed tree, not the tree itself. In order to parse
sentences in the test set we use the Viterbi algorithm to find the maximum probability parse under
the MAP grammar (see Section 5). All hyperparameters,a,b ands, are sampled after every ten full
samples over the training set.

A final and important consideration is the initialisation of the sampler. Klein and Manning
(2004) emphasised the importance of the initialiser for achieving good performance with their
model. We employ Klein and Manning’sharmonic initialiser which defines a PCFG in which
all words have the same valency distribution and probability of being the sentence head, while the
probability of a head word attaching to a child word is inversely proportionalto the average distance
between these words in the training corpus. To obtain the initial derivations for the sampler we take
the Viterbi derivations under this PCFG.

We follow the standard evaluation regime for DMV style models by performing experiments
on the text of the WSJ section of the Penn. Treebank (Marcus et al., 1993). The corpus statistics
are reported in Table 9. Like previous work we pre-process the trainingand test data to remove the
words and punctuation, training our models on the gold-standard part-of-speech tags.

It is difficult for an unsupervised model to learn from long training sentences as their structure
is highly ambiguous, and therefore the majority of DMV based approaches have been trained on
sentences restricted in length to≤ 10 tokens. This has the added benefit of decreasing the runtime
for experiments. We present experiments with this training scenario, plus anadditional experiment
where we increase the length cutoff to≤ 15. For the≤ 15 experiment we start by sampling only
sentences up to length 10, then gradually relax this length cutoff until we aresampling all sentences
up to length 15 after 900 samples.21 The training data is taken from sections 2-21, while section 23 is
used for evaluation (see Table 9). An advantage of our sampling based approach over previous work

21. This training method is similar in spirit to the Baby Steps algorithm (Spitkovsky et al., 2010).

3084

INDUCING TREE SUBSTITUTION GRAMMARS

CFG Rule DMV Distribution Description

S→ LH HR p(root = H) The head of the sentence isH.

LH → Hl p(STOP|dir = L,head= H,val = 0) H has no left children.
LH → L1

H p(CONT|dir = L,head= H,val = 0) H has at least one left child.

L∗
H → Hl p(STOP|dir = L,head= H,val = 1) H has no more left children.

L∗
H → L1

H p(CONT|dir = L,head= H,val = 1) H has another left child.

HR → Hr p(STOP|dir = R,head= H,val = 0) H has no right children.
HR → HR1 p(CONT|dir = R,head= H,val = 0) H has at least one right child.

HR∗ → Hr p(STOP|dir = R,head= H,val = 1) H has no more right children.
HR∗ → HR1 p(CONT|dir = R,head= H,val = 1) H has another right child.

L1
H → LC CMH∗ p(C|dir = L,head= H) C is a left child ofH.

HR1 → H∗MC CR p(C|dir = R,head= H) C is a right child ofH.

CMH∗ → CR L∗
H p= 1 Structural rule.

H∗MC → HR∗ LC p= 1 Structural rule.

Table 8: The CFG-DMV grammar schema. Note that the actual CFG is created by instantiating
these templates with part-of-speech tags observed in the data for the variables H and C. Valency
(val) can take the value 0 (no attachment in directiondir) and 1 (one or more attachment). L and R
indicates child dependents left or right of the parent; superscripts encode the stopping and valency
distributions, X1 indicates that the head will continue to attach more children and X∗ that it has
already attached a child.

S

Lhates

L1
hates

LGeorge

Georgel

GeorgeMhates∗

GeorgeR

Georger

L∗
hates

hatesl

hatesR

hatesR1

hates∗Mbroccoli

hatesR∗

hatesr

Lbroccoli

broccolil

broccoliR

broccolir

Figure 13: The CFG-DMV derivation for the example sentenceGeorge hates broccoli. The depen-
dency parse for this sentence is given in Figure 2.

3085

COHN, BLUNSOM AND GOLDWATER

Partition Sections Words Sentences

training≤10 2–21 42505 6007
training≤15 2–21 132599 12880
development≤10 22 1805 258
test≤10 23 2649 398
test≤15 23 16591 1286
test≤∞ 23 49368 2416

Table 9: Corpus statistics for the training and testing data for the TSG-DMV model. All models are
trained on the gold standard part-of-speech tags after removing punctuation.

is that we infer all the hyperparameters; consequently there is no need to tune on the development
set (section 22).

The models are evaluated in terms of head attachment accuracy (the percentage of correctly
predicted head dependency links for each token in the test data), on three subsets of the testing data.
Although unsupervised models are better learnt from a corpus of shortrather than long sentences,
they must still be able to parse long sentences. The most commonly employed testset mirrors the
training data by only including sentences≤ 10, however we also include results for sentences≤ 20
and the whole test set with no length restriction. As we are using MCMC samplingthe result of any
single run is non-deterministic and will exhibit a degree of variance. Our reported results are the
mean and standard deviation (σ) from 40 sampling runs.

7.2 Discussion

Table 10 shows the head attachment accuracy results for our TSG-DMV,along with those of several
other competitive models. Our model performs very well in comparison to the others; in particular it
achieves the highest reported accuracy on the full test set by a considerable margin. On the|w| ≤ 10
test set the TSG-DMV is second only to the L-EVG model of Headden III etal. (2009). The L-
EVG model extends DMV by adding additional lexicalisation, valency conditioning, interpolated
back-off smoothing and a random initialiser. In particular Headden III etal. show that the random
initialiser is crucial for good performance, but their approach requirestraining 1000 models to
select a single best model for evaluation and leads to considerable variance in test set performance.
Our model exhibits considerably less variance than those induced using thisrandom initialiser,
suggesting that the combination of the harmonic initialiser and blocked MH samplingmay be a
more practical training regime. The recently-proposed Adaptor Grammar DMV model of Cohen
et al. (2010) is similar in many ways to our TSG model, incorporating a Pitman Yor prior over
units larger than CFG rules. As such it is surprising that our model performs significantly better
than this model. We can identify a number of possible explanations for these results: the Adaptor
Grammar model is trained using variational inference with the space of tree fragments truncated,
while we employ a sampler which can nominally explore the full space of tree fragments; and the
tree fragments in the Adaptor Grammar model must be complete subtrees (i.e., theydon’t contain
variables), whereas our model can make use of arbitrary tree fragments. An interesting avenue for
further research would be to extend the variational algorithm of Cohen etal. (2010) to our TSG

3086

INDUCING TREE SUBSTITUTION GRAMMARS

Directed Attachment Accuracy
% on Section 23

Model Initialiser |w| ≤ 10 |w| ≤ 20 |w| ≤ ∞

Attach-Right - 38.4 33.4 31.7

EM (Klein and Manning, 2004) Harmonic 46.1 39.9 35.9
Dirichlet (Cohen et al., 2009) Harmonic 46.1 40.6 36.9

LN (Cohen et al., 2009) Harmonic 59.4 45.9 40.5
SLN, TIE V&N (Cohen and Smith, 2009) Harmonic 61.3 47.4 41.4

DMV (Headden III et al., 2009) Random 55.7σ=8.0 - -
DMV smoothed(Headden III et al., 2009) Random 61.2σ=1.2 - -
EVG smoothed(Headden III et al., 2009) Random 65.0σ=5.7 - -
L-EVG smoothed(Headden III et al., 2009) Random 68.8σ=4.5 - -

Less is More WSJ15(Spitkovsky et al., 2010) Harmonic 56.2 48.2 44.1
Leap Frog WSJ45(Spitkovsky et al., 2010) Harmonic 57.1 48.7 45.0

Adaptor Grammar(Cohen et al., 2010) Harmonic 50.2 - -

TSG-DMV Harmonic 65.9σ=2.4 58.3σ=2.3 53.1σ=2.4

TSG-DMV WSJ15 Harmonic 66.4σ=1.7 58.5σ=1.7 53.4σ=1.8

Supervised MLE(Cohen and Smith, 2009) - 84.5 74.9 68.8

Table 10: Head attachment accuracy for our two TSG-DMV models (highlighted), and many other
high performing models.

3087

COHN, BLUNSOM AND GOLDWATER

Tag Frequency Accuracy Tag Frequency Accuracy

NN 564 0.70 CC 62 0.77
NNP 366 0.67 VBG 48 0.71
NNS 302 0.74 POS 26 0.92
DT 292 0.81 MD 22 0.82
IN 292 0.59 JJR 20 0.60
JJ 266 0.67 PRP$ 18 1.00
VBD 266 0.79 EX 12 1.00
CD 224 0.21 WP 12 0.17
RB 212 0.40 JJS 10 0.40
PRP 132 0.94 WDT 6 1.00
VBZ 118 0.88 RP 6 0.33
VBN 84 0.71 RBS 4 1.00
VBP 78 0.67 UH 4 0.50
TO 70 0.43

Table 11: Head attachment accuracy stratified by child tag, as measured onthe held-out development
set (WSJ 22,|w| ≤ 10). The tags are sorted by frequency.

model, possibly improving inference time while also allowing for the implementation to bemore
easily parallelised.

To illustrate the kinds of structures the model induces and the types of errors it makes, Figure
14 presents a representative example tree for a sentence from Section 22 of the WSJ. Though many
of the elementary trees in this example resist an obvious linguistic explanation, on the right side
of the derivation (highlighted in green) we see that the model has learnt to encode that the verb
takes a single noun phrase as its object, while on the left (highlighted in blue) isa rule specifying
the DT JJ subject dependent of the VBZ. This derivation is typical of the analyses produced by
the model as it contains a number of dependency links which are inconsistent with the treebank.
However we can see that the model has learnt to analyse the noun, verb and preposition phrases in a
manner which is quite plausible, despite not matching the reference tree. In particular there would
seem to be little obvious reason to prefer the treebank’s analysis of the conjunction phrase (‘either
apathy or civility’) over that produced by the unsupervised model. This highlights the difficulty in
evaluating the output of unsupervised grammar induction algorithms against atreebank reference;
in this instance it is clear that the analysis found by the model, despite its low accuracy, could be
very useful for a downstream NLP application reliant on a dependencyanalysis.

For further analysis Tables 11 and 12 show the accuracy of the model at predicting the head
for each tag type and the accuracy for dependencies spanning a given number of tokens. Clearly
the model is far more accurate when predicting short dependencies, a result that is also reflected
in the per-tag results. We also note that the model accurately predicts the head of the sentence
84% of the time, indicating an ability to capture the high level sentence structure.As mentioned
above, conjunctions pose a particular difficulty with unsupervised models as the correct modelling
of these remains a contentious linguistic issue. Nevertheless on conjunctionsthe model does achieve
a reasonable level of agreement with the treebank.

3088

INDUCING TREE SUBSTITUTION GRAMMARS

(a) TSG-DMV representation. Large bold nodes indicate substitution points.

S

LV BZ

L
1

V BZ

LDT

DTl

DT MV BZ∗

DT R

DT R
1

DT∗MJJ

DT R
∗

DTr

LJJ

JJl

JJR

JJr

L
∗

V BZ

VBZl

V BZR

V BZR
1

V BZ∗MNN

V BZR
∗

VBZr

LNN

L
1

NN

LDT

DTl

DT MNN∗

DT R

DTr

L
∗

NN

NNl

NNR

NN R
1

NN∗MIN

NNR
∗

NNr

LIN

INl

IN R

INR
1

IN∗MNN

IN R
∗

INr

LNN

L
1

NN

LNN

L
1

NN

LDT

DTl

DT MNN∗

DT R

DTr

L
∗

NN

NNl

NN MNN∗

NNR

NNR
1

NN∗MCC

NNR
∗

NNr

LCC

CCl

CCR

CCr

L
∗

NN

NNl

NN R

NNr

(b) Dependency tree representation. The red links below the sentence show where the treebank reference analysis differs
from the predicted tree.

The above represents a triumph of either apathy or civility

ROOT

Figure 14: An example induced tree, shown as an elementary tree (a) and as a dependency tree (b).
The sentence was taken from the development set:"The DT above JJ represents VBZ aDT triumph NN

of IN either DT apathy NN or CC civility NN" .

3089

COHN, BLUNSOM AND GOLDWATER

Link Distance Precision Recall F1-Score

ROOT 0.84 0.84 0.84
1 0.68 0.72 0.70
2 0.61 0.53 0.57
3 0.56 0.46 0.51
4 0.47 0.52 0.49
5 0.27 0.35 0.30
6 0.44 0.57 0.50
7 0.33 0.38 0.35
8 0.25 0.12 0.17

Table 12: Performance on dependency links of varying distance. Precision, recall and f-score on the
WSJ Section 22 (|w| ≤ 10) held-out set.

TSG-DMV Rules Frequency

LNN → (LNN (L1
NN LDT (DTMNN∗ DTR L∗

NN))) 906
INR → (INR (INR1

IN∗MNN NNR)) 839
S → (S (LVBD L1

VBD) VBDR) 707

JJMNN∗ → (JJMNN∗ JJR (L∗
NN NNl)) 600

NN∗MNN → (NN∗MNN NNR∗ (LNN NNl)) 589
L1

NN → (L1
NN LDT (DTMNN∗ DTR L∗

NN)) 587
LNNP → (LNNP (L1

NNP (LNNP NNPl) NNPMNNP∗)) 540
L∗

NN → (L∗
NN (L1

NN LJJ JJMNN∗)) 500
TO∗MVB → (TO∗MVB (TOR∗ TOr) LVB) 437

NNR → (NNR (NNR1
NN∗MNN (NNR NNr))) 412

DTMNNS∗ → (DTMNNS∗ (DTR DTr) L∗
NNS) 397

INR → (INR (INR1
IN∗MNNS(NNSR NNSr))) 328

LNNS → (LNNS(L1
NNSLDT DTMNNS∗)) 326

INMCD∗ → (INMCD∗ (INR INr) (L∗
CD CDl)) 302

NNSMVBD∗ → (NNSMVBD∗ (NNSR NNSr) L∗
VBD) 296

Table 13: The fifteen most frequent TSG-DMV rules in the training data.

3090

INDUCING TREE SUBSTITUTION GRAMMARS

Table 13 lists the most frequent TSG rules learnt by the model. The most frequent rule at the top
of the table models noun phrases, encoding the fact that determiners haveno children and attach as
a left child to a phrase headed by a noun. It is interesting to see that our model has used a TSG rule
to analyse noun phrases in a way consistent with the treebank, whereas the original DMV model
preferred the opposite analysis of having DTs as the heads of noun phrases (Klein and Manning,
2004). Both results could be supported from a linguistic standpoint (Abney, 1987), but nevertheless
it is a notable outcome that our more powerful model prefers to head noun phrases with nouns.
Further down the table we see another interesting rule:TO∗MVB → (TO∗MVB (TOR∗ TOr) LVB). This
rule specifies that a verb phrase headed by an infinitive attaches as the first child of the particleto
on its left. Here the model has used the tree fragment to encode that the verbmust be the first right
child of the particle, an analysis both consistent with the treebank and expressing a bias against any
form of split infinitive construction.

8. Conclusion

In this work we have presented a non-parametric Bayesian model for inducing tree substitution
grammars in both supervised and unsupervised settings. By incorporatinga structured prior over
elementary rules our model is able to reason over the infinite space of all such rules, producing
compact and simple grammars. In doing so, our model learns local structures for latent linguistic
phenomena, such as verb subcategorisation and lexical agreement.

Our experimental results indicate that our model holds significant potential for a range of gram-
mar induction tasks. In experiments using a treebank for training, we showed that the induced TSG
grammars strongly out-perform standard PCFGs, and are comparable to astate-of-the-art parser on
small data samples. While our results when training on the full treebank are well shy of the best
available parsers, we have proposed a number of improvements to the model and the parsing algo-
rithm that could lead to state-of-the-art performance in the future. Our second set of experiments
removed the reliance on a treebank and showed that our TSG model achieves performance similar
to the best recent models on sentences up to length 10, and outperforms allother models on longer
sentences. This result is particularly promising, since it demonstrates the possibility of successfully
learning complex hierarchical models, beyond just CFGs, without supervision. We hope that our
work will open the door to further research into inducing linguistically rich grammars, such as tree
adjoining and categorial grammars, that have so far been considered toodifficult to learn from raw
strings.

References

Steven Paul Abney.The English Noun Phrase in its Sentential Aspect. PhD thesis, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1987.

David Aldous. Exchangeability and related topics. InÉcole d’́et́e de probabilit́es de Saint-Flour,
XIII—1983, pages 1–198. Springer, Berlin, 1985.

Phil Blunsom and Trevor Cohn. Unsupervised induction of tree substitution grammars for de-
pendency parsing. InProceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1204–1213, Boston, Massachusetts, October 2010.

3091

COHN, BLUNSOM AND GOLDWATER

Rens Bod. Using an annotated language corpus as a virtual stochastic grammar. In11th National
Conference on Artificial Intelligence, pages 778–783, Washington D.C., USA, July 1993.

Rens Bod. The problem of computing the most probable tree in data-orientedparsing and stochastic
tree grammars. InProceedings of the 7th conference on European chapter of the Association for
Computational Linguistics, pages 104–111, Dublin, Ireland, 1995.

Rens Bod. Combining semantic and syntactic structure for language modeling.In Proceedings
of the 6th International Conference on Spoken Language Processing, pages 106–109, Beijing,
China, 2000.

Rens Bod. An efficient implementation of a new DOP model. InProceedings of the 10th Conference
of the European Chapter of the Association for Computational Linguistics, Budapest, Hungary,
April 2003.

Rens Bod. An all-subtrees approach to unsupervised parsing. InProceedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th Annual Meeting ofthe Association for
Computational Linguistics, pages 865–872, Sydney, Australia, July 2006.

Rens Bod, Remko Scha, and Khalil Sima’an, editors.Data-oriented parsing. Center for the Study
of Language and Information — Studies in Computational Linguistics. University of Chicago
Press, 2003.

Glenn Carroll and Eugene Charniak. Two experiments on learning probabilistic dependency gram-
mars from corpora. InProceedings of the AAAI Workshop on Statistically-Based Natural Lan-
guage Processing Techniques, San Jose, California, 1992.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent discriminative
reranking. InProceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics, pages 173–180, Ann Arbor, Michigan, June 2005.

David Chiang and Daniel M. Bikel. Recovering latent information in treebanks. InProceedings of
the 19th International Conference on Computational Linguistics, pages 183–189, Taipei, Taiwan,
2002.

Alexander Clark. Unsupervised induction of stochastic context-free grammars using distributional
clustering. InProceedings of the 2001 workshop on Computational Natural Language Learning,
pages 1–8, Toulouse, France, 2001.

Shay B. Cohen and Noah A. Smith. Shared logistic normal distributions for soft parameter tying
in unsupervised grammar induction. InProceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Computational
Linguistics, pages 74–82, 2009.

Shay B. Cohen, Kevin Gimpel, and Noah A. Smith. Logistic normal priors for unsupervised prob-
abilistic grammar induction. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Lon
Bottou, editors,Advances in Neural Information Processing Systems 21, pages 321–328. 2009.

3092

INDUCING TREE SUBSTITUTION GRAMMARS

Shay B. Cohen, David M. Blei, and Noah A. Smith. Variational inference for adaptor grammars. In
Human Language Technologies: The 11th Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages 564–572, 2010.

Trevor Cohn and Phil Blunsom. Blocked inference in Bayesian tree substitution grammars. In
Proceedings of the ACL 2010 Conference Short Papers, pages 225–230, Uppsala, Sweden, July
2010.

Trevor Cohn, Sharon Goldwater, and Phil Blunsom. Inducing compact but accurate tree-substitution
grammars. InProceedings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, pages 548–556,
Boulder, Colorado, June 2009.

Jason Eisner. Bilexical grammars and their cubic-time parsing algorithms. In Harry Bunt and Anton
Nijholt, editors,Advances in Probabilistic and Other Parsing Technologies, pages 29–62. Kluwer
Academic Publishers, October 2000.

Thomas S. Ferguson. A bayesian analysis of some nonparametric problems. Annals of Statistics,
1(2):209–230, 1973.

Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. The infinite tree. InProceedings
of the 45th Annual Meeting of the Association of Computational Linguistics, pages 272–279,
Prague, Czech Republic, June 2007.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–
741, 1984.

E. Mark Gold. Language identification in the limit.Information and Control, 10(5):447–474, 1967.

Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. Contextualdependencies in unsuper-
vised word segmentation. InProceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages
673–680, Sydney, Australia, July 2006.

Joshua Goodman.Parsing Inside-Out. PhD thesis, Harvard University, 1998.

Joshua Goodman. Efficient parsing of DOP with PCFG-reductions. In Bod et al. (2003), chapter 8.

William P. Headden III, Mark Johnson, and David McClosky. Improving unsupervised dependency
parsing with richer contexts and smoothing. InProceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Association for Computa-
tional Linguistics, pages 101–109, Boulder, Colorado, June 2009.

Hemant Ishwaran and Lancelot F. James. Generalized weighted Chineserestaurant processes for
species sampling mixture models.Statistica Sinica, 13:1211–1235, 2003.

Mark Johnson. The DOP estimation method is biased and inconsistent.Computational Lingusitics,
28(1):71–76, March 2002.

3093

COHN, BLUNSOM AND GOLDWATER

Mark Johnson. Transforming projective bilexical dependency grammars into efficiently-parsable
cfgs with unfold-fold. InProceedings of the 45th Annual Meeting of the Association of Compu-
tational Linguistics, pages 168–175, Prague, Czech Republic, June 2007.

Mark Johnson. Using adaptor grammars to identify synergies in the unsupervised acquisition of
linguistic structure. InProceedings of ACL-08: HLT, pages 398–406, Columbus, Ohio, June
2008a.

Mark Johnson. Unsupervised word segmentation for Sesotho using adaptor grammars. InPro-
ceedings of the Tenth Meeting of ACL Special Interest Group on Computational Morphology and
Phonology, pages 20–27, Columbus, Ohio, June 2008b.

Mark Johnson and Sharon Goldwater. Improving nonparameteric bayesian inference: experiments
on unsupervised word segmentation with adaptor grammars. InProceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, pages 317–325, Boulder, Colorado, June 2009.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater. Bayesian inference for PCFGs via Markov
chain Monte Carlo. InProceedings of Human Language Technologies 2007: The Conference of
the North American Chapter of the Association for Computational Linguistics, pages 139–146,
Rochester, NY, April 2007a.

Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater. Adaptor grammars: A framework
for specifying compositional nonparametric Bayesian models. In B. Schölkopf, J. Platt, and
T. Hoffman, editors,Advances in Neural Information Processing Systems 19, pages 641–648.
2007b.

Aravind Joshi. Tree adjoining grammars. In Ruslan Mikkov, editor,The Oxford Handbook of
Computational Linguistics, pages 483–501. Oxford University Press, Oxford, England, 2003.

Dan Klein and Christopher D. Manning. A generative constituent-context model for improved
grammar induction. InProceedings of 40th Annual Meeting of the Association for Computational
Linguistics, pages 128–135, Philadelphia, Pennsylvania, USA, July 2002.

Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic structure: models of
dependency and constituency. InProceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, pages 478–485, 2004.

Karim Lari and Steve J. Young. The estimation of stochastic context-free grammars using the
inside-outside algorithm.Computer Speech and Language, 4:35–56, 1990.

Percy Liang, Slav Petrov, Michael Jordan, and Dan Klein. The infinite PCFG using hierarchi-
cal Dirichlet processes. InProceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, pages 688–697,
Prague, Czech Republic, June 2007.

Percy Liang, Michael I. Jordan, and Dan Klein. Type-based mcmc. InHuman Language Tech-
nologies: The 2010 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 573–581, Los Angeles, California, June 2010.

3094

INDUCING TREE SUBSTITUTION GRAMMARS

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of English: the Penn treebank.Computational Linguistics, 19(2):313–330, 1993.

Igor′ A. Mel′čuk. Dependency Syntax: Theory and Practice. State University of New York Press,
Albany, 1988.

Bernard Merialdo. Tagging English text with a probabilistic model.Computational Linguistics, 20
(2):155–172, 1994.

Radford Neal. Slice sampling.Annals of Statistics, 31:705–767, 2003.

Timothy J. O’Donnell, Noah D. Goodman, and Joshua B. Tenenbaum. Fragment grammar: Ex-
ploring reuse in hierarchical generative processes. Technical Report MIT-CSAIL-TR-2009-013,
MIT, 2009.

Slav Petrov. Products of random latent variable grammars. InHuman Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association for Computational
Linguistics, pages 19–27, Los Angeles, California, June 2010.

Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In Proceedings of Human
Language Technologies 2007: The Conference of the North American Chapter of the Association
for Computational Linguistics, pages 404–411, Rochester, NY, April 2007.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact, and inter-
pretable tree annotation. InProceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages
433–440, Sydney, Australia, July 2006.

Jim Pitman. Exchangeable and partially exchangeable random partitions.Probability Theory and
Related Fields, 102:145–158, 1995.

Jim Pitman.Combinatorial Stochastic Processes. Springer-Verlag, New York, 2006.

Jim Pitman and Marc Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable
subordinator.Annals of Probability, 25:855–900, 1997.

Matt Post and Daniel Gildea. Bayesian learning of a tree substitution grammar. In Proceedings of
the ACL-IJCNLP 2009 Conference Short Papers, pages 45–48, Suntec, Singapore, August 2009.

Detlef Prescher, Remko Scha, Khalil Sima’an, and Andreas Zollmann. On the statistical consistency
of DOP estimators. InProceedings of the 14th Meeting of Computational Linguistics in the
Netherlands, Antwerp, Belgium, 2004.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. From BabySteps to Leapfrog: How
“Less is More” in unsupervised dependency parsing. InHuman Language Technologies: The
11th Annual Conference of the North American Chapter of the Associationfor Computational
Linguistics, pages 751–759, 2010.

Fei Xia. Automatic grammar generation from two different perspectives. PhD thesis, University of
Pennsylvania, 2002.

3095

COHN, BLUNSOM AND GOLDWATER

Andreas Zollmann and Khalil Sima’an. A consistent and efficient estimator for data-oriented pars-
ing. Journal of Automata, Languages and Combinatorics, 10(2):367–388, 2005.

Willem Zuidema. Parsimonious data-oriented parsing. InProceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, pages 551–560, Prague, Czech Republic, June 2007.

3096

